


inEroduction to programming

Chapter

1.
2.
3.

Sl o

Cadia R

COMPUTER PROGRAMMING FUNDAMENTALS
Computer Fundamentals

Programming Fundamentals

Elementary Programming Techniques

ON-LINE OPERATIONS
System Description and Operation
Loading, Editing, and Debugging

ADVANCED PROGRAMMING TECHNIQUES
Input/Output Programming

DECtape Programming

Floating-Point Packages



dlilalit]all i w

pr©gr@mm|ng

prepared |
by

small systems soFtware S
documentation group

digital eqmpment corporation

pdp-8 handbook series



First Edition, January 1969
Second Printing, July 1969
Second Edition, September 1970
Third Edition, May 1972
Fourth Edition, September 1973
Fifth Edition, April 1975

The description and availability of the software products de-
scribed in this manual are subject to change without notice. The
availability or performance of some features of the software prod-
ucts may depend on a specific configuration of equipment. Conse-
quently, DEC makes no claim and shall not be liable for the
accuracy of the software products. Distribution of software prod-
ucts shall be in accordance with the then standard policy for each
such software product. ‘

Copyright © 1970, 1971, 1972, 1973, 1975
Digital Equipment Corporation

The following are registered trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

CDP DIGITAL KA10 PS/8

COMPUTER DNC LAB-8 QUICKPOINT
LAB EDGRIN LAB-8/¢ RAD-8

COMTEX EDUSYSTEM LAB-K RSTS

COMSYST  FLIP CHIP OMNIBUS RSX

DDT - FOCAL 0S8/8 RTM

DEC GLC-8 PDP SABR

DECCOMM IDAC «- PHA . . TYPESET 8

DECTAPE IDACS UNIBUS

DIBOL INDAC



CoreuJore,

As few as five years ago, the suggestion that a computer or com-
puter-based system could be readily available to users at all levels
of technical knowledge and ability still evoked surprise and con-
cern among many. To help convey our position that programming
a minicomputer was not a restricted undertaking, we introduced
in January of 1969 our first major handbook dealing specifically
with the fundamentals of machine and assembly language program-
ming on a minicomputer—Introduction to Programming. Since
that time, the demand for this handbook by users in every field
and occupation, experienced programmer and novice alike, has
clearly proven the value of such a book. '

- In addition to Introduction to Programming, we include several
other volumes in our PDP-8 handbook series. The Small Com-
puter Handbook provides extensive technical information concern-
ing hardware options, interfacing, system operation and installa- _
tion planning; this handbook is invaluable to those who will develop
and maintain a minicomputer installation. The EduSystem Hand-
book contains a complete self-instruction course in the use of the
BASIC programming language, plus user guides to each of the
existing EduSystems—systems designed specifically for classroom
use. Finally, the. forthcoming OS/8 Handbook will present com-
prehensive information dealing with DEC’s complete computer
system for the PDP-8—OS/8. OS/8 provides the programmer
with an extended library of system programs, including a text
editor, octal debugging program, assemblers loaders, and FOR-
TRAN 1IV. :

Once again, I wish to thank all programmers, writers, teachers
and students who have contributed to our handbooks. Through
- your support we can continue producing extensive low-cost pro-
gramming information for PDP-8 computers. .

MK/%

Kenneth H. Olsen

President,

Digital Equipment Corporation
iii '



ERROR REPORTING

If you find any errors in this handbook, or if you have any
questions or comments concerning the clarity or completeness-of
this handbook, please direct your remarks to:

Digital Equipment Corporation
Software Communications, Parker Street
Maynard, Massachusetts 01754



Introduction to Programming is DEC’s introductory computer
programming handbook. The first five chapters provide a thorough
explanation of computer mathematics and an introduction to

machine language and assembly language programming and to
~ the basics of program loading and error correction (debugging).

The experienced programmer may choose to skip the first five
chapters and begin reading the Advanced Programming Techniques
described in Chapters 6, 7, and 8. These chapters describe input/
output (I/0) programming techniques, DECtape programming
techniques, and DEC’s floating-point packages.

BINARY ARITHMETIC
The binary number system is the basic concept behind digital

B ~ computers. The numbers 0 and 1 can easily be substituted for the

two physical states associated with computer hardware: a switch
is either on (1) or off (0), an area in the computer’s memory is
either magnetized (1) or not magnetized (0). In computer pro-
gramming terminology, the binary digits O and 1 are sometimes
called bits (binary digits). Binary numbers are the machine lan-
guage of computers. All computations, no matter how complex,
~ performed by digital computers are made in binary arithmetic;
therefore, students of computer programming must be thoroughly
familiar with the binary system before they can begin to write pro-
grams. Chapter 1 and part of Chapter 2 provide an excellent
introduction to binary arithmetic.

ASSEMBLY LANGUAGE PROGRAMMING

Since it is quite burdensome to write programs in strings of
12-bit binary numbers (called words) an .assembly language was
developed. Assembly language enables the programmer to substi- .
tute English-like mnemonics for the binary numbers. For example,

v



the mnemonic JMP (for jump) is interpreted by the computer as
the 12-bit binary number 101 000 000 000. The three bits in
each of the four groups are given the octal values 4, 2, and 1,
reading from left to right, so that if all three bits of a group were
set to 1 (111), the octal value would be 7 (4+2-+1=7). Thus the
~octal value for JMP is 5000 (101 binary =4+0+1 octal = 5).

101 000 000 000
5 0 0 0

Assembly language programming is discussed in Chapters 2, 3,
and 5.

PDP-8/E SYSTEM DESCRIPTION AND USE

The programs presented in this handbook are designed to run
on a PDP-8/E computer. The PDP-8/E and the peripheral equip-
ment which comprises the PDP-8/E system are described in detail
in Chapter 4.

The program commands which cause the PDP-8/E to accept
data from one of its peripherals or to send data to one of its
peripherals are called input/output commands. Input/output com-
mands are discussed in Chapter 6.

One of the most important peripheral devices is the DECtape
unit. The DECtape unit serves as an auxiliary magnetic tape data
storage facility. DECtape is easier to use than ordinary computer

‘magnetic tape because it allows the user to store information at

fixed positions which may be directly addressed. DECtape pro-
gramming is presented in Chapter 7.

DEC’s floating-point packages provide for easy performance of
basic arithmetic operations such as addition, subtraction, multi-
plication, and division, while maintaining a high degree of preci-
sion. Floating-point numbers represent quantities in the form of a
fractional number multiplied by the number base 10 (for decimal)
with an exponent (e.g., 12 = .12x102). Floating-point representa-
tion is a great help to computer programmers because it allows
them to use and save very large and very small numbers by saving
only the significant digits and computing an exponent to account:

vi



for leading and trailing zeroes. The ﬂoating—point packages are
fully explained in Chapter 8.

COMMON PROGRAMMING TERMS

Such words as loop, jump, nesting, and array have special mean-
ings to computer programmers. Familiarity with these terms is pre-
requisite to an understanding of the information presented in this
handbook. The Index/Glossary at the end of the handbook defines
many of the commonly used computer programming terms.

vii






CHAPTER 1 COMPUTER FUNDAMENTALS

Introduction .......................ccouen....... JRTEYPUNSUTURUROURIRRS 1 |
The Computer Challenge ............cceerveeeeeeeuerererererennn. 1-1
Computer AppliCations .............coeveueveeueveveerererenennnns e 1-2
Computer Capabilities and Limitations ......................... 1-4

Number System Primer ................occococovvoviovmveeeeoeee] "1-5
Binary Number SyStem ............cccoeevereuruemeeecneecereeceennnes 1-6
Octal Number SYStem ..........ccoveeeeveeeeererereeeeeseeseeseeon - 1-11
FIactions ..ot s e 1-15
Arithmetic Operations :..............oooeveivevooeveooooomooo, 1-18
Negative Numbers and Subtraction .................o.oueen.... 1-20
Multiplication and Division ........... ettt eees 1-23

Logic Operation Primer .....................cccoovvmemeuemnerrernnnn . 1-29
The AND Operation ........... et nenenrer et s s rene e esnnas - 1-29
The OR Operation ...........coececueeivemioneereeecieseeresseren. - 1-30
The Exclusive OR Operation ............ooeevvevivemenouveonen, - 1-30

General Organization of the PDP-8 ... 1-31
Arithmetic Unit .....coeeerveeuivcieeeeceeeeeeeeeeee e 1-32

- Control Unit ....................... S PR 1-32
Memory Uit ......ccooeevmereeeeieceneeeee e eeee oo, 1-33
INPUE UDIL ...t es e 1-33
Output Unit ..........ccccveennenne.. et e e sareees 1-33

Computer Data Formats ...................cccoooeeverereno 1-34
Alphabetic Characters ................o.ooeovveeveevroooosoooo 1-34
Number Representations ...............o.oooveveveemveovoisooeoo 1-34



CHAPTER 2 PROGRAMMING FUNDAMENTALS

Program Coding ... 2-2
Binary COINZ o..eovevverreriimirerinesesesecscssssnnensasssesenees 2-2
Octal COdING ...ceveveveereriieite ettt 2-2
Mrnemonic Coding .....c.ccvvirimmerirennrinii 2-3

PDP-8 Organization and Structure ........ e aaaas . 2-4
Input and Output Units .........ccoovvereerenne. et neene 25
ATithmetic Unit ....c.oovvevveveerernireccininieneeeneesnaneen S 2-5
CoNtrol Ut ....ooovvveeeeenrenicenrriinrerie e ti st eescssanes 2-6
Memory Uit ....ccccoviierinmniiiniennsecseriis e 2-7

Memory Reference INstroctions ..............ccoooviiiiniiniicnns 2-8
AND oottt es e st s e a s 2-9
TAD oeeeeeeeeeeeeeeeeiessreereesns e stes e e n e e s n e saa st s s 29
DICA et eeeeste s sere s e ae s e s st n et st e e 2-10
1., § OO FTOUR PO PP PPRTI 2-10
| L/ SO SO OUOR RO PPRPTPPIS 2-10
1. KOO UPRPPRPPI PP 2-12

 AAATESSIIE “.....oovrieitiire s 2-13
PDP-8 Memory Pages .......ccccveeeeuenienniiininiiisseiencens 2-13
Indirect AdAIessing ........icoovreerivremreerarnensessesssisieinanans . 2-15

Operate MicroInstroctions ..............cooeommiinniccnenienns 2-18
Group 1 Microinstructions .......c..ccocvmmeeennenne rernanenneeseens 2-18
Group 2 MiCTOINStIUCHONS ......evevveemreiinntinissasnnsesessaees 2-21

 MiCrOProOgramiming .........c.cocoivimniimmminsissmsmssssuscsnsnsssisisesses 2-23
Combining Microinstructions ............ e reserraniasieananenen L2223
Tllegal CoOmbINAtions .......covvereresreserssesesesses e eanaaens 2-23
Combining Skip Microinstructions ...........ceeereessoeseennnses 2-25
Order of Execution of Combined Microinstructions ........ 2-26

Exercises .......... rreeenreeeere e TP . 2-28

CHAPTER 3 ELEMENTARY PROGRAMMING
TECHNIQUES



Example 1—Straight-Line Prdgramming ........................ 34

Example 2—Program-Branching ..............coceooovovnooon.. 3-4
deing aProgram ..................oooiieeiie vroeeesrreenes 3-6
Location Assignment ................ rereireeenneans rreerteeeneeeeane 3-6
SYMbOC AdAIesses ...........c.oveveveeeeeeemeressooooooooooo - 37
Symbolic Programming Conventions ............................. 3-8
Programming Arithmetic Operations ... 3-10

Arithmetic OVEIflow ...........o.ovoveeeeeeeerreeo ceeeerenaeas 3-11
Subtraction ...........cccceooieveeveeennn SO e 313
Multiplication and Division .............cocovovrovoooooo 3-13
Double - Precision Arithmetic .............ocooooooooo e 3-14
Powers of TWO .......ocovvenn... e 3-16
Writing Subroutines ... 3-16

Address Modification ............................... 3-19-
Inserting Comments and Headings ...... ettt 3-22
~ Looping a Program ............... S e 3-24
Autoindexing .........0...ooo..oooovoomceoe 3-27
Program Delays ..o 3-29
- Program Branching ................ . . ementatteereetreeeeaeresesresennnnns 3-30
EXCICISCS .ueuvvniirinieeeceeeeeeeceeeeeeeee oo 3-34

CHAPTER 4 = SYSTEM DESCRIPTION AND OPERATION

Programiner’s Console Operation ................ R 4-1
Manual Program Loading ... 4-6
Keyboard/Printer Console Devices ... 4-9
Teletype Operation ................coooovvoene 4-10
Teletype Control Knob ...............eeoveveoomneoooo 4-11
Teletype Keyboard ..o rrete e aresstenneesment 4-12
Teletype Printer .............oooooeoeeroo P 4-13
Teletype Paper Tape Reader ..o 4-13
Teletype Paper Tape Punch ST TURUUROUU A ) |

Generating a Symbolic Tape .........coocoovoo 4-14



Paper Tape FOIMALS .....o.ocoovimiiimnmniimsusinisse s 4-15
Paper Tape Loader Programs ........c.cocovenmsrasssmnsanesecess 4-18
Peripheral Equipment and Options ...........cccocoevereserennssnnenese 4-18
High-Speed Paper Tape Reader and Punch Unit .......... 418
Extended Memory ......... TR reerenenns vesdasmmensnas 4-20
DECHape SYStEIM ..ocveverivriinrisssirisisnsssmscsesctsnsismssisssecees: 4-21
DECAiSK SYSTEMS ..cveviiiiiirninecenssiinssmsinssiessssnsisassansnes 4-23
Extended Arithmetic Element ........ccccooieiiniiiiiinniniennn 4-24
EXEECISES ..vveveveesensrensesseeseeeseasesssossannsssassssssnsssanesnasssessssiass 4-24

CHAPTER 5 LOADING, EDITING AND DEBUGGING

IEEOAUCHON ...oovveeveeeieeeeiieeete et sas s s st 5-1
LORAEES .ovoveveeeeeeeeiereeseseerecnsseesentsas s esnssssrassssanens e 5-1
RIM LOAET ..vveeeveiveeiieeeersseseensnresssssesssssssssensessasssanions 5-2
Binary LOAder ......ocooerreureemsimmmnssssssssasssssnss s 5-5
Self-starting Binary Loader ........coooenmnninnmimsensnses 5-9
M18-E Hardware BOOLSIIAP .......cooveervcmnsnmmmnnncssesianannens 5-9
Symbolic EdItOr ... 5-11
TOATOAUCHION  cevrevveeveerereseeinenesse e s esaanasaentesunsansssanesses 5-11
Modes Of OPEIAtION ........ccoeriiumimrmiminsssnssssrsssssrcssacaes 5-12
Command StIUCTUTE .....cocoeerriivommeriminnmemnsnsssnnsnsisaseeses 5-12
Special Characters and FUNCHONS ..vvveeermvemrrnnmreanecessunsens 5-13
Switch Register OPHONS ...c...ovveemeierrisammeminsnserenssisaseesss 5-18
Command Repertoire .......c....er ecvvesssaesessmasavenssssEsREeReE 5-19
Operating Procedures ...........cocoveaeneee ereennaesrtenenane e s 5-28
EITOT MESSAZES .eevercrvvirmmsmninsenessamsnssssscsnsssassssensansnsnssss 5-35
Example 0Of USE ...oooioriemmiimnisersinsmsssnsnssnssassasseenes 5-35
Summary of Editor Operations ............ wresmmesessintsasnserernes 5-38
Debugging PrOgrams .........cocooourmsrrissmssmsnuisssssssssmssssssseesss 5-42
Debugging Without DDT or ODT coooevreereennnesssnneees 5-42
Debugging With DDT .......cooiiennnn. reeeesreeennessrbrennneress 5-43
Loading DDT ......ocooovmrmmecinnnns eeeeeneeeeasasrasrastesais A .. 5443
Symbol Table TaAPES ......ocovrveessemsersmminsnnnsiisassesseneees creeens 5-44
Storage REQUITEMENLS .....ovrvmmressiusisssasmssmismsasssssssssienss 5-48



Mode. Control ........cccceveeeeveirieeeeeeecetct et eerenns 5-49
Program Examination and Medification............................ 5-50
Example Program Debugged ...........c.ccoooeueueemeeveeenenn. . 5-63.
Command SUMMATLY ........c.coovevevveeceniiricreeeeeeeeeeeeeeeersaennas 5-65
Internal Symbol Table ............covue...... e e 5-67
- Debugging With ODT ..., 5-68
Features ..o 5-68
Using ODT .................... et e 5-69 .
Operation and Storage .......... eeeeetreaanaan reeeeeeaeans everneens 5-69
Commands ..........oooveieieuiieieeeee e 5-71.
Additional Techniques ............cccocveeveeeeviurerennnn.. S 5-80.
Programming Notes Summary ............ccccoevvevveveervrenn... 5-82

Command Summary .......................... eesrerieesraesesnnraenesas 5-83

CHAPTER 6 INPUT/OUTPUT PROGRAMMING

Infroduction ...............occoooviemimiiiiieeeeeeee e, 6-1
Programmed Data Transfers .........................cccocoooooovviii 6-2
IOT Instruction FOrmat ...........ocoeveeeveeeemeoeeeoooeeeoon, 6-2
Checking Ready Status ..............cccoooeveeeeveeeeveereirennnn 6-3
- Instruction USes .............ccoeveevereeimmeereeseeen. cevaneentaens 6-3
ASCII Code ...t 6-4
Programming the Teletype Unit ................. teerne e e 64
Keyboard/Reader Instructions ................ooooooooooosoeon . 6-4
Printer/Punch Instructions ..............ccooooevvvvsiiovnen 6-6
Format RoOULINES ........cccccoiimnmiereieeeeeeeneeeeereen, 6-8
Text ROULNES ........coveeeeeecececieeenae et 6-8
Numeric Translation Routines ..............oooooovoeooevee. - 6-11
Program Interrupt Facility .................................. . 6-22
Programming an Interrupt ............ccccoooovvovvevmemeeo 6-24
Multiple Device Intérrupt Programming ....................... - 6-28
A Software Priority Interrupt System .............................. 6-30
Multiple Interrupt Demonstration. Program .................... 6-31
Data Break ..o 6-40.
Accessing Data ..........o.o.oueeeieeeeeereeeeeeeeeeeee 6-40



Single-Cycle Data Break .......ccccovvininieiiinniiinniins 6-40

Cycle Stealing ........ccocoviiviiiiiininninne i 6-42
3-Cycle Data Break ...........icccooiiiinnninnecniecniennnnien. 6-42
EEXEICISES ..ooovvvvrieieeeeeieeeeeieseieivvesssnesenneissseeseseneassanssnaansasasns 6-43

INroduction ........cccovviiiiiiicen e 7-1
Data BIockS .......oooooviiiiiiireecerentiie e 7-1
Data CRANDELS ............co.oveooeeeeieeeeereeresesssenssssecsssseesessesaens 7-2
Standard DECIAPES ....o.oocovoeooeesoersreesserssreesoessesive T2
DECtape Control Unit ... 7-4
DECtape Status Registers .............. reereereerabeseressserriessesiessaen 7-4
Status Register B ..o 7-6
Status Register A ...ccooiiiiiniiiiiiinieiiiec s 7-6
DECtape IOT INstructions ................cccoccevevininninnninnnenne 7-9
Programmed DECtape Operation ................ccoooeviiiniinennns 7-11
Use of the DECtape Flag ... 7-13
Selecting Direction ..............ccccovureemreeierennnnens et 7-14
~ Reversing Direction ... 7-14
Accessing Data Blocks ................. — ..... 7415
Allocating Storage Areas .............cccoooiimimiinniiniesnne 7-15
Programming for Error Conditions ............cccocovnvininnnn. 7-16
Programming for Intérmpts .......................................... teeenr 7-16
IDTAPE Subroutine ..........c...ccocoviimniinnimmmneneninenennn 7-17
DECtape System Software ... 7-19
DECtape Subroutines ........... TS RRRROOY 7-20
~ DWAIT SUbTOULINE ...ocoveeveinmnminreiiiciinisseses e 7-21
SEARCH Subroufine .......cccccccceemnvmmmnnciinnneeessnes e 7-21



READ and WRITE SUBLOUHNES ... 7-22

DECtape Copy Program ............coceeeeeeeeeeeesseeresonono, 7-23
DECtape Formatting Program ...........c.cceoeeveeeeeveevennnnnn.. 7-25
DECtape Library System ..................cccccoevveeeeeveereaeeennnnn. 7-26
The DIirectory ...ccceoeveeemvveerieeeciceeeeeeeeeeeeven, e 7-27
Using the Library System ...........ccecveeveeuenen.... reereeteens 7-28
TCO1 Bootstrap Loader ................ SRR £ ) |
TD8-E DECtape Subroutine ..............................coooooo . 7-32-
Assembly Parameters ................... eesesttenmrirerrartareaearseseesns 7-33
Calling SeqUENCE ........ciceeevueeeeericriieee et e e eeer e 7-34

CHAPTER 8 FLOATING-POINT PACKAGES

Introduction ................cococoviiieiieniiiieeeee el 8-1
Assembly Instructions ................................. fereereeeeenerearenaas 8-2.
Floating-Point Notation .......................ccoocovvvveveenierern, 8-4
NOrmalization ..........cccecovveveeveeeniireieeeeeee e 8-5
Number Representation ...............cccoevvoeeeveeeiereerennn, 8-6
Using the‘ Floating-Point Package et 8-7
Floating Input and Output ........... ireersnte et inenreeseriressesnnee 8-17
Use of FISZ and Auto-Indexing ............cocoevereeevernnnn, 8-20
User Subroutines ...........cccooeeeeeeeeeeeeeeeeesieeeeens 8-22
Floating SWitch ........ccccooiiiieiiiiiiieeeee e, 8-26
Floating Halt ..........ccooooevimiiiiieiiiiceee e, e 8-27
- Single Instruction vs Interpretive- Mode ... 8-27
Error Traps ......................... eerreeteeereeaennaaes ...... R '8-29
Extended Function Algorithms .......................o............... 8-31
Execution Time for EAE Operations ...............ovvo....... 8-35
Execution Time for EAE Extended Functions ................ 8-36
Execution Time for Non-EAE Operations .................. .. 8-36
Accuracy of Extended Functions ...........c.c.ccccccevvnnnn, 8-37
‘Core Storage Maps ..............ocooooveieienmeeeeeeoo 8-38
Summary of Floating-Point Instructions ..................... 8-40
Memory Reference Instructions ..............oovereevvoveeoeonn. 8-40
Expanded Instructions ................occooveveeevoevvoinii eveeeas 8-41



APPENDIX A

Answers to Selected Exercises ............cccee.... deren e - A-1
APPENDIX B

Character COodeS .........ooevvvvererieriiirreererreeasessrnanaiseesines T - B-1
APPENDIX C

FlOWCHArt GUIAE ..o.o.eieoeeeeereeeres s eeeessesaesssestseesess Tessinae C-1
APPENDIX D

" PDP-8 InSruction Set ...........c.oveveueveueereenerericrinss ST D-1
| APPENDIX E

Read-In Mode Loader ...........ccccoveeeiinnininninennescineenisnnsnns E-1

Binary LOoader ... ~E-3

APPENDIX F |

Miscellaneous Tables .............coovvireiiinennnee. pevererereesaennananaesne F-1
APPENDIX G

Digital Equipment Computer Users Society .......occeeveereneens G-1

xvi



: r@gr@mml
{UNOCIMENTEo

computer
Fundamentals

programming
Fundamentals

. elementary
- programming
~ kechniques

@m@



computer
Fundqmentals

INTRODUCTION

During the past 20 years, the computer revolution has dramatically
changed our world, and it promlses to bring about even greater changes
-in the years ahead.

The general purpose, digital computers being built today are much
faster, smaller and more reliable and can be produced at lower cost
than the earlier computers. But even more significant breakthroughs
have come in the many new ways we have learned to use computers.

The first big electronic computers were usually employed as super
calculators to solve complex mathematical problems that had been im-
possible to attack before. In recent years, computer programmers
have begun using computers for non-numerical operations, such as
control systems, communications, and data handling and- processmg
In these operations, the computer system processes vast quantities of
‘data at high speed.

The Computer Challenge

It has been said that a computer can be programmed to do any
problem that can be defined. The key word here is defined, which
means that the solution of the problem can be broken down into a
series of steps that can be written as a sequence of computer instruc-
tions. The definition of some problems, such as the translation of natu- _
ral languages, has turned out to be very difficult. A few years ago it
was thought that computer programs could be~written to translate
French into English, for example. As a matter of fact, it is quite easy
to translate a list of French words into English words with similar
meanings. However, it is very difficult to precisely translate sentences
because of the many shades of meanings associated with individual
words and word combinations. For this reason, it is not practical to

1-1



try to communicate with a computer using a conventional spoken lan-
guage. -

While natural languages are impractical for computer.use, program-

ming languages, such as FOCAL, ALGOL, and FORTRAN with their
precisely defined structure and syntax, greatly simplify communication
with a computer. Programming languages are problem oriented~and -
contain familiar words and expressions; thus, by using a programming-
language, it is possible to learn to write programs after a relatively
short training period. Since most computer manufacturers have adopted
- standard programming languages and implemented the use of these:
languages on their computers, a given program can. be executed on a
large number of computers. PDP-8 programmers use FORTRAN and
ALGOL-8 for scientific and engineering problems and use FOCAL-8
and BASIC-8 for shorter numerical calculations. Computer languages
have been developed for programmed control of machine tools, com-
puter typesetting, music composition, data acquisition, and many other
applications. It is likely that there will be many more new programming
languages in the future. Each new language development will enable
the user to more easily apply the power of the computer t0 his partic-
ular problem or task. !

Who can be a programmer? In the early days of computer program-
ming, most programmers were mathematicians. However, as this text
illustrates, most programming requires only an elementary ability to
handle arithmetic and logical operations. Perhaps the most basic re-

_quirement for programming is the ability to reason logically.

Thé rapid expansion of the computer field in the last decade has
made the resources of the computer available to hundreds of thousands
of people and has provided many new career opportunities.

Computer Applications

A computer, like any other machine, is used because it does certain
tasks better and more efficiently than humans. Specifically, it can re-
ceive more information and process it faster than a human. Often,
this speed means that weeks or months of pencil and paper work can

~ be replaced by a method requiring only minutes of computer time.
Therefore, .computers are used when the time saved by using a com-
puter offsets its cost. Further, because of its capacity to handle large
volumes of data in a very short time, a computer may be the only
means of resolving problems where time is of the essence. Because of
the advantages of high speed and high capacity, computers are being
used more and more in business, industry, and research. Most com-
puter applications can be classified as either business uses, which usually.

1-2



rely upon the computer’s capacuty to store and qulckly retrieve large
amounts of information, or scientific uses, which require accuracy
and speed in performing mathematical calculations. Both of these are
performed on general purpose computers. Some examples of computer,
applications are given below.

Solving Design Problems. The computer is a very useful calculating
tool for the design engineer. The wing design of a supersonic aircraft,
for example, depends upon many factors. The designer describes each
of these factors in the form of mathematical equations in a program-
ming language. The computer can then be used to solve these equations.

Scientific and Laboratory Experiments. In scientific and laboratory
experiments, computers are used to evaluate and store information
from numerous types of electronic sensing devices. Computers are par-
ticularly useful in such systems as telemetry where signals must be
quickly recorded or they are lost. These applications require rapid and
accurate processing for both fixed conditions and dynamic situations.

Automatic Processes. The computer is a useful tool for manufac-
turing and inspecting products automatically. A computer may be pro-
grammed to run and control milling machines, turret lathes, and many
other machine tools with more rapid and accurate response than is
humanly possible. It can be programmed to.inspect a part as it is being
made and adjust the machine tool as needed. If an incoming part is de-
fective, the computer may be programmed to reject it and start the
~next part.

Training by Simulation. 1t is often expensive, dangerous and imprac-
tical to train a large group of men under actual conditions to fly a
‘commercial airplane, control a satellite, or operate a space vehicle. A
computer can simulate all of these conditions for a trainee, respond to
his actions, and report the results of the training. The trainee can there-
fore receive many hours of on-the-job training without risk to himself,
others, or the expensive equipment involved.

Applications, such as those given above often require the processing
of both analog and digital information. Analog information consists
of continuous physical quantities that can be easily generated and con-
trolled, such as electrical voltages or shaft rotations. Digital informa-
- tion, however, consists of discrete numerical values, which represent
the variables of a problem. Normally, analog values are converted to
equivalent digital values for arithmetic calculations to solve problems.
Some computers, such as the LINC-8, combine the analog digital
characteristics in one computer system.

1-3



- Computer Capabilities and Limitations
A computer is a machine and, as all machines, it must be directed
and controlled in order to perform a useful task. Until a program is
prepared and stored in the computer’s core memory, the computer
“knows” absolutely nothing, not even how to receive input. Thus, no
matter how good a particular computer may be, it must be “told”
what to do. The usefulness of a computer therefore can not be fully
realized until the capabilities (and the limitations) of the computer
are recognized.

Repetitive operation—A computer can perform similar operations
thousands of times, without becoming bored, tired or careless.
Speed—A computer processes information at enormous speeds,
which are directly related to the ingenuity of the designer and the
programmer. Modern computers can solve problems millions of
times faster than a skilled mathematician. ,
Flexibility—General purpose computers may be programined to
solve many types of problems.

Accuracy—Computers may be programmed to calculate answers
with a desired level of accuracy as specified by the programmer.

Intuition—A computer has no intuition. It can only proceed as it
is directed. A man may suddenly find the answers to a problem
without working out the details, but a computer must proceed as
ordered. | '

The remainder of this chapter is devoted to the general organization
of the computer and the manner in which it handles data. Included are
the number systems used in programming together with the arithmetic
and logical operations of the computer. This information provides a
necessary background for all who desire a basic appreciation of com-
puters and their uses, and it is a prerequisite to machine-language
programming, covered in chapters 2 through 5.

1-4



NUMBER SYSTEM PRIMER

The concept of writing numbers, counting, and performing the basic.
operations of addition, subtraction, multiplication, and division has
been directly developed by man. Every person is introduced to -these
concepts during his formal education. One of the most important
factors in scientific development was: the invention of the decimal-
numbering system. The system of counting in units of tens probably
developed because man has ten fingers. The use of the number 10 as
" the base of our number system is not of prime importance; any stand-

ard unit would do as well. The main use of a number system in early
times was measuring quantities and keeping records, not performing
mathematical calculations. As the sciences developed, old numbering -
systems became more and more outdated. The lack of an adequate
numerical system greatly hampered the sc1ent1ﬁc development of early
civilizations.

Two basic concepts simpliﬁed the operations needed to manipulate
numbers; the concept of position, and the numeral zero. The concept
of position consists of assigning to a number a value which depends.
both on the symbol and on its position in the whole number. For
example, the digit 5 has a different value in each of the three numbers
135, 152, and 504. In the first number, the digit 5 has its original ~
value 5; in the second, it has the value of 50; and in the last number,
it has the value of 500, or 5 times 10 times 10. Sometimes a position

“in a number does not have a value between 1 and 9. Tf this position
were simply left out, there would be no difference in notation between
709 and 79. This is where the numeral zero fills the gap. In the number
709, there are 7 hundreds, O tens and 9 wunits. Thus, by using the :
concept of position and the numeral 0, arithmetic becomes quite easy.

A few basic definitions are needed before proceeding to see how -
these concepts apply to digital computers. '

Unit—The standard utilized in counting separate items is the unit.
Quantity—The absolute or physical amount of units.
Number—A number is a symbol used to represent a quantity.

Number System—A number system is a means of representing
quantities using a set of numbers. All modern number systems use
the zero to indicate no units, and other symbols to indicate quan-
tities. The base or radix of a number system is the number of sym-
bols it contains, including zero. For example the decimal number
system is base or radix 10, because it contains 10 dlfferent sym-
bols (viz., 0,1,2,3,4,5,6,7.8, and9) -

1-5



Binary Number System

The fundamental requirement of a computer is the ability to physi-
cally represent numbers and to perform operations on the numbers
thus represented. Although computers which are based on other num-
ber systems have been built, modern digital computers are all based
on the binary (base 2) system. To represent ten different numbers
(0,1,2, . . ., 9) the computer must possess ten different states with
which to associate a digit value. However, most physical quantities have
only two states: a light bulb is on or off; switches are on or off; holes
in paper tape or cards are punched or not punched; current is positive

‘or negative; material is magnetized or demagnetized; etc. Because it
can be represented by only two such physical states, the binary number
system is used in computers.

To understand the binary number system upon which the digital
computer operates, an analysis of the concepts underlying the decimal
number system is beneficial.

POSITION COEFFICIENT

In the decimal numbering system (base 10), the value of a numeral
depends upon the numeral’s position in a number, for example:

347 = 3 X 100 = 300
4 X 10 = 40

7 X 1 = 7

347

The value of each position in a number is known as its position coeffi-
cient. It is also called the digit position weighting value, weighting value,
or weight, for short. A sample decimal weighting table follows:

.. 108 102 101 100
and, as shown above,
347 =3 X 102+ 4 X 101 + 7 X 10°
Weighting tables appear to serve no useful purpose in our familar deci-
mal numbering system, but their purpose becomes apparent when we
consider the binary or base 2 numbering system. In binary we have
only two digits, O and 1. In order to represent the numbers 1 to 10, we

must utilize a count-and-carry principle familar to us from the decimal

1-6



system (so familiar we are not always aware that we use it). To count
from O to 10 in decimal, we count as follows:

VWO NDWVWN~=O

10 with a carry to the 10! column

Continuing the counting, when we reach 0 in the units column again,
we carry another 1 to the tens column. This process is continued until
the tens column becomes 0 and a 1 is carried into the hundreds column,
as shown below: -

0 10 90
1 11 91
2 12 92
3 13 93
4 14 94
5 . _ 15 95
6 16 96
7 17 97
8 18 . 98
9 19 99
10 one carry 20 one carry 100 two carries

COUNTING IN BINARY NUMBERS

In the binary number system, the carry principle is used with only
two digit symbols, namely 0 and 1. Thus, the numbers used in the
binary number system to count up to a decimal value of 10 are the
following. '

Binary Decimal Binary Decimal
0 (0) _ 110 (6)
1 (1) 111 (7
10 () 1000 O (8)
11 3) 1001 (9)
100 (4) ' 1010 (10)
101 (5)

When using more than one number system, it is cilstomary to subscript
numbers with the applicable base (e.g., 1015=5;,).

1-7



A weighting table is used to convert binary numbers to the more
familiar decimal system. )

2423222120 (Weight Table)

10101 (Binary Number) Position
| I Digit Coefficient

= 1 X 1 = 1

= 0 X 2 = 0

= i X 4 = 4

— = 0 X 8 = 0

— 1 X 16 = 16

Decimal Number = 21

It should be obvious that the binary weighting table can be extended,
like the decimal table, as far as desired. In general, to find the value
of a binary number, multiply each digit by its position coefficient and -
then add all of the products. ‘

ARRANGEMENTS OF VALUES

By convention, weighting values are always arranged in the same
manner; the highest on the extreme left and the lowest on the extreme
right. Therefore, the position coefficient begins at 1 and increases from
right to left. This convention has two very practical advantages. The
first advantage is that it allows the elimination of the weighting table,
as such. It is not necessary to label each binary number with weighting
values, as the digit on the extreme right is always multiplied by 1, the
digit to its left is always multiplied by 2, the next by 4, etc. The second
advantage is the elimination of some of the Os. Whether a 0 is to the
right or left, it will never add to the value of the binary number. Some
Os are required, however, as any 0s t0 the right of the highest valued
1 are utilized as spaces or place keepers, to keep the 1s in their correct
~-positions. The Os to the left, however, provide no information about
the number and may be discarded, thus the number 0001010111 =
1010111. ' o |

The PDP-8 family computers operate upon 12-bit (binary digit)
numbers. This means that the numbers from O to 111111111111,
(4095,,) can be airectly represented. '

SIGNIFICANT DIGITS

The “leftmost” 1 in a binary number is called the most significant
digit. This is abbreviated MSD. It is called the “most significant” in
that it is multiplied by the highest position coefficient. The least sig-
nificant digit; or LSD, is the extreme right digit. It may be a1l or 0,
and has the lowest weighting value, namely 1. The terms LSD and

1-8



 MSD have the same meaning in the decimal system as in the binary sys—

tem, as shown below.
. 10 10101 ,
MSD 100101 OQLSD
. 45971

CONVERSION OF DECIMAL TO BINARY

There are two commonly used methods for convertmg decimal num- .
bers to binary equivalents. The reader may choose whichever method
he finds easier to use. '

N o

b

1. Subtraction of Powers Method—To convert any decimal number
to its binary equivalent by the subtraction of powers method, proceed
as follows. '

Subtract the highest possible power of two from the decimal number,

and place a “1” in the appropriate weighting position of the partially

completed binary number. Continue this procedure until the decimal

number is reduced to 0. If, after the first subtraction, the next lower

power of 2 cannot be subtracted, place a 0 in the appropriate weight-
- ing position. Example:

42, = ? binary :

42 _ 10 2
—32 — 8 -2
10 _ 2 0

281 241 23| 22| 21| 20 ‘Power
32 116 8 4 2 1 Value
1.1 0 1 0 1 0 Binary

Therefore, 42,, = 101010..

2. Division Method—To convert a decimal number to binary by
the division method, proceed as follows.

Divide the decimal number by 2. If there is a remainder, put a 1 in the
LSD of the partially formed binary number; if there is no remainder,
put a 0 in the LSD of the binary number. Divide the quotient from the
first division by 2, and repeat the process. If there is a remainder,

1-9



record a 1; if there is no remainder, record a 0. Continue until the
quotient has been reduced to 0. Example:

47, = ?Binary

Quotient . - Remainder
2 Y47 = 23 o
2 )23 = 11 1
2 5T = 5 1
2 )5 = 2 1 .
2 )2 = 1 0
2 | = 0 1
T K 1 '

Therefore, 47,, = 101111..

EXERCISES
a. Decimal-to-Binary Conversion — Convert the following decimal
numbers to their binary equivalents.

1. 15, 11. 4095,
2. 18, 12, 1502,
3. 42, 13. 377,
4. 100, 14. 501,
5. 235, 15. 828,
6. 1, 16. 907,
7. 294, 17. 4000,
8. 117, 18. 3456,
9. 86, 19. 2278,
10. 4090, 20. 1967,

b. Binary to Decimal Conversion — Convert the following binary
numbers to their decimal equivalents.

1. 110, 9. 11011011101,
2. 101, 10. 111000111001,
3. 1110110, 11. 111010110100,
4, 1011110, . 12, 111111110111,
5. 0110110, 13. - 101011010101,
6. 11111, 14. 111111,
7. 1010, 15. 000101001,

- 8.

110111, 16. 111111111111,

1-10



Octal Number System

It is probably quite evident at this time that the binary number
system, although quite nice for computers, is a little cuntbersome for
human usage. It is very easy for- humans to make errors in reading and
writing quantities of large binary numbers. The octal or base 8§ num-
bering system helps to alleviate this problem. The base 8 or octal num-
ber system utilizes the digits O through 7 in forming numbers. The
count-and-carry method mentioned earlier applies here also. Table 1-1
shows the octal numbers with their decimal and binary equivalents.

Table 1-1 Decimal-Octal-Binary Equivalents

Decimal | Octal Binary Decimal | Octal Binary

0 0 0 7 7 111
1 1 1 8 10 1000
2 2 10 9 11 1001
3 3 11 10 12 1010
4 4 100 11 13 1011
5 5 101 12 | 14 1100
6 6 110 13 15 1101

The octal number system eliminates many of the problems involved
in handling the binary number system used by a computer. To make the
12-bit numbers of the PDP-8 computers easier to handle, they are
often separated into four 3-bit groups. These 3-bit groups can be rep-
resented by one octal digit using the previous table of equivalents as
- seen below.

A binary number 11010111101

is separated into 3-bit groups by starting with the LSD end of the
number and supplying leading zeros if necessary:

011 010 111 101
The binary groups are then replaced by their octal equivalents:

011.= 3,
010.= 2,
111.= 7,
101,= 5,
and the binary number is converted to its octal equivalent:
327 5.

Conversely, an octal number can be expanded to a binary num-
ber using the same table of equivalents.

. | 5307.= 101 011 000 111,

1-11



OCTAL-TO-DECIMAL CONVERSION

Octal numbers may be converted to decimal by multiplying each
digit by its weight or position coefficient and then adding the resulting
products. The position coefficients in this case are powers of 8, which
is the base of the octal number system. Example:

2167.= ? decimal

2167:= 7 X 8 =7 X I = 7
46 X 81 =6 X 8 = 48

+1 X 8 =1X 64 = 64

+2 X 8 = 2 X 512 = +1024

1143

Therefore, 2167, = 1143,,.

DECIMAL-TO-OCTAL CONVERSION

There are two commonly used methods for converting decimal num-
bers to their octal equivalents. The reader may choose the method
which he prefers.
SUBTRACTION OF POWERS METHOD. The following procedure
is followed to convert a decimal number to its octal equivalent. Sub-
tract from the decimal number the highest possible value of the form
a8", where a is a number between 1 and 7, and n is an i‘n‘teger. Record
the value of a. Continue to subtract decreasing powers of 8 (recording
the value of a each time) until the decimal number is reduced to zero.
Record a value of a=0 for all powers of 8 which could not be subtrac-
ted. Table 1-2 may be used to convert any number which can be rep-
resented by 12-bits (4095, or less). Appendix F contains a similar
table for converting larger numbers. Example:

-2591,, = ? octal

2591 | 1

—2560 = 5 X 8 = 5 X 512 5 0 3 7
i _ [

— 0=0X8=0X 64
31 | —

— 24=3 X8 =3X 8
7 -

— 7.=7X%x8=7x 1

0
Therefore, 2591,, = 5037..

1-12



" Table 1-2  Octal-Decimal Conversion

Position Coefficients

Octal ~ (Multipliers)

Digit
. Position/

g of 1 2 3 4 s| 6| 7
st 8 f o 1 Y 51 -6 7

2nd (8Y) || O 8 16 24 32 40 48 56

3rd (82) 0| 64 128 192 | 256 320 384 | 448

4th (8’5)"“;0 512 {1,024 {1,536 | 2,048 | 2,560 3,072 | 3,584

DIVISION METHOD. A second method for converting a decimal
number to its octal equivalent is by successive division by 8. Divide the
decimal number by 8 and record the remainder as the least significant
digit of the octal equivalent. Continue dividing by 8, recording the re-
mainders as the successively higher significant digits until the quotient
is reduced to zero. Example:

1376,, = ? octal |
Quotient Remainder

81376 . 172 0
8 yi1z 21 4 |
8 321 2 s 1
8 )2 0 2—* I

- ‘ 2 5 4 0

Therefore, 1376,, = 2540..

1-13



EXERCISES

a. Convert the following binary numbers to their octal equivalents.

1. 1110 9. 10111111
2. 0110 10. 111111111111
3. 111 ' 11. 010110101011
. 4. 101111101- 12. 111110110100
5. 110111110 13. 010100001011
6. 100000 : 14. (00010101101
7. 11000111 15. 110100100100
8. 011000 16. 010011111010

b. Convert the following octal numbers to their binary equivalents.

1. 354 9. 70
2. 136 '10. 64
3. 15 11. 7777
4. 10 12. 7765
. 5.7 13. 3214
6. 5424 14. 4532
7. 307 15. 7033
8. 1101 16. 1243

c. Convert the following decimal numbers to their octal equivalents.

1. 796 7. 1080
2. 32 8. 1344
3. 4037 9. 1512
4. 580 10. 3077
5. 1000 11. 4056
6. 3 12. 4095

d. Convert the following octal numbers to their decimal equivalents.

1. 17 7. 7773
2. 37 8. 7777
3. 734 | 9. 3257
4. 1000 10. 4577
5. 1200 11. 0012
6. 742 12. 0256

1-14



Fractions

The. binary and octal number systems represent fractional parts of
numbers in a similar manner to the decimal system. Furthermore, frac-
tions may be converted from one number system to another by the
same techniques developed for converting whole numbers..

Before investigating the mechanics of fraction conversion, consider
what a fraction is. A fraction is a number between 0 and 1, or a num-
ber less than a unit. Until now only whole numbers in the following
three systems have been .considered: decimal, binary, and 6c_tal. In
each of these systems, the position of the symbol in the number denotes
’ its power, and the symbol is the coefficient of that power. These are
positive powers. For example, in the decimal system the number 598,
5 is the coefficient of 102, 9 is the coefficient of 10%, and 8 is the coeffi-
cient of 10° In binary and octal the same rule applies to using the
powers of the base of the system. :

When working with fractions, an important point to keep in mind
is that fractions contain coefficients of negative powers, with the radix
point being the dividing line between the non-negative and negative
powers of the number system being used. Any number to the im- -
mediate right of the radix point has a power of negative (minus) 1.
The first digit of the fractional number is the MSD. For example, in
the decimal fraction .637; 6 is the coefficient of 10-%, 3 is the coeffi-
cient of 10-2, and 7 is the coefficient of 10-3. The coefficient of a nega-
tivé power of the base is actually the numerator of a proper fraction
- whose denominator is the positive power of that base. For example,
650 (6 x 10" is equivalent to 6 divided by 10® or 6/10, and also
35 (3 x 871) is equivalent to 3 divided by 8* or 3/8. It should be ap-
 parent that this general rule applies to any base that may be considered.
Table 1-3 contains proper fractions which have been changed to deci-
mal, binary, and octal for comparison purposes.

CONVERTING DECIMAL FRACTIONS TO
- BINARY AND OCTAL FRACTIONS

SUBTRACTION OF POWERS METHOD. One method of converting
a decimal fraction to a different number system is the subtraction of
powers method. In this method, subtractions of the highest possible
‘negative power of a number in another system that is contained in the
decimal fraction, are performed. In each subtraction, recording the
power and its coefficient gives the equivalent number in the other sys-
“tem. When no subtraction is possible, a 0 is recorded. To convert a
decimal fraction to a binary fraction, the powers of 2 are associated

1-15



Table 1-3  Fraction Equivalents

Proper Decimal Octal Binary - +
Fraction Equivalent Equivalent Equivalent

1/2 5 A 1

1/4 25 20 .01

1/8 125 .10 .001

1/16 ' .0625 .04 .0001

1/32 03125 .02 .00001

1/64 015625 .01 .000001

1/128 .0078125 .004 .0000001

1/256 .00390625 .002 .00000001

1/512 001953125 .001 .000000001

1/1024 .0009765625 .0004 .0000000001

with coefficients of O or 1, since they are the only coefficients used in
this system. In the octal system, the coefficients O through 7 are used.
The following example and explanation will show the conversion of
the decimal fraction .5625 to binary.

5625 0625
—.5000=21 —.0625=2"¢
. 0625 .0000
. Negative Powers of 2 2-1 2-2 2-3 2-4

Decimal Equivalents  .5000| .2500| .1250| .0625

Bit Values of Answer 1 0 0 1 = .1001

The largest negative power of 2 contained in the decimal fraction .5625
is 271 which is equivalent to decimal .5000; subtract .5000,, from
.5625,, and record a 1 in the 27 column. It is not possible to subtract
2-2 from the remainder, so record a O in the 22 column, 2% cannot be
subtracted from the remainder, so record a 0 in the 27 column; 27
can be subtracted from the remainder, so record a 1 in the 27 column.
Thus, the binary equivalent of a decimal .5625 is .1001..

Conversion to octal fractions follows the same procedure, but more
than one subtraction of a given power of the base is possible. The
number of times this subtraction is possible yields the coefficient of that
particular power of the base. This method will not be demonstrated
here, since it is very cumbersome, and easier methods are available.

1-16



'MULTIPLICATION METHOD. This method of conversion is fre-
quently ‘used to change from a decimal fraction to another base. To
convert, the decimal fraction is multiplied through by the base of the
system being converted to. For example, convert decimal fraction .5625
to binary. Multiply the decimal fraction by 2. Since a whole number is
obtained, record a 1 in thé 2-! column, discard the whole number por-
tion of the number, and multiply the remainder by 2 again. No who]e\
number is obtained, so record a 0 in the 27 column, and multiply the
result by 2. No whole number is obtained, so record a 0 in the 2-
column, and multiply by 2 again. A whole number is obtained, so record
a 1 in the 2™ column. The remainder, now reduced to 0, completes the
conversion, and .5625,, is .1001,. The following examples show the con-
version just described, and the same decimal fraction converted to octal.

Decimal to Binary : Decimal to Octal

5625 5625

2 - 8

1.1250 _ —— 4.5000

2 v _ 8

0.2500 44 ~——— 40000

, ) |

0.5000
v ‘ 2

.100] —ur1. OOOO

CONVERTING BINARY AND OCTAL TO DECIMAL
FRACTIONS

EXPANSION METHOD. This method can be used in converting frac-
tions from any base to a decimal fraction. Remember that the MSD is
the first digit to the right of the radix point in a fractional number, and
that it is multiplied by the base to the —1 power. The second digit is
that digit multiplied by the base to the —2 power, etc. For example, to
convert the binary fraction .10001 to decimal, proceed, as follows. The
MSD is 1 X (27) or 1/2, the second digit is 0 X (272) or 0, the third
digit is 0 X (2®) or O, the fourth digit is O X (27%) or 0, and the
fifth digit is 1 XX (27) or 1/32. The binary numbers are multiplied by
the respective powers and added together to get the answer. Thus
1/2 4 1/32 which is 16/32 4~ 1/32 equals 17/32 or .53125,,.

1-17



The octal fraction .42 can be converted in the same manner, as: fol-

lows. The MSD is 4 X (87!) or 4/8-and 2 X (872) or 2/64. The frac-
tions are now added together to get the result; 4/8 + 2/64 or
16/32 + 1/32 = 17/32 or .53125,,. If you look carefully at the
binary fraction .10001, and divide it into groups of 3 to convert to
octal, you can see that .10001, does equal .42.. Zeros may be added
to the right of a fraction without changing the value.
“SHORT CUT”METHOD. This is another method of converting frac-
tions from another base to decimal. In this method, start at the LSD of
the fraction and proceed to the MSD of the fraction, counting the
powers of the base, the next higher power of the base will be utilized
as a common denominator. The number is assumed to be a whole num-
ber for counting purposes. The number .10001, would be converted
as follows:

1 0 0 0 1
74 23 22 21 20
" The MSD is 2¢ or 16, so the common denominator is the next higher
power of 2, or 32. The numerator is converted as if it were a whole
number. The result is then 17/32 which is .53125,,. The same method
with the octal fragtion .42 should yield the same result.

4 2

81 8o
The MSD is 8!, or 8, so the common denominator is the next higher
power of 8, or 64. Multiplying the digit values by the powers of the
base and adding the products gives us the value of the numerator; thus,
4 % (8Y) + 2 X (8") = 34, and the fraction 34/64 equais .53125,,.

Arithmetic Operations with Binary and Octal Numbers

Now that the reader understands the conversion techniques between
the familiar decimal number system and the binary and octal number
systems, arithmetic operations with binary and octal numbers will be
described. The reader should remember that the binary numbers are
used in the computer and that the octal numbers are used as a means
of representing the binary numbers conveniently.

BINARY ADDITION

Addition of binary numbers follows the same rules as decimal or
other bases. In adding decimal 1 4 8 we have a sum of 9. This is the
highest value digit. Adding one more requires the least significant digit

1-18



to become a 0 with a carry of 1 to the next place in the number. Simil-
arly, adding binary O 4 1 we reach the highest value a single digit can

have.in the.binary system, and adding one more (1 + 1) requires a_
carry to the next higher power (1 + 1 = 10) Take the binary numbers

101 +10(5 + 2).

101 = 5
+010 = 2w
111 = _ 710

04+1=1,1+0=1,and0 + 1 = 1 with no carries required. The
answer 1s 111, which is 7. Suppose we add 111 to 101.

11 < CArTiES

111 = T
+101 == 510
1100 = 12,

Now 1 + 1 = O plus a carry of 1. In the second column, 1 plus the
carry 1 = 0, plus another cdrry. The third column is 1 4+ 1 = 0 with
a carry, plus the previous carry, or 1 4 1 4 1 = 11. Our answer 1100
is equal to 1 X 2% 4+ 1 X 22 or 8 4+ 4 = 12, which is the correct
solution for 7 + 5.

OCTAL ADDITION
Addition for octal numbers should be no problem if we keep in mind
the following basic rules for addition.

1. If the sum of any column is equal to or greater than the base
of the system being used, the base must be subtracted from the
sum to obtain the final result of the column.

2. If the sum of any column is equal to or greater than the base,.
there will be a carry to the next column equal to the number
of times the base was subtracted..

3. If the result of any column is less than the base,. the base is
not subtracted and no carry will be generated. Examples:

53 = 510 ‘ 3 53 = 2910
+, 3s = 3 6 3 = 5110
T8 110 8
— 8 —8—8
10, = 8, 120, = 80

1-19



Negative Numbers and Subtraction

Up to this point only positive numbers have been considered. Neg-
ative numbers and subtraction can be handled in the binary system in
either of two ways: direct binary subtraction or by the two’s comple-
ment method.

BINARY SUBTRACTION (DIRECT)

Binary numbers may be directly subtracted in a manner similar to
decimal subtraction. The essential difference is that if a borrow is re-
quired, it is equal to the base of the system or 2.

110 = 6,
“‘101 e 510
001 = 1,

To subtract 1 from O in the first column, a borrow of 1 was made from
the second column which effectively added 2 to the first column. After
the borrow, 2 — 1 = 1 in the first column; in the second column
0 — 0 = 0; and in the third column 1 — 1 = 0. The same numbers
which were subtracted using the twos complement method are sub-
tracted directly in the following example.

011 001 100 010 B
010 010 010 111 A

000 111 001 011 B-A

TWO’S COMPLEMENT ARITHMETIC

To see how negative numbers are handled in the computer, consider
a mechanical register, such as a car mileage indicator, being rotated
backwards. A 5-digit register approaching and passing through zero
would read the following. '

00005
00004
00003
00002
00001
00000
99999
99998
etc.

1-20



It should be clear that the number 99998 corresponds to —2. Fur-
ther, if we add

00005
99998

1 00003

and ignore the carry to the left, we have effectively performed the
operation of subtracting

5=-2=3

- The number 99998 in this example is described as the ten’s complement
of 2. Thus in the decimal number system, subtraction may be per-
formed by adding the ten’s complement of the number to be subtracted.

If a system of complements were to be used for representing negative
numbers, the minus sign could be omitted in negative numbers. Thus
all numbers could be represented with five digits; 2 represented as
00002, and —2 represented as 99998. Using such a system requires
that a convention be established as to what is and is not a negative
number. For example, if the mileage indicator is turned back to 48732,
is it a negative 51268, or a positive 48732? With an ability to represent
a total of 100,000 different numbers (0 to 99999), it would seem
reasonable to-use half for positive numbers and half for negative num-
bers. Thus, in this situation, 0 to 49999 would be regarded as positive,
and 50000 to 99999 would be regarded as negative. .

In this same manner, the two’s complement of binary numbers are.
used to represent negative numbers, and to carry out binary subtraction,

- in the PDP-8 computer. In octal notation, numbers from 0000 to 3777
are regarded as positive and the numbers from 4000 to 7777 are re-
garded as negative. -

The two’s complement of a number is defined as that number which
when added to the original number will result in a sum of zero. The
binary number 110110110110 has a two’s complement equal to
001001001010 as shown in the following addition."

110 110 110 110
001 001 001 010 -
I 000 000 000 000

The easiest method of finding a two’s complement is to first obtam the

one’s complement which is formed by setting each bit to the opposite
value.

1101 000 110 111 Number
010 111 001 000 .=  One’s complement of the number

1-21



The two’s complement of the number is then obtained by adding 1 to
~ the one’s complement.

110 001 110 010 Number

001 110 001 101 One’s complement of the number
+1 Add 1

001 110 001 110 Two’s complement of the number

Subtraction in the PDP-8 is performed using the two’s complement
method. That is, to subtract A from B, A must be expressed as its two’s
complement and then the value of B is added to it. Example:

010 010 010 111 A
101 101 101 001 Two’s complement of A
(carry is 011 001 100 010 B :
ignored) 1 000 111 001 011 B-A
OCTAL SUBTRACTION

Subtraction is performed in the octal number system in two ways
which are directly related to the subtractions in the binary system. Sub-
" traction may be performed directly or by the radix (base) complement
method.

OCTAL SUBTRACTION (DIRECT). Octal subtraction can be per-
formed directly as illustrated in the following examples.

3567—2533=? 2022—1234= 17
3567 2022
—2533 —1234
1034 0566

Whenever a borrow is needed in octal subtraction, an 8 is borrowed as
in the second example above. In the first column, an 8 is borrowed
which is added to the 2 already in the first column and the 4 is sub-
tracted from the resulting 10. In.the secand column, an 8 is borrowed
and added to the 1 which is already in the column (after the previous
borrow) and the 3 is subtracted from the resulting 9. In the third
column the 2 is subtracted from a borrowed 1 (originally a borrowed
8), and in the last column 1—1=0.

EIGHT’S COMPLEMENT ARITHMETIC. Octal subtraction may be
performed by adding the eight's complement of the subtrahend to the
minuend. The eight’s complement is obtained in the following manner.

3042 Number
4735 Seven’s complement of the number

+1 Add 1 to seven’s complement to obtain -
4736 Eight’s complement

1-22.



The seven’s complement of the number is obtained by setting each digit
of the complement to the value of 7 minus the digit of the number, as
seen above. The eight’s complement of the number is then obtained by
adding 1 to the seven’s complement. To prove that the complement is
in-fact a complement, the number is added to the complement and a re-
sult of zero and an overflow of 1 is obtained.
- - 3042

: +4736

1 0000

The folloWing example uses the eight’s complement to subtract a
number. '

3567—2533=?
- 2533 Number
. 5244 Seven’s complement
+1

5245 Eight’s complement

3567 Minuend

(carry is +5245 Eight’s complement of subtrahend

ignored)—»1 1034 Difference

Muiltiplication and Division in Binary and Octal Numbers _
Though multiplication in computers is usually achieved by means
other than formal multiplication, a formal method will be demonstrated

as a teaching vehicle.

BINARY MULTIPLICATION

In binary multiplication, the partial product is moved one position to
~ the left as each successive multiplier is used. This is done in the same
- manner as in decimal multiplication. If the multiplier is a 0, the partial
. product can be a series of Os as in example 2, or the next partial product
can be moved two places to the left as in example 3, or three places as
in example 4. "

Example 1. 462, Multiplicand
127, . Multiplier
3234 First partial product
924 Second partial product
462 Third partial product

58674 ~ Product

1-23



Example 2. 1110110,
1011,

1110110
1110110
0000000
1110110

10100010010,

Example 3. 1110110,

1110110
1110110
1110110

10100010010,

Example 4. 11001110,
11001,

11001110
11001110
11001110

1010000011110,

Because of the difficult binary additions resulting from multiplica-
tions such as the previous examples, octal multiplication of the octal
equivalents of binary numbers is often substituted.

OCTAL MULTIPLICATION

Multiplication of octal numbers is the same as multiplication of
decimal numbers as long as the result is less than 10.. Obviously this
could be a problem if it weren’t for the fact that an octal multiplication
table can be set up, similar to the decimal multiplication table, to make
the ‘job of muttiptication of octal numbers quite simple. Table 1-4
is a partially completed octal multiplication table that will be quite use-
ful once you have filled in the blank squares. '

Using the completed octal multiplication table, the following prob-
lems may be solved. '

226, X 12, =7

226,
X124

454
226

2734,

1-24



" 1247, X 305, = ? |
o 1247,
X305,

6503
0000
3765

405203,

Table 1-4  Octal Multiplication Table

o | 1 2 3 4 5 6 7
0 0 o | o | o 0 0 0 0
1 0 1 2 3 4 5 6 7
2 o | 2 4 6 | 10
3 0 3 6 11 14
4
5
6
7 0 7| 16 | 25
BINARY DIVISION

Once the reader has mastered binary. subtraction and multiplication,
binary division is easily learned. The following problem solutions illus-
‘trate binary division. | S |

Divide 10010,
10,

1001 10010, 18, 1001 = 9
10 10010 10, 2w =T
10 . :

00
00
01
00
10
10
0

1-25



Divide 1110, 14,
100, 41

11.1

1007 1110.0 11.1, = 3.5,
100

110
100

100
100

0

OCTAL DIVISION

Octal division uses the same principles as decimal division. All mul-
tiplication and subtraction must however be done in octal. (Refer to the
octal multiplication table.) The following problem solutions illustrate
octal division.

62. 50, 1714,

2. 2. 22,

31 =31, = 25, " 66

2 )62 22 )1714

6 154
02 T154
2 154
"0 )
EXERCISES
a. Perform the following binary additions.

1. 10110 6. 101 10. 10011}
+101 1 - 11100
— +110 4101101

2. 100 Sa— -_—
+10 7. 1110 11. 11011001

100 10010011

3. 11011 +11 ’ +11100011

22 8. 111 12. 11011011

4, 10110111 101 _ (1)8}(1)}8“

1 +1000
- 01010111

5. 1101 9. 110111 401111101
101 ' 100100 -
+11 ' +110001

1-26



b. Find the one’s complement and the two’s complement of the fol-
lowing numbers. ‘

011 100 110 010 7. 000 000 000 111

1.

~ 2. 010 111 O11 111 8. 100 000 000 000
3. 011 110000 000 - 9. 100 000 010 010
4. 000 000 000 000 ‘ 10. 100 001 100 110
5. 000 000 000 001 S11. 111 111 111 1100
6.

000 100 100 100 ', 12. 111 1i1 11T 111

c. Subtract the following binary numbers directly.

1. 101000001 3. 10101101011t
010111101 . 011111111101
2. 1010111010 4., 101111100111

0101110101 010101110010

d. Perform the following subtractions by the two’s complemeht o
method. Check your work by direct subtraction. Show all work.

011 011 011 011 — 001 111 010 110
000 111 111 111 — 000 001 001 101
011 111 111 101 — 010 101 100 011
001 101 111 110 — 001 100 101 011
011 111 111 111 — 010 101 101 101

Do W

e. Multiply the following binary numbers.

1. 11011 2. 1011101 3. 101011101011
X110 X101 x 10000

f. Divide the following binary numbers.

1. 100 2. 10000 3. 1100100

10 100 . 10100

1-27



g. Add the following octal numbers.

1. 42 6. 127 7. 777
+53 256 543
- +724 +612

2. -1-4712 4. 7T _ 8. . 437
ik +11 426

772

3. 34 3. 3357 747

——— ———

+76 +3562 +575

h. Subtract the following octal numbers directly.

" 1. 42 4. 53 7. 2543
© 03 - —44 —2174
2. 76 : TS, 7474 8. 7500
—-34 , —4777 : —6373
3. 77 , 6. 7000
—11 —6573

i. Perform the following octal subtra&;tions by the eight’s comple-
ment method. Check your work by subtracting directly. Show all

“work.

i. 0_377 — 0233 5. 2311 — 2277
2. 2345 — 1456 6. 0044 — 0017
3. 1144 — 1046 7. 3234 — 2777
4. 3000 - 0011 8. 1111 — 0777

~j. Multiply the following octal numbers.

1. 65 3. 77 5. 425
x4 X 65 %377

2. 14 4, 716 6. 571
%13 X472 X246

——— ————

k. Prove the answers to the problems in (j) by division, as follows:

Multiplicand
X Multiplier Multiplicand
Product - Multiplier ) Product

1-28



LOGIC OPERATION PRIMER :
Computers use logic operations in addition to arithmetic operations
to solve problems. The logic operations have a direct relationship with
the algebraic system to represent logic' statements known as Boolean
algebra. In logic, there are two basic connectives that are used to ex-

press the relationship between two statements. These are the AND and
the OR. |

The AND Operation .

The following simple circuit with two switches illustrates the AND
operation. If current is allowed to flow through a switch, the switch is
said to have a value of 1. If the switch is open and current cannot flow,
the switch has a value of 0. If the whole circuit is considered, it will
have a value of 1 (i.e., current may flow through it) whenever both A
and B are 1. This is the AND operation. ‘ o

e e

A B

mno .

The AND operation is often stated A * B = F. The multiplication sym-
bol (e) is used to represent the AND connective. The relationship be-
tween the variables and the resulting value of F is summarized in the
following table.

— o000

When the AND operation is applied to binary numbers, a binary 1 will
appear in the result if a binary 1 appeared in the corresponding position
of the two numbers.

The AND operation can be used to mask out a portion of a 12-bit
number.

To Be To Be Retained
Masked for Subsequent

Out Operation
"
010 101 010 101 (12-bit number)
000 000 111 111 (mask)
000 000 010 101 (result)

1-29



~ The OR Operation -
A second logic operation is the OR (sometimes called the inclusive
OR). Statements which are combined using the OR connective are
illustrated by the following circuit diagram.

Current in the above diagram may flow whenever either A or B (or
both) is closed (F=1if A=1,orB=1, or A=1 and B=1). This opera-
tion is expressed by the plus (4 ) sign; thus A+B=F. The following
table shows the resulting value of F for changing values of A and B.

0 0 0
0 1 1
1 0 1
1 1 1

Thus, if A and B are the 12-bit numbers shown below, A+B is eval-

uated as follows. ’ ~
I A = 011 010 011 111

B = 100 110 010 011

A+B 111 110 011'111

Remember that the “+ in the above example means “inclusive OR”,
not “add.” |

The Exclusive OR Operation :

The third and last logic operation is the exclusive OR. The exclusive
OR is similar to the inclusive OR with the exception that one set of
conditions for A and B are excluded. This exclusion can be symbolized
in the circuit diagram by connecting the two switches mechanically to-
gether. This connection makes it impossible for the switches to be closed '

1-30



simultaneously, although they may be open simultaneously or individu-
Cally.

Thus, ihe circuit is completed when A=1 and B=0, and when A=0
and B—=1. The results of the excluswe OR operation are summarized
- inthe table below. :

B

el =] B K=t | fve)

0
40
1
1

The exclusive OR of two 12- b1t numbers is evaluated and labeled F
in the following operation.

A = 011 010 O11 111
B = 100 110 010 011

F = 111 100 001 100

GENERAL ORGANIZATION OF THE PDP-8

Almost every general purpose digital computer has the basic units
shown in Figure 1-1, on the following page. T
If a machine is to be called a computer, it must have the capability of

-performing some types of arithmetic operations. The element of a digital
computer that meets this requirement is called the arithmetic unit. In
order for the arithmetic unit to be able to do its required task, it must
be told what to do. Therefore, a control unit is necessary.

Since mathematical operations are performed by the arithmetic unit,
it may be necessary to store a partial answer while the unit is computing
another part of the problem. This stored partial answer can then be used
to solve other parts of the problem. It is also helpful for the control unit
and arithmetic unit to have information immediately available for their
use, and for the use of other units within the computer. This require-
ment is met by the portion of the computer de51gnated as the memory
unit, or core storage unit.

1-31



-——— CONTROL | _
- UNIT -
| ~ ) B
[ l T I
v | ) '
INPUT | INTERNAL o}
i ; UTPUT
UNIT i STORAGE unt
|
| L
L4 ARITHMETIC
UNIT

Figure 1-1 PDP-8 General Organization

The prime purpose of a digital computer is to serve humans in some
manner. In order to do this there must be a method of transmitting our
wants to the computer, and a means of receiving the results of the com-
puter’s calculations. The portions of the computer that carry out these
functions are the input and output units.

Arithmetic Unit

The arithmetic unit of a digital computer performs the actual work
of computation and calculation. It carries out its job by counting series
of pulses or by the use of logic circuits. Modern computers use com-
ponents such as transistors and integrated circuits. Switches and relays
were used previously, and were acceptable as far as their ability to per-
form computations was concerned. Modern computers, however, be-
cause of the speed desired, make use of smaller electronic components

whenever possible.
The arithmetic unit of the PDP-8 has, as its major component, a

12-bit accumulator, which is simply a register capable of storing a num-
ber of 12 binary digits. It is called the accumulator because it accumu-
lates partial sums during the operation of the PDP-8. All arithmetic
operations are performed in the accumulator of the PDP-8.

Control Unit
The control unit of a digital computer is an administrative or switch-

ing section. It receives information entering the machine and decides
how and when to perform operations. It tells the arithmetic unit what
to do and where to get the necessary information. It knows when the
arithmetic unit has completed a calculation and it tells the arithmetic
unit what to do with the results, and what to do next.

1-32



The control unit itself knows what to tell the arithmetic unit to do by
interpreting a set of instructions. This set of instructions for the control
unit is called a program and is stored in the computer memory. '

Memory Unit

The memory unit, sometimes called the core storage unit, contains
information for the control unit (instructions) and for the arithmetic
unit (data). The terms core storage and memory may be used inter-
* changeably. Some computer texts refer to external units as storage, such’
as magnetic tapes-and disks, and to internal-units as memory, such as
magnetic cores. The requirements of the internal storage units may vary
greatly from computer to computer. :

The PDP-8 memory unit is composed of magnetic cores which are
often compared to tiny doughnuts. These magnetic cores record binary
information by the direction in which they are magnetized (clockwise
or counterclockwise). The memory unit is arranged in such a way that
it can store 4096 “words” of binary information. These words are each
12-bits in length, Each core storage location has an address, which is a
‘unique number used by the control unit to specify that location. Storage
of this type in which each location can be specified and reached as easily
as any other is referred to as random-access storage. The other type of
storage is sequential storage such as magnetic tape, in which case some
locations (those at the beginning of the tape) are easier to reach than -
others (those at the end of the tape).

Input Unit

Input devices are used to supply the values needed by the computer
and the instructions to tell the computer how to operate on the values.
Input unit requirements vary greatly from machine to machine. A
manually operated keyboard may be sufficient for a small computer.
Other computers requiring faster input use punched cards for data in-.
puts. Some systems utilize removable plugboards that can be pre-wired
to perform certain instructions. Input.may also be via punched paper
tape or magnetic tape, two forms of input common in PDP-8 systems.

Output Unit

Output devices record the results of the computer operations. These
results may be recorded in a permanent form (e.g., as a printout on the
teleprinter) or they may be used to initiate a physical action (e.g., to
- adjust a pressure valve setting). Many of the media used for input, such
as paper tape, punched cards, and magnetic tape, can also be used for
output. -

- 1-33



COMPUTER DATA FORMATS

“The PDP-8 uses 12-bit words to represent data. Some of the formats
in which this data is represented are described in the following para-
graphs.

Alphabetic Characters

Computers are designed to operate upon the bmary numbers which
it conveniently represents with electronic components. There are occa-
sions however when it is desirable to have the computer represent.
characters of the alphabet and punctuation marks. Binary codes are
used to represent such characters. For example, the reader is familiar
with punched cards, which use a system of punched holes to represent
information. Fach of these codes associates some character with a par-
ticular binary number. The computer can store the binary number (not
the character) in its memory. When so directed, the computer will out-
put the binary code to a device which will interpret the code and print
the character. Some specific binary codes used to represent alpha-
numeric information (letters, numbers, and punctuation symbols) are
presented in Appendix B. | |

Number Representations

The PDP-8 operates upon 12-bit words (namely O to 111 111 111
111., or O to 7777:). By convention, one half of the numbers are con-
sidered positive (0 to 011 111 111 111,, or O to 3777.), and one
half (100 000 000 000, to 111 111 111 111, or 4000. to 7777;) are
considered negative. Therefore the PDP-8 can directly represent the
portion of the number line shown in Figure 1-2.

40004
400l ¢soooB / \ 20009 3777,
(-37775) (-20004) 7777
-

Figure 1-2 PDP-8 Octal Number Line

Notice that the first digit of the 12-bit binary numbers is in effect a
“sign bit.” That is, bit 0 (the first bit) specifies the sign of the number
by the following rule. If bit 0 is a O, the number is positive; if bit O is
a 1, the number is negative. This is the means by which the computer

1-34



tests for positive and negative numbers. Thus, the zero is considered
positive.. In figure 1-2 it should be noted that the number 4000 is
peculiar in that it has no positive counterpart. (Expressed in octal, the
“two’s complement” of 3776 is 4002; of 3777 is 4001; of 4000 is

4000.) _ _
When the octal to decimal conversions are performed, the number

line of Figure 1-2 is converted to the number line of Figure 1-3. Thus
~ the PDP-8 can represent directly the numbers between —2048,, and
+2047,,. This would seem to be a serious restriction. Through two
techniques however this limitation is overcome.

T i | }~ =
0 ,

-2048 +2047

Figure 1-3 PDP-8 Decimal Number Line

DOUBLE PRECISION NUMBERS

The PDP-8 memory is made up of 12-bit storage locations. Suppose
however that a number larger than 12-bits were to be stored. By using
two 12-bit storage locations, numbers between —8,388,608,, and
8,388,607, may be represented directly. This method of representation
is appropriately called double precision. The method could be extended
to triple precision and further if necessary.

It should be noted that to add double precision numbers, two addi-
tions are needed. Double precision arithmetic is described in Chapter 3..

FLOATING POINT NUMBERS

Another method of representing numbers in the PDP-8 with more
than one 12-bit word is floating point notation. In this notation, a
number is divided into two parts, namely a mantissa (number part)
and an exponent (to some base). In the decimal number system for
. example, the number 12 can be written in the following ways.

MANTISSA ~ EXPONENT

12 X 102
1.2 X 10t
12. X 100
120. X 101

1200. X 10-2

- PDP-8 floating point notation makes use of a representation similar to the
“above with the exception that the exponent and the mantissa are binary

1-35



numbers. The binary mantissa (number part) is stored in two locations
and a third location stores the exponent. The exponent is selected such
that the mantissa has no leading zeros, thereby retaining the ma.xmmm
number of 31gmﬁcant digits. g

1-36



programmlng
Ffundamentals

This chapter describes the three general types of computer instruc-
tions and the way in which they are used in computer programs. The
first type of instruction is distinguished by the fact that it operates upon
data that is stored in some memory location and must tell the com-
puter where the data is located in core so that the computer can
find it. This type of instruction is said to reference a location in core
memory; therefore, these instructions are often called memory reference
instructions (MRI).

When speaking of memory locations, it is very important that a clear
distinction is made between the address of a location and the contents
of that location. A memory reference instruction refers to a location by
a 12-bit address; however, the instruction causes the computer to take
some specified action with the content of the location. Thus, although
the address of a specific location in memory remains the same, the con-
tent of the location is subject to change. In summary, a memory refer-
ence instruction uses a 12-bit address value to refer to a memory
location, and it operates on the 12-bit binary number stored in the -
referenced memory location.

The second type of instructions are the operate m1cr01nstruct10ns
which perform a variety of program operations without any need for
reference to a memory location. Instructions of this type are used to
perform the following operations: clear the accumulator, test for neg-
ative accumulator, halt program execution, etc. Many of these operate
microinstructions can be combined (microprogrammed) to increase the
operating efficiency of the computer.

The third general type of instructions are the input/output transfer
(IOT) instructions. These instructions, perform the transfer of infor-
mation between a peripheral device and the computer memory. 10T
instructions are discussed in Chapter 5.

2-1



PROGRAM CODING

Binary numbers are the only language which the computer is able
‘to understand. It stores numbers in binary and does all its arithmetic
operations in binary. What is more important to the programmer, how-
ever, is that in order for the computer to understand an instruction it
must be represented in binary. The computer can not understand in-
- structions which use English language words. All instructions must be in
the form of binary numbers (binary code).

Binary Coding

The computer has a set of instructions in binary code which it “un-
derstands”. In other words, the circuitry of the machine is wired to react
to these binary numbers in a certain manner. These instructions have
the same appearance as any other binary number; the computer can
interpret the same binary configuration of 0’s and 1’s as data or as an
instruction. The programmer tells the computer whether to interpret
the binary configuration as an instruction or as data by the way in which
the configuration is encountered in the program.

Suppose the computer has the following binary instruction set.

Instruction A 001 000 010 010 This binary number instructs the
computer to add the contents of
location 000 000 010 010 to the
accumulator.

Instruction B 001 000 010 111  This binary number instructs the
computer to add the contents of
location 000 000 010 111 to the
accumulator.

If instruction B is contained in a core memory location with an
address of 000 000 010 010 and the binary number 000 111 111 111
is stored in a location with an address of OOO 000 010 111, the follow-
"ing program could be written:

Location Content
000 000 010 010 ‘ 001 000 010 111
000 000 010-111 - .000 111 111 111

If this program were to be executed, the number 000 111 111 111
would be added to the accumulator.

Octal Coding

If binary configurations appear cumbersome and confusing, the
- reader will now understand why most programmers seldom use the
binary number system in actual practice. Instead, they substitute the

2-2



‘octal number system which was discussed in Chapter 1. The reader
should not proceed until he understands these two number systems
and the conversions between them. v

Henceforth, octal numbers will be used to represent the binary num-
bers which the computer uses. Although the programmer may use octal
numbers to describe the binary numbers within the computer, it should.
be remembered that the octal representation itself does not exist within
the computer. - |

When the conversion to octal is performed, Instruction B becomes
- 1027, and the previous program becomes

Location = : . Contenf
0022, 1027,
0027, - 07717,

To demonstrate that a computer cannot distinguish between a num-
ber and an instruction, consider the following program.

Location ' . Content

0021 - 1022 (Instruction A)
0022 ' _ 1027 (Instruction B)
0027 | 0777 (The number 777,)

Instruction A, which adds the contents of location 0022 to the accu- -
mulator, has been combined with the previous program. Upon execu-
tion of the program (assuming. the initial accumulator value=0), the
computer will execute instruction A and add 1027, as a number to the
accumulator obtaining a result of 1027,. The computer will then execute
the next instruction, which is 1027, causing the computer to add the
contents of 0027 to the accumulator. After the execution of the two
instructions the number 2026, is in the accumulator. Thus, the above
program caused the number 1027, to be used as an instruction and as
a number by the computer.

Mnemonic Coding _

~ Coding a program in octal numbers, although an improvement upon
binary coding, is nevertheless very inconvenient. The programmer must
learn a complete set of octal numbers which have no logical con-
nection with the operations they represent. The coding is difficult for
the programmer when he is writing the program, and this difficulty is
compounded when he is trying to debug or correct a program. There is
no easy way to remember the correspondence between an octal number
and a computer operation. ‘

23



To simplify the process of writing or reading a program, each in-
struction is often represented by a simple 3- or 4-letter mnemonic
symbol. These mnemonic symbols are considerably easier to relate to a
computer operation because the letters often suggest the definition of
the instruction. The programmer is now able to write a program in a
language of letters and numbers which suggests the meaning of each
instruction. _

The computer still does not understand any language except binary
numbers. Now, however, a program can be written in a symbolic lan-
guage and translated into the binary code of the computer because of
the one-to-one correspondence between the binary instructions and the
mnemonics. This translation could be done by hand, defeating the pur-
pose of mnemonic instructions, or the computer could be used to do the
translating for the programmer. Using a binary code to represent alpha-
betic characters as described in Chapter 1, the programmer is able to
store alphabetic information in the computer memory. By instructing
the computer to perform a translation, substituting binary numbers for
the alphabetic characters, a program is generated in the binary code
of the computer. This process of translation is called “assembling” a
program. The program that performs the translation is called an -
assembler.

Although the assembler is described in detail in Chapter 6, it is well
to make some observations about the assembler at this point.

1. The assembler itself must be written in binary code, not
mnemonics. '
2. It performs a one-to-one translation of mnemonic codes into
binary numbers. '
3. It allows programs to be written in a symbolic language which
is easier for the programmer to understand and remember.
A specific mnemonic language for the PDP-8, called PAL (Program
~ Assembly Language), is introduced later in this chapter. The next sec-
tion describes the general PDP-8 characteristics and components. This
information is necessary to an understanding of the PDP-8 instructions
and their uses within a program.

PDP-8 ORGANIZATION AND STRUCTURE

The PDP-8 is a high-speed, general purpose digital computer which
operates on 12-bit binary numbers. It is a single-address parallel
machine using two’s complement arithmetic. It is composed of the five
basic computer units which were discussed in Chapter 1. The com-

2-4.



ponents of the five units and thelr mterrelatlonshlps are shown in
Figure 2-1. For 51mp11c1ty, the input and output units have been
combined.

INPUT/ | ARITHMETIC | CONTROL | MEMORY
output | UNIT ! UNIT | UNIT
uNITs | | N
I | I MEMORY
> PROGRAM
CONSOLE I ! NTER [ ADDRESS
} } COUNT t »| REGISTER
I I |
I LINK | ™ MEMORY
INPUT/ X  BUFFER
outrut | | | t > REGISTER
DEVICES | | .| ACCUM-{ | |
: | |YATOR | linsTrucTiON) | '
TELE- | | | | REGISTER |q |
TYPE, _
pisk, | | o |
DECTAPE,| | | |
ETC.
l | §¢X$E | CORE MEMORY
| | |senerator] ! 4096 [2-BIT WORDS
I | |

Figure 2-1  Block Diagram of the PDP-8

Input and Output Units

The input and output units are combined in Figure 2-1 because in
many cases the same device acts as both an input and an output unit-
The Teletype -console, for example, can be.used to input information
which will be accepted by the computer, or it can accept processed in-
formation and print it as output. Thus, the two units of input and output
are very often joined and referred to as input/output or simply I/0.
Chapter 5 describes the methods of transmitting data as either input or
output; but for the present, the reader can assume that the computer-is
able to accept information from devices such as those listed in the block
diagram and to return output information to the devices. The PDP-8
console allows the programmer direct access to core memory and the
program counter by setting a series of switches, as described in detail
in Chapter 4.

Arithmetic Unit

The second unit contained in the PDP-8 block diagram is the arith-
metic unit. This unit, as shown in-the diagram, accepts data from input
- devices and transmits processed data to the output devices as well. Pri-
marily, however, the unit performs calculations under the direction of
the control unit. The Arithmetic Unit in the PDP-8 consists of an
accumulator and a link bit. '

2-5



ACCUMULATOR (AC)

The prime component of the arithmetic unit is a 12-bit register called
the accumulator. It is surrounded by the electronic circuits which per-
form the binary operations under the direction of the control unit. Its
name comes from the fact that it accumulates partial sums during the
execution of a program. Because the accumulator is only twelve bits in
length, whenever a binary addition causes a carry out of the most 51g-
nificant bit, the carry is lost from the accumulator. This carry is re-
corded by the link bit.

LINK (L)

Attached logically to the accumulator is a 1-bit register, called the
link, which is complemented by any carry out of the accumulator. In
other words, if a carry results from an addition of the most significant
bit in the accumulator, this carry results in a link value change from 0
to 1, or 1 to 0, depending upon the original state of the link.

Below is a diagram of the accumulator and link. The twelve bits of
the accumulator are numbered O to 11, with bit O being the most sig-
nificant bit. The bits of the AC and L can be either binary 0’s or 1’s as
shown below.

LINK ACCUMULATOR
O I 2 3 4 5 6 7 8 9 10 Il
0 o10/10/10 /7o /10 /To /To/To /To /o /o

[ VAN AN EITEN AN AN ANVAN VANV AN TE

N /

MOST SIGNIFICANT BIT LEAST SIGNIFICANT BIT

Control Unit

The instruction regisier, major state generator, and program counter
can be identified as part of the control unit. These registers keep track
of what the computer is now doing and what it will do next, thus
specifying the flow of the program from beginning to end.

PROGRAM COUNTER (PC)

The program counter is used by the PDP-8 control unit to record
the locations in memory (addresses) of the instructions to be executed.
The PC always contains the address of the next instruction to be exe-
cuted. Ordinarily, instructions are stored in numerically consecutive
- locations and the program counter is set to the address of the next in-
struction to be executed merely by increasing itself by 1 with each
successive instruction. When an instruction causing transfer of command
to. another portion of the stored program is encountered, the PC is set

2-6



to the appropriate address. The PC must be initially set by input to
specify the starting address of a program, but further actions are con-
trolled by program instructions.

INSTRUCTION REGISTER (IR)

The 3-bit instruction register is used by the control unit to specify
the main characteristics of the instruction being executed. The three
most significant bits of the current instruction are loaded into the IR
each time an instruction is loaded into the memory buffer register from
core memory. These three bits contain the operation code which
specifies the main characteristics of an instruction. The other details
are specified by the remaining nine bits (called the operand) of the
mstructlon :

MAJOR STATE GENERATOR

The major state generator establishes the proper states in sequence
for the instruction being executed. One or more of the following three
major states are entered serially to execute each programmed instruc-
tion. During a Fetch state, an instruction is loaded from core memory,
at the address specified by the program counter, into the memory
buffer register. The Defer state is used in conjunction with indirect ad-
dressing to obtain the effective address, as discussed under “Indirect
Addressing” later in this chapter. During the Execute state, the instruc-
tion in the memory buffer register is performed.

Memory Unit _ _

‘The PDP-8 basic memory unit consists of 4,096 12-bit words of
magnetic core memory, a 12-bit memory address register, and a 12-bit
memory buffer register. The memory unit may be expanded in units of
4,096 words up to a maximum of 32,768 words.

CORE MEMORY

The core memory provides storage for the instructions to be per-
formed and information to be processed. It is a form of random access
storage, meaning that any specific location can be reached in memory
as readily as any other. The basic PDP-8 memory contains 4,096 12-bit
magnetic core words. These 4,096 words require that 12-bit addresses
be used to'specify the address for each location uniquely.

MEMORY BUFFER REGISTER (MB) _

All transfers of instructions or information between core memory and
the processor registers (AC, PC, and IR) are temporarily held in the
memory buffer register. Thus, the MB holds all words that go into and
out of memory, updates the program counter, sets the instruction
register, sets the memory address register, and accepts mformatlon
from or provides information to the accumulator.

2-7



MEMORY ADDRESS REGISTER (MA) : :
The address specified by a memory reference instruction is held in
the memory address register. It is also used to specify the address of the
next instruction to be brought out of memory and performed. It can be
used to directly address all of core memory. The MA can be set by
the memory buffer register, or by input through the program counter
register, or by the program counter itself. .

MEMORY REFERENCE INSTRUCTIONS

The standard set of instructions for the PDP-8 includes eight basic

instructions. The first six of these instructions are introduced in the
following paragraphs and are presented in both octal and mnemonic
form with a description of the action of each instruction.

The memory reference instructions (MRI) require an operand to
specify the address of the location to which the instruction refers. The
manner in which locations are specified for the PDP-8 is discussed in
detail under “Page Addressing” later in this chapter. In the following
discussion, the first three bits (the first octal digit) of an MRI are used
to specify the instruction to be performed. (The last nine bits, three
‘octal digits, of the 12-bit word are used to specify the address of the
referenced location—that is, the operand.)

The six memory reference instructions are listed below with their
mnemonic and octal equivalents as well as their memory cycle times.

Octal Memory

Instruction Mnemonic® Value ycles!
Logical AND AND Onnn 2
Two’s Complement Add TAD innn 2
Deposit and Clear the Accumulator DCA " 3nnn 2
Jump JMP Snnn 1
Increment and Skip if Zero ISZ 2nnn 2
Jump to Subroutine IMS 4nnn 2

1 Memory cycle time for the PDP-8 and -8/1 is 1.5 microsecpnds; for the PDP-
8/L, it is 1.6; for the PDP-8/S, it is 8 microseconds. (Indirect addressing re-
quires an additional memory cycle.) :

2 The mnemonic code is meaningful to and translated by an assembler into
binary code.

2-8



AND (Onnn,)

- The AND instruction causes a bit-by-bit Boolean AND operatlon
between the contents of the accumulator and the data word specified
by the instruction. The result is left in the accumulator as illustrated
below. '

LINK| @ glo|li1|(a]tlolel 1 |1]l1]g]|0] ac
tliitlelelolil1]|1|e!|a!|a]| pbaTa worD
LINK| @ glag|l1|dg|le|adlad|lt 1 |a]d]|a]| ac(RESULT)

The following points should be noted with respect to the AND
instruction:

1. A1 appears in the AC only when a 1 is present in both the AC
and the data word (The data word is often referred to as a
mask);

2. The state of the link bit is not affected by the AND instruction;
and ‘ :

3. The data word in the referenced location is not altered. -

TAD (Innng)

The TAD instruction performs a binary addition between the speci-
~ fied data word and the contents of the accumulator, leaving the result
of the addition in the accumulator. If a carry out of the most significant
bit of the accumulator should occur, the state of the link bit is comple-
mented. The add instruction is called a Two’s Complement Add to re-
mind the programmer that negative numbers must be expressed as the
two’s complement of the positive value. The following figure illustrates
the operation of the TAD instruction. "

LINKY] | ¢¢¢¢¢¢¢¢¢l¢lACI‘+5

Llbpuvjrprjrfepe ] ]@]1 | DATA WORD: -3

LINK| @ glo|8|0|d 2|0 8|d|0]|1|8]| Ac (RESULT): +2

2-9



The following points should be remembered when using the TAD
instruction: 3
1. Negative numbers must be expressed as a two’s complement of
the positive value of the number;
2. A carry out of the accumulator will complement the hnk and
3. The data word in the referenced location is not affected.

DCA (3nnn,)

The DCA instruction stores the contents of the AC in the referenced
location, destroying the original contents of the location. The AC is
then set to all zeroes. The following example shows the contents of the
accumulator, link, and location 225 before and after executing the in-
struction DCA 225.

DCA 225

AC Link Loc. 225
Before Execution ' 1234 ' 1 7654
After Execution 0000 1 1234

The following facts should be kept in mind when using the DCA in-
struction:
1. The state of the link bit is not altered;
2. The AC is cleared; and
3. The original contents of the addressed location are replaced by
the value of the AC. :

JMP (5nnn;)

The JMP instruction loads the effective address of the instruction
into the program counter, thereby changing the program sequence since
the PC specifies the next instruction to be performed. In the following
example, execution of the instruction in location 250 (JMP 300) causes
the program to jump over the instructions in locations 251 through 277
and immediately transfer control to the instruction in location 300.

Location Content
250 JMP 300 (This instruction transfers program
. . control to location 300.)
300 DCA 330
NOTE: The JMP instruction does not affect the contents of
the AC or link.

ISZ (2nnn,) :
The ISZ instruction adds a 1 to the referenced data word and then

examines the result of the addition. If a zero result occurs, the instruc-

tion following the ISZ is skipped. If the result is not zero, the instruction

2-10



following the ISZ is performed. In either case, the result of the addition
replaces the original data word in memory. The example in Figure 2-2
illustrates one method of adding the contents of a given location to the
AC a specified number of times (multiplying) by using an ISZ instruc-
tion to increment a tally. The effect of this example is to multiply the
contents of location 275 by 2. (To add the contents of a given location
to the AC twice, using the ISZ loop, as shown in Figure 2-2, requires
more instructions than merely repeating the TAD instruction. However,
when adding the contents four or more times, use of the ISZ loop re-
~ quires fewer instructions.) In the first pass of the example, execution of
ISZ 250 increments the contents of location 250 from 7776 to 7777
and then transfers control to the following instruction (JMP 200). In
the second pass, execution of ISZ 250 increments the contents of loca-
tion 250 from 7777 to 0000 and transfers control to the instruction in
location 203, skipping over location 202.

CODING FOR ISZ LOOP
Location Content
200 TAD275
201 ISZ 250
202 JMP 200
203 DCA 276
250 7776
275 0100
276 0000

SEQUENCE OF EXECUTION FOR ISZ LOOP
Content After Instruction Execution

Location Content AC - 250 275 276
FIRST PASS |
200 TAD 275 0100 7776 0100 0000

- 201 ISZ 250 0100 7777 0100 0000
202 JMP 200 0100 7777 0100 0000
SECOND PASS
200 - TAD 275 0200 7777 0100 0000
201 ISZ 250 0200 0000 0100 0000
202 . JMP200 . (Skipped during second pass)

203 DCA 276 0000 0000 0100 0200

Figure 2-2. ISZ Instruction Incrementing a Tally

2-11



The following points should be kept in mind when using the ISZ
instruction:

1. The contents of the AC and link are not disturbed;

2. The original word is replaced in main memory by the incre-
mented value; :

3. When using the ISZ for looping a specified number of times,
the tally must be set to the negative of the desired number; and

4. The ISZ performs the incrementation first and then checks for
a zero result.

JMS (4nnn,)

A program written to perform a specific operation often includes sets
of instructions which perform intermediate tasks. These intermediate
tasks may be finding a square root, or typing a character on a keyboard.
Such operations are often performed many times in the running of one
program and may be coded as subroutines. To eliminate the need of
writing the complete set of instructions each time the operation must be
performed, the JMS (jump to subroutine) instruction is used. The JMS
instruction stores a pointer address in the first location of the subroutine
and transfers control to the second location of the subroutine. After the
subroutine is executed, the pointer address identifies the next instruc-
tion to be executed. Thus, the programmer has at his disposal a simple
means of exiting from the normal flow of his program to perform an
intermediate task and a means of return to the correct location upon
completion of the task. (This return is accomplished using indirect ad-
dressing, which is discussed later in this chapter.) The following exam-
ple illustrates the action of the JMS instruction.

Location Content
PROGRAM

200 JMS 350 (This instruction stores 0201 in loca-
_ _ tion 350 and transfers program control
to location 351.)
201 DCA 270 (This instruction stores the contents of
the AC in location 270 upon return
from the subroutine.)

2-12



SUBROUTINE

350" - 0000 -+ (This location is assumed to have an
: initial value of 0000; after JMS 350 is
executed, it is 0201.)
351 iii (First instruction of subroutine)

375 IMP 1350 - (Last instruction of subroutine)

The following should be kept in mind when using the JMS:

1. The value of the PC (the address of the JMS instruction +1)
is always stored in the first location of the subroutine, replacmg
the original contents;

2. Program control is always transferred to the location designated
by the operand +-1 (second location of the subroutine);

3. The normal return from a subroutine is made by using an in-
direct JMP to the first location of the subroutine (JMP 1 350
in the above example); (Indirect addressing, as discussed later

_in this chapter, effectively transfers control to location 201.);

4. When the results of the subroutine processing are contained in
the AC and are to be used in the main program, they must be
stored upon return from the subroutine before further calcula-
tions are performed. (In the above example, the results of the
subroutlne processing are stored in locanon 270.) |

ADDRESSING

When the memory reference instructions were introduced, it was
stated that nine bits are allocated to specify the operand (the address
referenced by the instruction). The method used to reference a memory
location using these nine bits will now be dlscussed

PDP-8 Memory Pages

As previously described, the format of an MRI is three bits (0, 1,
and 2) for the operation code and the remaining nine bits the operand.
However, a full twelve bits are needed to uniquely address the 4,096 .
(10,000 octal) locations that are contained in the PDP-8 memory unit.
To make the best use of the available nine bits, the PDP-8 utilizes a
 logical division of memory into blocks (pages) of 200, locations each,
as shown in the following table.

2-13



Memory

Memory

Page Locations Page Locations
0 0-177 20 4000-4177
1 200-377 21 4200-4377
2 400-577 22 4400-4577
3 600-777 23 4600-4777
4 1000-1177 24 5000-5177
5 1200-1377 25 5200-5377
6 1400-1577 26 - 5400-5577
7 1600-1777 27 5600-5777
10 2000-2177 30 6000-6177
11 2200-2377 31 6200-6377
12 2400-2577 32 6400-6577
13 2600-2777 33 6600-6777
14 3000-3177 34 7000-7177
15 3200-3377 35 _ 7200-7377
16 3400-3577 36 7400-7577
17 3600-3777 37 7600-7777

Since there are 200, locations on a page and seven bits can represent
200, different numbers, seven bits (5 through 11 of the MRI) are used
to specify the page address. Before discussing the use of the page ad-
dressing convention by an MRI, it should be emphasized that memory
does not contain any physical page separations. The computer recog-
nizes only absolute addresses and does not know what page it is on, or
when it enters a different page. But, as will be seen, page addressing
allows the programmer to reference all of the 4,096,, locations of
memory using only the nine available bits of an MRI. The format of an

MRI is shown in Figure 2-3.

BIT
POSITION O |

1
8 9 10 1l

2
0./0/]0
EACH BIT 1s KW HW/!

0/10 /10
RVARVARVARVANIVANA

Ol &
Ol o
Ol
Ol
=}

EITHER O L——l————‘

OR | OPERATION
CODE

L |
1
PAGE ADDRESS BITS
(0 TO 177g)

CURRENT PAGE OR PAGE O BIT

ADDRESS MODE BIT
O DIRECT ADDRESSING
1. INDIRECT ADDRESSING

0. PAGE O
. CURRENT PAGE

Figure 2-3. Format of a Memory Reference Instruction

2-14



As prev1ously stated bits 0 through 2 are the operation code for the
MRI. Bits 5 through 11 identify a specific location on a given page, but
“they do not identify the page itself. The page is specified by bit 4, often
called the current page or page 0 bit. If bit 4 is a O, the page address is
interpreted as a location on page 0. If bit 4 is a 1, the page address
specified is interpreted to be on the current page (the page on which
the MRI itself is stored). For example, if bits 5 through 11 represent
123, and bit 4 is a 0, the location referenced is absolute address 123x.
However, if bit 4 is a 1 and the current instruction is in a core memory
location whose absolute address is between 4,600, and 4,777, the page
address 123; designates the absolute address 4,723;. Note that, as.
shown in the following example, this characteristic of page addressing
results in the octal coding for two TAD instructions on different
memory pages being identical when their operands reference the same
relative location (page address) on their respective pages.

Content
Location |Mnemonic Octal © Explanation
200 TAD 250 1250 TAD 250 and TAD 450 both
. mean -add the contents of loca-
. tion 50 on the current page (bit
400 TAD 450 1250 4 = 1) to the accumulator.

-Except when it is on page 0, a memory reference instruction can refer-
ence 400; locations directly, namely those 200; locations on the page
‘containing the instruction itself and the 200; locations on page 0, which
can be addressed from any memory location.

NOTE: If an MRI is stored in one of the first 200s memory locations (0 to
177s), current page is page 0; therefore, only locations 0 to 177 are
directly addressable.

Indirect Addressmg
In the preceding section, the method of dlrectly addressing 4005
memory locations by an MRI was described—namely those on page 0
and those on the current page. This section describes the method for
- addressing the other 7400; memory locations. Bit 3 of an MRI, shown
in Figure 2-3 but not discussed in the preceding section, designates the
address mode. When bit 3 is a 0, the operand is a direct address. When
bit 3 is a 1, the operand is an indirect address. An indirect address
(pointer address) identifies the location that contains the desired address
(effective address). To address a location that is not directly address-
able, the absolute address of the desired location is stored in one of
" the 400, directly addressable locations (pointer address); the pointer
address is written as the operand of the MRI; and the letter I is written
2-15



between the mnemonic and the operand. (During assembly, the pres-
ence of the I results in bit 3 of the MRI being set to 1.) Upon execution,
the MRI will operate on the contents of the location identified by the
address contained in the pointer location.

_ The two examples in Figure 2-4 illustrate the difference between
~ direct addressing and indirect addressing. The first example shows a
TAD instruction that uses direct addressing to get data stored on page 0
in location 50; the second is a TAD instruction that uses indirect ad-
dressing, with a pointer on page 0 in location 50, to obtain data stored
in location 1275. (When references are made to them from various
pages, constants and pointer addresses can be stored on page 0 to-avoid
the necessity of storing them on each applicable page.) The octal value
1050, in the first example, represents direct addressing (bit 3 = 0); the
octal value 1450, in the second example, represents indirect addressing
(bit 3 = 1). Both examples assume that the accumulator has previously
been cleared. "

Location Content

200 TAD 50 (TAD 50 = 1050;)
. . “\\Address
. . Instruction
50 1275 :
‘\\Data (Number) To Be Acted Upon By
. . —Instruction Address
1275 20 (Content of location 1275 is not used in
the execution of the instruction in loca-
tion 200.)
NOTE: AC = 1275 after executing the instruction in loca-
tion 200.

Lo'cation' Content
200 TAD I 50 (TAD 150 = 1450,)

. . “\\Pointer Address

. . Designates Indirect Addressing
. Instruction

50 1275 '

. ‘\‘\ Effective Address
. Pointer Address

12215 20

‘ \Data (Number) To Be Acted Upon By
Instruction
Effective Address’ '

NOTE: AC = 20 after executing the instruction in location
200.

Figure 2-4. Comparison of Direct and Indirect Addressing

2-16



The following three examples illustrate some additional ways in
which indirect addressing can be used. As shown in example 1, indirect
addressing makes it possible to transfer program control off page 0 (to
any desired memory location). (Similarly, indirect addressing makes it
possible for other memory reference instructions to address any of the
4,096,, memory locations.) Example 2 shows a DCA instruction that
uses indirect addressing with a pointer on the current page. The pointer
in this case designates a location off the current page (location 227) in
which the data is to be stored. (A pointer address is normally stored on
the current page when all references to the designated location are from
the current page.) Indirect addressing provides the means for returning
to a main program from a subroutine, as shown in éxample 3. Indirect
addressing is also effectively used in manipulating tables of data as de-
scribed and illustrated in conjunction with autoindexing in Chapter 3.

EXAMPLE 1
Location Content
75 JMP 1 100 (JMP 1100 = 5500,)

Pointer Address
. Designates Indirect Addressing
00 ' Instruction

/

60

Effective Addreés

. ™ Pointer_ Address
- 6000 DCA 6100 ‘
N N . i\\ Next Instruction To Be Executed

. = Effective Address
NOTE: Execution of the instruction in location 75 causes pro-
-gram control to be transferred to location 6000, and
the next instruction to be executed is the DCA 6100

instruction. . :
EXAMPLE 2
Location * " Content ; .
450 "DCA I 577 (DCAI1577 = 3777,)

Pointer Address o
«Designates Indirect Addressing
Instruction

577 227
. \ \ Effective Address

~Pointer Address

/

227 nnon . , o |
| \\Data ( NumberA) Stored By Instruction
' . Effective Address o

NQTEf Execution of the instruction in location 450 causes the
~ contents of-the accumulator to be stored in. location
227. '

2-17



EXAMPLE 3

Location Content

207 IJIMS 1 70 (JMS 1 70 = 4470,)

210 TAD 250 (The next instruction to be executed
upon return from the subroutine.)

70 2000 ‘(Starting address of the subroutine
stored here.)

2000 aaaa {Return address stored here by JMS
instruction.)

2001 o (First instruction of subroutine.)

2077 JMP 12000  (Last instruction of subroutine.)

NOTES: 1. Execution of the instruction in location 207 causes
the address 210 to be stored in location 2000 and
the instruction in location 2001 to be executed
next. Execution of the subroutine proceeds until
the last instruction (JMP I 2000) causes control
to be transferred back to the main program, con-
tinuing with the execution of the instruction stored
in location 210.

2. A JMS instruction that uses indirect addressing is
useful when the subroutine is too large to store on
the current page.

3. Storing the pointer address on page 0 enables in-
structions on various pages to have access to the
subroutine.

OPERATE MICROINSTRUCTIONS

The operate instructions (octal operation code = 7) allow the pro-
grammer to manipulate and/or test the data that is located in the
accumulator and link bit. A large number of different instructions are
possible with one operation code because ‘the operand bits are not
‘needed to specify an address as they are in an MRI and can be used to
specify different instructions. The operate instructions are separated
into two groups: Group 1, which contains manipulation instructions,
and Group 2, which is primarily concerned with testing operations.
Group 1 instructions are discussed first.

Group 1 Microinstructions

The Group 1 microinstructions manipulate the contents of the accu-
mulator and link. These instructions are microprogrammable; that is,
they can be combined to perform specialized operations with other
Group 1 instructions. Microprogramming is -discussed later in this
~ chapter. '

2-18



! 2 3 4 5 6 7 8 9 10 i

| | O |CLA|CLL|CMA|[CML|RAR|RAL ‘% IAC

OPERATION T @ T ROTATE ONE PLACE
CODE = ZERO SPECIFIES I - ROTATE TWO PLACES

- GROUP |

The preceding diagram illustrates the manner in which a PDP-8 in-
striction word is interpreted when it is used to represent a Group 1
operate microinstruction. As previously mentioned, 7; is the operation
code for operate microinstructions; therefore, bits 0 through 2 are all
I’s. Since a reference to core memory is not necessary for the operation
of microinstructions, bits 3 through 11 are not used to reference an
address. Bit 3 contains a 0 to signify that this is a Group 1 instruction,
and the remaining bits are used to specify the operations to be per-

formed by the instruction. The operation of each individual instruction -
specified by these bits is described below.

‘CLA

CLL
CMA

CML

RAR

RTR

Clear the accumulator. If bit 4_~ié a 1, the instruction sets
the accumulator to all zeroes.
Clear the link. If bit 5 is'a 1, the link bit is set to O.

- Complement the accumulator. If bit 6 is a 1, the accumu-
lator is set to the 1’s complement of its original value; that

is, all 1’s become (’s, and all O’s become 1’s.

Complement the link. If bit 7 is a 1, the state of the link bit
is reversed. : : : _
Rotate the accumulator and link right. If bit 8 is a 1 and ‘
bit 10 is a 0, the instruction treats the AC and L as a closed

- loop and shifts all bits in the loop one position to the right.

This operation is illustrated by the following diagram.

L AC

1 1ojofojrjyrjr1jololojo}|o
—.@ HfjojojO}lqlI i.}]0 | clO} O
Rotate the accumulator and link twice right. If bit 8 isa 1
and bit 10 is also a 1, a shift of two places to the right is

executed. Both the RAR and RTR instructions use what is
commonly called a circular shift, meaning that any bit

0 -J BEFORE RAR

0 AFTER RAR

~ rotated off one end of the accumulator will reappear at the

other end. This operation is illustrated below.

2-19



RAL

RTL

IAC

NOP

BEFORE RTR

AFTER RTR

Rotate the accumulator and link lefi. If bit 9 is a 1 and bit
10 is a 0, this instruction treats the AC and L as a closed
loop and shifts all bits in the loop one position to theleft,
performing a circular shift to the left.

Rotate the accumulator and link twice left. If bit 9 is a 1
and bit 10 is a 1 also, the jnstruction rotates each bit two
positions to the left. (The RAL and RTL microinstructions
shift the bits in the reverse direction of that directed by the
RAR and RTR microinstructions. ) :
Increment the accumulator. When bit 11 is a 1, the con-
tents of the AC is increased by 1. |
No operation. If bits 0 through 2 contain operation code
7s, and the remaining bits contain zeros, no operation is
performed and program control is transferred to the next
instruction in sequence.

A summary of Group 1 instructions, including their octal forms, is

given below.

Mnemonic!  Octal® Operation Sequence3
NOP - 7000 No operation —
CLA 7200 Clear AC 1
CLL 7100 Clear link bit 1
CMA 7040 Complement AC 2
CML 7020 Complement link bit 2
RAR 7010 Rotate AC and L right one position 4
RAL 7004, Rotate AC and L left one position 4
RTR 7012 Rotate AC and L right two positions 4
RTL 7006 Rotate AC and L left two positions 4
IAC 7001 TIncrement AC 3

1 Mnemonic code is meaningful to and translated by an assembler into binary

code.

2 QOctal numbers conveniently represent bmary mstmctlons

3 Sequence numbers indicate the order in which the operations are performed-

" by the PDP-8/1 and PDP-8/L (sequence 1 operations are performed first,
sequence 2 operations are performed next, etc. ). )

2-20



Group 2 Microinstructions :

~ Group 2 operate microinstructions are often referred to as the “skip
microinstructions” because they enable the programmer to perform
tests on the accumulator and link and to skip the next instruction de-
pending upon the results of the test. They are usually followed in a pro-
gram by a JMP (or possibly a JMS) instruction. A skip instruction
causes the computer to check for a specific condition, and, if it is pres-
ent, to skip the next instruction. If the condition were not present, the
next instruction would be executed.

I 2 3 4 5 6 7 8 9 10 I
SMA~15ZA_~TSNL_10/1
| | | SR [HLT
|CLAL 4pal énal SzL| kP 0 LT| 0
I : : ] /‘
 OPERATION VALUE OF BIT 8
CODE 7g DETERMINES THE CONTAINS A O
ACTION SPECIFIED / * TO SPECIFY
CONTAINS A | BY BITS 5,6,8 7 GROUP 2
TO SPECIFY /
GROUP 2 R REVERSE SENSING BIT

0. SMA, SZA, & SNL ARE ENABLED

" SPA, SNA,8& SZL ARE ENABLED
(UNCONDITIONAL SKIP WHEN
BITS 5,6,8 7 ARE 0’S)

The available instructions are selected by bit assignment as shown in
the above diagram. The ‘operation of each individual instruction spec1—
fied by these bits is described below.

CLA
SMA
SPA

SZA

SNA

Clear the accumulator. If bit 4 is a 1, the instruction sets
the accumulator to all zeros.

Skip on minus accumulator. If bit 5is a 1 and bit 8 is a 0,
the next instruction is skipped if the accumulator is less

than zero.
Skip on positive accumulator. If bit 5 is a 1 and bit 8 is a

1, the next instruction is skipped if the accumulator is
greater than or equal to zero.

Skip on zero accumulator.  bit 6 is a 1 and bit 8 is a 0,
the next instruction is skipped if the accumulator is zero.

Skip on nonzero accumulator. 1f bit 6 is a 1 and bit 8 is a
1 also, the next instruction is skipped if the accumulator is -
not zero.

2-21



SNL

SZL

SKP

- OSR

HLT

Skip on nonzero link. If bit 7 is a 1 and bit 8 is a 0, the
next instruction is skipped when the link bit is a 1.

Skip on zero link. If bit 7 is a 1 and bit 8 is a 1, the next

instruction is skipped when the link bit is a O.

Unconditional skip. If bit 8 is a 1 and bit 5, 6 and 7 are
all zeros, the next instruction is skipped. (Bit 8 is a reverse
sensing bit when bits 5, 6 or 7 are used—see SMA, SPA,

. SZA,SNA, SNL, and SZL above.)

Inclusive OR of switch register with AC. If bit9isa 1, an
inclusive OR operation is performed between the content
of the accumulator and the console switch register. The re-
sult is left in the accumulator and the original content of
the accumulator is destroyed. In short, the inclusive OR
operation consists of the comparison of the corresponding
bit positions of the two numbers and the insertion of a 1 in
the result if a 1 appears in the corresponding bit position
in either number. See Chapter 1 for further discussion. The
action of the instruction’ is illustrated below.

LINKD [xlo[olo!o[n]olilol|lol|JAc¢uMULAT0R
[| Iglolllo%[o]ojobb [onwaHREGISTER
mem [!lO[O[I[Oll{OTIIC?I!%II’IJRESULTINAC

Halt. If bit 10 is a 1, the computer will stop at the conclu-
sion of the current machine cycle.

A summary of Group 2 instructions, including thelr octal representa-
tion, is given in the following table.

‘Mnemonic  Octal” - Operation ' Sequence
CLA 7600 Clear the accumulator ., 2
- SMA 7500 Skip on minus accumulator 1
SPA - 7510 Skip on positive accumulator 1
(or AC =0)
SZA 7440 Skip on zero accumuldtor 1
SNA 7450 Skip on nonzero accumulator -1
SNL 7420 Skip on nonzero link 1
SZL 7430 Skip on zero link 1
SKP 7410 Skip unconditionally 1
OSR 7404 Inclusive OR, switch register 3
with AC -
HLT 7402 Halts the program 3

2-22



MICROPROGRAMMING
~ Because PDP-8 instructions of Group 1 and Group 2 are determined
by bit assignment, these instructions may be combined, or micropro-
grammed, to form new instructions enabling the computer to do more
operations in less time.
Combining Microinstructions
" The programmer should make certain that the program clears the
- accumulator and link before any arithmetic operations are performed.
To perform this task, the program might include the following. instruc-
tions (given in both octal and mnemonic form).

CLA 7200 (octal)
CLL 7100 (octal)

Howeyer, when the Group 1 instruction format is analyzed, the follow-
ing is observed. |

i I | O [CLA{CLL

OPERATION \—MUST BE A | TO SPECIFY CLL
CODE : - '
MUST BE A | TO SPECIFY CLA

MUST BE A O TO SPECIFY GROUP |

Since the CLA and the CLL instructions occupy separate bit posi-
tions, they may be expressed in the same instruction, thus combining
the two operations into one instruction. This instruction would be writ-
ten as follows..

CLA CLL 7300 (octal)

In this manner, many operate microinstructions can be combined mak-
ing the execution of the program much more efficient. The assembler
for the PDP-8 will combine the instructions properly when they are
written as above, that is, on the same coding line, and separated by a
space.

Illegal Combinations

Microprogramming, although very efficient, can also be troublesome
for the new programmer. There are many violations of coding which
the assembler will not accept.

2-23



One rule to remember is: “If you can’t code it, the computer can’t do
it.” In other words, the programmer could write a string of mnemonic
microinstructions, but unless these microinstructions can be coded cor-
rectly in octal representation, they cannot be performed. To illustrate
this fact, suppose the programmer would like to complement the accu-
mulator (CMA), complement the link (CML), and then skip on a
nonzero link (SNL). He could write the following.

CMA CML SNL

These instructions require the following bit assignments.

c ¢ 2 3 4 5 6 7 8 9 10 !l
CMAT I i 110 |
CML}It {11 ]O I
SNL Y | 1L} I 0

The three microinstructions cannot be combined in one instruction be-
cause bit 3 is required to be a 0 and a 1 simultaneously. Therefore, no
instructions may be used which combine Group 1 and Group 2 micro-
instructions because bit 3 usage is not-.compatible. The CMA and CML-
can, however, be combined because their bit assignments are com-
patible. The combination would be as follows.

CMA CML 7060 (octal)

To perform the original set of three operations, two instructions are
needed. ‘ :

CMA CML 7060 (octal)
SNL 7420 (octal)

Because Group 1 and Group 2 microinstructions cannot be com-
bined, the commonly used microinstruction CLA is a member of both
groups. Clearing the AC is often required in a program and it is very
‘convenient to be able to microprogram the CLA with the members of
both groups. '
~ The problem of bit assignment also arises when some instructions
within a group are combined. For example, in Group 1 the rotate in-
structions specify the number of places to be rotated by the state of bit
10. If bit 10 is a O, rotate one place; if bit 10 is a 1, rotate two places.
Thus, the instruction RAL can not be combined with RTL because bit
10 would be required to have two different_values at once. If the pro-

2-24



. grammer wishes to rotate right three places, he must use two separate
instructions.

RAR 7010 (octal)
RTR 7012 (octal)

Although he can write the instruction “RAR RTR?”, it cannot be cor-
rectly converted to octal by the assembler because of the conflict in bit
10; therefore, it is illegal. "

Combining Skip Microinstructions
Group 2 operate microinstructions use bit 8§ to determine the instruc-
tion specified by bits 5, 6, and 7 as previously described. If bit 8 is a 0,
the instructions SMA, SZA, and SNL are specified. If bit 8 is a 1, the
instructions SPA, SNA, and SZL are specified. Thus, SMA cannot be
combined with SZL because of the opposite values of bit 8. The skip
condition for combined microinstructions is established by the skip con-
ditions of the individual mcroinstructions in accordance with the rules
for logic operations (see “Logic Primer” in Chapter 1).
OR GROUP—SMA OR SZA OR SNL
If bit 8 is a 0, the instruction skips on the logical OR of the condi-
tions specified by the separate microinstructions. The next instruction
is skipped if any of the stated conditions exist. For example, the com-
bined microinstruction SMA SNL will skip under the following condi-
tions: :
1. The accumulator is negative, the link is zero.
2. The link is nonzero, the accumulator is not negative.
3. The accumulator is negative and the link is nonzero.
(It will not skip if all conditions fail.) This manner of combining the
test conditions is described as the logical OR of the conditions.
AND GROUP—SPA AND SNA AND S7ZL
A value of bit 8 = 1 specifies the group of microinstructions SPA,
'SNA, and SZL which combine to form instructions which act according
to the logical AND of the conditions. In other words, the next instruc-
tion is skipped only if all conditions are satisfied. For example, the in-
struction SPA SZL will cause a skip of the next instruction only if the
accumulator is positive and the link is zero. (It will not skip if either
of the conditions fail.)

NOTES: 1. The programmer is not able to specify the manner
' of combination. The SMA, SZA, SNL conditions
are always combined by the logical OR, and the
SPA, SNA, SZL conditions are always joined by a
logical AND. _
2. Since the SPA microinstruction will skip on either
a positive or a zero accumulator, to skip on a
strictly positive (positive, nonzero) accumulator
the combined microinstruction SPA SNA is used.

2-25



Order of Execution of Combined Microinstructions

" The combined microinstructions are performed by the computer in a
very definite sequence. When written separately, the order of execution
of the instructions is the order in which they are encountered in the pro-
gram. In writing a combined instruction of Group 1 or Group 2 micro-
instructions, the order written has no bearing upon the order of
execution. This should be clear, because the combined instruction is a
12-bit binary number with certain bits set to a value of .1. The order in
which the bits are set to 1 has no bearing on the final execution of the
whole binary word.

The definite sequénce, however, varies between members of the
PDP-8 computer family. The sequence given here applies to the PDP-
8/1 and PDP-8/L. The applicable information for other members of
‘the PDP-8 family is given in Appendix E. The order of execution for
PDP-8/1I and PDP-8/L microinstructions is as follows.

GROUP 1

Event 1 CLA, CLL—Clear the accumulator and/or clear the

: link are the first actions performed. They are effectively
performed simultaneously and yet independently.

Event 2 CMA, CML—Complement the accumulator and/or com-
plement the link. These operations are also effectively
performed simultaneously and independently.

Event 3 IAC—Increment the accumulator. This operation is per-
formed third allowing a number in the AC to be comple-
mented and then incremented by 1, thereby forming the
two’s complement, or negative, of the number.

Event 4 RAR,RAL, RTR,RTL—The rotate instructions are per-
formed last in sequence. Because of the bit assignment
previously discussed, only one of the four operations may
be performed in each combined instruction. |

GROUP 2
Event 1  Either SMA or SZA or SNL when bit 8 is a 0. Both SPA
and SNA and SZL when bit 8 is a 1. Combined micro-
instructions specifying a skip are performed first. The
microinstructions are combined to form one specific test,
therefore, skip instructions are effectively performed
simultaneously. '
~ Because of bit 8, only members of one skip group may be
. combined in an instruction.

- 2-26



Event 2 CLA—Clear the accumfulator. This instruction is per-
- formed second in sequence thus allowing different arith-
metic operations to be performed after testing (see Event
1) without the necessity of cleating the accumulator with
a separate instruction before some subsequent arlthmetlc
operation. ‘
Event 3 OSR—Inclusive OR between the switch register and the
~ AC. This instruction is performed third in sequence,
allowing the AC to be cleared first, and then loaded from
.. the switch register.
‘Event 4  HLT—The HLT s performed last to allow any other
operations to be concluded before the program stops.

This is the order in which all combined instructions are¢ performed.
In order to perform operations in a different order, the instructions
must be written separately as shown in the following ¢éxample. One
might think that the following combined microinstruction would clear
the accumulator, perform an inclusive OR between the SR and the AC,
and then skip on a nonzero accumulator.

" CLA OSR SNA

However, the instruction would not perform in that proper manner,
because the SNA would be executed first. In order to perform the skip
last, the instructions must be separated as follows.

CLA OSR
SNA
Mlcroprogrammmg requires that the programmer carefully code
mnemonics legally so that the instruction does in fact do what he desires
it to do. The sequence in which the operations are performed and the
legality of combinations is crucial to PDP-8 programming. '
The following is a list of commonly used combined microinstructions,
some of Wthh have been assigned a separate mnemonic.

Instruction _ Explanatlon

— - CLA CLL Clear the accumulator and link.
CIA CMA IAC  Complement and increment the accumulator.
(Sets the accumulator equal to its own nega-
tive.)
LAS CLA OSR Load accumulator from switches.
: (Loads the accumulator with the value of the

v switch register.)
STL CLL CML  Setthelink (toa1).
CLA IAC Sets the accumulator to a 1.
CLA CMA  Sets the accumulator to a —1.

N

2-27



In summary, the basic rules for combining operate microinstructions
are given below.

1. Group 1 and Group 2 microinstructions cannot be combined.

2. Rotate microinstructions (Group 1) cannot be combined with
each other.

3. OR Group (SMA, SZA, or SNL) microinstructions cannot be

’ combined with AND Group, (SPA, SNA, or SZL) microin-
structions.

4. OR Group microinstructions are combined as the logical OR
of their respective skip conditions. AND Group microinstruc-
tions are combined as the logical AND of their respective skip
conditions.

5. Order of execution for combined instructions (PDP-8/1 and
PDP-8/L only) is listed below. '

Group 1 Group 2
1. CLA,;CLL 1. SMA/SZA/SNL or
SPA/SNA/SZL
2. CMA,CML 2. CLA
3. IAC 3. OSR
4, RAR, RAL,RTR,RTL 4, HLT

EXERCISES
1. The following is a list of current addresses and locations to be
addressed. Determine whether the second location should be di-
rectly or indirectly addressed from the first.

Current Address Location to be Addressed
a. 2456 2577
b. 1500 1600
c. 1230 0030
d. 0050 0120
e. 6555 6400
f. 6555 6600
g 4343 4100
h. 2742 2450
i. 2507 5507
j. 3200 3377

2-28



2. What fyPe of instruction is each of the following (MRI, operate
Group 1 or operate Group 2 microinstruction)?

7430

0024

7240

7000

4706
7700

3. Why are each of the following not legal instructions for the PDP-8?
a. 6509 b. 15007 c. 1581 d. 635 e. 7778
4. What is the effect of each of the following octal instructions?

"o e o

Octal - Mnemonic ‘ Operation

0000
4010
2300
1777
3500
5400
1030
2577
5273
3150

5. Separate the following octal instructions into microinstruction
mnemonics. - o '

7260

7112

7440

7632

7550

7007

7770

6. Write the octal representation for each location in the following
program. What are the contents of the accumulator and locations
205, 206, and 207 after execution of the program?

T Do A0 o

Rree Ao o

Location Mnemonic : Octal

0200 CLA-

0201 TAD 0205

0202 TAD 0206

0203 DCA 0207

0204 HLT

0205 1537

0206 2241

0207 0000

2-29



7. Write the octal form of the following microinstructions. Identify

TR PR e A0 o

any illegal combinations.

CLA CLL CMA CML
CLL RTL HLT
SPA CLA
" CLA IAC RTL
CLA IAC RAL RTL
SMA SZA CLA
SMA SZL
CLA OSR HLT
CLA OSR IAC
CLA SMA SZA

8. What instructions could be used to perform a skip only if the

9.

10.

11.

accumulator is zero and the link is nonzero?

Why is it not possible to write one combined microinstruction that
will load the accumulator from the console switch register, and
then test that number, skipping on a positive value?

“Write the following programs.

a. Program starts in location 0200 and adds 2 and 8. Give both
mnemonic and octal representations.

b. Program beginning in location 400 which interchanges the con-
tents of locations 550 and 551. Give both mnemonic and octal
representations.

Write programs to add three numbers A, B, and C in the specified

Jocations below and put the result in the given address for the

SUM. All programs start in location 200. Give octal and mnemonic

coding.

A B C SUM
a. 0030 0031 0032 0033
b. 0300 0301 0302 0303
c. 3000 3001 3002 3003

2-30



elementqrg
programming

techniques

Mastery of the instruction set is the first step in learning to program
the PDP-8 family computers. The next step is to learn to use the in-
struction set to obtain correct results and to obtain them efficiently. This
is best done by studying the following programming techniques. Exam-
ples, which should further familiarize the reader with the instructions
and their uses, are given to illustrate each technique.

The modern digital computer is capable of storing information, per-
forming calculations, making decisions based on the results and arriving
at a final solution to a given problem. The computer cannot, however,
perform these tasks without direction. Each step which the computer is

to perform must first be worked out by the programmer.

~ The programmer must write a program, which is a list of instructions
for the computer to follow to arrive at a solution for a given problem.
This list of instructions is based on a computational method, sometimes
called an algorithm, to solve the problem. The list of instructions is
- placed in the computer memory to activate the applicable circuitry so
that the computer can process the problemr. This chapter describes the
procedure to be followed when writing a program to be used on the
PDP-8 family of computers. :

3-1



PROGRAMMING PHASES

In order to successfully solve a problem with a computer, the pro-
grammer proceeds through the five programming phases listed below:

1. Definition of the problem to be solved,

Determination of the most feasible solution method,
Design and analysis of the solution—flowcharting,
Coding the solution in the programming language, and
Program checkout.

SRR

The definition of the problem is not always obvious. A great amount
of time and energy can be wasted if the problem is not adequately de-
fined. When the problem is to sum four numbers, the defining phase is
obvious. However, when the problem is to monitor and control a per-
formance test for semiconductors, a precise definition of the problem
is necessary. The question that must be answered in this phase is:
“What precisely is the program to accomplish?”

Determining the method to be followed is the second important
phase in solving a problem with a computer. There are perhaps an in-
finite number of methods to solve a problem, and the selection of one
method over another is often influenced by the computer system to be
used. Having decided upon a method based on the definition of the
problem and the capabilities of the computer system, the programmer
must develop the method into a workable solution.

The programmer must design and analyze the solution by identifying
the necessary steps to solve the problems and arranging them in a
logical order, thus implementing the method. F lowcharting is a graphical
means Of representing the logical steps of the solution. The flowcharting
technique is effective in providing an overview of the logical flow of a
solution, thereby enabling further analysis and evaluation of alternative
approaches. S -

Having designed the problem solution, the programmer begins coding
the solution in the programming language. This phase is commonly
called programming but is actually coding and is only one part of the
programming process. When the program has been coded and the pro-
gram instructions have been stored in the computer memory, the prob-
lem can be solved. At this point, however, the prograrﬁming process
is rarely complete. There are very few programs written which initially
function as expected. Whenever the program does not work properly,
the programmer is forced to begin the fifth step of programming, that
of checking out or “debugging” the program.

3.2



The program checkout phase requires the programmer to methodi-
cally retrace the flow of the instructions step-by-step to find any pro-
gram errors that may exist. The programmer cannot tell a computer:
“You know what I mean!”, as he might say in daily life. The computer
does not know what is meant until it is told, and once given a set of
instructions, the computer follows them precisely. If needed instructions.
are left out or coding is done incorrectly, the results may be surprising.
These flaws, or “bugs™ as they are often called, must be found and
corrected. There are many different approaches to finding bugs in a
program; however, the chosen approach must be organized and pains-
takingly methodical if it is to be successful. Several techniques for de-
bugging programs for the PDP-8 family of computers are described
in Chapter 6. ' : "

FLOWCHARTING

" A simple problem to add three numbers together is solved in a few,
easily determined steps. A programmer could sit at his desk and write
out three or four instructions for the computer to solve the problem.
However, he probably could have added the same three numbers with
paper and pencil in much less time than-it took him to write the pro-
gram. Thus, the problems which the programmer is usually asked to
solve are much more complex than the addition of three numbers, be-
cause the value of the computer is in the solution of problems which are
inconvenient or time consuming by human standards.

When a more complex problem is to be solved by a computer, the
program involves many steps, and writing it often becomes long and’
‘confusing. A method for solving a problem which is written in words
and mathematical equations-is extremely hard to follow, and coding
computer instructions from such a document would be equally difficult. -
A technique called flowcharting is used to simplify the writing of pro-
grams. A flowchart is a graphical representation of a given problem,
indicating the logical sequence of operations that the computer is to.
perform. Having a diagram of the logical flow of a program is a tre-
mendous advantage to.the programmer when he is determining the
method to be used for solving a problem, as well as when he writes
the coded program instructions. In addition, the flowchart is often a
valuable aid when the programmer checks'the written program for
errors.

3-3



The flowchart is basically a collection of boxes and lines. The boxes
indicate what is to be done and the lines indicate the sequence of the
boxes. The boxes are of various shapes which represent the action to
be performed in the program. Appendix C is a guide to the flowchart
symbols and procedures which are used in this text.

The following are cxamples of flowcharts for specific problems, illus-
trating methods of attacking problems with a computer program as well
as illustrating flowcharting techniques. Example 1 adds three numbers
together. Example 2 puts three numbers in increasing order.

Example 1 — Straight-Line Programming

Example 1 is an illustration of straight-line programming. As the
flowchart shows, there is a straight-line progression through the process-
ing steps with no change in course. The value of X, which is equal to
A--B-}-C s in the accumulator when the program stops.

(' saRT )
!

CLEAR
ACCUMULATOR

Y

GET A INTO
ACCUMULATOR

!

ADD B

!

ADD C

\
( stop )

Example | — Add Three Numbers

Example 2 — Program Branching

Example 2 is designed to arrange three numbers in increasing order.
The program must branch to interchange numbers that are out of
order. (Branching, a common feature of programming, is.described in
detail later in this chapter.) Note that the arithmetic operations of sub-
traction are done in the accumulator, which must be cleared initially.

3-4



(;7 START ;:j
.y

CLEAR THE
ACCUMULATOR

i

GET FIRST
NUMBER INTO
ACCUMULATOR

!

SUBTRACT
SECOND NUMBER

IS AC

YES

- POSITIVE
?

y

INTERCHANGE
1ST AND 2ND
NUMBERS
COMPARE -
2ND AND 3RD
NUMBERS P
AS ABOVE

YES

IS AC
POSITIVE l ,
?
NO INTERCHANGE :
2ND "AND 3RD

NUMBERS

COMPARE ' :

1ST AND 2ND  |o -
NUMBERS
AS ABOVE

IS AC TES
POSITIVE l
2
O INTERCHANGE
1ST AND 2ND
NUMBERS

| C DONE - e

Example 2 — Arrange Three Numbers in Increasing Order

3-5



CODING A PROGRAM

The introduction of an assembler in Chapter 2 enabled the pro-
grammer to write a symbolic program using meaningful mnemonic codes
rather than the octal representation of the instructions. The programmer
could now write mnemonic programs such as the following example,
which multiplies 18,, by 36,, using successive addition.

. 200/ CLA CLL (Initialize)
201/ TAD 210 (Set up a Tally
202/ CIA equal to —18,, to
203/ DCA 212 - count the additions of 36)
204/ TAD 211 (Add 36)
205/ ISZ 212 (Skip if Tally is 0)
206/ JMP 204 (Add another 36 if not done)
207/ HLT v (Stop after 18 times)
210/ 0022 (Equal to 18,,)
211/ 0044 (Equal to 36,,)

212/ 0000 (Holds the tally)

Writing the above program was greatly simplified because mnemonic
codes were used for the octal instructions. However, writing down the
absolute address of each instruction is clearly an inconvenience. If the
programmer later adds or deletes instructions, thus altering the location
assignments of his program, he has to rewrite those instructions whose
operands refer to the altered assignments. If the programmer wishes to
move the program to a different section of memory, he must rewrite the
program. Since such changes must be made often, especially in large
programs, a better means of assigning locations is. needed. The assem-
bler provides this better means.

Location Assignment

As in the previous program example, most programs are written in
successive memory locations. If the programmer assigned an absolute
location to the first instruction, the assembler could be told to assign
the next instructions to the following locations in order. In programming
the PDP-8, the initial location is denoted by a precedent asterisk (*).
The assembler maintains a current location counter by which it assigns
successive locations to instructions. The asterisk causes the current
location counter to be set to the value following thé asterisk. With this
improvement incorporated, the previous example appears as shown
in the following example. = : o

.3-6



*200

CLA CLL
TAD 210
CIA
DCA 212
TAD 211
ISZ 212
IMP 204
HLT

0022
0044
0000

NOTE: In this example, CLA CLL is stored in location - 200 and the
successive instructions are stored in 201, 202, etc.

Symbolic Addresses

The programmer does not at the outset know which locations he will
use to store constants or the tally. Therefore he must leave blanks after
each MRI and come back to fill these in after he has assigned locations
to these numbers. In the previous program, he must count the number
of locations after the assigned initial address in order to assign the
correct values to the MRI operands. Actually this is not necessary, be-
cause he may assign symbolic names (a symbol followed by a comma
is a symbolic address) to the locations to which he must refer, and the
assembler will assign address values for him. The assembler maintains
a symbol table in which it records the octal values of all symbolic
addresses. With symbolic address name tags, the program is as shown
below.

*200 - :

START, CLA CLL
TAD A
CIA
DCA TALLY .

MULT, TAD B .
ISZ TALLY
JMP MULT
HLT

A, 0022

B, 0044

TALLY, 0000

$

NOTES: 1. The dollar sign is the terminal character for the assembler.
2 2. The comma after a symbol (e.g., START,) indicates to the
assembler that the symbol is a symbolic- address.

3-7



Symbolic Programming Conventions

Any sequence of letters (A, B, C ..., Z) and digits (0,1,... , 9
beginning with a letter and terminated by a delimiting character (see
Table 3-1) is a symbol. For example, the mnemonic codes for the
PDP-8 instructions are symbols for which the assembler retains octal
equivalents in a permanent symbol table.

User-defined symbols (stored in the external symbol table) may be
of any length; however, only the first six characters are considered, and
any additional characters are ignored. (Symbols which are identical in
their first six characters are considered identical. )

Any sequence of digits followed by a delimiting character forms a
number. The assembler will accept numbers which are octal or decimal.
The radix is initially set to octal and remains octal unless otherwise
specified. The pseudo-instruction DECIMAL may be inserted in the
coding to instruct the assembler to interpret all numbers as decimal until
the next occurrence of the pseudo-instruction OCTAL in the coding.
These pseudo-instructions affect all numbers included in the symbolic
Pprogram including those preceeded by an * to denote change of origin.

Each symbol or number written in a PDP-8 program must represent
a 12-bit binary value in order to be interpreted by the assembler.

The special characters in Table 3-1 are used to specify operations to
be performed by the assembler upon symbols or numbers in PDP-8
symbolic programs.

The comma after a symbol in a line of coding (e.g., MULT, TAD B)
indicates to the assembler that the value of MULT is the address of
the location in which the instruction is stored. When an instruction that
references MULT (now a symbolic address) is encountered, the assem-
bler supplies the correct address value for MULT. (Care must be taken
that a symbolic address is never used twice in the same program and
that all locations referenced by an MRI are identified somewhere in the
program.)

The space and tab are used to delimit a symbol or number. In a com-
bined microinstruction such as CLA CLL, the space delimits the first
mnemonic from the second, and the assembler combines the two mne-
monic into one instruction. The space and tab similarly dehmlt the mne-
monic from the symbolic address.

TA or TAD

D A A |
T _SPACE T CTRL/TAB.

3-8



Table 3-1 Special Characters for the PDP-8 Symbolic Language

Character -
. Use
Keyboard ! Name - _
- SPACE space combine symbols or numbers
‘ (nonprinting) (delimiting) ,
CTRL/TAB | tab (nonprinting) |combine symbols or numbers or for-
. ' mat the symbolic tape (delimiting)
RETURN carriage return terminate line (delimiting)
(nonprinting)
+ plus | combine symbols or numbers
- minus combine symbols or numbers
, comma assign symbolic address
= equals define parameters
* asterisk set current location counter
3 semicolon terminate coding line (delimiting)
$ dollar sign terminate pass (delimiting)
point has value equal to current location
counter ‘
/ ' slash indicates start of a comment

The carriage return is used to terminate a line of coding. The assem-
bler will also recognize a semicolon as a line terminating character.

%g g isthesameas TAD A; TADB

One of these two characters (i.e., semicolon or carriage return)
must be used to separate each line of coding.

The assembler will recognize the arithmetic symbols 4 and — in
conjunction with numbers or symbols, thereby enabling “address arith-
metic”. For example, the instruction JMP START--1 will cause the
computer to execute the instruction in the next location after START.
The numbers specified in such instructions are subject to the pseudo- -
~ instructions DECIMAL and OCTAL, therefore the number is inter--

preted as an octal number unless the pseudo-instruction DECIMAL is
in effect.

The decimal point, or period, is a character which is interpreted by.
the assembler as the value of the current location counter. This special
symbol can be used as the operand of an instruction; for example, the
instruction JMP .—1 causes the computer to execute the preceding in-
struction. '

The equal sign is used to define symbols. This character is used to
replace an undefined symbol with the value of a known quantity. For
example, the programmer could define a “new instruction” NEGATE

39



.by writing that NEGATE —= CIA. The programmer could then write
the following instructions to ‘subtract B from A.

START, TAD B
NEGATE
TAD A
HLT

NEGATE = CIA

The above coding would be assembled as if the instruction CIA had
been included in the actual coding.

The slash is used to insert comments and headings as described later
in this chapter.

The dollar sign as previously noted, is a terminal character for the
assembler itself. When this character is encountered, the assembler
stops accepting input and terminates the assembly pass, as described in
Chapter 6.

These characters and conventions will be used throughout the re-
mainder of this text to code programs in PAL III, the symbolic lan-
guage of the PDP-8 family of computers. Thus, all examples given may
be directly punched on paper tape as described in Chapter 4 and
assembled by the procedure described in Chapter 6.

PROGRAMMING ARITHMETIC OPERATIONS

The instructions for the PDP-8 may be used to perform the basic
arithmetic operations within the limits of the machine to represent the
necessary numbers. That is, numbers may be added unless the sum ex-
ceeds 4095,, or 7777s;. When a sum exceeds the size of the accumulator,
overflow occurs and incorrect answers result. This condition can
usually be detected by checking the value of the link bit.

The following instructions will add numbers and check for overflow,
halting the program if the link is 1.

ADD, CLA CLL
TAD A
TAD B
SZL
HLT
DCA SUM

3-10



Since the link is initially cleared in the above example, a link value

equal to 1 is an indication that the sum of the contents of locations A

and B is too large to be represented by the 12-bit accumulator alone. -
The computer will halt if the overflow is detected with the actual sum

in the combined 13 bits of the accumulator and link.

Arithmetic Overflow

Since the PDP-8 regards the numbers 0 through 3777 as positive
numbers and the numbers 4000, through 7777, as negative numbers,
the addition of two positive numbers could result in either a positive
or a negative number depending upon the size of the numbers added.
Arithmetic overflow is said to occur whenever two positive numbers
add to form a negative number, as shown in the following example.

2433, (a positive number)
+2211, (a positive number)

4644, (considered a negative number by the
PDP-8)

Likewise, two negative numbers could be, added to yleld a positive num-
ber as in the following example.

5275,  (—2503;)
+5761, . (=2017,)

Disregarded—s~1 3256 (considered a positive number by the
PDP-8) _

Because of situations like those illustrated in the two preceding ex-

amples, the programmer must consider the size of the numbers used

in, programmed arithmetic operations. If the programmer suspects that

overflow may occur in the result of an arithmetic operation, he should

follow such an operation by a set of instructions to correct the error or
at least to indicate that such an overflow occurred.

The conditions outlined below may be used to test for arithmetic
overflow.

‘Signs of Numbers Added  Overflow and Link Value ‘

- Positive + Negative No overflow possible; link value ignored.
- Positive +° Positive May result in negative sum; no change in
link value.
Negative + Negative May result in positive sum; link is always
complemented regardless of the sign of the
result.

The program coding on the next page uses the following facts, as-
suming an initially cleared link, to quickly determine the sign of the
sum of two unknown quantities, A and B.

3-11



Sign

of A
Positive
Negative
Positive
Negative

Sign

of B
Negative
Positive

Positive
Negative

Result of Adding only Bit 0 of A to all of B

Link Value Bit 0 of AC

0 1
0 1
0 0
1 0

/CODING TO ADD TWO NUMBERS
/TESTING FOR ARITHMETIC OVERFLOW.

START,

OPPSGN,

BTHNEG,

BTHPOS,

SUM,
MASK,
A’

B,
POSERR,

NEGERR,

CLA CLL
TAD A

AND MASK
TAD B

SZL

JMP BTHNEG
RAL

SZL CLA
JMP OPPSGN
JMP BTHPOS
TAD A

TAD B

DCA SUM
HLT

CLA CLL
TAD A

TAD B

SMA

JMP NEGERR
DCA SUM
HLT

TAD A

TAD B

SPA

JMP POSERR
DCA SUM
HLT

0

4000

nnnn

nnnn

/MASK OUT ALL BUT BIT 0.
/ADD B TO BIT 0 OF A.
/LINK = 1 IMPLIES BOTH
/ARE NEGATIVE.

/ROTATE BIT 0 INTO LINK.
/BIT 0 = 1 IMPLIES
/OPPOSITE SIGNS.

/BIT 0 = 0, BOTH POSITIVE.
/IF A AND B ARE OF OPPOSITE
/SIGNS, THE ADDITION
/CANNOT RESULT IN
/OVERFLOW.

/IF TWO NEGATIVE NUMBERS
/ADD TO FORM A

/POSITIVE NUMBER,

/IMP TO ERROR ROUTINE.
/OTHERWISE, STORE SUM. -

/IF TWO POSITIVE
/NUMBERS ADD TO FORM
/A NEGATIVE NUMBER, JMP
/TO ERROR ROUTINE.
JOTHERWISE, STORE SUM.

/ANY NUMBERS A AND B

/ROUTINE TO SIGNAL
/ARITHMETIC OVERFLOW
/OF POSITIVE NUMBERS.
/ROUTINE TO SIGNAL
/ARITHMETIC OVERFLOW
/OF NEGATIVE NUMBERS.

3-12



Subtraction

Subtraction in the PDP-8 family of computers is accomplished by
negating the subtrahend (replacing it by its two’s complement) and
. then adding it to the minuend, ignoring the overflow if any. The follow-
ing example shows the contents of the accumulator for each step of the
subtraction process.

Subtraction Program . Resulting Contents

Link Accumulator
CLA CLL 0 000 000 000 000 (0000)
TAD B 0 000 000 011 111 - (0037)
CMA 0 111 111 100 000 (7740)
IAC 0O 111 111 100 ooO1, (7741)
TAD A 1 000 000 000 111 (0007)

A, 0046 (000 000 100 110)
B, 0037 (000 000 011 111)

Note that the number to be subtracted (subtrahend) is brought into
the accumulator, complemented (1’s complement) and incremented by
1 (to form the 2’s complement). (The 2’s complement could be ob-
tained directly through the one microinstruction CIA.) The number
from which A is to be subtracted (minuend) is then added to the ac-
cumulator and the difference is obtained.

If A were already in the accumulator from a previous calculation, an
alternate procedure could be followed. The number A could be negated -
first, then B added to it to get B-A. Negating this result yields the same
answer because — (B-A) is equal to A-B.

Multiplication and Division

A previous example illustrated the method of performing multiplica-
tion with the basic PDP-8 instructions, namely by repeated addition.
Obviously, multiplication by this method is also subject to the limita-
tion of overflow. The largest positive number which can be directly
represented is 2047, or 3777..

Multiplication by repeated addition will properly handle positive and
negative numbers within the limits of positive or negative arithmetic
overflow. For example 7777, is the PDP-8 representation for —1. If it
is multiplied by itself the answer should be 1. In other words, adding
77775 to itself 7777 times should leave (after carries from the most
significant bit) the accumulator equal to 1.

3-13



7777 Ist

+7777 . 2nd
1 7776 :
- 47777 3rd
Disregarded 1 7775
Carries
1 0003 _
+7777 7776th
1 0002
47777 7777th
1 0001-

Thus, successive addition will work properly as a method of multiply-
ing negative as well as positive numbers in the PDP-8 family of com-
puters.

Similarly, division could be performed by repeated subtraction. This
method of division could be used to obtain a quotient and remainder,
because only whole numbers are directly represented in the PDP-8.
There are, however, much more efficient means of multiplying and di-
viding numbers in the PDP-8. One means is through the extended arith-
metic element (EAE) option, which is described in Chapter 4. Multi-
plication and division can also be performed through use of the floating
point  packages, mathematical routines, and interpretive languages of
the system software for the PDP-8. These “software” approaches to
multiplication and division are described in Chapter 6 of this book.

Double Precision Arithme_tic

Two memory location (24 bits) are used to express double precision
numbers. Using these 24 bits allows the representation of numbers in
the range — 8 10° to 8 X 108. The following program adds two double
precision numbers, obtaining a double precision result.

Note that if the addition of AL and BL produces a carry, it will
appear in the link. The accumulator is cleared by the DCA CL instruc-
tion, and the RAL instruction moves the value of the link into the least
significant bit position. The values of AH and BH are then added to
the carry (if any) and the higher part of the answer is deposited in CH.

3-14



This technique may be extended to any order of multiple precision.

*200 -

DUBADD, CLA CLL

| © TAD AL
TAD BL
DCA CL
RAL
TAD AH
TAD BH
DCA CH
HLT

- AH, 1345

AL, 2167

BH, 0312

BL, 0110

CH, 0

CL, 0

$ .

A similar procedure is followed to subtract two double precision
numbers. The following program illustrates the technique.

*200 _

DUBSUB, - CLA CLL
TAD BL
CIA
TAD AL
DCA CL
RAL
DCA KEEP
TAD BH
CMA
TAD AH
TAD KEEP
DCA CH
CLL
HLT

AH, 1345

AL, 2167

BH, _ 0312

BL, 0110

CH, 0

CL, 0

KEEP, 0

$

The location KEEP is used to save the contents of the link while the
value of BH was complemented in the accumulator. To form a double
precision two’s complement number, a double precision one’s comple-

3-15



ment is formed and the 1 is added to it once. Thus, the value of BL is
complemented using the CIA instruction, while the value of BH is
complemented with the CMA instruction. The CLL instruction is used
to clear the link and disregard the carry resulting from using two’s com-
plement numbers to perform subtraction.

Powers of Two :

In the decimal number system, moving the decimal point right (or
left) multiplies (or divides) a number by powers of ten. In a similar way,
rotating'a binary. number multiplies (or divides) by powers of two. How-
ever, because of the logical connection between the accumulator and
_ the link bit, care must be taken that unwanted digits do not reappear in
the accumulator after the passage through the link. Multiplication by
powers of two is performed by rotating the accumulator left; division is
performed by rotating the accumulator right. Multiplication.and division
by this method are subject to the limitation of 12-bit numbers (unless
double precision is used). That is,. significant bits rotated out of the
accumulator by multiplication or division are lost and incorrect results
are therefore obtained. For example, the following program multiplies a
number by 8 (23).

*200

MULTS, CLA CLL
TAD NUMBER
CLL RAL
CLL RAL
CLL RAL
DCA NUMBER
HLT

NUMBER, 0231

$

The program will replace the number 0231, by 2310.. Notice that
multiplying any number with four significant octal digits (such as
1234;) using this program will yield incorrect results.

WRITING SUBROUTINES

Included in the memory reference instructions, given in Chapter 2
was the instruction JMS (jump to subroutine). This instruction is a
modified JMP command which makes return to the point of departure
from the main program possible. The JMS instruction automatically
stores the location of the next instruction after the JMS in the location
to which the program is instructed to jump, thereby enabling a return.

3-16



-

The programmer need only terminate the subroutine with an indirect
JMP to the first location of the subroutine in order to return to the
next instruction following the JMS instruction. The following simple
program illustrates the use of a subroutine to double a number con-
tained in the accumulator.

~ (Main Program)
START, CLA CLL

TAD N (Get the number in the AC)
JMS . DOUBLE (Jump to subroutine to double N)
DCA TWON (First instruction after the subrou-
tine) :
N,. nnnn ' (Any number, N)
TWON, nnnn (2N will be stored here)
(Subroutine)
DOUBLE, 0000
-DCA STORE (Save value of N)
TAD STORE (Get N back in the AC)
CLL RAL , (Rotate left, multiplying by 2)
SNL (Did overflow occur?)
JMP I DOUBLE _
CLA CLL (If overflow occurs, display the
TAD STORE number to be doubled in the AC
HLT and then stop the computer.)
STORE, 0000 :

Notice that the first instruction of the subroutine is located in the second
location of the subroutine. Any instruction stored in location DOUBLE
would be lost when the return address is stored. Also note that the sub- .
- Toutine as it is written must be located on page 0 or current page, be-
cause it is directly addressed. (A subroutine is often located on another
page and addressed indirectly as the next example demonstrates.)

The following program multiplies a number in the accumulator by a
number stored in the location immediately following the JMS instruc-
tion. '

3-17



(Main Program)

*200

START, - CLA CLL
TAD A
DCA .+3
TAD B
JIMS T 30
0000 .
DCA PRDUCT

PRDUCT, - 0000

A, -~ 0051

B, 0027

*30 '
MULT

(Subroutine)

*6000

MULT, 0000
CIA
DCA MTALLY
TAD I MULT
ISZ MTALLY
IMP .—2
ISZ MULT
JMPIMULT

MTALLY, 0000

The preceding example illustrates the following important points.

1. The JMS I 30 instruction could be used anywhere in core
memory to jump to this subroutine because the pointer word
(stored in location 30) is located on page 0 and all pages of
memory can reference page 0.

2. The period was used to denote the current location in the in-
structions DCA .43 and JMP .—2.

3. Since the result of the subroutine is left in the AC when jump-
ing back to the main program, the next instruction should store
the result for future use.

4. The first instruction of the subroutine is in location MULT +1
since the next address in the main program is stored in MULT
by the JMS instruction.

3-18



5. The first two instructions of the subroutine set the tally with
the negative of the number in the AC.

6. The second number to be multiplied is brought into the sub-
routine by the TAD I MULT instruction since it is stored in
the location specified by the address that the JMS instruction
automatically stores in the first location of the subroutine. This
is a common technique for transferring information into a sub-
routine. ' |

7. The ISZ MTALLY instruction is used in the subroutine to
count the number of additions. The ISZ MULT instruction is .
used to increment the contents of MULT by one, thereby mak-
ing the return jump (JMP I MULT) proceed to the next in-
struction after the location which held the number to be multi-
plied. :

8. An interesting modification of the previous program is achieved
- by defining a “new operation” MLTPLY by including in the
coding the statement MLTPLY=JMS 1 30. The assembler
would make a replacement such that any time the programmer
writes MLTPLY, the computer would perform a jump to the
subroutine and return to the program with the product in the
AC. o

ADDRESS MODIFICATION

- A very powerful tool often used by the programmer is address modi-
fication, meaning the inclusion of instructions in a program to modify
the operand portion of a memory geference instruction. It is a particu-
larly useful technique when working with large blocks of stored data
as illustrated by the two programs that follow.

The first program sums 100; numbers in locations 300 to 377,. The
program begins in location 200,. The block of 100, numbers is sum-
med using only one TAD instruction merely by repeatedly increment-
ing and performing the instruction.

The second example program moves data between memory pages as
well as performing an operation upon the data. The program computes
the square of the 200, numbers in locations 4000, to 4177,. The pro-

~gram starts in location 200,. All numbers to be squared must not ex-
ceed 45,, or the square is too large to be represented in the normal
format. | '

3-19



START

CLEAR AC

ADD FIRST NUMBER]

NG ’
L] ADD!TO THE ADD '
INSTQUCTQON‘
Program
*200
START, -CLA CLL
TAD K100
CIA
DCA TALLY
ADD, TAD 300
ISZ ADD
ISZ TALLY
JIMP ADD
DCA SUM
HLT
- K100, 0100
TALLY, 0000
- SUM, 0000
$

3-20



The second example illustrates the method of using indirect address-
ing.in an address modification situation. It should be noted that in the
first example the actual instruction was incremented to perform the
modification. In the second example, the modification was done by
- incrementing the contents of a location which was used for indirect
addressing.. The second example could be simplified further through
use of autoindexing, a feature that will be discussed later. |

*200
START, CLA CLL
. TAD K200
CIA \
DCA TALLY
TAD K4000
DCA NUM
_TAD K4200 -
DCA RESULT
AGAIN, ~ = TAD I NUM
JMS SQUARE
DCA I RESULT
ISZ RESULT
ISZ NUM
ISZ TALLY
JMP AGAIN
HLT
K200, 0200
TALLY, 0000
K4000, 4000
NUM, - 0000
K 4200, 4200
RESULT, 0000
*300 : x
SQUARE, 0000
DCA STORE
TAD STORE
CIA
" DCA COUNT
TAD STORE
ISZ COUNT
IMP .—2
| ~ JMP I SQUARE
STORE, 0000
COUNT, 0000

3-21



The reader should note that the first eight instructions of the second
example are concerned with intializing the program. This intializing
enables the stored program to be restarted several times and still oper-
ate on the correct locations. If the program had merely incremented
locations K4000 and K4200 and utilized those locations for indirect
addressing the program would only operate on the correct locations of
the first running. On successive runnings the program would be opera-
ting on successively higher locations in memory. With the program
written as shown however the pointer words are automatically reset.
This procedure is often referred to as “housekeeping.”

INSERTING COMMENTS AND HEADINGS

Because programs very seldom are written, used, and then forgotten,
the programmer should strive to document his procedure and coding
as much as is reasonably possible. There are many instances where
changes or corrections must be made by people unfamiliar with a pro-
gram, or more commonly the original programmer is asked to modify
a program months after his original effort. In both cases, the success of
the attempt to change the program depends largely upon the documen-
tation provided by the original programmer. A complete and accurate
flowchart is the first form of documentation. It is extremely important
to document modifications made in the program by incorporating these
changes in the flowchart as well. |

Many times it is desired to include headings and dates to identify a
program within the actual coding of the symbolic program. It is often
helpful to add comments to simplify the reading of a symbolic program
and to indicate the purpose of any less than obvious instruction. PDP-8
programming allows comments and headings to be inserted 51mply by
preceding any comments with a slash (/).

The following example illustrates the method used to insert com-
ments and headings in a PDP-8 program. It also illustrates the use of
a rotate instruction. The program takes a binary word stored in memory
and counts the number of non-zero bits. Although the program may
have no useful application, it does serve to familiarize the reader with
the structure of the accumulator and link bit and the action of a rotate
instruction. The flowchart and comments will aid the reader to under-
stand the program. |

3-22;



L START j

[ GET THE NUMBER ]

YES HALY

NO

——{ ROTATE LEET j

YES

NO

L CLEAR LINK j

[ INCREASE COUNT j

NO YES
HALT )

- /COUNT THE BINARY ONES PROGRAM .

/20 SEPTEMBER 1968

- %200 :

- START,  CLA CLL

DCA COUNT /SET COUNT TO 0.
TAD I WORD /GET THE WORD.

SNA _ '
HLT /STOP IF THE WORD IS 0.
ROTATE, RAL /ROTATE ONE BIT INTO LINK.
SNL /WAS THE BIT = 0?
JMP -2 /YES: ROTATE AGAIN.
CLL /NO: CLEAR LINK.
ISZ COUNT /COUNT THE NUMBER OF 1°S.
SNA '
HLT /STOP IF THE WORD IS NOW 0.
‘ JMP ROTATE :
COUNT, o -
WORD, - 3000 ' /ANY 12-BIT NUMBER.

3-23



The following points should be observed in the preceding example.
1. The word was checked to see that it was non-zero to begin
with. If this check were not made, a zero word would be rotated

endlessly by the remaining instructions in the program.
2. Because a rotate right instruction (RAR) would transfer the
bits into the link just as the RAL instruction does, either could
be used in the above program. Both instructions use a circular
shift of the accumulator and link bits. -

ecause the link bit is rotated into the accumulator by the
rotate instructions, the hnk must be cleared each time a 1 is
rotated into it.

w

LOOPING A PROGRAM

As many of ‘the examples given have already shown, the use of a
program loop, in which a set of instructions is performed repeatedly,
is common programming practice. Looping a program is one of the
.most powerful tools at the programmer’s disposal. It enables him to per-
form similar operations many times using the same instructions, thus
saving memory locations because he.need not store the same instructions
many times. Looping also makes a program more flexible because it is
relatively easy to change the number of loops required for differring -
conditions by resetting a counter. It is good to remember that looping
is little more than a jump to an earlier part of the program; however,
the jump is usually conditioned upon changing program conditions.

There are basically two methods of creating a program loop. The
first method is using an ISZ (2nnn,) instruction to count the number
of passes made through the loop. The ISZ is usually followed by a JMP
instruction to the beginning of the loop. This technique is very efficient
when the required number of passes through the loop can be readily
determined.

The second technique is to use the Group 2 Operate Microinstruc-
tions to test conditions other than the number of passes which have
been made. Using this second technique, the program is required to
loop until a specific condition is present in the accumulator or link bit,
rather than until a predetermined number of passes are made.

To illustrate the use of an ISZ instruction in a program loop situa-
tion, consider the following program which simply sets the contents of
all addresses from 2000 to 2777 to zero.

3-24



CLEAR, = CLA
* ~ TAD CONST
DCA COUNT-  /SET COUNT TO —1000.
TAD TTABLE |
DCA STABLE - /SET STABLE TO 2000..
DCAISTABLE /CLEAR ONE LOCATION.
ISZSTABLE . /SELECT NEXT LOCATION.
ISZ COUNT. /IS OPERATION COMPLETE?.
" JMP .—3 /NO: REPEAT.

HLT /YES: HALT.

CONST, 7000 /2’S COMP OF 1000.

COUNT, O -

TTABLE, TABLE

STABLE, 0 ' JPOINTER TO TABLE.

*2000

TABLE, 0

$

~ Several points should be: carefully noted.

1. The first five instructions initialize the loop, but are not in it.
The location COUNT is set to —1000 at the beginning, and 1
is added to it during each passage of the loop. After the 1000th
(octal) passage, COUNT goes to.zero, and the program skips
the JMP instruction, and executes the HLT instruction. On
each previous occasion, it executed the JMP instruction.

. In the list of constants foellowing the HLT instruction, TTABLE
contains TABLE, which is in turn defined below as having the
value 2000, and containing 0. Therefore, STABLE contains
2000 initially. In order to understand this point it must be re-
membered that an asterisk character causes the first location:
after the asterisk to be set to the value after the asterisk. There-
fore, in the previous example CLEAR equals 200 and TABLE
equals 2000. |

. ISZ STABLE adds 1 to the contents of location STABLE,
forming 2001 on the first pass, 2002 on the second pass, and
so on. Since it never reaches zero, it will never skip. This is a
very common use. It is said to be indexing the addresses from
2000 to 2777. (When using an ISZ instruction in this way, the
programmer must be certain that it does not reach 0. Follow
the ISZ instruction with a NOP if necessary.)

3-25



4. For every ISZ instruction used in a program, there ‘must be
two initializing instructions before the loop, and there must be
a constant and a counting location in a table of constants. This
procedure allows the program to be rerun with the counting
locations reset to ‘the correct values.

The following program utilizes a Group 2 skip instruction to create
a loop. The program will search all of core memory to find the ﬁrst
occurrence of the octal number 1234,

*0
NUMBER, 1234
*200 -
BEGIN, 'CLACLL
TAD NUMBER
CIA |
DCA COMPARE  /STORES MINUS NUMBER.
DCA ENTRY /SETS ENTRY TO 0.
REPEAT, ISZ ENTRY /INCREASES ENTRY.
CLA
TAD I ENTRY /COMPARISON IS
TAD COMPARE  /DONE HERE.
SZA CLA |
JMP REPEAT
TAD ENTRY o
HLT JENTRY IS IN AC.
COMPARE, 0
ENTRY, 0
$

The previous example is not very useful perhaps but it is interesting
to note that the program will search itself as well as all other core
memory locations.

Also notice the following points with regard to the example.

1.. The ISZ ENTRY instruction is used to index the locations to
be tested. The next instruction (CLA) is unnecessary, thus if
ENTRY becomes zero during the course of the program, the
program will not be affected. It is very important to protect
against an ISZ instruction going to zero and skipping a neces-
sary part of a program, if the ISZ is being used to simply
index.

3-26



2. The number to be searched for was stored in location 0, and
the search starts in location 1. Therefore, the program will find
at least one occurrence of the number and will halt after one
complete pass through memory if not before.

3. The program could be modified to bound the area of the search.
By setting the contents of ENTRY equal to one less than the
desired start location and putting the number being searched for
in the location following the last location to be searched, the
program will search only the designated area of memory.

4. The program could be restarted at location REPEAT in order
_ to find a second occurrence of 1234 after the program had
halted with the first occurrence.

AUTOINDEXING _

The PDP-8 family computers have eight special registers in page 0,
namely locations 0010 through 0017. Whenever these locations are
addressed indirectly by a memory reference instruction, the content of
the register is incremented before it is used as the operand of the in-
struction. These locations can therefore be used in place of an ISZ in-
struction in an indexing application. Because of this unique action these
eight locations are called autoindex registers. It is important to realize
that autoindex registers act as any other location -when addressed
directly. The autoindexing feature is performed only when the location
is addressed indirectly.

The following ex'ample is a modification of the first program example
in the preceding section with an autoindex register used in place of the

ISZ instruction. (The purpose of the program is to clear memory loca-
tions 2000 through 2777.)

Carefully notice the difference between the two examples, especially
that TABLE now has to be set to TABLE-1 since this is incremented
by the autoindexing register before being used for the first time. This

3-27



point must be remembered when using an autoindex register. The
register increments before the operation takes place, therefore it must
always be set to one less than the first value of the addresses to be

indexed.

*10
INDEX,
*200
CLEAR,

CONST,
COUNT,
TTABLE,
*2000
TABLE,

0

CLA

TAD CONST

DCA COUNT
TAD TTABLE

- DCA INDEX

DCA 1 INDEX
ISZ COUNT
JIMP -2

HLT

7000

0

TABLE-1

0

The memory search example of the preceding section could also be
simplified using an autoindex register as shown below.

*0
NUMBER,
*10
ENTRY,
%200
BEGIN,

REPEAT,

COMPARE,
$

1234

0

CLA CLL
TAD NUMBER
CIA

DCA COMPARE

DCA ENTRY
TAD I ENTRY

TAD COMPARE

SZA CLA
JMP REPEAT
TAD ENTRY
HLT

0

3-28

Notice that in this case ENTRY
originally equals 0 because its
content is incremented before
being used to obtain data for
the comparison. ’



PROGRAM DELAYS .

" Because the development of a computer.was primarily sparked by 4
- desire for speed in performing calculations, it seems inconsistent and
self-defeating to slow the computer down with program delays. How-.
ever, there are many occasions when a computer must be told to slow
down or to wait for further information. This is because most peripheral
equipment, and certainly the human operator, is very much slower than
the computer program. A temporary delay may be introduced into the
execution of a program when needed by causing the computer to enter
one or more futile loops which it must traverse a fixed number of times
before jumping out. It is often necessary to have a computer perform a
temporary delay while a peripheral device is processing data to-be sub- -
mitted to the computer. The delays can be accurately timed so as not
“to waste any more computer time than necessary.

The following is a simple delay routine using the ISZ instruction for
an inner loop and an outer loop. The reader should remember when
analyzing the example that the PDP-8 represents only positive numbers
up to 3777, or 2047,,. Therefore, the computer counts up to 2047,
"and then continues to count starting at the next octal number 4000.,
which the computer .interprets as —2048;,. Successive increments of
this number will finally bring the count to zero. Thus, a location could
be used to count from 1 up to 0-by using an ISZ instruction.

B (main program)

.

TAD CONST /START OF DELAY ROUTINE
DCA COUNT
ISZ COUNT1 /INNER
IMP .—1 /LOOP
I1SZ COUNT
IMP .—3

CONST, 6030 /SETS DELAY

COUNT, 0

COUNTI, 0

The inner loop consists of an ISZ instruction with an execution time
- on the PDP-8/1 of 3.0 microseconds (a microsecond is 107¢ seconds)
and a JMP instruction with an execution time of 1.5 microseconds.
Therefore, the inner loop takes 4.5 microseconds for one pass, and each
" time it is entered the program will traverse it 4096,, times before leav- -
ing. This means that a delay of 18.432 milliseconds (a millisecond is

3-29



107 seconds) has occurred. If, as in the example above, the value of
CONST is 6030, this loop will be entered 1000,, times giving a total
delay of 18.432 seconds. For any given purpose, a desired delay

from milliseconds to seconds can be obtained precisely by varying the
values of CONST and the initial value of COUNT1. Similar reasoning
" can be used to design delays for other members of the PDP-8 family.

A second type of delay, which waits for a device response, is-dis-
- cussed in Chapter 5. This type is not a timed delay but causes the com-
puter to wait until it receives a response from an external device.

PROGRAM BRANCHING

Very few meaningful programs are written which do not take ad-
vantage of the computer’s ability to determine the future course the
“program should follow based upon intermediate results. The procedure
of testing a condition and providing alternative paths for the program
to travel for each of the different results possible is called branching a
program. The Group 2 microinstructions presented in Chapter 2 are
most often used for this purpose. The ISZ instruction also provides a
branch in a program. These instructions are often referred to as con-
ditional skip instructions. The ISZ instruction operates upon the con-
tents of a memory location, while the Group 2 microinstructions test
the contents of the AC and L. |

A typical example of a conditional skip would be a program to com-
pare A and B and to reverse their order if B is larger than A.

‘ START ’

FORM A-B

's
NO_~" resucT

YES SAVE A

NEG IN DUMMY
rl
STORE B IN
A'S LOCATION
STORE DUMMY IN
SToP 8'S LOCATION

3-30



*200

~ TEST, CLA CLL
| TAD B . /SUBTRACT B
CIA /FROM A
TAD A /HERE.
SMA CLA
HLT . /STOP HERE IF A IS GREATER
OR EQUAL
TAD A /THE REMAINDER OF
" DCADUMMY /THE PROGRAM
TAD B ~ /DOES THE SWITCH.
" DCA A |
TAD DUMMY
DCA B
 HLT
A, 1234 /SUBSTITUTE ANY POSITIVE
B, 2460 /VALUES FOR A AND B.
DUMMY, 0 |

I Alis iess than B, their difference will be negative and the HALT will
be skipped. The program will proceed to reverse the order of A and B.
If A is greater than or equal to B, the program will halt.

The concept illustrated by the above example can be included in a
larger program that will take a set of elements and arrange them in
increasing order. The following important concepts should be learned
from the example.

1.

The program contains two loops to perform the sort. The inner
loop starts at TEST and is traversed 20, times to switch ad-

 jacent elements of the set. The outer loop begins at START

and is re-entered until the elements are in the correct order.

. A “software flag” was created to signal the program that a

switch has been performed on the last pass. The flag is checked
upon every exit from the inner loop. If the flag is non-zero
(equal to —1), a reverse was performed on the last pass and
the next pass is started. If the flag is zero, the set is now in

order and the program halts,
. The flag is set to zero on each pass through the outer loop by

depositing AC=0 in it. It can only be set to a non-zero value
by a pass through the REVERSE subroutine.

. The TALLY had to be set to —(AMOUNT) -1 or in this

case to —20, because if the set contains n elements there are
n—1 comparisons between an element and the immediately
succeeding element, thus, in this case, TALLY =—20..

3-31



5. The following sort of five elements illustrates the technique
used in the program.

INITIAL PASS 1 ‘ PASS 2

® @ ® O
® ’%\ O
o 3
®
® |
In performing the above sort, the program makes three passes.

On the third pass through the table of data, the flag is not
raised; therefore, the program stops.

@
o O
®

ONORONONG

- START )

FORM
X-Xp i

IS
RESULT O,
OR NEG

l SET FLAG I » INCREMENT ;
Xy, X2

SWITCH
X, X5

RESET
) Xy, X2
STOP
CLEAR FLAG

3-32



*200
START, CLA
TAD
Cla
I1AaC
DCA
DCA
JAD
DCA
~TAD
IAC
DCA
TAD
CIA
TAD
SPA’
SKP
JMS
1Sz
1S8Z
1SZ
JMP
TAaD
- SZA
JMP
HLT
AMOUNT, 21
TALLY, 0000
BEGIN, 2000
X1, AGAR
X2, 3000
FLAG, 2000
HOLD» 29000
REVERSE, Q9000
TAD
DCA
TAD
DCA
TAD
DCA
CLA
DCA
JMP

TEST,

6. This program can perform a sorting for any specified block of
- data ‘merely by specifying the octal number of entries to be
sorted in the location AMOUNT and by specifying the begin-
ning address of the block in BEGIN. The data to be sorted

CLL
AMOUNT

TALLY
FLAG

BEGIN
X1 "
BEGIN

o

x2
I X2

1 X1
SNA CLA

REVERSE
Xt

X2
TALLY
TEST
FLAG

START

I Xt

HOLD

I X2

I X1

HOLD

I X2

CLL CMA
FLAG

I REVERSE

/THESE INSTRUCTIONS SET
/UP a TALLY EQUAL TO
/AMOUNT -1 TO COUNT THE
/PASSES THRU TEST LOOP. ,
/CLEARS FLAG BEFORE EACH PASS
/THESE INSTRUCTIONS

/SET THE POINTERS .
/X1 AND X2 TO THE ~
/PROPER VALUES

ZINITIALLY.

/SUBTRACTION FOR THE

/TEST 1S ~

/DONE HERE.

/D0 SWITCH IF AC IS POSITIVE.
/SET UP THE X'S FOR
/THE NEXT PASS.

-/JHAVE ALL X'S BEEN TESTED?

/NO: KEEP TESTING. »

/YES: WERE ANY SWITCHES
/DONE ON THE LAST PASS?

/YES: GO THRU PROGRAM AGAIN.
/NO: STOP, TABLE IS IN ORDER.

.

/SUBROUTINE TO SWITCH X'S

/SETS AC EQUAL TO -1.
/SET FLAG=-1 ON A SWITCH.

must be placed in consecutive memory locations.

3-33



Exercises

1. Write a subroutine SUB to subtract the number in the AC from
the number in the location after the JMS instruction that calls the
subroutine. Return to the main program with the difference in the

- AC. Use a flowchart and comments to document the procedure.

2. Write two programs to put 0 into memory location 2000, 1 into
2001, 2 into 2002, etc., up to 777, into 2777 using (a) an ISZ
instruction for indexing and {b) autoindexing. Use flowcharts
and comments to document the procedure.

3. The following program was previously given to multiply two num-

bers together.
¥200
START, CLA CLL
TAD A
CIA
- . DCA TALLY
MULT, TAD B
ISZ TALLY
JMP MULT
HLT
g’ }substitute any numbers for A and B
TALLY, 0000
$

a. What is the largest product that the PDP-8 can compute using
this program? . ,

Using the following value for A and B, verify that the program will
- obtain the correct answers. Remember that any carry from the most
significant bit is lost from the accumulator.

A B AXB
b. 7756(—18,)  0027(23,)
c. 0000 0005
d. 7700(—64,,) 0000

4. Write a program TRIADD which will add two triple precision
numbers A-+B—=C. There are three parts to each number, namely
AH (A high) AM (A medium), and AL (A low); BH, BM, and
BL; CH, CM, and CL. Use a flowchart and comments to docu-
ment the procedure.

3-34



Wiite a program to perform a multiplication between two single-
precision numbers to yield a double-precision product. Use com-
ments and a flowchart to document the procedure.

Write a program to multiply any number n by a power of 2 (the
exponent is stored in location EXP), the product being expressed
in double precision. Use comments and a flowchart to document

the procedure.

Write a program to find how many of the numbers stored in a
table from address 3000 to address 3777 are negative. Use a flow-
chart and comments to document the procedure.

Write a program that will run for exactly 20 seconds on the PDP-8
or PDP-8/I before it halts. Use a flowchart and comments to
document the procedure. .

Modify the program written for exercise 8 such that if bit 11 of
the console switch register is a 1, the program runs for 20 seconds "
and if it is a 0, the program runs for 40 seconds.-

Hint: The OSR instruction must be used to check the switch

. register.

10.

The program on the next page rotates a bit left or right depend- -
ing on the value of bit 0 and faster or slower depending on the
value of the remaining bits. Analyze the program and comment
each instruction to indicate its use in the program. :

3-35



%200
ROTATE, CLA CLL CML
HLT |
BEGIN, DCA SAVEAC
: RAL
DCA SAVEL
- TAD MASK
OSR
DCA COUNT
OSR
RAL
SZL CLA
JMS LEFT
JMS RIGHT
CLL
GO, ' TAD SAVEL
RAR
TAD SAVEAC
INSTR, . RAR
. ISZ COUNTR
IMP .—1
ISZ COUNT
IMP .—3
JMP BEGIN
SAVEAC, 0 ,
SAVEL, 0
MASK, 7000
COUNTR, 0
COUNT, 0
LEFT, 0
ISZ LEFT
TAD KRAL
DCA INSTR
JMP I LEFT
RIGHT, 0
TAD KRAR
DCA INSTR
JMP I RIGHT
KRAR, 7010
KRAL, 7004

3-36



@m[f

oparations

system
description
- and
operation

‘loading. editing.
~ and debugging




CNOpPCLers

system |
description

and
operation

A PDP-8/E system is composed of the computer (programmer’s
console), a keyboard/printer terminal and possibly other periph-
eral equipment. While normal operation of a computer system is _
by programmed control, manual operation is necessary for many
tasks. This chapter describes the manual control and operation -of
the PDP-8/E and provides an introduction to the more common
peripheral devices which may be included in a PDP-8/E system.
Chapter 6 describes the programmed control of peripheral devices
and the means for transferring information between peripheral
‘equipment and the central processor. S

PROGRAMMER’S CONSOLE OPERATION

The programmer’s console allows manual control of the com-
- puter and provides the most elementary means of storing a pro-
gram in memory. It consists of switches and indicator lamps which
enable the programmer to examine or alter the contents of memory
locations and determine the current status of a running program.
The PDP-8/E programmer’s console is shown in Figure 4-1. For
reference purposes, the switches and indicators are identified in
Table 4-1. - -

4-1



O O O
o O
BRK STATE
B
A STATUS
DFt | OF2 aC
0 1 ND
N
BUS
JPANEL | SWITCH REGISTER acor |EXTO START ™
OFF [POWER
Lok ﬂ TN NI N S O N MO B A0 S0 B | E?“"lw"l“""‘"];“" ﬂ

Figure 4-1 PDP-8/E Programmer’s Console




Table 4-1 Programmer’s Console Control and Indicator Functions

* Control or Indicator

Function

OFF/POWER/PANEL LOCK

SW

SWITCH REGISTER

ADDR
LOAD

EXTD
ADDR
LOAD

CLEAR

In the counter-clockwise, or OFF
position, this key operated- switch
disconnects all primary power to
the computer." In the POWER, or
vertical position, it applies power -
to the computer and all manual
controls. In the PANEL LOCK, or
clockwise position, it applies power.
to the computer, the switch register
and the RUN light only. In this
position, a running program is pro- -
tected from inadyertent switch
operation.

‘When this switch is up, the Omni-

bus SW line is high  (logical 1).

" When it is down, the SW line is

low. This switch is used by special
peripheral routines.

The SWITCH REGISTER (SR)
- may be loaded with a 12-bit binary

number by setting the twelve
switches either up, for a 1, or
down, for a 0.

Pressing the ADDRess LOAD
switch loads the contents of the
SR into the central processor MA
register and forces the processor to
enter a fetch state. This causes the
contents of the core memory loca--
tion designated by the SR to be
loaded into the MB register.

Pressing the EXTendeD ADDRess
LOAD switch loads the contents of
SR bits 6-8 into the instruction
field register and the contents of

SR, bits 9-11 into the data field

register.

Pressing the CLEAR switch loads
a binary 0 into bits 0-11 of the ac-
cumulator, the link, all I/O device
flag registers, and the interrupt

4-3



~ CONT

EXAM

HALT

SING
STEP

DEP

EMA

request flag register. This is equiva-
lent to executing .a. CAF (Clear

All Flags) instruction.

Pressing the CONTinue switch sets
the run flip-flop and issues a mem-
ory start to begin program execution
at the address specified by the cur-
rent contents of the central proces-
sor MA register.

Pressing the EXAMine switch loads
the contents of core memory at the
address specified by the MA reg-
ister into the MB register and then
increments the MA register and
the PC. Repeated Operation of this
switch permits the contents of se-
quential core memory locations to
be examined. y

Pressing HALT clears the run flip-
flop and causes the computer to
stop at the beginning of the next
fetch state. Operating the computer
with HALT depressed causes one
machine cycle to be executed when-
ever the CONTinue switch is
pressed.

Pressing SINGle STEP clears the
run flip-flop and causes the com-
puter to execute one instruction
and halt at the beginning of the
next fetch state.

Lifting the DEPosit switch loads
the contents of the SR into the MB
register and into core memory at
the address specified by the current
contents of the central processor
MA register, then increments the

~ PC and the MA registers. This

facilitates manual storage of infor-
mation in sequential core memory
locations.

The 3-bit Extended Memory Ad-
dress register displays the memory
field designation of the memory
field currently being accessed. .

4-4



MEMORY ADDRESS The MEMORY ADDRESS register

displays the contents of the central
processor MA register. It combines
with the EMA register to provide
the 15-bit address of the next core
location to be. accessed. '

RUN The RUN indicator is lit whenever
: all machine timing circuits are ac-
tivated and capable of executing

instructions. _

Indicator Selector Switch This 6-position rotary knob desig-

nates which of six possible reg-
isters (or combinations of regis-
ters) is to be loaded into the
adjacent 12-bit display.

Setting this knob to:

BUS — Displays the logical state of the
data gating lines which connect the
‘major registers.

MQ — Displays the contents of the mul-
tiplier quotient register.
MD — Displays the contents of the MB

register. This indicates the last in-
formation read from or written
into core memory.

AC Displays the contents of the ac-
cumulator. : .
STATUS — Each display light is turned on to
indicate the "designated condition:
Indicator
- Light/Bit Turned On to Indicate:
Position '
0. The link contains a binary 1.
1 The Greater Than Flag (GTF) is raised.
2 The interrupt request line is asserted.
3 A processor condition which prevents program inter-
rupts has been initiated by software.
4 The interrupt enable flip-flop is on.
5 . The user mode line is asserted.
6-8 Displays the contents of the instruction ﬁeld register.
9-11 Displays the contents of the data field register.

45



STATE — With the Indicator Selector knob in
the STATE position, each display
light is turned on to indicate the
following condition:

Indicator
Light/ Bit . Turned on to indicate:
Position
0 Currently in fetch state.
1 Currently in defer state.
2 Currently in execute state.
3-5 Displays the contents of the instruction register.
6 The MD DIR line is asserted.
ST The BREAK DATA CONT line is asserted.’
8 The SW line is asserted. '
9 The PAUSE 1/0 line is asserted.
10 The BREAK IN PROG line is asserted.
11 The BREAK CYCLE line is asserted.

Note: The function of the various transmission lines cited and their as-
sociated control logic is documented in the Small Computer Handbook.

MANUAL PROGRAM LOADING

After writing a program, the programmer must store the in-
structions in memory before they can be executed. One means of
accomplishing this is to load the octal value of each instruction
directly into core memory from the programmer’s console. The
following procedure will initialize the programmers console for
manual program loading:

1. Place the OFF/POWER/PANEL LOCK switch in the
POWER position.

2. Load 0000 into the switch register (all switches in the down
position).

3. Place all other switches in the up position, except for the
spring-loaded DEPosit switch.

4. Turn off all peripheral devices.

Once the programmer’s console has been initialized, a program
may be loaded manually by following the instructions in Figure
4-2. Figures 4-3 and 4-4 give further instructions for checking and

4-6



running the stored program. These procedures will also permit a
single core memory location to be examined or altered. The con-
tent of the desired location is considered to be a one-word “pro-
gram,” in this case, and the left-hand (clockwise) loops in the flow
charts are never taken.

(  NmaLize )

y

SET INDICATOR
SELECTOR KNOB
TO MD

4
SET SR TO
PROGRAM'S

FIRST ADDRESS

1
PRESS ADDR LOAD

i

SET SR TO
PROGRAM'S
FIRST BINARY
INSTRUCTION
. “ ’ —_
, > LIFT DEP
SET SR TO '
PROGRAM'S NEXT
INSTRUCTION
L NO ALL
— INSTRUCTIONS
?
YES

(BROGRAM IS LOADED)

Figure 4-2 Manually Loading a Program

4-7



(  mmauze )

A

SET INDICATOR
SELECTOR KNOB
70 MD
SET SR 10
PROGRAM'S
FIRST ADDRESS
SET SR TO
VALUE OF
[PrESS ADDR LOAD | MA-{

—>|  PRESS EXAM B

|preSS ADDR LOAD |

SET SR TO
CORRECT
INSTRUCTION

LIFT DEP

ALL
INSTRUCTIONS
CHE%KED

Figure 4-3 Checking a Stored Program

( mmauze )

SET SR 10
ADDRESS OF
PROGRAM'S FIRST
INSTRUCTION

[press apor Loao)

PRESS CLEAR
AND CONT

PROGRAM
IS RUNNING

Figure 4-4 Running a Stored Program
4-8



KEYBOARD/PRINTER CONSOLE DEVICES

The techniques described in the previous section permit direct
interaction between the operator and the computer. This type of
interaction is very convenient for many special applications such
-as program modification and debugging, data modification and
controlled program execution. In general, however, a keyboard/
printer peripheral device is also necessary so that routine input/
output operations may proceed at the fastest possible rate of speed.
The VTO05 Display Terminal (Figure 4-5) and the LA-30 DEC-
writer Data Terminal (Figure 4-6) are console devices which per-
mit fast, convenient interaction between the operator and the com-
puter. They are the recommended medium for most routine input/
output operations. These devices are described in the Small Com-
puter Handbook. The LT-33 Teletype may also be used as a con-
sole device. Teletype operation is described in the following sections.

Figure 4-5 VTO05 Display Terminal
4-9



Figure 4-6 LA-30 DECwriter Data Terminal

TELETYPE OPERATION

The LT-33 Teletype consists of a printer, keyboard," paper
tape reader, and paper tape punch. The Teletype unit can operate
under program control or manual control. Programmed operation
of the Teletype unit is described in detail in Chapter 6. Opera-
tion of the Teletype unit as an independent device for generating
paper tapes is described later in this section. Major components
and. their functions are listed below. ‘

4-10



COFF L

REL.

START —
‘STOP -
FREE -

i
_ OFF
- tine O Locat

Figure 4-7 LT-33 Teletype Console

Teletype Control Knob
The control knob of the LT-33 Teletype -console (see Figure
4-7) has the following three positions.

LINE The Teletype console is energized and connected
: to the computer as an input/output device under
computer control.

OFF The Teletype console is de-energized.

LOCAL The Teletype console is energized for off-line op-
eration under control of the Teletype keyboard and
switches exclusively. ‘

4-11



OOOOOOOOOOOO®
@00OOARCLOOOE®E®
POOOOOOOOEOEVE
HO000OOOOOOE
L

§PACE J

Figure 4-8 Teletype Keyboard

Teletype Keyboard

The Teletype keyboard shown in Figure 4-8 is similar to a type-
writer keyboard, except that some nonprinting characters are in-
cluded as. upper case elements. When typing upper case characters
or symbols such as $, % or #, which appear on the upper portion
of numeric keys and certain alphabetic keys, the SHIFT key is held
depressed while the desired character or symbol key is operated.
When typing the nonprinting operational functions which appear
on the upper portion of some alphabetic keys, the control (CTRL)
key is held depressed while the desired key is operated. Table 4-2
lists several commonly used keys that have special functions in the
symbolic language of PDP-8 series computers.

Table 4-2 Special Keyboard Functions

Key Function Use

SPACE Space : Used to combine and delimit
symbols or numbers in a
symbolic program.

RETURN Carriage Return Used to terminate a line of
input. .

HERE IS Blank Tape Used to generate leader/
- trailer tape. Effective in LO-
CAL control mode only.

4-12



Table 4-2 (cont'd) Special Keyboard Functions

Key . Function ' Use
RUBOUT ‘ Rubout Used for deleting erroneous
characters. Punches all eight
channels.

'CTRL/ SHIFT/REPT/P Code200 Used for. leader/trailer on
BIN format tapes. Keys must

be released in reverse order:
P, REPT, SHIFT, CTRL.

LINE FEED Line Feed  Follows carriage return to ad-
vance printer one line.
SHIFT ) Used to type the characters

and symbols which appear on
the upper portion of certain
keys.

- Teletype Printer
The Teletype printer operates at a maximum rate of ten char-
~acters per second. When the Teletype unit is on line (LINE control
mode), all printed copy is generated under program”control by
the. computer. When the Teletype unit is off line (LOCAL control
“mode), all printed copy is generated automatically whenever a key
is typed '

Teletype Paper Tape Reader

The Teletype paper tape reader (also called the low-speed
reader) is used to read data punched on paper tape into core mem-
ory. The data is read from an eight-channel, perforated paper tape
at a maximum rate of ten characters per second. Operation is con-
trolled by a three-position switch, shown in Flgure 4-7. The con-
trol positions are described below. :

START Activates the reader; reader sprocket wheel is en-
gaged and operative.
STOP Deactivates the reader; reader sprocket wheel is en-
gaged but not operative. A
FREE Deactivates  the reader; reader sprocket wheel is
’ disengaged.

4-13



Teletype Paper Tape Punch

The paper tape punch is used to perforate eight-channel, rolled,
oiled paper tape at a maximum rate of ten characters per second.
- The punch controls are shown in Figure 4-7 and described below.

REL. Disengages the tape to allow tape removal or
loading. _

B.SP. Backspaces the tape one space for each firm de-
pression of the B.SP. button.

ON Activates the paper tape punch.

OFF Deactivates the paper tape punch.

CHANNELS
A

r N\
B87654 321

\/\/\/\/ Data is recorded (punched) on

*« paper tape by groups of holes
* : arranged in a definite format
° -along the length of the tape. The
4 |o000 0000 |4COUMN (e js divided into channels,
which run the length of the tape,
and into columns, which extend
across the width of the tape, as
shown in the adjacent diagram.
The paper tape readers and
punches used with PDP-8 series -
computers accept eight-channel

paper tape..

SPROCKET
HOLE

Generating A Symbolic Tape

Symbolic tapes to be used as input to the Assembler are most
conveniently prepared on-line, using the Symbolic Editor. This
program, described in Chapter 5, has several formatting and error-

4-14



correcting features which greatly facilitate the process of writing
and editing symbolic tapes. If it is not possible to generate a sym- :
bolic tape on-line, the following procedure may be employed to
generate such a tape on the Teletype. This procedure is best em-
ployed on an isolated Teletype unit, when the computer is un-
available. |

1. Set the Teletype Control Knob to LOCAL and turn the
paper tape punch ON. In LOCAL mode the Teletype unit
is independent of the computer and functions much hke an
electric typewriter. -

2. Press the HERE IS key to produce several inches of leader
tape.

3. Type out the symbohc program, following the conventlons
described in Chapter 3. To correct an error, press B.SP.’
until the error is under the print/punch station, then press
RUBOUT until the error and all subsequent characters have
been deleted. The erroneous character and all subsequent

* characters may now be retyped.

4. Press the HERE IS key to produce several inches of trailer

: following the symbolic program, then remove the tape by
tearing it against the plastic cover of the punch.

The following procedure is employed to obtam a listing of an
ASClI-coded symbolic tape

1. Set the paper tape reader switch to STOP or FREE. }

2. Release the plastic cover of the reader unit and place the
‘tape over the read station with the small sprocket holes over -
the sprocket wheel. Close the cover. :

3. Set the Teletype Control Knob to LOCAL.

4. Push the paper tape reader switch to START and release.
A printed copy of the tape will be produced on the Teletype.
If the paper tape punch is ON, a duphcate of the tape will
also be generated.

Paper Tape Formats

Manual use of the toggle switches on the programmer’s console
is a tedious and inefficient means of loading a program. This pro-
cedure is necessary in some instances, however, because PDP-8

4-15



series computers must be programmed before any form of input to
the memory unit is possible. For example, before any paper tape
can be used to input information into the computer, the memory
unit must contain a stored program which will interpret the paper
tape code and store the interpreted data in core memory. This
loader program must often be entered into core with the console
switches.

Before a loader program can be written to accept information,
the format in which the data is represented on paper tape must be
established. There are three basic paper tape formats commonly
used by PDP-8 series computers. The following paragraphs de-
scribe and illustrate these formats.

LN J ® * O 324 T
e L ) 310 H
L L I ® |31 |
ee o o+ o0 323 S
* . 240
(X o ® |311 |
4 lee o e eel323 s ASCH FORMAT

* o . 240 The USA Standard Code for
P, . e |301 A ~ Information Interchange (ASCII)
ee o o o0 323 s format uses all eight channels?
X e oe® |303 C of the paper tape to represent a
®e LA e |31 1 single character (letter, number,
oo ® e ® 311 1 or symbol) as shown in the dia-
e ¢ * 240 gram at left, The complete code
: : . : : : ° :?.f (F) is given in Appendix Bl1.
oo o ¢ o 322 R
o ece o 315 M
L ) L ® |301 A

324 T

§

1 Channel 8 is normally designated for parity check. The Teletype units
used with PDP-8 series computers do not generate panty, and Channel 8
is always punched.

4-16



r CHANNEL 7 ..

3

LOCATION
CONTENTS
LOCATION

CONTENTS

LOCATION
*CONTENTS

LOCATION

77 |

CONTENTS

LOCATION

FIELD SETTING
ORIGIN

INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION

INSTRUCTION

00 0o 77
o0 o e |61
oo @ 32

e ® 12
e0e0e0co00e0 |77

[ oo ® 52

oo ® o |13
® o0 ® 11

oo e0®e000 |77

e oe¢ 00 |53
e o e |13

@ 10
o000 co0 0o |77
. 00

o000 c0o00

ceo0 090 |07

° ceo0 @00 |07

/\/\JWOO
[ 2

e o , . 2

. . 00

oco0e0e |7

® 0 () 32

® [ 3] 50

.’ 00

. 00

. 00

.. 00

L] e 02

e osceo0 56

®0 0000 |77
L4 ® | O}
TR RN 76
. . loo
eeo0ceoe e |77

o0 - o 60

[ [ ] O]

s 0cso00 e |77

45
77

4-17

RIM (READ IN MODE)
FORMAT

RIM format tape uses pairs of

adjacent columns to represent
12-bit binary words directly.
Channels 1 through 6 are used
to represent either addresses or
information to be stored. A
channel 7 punch indicates that

_the current column and the fol-

lowing column are to be inter-
preted as an address specify-
ing the location at which the
information contained in the
following two columns is to be
stored. The tape leader .and
trailer for RIM format tape
must be punched in channel 8
only (octal 200).

BIN (BINARY) FORMAT

Binary format is similar to RIM
format except that only the first
address in a series of consecu-
tive addresses is specified. A

-channel 7 punch indicates that

the current column and the fol-
lowing column are to be inter-
preted as an address. Successive

‘pairs of columns are stored in

sequential locations following
this address until another chan-
nel 7 punch is encountered. A
channel 7 and a channel §
punch designate the current col-
umn as a memory field specifi-
cation. Leader/trailer tape must

be punched in channel 8 only.



Paper Tape Loader Programs

Each of the three-paper tape formats has its own primary ap-
plication. The ASCII format is used for symbolic programs which
provide input to the Assembler. As described in the previous
chapters, the Assembler translates ASCII-coded mnemonic instruc-
tions and symbolic addresses into binary instructions and absolute
addresses. Once this translation has been performed,-a binary
format tape is generated. |

Binary format tapes are the usual means of loading assembled
programs into PDP-8 core memory. Binary tapes are loaded under
program control, using the BIN Loader, which is an 83-instruction
program that must be placed in core before any binary format tape
may be loaded. _

RIM format is easier to load than BIN format because RIM
format supplies a core address for every instruction. If the BIN
Loader is not in core, the 17-instruction RIM Loader may be tog-
gled into core from the programmer’s console and used to load a
RIM format tape of the BIN Loader. RIM Loader instructions and
corresponding core memory locations are listed in Appendix E ,
which also includes directions for storing and using the RIM and
BIN Loaders. Chapter 5 contains further discussion of the use of
paper tape loaders.

PERIPHERAL EQUIPMENT AND OPTIONS

PDP-8/E computers are used in many different environments
and are interfaced with many different peripheral devices. The
Teletype unit is the most commorr peripheral device, but other
equipment and options often incorporated in a system with the
PDP-8/E include high-speed paper tape reader and punch units,
- DECtape, DECdisk, extended memory, and the extended arith-
metic element (EAE). These options give the basic PDP-8/E new
capabilities of which the programmer should be aware. The pur-
- pose and features of each of these options are described in the
following sections.

High-Speed Paper Tape Reader and Punch Unit

Loading a long paper tape program into core memory with the
low-speed reader of the LT-33 Teletype unit is very time con-
suming. Punching a long program on paper tape from an assembly
program is also very slow. If handling of lengthy paper tapes is
commonly required, much computer time is wasted while low-

4-18



speed input/output devices read or punch data. The high-speed
paper tape reader and punch unit performs paper tape input and
output at a considerably faster rate than the low-speed reader and
punch. It is of great value in any system that relies on paper tape
as a primary medium of data and program storage. '

ng-Speed Paner Tape Unit

~ The high-speed paper tape reader and punch unit is available i m
two versions: the rack mounted PC8-EA illustrated in Figure 4-9,

. and the table top PC8-EB. Both units consist of a PR8-E high-

speed paper tape reader and a PC8-E high-speed paper tape

punch, mounted on a single chassis. The reader and punch are
also available separately.

.- The high-speed reader accepts input data. from e1ght—channe1
fan-folded, non-oiled paper tape at a maximum rate of 300 char-
acters per second, or thirty times the LT-33 maximum input rate.
The high-speed punch records output data at a maximum rate of
50 characters per second. All reader and punch operations are

.executed on-line. They may be controlled directly by the computer
or from the keyboard through the computer.

The reader and punch are each supplied with an ON/OFF
rocker switch which applies power to the respective units in the

4-19



ON position and disconnects power in the OFF position. Each
device is also provided with a FEED switch which advances the
tape without reading, in the case of the reader, or advances tape
with only the feed holes punched, in the case of the punch unit.
The reader is supplied with a control knob which may be turned
counter-clockwise to raise the tape retaining lever and free the
tape, or clockwise to lower this lever and engage the sprocket
wheel. ‘

The following procedure is employed to position tapes in the
high-speed reader:

1. Turn the control knob to raise the tape retaining lever.

2. Place a fan-folded tape in the right-hand bin.

3. Place several folds of leader in the left-hand bin and posi-
tion the tape so that the sprocket wheel engages the feed
holes.

4. Turn the control knob to lower the tape retaining lever.
5. Press the FEED switch briefly to ensure that the tape is
properly positioned.
6. Tape is advanced and read by programmed computer in-
structions.
Extended Memory

PDP-8 series computers have a basic core memory composed of
4096 twelve-bit words. Core memory may be expanded by the
addition of up to seven 4096-word memory modules, providing a
maximum storage capacity of up to 32,768 words. Each module
is called a memory field: Memory fields are numbered from 0 to 7,
with memory field 0 designating the original 4096 words of core.
Core locations within each memory field are numbered from O to

77775 (40954). .
" One twelve-bit data word is capable of addressing a maximum
of 212, or 4096, unique locations. However, PDP-8 series com-
puters use two special 3-bit registers which permit 2%, or 32,768,
locations to be addressed.

During program execution the content of the instruction field
register determines the memory field from which the operand of a
directly addressed instruction should be taken. Any directly ad-
dressed TAD, AND, ISZ or DCA will obtain its operand from the
designated memory field, and any indirectly addressed TAD,

4-20



AND, ISZ or DCA will obtain its pointer from the designated
‘memory field. N .

After an indirectly addressed TAD, AND, ISZ or DCA instruc-
tion obtains its pointer from the memory field designated by the
instruction field register, it then obtains its operand in a similar
manner from the memory field designated by the data field register.

The instruction field and data field registers are originally set by
loading the desired binary designations into switch register bit
positions 6-8 (instruction field register) and 9-11 (data field reg-
ister), then pressing the EXT ADDR LOAD switch. These regis-
ters may also be loaded under program control.

Aside from its more obvious applications, extended memory is
commonly used to store important system software. For example,
the BIN Loader might be permanently stored in memory field 1.
If the instruction field register is loaded with 001 and the data field
register is loaded with 000, in this case, the BIN Loader will ex-
ecute in memory field 1 and store a binary program (which is
simply data to the Loader) in memory field 0. '

'DECtape System ’
DECtape provides an optional auxiliary magnetic tape storage
‘and updating facility for PDP-8 series computers. A DECtape
system consists of at least one DECtape control unit and one to
eight TUS6 DECtape transport units. In contrast to conventional
magnetic tape devices which store information in sequential, vari-
able-length positions, DECtape permits allocation of fixed, ad-
dressable positions for information storage. DECtape is bidirec-
tional, although data is usually read in the same direction that it
was written, and it records information on pairs of identical, non-

adjacent channels, to minimize any chance of data loss.

A standard PDP-8 DECtape contains 27025 blocks of 201,12~
bit data words each. This provides a total usable storage of
563,302 (or 190,1461,) 12-bit words per standard tape. Non-
standard tapes may be prepared for special applications. _ .

The TU56 DECtape Transport Unit shown in Figure 4-10 reads
and writes the 10-channel magnetic tape. Tape movement may be
controlled by program instructions or by manual operation of
switches located on the front panel of the transport. Data is trans-
ferred only under program control. The manual transport controls
are identified in Table 4-3.

4-21



Figure 4-10 TUS56 DE(ftai)e Tr;nsport Unit
. Table 4-3 TUS56 DECtape Transport Controls

Transport Control Position Function

REMOTE . This switch position energizes the DEC-
: tape transport and places it under pro-
gram control.

OFF ~ This switch position disables the DECtape

transport. ‘
LOCAL This switch position energizes the DEC-

tape transport and places it under oper-
ator control from external transport

_ ’ switches.
- WRITE ENABLED This switch position enables the DECtape
for search, read, and write activities.
WRITE LOCK This switch position limits the DECtape

transport to search and read activities
only. (This prevents accidental destruc-
tion of permanent data.)

Unit Selector The value specified by this eight-position
: rotary dial identifies the transport to the
control unit.

# With the transport in LOCAL mode, de-

pressing this switch causes tape to feed
onto the right hand spool.

With the transport in LOCAL mode, de-
pressing this switch causes tape to feed
onto the left-hand spool.

4-22



The following operations will initialize a DECtape transport
unit for use under program control. It is assumed that a prefor-
matted DECtape (see Chapter 7) is employed.

1. Set the REMOTE/OFF/LOCAL switch to OFF.

2. Place a DECtape on the left spindle with the DECtape label
out.

3. Wind four turns of tape onto the right spindle.

4. Set the REMOTE/OFF/LOCAL switch to LOCAL.

5. Wind a few turns of tape onto the right spindle with the -
switch to make sure the tape is properly mounted.

6. Dial the correct unit number on the unit selector dial.

7. Set the REMOTE/OFF/LOCAL switch to REMOTE. Se-
lect either WRITE ENABLE or WRITE LOCK.

DECdlsk Systems

The DF32D DECdisk is a low—cost random-access, bulk stor-
age device and control mechanism with a storage capacity of
32,768 twelve-bit words. Data is transferred by means of the data
break facility at a maximum rate of 34 microseconds per word.
The DF32D system can accommodate up to three DS32D ex-
pander disks, providing an economical storage capacity of up to
131,072 words.

The RS08 DECdisk and RFO8 controller combination prov1des
storage for 262,144 words per disk. Up to four RS08 disks may be
driven by one controller, allowing a maximum system storage ca-
pacity of over 1- million words. Data is transferred at a maximum
rate of 16.7 microseconds per word, and average access time is
less than 20 milliseconds.

The RK8 Disk Cartridge System consists of one RKO08-P Disk
Interface Control which will drive up to four RKO1 disk files.
System capacity is 831,488 words per disk, or up to 3.3 million
words with the maximum system configuration. The RK8 Disk
System will transfer a full 4096 words in about 80 milliseconds.

Extended Arithmetic Element

The KE8-E Extended Arithmetic Element (EAE) is an option
for the PDP-8/E which provides circuitry to perform arithmetic
“operations that cannot be performed directly using the basic PDP-
8/E instruction set. The EAE microinstructions permit multipli-

4-23



cation and division of unsigned integers to be performed directly.
Other microinstructions perform arithmetic or logical shifts and
normalization. EAE microinstructions also permit double precision
numbers to be added, complemented, incremented and stored
directly. . '

The 12-bit Multiplier Quotient (MQ) Register is used in con-
junction with the accumulator to perform multiplication, division
and double-precision operations. The content of this register is
displayed on the PDP-8/E programmer’s console when the indi--
cator selector knob is set to MQ.

A one-bit register called the Greater Than Flag (GTF) is used
as an extension of the MQ Register during shift operations. The
GTF is also used to compare signed numbers while a subtraction
is performed. The state of the GTF is displayed by console indi-
cator bit position, 1 when the indicator selector knob is set to
STATUS.

The EAE option is essentially an increase in instruction ca-
pability. The additional instructions, which are microprogram-
mable, are included in Appendix D. These instructions can effect
a significant reduction in core requirements and program execution
time by eliminating iterative coding. In addition, the double pre-
cision instructions may be used to good advantage for input buf-
fering operations and whenever full 12-bit addressing is desired.

"EXERCISES

1. Toggle into memory and run the programs written in Chap-
ter 2 for exercises 6 and 10.

2. Toggle the RIM Loader (Appendix E ) into memory using
the console switches. Verify the contents of memory with
the EXAM switch.

3. Write a program to set the contents of locations 2000
through 2007 to the value of the switch register and then
halt. Toggle it in and verify that it works.

4. Write a program to accept two numbers from the switch
register and add them displaying their contents in the ac-
cumulator. (Hint: precede each OSR instruction with a
HLT. After setting the switch register, activate the CONT
key.) Translate the program into octal and toggle it into
memory. Verify that it works properly.

4-24



loading. ed|t|ng
and debugging

INTRODUCTION

This chapter introduces the reader to on-line operations with
Digital Computers. It describes how to load programs into core
both manually and by the use of available loaders, how to create
and edit programs, and how to debug and correct programs after
assembly or compilation. Most PDP-8/E systems require the use
of at least some of the programs in this chapter. The loaders—
RIM, Binary, Self-Starting Binary, and Hardware Bootstrap, the
Symbolic Editor, and the debugging programs—ODT and DDT,
are discussed thoroughly. The information on the Editor, ODT,
and DDT applies to these programs as they are provided on a
Paper Tape System. (Under certain other systems, such as OS/8,
modifications may have been made to these programs either tomeet
core restrictions or to provide the user with an even more power-
- ful version. Any changes or modifications are described in the
appropriate manual.)

LOADERS :

A loader is a short program or routine which, when in core,
enables the computer to accept and store other programs. DEC
offers the user the following basic loaders:

5-1



1. Read-In-Mode (RIM) Loader—used to load into core any
programs punched on paper tape in RIM format, in particu-
lar, the Binary Loader.

2. Binary (BIN) Loader—used to load into core memory any
programs punched on paper tape in Binary format.

3. Self-Starting Binary (SS BIN) Loader—used to automati-
cally load or load and start a program in Binary format.
(SS BIN may be merged onto the beginning of a tape to
provide quick and easy loading.)

4. MIS-E Hardware Bootstrap Option—a hardware option
purchased by the user containing a pre—loaded bootstrap for
a particular configuration. :

RIM Loader ,

When a computer in the PDP-8 series is first received by the
customer, its core_memory is completely demagnetized. With the
exception of the Hardwatre Bootstrap option (discussed later)
which may have been purchased with the system, the computer
“knows” nothing, not even how to accept input. However, it is
possible to manually load data directly into core using the pro-
grammer console switches.

The RIM Loader is the first, and often only, program loaded
in this manner, and allows the computer to receive and store in
core data punched on paper tape in RIM coded format. (This
format, and two others—Binary and ASCII—are described in
detail in Chapter 4.) The RIM Loader is used in particular to load
the Binary and Self-Starting Binary Loaders.

There are two RIM Loader programs—one for input from the
low-speed (Teletype) paper tape reader, and the other for input
from the high-speed reader. Table 5-1 lists the octal instructions
for these programs. The loading and verifying procedures are
detailed in the flowcharts in Figures 5-1 and 5-2. (These flow-
charts are also contained in Appendix E.) After loading RIM, it
is a good programming practice to verify that all instructions have
been entered properly.

v 5-2



- When loaded, the RIM loader occupies absolute locations 7756
through 7776.

‘ INITIALIZE >

Yy
SET ROTARY
SELECTOR SWITCH

TO MD

4

SET SWITCHES 6-8
TO DESIRED
]NSTRUCTION FIELD*

ET SWITCHES 9-11

%*DECTAPE USERS Sl:fOULD - DESIRED*
ATA FIl
LOAD RIM INTOFIELD ® DATA FIELD
PRESS

EXTD ADDR LOAD

TSET SR
TO 7756

v

PRESS
ADDR LOAD

SET SR=
FIRST INSTRUCTION

LIFT DEP

SET SR=
NEXT INSTRUCTION

| wrroer |

RIM IS LOADED

Figure 5-1 Loading the RIM Loader
5-3



INITIALIZE J

SET ROTARY
INDICATOR
SWITCH TO MD

SET SWITCHES
6-8 TO FIELD IN
WHICH RIM HAS
BEEN LOADED

PRESS
EXTD ADDR LOAD

rSET SR=7756 |

PRESS

ADDR LOAD

| Press exam

Je

[ ser shema-t |

PRESS
ADDR LOAD

SET SR= CORRECT
INSTRUCTION

—

| et oDep

I

ALL

CHE(;.KED

RIM S LOADED

Figure 5-2 Checking the RIM Loader

5-4



Table 5-1 RIM Loader Programs

~ Instruction

Location . - |Low-Speed ‘Reader High-Speed Reader
7756 : 6032 6014
7757 6031 6011
7760 - 5357 : - 5357
7761 - 6036 6016
7762 7106 - 7106
7763 7006 : 7006
7764 - 7510 7510
7765 5357 - 5374
7766 7006 7006

.7767 : _ 6031 6011
7770 ’ 5367 5367
7771 ' 6034 : 6016
7772 7420 7420
7773 . 3776 3776
7774 3376 | 3376
7775 o 5356 5357
7776 0000 0000

Binary Loader :

The Binary Loader is a short utility program which, when in
core, instructs the computer to read-binary-coded data punched on
paper tape and store it in core memory. BIN is used primarily to
load DEC-supplied binary programs and binary tapes produced
by PDP-8/E assembly programs such as PAL III and MACRO-8.

BIN is furnished to the programmer on punched paper tape in
RIM coded format; therefore, RIM must be in core before BIN
can be loaded. When loading BIN, the input device (low-speed or
high-speed reader) must be the same as that selected when loadmg
RIM, and RIM and BIN must be loaded into the same field.

Once stored in core, BIN resides on the last page of core, oc-
cupying absolute locations 7625 through 7752 and 7777 of the
field in which it was loaded. BIN was placed on the last page of
core so that it would always be available for use, as all DEC’s
software (with the exception of the Disk Monitor and 0S/8) is
careful not to use this page. The programmer must be aware that’
if he writes a program which uses the last page of core, BIN will
be destroyed when the program is run, and both RIM and BIN
must be reloaded before another program can be loaded into the
computer. Figure 5-3 details the method of loading BIN.

5-5




LOAD RIM ——--i SEE FIGURE 5-1

SET ROTARY
SELECTOR SWITCH
_TO MD

'

SET SWITCHES
6-8 TO FIELD
WHICH CONTAINS
RIM

'

SET SWITCHES
9-11 TO FIELD IN
WHICH BIN IS
TO BE LOADED

PRESS ADDR LOAD

PUT BIN LOADER
IN_LSR*

E. UT LSR TO START

= WITH LEADER/TRAWLER
OVER THE READ HEAD

YES
Figure 5-3 Loading the Binary Loader
5-6



The programmer is now able to load binary tapes .using the
method described in Figure 5-4. '

( }—(omen ) {SEEFRIREST

SET ROTARY
SELECTOR SWITCH
10 _AC

]

SET SWATCHES
6-8 TO FIELD IN
WHICH BIN IS
LOADED

SET SR TOQ 7777

¥=WITH LEA[ERITRAI.ER
OVER THE READ MEA

YES
OBJECT TAPE
__IS LOADED

Figure 5-4 Loading A Binary Tape Using BIN
5-7



. @-—’LLOAD RIM__ )---{SEE FIGURES 5,5-2

SET ROTARY
SELECTOR SWITCH
TO AC

|

SET SWITCHES
641 TO FIELD
WHICH CONTAINS
RiM
1}

PRESS
EXTD ADDR LOAD

SET SR=7T756

PRESS ADDR LOAD

TURN TTY TO LINE

PUT SSBIN IN LSR

SET LSR TO START

PUT SSBIN IN HSR

PRESS
CLEAR AND CONT

PLACE TAPE
iN READER

PRESS CONT

PRESS
CLEAR AND CONT

Figure 5-5 Using SS BIN with the RIM Loader.
- 5-8



Self-Starting Binary Loader

The Self-Starting Binary Loader reads binary format paper tapes
from either the high-speed or low-speed reader and, providing a
starting address has been specified, automatically starts the pro-
gram at the completion of loading. ’

SS BIN itself is a RIM format program and is loaded with the
RIM Loader or the hardware bootstrap, generally as the first part
of a two-part tape. (The second part of this tape is the object.
program or data to be loaded, and is physmally separated from SS
BIN by leader/trailer code.) .

Many DEC-supplied programs are now being distributed as
‘self-loading binaries that include a starting address for automatic
starting and loading. However, SS BIN may be used independently,
in which case the binary object tape must be manually loaded; if
a starting address has been specified, it will be automatically

started. - |

The user may generate his own self-loading binaries; the pro-
cedures involved in this process and other detailed information
concerning SS BIN are contained in the library write-up DEC-8E-
XBINA-A-D, which is avallable from the Software Distribution
Center.

SS BIN occupies locations 7600 through 7755 and location
7777 of the memory field into which it has been loaded. Figure

5-5 describes instructions for loading the SS BIN and object

tape(s).
MIS-E Hardware Bootstrap Loader

The MIS-E Hardware Bootstrap Loader is a hardware option
available on the PDP-8/E which provides a specific bootstrap
loader stored in read-only-memory as a RIM format program.
Using this option, the user can automatically bootstrap into core
any DEC-supported system contained in any one of the configura-
tions listed in Table 5-2. (The Bootstrap Loader option and the
configuration are decided by the customer when he orders his
system.)

As can be seen from this table, the hardware bootstrap saves’
the user the necessity of inanually toggling the RIM loader into
memory (as described in Figure 5-1) and in most cases, provides
additional bootstrapping capabilities as well.

To operate the Bootstrap Loader, the user need only follow
the procedure outlmed in Figure 5-6.

5-9



Table

5-2 Hardware Bootstrap Loaders

Option Designation

RIM Program

MIS-E Unencoded—The user may specify any RIM
program of his choosing providing it occupies
less than 32 words of core. '

MIS-EA Paper Tape—Provides the bootstrapping of the

M18-EB low/high-speed RIM loader.

- MI8-EC DECtape—Provides the bootstrapping of a DEC-
tape-based system.

MIS-ED RK8—Provides the bootstrapping of a disk-based
system. ‘

MIS-EE Typeset—Allows the bootstrapping of the PDP-

: 8/E Typesetting system.

MIS-EF EduSystem (low)—Provides the bootstrapping
of a system in the EduSystem series using the
low-speed reader.

MIB-EG EduSystem (high)—Provides the bootstrapping

N of a system in the EduSystem series using the
high-speed reader.

MIS-EH TDS8-E DECtape—Allows the bootstrapping of
a TD8-E DECtape-based system.

( st )
PRESS AND RAISE
TR SUE HALT KEY
( ) COMPUTER AND
1 TERMINAL ARE
ON-LINE
PLACE TAPE
ASSOCIATED WITH
SYSTEM IN POSITION
ON DECTAPE DRIVE
OR IN READER
IF BOOTSTRAPPING
AN EDUSYSTEM,
COSRE.Erms‘RA(-)rgRESS
C SYSTEM IS
{ BOOTSTRAPED

Figure 5-6 Using the Hardware Bootstrap

5-10




SYMBOLIC EDITOR

Introduction
The Symbolic Editor (as used on a Paper Tape System) is
used to create and modify symbolic (source) program tapes .

from the Teletype keyboard. Thus the tedious task of preparmg
source program tapes off-line is elintinated.

The Symbolic Editor (hereafter, simply Editor), uses the Tele-
type keyboard as a very sophisticated typewriter. That is, as the
source program is typed, it is entered into core. where it can be
checked, corrected, and modified. Then, when the user is ready to
generate the source program tape, Editor will respond to the ap- -
propriate command by producing a tape suitable for assembling

~or corhpiling into an object (binary) tape which will, in turn, run
on'the computer. '

Editor is a very helpful tool; still, it must be told precisely what
to do. The user directs its operations by typing certain commands
in the form of a single letter or a letter with arguments. All com-
mands are executed by typing the RETURN key directly after the
command.

Editor occupies about 1000 locations of core and leaves all but
the last page of core for the source program—allowing (in a 4K
core) approximately 60 lines of heavily commented text or about
340 lines of text without comments (about 4200,, characters).
The source program is stored in the text buffer area of core. When *
the text buffer is full, Editor rings the Teletype bell. The buffer
may then be enlarged, as explained later under Editing a Symbolic
Tape, or the contents of the buffer may be punched (dumped)
onto paper tape. If punched on paper tape, the Editor may be re-
started (also explained later) and editing continues with a com-
pletely refreshed (clear) text buffer. The rest of the source pro-
gram can then be placed into core and punched out so that the
entire source program is on one long tape, ready to be assembled
or compiled. :

Each line of text mcludes the terminating carriage return/line
feed combination which is produced by the RETURN key. All
lines in the buffer are implicitly numbered in decimal, starting
with 1. This implicit enumeration is continually updated by Editor
to account for line insertions, moves, and deletions—a few of the

5-11



features available using Editor. For editing and listing purposes,
each line is referred to by its current implicit decimal line number.

Text may be entered into core using the Teletype or high-speed
paper tape reader (Editor does not distinguish paper tape from
keyboard input; it perceives only symbolic input). Loading and
- operating instructions are contained toward the end of the chapter.

Modes of Operation
To distinguish between editing commands and the actual text
to be entered in the buffer, Editor operates either in command
mode or text mode. In command mode all input typed on the
keyboard is interpreted as commands to Editor to perform some
- operation or allow some operation to be performed on the text
stored in the buffer. In text mode, all typed input is interpreted as
text to replace, be inserted into, or be appended to the contents
of the text buffer.

TRANSITION BETWEEN MODES

Immediately after being loaded into core memory and started,
Editor is in command mode; that is Editor is waiting for a com-
mand. The desired command code is then typed and terminated
by the RETURN key, which instructs the Editor to carry out the
command.

With Editor in text mode (through use of the Insert or Append
commands) corrections or insertions may be typed to the text. To
terminate text mode, a form feed (CTRL/FORM combination)

*or CTRL/G may be entered, instructing the Editor to -return to
command mode; Editor answers by ringing the Teletype bell to
indicate the transition back to command mode.

Command Structure

A command directs Editor to perform a desired operation. Each
command consists of a single letter, preceded by zero, one, two
or three arguments. The command letter tells Editor what to do;
the arguments usually specify which numbered line or lines of text
are affected. Commands to Editor must take one of the following
forms, where E represents any command letter.

i NOTE
Except where specified, each line typed by
the user must be entered to the computer
by typing the RETURN key.

5-12



Table 5-3 Command Structare

Command
Type of Command Format Meaning
No Argument E Perform operation E.
One Argument nE Perform operation E on the ref-
' erenced line.

Two Arguments m,nE Perform operation E on lines m
: through n, inclusive (m < n).

Three Arguments m,n$jE Used by MOVE command only
(move lines m through n to be-
fore line j). | :

The arguments m and n, which refer to numbered lines in
memory, must be positive, and n must be greater than m. Two
arguments must be separated by a comma, but no comma is allowed
between the arguments and the command.

Special Characters and Functions v
A number of Teletype keys have special operating functions.
These keys and their associated functions are listed below:

RETURNKEY |

In both command and text modes, typing the RETURN key
signals Editor to process the information just typed. In command
mode, it allows Editor to execute the command just typed. A com-
mand will not be executed until it is terminated by the RETURN
key (with the exception of =, explained later). In text mode,
RETURN causes the line of text which it follows to be entered
- into the text buffer. A typed line is not actually part of the buffer
until terminated by the RETURN key.

ERASE (CTRL/U)

The erase character (CTRL/U combination) is used for error
recoveries in both command and text modes. It is generated by
holding down the CTRL key while typing a U and is not echoed
on the Teletype. When used- in text mode, CTRL/U cancels every-
thing to the left of itself back to the beginning of the line; Editor
performs a carriage return/line feed (CR/LF). The user then
continues typing on the next line. When used in command mode,
CTRL/U cancels the entire command; Editor prints a ? and per-

5-13 N




forms a CR/LF. The erase character cannot cancel past a CR/ LF
in either command or text mode. For example:

Command Mode:

A?

Text Mode:

THIS ,
HERE IS A TEXT MODE EXAMPLE

The Editor automatically performs a carriage return/line feed
after CTRL/U is struck. In the first example above, CTRL/U was
typed immediately after “A”, in the second example it was typed
immediately after “THIS”.

RUBOUT KEY

Rubout is used in error recovery in both command and text
modes with one exception. When executing 2 READ command
(explained below) from the paper tape reader, rubouts are ignored
completely and do not go into the buffer. It is necessary for the
READ command to disable the rubout function since all tab char-
acters on paper tape are, for timing purposes, followed by rubouts
which would destroy the tabs. Rubouts are not stored in the text
buffer but are inserted by Editor following all tab characters on
the output tape. '

At any other time in text mode typing the RUBOUT key echoes
a backslash (\) and deletes the last typed character. Repeated
rubouts delete. from right to left up to, but not including, the CR/
LF which separates the current line from the previous one. For
example:

THE QUUICK\\ANICK BROWN FOX

will be entered in the buffer as:

THE QUICK BROWN FOX

When used in command mode, RUBOUT is equivalent to the
CTRL/U and cancels the entire command; Editor then prints a ?,
performs a CR/LF, and waits for the user to type another com-
mand. : '

# - 5-14



.FORM FEED (CTRL/FORM) - .

Form feed signals Editor to return to command mode. A form
feed character is generated by pressing the CTRL key while typing
the FORM (/L) key. This combination is typed while in text
mode to indicate that the desired text has been entered and that
Editor should now return to command mode. Editor rings the
Teletype bell in response to a CTRL/FORM to indicate that it is
back in command mode. If Editor is already in command mode
when CTRL/FORM is typed, no bell will sound, CTRL/BELL
(/G) is equivalent to CTRL/FORM (except in the case of a
SEARCH command as explained later).

DOT (.)

Editor keeps track of the implicit decimal number of the. line on
which it is currently operating. At any given time the dot, which is
produced by typing the period key, stands-for this number and
may be used as an argument to a command. For example:

.L
means list the current line, and

o—l)0+lL

means list the line preceding the current line, the current line, and
the line following it, then update the current line counter to the
decimal number of the last line printed. The current line counter,
represented by the dot, is generally updated as follows:

1. After a READ or APPEND command, dot is equal to the
number of the last line in the buffer. :

2. After an INSERT or CHANGE command, dot is equal to
‘the number of the last line entered. _

3. After a LIST or SEARCH command, dot is equal to the
number of the last line listed.

4. After a DELETE command, dot is equal-to the number of

the line immediately after the deletion.

After a KILL command, dot is equal to 0.

After a GET command, dot is equal to the number of the

line printed by the GET.

5-15

AN



7 After a MOVE command, dot is not updated and remains
whatever it was before the command.

SLASH (/)

The symbol slash (/) has a value equal to the decimal number
of the last line in the buffer. It may also be used as an argument
to a command. For exampie:

18,/L

means list from line 10 to the end of the buffer.

LINE FEED KEY

Commands and lines of text are terminated by the RETURN
key which generates a carriage return and a line feed combination.
Line feed characters are completely ignored when input is on paper
tape. During output, Editor automatically punches a line feed fol-
lowing each carriage return.

Typing the LINE FEED while in command mode is equivalent
to typing: ‘

-

++1L

and will cause Editor to print the line following the current one
and to increment the value of the current line counter (dot) by
one.

ALT MODE KEY

Typing the ALT MODE key while in command mode will also
cause the line following the current line to be printed and the
current line counter (dot) to be incremented by one. If the current
line is also the last line in the buffer, typing either ALT MODE or
LINE FEED will cause a ?to be typed by Editor indicating that
there is no next line. (Some Teletypes have an escape key (ESC) -
in place of the ALT MODE; the function is identical for both
ESCape and ALT MODE.) :

RIGHT ANGLE BRACKET (>)
Typing the right angle bracket (>) while in command mode is
equivalent to typing:

.+il

5-16



and will cause Editor to echo > and then print the line following
the current line. The value of the current line counter is increased
by one so that it refers to the last line printed.

LEFT ANGLE BRACKET (<) |
Typing the left angle bracket (<) while in command mode is
equivalent to typing:

«~1L

and will cause Editor to echo < and then print the line preceding
the current line. The value of the current line counter is decreased
by one so that it refers to the last line printed.

EQUAL SIGN (=)

The equal sign is used in conjunction with the line indicators,
dot (.) or slash (/). When typed in command mode it causes
Editor to print the decimal value of the argument preceding it. In
this way the number of the current line may be found (.=XXX),
or the total number of lines in the buffer (/=XXX) or the number
of some particular line (/—8=X XX) may be determined without
counting from the beginning. - :

COLON (:)
Colon is a lower case character with exactly the same function
as the equal sign (=).

BLANK TAPE AND LEADER/TRAILER

Both blank tape and leader/trailer (code 200) are completely
ignored on an input tape as are line feed characters and rubouts.
Line feeds and rubouts are automatically replaced wherever nec-
essary on output, whereas blank tape and leader/trailer are not.

TABULATION (CTRL/TAB)

Editor is written in such a way as to simulate tab stops at eight
'space intervals across the Teletype paper. When the CTRL key
and I key are held down simultaneously, Editor produces a
tabulation. A ‘tabulation consists of from one to eight spaces, de-
pending on the number needed to bring the carriage to the next
tab stop. Thus, the user may use Editor to produce neat columns
on the hard copy (printed page).

5-17



This tab function is used in connection with two switch register
options (for input and output) )to allow the user to produce and
control tabulations in the text buffer .during input and output
operations (see Switch Register Options below). On input (under
a READ command) Editor can replace a group of two or more.
spaces with a tabulation if the user chooses to set bit 0. On output
it will produce either a tab character followed by a rubout (for
timing purposes) or enough spaces to reach a tab stop, depending
on the settings of bit 1. Editor cannot output tab characters unless
tabulations have been entered in the buffer either from the key-
board or through setting bit O on input.

NOTE
Location 0002 contains the negative (2’s
complement) of the number of spaces used-
to simulate tab stops. To change the tabula-

tion simply change the constant in location
0002 after loading the Editor.

Switch Register Options

Editor uses five switch register bits in conjunction with the
actual input and output commands to control the reading and
punching of paper tape. It is sometimes desirable to be able to
interrupt a command before it finishes. For example, if you mis-
takenly gave a LIST command in place of a PUNCH command
and you do not wish to wait for the Teletype to list a large section
of text; bit 2 on the console switch register allows you to interrupt
any output command and return immediately to command mode.
Table 5-4 lists the switch register bit options:

Table 5-4 Switch Register Options

Bit Position Action and Explanation

0 0 Read the _input tape exactly as it is.

Read the input tape taking note of spaces.
Fach time two or more successive spaces are
found, substitute in the buffer a tabulation for
that whole group of spaces. This option affects
only the READ command.

5-18




Table 5-4 Switch Register Options (Cont.)

Bit Position

Action and Explanation

1 HETaA BN 0-.

10 0

11 0

" On punchlng (or listing) text from the buffer,
“"tabulations are to be interpreted as an appro- "
priate number of spaces. '

Tabulations are interpreted as a tab character
followed by a rubout (211;377).

Normal operation. All output commands com-

- pleted as specified.

Suppress list, punch, or search operation. If at
any time during execution of an output com-
mand this switch is set to 1, output will cease,
Editor will return immediately to command
mode. (If this occurs while a line is being
searched, any modifications to the line made
during that search will be disregarded.) The
current line counter (.) will be equal to the
number of the line being printed or punched
at that time. Until the switch is set to 0, any
further output command will be ignored.

Low-speed output. All punching will be done
via the Teletype punch.

High-speed output.. All punching will be done
via the high-speed punch.

Low-speed input. The READ command ex-

- pects the source tape to be in the Teletype

reader. DO NOT use the APPEND command
to read tapes.

High-speed input. The source tape will be read
from the high-speed reader.

Command Repertoire

Commands to the Editor are grouped under three general head-
(ings: Input, Output, and Editing. Explanation of the three types
of commands is given in the following sections. Each command
description will state if the Editor returns to command or text
mode after completing the opération specified by the command.

The Editor will print an error message consisting of a question
mark whenever the user has requested nonexistent mformatlon or

5-19



used an inconsistent or incorrect format in typing a command. For
example, if a command requires two arguments, and only one (or
none) is provided, the Editor will print ?, perform a carriage
return/line feed, and ignore the command as typed. Similarly, if
a nonexistent command character is typed, the error message ? will
be printed, followed by a carriage return/line feed; the command
will be ignored. (However, if an argument is provided for a com-
mand that does not require one, the argument will be ignored and
the normal function of the command performed.) For example:

Message Explanation -
L The buffer is empty. The user is asking
? for nonexistent information.
7,5L The arguments are in the wrong order.
? ~ The Editor cannot list backwards.
17518M This command requires two arguments
? before the $, only one was provided.
H Nonexistent command letter. -
2?

- INPUT COMMANDS

Input commands allow text to be entered into the text buffer
either from the paper tape reader or the Teletype keyboard. The
Editor is in text mode until a form feed (CTRL/FORM) is

encountered.
Table 5-5 Input Commands

Command Action and Explanation

R READ a page of text from paper tape reader. Depend-
ing on the position of switch register bit 11, reading will
be done from either the high-speed or the Teletype
reader. The Editor will read information from the input

“tape until a form feed character (CTRL/FORM key
combination) is detected or until the Editor senses a
text buffer full condition. All incoming text except the
form feed is appended to the contents of the text buffer.
Information already in the buffer remains there.

In the case of input via the high-speed reader, the
end of the tape will be interpreted as a form feed if an
actual form feed character does not appear on the tape;

5-20




Table 5-5 Input Commands (Cont.)

Command

Action and Explanation

nl

the Editor returns to command mode. In the case of
input via the Teletype reader, a form feed must be
entered via the keyboard to return the Editor to com-
mand mode if an actual form feed character does not
appear on the tape. If this is not done, the READ com-
mand is still in effect and all subsequent commands will
be interpreted erroneously as text and appended to
what was just read from tape. : :

Any rubout encountered during a READ command

| will be ignored. (See RUBOUT.)

APPEND the incoming text from the Teletype keyboard
to the information already in the buffer (the buffer may
be empty initially thus allowing the user to create a new
file). The Editor will enter the text mode upon receiving
this command and the user may then type in any num-
ber of lines of text. The new text will be appended to
the information already in the buffer, if any, until the
form™ feed (CTRL/FORM key combination) is typed.

As mentioned, by giving the APPEND command
with an empty buffer, a symbolic program may effec-
tively be generated on-line by entering the program via
the keyboard. :

Any rubout encountered during execution of an AP-
PEND command will actually delete the last typed char-
acter. Repeated rubouts will delete from right to left up
to but not beyond the beginning of the current line.

The APPEND command must not be used to read -
paper tapes from the Teletype reader since every rub-
out on the tape will delete a character.

INSERT before line n,the text entered from the Tele-
type keyboard. The - Editor enters text mode to accept
input, and the first line typed ‘becomes the new line
n. Both the line count and the numbers of all lines
following the insertion are increased by the number
of lines inserted; the value of the current line coun-
ter (.) is equal to the number of the last line . inserted.
To reenter command mode, -the CTRL/FORM

(form feed) combination must be typed. This ter-

minates text mode; if not typed, all subsequent com-
mands will be interpreted erroneously as text and
entered in the program immediately after- the in-
tended insertion. _ ' '
INSERT, without an argument, will insert text be-
fore line 1.

—5-21



-

NOTE

In these commands, the Editor ignores
ASCII codes 340 through 376. These codes
include the codes for the lower case alpha-
bet (ASCII 341-372). The Editor returns
to command mode only. after the detection
of a form feed or when Editor senses a bui-
fer full condition (see section on Editing
a Symbolic Tape).

OUTPUT COMMANDS

Output commands are subdivided into lis? and punch commands.
List commands will cause the printout on’ the Teletype of all or
any part of the contents of the text buffer to permit examination
of the text. Punch commands provide for the output of leader
trailer, form feeds, corrected text, or for the duplication of pages
of an input tape. List or punch commands do not affect the con-
tents of the buffer.

List Commands
The following commands cause part or all of the contents of the
text buffer to be listed on the Teletype.

Table 5-6 List Commands

Command Action and Explanation
L LIST the entire page. This causes the Editor toj
list the entire contents of the text buffer.
nL LIST line n. This line will be printed, followed by
a carriage return and a line feed.
m,nL. LIST lines m through n, inclusive (m must be
less than n). Lines m through n will be printed
on the Teletype.

e Editor remains in command mode after a list command and
the value of the current line counter is updated to be equal to the
number of the last line printed.
Punch Commands ’

The following commands control the punching onto paper tape
of leader/trailer, text, and form feeds.

5-22



Note that the PUNCH and NEXT commands halt the computer
before executing the command. This is intended to let the user -be
sure the control switches are  set correctly before any tape is
punched. Pressing the CONTinue key on the console will cause
the Editor to proceed with the command. The Editor remains in
command mode after execution of any command which punches
tape.

The Editor is des1gned to minimize the poss1b1hty of illegal or
meaningless characters being punched into a source tape, there-
fore the illegal (nonexistant) codes 340-376 and 140-177, and
most illegal control characters will not be punched. In this way a
tape containing illegal characters may be corrected by simply
reading it into the Editor and punching it out.

Depending on the position of switch register bit 10 (see Table
5-4) punching will be done by either the Teletype punch or the
high-speed punch. |

Table 5-7 . Punch Commands '

Command Action and Explanation
P PUNCH the entire contents of the text buffer.
nP PUNCH line n only. |
m,nP PUNCH lines m through n, inclusive (where m must
be less than n).

The above commands do not output a form feed character following
the text.

F - FORM FEED. This command causes the punching.

- of four blanks, a form feed character, and approxi-
mately two inches of blank tape. If using low-speed.
punch, turn punch off before typing command then
turn on immediatelv after typing carriage return.

T TRAILER. This command causes.about four inches
of blank tape to be punched. If using low-speed:
punch, turn punch off before typing command then
turn on 1mmed1ately after typing carriage return.

The F and T commands do not halt the computer before punching
tape. If using the low-speed punch, the user must therefore turn on the
punch immediately after typing the carriage return. The codes for a
‘carriage return and line feed may be pumched onto the tape in some
. instances.

5-23



Table 5-7 Punch Commands (Cont.)

Command

Action and Explanation

N

nN

NEXT. This is a utility command which combines
the functions of four commands. It punches the con-
tents of the buffer, punches some blank tape, a form
feed, more biank tape, kilis the buffer, and reads in
the next page of text from the reader specified by
switch register bit 11 (i.e., it executes P, F, K, R).

Executes the above sequence n times. The Editor
halts only before the first punching. If n is greater
than the number of pages of input tape the command
will proceed in the specified sequence until it reads
the end of the input tape, then it will return to com-
mand mode. (If using Teletype reader, when tape
runs out type CTRL/FORM to return to command
mode.)

NOTE

Output operations may be interrupted by
setting bit 2 of the switch register (see sec-
tion on Switch Register Options).

EDITING COMMANDS
The following commands permit deletion, alteration, or expan-
sion of text in the buffer.

Table 5-8 Editing Commands

Command

Action and Explanation

nC

m,nC

CHANGE line n. Line n is deleted, and the Editor
enters text mode to accept input. The user may now
type in as many lines of text as he desires in place
of the deleted line. Rubouts are recognized during

|1 any CHANGE operation. If more than one line is

inserted, all subsequent lines will be automatically
renumbered and the line count will be updated appro-
priately.

CHANGE lines m through n, inclusive (m must be
numerically less than n). Lines m through n are de-
leted and the Editor enters text mode allowing the
user to type in any number of lines in their place.
All subsequent lines will be automatically renum-
bered to account for the change and the hne count
will be updated.

5-24



Table 5-8 Editing Commands (Cont.)

Command

Action and Explanation

nD

m,nD

nG

After any CHANGE operation, return to com-
mand mode is accomplished by typing a form feed
(CTRL/FORM) to terminate input. After a
CHANGE, the value of the current line counter (.)
is equal to the number of the last line of the change.

DELETE line n. Line n is removed from the text

)

buffer. The numbers of all succeeding lines are re-

duced by one, as is the line count.

DELETE lines m through n, inclusive. The line fol-

lowing n becomes the new line m and the rest of the

lines are renumbered accordingly. The value of the
current line counter (.) is equal to the number of
the line after the deleted line or lines. The Editor re-
mains in command mode after all DELETE opera-

| tions. :

GET and list the next line which begins with a tag.‘

‘The Editor begins with the line following the cur-

rent line and tests for a line which does not be-
gin with a tab, slash, or space. This will most often
be a line beginning with a tag. It might also be a line
containing an origin. For example:

TAD this is the current line
DCa

/THIS 1S A COMMENT

HERE, 9 this line would be printed
Ifs\g by the command G-

*5000
this line would be printed

next if another G were
typed.

GET and list the next line which begins with a tag
starting the search with line n. The Editor begins
with line n and tests it and each succeeding line as
described above.

"Both G and nG update the current line counter
after finding the specified line. However, if either
version of the GET command reaches the end of the
buffer before finding a line beginning with other than
a tab, slash, or space, the current line counter retains
the value it had before the GET was issued, and a ?
is typed to indicate that no tagged line was found.

5-25



Table 5-8 Editing Commands (Cont.)

Command

Action and Explanation

The Editor remains in command mode after a GET

‘command.

“KILL the entire page in the buffer. The values of the

-1 ‘special characters / and . are set to zero. The Editor

m,n$jM

nS

| remains in command mode.

MOVE lines m through n inclusive to before line j
(m must be numerically Iess than n and j may not be
in the range between m and n). Lines m through n

| are moved from their current position and inserted

before line j. The lines are renumbered after the

{ move is completed although the value of the current

line counter (.) is unchanged. Moving lines does not
use any additional buffer space.

A line or group of lines may be moved to the end
of the buffer by specifying j as /+1. For example:
1,10$/+1M. Since the MOVE command requires
three arguments, it must have three arguments to
move even one line. This is done by specifying the
same line number twice. Example:

S5,5%23M

This will move line 5 to before line 23. The Editor
remains in command mode after a MOVE command.

" SEARCH line n for the character specified after the

carriage return which enters the command. Allow
modification of line when this character is found.
The SEARCH command is one of the most useful

functions in the Editor. It is also structured some-

what differently from the other Editor commands.

- After terminating the command nS with a carriage

return the user has told the Editor to SEARCH line
n, but he hasn’t specified what to search for. The
Editor is, therefore, waiting for the user to type a
character. The character he types is taken as the
object of the search but is not echoed. The Editor
instead immediately begins printing the specified line,
After typing the character for which it is searching,
the Editor stops. All of the editing features are then
available to the user. He may proceed using any of
the following options: ‘

1. Delete the entire printed portion of the line by
typing CTRL/U (erase), (a carriage return/
line feed is generated). '

5-26



Table 5-8 Editing Commands (Cont.)

Bit

Position _ Action and Explanation

m,nS

2. Delete the entire unprinted portion and termin-
ate the line and the-search by typing the RE- -
TURN key. ) :

3. Delete from right to left one of the printed
characters for each \' (rubout) typed. '

4. Insert characters after the last one printed
simply by typing them.

5. Insert a carriage return/line feed, thus dividing
the line into two, by typing the LINE FEED
key. : _

6. Continue searching to the next occurrence of
the search character by typing CTRL/FORM.
When printing stops all options are again avail-
able.

7. Change the search character and continue
searching by typing CTRL/BELL followed by
‘the new search character.

Each time the Editor prints the character for

"which it is searching, printing stops and all or any

combinations of the above ‘operation may be carried
out. ‘ :

SEARCH lines m through n inclusive in the same
way as described above. The search character is in-
put after the carriage return and all of the options
are available. The only difference is in option num-
ber 2; typing the RETURN key deletes the entire
unprinted portion of the line and terminates that.
line, but the search continues on the next line.

By typing CTRL/BELL to change search charac-
ters, all editing of a single line-may be done in one
pass. Clearly, typing CTRL/BELL twice will cause-
the search to proceed to termination, since the search
character will now be BELL which is not stored in
the buffer. )

By typing S with no arguments the entire buffer
may be searched for occurrences of a single charac-
ter. It must be remembered, however, that as with
every CHANGE command, every SEARCH com--
mand uses additional buffer space for storage of the

5-27



Table 5-8 Editing Commands (Cont.)

Command Action and Explanation

new line. This is obviously necessary, since the pro-
gram can have no prior knowledge of whether the
size of the line will be less than, greater than, or
equal to that of the old line, and it must therefore
assume that it will be larger. As the entire buffer is
searched, a new image of the text is created in core
that is guaranteed to occupy the same or less space
than previously, since all deleted spaces have been
removed. The Editor recognizes this and immediately
moves the text image back to the top of the buffer
space. Thus, the only prerequisite to condensing the
text image is that there be enough cere space left to
contain another image of the edited text. The options
available to the user are the same as described for
m,nS. )

Operating Procedures

After the Editor has been loaded, 1t may be used to read into
the text buffer a page of the symbolic program to be corrected.
Corrections and additions may be either entéred from the Tele-
type keyboard or inserted from paper tape via the reader. The
corrected lines, groups of lines, or the entire page of text may then
be listed or punched.

The following pages describe the sequence of operations neces-
sary to load, edit, and punch out a corrected symbolic program
tape; an example of Editor usage is given at the end of this section.

LOADING AND OPERATING THE SYMBOLIC EDITOR

The Symbolic Editor is loaded into core using the Binary
Loader (or SS BIN). The loading procedure is illustrated in the
flowchart in Figure 5-7. After loading, the user should select the
desired switch register settings as detailed in Table 5-4. Loading of
any symbolic tapes to be edited and all subsequent operations are
performed through the use of the Editor by giving approprlate
commands from the Teletype keyboard.

The Editor resides in core in locations 200-1624.

5-28



@——5( LOAD RIM  )----—--|SEE FIGURES 51,5-2
- [ oaoew b JsEE FiGuRe 5-3.

FLOAD EDITOR _J---;---1§EE FIGURE 5-4

SET SWITCHES
6-8 TO FIELD
EDITOR IS IN

-PRESS EXTD
ADDR LOAD

SET SR= 0200 F———'J

: Fkt—:ss" ADDR LOA£|

[ruan T7Y TO LINE |

-PRESS CLEAR
AND CONT

WITH CR/LF

. _ ISET SWITCH OPTIONS
(SEE TABLE 5-4)

EDITOR IS IN TYPE A AND
COMMAND MODE RETURN KEYS
TYPE SYMBOLIC
PROGRAM

!

WHEN DONE TYPE
CTRL/FORM
OR CTRL/G

CREATED e%‘??SSE."s
N COMMAND MODE

Figure 5-7 Loading the Editor and Génerating a Symbolic
Program On-Line

5-29




- GENERATING A SYMBOLIC PROGRAM OFF-LINE

The flowchart in Figure 5-8 shows how to generate a symbolic
program off-line using the LT-33 low-speed punch. This pro-
cedure is generally much slower than using the symbolic Editor,
but in some cases (such as creating extremely short programs)
may prove advantageous. Leader/trailer made up of 200 code
(rather than the blank tape produced by the HERE IS key) may
be generated off-line by pressing (in order) the SHIFT, CTRL,
REPT and @ keys and holding all down simultaneously.

{ INITIALIZE ’

TURN TTY
TO LOCAL

.| TuRN LsP ON | ‘

ITYPE HERE IS m—:ﬂ

ITYPE RUBOUT KEY

TYPE RETURN AND
LINE FEED KEYS

TYPE SYMBOLIC
PROGRAM

7 m

YES

TYPE RETURN AND
LINE FEED KEYS

[ TYPE HERE 15 KEY |

[ TURN LSP OFF J

( REMOVE TAPE )

Figure 5-8 Generating a Symbolic Program Off-Line
5-30




LOADING A SYMBOLIC TAPE USING THE EDITOR :

The flowchart in Figure 5-9 shows the user the method followed
in loading a symbolic tape using either the low-speed or high-
speed reader. The Editor will continue reading a tape until a form
feed code is encountered (see Input Commands). Upon recog-
nizing the form feed character, the Editor enters command mode
and rings the Teletype bell to indicate that it is ready to accept a

command.
CAUTION
When using the Teletype reader, if the form
feed code is encountered before the symbolic
tape has completely read in (as indicated by
the ringing of the bell), turn off the paper
tape reader. Otherwise, characters on tape
will be interpreted as commands to the Edi-
tor. The section of tape read in up to the
.form feed code should then be edited first
before proceeding with the remainder of the

~ tape.

LOAD EDITOR -—--‘-|_SEE FIGURE 5-7

HIGH- LOW=-
SPEED SPEED
SELECT OPTION SELECT OPTION
-IN TABLE 5-4 IN TABLE 5-4
TURN HSR ON : TURN TTY TO LINE
PUT TAPE IN PUT TAPE IN
HSR : _
TYPE K TYPE K
KTO CLEAR BUFFER) (To CLEAR Bu-'FER)
AND R COMMANDS

BELL

B o oM ~0 [ TvpE CTRL/FORM
b q |
TURN LSR TO OFF @

SYMBOLIC TAPE
IS _LOADED

EDITOR IS IN
COMMAND MODE

Figure 5-9 Loading a Symbolic Tape Using Editor
5-31



RESTART PROCEDURE .

If the user stops the computer for any reason, the Editor may
be restarted. The user has the option of either clearing the text
buffer or restarting so that the text in the buffer is not disturbed.

1. To clear the buffer, place 0176 in the switch register; press
ADDR LOAD, CLEAR and CONT.
To restart without clearing the buffer, set 0177 in the switch
register; press ADDR LOAD, CLEAR and CONT.

2. Set 0200 in the switch register.

3. Press ADDR, LOAD, CLEAR and CONT

The Editor is restarted and in command mode.

EDITING A SYMBOLIC TAPE

The actual editing procedure depends, of course, on a particular
user’s requirements. The general procedure is illustrated in the
example presented shortly. For input, editing, and output com-
mands to the Editor, refer to thc detailed explanation of the
command structure, command repertoire, and special characters
and functions under Operating Features, or see the corresponding
summaries of commands and special characters at the end of the
chapter. Observe also the following operating notes and precau-
tions.

1. Terminate each command to the Editor by typing the RE-
TURN key. This directs the Editor.to execute the command.

2. After a command to insert, change, or append text to a sym-
bolic program has been executed, the Editor remains in the
fext mode until the operator types the CTRL/FORM key
combination on the teletypewriter. This combination gen-
erates the form feed code, which tells the Editor to return to
command mode.

3. The Editor senses a buffer full condition (buffer capacity is
approximately 60 lines of generously commented text or 340
lines uncommented) when, after completing input of a text
line, it finds that characters have been packed in the last 128
locations in the text buffer. When this condition occurs, Edi-
tor rings the Teletype bell five times and exits to command
mode. The user then has a choice of deleting text and con-
tinuing editing as normal or attempting to input more than

5-32



200 additional characters. After each line, the buffer full
alarm will precede a return to command mode. When no
more characters can be packed, Editor will again ring five -
times and exit from the input routine. Any further attempts
to input text will be answered in the same manner until dele-
tions have been executed to make room for text input. Al-
- though characters may be received through the input device,
they probably will not be appended as text.
~If Editor runs out of buffer space while searchmg a line,
the unsearched portion of the line may be lost or the text line
counter may be incorrectly set during the buffer full exit so
that Editor thinks there is one more line of text in the buffer
than actually exists. Occurrence of the latter will cause an
error return after or during any output operation involving

the last line, (for example, an N operation will be terminated
as soon as the text buffer is punched). After the error return
the line counter will contain the correct value.

" Users should note that all such problems may be avoided
by logically segmenting a program on paper tape into
“pages” of 50 to 60 lines. This is done by punching groups
of 50 lines followed by a form feed character (see Output
Commands). i

4. The Editor may be stopped at any’ume by pressingthe HALT
key; to continue press the CONTinue key.-

PUNCHING THE CORRECTED SYMBOLIC TAPE

"The procedure for punching out the corrected symbolic tape
depends to some extent on the user’s requirements. The general
sequence is given below and in the flowchart in Figure 5-10.

1. As desired, enter output commands to punch blank tape for
leader/trailer purposes (T), form feeds (F), the appropriate
lines of text (m,nP) or the entire text buffer (P). :

2. Following the Punch command, the computer will halt, giv-
ing the user the opportunity to check the switch register (see
Table 5-4) and to turn on the appropriate punch if he has
not done so already. Punching is intiated by pressing the
CONTinue key on the programmer’s console.

5-33



NOTE o
If the low-speed punch is used, it should be
turned off during the typing of commands,
as otherwise these codes will be punched on
the symbolic tape.

3. Punching the symbolic program does not delete it from
memory. The page remains in the text buffer in core untii
the KILL command (K) is given to erase it. If it is desired
to read another tape into the buffer, the user must first de-
lete the entire page of text (K). Remember that the recom-
mended page length, as delimited by the form feed, is ap-
proximately 60 lines of heavily commented text. However,
the Editor will accept more text if necessary.

COMPLETED
SOURCE PROGRAM
S IN TEXT BUFFER

SELECT Swi SELECT SWITCH
REGISTER OPTION REGISTER OPTION
{SEE TABLE 5-4) (SEE TABLE 5-4)
SET HSP ON TYPE T COMMAND
AND TURN
LSP ON
TYPE T COMMAND ‘ R i
- AFTER LEADER
TAPE IS PUNCHED, TYPE F COMMAND
TYPE PUNCH SET LSP OFF AN}!_) QJIPCD&_I
COMMAND - ‘ SET LS
(P, nP, OR m,nP)
- TYPE PUNCH
— COMMAND SET LSP OFF
PRESS CONT | {P,nP, ORm,nP)
) - TYPE T COMMAND

T
AND TURN
LSP ON

SET LSP ON

TYPE F COMMAND
TYPE T COMMAND

AFTER TRAILER,
TURN. PUNCH OFF

REMOVE TAPE

TEXT IS PUNCHED
YES

<

TEXT IS PUNCHED

Figuré 5-10 Generating a Symbolic Tape Using Editor
. 534




Error Messages

The proper rules for giving commands must be observed during
editing, as is explained under Operating Features. If commands
are given in an incorrect format or if arguments are either missing,
erroneous, or extraneous, the Editor will respond by printing a
question mark. Notice that some commands can legitimately take
from zero to two arguments, and one takes three. In general, if an
argument is either missing or extraneous, the Editor prints ? and
ignores the command. Similarly, if a negative argument is encoun-
tered or an illegitimate command string is typed, the Editor again
responds with the error message ?. :

Example of Use )

The following detailed example of the editing of a page of text
is intended to familiarize the user with the basic operations of the
Symbolic Editor. Where details of the loading sequence and oper-
-ating procedures are not shown, it is assumed that the user has
followed the correct procedures previously explained. '

This example concerns a program for adding up numbers stored
in locations 200g through 2073 of the computer, with the answer
to be stored in location 4105 The program is to start in locatlon
600 The program listing is shown below.

7ADD UP NUMBERS

*600

BEGN, HLT . _ '

/TO START THE PROGRAM, HIT *“CONTINUE' ON THE CONSOLE
/ .

/THE NEXT FIVE INSTRUCTIONS INITIALIZE THE ROUTINE

4

CLA /CLEAR THE ACCUMULATOR
TAD M19 /LOAD AC WITH THE NUMBER -16
DCA COUNTR /PUT INTO COUNTER
TAD TWOHUN /LOAD AC WITH FIRST ADDRESS
DCA POINTR . /PUT INTO POINTER
/THE NEXT SEVEN INSTRUCTIONS ARE THE PROGRAM ITSELF
BEGN., TAD 1 POINTR /ADD NEXT NUMBER
1SZ POINTR /INDEX POINTER
I1SZ COUNTR /INDEX COUNTER, IS IT ZERO?
JMP BEGN /NO; CONTINUE ADDING
DCA I ANSWER /YES3; STORE ANSWER
HLT /HALT
JMP BEGN+1

5-35



/
/THE NEXT THREE REGISTERS CONTAIN THE CONSTANTS

M1@, -1a /NEGATIVE TALLY NUMBER
TWOHUN, 248 FIRST ADDRESS IN BUFFER
ANSWER 410 |

/

/THE NEXT TWO REGISTERS ARE RESERVED FUR VARIABLES
COUNTR, @

_POINTR, &

s

Assume that this program has been assembled using the PAL
IIT Symbolic Assembler. On pass 1, however, the assembler
printed the following:

DT BEGN AT Q646

UA ADDRES AT 4616

UA ANSWER AT 4ae6l2
BEGN 2604

UA BUFFER AT 4616
COUNTR @624

UA FIRST AT @616

UA IN AT 83616
M1O #8615
POINTR @621
TWOHUN 0616

The message DT BEGN at 0606 signifies that the programmer
has mistakenly used identical tags to specify two different ad-
dresses. An inspection of the program listing above shows that
the tag BEGN has, indeed, been duplicated. It appears in line 3 of
the listing as BEGN, HLT, then in line 14, starting with BEGN,
TAD T POINTR. (Since the line numbers are implicit only, they -
are not shown in the example; they may be obtained by counting
from the top down.)To correct the situation, the Symbolic Editor
was read in by the Binary Loader, as explained earlier under Load-
ing Sequence. The symbolic tape to be corrected was then loaded
by the Editor using the READ (R) command, and a series of

. editing commands were given.

5-36



14L
BEGN, TAD 1 POINTR /ADD NEXT NUMBER
14C ~ » |
ADDR.» TAD 1 POINTR /ADD NEXT :NUMBER -
17L
- JMP BEGN . /JNO3CONTINUE ADDING
17C
JMP ADDR /NQ; CONTINUE
13,18L
/THE NEXT SEVEN INSTRUCTIONS ARE THE .PROGRAM ITSELF
ADDR., TAD 1 POINTR /ADD NEXT NUMBER
: 1SZ POINTR /INDEX POINTER
I1SZ COUNTR ) /INDEX COUNTER, IS IT ZERO?
JMP ADDR ) /NO; CONTINUE
DCA 1 ANSWER /YES; STURE ANSWER
25L |
ANSWER 416
S .
ANSWER, 410
24L '
TWOHUN, 230 - FIRST ADDRESS IN BUFFER
24C }
'f:WOHUN: 286 . /FIRST ADDRESS IN BUFFER
'-"]JO"'QL .
M1GB, -16 "/NEGATIVE TALLY NUMBER
TWOHUN, 204a ' /FIRST ADDRESS IN BUFFER
ANSWER, 414 . ' '
/ .

~

Having made the desired corrections, the programmer finally
asks the Editor to list the entire text by giving the LIST (L) com--
mand, but still withholds the PUNCH command (P), pending
final corrections. A new program listing is printed out and the en-
tire text is preserved in the buffer. The programmer now punches
the entire text onto paper tape by giving the PUNCH (P) com-
mand and depressing CONTinue on the console. The text will be
printed as follows on the Teleprinter (by the LIST command).

5-37



/ADD UP NUMBERS

*600

BEGN,  HLT

/TO START THE PROGRAM, HIT "CONTINUE" ON THE CONSOLE
/ | | |
/THE NEXT FIVE INSTRUCTIONS INITIALIZE THE ROUTINE

CLA /CLEAR THE ACCUMULATOR
TAD Ml10 /LOAD AC WITH THE NUMBER -10
DCA COUNTR /PUT INTO COUNTER
TAD TWOHUN /LOAD AC WITH FIRST ADDRESS
DCA POINTR /PUT INTO POINTER
/
/THE NEXT SEVEN INSTRUCTIONS ARE THE PROGRAM ITSELF
ADDR., TAD I POINTR /ADD NEXT NUMBER
1SZ POINTR /INDEX POINTER
ISZ COUNTR /INDEX COUNTER, 1S IT ZERO?
JMP ADDR /NO;3 GONTINUE
DCA 1 ANSWMR - /YES; STORE ANSWER
HLT ' /HALT
JMP BEGN+!
/
/THE NEXT THREE REGISTERS CONTAIN THE CONSTANTS
M1@,» -10 /NEGATIVE TALLY NUMBER
TWOHUN, 200 /FIRST ADDRESS IN BUFFER
MISWER, 410
/

/THE NEXT TWO REGISTERS ARE RESERVED FOR VARIABLES
COUNTR., @

POINTR, @

L3

Once the program is corrected, it can be used as input to the
PAL III assembler. The pass 1 result of assembling this program
is:

ADDR 2686
ANSWER @617
BEGN a68a
COUNTR @628
Ml@ #8615

POINTR 8621
TWOHUN #6616

Summary of Symbelic Editor Operations

SPECIAL KEYS
Key Function
RETURN key Text mode—Enter the line in the text

buffer.
Command mode—FExecute the command.

5-38



CTRL/U keys

RUBOUT key

Form Feed (CTRL/FORM) Text. mode—End of input,

CTRL/G

Dot (.)

Slash (/)

LINE FEED key

ALT MODE key

or ESCape key

Right Angle Bracket (>)
Left Angle Bracket (<)

Equal Sign (=)

Colon (:)

Tabulation (CTRL/TAB)

Text mode—Cancel the entire line of
text, continue typing on next line.
Command mode—Cancel command. Ed-
itor issues a ? and carriage return/line

feed. -

Text mode—Delete from right to left one
character for each rubout typed. Does
not delete past the beginning of the
line. Is not in effect during a READ
command. -

Command mode—Same as CTRL/U.

return to
command mode. '

Text mode—FEnd of input, return to
command mode. '

Command mode—Current line counter
used as argument alorie or in combina-
tions with 4 or — and a number (as
in.,.4+5L). ,_ '

Command mode—Value equal to .num-
ber of last line in buffer. Used as argu-
ment (as in /—5,/L). :

Text mode—Used in SEARCH com-
mand to insert a CR/LF combination
into the line being searched.

Command mode—List the next line
(equivalent to .4+1L).

Command moda;List the next line
(equivalent to .41L).

Command mode—Same as ALT MODE
key. '

Command mode—L.ist the previous line
(equivalent to .—1L).

Command mode—Used in conjunction
with . and / to obtain their value
(.=27). :

Command mode—Same as ecjual sign.

Text mode—Provides a tabulation which,
on output; is interpreted as spaces or a
tab character/rubout combination de-
pending on a switch option.

5-39



SWITCH OPTIONS

Switch  Position

0 0
1

1 0
1

2 0
0

10 0
1

11 0
1

Meaning

Read input tape as is
Convert spaces to tabulations on input

Output tabulations as spaces
Output tab character rubout combination for each
tabulation >

Normal operation
Suppress output

Low-speed output
High-speed output

Low-speed input
High-speed input

COMMAND SUMMARY

Command Format(s) Meaning

READ R

APPEND A

LIST L
nL

m,nLL
PUNCH P

nP

m,nP

FORM FEED F

TRAILER T

NEXT N
nN -
KILL K

Read incoming text from reader and ap-
pend to buffer until a form feed is en-
countered. :

Append incoming text from keyboard to
any already in buffer until a form feed
is encountered. '

List the entire buffer.
List line n. -

List lines m through n inclusive.

Halt. Upon striking CONTinue key on
console, punch the entire buffer.

Halt. Upon CONTinue, punch line n.

Halt. Upon CONTinue, punch lines m
through n inclusive.

Punch trailer, punch a form feed (214),
punch trailer.

Punch four inches of trailer.

Punch the entire buffer and a form feed,
Kill the buffer and Read the next page.

Repeat the above sequences n times.
Kiill the buffer.

5-40



Command Format(S) _
DELETE D
. m,nD

INSERT T

nl
CHANGE  nC

m,nC
" MOVE m,n$kM
GET G

nG '
SEARCH S

nS

m,nS

Meaning

Delete line n of the text. _
Delete lines m through n inclusive.

Insert before line 1 all the text from the
keyboard until a form feed is entered.

Insert before line n until a form feed is
entered. :

- Delete line n, replace it with any number

of lines from the keyboard until a
form feed is entered.

Delete lines m through n, replace from °
keyboard as above until form feed is
entered.

Move lines m through n inclusive to be-
fore line k.

Get and list the next line beginning with
a tag.

Get and list the next line which begins
with a tag (starting the search with
line n).

Search the entire buffer for the character
specified (but not echoed) after the
carriage return. Allow modification -
when found.

Search line n, as above, allow modifica-
tion.

Search llnes m through n inclusive, allow
modification.

541



DEBUGGING PROGRAMS .

Dynamic Debugging Technique (DDT) and Octal Debugging
Technique (ODT) are the two debugging programs for the
PDP-8/E. Dynamic debugging programs are service programs
which allow the programmer to run his binary program. on the
computer and use the Teletype keyboard to control- program
execution, examine registers, change their contents, and make
alterations to a program.

A symbolic program can be assembled correctly and still con-
tain logical errors, i.c., errors which cause the program to do
something other than what is intended. The assetbler checks for
certain syntax errors, but not logical errors. (Syntax errors in-
clude undefined tags, misspelled tags and incorrect formats, e.g.,
omission of a required operand.) Logical errors are detected only
when the program is running on the computer.

Debugging Without DDT or ODT

If the programmer feels sure that his program is correct and
ready for use, he can simply load the program and let it run until
it stops (if it stops). And if the program doesn’t produce the cor-
rect results, the programmer without a DDT program can use the
console switches to examine specific locations one-by-one to try
to find the error(s) through interpreting the console lights. There
are two hazards to this approach. First, by the time the program
stops the error may have caused all pertinent information, in-
cluding itself, to be altered or eliminated. Second, the program
* may not stop at all; it might continue to run in an infinite loop,
and such loops are not always easy to detect.

Added to these problems are the difficulties of interpreting
binary console displays and translating them into symbolic ex-
\pressions related to the user’s program listing. Further, adding
" corrections to a program in the form of patches ( altered and
. added instructions or routines) requires seemingly endless manip-
~ ulation of the console switches. In all this, the chance of pro-
grammer error at the console is large and is likely to obscure any
real gain made from debugging.

The programmer can use the program assembly listing to men-
tally execute his program. This method is frequently used with
very short programs, very short only—human memory cannot re-
tain every step and instruction in even a fairly short program; it
cannot match a computer memory.

- 5-42

-



What is needed to conveniently and accurately debug a user
program is a service program which will assume the tasks the pro-
- grammer would have to perform if he used the console switches.
DDT and ODT are such debugging programs.

DEBUGGING WITH DDT . .

The Dynamic Debugging Technique for the PDP-8/E facilitates
program debugging by allowing the user to examine core memory
locations (registers) and change and correct their contents, place
and remove strategic halts and automatically restore and execute
the instructions replaced by the halts. Communication is-carried
out via the Teletype keyboard using defined commands and the
symbolic language of the source program or octal representation,
with DDT performing all. translation to and from. the binary rep-
resentation. ]

Tracking down a subtle error in a complex section of coding is .
a laborious and frustrating job if done by hand, but with the
breakpoint facility (explained later) of DDT, the user can inter-
rupt the operation of his program at any point and examine the
state of the program and computer. In this way, sources of trouble
can be isolated and corrected. _ _

By the time the programmer is ready to start debugging a new
program at the computer, he should have at the console:

. 1. The binary tape of the program to be debugged.
2. The symbol definition tape which was part of the assembly
output from pass 1.
3. Alist of the symbols and their definitions.
4. A complete octal/symbolic program listing. |
5. A binary tape of the DDT program, which is loaded into
core memory using the BIN-Loader.

LOADING DDT

The BIN Loader is used to load DDT and the ob]ect program '
(program to be debugged) into core. Refer to Figure 5-3 for the
procedure used in loading BIN, and Figure 5-4 for details con-
cerning using BIN to load binary format programs.

DDT requires locations 0004 and 5237-7577 (23415 loca-
tions). The permanent symbol table requires locations 5000-5237,
and the external symbol table is allotted locations 3030-5000
(250 symbol capacity). The starting address is 5400.

5-43



The flowchart in Figure 5-11 presents the basic loading pro-
cedure for both DDT and the binary tape of the program to be
debugged. '

LOAD OBJECT }
PROGRAM

:

LOAD ODT — - - -» SEE FIGURE 5-4

SET SR=5400
PRESS ADDR LOAD

'

PRESS CLEAR
AND CONTINUE

————— SEE FIGURE 5-4

NO YES_/DDT AND OBJECT
TAPE ARE LOADED

Figure 5-11 Loading DDT and Object Program

The following are now in core memory:

1. The DDT program, which occupies upper memory between
registers 5240 and 7577, inclusive.

2. The user’s program(s) which must not overlap the area oc-
cupied by DDT or its permanent symbol table.

3. A table of symbol definitions, extending downward from lo-
cation 5237 to 5004. This table includes the definitions for
all of the PDP-8 memory reference instructions, operate in-
structions, ten basic IOT instructions, and the combined
operations CIA and LAS.

Symbol Table Tapes

Part of the punched output of a MACRO-8 or PAL assembly
may be a tape containing the symbol definitions of the assembled
program The definitions from a symbol tape are entered into

5-44



the DDT external symbol table by the procedure outlined in Fig-
ure 5-12. Only the LT-33 reader may be used.

Reading will continue until the end of the tape is reached or
until a total of 250 symbol definitions have been read. If this
'maximum limit is reached, no further symbols may be added to
the table until some have been deleted, even if the limit is reached
in the middle of a tape. However, the user may proceed with de-
bugging by typing EOT (CTRL/D), then turning the reader off
and pressing CONTinue. The remaining symbols left unread will
not be in the table. ‘

(TURN TTYTO LINE)
y

UT SYMBOL TABLE
[TAPE IN LSR WITH

LEADER/TRAILER
OVER READ HEAD
TYPE ALT MODE |
AND THEN RKEYS [ '[ TYPE LR l

[seT LsrTO sTART |

TAPE

RELOAD DDT AND READS IN

OBJECT TAPE

[ TapesTOPS |

[ seT Lsr 70 FREE |

l DEPRESS CONT ]

OCTAL ADDRESS SET SRBIT O
TYPED IS LOWER | °
LIMIT OF
EXTERNAL SYMBOL
TABLE

MORE
TAPES
?

EXTERNAL
SYMBOL TABLE
LOADED

Figure 5-12 Loading External Symbol Table Tapes (LSR Only)
5-45



DEFINING NEW SYMBOLS

Often, during the course of a debugging run, the user will want
to add new symbols to the external table. This is especially so
when he adds a sequence of instructions to his program as a patch
elsewhere in memory. The patch is usually identified by a symbol
which is the address tag of the first instruction in the patch. In
order to use the symbol in subsequent debugging operations, he
must add its definition to the external table as explained in the
following flowchart: :

WITH DDT-8 IN
COMMAND MODE

LOAD EXTERNAL
SYMBOL TABLE

L - -—r SEE FIGURE 5-12

rSET SR=1400 J

[ rvee R |

TYPE RETURN AND
LINE FEED KEYS

{TYPE NEW smaoﬂ

TYPE { OR MORE
SPACES

|

TYPE OCTAL VALUE
OF DEFINITION OF

SYMBOL

MORE
SYMBOLS
.

[TYPE RETURN AND
LINE FEED KEYS

pre EOT (cmuo)]

| eress cont |

!

ADDRESS TYPED IS
LOWER LIMIT OF
EXTERNAL SYMBOL
TABLE

NEW SYMBOLS
ARE ENTERED

Figure 5-13 Appending New Symbols to External Symbol Table
5-46




For example: To define the symbols PATCH1 and PATCH?2,
the operations will appear  as follows (Assume that the current
hm1t of the table 1s 4775):

(CR/LF) |

PATCH1 610 (CR/LF)
PATCHZ2 628 (CR/LF) _
) (EOT)

: (Press CONTinue)
4665 - (new limit of the table)

If the user makes an error while typing a definition, he cannot
use < to eliminate the information. The erroneous definition must
be entered. ,

A symbol already in the table may not be redefined. Only new
symbols can be added. :

: NOTE
Extra carriage return/line feed pairs may
not be inserted between definitions; they
will causeerrors in subsequent table lookups
when DDT is operating. |

A new or updated symbol tape may be created off-line using
the method described in Figure 5- 8 in the section concerning the
Symbolic Editor.

To completely expunge the external symbol table (for instance,
when starting a new debugging run w1th DDT already in memory),
the following command is used:

X

On receipt of this command, DDT removes all definitions in the
external table, types a carriage return and line feed, and prints the
new lower limit of the (now empty) external symbol table. DDT
is then ready to.accept another command. The permanent table is
unaffected. :

5-47



Storage Requirements

The operating portion of DDT occupies storage in upper mem-
ory from location 5240 to location 7577, inclusive. The permanent
symbol table extends downward in memory from location 5237 to
location 5004, inclusive. This table contains the definitions of the
mnemonics for all the basic memory reference instructions, the
operate class instructions of both Group 1 and Group 2, the com-
bined instruction CIA and LAS, the symbol I for indirect address-
ing, and the basic IOT instructions: KCC, KRS, KRB, KSF, TSF,
TCF, TPC, TLS, ION, and IOF. There is a list of all the symbols
and definitions in the permanent table at the end of this section
on DDT.

Space is reserved for the user’s symbol table immediately below
the permanent table. A maximum of 250 such external symbols
is allowed; hence if the user’s table is filled, the lower limit of
space occupied by DDT is 3030. However, space not used for ex-
ternal symbols is available to the user. Each new symbel defined
on-line uses locations in the external table.

During operation, DDT uses location 4 on page 0 for the break-
point link; thus this register is not available to the user.

Definitions

A symbol is a string of up to six letters and numerals, the first
of which must be a letter. The following are legal symbols:
FIMAGE, K2, X464PQ, PMLA. The following are not accept-
able: | |

4WD Does not begin with a letter

F2.8 Contains an illegal character

AN PRC A space cannot be imbedded in a symbol
GANDALF More than six characters

A number is a string of up to four octal digits (integers).
Hence, a number may have a maximum value of 7777s. The digits
8 and 9, however, may be used only as characters in a symbol.

An expression is a symbol, an integer, or a sequence of symbols
and integers separated by any of the following operators:

+ An operator designating addition (arithmetic plus).
— An operator designating subtraction (arithmetic minus).
5-48



space . An operator which indicates that the remainder of the
: - expression is to be: treated as the address part of an in-
~ struction

All other characters, except those for DDT control commands,
are illegal.

If two or more spaces appear in succession, all but the first are
ignored. Thus, TAD TEM and TAD TEM are identical expres-
‘sions.

DDT will respond to an extra carriage return (CR) with a car-
riage return/line feed combination (CR/LF) the extra CR’s are
otherwise ignored.

The following errors will cause DDT to prlnt a question mark
(‘7) and ignore all the information typed between the point of the
error and the previous tab or CR.

1. Undefined symbol; illegal symbol.
2. Illegal character.
3. Undefined control command.

" 4. Cross-page addressing.

Mode Control
Any expression containing a symbol is symbolic; an expression
containing only integers is octal. The programmer is free to use
whichever mode of DDT is most convenient for the information he
is typing. On output, DDT will print exclusively in one mode or
~ the other, as determined by one of the commands described below.

NOTE
When DDT is first set into operation, the
output mode is symbolic. “[” corresponds
to typing the ALT MODE (or ESC) key.

Command , Meaning

[O This command causes DDT to print any subsequent
' item of information as an octal integer. Typed input
may be symbolic or octal. If LOC = 2642 then the
following commands will both print the same answer:

LOC/1263
264271263

5-49



[S This command causes DDT to print any subsequent
item of information-as a symbolic expression. Typed
input may be symbolic or octal. If LOC = 2642 and
the contents of LOC = TAD DATA+4, then:

LOC/TAD DATA+08084
2642/TAD DATA+2884

If the user wishes to find the octal value of a symbolic expres-
sion typed by himself or by DDT without changing the output
"mode, he may use the following command:

= Typed immediately after a symbolic expression, this
will cause DDT to print the value of the expression
as an octal integer. For example:

LOC=2642
LOC/TAD DATA+@884 =1263

In the second example above, the prevailing output -
mode is symbolic and remains so after the use of the
equal sign.

OUTPUT

When operating in symbolic mode, DDT will always attempt.
to make a symbolic expression out of the contents of an opened
register, regardless of whether the contents are intended to.be such
or not. For example, if register DATA contains the number 6115,
opening the register will result in the following line:

DATA/10T+@8115

The user can use the equal sign to ascertain the octal value: -

DATA/10T+06115 =6115

Program Examination and Modification

The commands and operations in Table 5-9 allow the user to
examine and change the contents of any register in the PDP-8/E
core memory.

3-50



‘NOTE

Be careful not to-open and modify any reg-
ister within the DDT symbol table or pro-
gram itself. DDT does not protect itself
against such intrusions, which will inevitably
cause errors in operation. .

Table 5-9 DDT Commands

Command

Meaning

carriage return
(CR)

line feed
(LF)

This is the register examination character. Typed
immediately after an expression, it causes DDT
to print the contents of the register whose address
is specified by that expression. For example, if
the user types: ’ '

LOC/

DDT will type out the contents of LOC, thus:

LOC/TAD DATA+3d034

The user may now change the contents of the
register if he wishes:

LOC/TAD DATA+@38d4 JMP LOC+12

This causes DDT to close the opened register
after making the specified changes (if any) in its-
contents. For example:

LOC/TAD DATA+3804 JMP LOC+1@

Typing additional CR’s will have no effect on the
operation of DDT.

If, after examining and/or modifying the con-
tents of a location, the user wishes to open the
next sequence location, he types a line feed in- -
stead of a CR. The open register is closed, and
DDT then opens the next location, printing the

5-51



"Table 5-9 DDT Commands (Cont.)

Command

Meaning

4+ (up arrow)

address, a back slash to indicate that the register
was not opened by the user, the contents of the
new register, and another five spaces. For exam-
ple, assume that after examining and changing the
contents of LOC, the user wishes to examine
the contents of LOC+1: ~

LOC/TAD DATA+3884 Jamp Loc+1e (LF)
LOC+1/DCA DATA

~ The register LOC+1 is now open.

Line feed may be used at any time, even if the
last location examined has been closed or if other
operations have intervened. For example, if the
following sequence of operations occurs:

LOC/TAD DATA+@3@34 JMP . +10
(o
«+S(B (LF)

DDT will still open register LOC+1. The break-
point address (explained shortly) has no effect
on the counter within DDT which keeps track of
the last opened register. ‘

If instead of changing the contents of a register,
the user wishes to examine the register addressed

" by those contents, he types 1, as follows:

LOC/TAD DATA+@034

-~ DATA+4/0PR+337

The register DATA+-4 is now open. .

Note that this operation is intended for use with
unmodified locations. If the user types it-after
typing some modifying information, the location

addressed will be the one which is changed. For

“example, if the following sequence occurs:

LOC/TAD DATA+@@d4 JMP LOC+1@?

the information will be placed in DATA-+4, so
that the 'next line, printed by DDT, will look like
this:

DATA+4\JMP LOC+04190

5-52



Table 5-9 DDT Commands (Cont.)

Command Meaning

The register LOC will not be changed.
An indirect address modifier will not be inter-
rupted by the 1 operation. If, for example, the
register LOC contained TAD I DATA+4, and
the user typed 1 as in the previous example, DDT
would still open the register DATA-4.

(dot) The dot is used as a symbol whose value is the
address of the last previous register opened, and
can be used in several ways:

1. To check the results of a mbdiﬁcation.

LOC/TAD DATA+20034 JMP LOC+19
«/JMP LOC+80210- . :

2. To refer to the currently open register.

LOC/TAD DATA+3304 JMP .+10

3. To execute any command stafting at an ad-
dress relative to the last opened register.

LOC/TAD DATA+33G34 . JMP .+10
C-SEG

< (back arrow) | An error may be deleted by typing a back arrow.
. All information between the < and the previous
N tab or CR is ignored; DDT responds by printing
a tab. For example:

LOC/TAD DATA+6d34 JMP LC+ JMP .+140

CROSS-PAGE ADDRESSES .

When the user types an instruction to be p{aced in an open
register, the address of that instruction must be in the same page

as the address which contains the open register. If such a cross-
page address is attempted, DDT will signal an error by typing ?
and will ignore the information. For example: if LOC = 2642 and
XPAG = 2770, the following sequence would result in an error
indication:

LOC/TAD DATA+0d04 DCA XPAG+20
? .

5-53



The expression XPAG+20 is equal to 3010, which is outside
the page containing LOC. The location LOC will be closed with-
out modification.

Conversely, an expression containing symbols defined- outside
the page is acceptable if its value is in the current page. For ex-
ample if LOC = 2642 and XPAG = 3010, the following sequence
is acceptable, since XPAG — 20 has a value which brings it within
the current page: ‘

LOC/TAD DATA+0604 DCA X?AG-2@

USING COMBINED OPERATE OR IOT INSTRUCTIONS

Except for CIA and LAS, combined Operate and IOT instruc-
tions are not. defined in the DDT permanent symbol table. To.
enter such instructions into an open register, the combination must
contain no more than two mnemonics, the second of which must
be CLA. Any other combination will be treated as an error, and
the information will be ignored. For example, the following at-
tempt is an error:

XPAG/CLA CLA CMA
?

This attempt is correct:

XPAG/CLA cMA CLA

If the desired combination does not include CLA, the user may
do one of two things. He can define the combined operation as a
new symbol whose value is the combined operation code. For ex-
ample, the operation CLL RAR can be defined as a symbol, say,
CLAR, whose value is 7110.

Alternatively, the user may enter the combined operation as an
expression containing the symbol OPR. For example, the opera-

tion CLL RAR can be entered as OPR+110. The user may sim-
ilarly use the symbol IOT in entering new I/O combinations.

SPECIAL LOCATIONS

There are five registers within DDT which hold information of
interest to the user. These registers may be opened and their con-
tents changed.

5-54



To open any of. the following special locations, type the ALT
MODE (or ESCape) key followed by the name of the location.
DDT: will print a backslash-(\J followed by the contents of the
“special location. The contents may be altered at this point in the
same way as any ordinary location.

Location Meaning
A When a breakpoint is encountered, the. contents. of the
accumulator, C(AC), at that point are placed in this
register. - '

Y When a breakpoint is encountered, the C(L), where L-
means the link bit, at that point are placed in: this reg-
ister. . ' :

L | This register contains the address of the lower limit of
a word search. Initially, C(L) = 0001.

U This register contains the address of the upper limit of
a word search. Initially, C(U) = 5000. '

M This register contains the mask used in a word search.
Initially, C(M) = 7777.

The use of these registers is explained in the following pages.

Prdgram Execution and Control _
The commands described in Table 5-10 allow the user to control
the exgcution of his program. :

Table 5-10 DDT Execution Commands

Command Meaning

-

k[G This command causes DDT to begin the execution of
the user’s program, starting with the instruction in the
register whose address is specified by the expression k.
If a breakpoint (see below) has been requested, it is
inserted just before control is passed to the user’s pro-
gram. For example, if the user types: )

BGINLG

5-55



Table 5-10 (Cont.) DDT Execution Commands

Command .

Meaning

' k[B

DDT will transfer control to location BGIN. Likewise:

FILI-S(G

will cause the user’s program to start in the fifth regis-
. . ter preceding the one labeled FILI.

Using [G without an argument is an error. DDT will
ignore the command, and type ? to indicate the mistake.

~ This causes DDT to insert a breakpoint at the location

specified by the expression k. The breakpoint is not
placed immediately, however. When this command is
typed, DDT stores the value of the address indicated by
k. Then, when the user next types either a [G or a [C
(see below) command, the breakpoint is placed just
before control passes to the user’s program. At that

- time the sequence of operations performed by DDT is

as follows:

1. The contents of location k are saved in a special
register.

2. In place of the instruction in location k, DDT sub-

- stitutes the instruction, JMP I 4. Location 4 con-

tains the address of a special breakpoint handling
subroutine within DDT.

3. After the breakpoint has been placed, DDT passes
control to the user’s program.

When, during execution, the user’s program encoun-
ters the location containing the breakpoint, control is
immediately passed (via location 4) to the breakpoint
subroutine in DDT. The C(AC) and C(L) at the point
of the interruption are saved in the special registers A

and Y, respectively. DDT then prints out the address

of the register containing the breakpoint, followed by a
right parenthesis and the contents of A as an octal num-
ber. Control has now returned to DDT, and the user is
free to examine and modify his program.

Only one breakpoint may be in effect at one time. As
soon as the user requests a new breakpoint usmg the B
command, any previous existing breakpoint is removed.
To eliminate the breakpomt entirely, the command is
typed without an argument, thus:

[B.
5-56



Table 5-10 (Cont.) DDT Execution Commands

Command

Meaning

When the breakpoint is removed, the original contents
of the break location are restored.

After the breakpoint has occurred and the user has ‘
examined his program and made the changes he wishes,
he can cause his program to continue from the point of
the break by means of the following command:

[C This continue command causes DDT first to execute the

“instruction which was originally in the break location,
and then pass control to the next location in the user’s
program. The breakpoint remains in effect.

The following exémple illustrates the use of the three commands
just described. Explanations are to the right of the commands.

FILI+7(B

BGINLG
FILI+@887)7721

{c

‘Breakpoint inserted at location FILI+7.

Program execution is initiated at BGIN; pro-
gram runs until breakpoint location is encoun-
tered.

DDT prints the address of the break location
and the contents of the AC at the time of the
break; note that location FILI+7is not opened.

The user performs such examlnatlon and mod-

ification as he desires.

The user’s program- continues, beginning with
the execution of the instruction originally in
FILI+7; the breakpoint remains in effect.

Often the user would like to place a breakpoint at a location
within a loop in his program. Since loops can run to thousands of
repetitions, some means must be available to prevent a break from
occurring every time the location is encountered. This is done
using the [C command; after the breakpoint is encountered the
first time, the user can specify how many times the loop must be
executed before another break is to occur, as follows: After the

5-57



first breakpoint occurfence, the user wishes to wait for 2505 repe-
titions before the next break.

FILI+7(B The breakpoint is inserted.

BGINIG User program execution begins.

-

FiLi+8@@7>7721 The first breakpoint occurs.

250(¢C The program continues; the next breakpoint
will not occur until the location FILI+7 has
been encountered 250 times.

FIL1+8087>2534 The next break occurs after 250 times through
the loop.

RESTRICTIONS ON USE OF BREAKPOINTS
The user must not place a breakpoint at any of the following
places in his program:

1. Within any section of the program which operates with the
program interrupt enabled.

2. At any location that contains an instruction which is modi-
fied during the course of the program. For example, the pro-
gram contains a sequence which includes the following in-

structions:
1Sz B
B, TAD A

A breakpoint may not be inserted at location B.

When the user’s program comes to a halt, control may be
returned to DDT by setting the switch register to 5400 and
pressing ADDR LOAD, CLEAR and CONTinue.

3. In a location containing a subroutine jump (JMS) which is
followed by one or more arguments for that subroutine.

A breakpoint may.be inserted at the point of a subroutine call
if the JMS instruction is not followed by any subroutine argu-
ments, but the breakpoint may not be removed until control has
returned from the subroutine to the calling program.

WORD SEARCHES

The searching operations are used to determine if a given quan-
tity is present in any of the locations of a particular seetion of
memory. The search is. initiated by the following command:

5-58



" Command , Meaning

k[W DDT will perform a word search and print the ad-
dress and contents of every register in the desired
section of memory whose contents are equal to the
value of the expression k. If the expression k is
omitted, a search for the quantity 0000 masked by
C(M) is assumed.

The conditions for any search are set by the following criteria:

1. The contents of every location searched are masked by the
contents of the special register M, using the Boolean AND
operation. The resulting logical product is then compared
with the value of k. If the two quantities are identical, the
address and contents of the examined location are printed
at the Teletype.

2. The search is conducted over that section of memory whose
‘lower limit is given by C(L), and whose upper limit is given
by C(U), except for the special case described in the next
paragraph.

3. If C(M) = 7777 and the expression k contains any symbol
in its address part (for instance, ISZ FILI+5; FILI is the
symbol), the search will be conducted only on the page for
which that symbol is defined, regardless of the search limits
specified by C(L) and C(U). For any other case, including
that where the address tag of k is defined for page O, the
search is conducted according to the limits set.

A search never alters the contents of any location examined.

Addresses and location contents are printed as symbolic ex-
pressions or octal integers, according to the mode at the time of
the search.

5-59



. For example : Search locations 2000 to 4000 for all occur-
rences of an ISZ instruction.

(L\GBa1 2000
[U\S289 40300
(M\7777 7082
ISZIw

The addresses rather than tags are printed when symbols are not
defined.

2082\1SZ 2135
2053\1SZ 2135
2111N\1SZ @217

The search will continue until all registers containing an ISZ are
found. Note that the setting of the mask limits the investigation to
the first three bits of each register, so that only instruction codes
are considered.

Third example: Obtain a dump of any section of memory. The
search is conducted between the limits set, and the addresses and
contents of all registers in the searched section are printed.

(L\G@a3} 2608
LUN5865 3029
LMNT7T777 a

w .
2603\0009
2681\CLA

2602\TAD 2610

" The search will continue to the specified limit, printing the con-
tents of every register. Note the following points: The mask is set
to O to insure that results of every comparison are the same, i.e.,
0. The search is conducted for all registers containing 0, so that
the results of each comparison are equal to the desired quantity, 0.
Always remember that the contents of the registers themselves are
not altered.

5-60



- PUNCHING BINARY TAPES

After making the desired corrections and changes, the user may
punch out a new binary tape of his program. This allows the de-
bugged program to be used immediately, without waiting for the
programmer to incorporate the corrections in the source program
and then reassemble the program. The punching procedure given
in Figure 5-14 may be used for either the Teletype console punch
.or the optional high-speed punch.

The punching procedure uses the fo]l.owin'g' commands:

Command Meaning
[T This command is used to obtain a segment of leader-
trailer.

a;b[P This command causes DDT to punch a block of -
binary tape with the information contained in the
section of core memory designated by the expres-
sions a (lower limit) and & (upper limit), inclusive.
a and b may be any kind of acceptable terms (refer
to Definitions at the beginning of this section).

[E This command is used at the end of puﬂchiﬁg opera-
- tions and causes DDT to punch a checksum block,
followed by a length of trailer tape.

NOTE

The user should not try to punch the section
‘of memory between 5000 and 7600 which
contains DDF. ‘ .

If the user wishes to restart DDT before he has punched a com-
plete tape (i.e., between data blocks) he must set the console
switches to 5401 to preserve the checksum. Subsequent restarts
must also be set to 5401 until the checksum block has been
punched.

At any other time DDT may be restarted at locatlon 5400

- 5-61



sersaenorooJ

!
[ TuRN HSP ON |
!

TYPE [T

!

PRESS CONT

{

. WHEN PUNCHING
—d 1S COMPLETED,
TYPE a;b[P

!
[ press conT B

PUNCH
MORE BLOCKS

YES

TYPE [E

[ PRESS CONT [

!
WHEN PUNCHING

o D

1S COMPLETED, '
REMOVE TAPE }

SET SR BIT 0 TO §

r TURN LSP OFF J |

r TYPE €T
R
TURN LSP ON
& s
F PRESS CONTJ
'

WHEN PUNCHING
1S COMPLETED,
TURN LSP OFF

'

TYPE a;b(P Y

1

TURN LSP ON

1
| eress cont B

\

WHEN PUNCHING
1S COMPLETED,
TURN LSP OFF

PUNCH
MORE BLOCKS

TYPE CE J

!

[ Turnispon |

!

e PRESS CONT J

Figure 5-14 Punching Binary Tapes (DDT)



Example Program Debugged

' The following is the third pass assembly listing of a program
which adds five numbers and stores their result in the variable
SUM. The programmer writes and assembles such a program (or
one more complex), then loads the binary program into core along
with DDT and the symbol table which was the output of assembly
pass 1. - :

*200
2200 7200 COMPSM> CLA /INITIALIZE LOOP
@201 1213 _ TAD N
@202 3215 DCA INDEX
@203 1214 TAD ADDR
9284 3225 DCA POINTER
@205 3216 DCA SUM /SET SUM TO ZERO
8206 1625 LOOP,» TAD I POINTR /ADD THE INTERGERS
8207 2215 ) 1SZ INDEX /1S LOOP FINISHED
0210 5206 "~ JMP LOOP /NO
@211 3216 DCA SUM
@212 7402 u "HLT . /YES
@213 77173 N> - -5 ' /MINUS NR OF INTEGERS
@214 0216 ADDR,  LIST-1 /ADDRESS OF LIST
@215 0000 INDEX> © /COUNTER FOR LOOP
0216 00O SUM> 0 /RESULT GOES HERE
2217 0001 LIST, 1 /LIST OF NUMBERS
0220 0002 2
9221 0003 3
0222 0084 4
@223 0005 5
@224 0017 17 :
@225 0008 . POINTR, O © /AUTO INDEX POINTER

/TO LIST

In order to have DDT read in the symbol table, the programmer
typed the ALT MODE and R keys (which echo as [R). DDT
echoes the symbol table as shown below, following which it prints
the address of the lowest memory location which is occupied by a
symbol definition. The programmer is now ready to begin debug-
ging the program. | |
(R
ADDR @214

COMPSM 0200
INDEX 2215

LIST 2217
LOOP R206
N 2213
POINTR 0225
SUM g216
4750

5-63



The user notices at this point that POINTR was stored in loca-
tion 225 instead of location 17, the * was left out where word 224

presently is. To correct this, the interaction with the computer
looks as follows:

LOOP/TAD 1 POINR - TAD I 17
«/TAD 1 @17

«-2/DCA POINTR DCA 17
LOOP+1(B
COMP SML G
LOOP+3031 0001
(c
LOOP+200110803
(c
LOOP+00021 10008 6
[c
LOOP+20Q1)0212
N-1(B

“fc
[LOOP+0003 40000

SUM/AND 281~ =0817

The user typed:

LOOP/

to which DDT returned the symbolic contents of the location
labeled LOOP. The user changed POINTR to 17 and closed the
location with the RETURN key. To check that the change had
been made, the user typed:

o/
where the dot indicates the current location, the slash (as above)

allows the user to investigate the contents of the location. Since the
contents were recorded, the user typed:

=2

which refers to location 204 on the octal/symbolic listing. POINTR
is changed to 17 in this instruction as well.

The user then inserts a breakpoint at location 207 on the listing
(addressed by indicating LOOP+1). To begin execution of the
program the user types:

COMPSM(L G

5-64



COMPSM is the starting address of the program. [G is the com-
mand to' DDT which says to transfer control to that locatlon
DDT prints:

LOOP+00661)>0081

When the breakpoint occurs, DDT saves the contents ‘of the AC
It then prints the address of the breakpoint, a right parenthesis,
" and the saved contents of the AC. The programmer sees that this
is the correct value after the first time through the loop, so he
issues the command [C which causes the program to cycle through
the loop until it encounters the breakpoint again. Each time the
user verifies the contents of the AC and has the program continue
executing. Rather than check every cycle through the loop ‘(which
in this case is short, but might be very long), the user moves the
breakpoint to the HLT instruction. The contents of the AC at that
point was zero, which is not important.

~ To check the value of SUM upon program completlon the user.

types:
suM/

and the computer returns what it attempts to express as a symbohc
instruction. When the user types the equal sign (=), DDT returns
the value of the symbolic instruction in octal.

This debugging session was very simple; the error was obvious.
This is seldom the case, and with long or complex programs sev-
eral debugging runs may be required. Being able to debug a pro-
gram using symbohc expressions shortens the time required to
arrive at a correct, workable program.

Command Summary

" Command Action
space Sepafation character.
+ . Arithmetic plus.

—_ Arithmetic minus.

/ " Location examination character. When it follows the
address location, it causes the reglster to be opened
and its contents printed.

- 5-65



carriage return  Make modifications, if any, and close location.

line feed

N[W
k[B
nl[C

k[G

Command

[R

[T
a;b[P

[E

Make modifications, if any, close location, and open
next sequential location. ’

When it immediately follows a location printout, it
causes the location addressed therein to be opened.

Type last quantity as an octal integer.
Current location.

Delete the line currently being typed.
Sets DDT to print in symbolic mode.
Sets DDT to print in octal mode.

Word search for all occurrences of the expression N
masked with C(M).

Insert a breakpoint at the location specified by k. If
no address is specified, remove any breakpoint.

Continue from a breakpoint n times automatically.
I n is absent, it is assumed to be 1.

Go to the location specified by k.

Action

Read symbol table into external symbol table or define
symbols on line.

Punch leader-trailer code.

Punch binary tape from memory bounded by the ad-
dresses a and b,

Punch end of tape: checksum and trailer.

The following commands will open certain locations in DDT
whose contents are available to the user.

Command

[A
[Y
[M
[L
v

Word Opened

Accumulator storage (at breakpoints).

Link storage (at breakpoints).

| Mask used in search.

Lower limit of search.

Upper limit of search.

5-66



Internal Symbol Table - -

AND = 0 - CMA = 17040
TAD = 1000 - ’ - CML = 7020
ISZ = 2000 - RAR = 7010.
DCA = 3000 RAL = 7004
IMS = 4000 ‘ - RTR. = 7012
JMP = 5000 _ RTL . = 7006
10T = 6000 IAC = 7001 -
OPR = 7000 - SMA = 7500
CLA = 7200 SZA = 7440
KCC = 6032 - SPA = 17510
KRS = 6034 SNA = 7450
KRB = 6036 SNL = 7420
TSF = 6041 ’ SZLL. = 7430
TCE = 6042 SKP = 7410
TPC = 6044 > OSR = 7404
TLS = 6046 HLT = 7402
ION = 6001 CIA = 7041
1I0OF = 6002 , LAS = 7604
KSF = 6031 I = 400
CLL = .

7100

5-67



DEBUGGING WITH ODT

The Octal Debugging Technique is a debugging program which
facilitates communication with and alteration of the object pro-
gram. Communication is directed from the Teletype keyboard
using octal numbers. ODT has the same capabilities as DDT ex-
cept that the programmer must reference his program. using its
- octal representation instead of mnemonic symbols, and ODT com-
mands are formulated differently.

ODT occupies 6005 consecutive locations and one location on
page zero, and can be loaded into either lower (starting address
1000) or upper (starting address 7000) core memory, depending
on where the user’s program resides. That is, if the user program
resides. in the first few pages of memory, then ODT should be
loaded in the upper pages of memory, and vice versa. As with
DDT, the user program cannot occupy (overlay) any location
used by ODT, including the breakpoint location (location 0004 on
page zero). The programmer will probabiy discover ODT to be
more useful and convenient than DDT once he has adjusted to the
octal notation.

Features

ODT features include location examination and modification;
binary punching (to the Teletype or high-speed punch) of user
designated blocks of memory; octal core dumps to the Teletype
using the word search mechanism, as in DDT; and instruction
breakpoints to return control to ODT (breakpoints). ODT makes
no use of the program interrupt facility and will not operate out-
side of the core memory bank in which it is reading.

The breakpoint is one of ODT’s most useful features. When de-
bugging a program, it is often desirable to allow the program to
run normally up to a predetermined point, at which the pro-
grammer may examine and possibly modify the contents of the ac-
cumulator (AC), the link (L), or various instructions or storage
locations within his program, depending on the results he finds.
To accomplish this, ODT acts as a monitor to the ser program.

The user decides how far he wishes the program to run and
ODT inserts an instruction in the user’s program which, when en-
countered, causes control to transfer back to ODT. ODT imme-
diately preserves in designated storage locations the contents of
the AC and L at the break. It then prints out the location at which

5-68



the break occurred, as well as the contents of the AC at that point.
ODT will then allow examination and modification of any location
of the user’s program (or those locations containing the AC and
L). The user may also move the breakpoint, and request that ODT
continue running his program. This will cause ODT to restore the
AC and L, execute the trapped instruction and continue in the
user’s program until the breakpoint is again encountered or the
program is terminated normally.

Using ODT -
When the programmer is ready to start debugging a new pro-
gram at the computer, he should have at the console:

1. The binary tape of the new program.
2. A complete octal/ symbolic program listing.
3. A binary tape of the ODT program (either high or low
version). ‘

To begin the debugging run, first be sure that the BIN Loader is
in core memory, then load the ODT binary tape followed by the
binary tape of the user program (see Figures 5-3 and .5-4 for a
. description of loading procedures with the BIN Loader). -

Operation and Storage
STORAGE REQUIREMENTS
ODT can be run in a standard 4K PDP-8 series computer and
requires 600 (octal) consecutive core locations and one location
(0004) on page zero.As distributed by the Software Distribution
Center, it resides in memory between 7000 and 7577 (1000 and
1577 for the low version). ODT is page-relocatable. |
The source tape can be re-origined to the start of -any memory
page except page zero and assembled to reside in the three pages

following that location, assuming they are all in the same memory
bank. ' ,

- ODT uses location 4 on page zero as an intercom location be-
tween itself and the user’s program when executing a breakpoint.
If the user wishes to change the location of the intercom word, he
may do so by changing the value of ZPAT in the source and re-
~assembling. The intercom location must remain on page zero.

- 5-69



LOADING AND CALLING PROCEDURES
The user should nete that ODT cannot be called as a subroutine.
ODT is normally distributed as a binary tape with the source
listing available on request from the DEC Software Distribution Cent--
er and is loaded with the BIN Loader as described in Figure 5-15.
Load the binary tape of the program to be debugged in the same
manner as ODT was loaded. Be sure the two do not overlap.

STARTING PROCEDURE FOR ODT

The starting address of ODT is the address of the symbol
START. For standard library versions the high version starts at
7000 and the low at 1000.

Set the starting address in the switch register. Press ADDRess
LOAD, CLEAR and CONTinue. ODT will issue a carriage return
and line feed to indicate that it is now running and awaiting com-
mands from the keyboard.

To restart ODT without clearing the checksum, set the address
of START + 1 {7001 high version or 1001 low version) into
the switch regxster and press ADDRess LOAD, CLEAR and
- CONTinue on the computer console.

(' oap BIN )------[sssncuns 5-3

LOAD OB;:S‘CT i ---{7—:5 FIGURE 5-4

o] . N
«  LoaD 00T 1 »f see FiGURE 5-4

[ st SR=7000 | ' [seT sR=1000 - l
. B!
[PreSS ADOR LoAD |
PRESS CLEAR
AND CONTINUE

00T 1S LOADED

Figure 5-15 Loading ODT and the Object Tape
5-70



Commands
SPECIAL CHARACTERS ;
Slash(/ )—Open Preceding Location " : 4
The location examination character (/) causes the location ad-
dressed by the octal number preceding the slash to be opened and
its contents printed in octal. The open location can then be mod-
ified by typing the desired octal number and closing the -location.
Any octal number from 1 to 4 digits in length is legal input.
‘Typing a fifth digit is an error and will cause the entire modifica-
tion to be ignored and a question mark to be printed by ODT.
Typing / with no preceding argument causes the latest named loca-
tion to be opened (agam) Typing 0/ is interpreted as / with no
argument. For example:
4080/6046
400/6846 2468?
408B/6846 123457
/6046
Return—Close Location
If the use has typed a valid octal number after the content of a
1ocat10n is printed by ODT, typing the RETURN key causes the
binary value of that number to replace the original contents of the
opened location and the location to be closed. If nothing has been
typed by the user, the location is closed but the-content of the
location is not changed. For example:

48@/6046 location 400 is unchanged.

408/6846 2345 . . . .

/2345 6846 location 400 is changed to contain 2345.
replace 6046 in location 400.

Typing another command will also close an opened register. For
example:

408/6846 481/6831 2346
48076046 421/2346  140ation 400 is closed and unchanged and
401 is opened and changed to 2346.

- LineF eed—Close Location, Open Nex; Location

The LINE FEED key has the same effect as the RETURN key,
but, in addition, the next sequential location is opened and its con-
tents printed. For example:

3-71



400760846 location 400 is closed unchanged and 401 is
g“:g é ; gggi 1234 opened. User types change, 401 is closed
containing 1234 and 402 is opened.

A(Shift/N )—Close Location, Take Contents as Memory Reference
and Open Same

The up arrow will close an open location just as will the RE-
TURN key. Further, it will interpret the contents of the location as
a memory reference instruction, open the location referenced and
print its contents. For example:

464/3270 1 3270 symbolically is “DCA, this page,
8476 /0212 0889 relative location 70,” so ODT opens loca-
tion 470.

«(Shift/0) Close Location, Open Indirectly

The back arrow will also close the currently open location and
then interpret its contents as the address of the location whose
contents it is to print and open for modification. For example:
365/5769 1

3368 /0426 -
8426 /5281

ILLEGAL CHARACTERS

Any character that is neither a valid control character nor an
octal digit, or is the fifth octal digit in a series, causes the current
line to be ignored and a question mark printed. For example:

437 " ODT opens no location.

4u?

406/4671 6TK? ODT ignores modification and closes
74671

location 406.

CONTROL COMMANDS
nnnnG—Transfer Control to User at Location nnnn
Clear the AC then go to the location specified before the G. All
indicators and registers will be initialized and the breakpoint, if
any, will be inserted. Typing G alone will cause a jump to loca-
tion 0.

5-72



nnnnB—Set Breakpoint at User Location nnnn

Instructs ODT to establish a breakpoint at the locatlon spec-

ified before the B. If B is typed alone, ODT removes any previ-

ously established breakpoint and restores the original contents of
the break location. A breakpoint may be changed to another loca-
tion whenever ODT is in control, by simply typing nnnnB where
nnnn is the new location. Only one breakpoint may be in effect at
one time; therefore, requesting a new breakpoint removes any pre-
viously existing one.

A restriction in this regard is that a breakpomt may not be set
on any of the floating-point instructions which appear as argu-
ments of a JMS. For example:

D ' -
‘ EQA } - Breakpoint legal here.
JMS
FADD : - Breakpoint illegal here.

The breakpomt (B) command does not make the actual ex-
change of ODT instruction for user instruction, it only sets up the
mechamsm for domg so. The actual exchange does not occur until
a “‘go to” or a “proceed from breakpoint” command is executed.

When, during execution, the user’s program encounters the loca-
tion containing the breakpoint, control passes immediately to ODT
(via location 0004). The C(AC) and C(L) at the point of the
interruption are saved in special locations accessible to ODT. The
user instruction that the breakpoint was replacing is restored, be-
fore the address of the trap and the content of the AC are printed.
The restored instruction has not been executed at this time. It will
not be executed until the “proceed from breakpoint” command is
given.” Any user location, including those containing the stored AC
and Link, can now be modified in the usual manner. The break-
point can also be moved or removed at this time.

An example of breakpoint usage follows the section “Cont -
inue and Iterate Loop . . .” B

A—Open C(AC) . ' '

When the breakpoint is encountered the C(AC) and C(L) are
saved for later restoration. Typing A after having encountered a
breakpoint, opens for modification the location im which the AC .
was saved and prints its contents. This location may now be mod-

5-73



ified in the normal manner (see Slash) and the modification will
be restored to the AC when the “proceed from breakpoint” com-
mand is given.

A (line feed)—Open C(L) .

After opening the AC storage location, typing the LINE FEED
key closes the AC storage location, then opens the Link storage
location for modification and prints its contents. The Link location
may now be modified as usual (see Slash) and that modification
will be restored to the Link when the “proceed from the break-
point” command is given, -

C—Proceed (Continue) From a Breakpoint

Typing C, after having encountered a breakpoint, causes ODT
to insert the latest specified breakpoint (if any), restore the con- .
tents of the AC and Link, execute the instruction trapped by the
previous breakpoint, and transfer control back to the user program
at the appropriate location. The user program then runs until the
breakpoint is again encountered.

NOTE
If a breakpoint set by ODT is not encoun-
tered while ODT is running the object
(user’s) program, the instruction which
causes the break to occur will not be re-
moved from the user’s program.

nnnnC—Continue and Iterate Loop nnnn Times Before Break

The programmer may wish to establish the breakpoint at some
location within a loop of his program. Since loops often run to
many iterations, some means must be available to prevent a break
from occurring each time the break location is encountered. This
is the function of nnnnC (where nnnn is an octal number). After
having encountered the breakpoint for the first time, this command
 specifies how many additional times the loop is to be iterated be-
fore another break is to occur. The break operations have been
described previously in the section on the B command.

Given the following program, which increases the value of the
AC by increments of 1, the use of the Breakpoint command may
be illustrated. ‘

5-74



*200

2204 7306 CLA CLL
@281 1266 A TAD ONE
2282 2287 B, 1SZ CNT
#2083 5282 JMP B
A204 52461 JMP A
3265 7482 HLT
3286 #BA] ONE, 1
9287 0343 . CNT, 7

A 3201

B 3292

CNT 3237

ONE 3206

#2318

2806

A231 (3200

C .

32081 (3841

c .

A2041 (AAA2
' 4C

A231 (33A7T

ODT has been loaded and started. A breakpoint is inserted at
Jocation 0201 and execution stops here showing the AC initjally
set-to 0000. The use of the Proceed command (C) executes the
- program until the breakpoint is again encountered (after one com-
plete loop) and shows the AC to contain a value of 0001. Again
execution continues, incrementing the AC to 0002. At this point,
the command 4C is used, allowing execution of the loop to con-
tinue 4 more times (following the. initial encounter) before stop-
ping- at the breakpoint. The contents of the AC have now been
~incremented to 0007.

M—Open Search Mask
Typing M causes ODT to open for modification the location
- containing the current value of the search mask and print its con-
- tents. Initially the mask is set to 7777. It may be changed by open-
ing the mask location and typing the desired value after the value
printed by ODT, then closing the location:;

M Line Feed—Open lower search limit

The word immediately following the mask storage location con-
tains the location at which the search is to begin: Typing the LINE
FEED key to close the mask location causes the lower search limit )
to be opened for modification and its contents printed. Initially the

5-75



lower search limit is set to 0001. It may be chahged by typing the
desired lower limit after that printed by ODT, then closing the
location.

M Line Feed—Open upper search limit

The next sequential word contains the location with which the
search is to terminate. Typing the LINE FEED key to close the
lower search limit causes the upper search limit to be opened for
'modification and its contents printed. Initially, the upper search
limit is the beginning of ODT itself, 7000 (1000 for low version).
It may also be changed by typing the desired upper search limit
- after the one printed by ODT, then closing the location with the
RETURN key. .

nnnnW—Word Search
The command nnnnW (where nnnn is an octal number) will
cause ODT to conduct a search of a defined section of core, using
the mask and the lower and upper limits which the user has spec-
ificd, as indicated above. Word searching with ODT is similar to
word searching with DDT. The searching operations are used to
“determine if a given quantity is present in any of the locations of a
particular section of memory. .

The search is conducted as follows: ODT masks the expressmn
nnnn which the user types preceding the W and saves the result as
the quantity for which it is searching. (All masking is done by per-
forming a Boolean AND between the contents of the mask word,
C(M), and the word containing the instruction to be masked.)
ODT then masks each location within the user’s specified limits
and compares the result to the quantity for which it is searching.
If the two quantities are identical, the address and the actual un-
masked contents of the matching location are printed and the
search continues until the upper limit is reached.

A search never alters the contents of any location. For example:
search locations 3000 to 4000 for all ISZ instructions, regardless
of what location they refer to (i.e. search for all locations begin-
ning with an octal 2).

M7777 7880 Change the mask to 7000, open lower

search limit.
7453/0001 3000 Change the lower limit to 3000, open
' upper limit.

5-76



7454/7000 4000 Change the upper limit to 4000, close
' : location.

2000V L. ) )
Initiate the search for ISZ instructions.

2088 /2467

3857 /25081 . . . ]

3124 /2832 These are 4 ISZ instructions in this

4008 /2152

section of core.
PUNCH COMMANDS
T—Punch Leader Tape .
ODT is capable of producing leader (code 200) tape on-line.
This is done by typing T and then turning ON the punch. When
enough leader has been punched, turn off the punch and hit the
HALT key on the computer console. It is imperative that the
punch be turned OFF before typing again on the Teletype key-
board, since anything typed will also be punched if the punch is
left on. To issueany further commands, reload the starting address
(1000 or 7000), then press the ADDR LOAD, CLEAR and
CONTinue keys on the computer console.

nnnn;mmmmP—Punch Binary :

To punch a binary core image of a particular section of core, the
- above command is used where nnnn is the initial (octal) address
and mmmm is the final (octal) address of the section of core to be
punched. The computer will halt (with 7402 displayed) to allow
the user to turn ON the punch. Pressing the CONTinue key on
the console initiates the actual punching of the block. The punch-
ing terminates without having punched a checksum, to allow sub-
sequent blocks to be punched and to allow an all inclusive check-
sum to be punched at the end by a separate command. This pro-
cedure is optional, however, and the user may punch individually
checksummed blocks. ' :

Binary tapes may be punched using either the low-speed or
high-speed punches. If using the low-speed punch, it is imperative
that the punch be turned OFF before typing commands, since the
keyboard and punch are linked. Using the high-speed punch re-
quires switch manipulation. The flowchart in Figure 5-16 details
the procedures involved in punching binary tapes.

E—Punch Checksum and Trailer
Given the E command, ODT will halt to allow the punch to be
turned on. Pressing the CONTinue key on the console will cause it

5-77



TYPE T COMMAND| ' TYPE Pt
nann;mmmmP

WHEN_ENOUGH
LEADER, TURN
LSP OFF

RELOAD 00T

SET SR=7231 (HIGH)
SR= 1231 {LOW)

SET SR=6026

PRESS CLEAR AND
CONT

TTY ISSUES CR/LF

SET SRe=72254
SR=1225{

PRESS ADOR LOAD
CLEAR AND CONT

WHEN ENOUGH
LEADER, PRESS
8 RAISE MALT

SET SR=T203{HIGH)
SR= 1203(LOW)

Figure 5-16 Punching Binary Tapes (ODT)

5-78



PRESS ADDR LOAD
CLEAR AND CONT

SET SR=7222(HIGH)
_SR=1222(LOW

PRESS ADDR LOAD

WHEN SUFFICIENT
TRAILER

TURN LSP OFF

SET SR=6046

PRESS ADDR LOAD

SET SR=6041

RAISE DEP

SET SR=TOCOIHIGH)
SR=1000{LOW)

SET SR=7231 (HIGH)
SR=1231 (LOW)

PRESS ADDR LOAD
CLEAR AND CONT

PRESS ADDR LOAD

[ ser srT=7ooo ] i

[ seTsk=1000 ]
. L.

PRESS ADDR LOAD
PRESS
CLEAR AND CONT
TTY ISSUES CR/LF
ODT IS IN
COMMAND MODE

SET SR=6046

LIFT DEP

SET SR=6041

LIFT DEP

Figure 5-16 Puflching Binary Tapes (ODT) (cont)

\ 3-79



to punch the accumulated checksum for the preceding block(s) of
binary output followed by trailer (code 200) tape. When a suffi-
cient length of trailer has been output, turn OFF the punch and
press the HALT key on the console. To continue using ODT, re-
load the starting address (1000 or 7000), then press the ADD
LOAD, CLEAR and CONTinue keys on the console.

The binary tape produced by ODT can now be loaded into core
and run. However, the changes should be made to the symbolic
source tapes as soon as possible.

Additional Techniques
TTY I/O-FLAG

Sometimes the program being debugged may require that the
Teletype (TTY) flag be up before it can continue output, i.e., the
program output routine will be coded as follows:
TSF

JMP .-1
TLS

Since ODT normally leaves the TTY flag in an off state, the
above coding will cause the program to loop at the JMP.-1. To
avoid this, ODT may be modified to leave the TTY flag in the on
state when transferring control through either a “go to” or a “con-
tinue” command. This modification is accomplished by changing
location XCONT-3 (normally at 7341) to a NOP (7000). To
make the actual change, load ODT as usual Open location
XCONT-3 and modify it as follows:

734176842 17880 (RETURN key) for high version
134176042 70800 - (RETURN key) for low version -

CURRENT LOCATION

The address of the current location or last location examined
is remembered by ODT and remains the same, even after the com-
mands G, C, B, T, E, and P. This location may be opened for in-
spection merely by typing the slash (/) character.

'5-80



PROGRAMS WRITTEN IN ODT COMMANDS :

ODT will also correctly read tapes prepared off-line (e.g., a tape
punched with 1021/115717775 will cause location 1021 to be
opened and changed to 1157; then the memory reference address
157 will be opened and changed to 7775. This procedure will
work with breakpoints, continues, punch commands, etc. Thus, de-
bugging programs may be read into ODT. to execute the program,
list locations of interest, modify locations, etc.

INTERRUPT PROGRAM DEBUGGING

ODT executes an IOF when a breakpoint is encountered. (It
does not do this when more iterations remain in an nonnC com-
mand.) This is done so that an interrupt will not occur when ODT
prints the breakpoint information. ODT thus protects itself against
spurious interrupts and may be used safely in debugging programs

 that turn on the interrupt mode. |

However, the user must remember that ODT does not know
whether the interrupt was on when the breakpoint was encountered,
and hence it does not turn on the interrupt when transferring con-
trol back to the program after receiving a “go” or a “continue”
command. | | |

OCTAL DUMP o

By setting the search mask to zero and typing W, all locations
between the search limits will be printed on the Teletype. An
Octal Memory Dump program (DEC-8I-RZPA-D) is available
from the Software Distribution Center upon request.

INDIRECT REFERENCES

When an indirect memory reference instruction is encountered,
the actual address may be opened by typing 1 and « (SHIFT/N
and SHIFT/O, respectively).

Errors _

The only legal inputs are control characters and octal digits.
Any other character will cause the character or line to be ignored
and a question mark to be printed by ODT. Typing G alone is an
error. It must be preceded by an address to which control will be
transferred. This will elicit no question mark also if not preceded
by an address, but will cause control to be transferred to location 0.

- _ 5-81



- Typing any punch command with the punch ON is an error and
will cause ASCII characters to be punched on the binary tape.
This means the tape cannot be loaded and run properly.

Programming Notes Summary
ODT will not -operate outside of the memory field in which it is

located.

ODT must begin at theé start of a memory. page (other than page
zero) and must be completely contained in one memory field.

ODT will not turn on the program interrupt, since it does not
know if the user’s program is using the interrupt. It does, however,
turn off the interrupt when a breakpoint is encountered, to prevent
spurious interrupts.

The user’s program must not use of reference any core locations
occupied or used by ODT, and vice versa. ,

Register ZPAT is used as an intercom location by ODT when
executing a breakpoint. In library distributed versions ZPAT =
0004. This location must be left free by the user since it is filled
with an address within ODT which is used to transfer control be-
tween the user program and ODT.

Breakpoints are fully invisible to “open location” commands;
_however, breakpoints may not be placed in locations which the
user program will modify in the course of execution. or the break-
point will be destroyed.

If a trap set by ODT is not encountered by the user’s program,
the breakpoint instruction will not be removed.

ODT can be used to debug programs using floating-point in-
structions, since the intercom location is 0004, and since break-
points may be set on a JMS with arguments following.

This version of ODT will operate on a Teletype with an ALT
MODE key or an ESCape key. :

To restart ODT without clearing the checksum, see the section
on Starting Procedures for ODT.

The high-speed punch may be used by patching three locations
after typing the punch command. See the section on Binary Tapes
from the High-Speed Punch.

5-82



Command Summary

nnnn/

-/

RETURN key
LINE FEED key

+ (SHIFT/N)

< (SHIFT/O)

Illegal character

nnnhG
nnnnB
B

A

nnnnC

M
LINE FEED key
LINE FEED key

nnnnW

T

nnnn;mmmmpP

E

Open location designated by the octal number
nnnn.

Reopen latest opened location.
Close previously opened location.

Close location and open the next sequential one
for modification.

Close location, take contents of that location as
a memory reference and open it.

Close location, open indirectly.

Current line typed by user is ignored, ODT
types ? (CR/LF). .

Transfer program control to location nnnn.
Establish a breakpoint at location nnnn.
Remove the breakpoint.

Open for modification the location in which the
contents of AC were stored when the breakpoint
was encountered. '

Proceed from a breakpoint.

Continue from a breakpoint and iterate past the
breakpoint nnnn times before interrupting the
user’s program at the breakpoint location.

Open the search mask.
Open lower search limit.
Open upper search limit.

Search the portion of core as defined by the up-
per and lower limits for the octal value nnnn.

Punch leader.

Punch a binary core image defined by the limits
nnnn and mmmm.

Punch checksum and trailer. .

5-83






‘ '

_ input/éutput
“programming

- dectape
programming

Floating-point
packages



- input/output
‘programming

INTRODUCTION

Programming a computer to do calculations is of little use unless
there is some means of obtaining the result of the calculations from
the machine. In most applications, it is also necessary to supply
the computer with data before calculations may be performed. A
programmer must be able to translate information efficiently be-
tween the computer and the peripheral devices that supply input or
serve as a means of output. :
. There are three methods for the transfer of 1nformat10n between .
- input/output (I/O) devices and PDP-8 series computers. The ..
first two methods provide for computer control over the transfer.
One such method is programmed transfer, in which. instructions
-to accept or transmit information. are included at some point in the
“program. Programmed transfers are program initiated and executed
under program control.

Information may also be transferred via program interrupt, a -~
standard feature of PDP-8 series computers- that allows I/0 de-
vices to signal the computer when they are ready to transfer in-
“formation. - The computer interrupts its normal flow, jumps to a
special routine which processes the information, and then returns
to-the point at which the main program was interrupted. Program
interrupt transfers are device initiated and executed under program
control. _

Both programmed transfers and program interrupt transfers use
-the accumulator as the buffer, or storage area, for all data trans-
fers. Since data may be transferred only between the accumulator
and the device, only one 12-bit word at a time may be transferred
by programmed transfer or by program interrupt.

The third method of data transfer is the data break. A data

6-1



break is essentially device controlled and allows for direct ex-
change of large quantities of information between the 1/0 device
and core memory. It differs from the previous two types of trans-
fer in that there are no program instructions to handle the actual
transfer, and the accumulator is not used as a buffer. Data break
transfers are device initiated and device controlled.

PROGRAMMED DATA TRANSFERS

Programmed transfers of information are accomplished by pro-
‘gram instructions. The instructions used are similar to the operate
microinstructions in that there is no need to specify an address in
memory. All programmed transfers occur directly between the
accumulator and the 1/0 device. Since many different devices
could be connected to one computer and each devxce might trans-
fer information at some time, the instruction’ must identify the
proper device for each transfer. It must also specify the exact
nature of the function to be performed.

IOT Instruction Format

The instructions used to perform programmed data transfers
are called input/output transfer (IOT) instructions. An IOT in-
struction is a 12-bit word that has the following format:

: 10 /1o /Te /1o /10 /10 /1@ /10 /|©
BIT POSITION. 1 LA 1 1 1 f ' 1 1 f f
[N — J \ ~— 7\ I
OPERATION CODE——’ T ‘
DEVICE SELECTION CODE
OPERATION SPECIFICATION BITS

An IOT instruction is divided into three parts: operation code,
device selection code, and operation specification bits. The first
three bits of the instruction contain the operation code. These bits
are always set to 63 (110) to specify an 10T instruction.

The next six bits of the instruction contain the device selection
code. This code is transmitted to all peripheral equipment when-
ever the IOT instruction is executed. A device selector within each
peripheral monitors the device codes. When the selector recognizes

6-2 .



a code as that device’s assigned code, the dev1ce accepts the last
three bits of the IOT instruction. » :

The last three IOT instruction bits are the operation specifica-
‘tion bits, which may be set to specify up to eight functions or
combinations of functions. If a device is capable of performing
‘more functions than can be coded into the three operation specifi-
cation bits, then more than one deV1ce code must be a551gned to
that device. - ‘

Checking Ready Status

The computer operates much faster than most peripheral de-
vices. For this reason, I/O routines must check the status of a
device before executing an IOT instruction to ensure.that the de-
vice is not still performing a previous operation. Device status is
signalled through a system of one-bit registers called flags. Every
I/0 device has a device flag which is set to 1 as soon as the device
finishes a current operation and is ready to begin a new operation.
If the flag is cleared (set to 0), the device is still performing the
operation specified by the last IOT instruction received. Ready
status is usually checked by means of a sklp- on-flag IOT instruc-
tion, such that the computer does not skip out of a waiting loop
until the I/O device is ready to begin a new operation.

Instruction Uses
In general, for each I/0O device there are at least three instruc-
tions: _ N

1. An instruction to transfer information and/or operate the
~ device.
2. An instruction to test the ready status. of the device and
- skip on the ready (or not-ready) status of the device.
3. An instruction to clear or set the device flag.

These instructions may be microprogrammed. In particular, the
instructions to clear the flag and to operate the device are often
- combined.

Specific instructions for various devices are presented in the fol-
lowing sections. The Teletype unit is described in depth to illustrate
the fundamentals of programming data transfers. The general tech-
niques developed for the Teletype unit may be extended to other
1/0 devices. |

.6-3



ASCII Code

The ASCII code (Amerlcan Standard Code for Information In-
terchange) is described in Appendix B. Many of the programs pre-
sented in this chapter use ASCII code to transmit information to
the PDP-8/E. Note that the ASCII code for octal dlglts 0 through
7 is the sum of the digit plus 2605.

'PROGRAMMING THE TELETYPE UNIT

One of the most common I/O devices is the Teletype unit,
which consists of a keyboard, printer, paper. tape reader, and
paper tape punch. The Teletype unit can use either the keyboard
-or the paper tape reader to provide input information to the com-
puter and either the printer or the paper tape punch to accept
output information from the computer. The Teletype is therefore
assigned two device codes. Functioning as an input device, the
keyboard/reader is assigned the device code 03g, and functioning

as an output device, the printer/punch is assigned the device
code 04,.

Keyboard/Reader Instructions
Figure 6-1 shows the format for the keyboard/reader IOT in-

struction.. Table 6-1 lists the mnemonic mstruct10ns used to set
bits 9, 10 and 11.

11@@0010.1'[1

. R —— -
DEVICE CODE(@3) T I

KRS
KCC
KSF

Figure.6-1 Keyboard/Reader Instruction Format

Figure 6-2 shows a program using the keyboard/reader IOT
~instructions to read one ASCII character from the keyboard or
. paper tape reader. This program does not print the character on
the teleprinter. It merely stores the ASCII code for the character
in core memory location STORE.

6-4



. Table 6-1 Keyboard/Reader Instructions

* Mnemonic Octal | Operation
KCF - - 6030 Clear keyboard/reader flag without oper-
ating the device.
KSF 6031  Skip the next instruction if the keyboard/
: ' reader flagisa 1. ‘
KCC . 6032 Clear the accumulator and the keyboard/ -
' reader flag.

KRS 6034 Read a character from the keyboard/reader

_ : buffer. The keyboard /reader flag is set when
. the operation is completed. '
KIE 6035 Enable the keyboard/reader to cause pro-

gram interrupts if accumulator bit 11 is a 1.
Disable the keyboard/reader from ‘causing
interrupts if accumulator bit 11 is a zero.!

KRB 6036 Clear the accumulator and the keyboard/
reader flag, and read a character from the
keyboard /reader buffer. This instruction is

-a microprogrammed combination of KCC

and KRS.
*200 :
INPUT, KCC /CLEAR KEYBOARD FLAG
JMS LISR /ENTER SUBROUTINE
DCA STORE /STORE ASCII CHARACTER
HLT - : /HALT UPON COMPLETION
LISN, 2 /LISN SUBROUTINE
KSF /KEYBOARD FLAG RAISED YET?
JMP -1 /NO: CHECK AGAIN
KRB : /YES: READ THE CHARACTER
JMP 1 LISN /RETURN TO MAINLINE
gTORE, 2 /CHARACTER STORAGE

Figure 6-2° Coding to Accept One ASCII Character

1 Use of this instruction will be discussed later in this chapter.

6-5



The program begins with a KCC instruction. In general, any
program should begin by clearing the flags of all I/O devices to
be used later in the program. If the above program is started at
location 0200, it will proceed to the KSF, JMP.—1 loop, and con-
tinue looping indefinitely until a key on the Teletype unit is pressed
or a paper tape is loaded into the reader. As soon as the ASCII
code for a character has been assembled in the keyboard/reader
buffer register, the keyboard/reader flag is set and the program
skips out of the waiting loop. The content of the buffer is then
transferred into the accumulator, and the keyboard/reader buffer
and flag are cleared. '

l;rinter/ Punch Instructions
Figure 6-3 shows the format for the printer/punch IOT instruc-

tions. Table 6-2 lists the mnemonic instructions used to set bits
9,10 and 11.

t{1]e|oelo|o|1|e]|e|%N%%
[ ~ J ~ - -J 4
OPERATION CODE (6)—) T
DEVICE CODE (24)
TPC
TCF
TSF

Figure 6-3 Printer/Punch Instruction Format

The program presented in Figure 6-4 prints out one ASCII
character which is stored in core memory location HOLD. It be-
gins by clearing the accumulator and executing a TLS instruction.
This has no effect on the printer/punch, since 000 is the ASCII
code for a blank, but it serves to clear the printer/punch buffer
and then raise the device flag. If this instruction had not been in-
cluded, the flag would never be raised and the program would
remain in the TSF, JMP.—1 loop indefinitely. Instead, the flag is
set as soon as execution of the first TLS instruction is complete,

6-6



Table 62 Printer/Punch Instructions

Mnemonic Octal Operation
TFL 6040 Set the printer/ punch flag.
TSF 6041 Skip the next mstructlon if the prmter/
punch flagis a 1.
TCFE 6042 Clear the printer/ punch flag.

- TPC © 6044 Load the contents of accumulator bit posi-
tions 5-11 into the printer/ punch buffer and
operate the printer/punch. The prmter/ '
punch flag i is set when the operation is com-
pleted. .

- TSK 6045 Skip the next sequential instruction if either
the printer/punch interrupt request flag or
the keyboard/reader interrupt request flag

_ is set.? \

- TLS 6046 Clear the printer/punch flag, load the con-
tents of accumulator bit positions 5-11 into
the printer/punch buffer and operate the
printer/punch. This instruction is a micro-
programmed combination of TCF and TPC.

*200 .
OUTPUT, CLA CLL. /CLEAR ACCUMULATOR AND LINK
TLS /RAISE PRINTER FLAG
TAD HOLD /GET THE CHARACTER

JMS TYPE /ENTER SUBROUTINE
HLT /HALT UPON COMPLETION

TYPE, @ /TYPE SUBROUTINE
ISF . /JPRINTER FLAG RAISED YET?
JMP -1 /NO: CHECK AGAIN
TLS /YES: PRINT THE CHARACTER
CLA CLL /CLEAR ACCUMULATOR AND LINK
JMP I TYPE /RETURN TO MAINLINE

EOLD, 243 /STORED ASCII CHARACTER

Figure 6-4 Coding to Print One ASCII Character

2 Use of this instruction will be discussed later in this chapter.

6-7



permitting the program to escape the skip loop and execute the
second TLS instruction. Finally, the program again clears the ac-
cumulator. It is advisable to clear the accumulator at the end of
any subroutine, unless meaningful data is contained in it.

Format Routines .

Input and output routines are often written in the form of sub-
routines similar to the TYPE subroutine in the previous example.
Figure 6-5 presents a carriage return/line feed subroutine that calls
the TYPE subroutine to execute a carriage return and line feed on
the teleprinter. Similar subroutines could be written to tab space
the carriage a given number of spaces or to ring the bell of the
Teletype by using the respective codes for these nonprinting char-
acters. If such subroutines are commonly used in a program, they
should be placed on page O (or a pointer to the subroutine should
be placed on page 0) to facilitate reaching the routine from all
memory locations.

"*x300 :
CRLF, )] /CRLF SUBROUTINE
. - CLA CLL /CLEAR ACCUMULATOR AND LINK
LS ‘ /RAISE PRINTER FLAG
TAD K215 /GET ASCII CARRIAGE RETURN
JMS TYPE /PRINT IT
TAD K212 /GET ASCII LINE FEED
JMS TYPE /PRINT IT
JMP I CRLF /RETURN TO MAINLINE
K215, 215 /ASCII CARRIAGE RETURN
K212, 212 /ASCI1 LINE FEED
TYPE, 2 /TYPE SUBROUTINE : _
TSF /PRINTER FLAG RAISED YET?
JMP .-l /NO: CHECK AGAIN
TLS /YES: TYPE THE CHARACTER
CLA CLL /CLEAR ACCUMULATOR AND LINK
JMP I TYPE /RETURN
$ :
Figure 6-5 Carriage Return/Line Feed Subroutine
Text Routines

The examples in Figures 6-2 and 6-4 may be expanded. to ac-
cept and print more than one character. Figures 6-6 and 6-7
illustrate one such expansion. These two programs are compatible
in that the characters accepted by the first program may be typed

6-8



out by running the second program. The program in Figure 6-6
continues to accept character input until a dollar sign ($) is typed
at the keyboard. It then stores 0000 in the next core location and
halts. The program in Figure 6-7 types the characters ‘whose
ASCII codes were stored by the first program, and halts when a
location with contents equal to zero is reached. Both programs use
~ locations beginning at 2000 as a-storage buffer for the ASCIT'
characters. The following flowcharts illustrate the techniques used
in the program coding. .

SET BUFFER POINTER

T Pl

EXECUTE TLS
. TO CLEAR BUFFER
NO IS AND SET FLAG
_CHECK FLAG KEYBOARD : ‘
AGAIN FLAQ? SET : *
P SET BUFFER POINTER
ES ] TO FIRST LOCATION
ACCEPT ONE ‘
CHARACTER RETURN
‘ . CARRIAGE
STORE ONE - ‘
CHARACTER IN BUFFER GET NEXT
- ‘ ASCII CODE
PRINT THE -
CHARACTER
INCREASE THE
BUFFER POINTER
TYPE OUT
1S THE CHARACTER
CHARACTER ‘
e
?
INCREASE. BUFFER
YES . POINTER

STORE ZEROS
OVER"§"

HALT

6-9



*200
START, CLA
' TAD
DCA
KSF
JMP
KRB
TLS
DCA
TAD
TAD
SNA
JMP
I1sZ
JMP
CLA
DCA
HLT

LISN,

DONE,

BUFF,
BUFFPT, @

CLL
BUFF
BUFFPT

o1

I BUFFPT
I BUFFPT
MDOLAR

DONE
BUFFPT
LISN

CLL

.1 BUFFPT

2000

MDOLAR, 7534

$

/CLEAR ACCUMULATOR AND LINK
/SET UP BUFFER SPACE

/AND INITIALIZE POINTER
/KEYBOARD, STRUCK YET?

/NO: CHECK AGAIN

/YES: GET THE CHARACTER
/ACKNOWLEDGE IT ON PRINTER
/STORE THE CHARACTER
/CHECK FOR TERMINAL
/DOLLAR SIGN ($)

/1S CHARACTER A "$"7
/YES: STORE ZERO OVER $
/NO: INCREMENT POINTER
/GET ANOTHER CHARACTER
/CLEAR ACCUMULATOR

/STORE ZERO IN LAST
/BUFFER LOCATION AND HALT
/BUFFER BEGINS AT

/CORE LOCATION 2000

/TWO'S COMPLEMENT OF 0244

Figure 6-6 Program to Accept ASCII Characters

*300
START, CLA
TLS
TAD
DCA
JMS -
TAD
SNA
HLT
JMS
1Sz
JMP
CRLF, @
TAD
JMS
TAD
JMS
JMP
TYPE, @
TSF
JMP
TLS
CLA
JMP
BUFF, 2000
BUFFPT, @
K215, 215
K212, 212
$

CHRTYP,

CLL

BUFF
BUFFPT
CRLF

I BUFFPT

TYPE
BUFFPT
CHRTYP

K215
TYPE
Ka2la
TYPE
I CRLF

1

CLL
I TYPE

“/NO:s

/CLEAR ACCUMULATOR AND LINK
/RAISE PRINTER FLAG

/SET UP BUFFER SPACE AND
/INITIALIZE BUFFER POINTER
/RETURN CARRIAGE

/GET A CHARACTER

/15 IT ALL ZEROS?

/YES: HALT

/NO: TYPE THE CHARACTER
/INCREMENT BUFFER POINTER
/GET ANOTHER CHARACTER
/CRLF SUBROUTINE

/GET ASCII CARRIAGE RETURN
/PRINT IT

/GET ASCII LINE FEED
/PRINT IT

/AND RETURN

/TYPE SUBROUTINE

/PRINTER READY YET?

CHECK AGAIN

/YES: TYPE CHARACTER
/CLEAR ACCUMULATOR

/AND RETURN

/BUFFER BEGINS AT

/CORE LOCATION 2000

/ASCII CARRIAGE RETURN
/ASCII LINE FEED

Figure 6-7 Program to Print Out ASCII Characters

6-10



The program to print ASCII characters may be specialized to
print a specific message, as in the program example of Figure 6-8.
This routine uses autoindex registers in place of the ISZ instruc-
tion. It types, “HELLO!”.

*300
HELLO, @ - /MESSAGE SUBROUTINE
CLA CLL /CLEAR ACCUMULATOR AND LINK
TLS /RAISE PRINTER FLAG
TAD CHARAC /SET UP AUTOINDEX REGISTER
DCA IRl /FOR GETTING CHARACTERS
TAD M6 /SET UP COUNTER FOR
a DCA COUNT /TYPING CHARACTERS
NEXT, TAD 1.1IRI /GET A CHARACTER
JMS TYPE /TYPE IT
ISZ COUNT - /DONE YET?
JMP NEXT /NO: TYPE ANOTHER
JMP I HELLO /YES: RETURN TO MAINLINE
TYPE, % /TYPE SUBROUTINE
: TSF - /PRINTER FLAG RAISED YET?
JMP -1 /NO: CHECK AGAIN
TLS /YES: PRINT A CHARACTER
CLA . /CLEAR ACCUMULATOR
~ JMP I TYPE /AND RETURN
CHARAC, . /INITIAL VALUE OF IRl
310 /H
305 /E
314 /L
314 /L
317 /0
_ 241 /!
ms, -6 /CHARACTER COUNT
COUNT, - @ /CHARACTER COUNTER
IRI=10 /AUTOINDEX REGISTER
$

Figure 6-8 Subroutine to Print the Message, “HELLO!”

Numeric Translation Routines

The ASCII code for a number must be converted to octal repre-
sentation before the computer may use the number in calculations.
For example, 6 is represented by the ASCII code 266. When the
Teletype key for 6 is typed, the code 266 is transmitted to the com-
puter upon execution of the next KRB instruction. Two methods
may be used to remove the 260 from an ASCII-coded number
and obtain the octal number itself.

One method is to clear the first eight bits of the ASCII-coded

6-11



number by using the AND instruction and an appropriate mask.
If 17 is ANDed with the coded number, as shown below, the
- octal value of the number is recovered.

Instruction Operation

000 010 110 110
AND MASK 000 000 001 111

000 000 000 110

Comment

ASCII Code 266 in accumlliator,
MASK: 17.

Contents of accumulator after

AND instruction is executed.

The second method of stripping an ASCII-coded number is to
" subtract 2604 from the character code. This is accomplished by
TADing the two’s complement of 260 to the coded number, as
shown below.

Comment

ASCII Code 266 in accumulator.
M260: 75204 (2’s comp of 260)

Contents of accumulator after
TAD instruction is executed.

Instruction

Operation
TAD M260

000 010 110 110
111 101 010 000

000 000 000 110

Figure 6-9 shows two programs which accept and store an octal
digit, using the LISN subroutine presented in Figure 6-2. This pro-
cess may be reversed to print out a digit which is stored in memory
by adding 2605 to the digit, as illustrated in the program of Figure
6-10. This program calls the TYPE subroutine of Figure 6-4 to
print out the binary number 7.

/USING THE AND /USING THE TAD

/INSTRUCTION /INSTRUCTION
*200 . *200
NUMIN, KCC NUMIN, KCC
JMS LISN | JMS LISN
AND MASK TAD M260
DCA HOLD DCA HOLD
. HLT HLT
HOLD, @ HoLD, @
MASK, 17 M26@, 7520
$ %

Figure 69 Two Methods of Converting ASCII Code to Binary
6-12



*200

NUMOUT, CLA CLL /CLEAR ACCUMULATOR AND LINK
. LS /RAISE PRINTER FLAG
TAD NUMBER /GET NUMBER
TAD K268 . /CONVERT TO ASCII
JMS TYPE /PRINT THE NUMBER
HLT /AND HALT
NUMBER, 7 /NUMBER TO BE PRINTED
K268, 260 - -
$

Figure 6-10 Program to Type One Stored Digit

All of the routines presented so far have been designed to handle
single-digit octal numbers. However, PDP-8/E core memory loca-
tions may contain octal numbers with up to four digits. The pro-
gram shown in Figure 6-1.prints out a four-digit octal number "
which is stored in core memory. The program shown in Figure
6-13 accepts four octal digits from the Teletype keyboard, converts
them to an octal number, stores that number, and then loops back
to accept another four digits. Figure 6-11 is a flowchart illustrating
the procedure employed in these routines.

i

GET CONTENT OF
STORAGE LOCATION
IN AC

SET FIRST 9
BITS TO ZERQ

ADD 260
- TO THE AC

‘ BRING FIRST DIGIT ROTATE LEFT
-] INTO AC THREE PLACES

- STORE DIGIT
TEMPORARILY

CLEAR A
STORAGE LOCATION

EXECUTE TLS
TO CLEAR BUFFER
AND SET FLAG

GET THE
NUMBER IN AC

RECEIVED
FOUR DIGITS
?

YES

ROTATE THE NUMBER | TYpe out ‘ ‘
1 PLACE LEFT THE DIGIT '
SUBTRACT ADD NEXT
260 DIGIT

ADD THE CONTENTS
OF STORAGE
LOCATION

ALL A
DIGITS TYPED
?

YES

STORE THE RESULT
TEMPORARILY

PACKED
4 DIGITS

STORE NUMBER
IN BUFFER

a B
Figure 6-11 Flowchart for Figures 6-12 and 6-13

6-13

[ "RoTaTE AC THREE
PLACES LEFT

STORE AC IN
STORAGE LOCATION

RETURN
CARRIAGE

—




*200
START,

UNPACK,

TYPE,

CRLF,

NUMBER,
MASKT,
M4,

CLA
DCA
TLS
JMS
TAD
DCA
TAD
RAL
TAD
RAL
RTL
DCA
TAD
AND
TAD
JMS
ISz
JMP
JMS
HLT
0
TSF
JMP
TLS
CLA
JMP
0
TAD
JMsS
TAD
JMS
JMP
1234
-7
-4

DIGCTR, @

STORE,
K212,
K215,
K260,
$

2

212
215
260

CLL
STORE

CRLF
M4
DIGCTR
NUMBER

STORE

STORE
STORE
MASK7
K260
TYPE
DIGCTR
UNPACK
CRLF

.=l

I TYPE

K215
TYPE
K212
TYPE
I CRLF

/CLEAR ACCUMULATOR AND LINK
/CLEAR STORAGE LOCATION
/RAISE PRINTER FLAG
/RETURN CARRIAGE

/SET LOCATION TO COUNT
/NUMBER OF DIGITS

/GET NUMBER TO BE TYPED
/ROTATE ONE PLACE LEFT
/ADD STORED LOCATION
/ROTATE THREE

/PLACES LEFT

/STORE ROTATED NUMBER
/MASK OUT

/FIRST $ BITS

/ADD IN 260

/AND TYPE A DIGIT
/TYPED FOUR DIGITS YET?
/NQ: GO TYPE ANQTHER
/YES: RETURN CARRIAGE
/AND HALT

/TYPE SUBROUTINE
/PRINTER FLAG RAISED YET?
/NO: CHECK AGAIN

/YES: PRINT A CHARACTER
/CLEAR ACCUMULATOR

/AND RETURN

/CRLF SUBROUTINE

/GET ASCII CARRIAGE RETURN
/PRINT IT

/GET ASCII' LINE FEED
/PRINT IT

/AND RETURN

/NUMBER TO BE PRINTED
/AND MASK

/DIGIT COUNT

/DIGIT COUNTER

/STORAGE LOCATION
/ASCII LINE FEED

/ASCI1 CARRIAGE RETURN

Figure 6-12 Program to Type a Four-Digit Number

6-14



*2008"
START, CLA

CLL

‘TLS -

TAD
DCA
Jns
NXTNUM, TAD

DCA

- TAD

DCA

NXIDIG, JMS
DCA

1Sz

1Sz

JMP

JMs

Jns

DCA

. - JMP
PACK, @
DCA

TAD

DCA

TAD

DCA

PAKDIG, TAD

" CLL
RTL .

TAD
TAD
- DCA
I1sz

Isz

. JMP
. TAD

CRLF, @
- TAD
‘JMs
‘TAD
JMS
Jip

JMP

K17717
IRl
CRLF
M4

COUNTR

K359

‘TEMP

LISN

I TEMP

TEMP

COUNTR -
NXTIDIG

CRLF.
PACK
I IRl

NXTNUM

STORE
M4

K358
TEMP
STORE
RAL

M260
STORE
TEMP

COUNTR

PAKDIG
STORE
I PACK

K215
TYPE

“Kal2

TYPE

I CRLF

COUNTR

1 TEMP

/CLEAR ACCUMULATOR AND LINK
/RAISE PRINTER FLAG

/SET INDEX REGISTER TO
/STORE PACKED NUMBERS
/RETURN CARRIAGE

- /SET COUNTER FOR

/4 DIGITS

/SET UP TEMPORARY STORAGE

/FOR ASCII INPUT

" 7GET A CHARACTER

/STORE IT TEMPORARILY

- /INCREMENT STPOINTER
/RECEIVED 4 DIGITS YET?
"/NO: GET ANOTHER

/YES: RETURN CARRIAGE
/PACK THE 4 DIGITS

 /STORE PACKED NUMBER

/GET A NEW NUMBER
/PACK SUBROUTINE

/CLEAR STORAGE LOCATION

/SET COUNTER FOR
/4 DIGITS

- /SET POINTER TO
- /ASCII INPUT CHARACTERS

/LOAD PARTIAL NUMBER
/ROTATE LEFT

" /THREE TIMES

/ADD NEXT STORED DIGIT

- /STRIP OFF THE 260

/STORE PARTIAL NUMBER

/INCREMENT POINTER :
" /PACKED 4 DIGITS YET?

/NO: PACK NEXT DIGIT

/YES: TAKE PACKED NUMBER
/BACK TO MAINLINE

/CRLF SUBROUTINE

/GET ASCII CARRIAGE RETURN
/PRINT IT = |

/GET ASCII LINE FEED

/PRINT IT
/AND RETURN

Figure 6-13 Program to Pack and Store Four-Digit Numbers

6-15



LISN, @

KSF
JMP .-l
KRB .
ILS
JMP I LISN
TYPE, @
TSF
JUP =1
TLS
CLA
JMP 1 TYPE
Ki777, 1717
Ma, 7774
COUNTR, ©
K350, & 350
TEWP, @
STORE, @
M260, 7520
K215, 215
K212, 212
IRI=10
$

/LISN SUBROUTINE
/KEYBOARD FLAG RAISED YET?
/NQ: CHECK AGAIN

/YES: READ A CHARACTER
/ECHO ON PRINTER

/AND RETURN

‘/TYPE SUBROUTINE

/PRINTER FLAG RAISED YEI?

- /NO: CHECK AGAIN

/YES: PRINT A CHARACTER
/CLEAR ACCUMULATOR

/AND RETURN

/LAST LOC BEFORE BUFFER
/DIGIT COUNT

/DIGIT COUNTER

/BEGIN TEMP STORAGE
/TEMP STORAGE POINTER
/PACK ROUTINE STORAGE
/ASCI1 CONVERSION CONSTANT
/ASCI1 CARRIAGE RETURN
/ASCII LINE FEED
/AUTO-INDEX REGISTER

Figure 6-13 (cont.) Program to Pack and Store
- Four-Digit Numbers

The text and numeric translation routines described earlier are
combined in the following sample program, which accepts four-
digit octal numbers delimited by carriage returns and then sorts the
numbers into ascending numerical order and prints them on the

teleprinter.

Any number of elements may be supplied. The end of input is
signalled by typing a dollar sign ($). This program includes rou-
tines which ignore any non-octal digits of input and echo a ques-
tion mark. Only: positive octal digits are-accepted. The program

is presented in four illustrations.

6-16



,L START ) .

ACCEPT ASCII . TYPE 7" '
—{| ~ CODE FOR e | Combenae ]
ONE DIGIT THAT ENTRY :

X

1S
NUMBER
NEGA?TIVE

IS 1T
A NONOCTAL
CHARACTER
?

PUT THE -
NUMBERS IN
INCREASING ORDER

- !

TYPE ONE P

HAVE FOUR
DIGITS
?

TYPED
4 DIGITS
-t

PACK AND .
STORE AS —-D@
ONE NUMBER

RETURN
CARRIAGE

‘ HALT

‘Figure 6-14 Flowchart for Sample Program

6-17 B



*200 _
START, CLA
TLS
TAD
DCA
DCA
ACCEPT, JMS
- TAD
DCA
TAD

DCA

"NEWDIG, JMS
DCA

CHECK, TAD

-TAD
SNA
JMP
TA

TAD

SPA

JMP
TAD
SMa
JMP
1SZ
1SZ
JMP
PACK, TAD
DCA
DCA
TAD
DCA
DIGPAK, TAD
, CLL
RTL
TAD

TAD
DCA

I1sZ

I1sz

JMP
TAD
DCA
TAD
TAD
SMA
JMP
15Z
1sZ
JMP

Figure 6-15

CLL

BUFF
BUFFPT
AMOUNT
CRLF
M4
DIGCTR
TEMP!
TEMP
LISN

I TEMP
I TEMP

‘MDOLAR

CLA
ORDER
I TEMP
M260

ERROR
Mo
CLA
ERROR
TEMP
DIGCTR
NEWDIG
TEMP1
TEMP
HOLD
M4
DIGCTR
HOLD.
RAL

I TEMP

M260

HOLD
TEMP
DIGCTR
DIGPAK
HOLD

1 BUFFPT
I BUFFPT
K4000
CLA
ERROR
AMOUNT
BUFFPT
ACCEPT

/CLEAR ACCUMULATOR AND LINK
/RAISE PRINTER FLAG
/INITIALIZE STORAGE
/BUFFER POINTER

/AND ELEMENT COUNTER
/RETURN CARRIAGE
/INITIALIZE COUNTER

/FOR 4 DIGIT INPUT

/SET A POINTER TO
/TEMPORARY INPUT STORAGE
/GET A CHARACTER

/STORE 1T

/CHECK FOR A

/TERMINAL $

/1S CHARACTER A $7

/YES: ORDER INPUT

/NO: CHECK FOR

/OCTAL INPUT

/1S INPUT < 2607

/YES: ENTER ERROR ROUTINE
/NO: SUBTRACT 10

/1S INPUT > 2607

/YES: ENTER ERROR ROUTINE
/NO: INCREMENT POINTER
/RECEIVED 4 DIGITS YET?
/NO: GET ANOTHER

/YES: SET POINTER TO
/STORAGE LOCATION

/CLEAR LOCATION HOLD

/SET COUNTER FOR

/4 DIGITS

/LOAD HOLD INTO AC
/ROTATE INTO CLEARED LINK
/ROTATE TWICE MORE

/ADD ONE ASCII CHARACTER
/SUBTRACT OUT THE 260
/STORE IN LOCATION HOLD
/INCREMENT STORAGE POINTER
/PACKED 4 DIGITS YET?
/NO: PACK ANOTHER

/YES: STORE

/PACKED NUMBER

/CHECK FOR

/NEGATIVE INPUT

/1S ENTRY NEGATIVE?

/YES: TAKE ERROR BRANCH
/NO: COUNT THE ENTRIES
/INITIALIZE FOR A NEW ENTRY
/GET A NEW ENTRY :

Initialization and Input Coding for Sample Program

6-18



ORDER, TAD
: cIaA

IAC

DCA

DCA

TAD

DCA

TAD

IAC

DCA

TEST, TAD
cIa

TAD

SMa

JMS

1Sz

ISz

1Sz

JMP

TAD

SzA

JMP

JMP
REVERSE, @ -

TAD

DCA

TAD

DCA

TAD

DCA

CLA

'DCA

JMP

AMOUNT

TALLY
FLAG
BUFF
Xl
BUFF

X2

I X2

I Xl
SZA CLA
REVERSE
Xl

Xa
TALLY
TEST
FLAG
CLA
ORDER
PRINT

I X1

HOLD

I X2

I Xl

HOLD

I X2

CLL Cma
FLAG

I REVERSE

/SET UP A TALLY
/TO COUNT THE
/NUMBER OF
/COMPARISONS

. /CLEAR THE FLAG

/SET XI POINTER TO
/FIRST BUFFER LOCATION
/SET X2 POINTER TOo
/SECOND BUFFER
/LOCATION

/GET X2 POINTER ENTRY

/FORM TWO'S COMPLEMENT
/ADD X1 POINTER ENTRY

/1S X1 ENTRY LARGER?
/YES: SWITCH X1 AND X2
/NO: INCREMENT X! POINTER
/INCREMENT X2 POINTER
/COMPARED ALL ENTRIES?
/NQO: LOOP BACK

/YES: WAS SWITCH MADE

/0N LAST PASS?

/YES: MAKE ANOTHER PASS
/NO: TYPE THE ORDERED DATA
/SWITCH X1 AND X2

/GET X! ENTRY

/STORE TEMPORARILY
/GET X2 ENTRY

/STORE AT XI LOCATION
/GET X1 ENTRY

/STORE AT X2 LOCATION
/SET FLAG WHENEVER

/A SWITCH IS MADE

/RETURN

Figure 6-16 Order Routine Coding for Sample Program

6-19



PRINT,

ANOTHR,

MORE,

END=.

JMs
TAD
DCA
TAD
CIA
DCA
JMS
TaD
DCA
DCA
TAD
CLL
TAD

'RAL

RTL
DCA
TAD
AND
TAD
JMS
1SZ
JMP
152
1sZ
JMP
JMS
JMP
CLA
TAD
JMS
JMS

CRLF
BUFF
BUFFPT
AMOUNT

PRNTCT
CRLF

M4
DIGCTR
HOLD

I BUFFPT
RAL

HOLD

HOLD
HOLD
MASKT
K260
TYPE
DIGCTR
MOKE
BUFFPT
PRNTCT
ANOTHR
CRLF
START

QUEST
TYPE
ACCEPT

/RETURN THE CARRIAGE
/INITIALIZE THE

/BUFFER POINTER
/INITIALIZE A COUNTER
/TO COUNT

/0UTPUT ELEMENTS

/RETURN THE CARRIAGE .
/GET DIGIT COUNT
/INITIALIZE DIGIT COUNTER
/CLEAR STORAGE LOCATION
/GET A CHARACTER

/ROTATE INTO CLEARED LINK
/ADD STORED LOCATION
/ROTATE LEFT

/THREE TIMES

/STORE ROTATED NUMBER
/GET STORED LOCATION
/MASK OUT FIRST S BITS
/CONVERT TO ASCII

/TYPE ONE DIGIT

/TYPED 4 DIGITS YET?
/NO: TYPE ANOTHER

/YES: INCREMENT POINTER
/TYPED ALL ENTRIES?

/NO: TYPE ANOTHER |
/YES: RETURN CARRIAGE AND
/ACCEPT MORE INPUT
/ERROR ROUTINE

/GET ASCII FOR "?"
/PRINT QUESTION MARK
/DISREGARD ILLEGAL ENTRY

Figure 6-17 Output Coding for Sample Program

6-20



*]100
TYPE,®

CRLF,

LISN,

BUFF,
BUFFPT,
M4,

DIGCTR,

TEMPI, ..

TEMP,
MDOLAR,
Mig,
K4000,
HOLD,
M260,
AMOUNT,
FLAG,
TALLY,
X1,
X2,
PRNICT,
MASK7,
K260,
K212,
K215,
QUEST,
$

P

ISF

JMP -1
TLS

CLA

JMP I TYPE

TAD K215
JMS TYPE
TAD K212
JMS TYPE
JMP I CRLF

KSF

' !JMP .-l
. KRB

TLS
JMP I LISN
END

1774

o+2
0;0;0;0;0
1534 -

-10

4009

-260

~ e es

260
22
215

2717

/TYPE SUBROUTINE
/PRINTER FLAG RAISED YET?
/NO: CHECK AGAIN

/YES: PRINT A CHARACTER
/CLEAR ACCUMULATOR

/AND RETURN

/CARRIAGE RETURN/LINE FEED
/GET ASCII CARRIAGE RETURN
/PRINT IT

"/GET ASCII LINE FEED

/PRINT IT
/AND RETURN ;

/LISN SUBROUTINE '
/KEYBOARD FLAG RAISED YETI?
/NO: CHECK AGAIN |
/YES: READ A CHARACTER
/ECHO ON PRINTER

/AND RETURN

/FIRST BUFFER LOCATION
/BUFFER POINTER |
/DIGIT COUNT

/DIGIT COUNTER

/TEMP STORAGE POINTER
/TEMP DIGIT STORAGE

/TWO'S COMP OF 244

/OCTAL -10

/OCTAL 4000

/PACK ROUTINE STORAGE

- /ASCII CONVERSION FACTOR
- /DATA ENTRY COUNTER

/SIGNALS DATA SWITCH
/COUNTS DATA COMPARASONS
/0RDER ROUTINE

/POINTERS :

/COUNT OUTPUT ELEMENTS
/ASCI1 CONVERSION MASK
/ASCII DIGIT OFFSET
/ASCII LINE FEED

/ASCII CARRIAGE RETURN
/ASCII1 QUESTION MARK

Figure 6-18 Subroutines and Constants for Sample Program

6-21



PROGRAM INTERRUPT FACILITY

The running time of programs using input and output routines
is primarily made up of the time spent waiting for an I/O device
to accept or transmit information. Specifically, this time is spent
in loops such as:

TSF /SKIP ON FLAG
JMP -1

Waiting loops waste a large amount of computer time. In those
cases where the computer can be doing something else while wait-
ing, these loops may be removed and useful routines included to
use the waiting time. This sharing of a computer between two tasks
is often accomplished through the program interrupt facility, which
is standard on all PDP-8 series computers. The program interrupt
facility allows certain external conditions to interrupt the com-
puter program. Tt is used to speed the processing of 1/0 devices
or to allow certain alarms to halt program execution and initiate
another routine.

Every device which is able to request a program interrupt con-
tains a special one-bit register called the interrupt request flag.
" This register normally contains a 0, but it is set to 1 whenever the
device requires servicing.

When the interrupt facility is enabled and any device flags an
interrupt request, the computer automatically disables its interrupt
system and executes a hardware JMS 0. This causes the contents
of the program counter to be stored in core memory location 0000
and the instruction in location 0001 to be executed. Location 0001
usually contains an effective JMP SERVE, where SERVE is the
entry address of an interrupt service routine. The interrupt service .
routine calls I/0 device service routines to correct the condition
which caused the interrupt, then re-enables the interrupt system -
and executes a JMP I O instruction to resume program execution.

Table 6-3 lists the eight IOT instructions used to program the
PDP-8/E for program interrupt operation. -
~If an interrupt occurs while another interrupt is being serviced,
the return address stored in location 0000 will be lost. This is pre-
vented by leaving the interrupt system disabled while the interrupt

622



Table 6-3 Program Interrupt IOT Instructions

Mnemonic

Octal

Operation |

SKON

ION

IOF
SRQ

GTF

RTF

SGT

CAF

6000

6001

6002
- 6003

6004

6005

6006

6007

Skip the next instruction if the interrupt
system is on and turn the interrupt system
off. ' ‘ -

Execute the next instruction, and then turn
the interrupt system on.

Turn the interrupt system off.

Skip the next instruction if one or more
devices are requesting an interrupt.

Get flags. The link is loaded into accumula-
tor bit position 0. Accumulator bit 2 is set
to a 1 if any device is requesting an inter-
rupt. Accumulator bit 4 is set to a 1 if the .
interrupt system is enabled.3 '

Restore flags. This instruction is the con-
verse of the GTF instruction. Execution of
an RTEF instruction is deferred until after

‘the next JMP or JMS instruction is exe-

cuted. If accumulator bit 4 contains a 1,
this instruction enables the interrupt sys-
tem.3 ‘ :

Skip the next instruction if the Greater -
Than Flag is set. This instruction is im-
plemented only if the KE8-E Extended
Arthmetic Element is installed.

Clear all flags. This instruction is the logi-
cal equivalent of operating' the CLEAR
switch on the programmer’s console. It
should not be used while any I/0 device
is active.

3 The GTF and RTF instructions perform other operations on the remain-
ing accumulator bit positions if the KE8-E Extended Arithmetic Element
and/or KM8-E Extended Memory Control are installed. See the Small
Computer Handbook for further information.

6-23



service routine is servicing an I/O device. The interrupt system
may then be re-enabled by an ION instruction immediately before
the JMP I O which terminates the interrupt service routine, or by
an RTF instruction anywhere in the service routine. Execution of
_ the TON instruction will be deferred until the following instruction
“has been executed, and execution of the RTF instruction will be
deferred until the next JMP or JMS instruction has been executed.
In this manner, an interrupt service routine protects the contents
of location 0000 by executing with the interrupt system disabled
and using deferred ION or RTF instructions to re-enable the in-
terrupt system as soon as mainline execution has resumed. '

Use of the interrupt system allows a mainline routine, referred
to as the background program, to execute without wasting a large
amount of time in waiting loops while I/O devices are assembling
and transmitting information. The interrupt service routine, called
a foreground program, is entered automatically whenever an I/0
device requires servicing under program control.

Programming an Interrupt

The program presented in Figure 6-19 consists of a background
routine which rotates one bit through the accumulator endlessly,
and a foreground program, initiated by the interrupt service rou-
tine, which accepts and stores ASCII characters from the Teletype.
Upon receipt of the ASCII code for a period, the foreground pro-
gram prints out the characters which have been stored.

The coding begins with an initialization routine which allocates
buffer space to store the incoming characters and sets the mode
for input. The program signals input mode by a value of MODE
=0 and output mode by a value of MODE=1. Once the initializa-
tion routine has enabled the interrupt facility, the background
program is started.

The background program is a routine to rotate one bit through -
the accumulator and link. The first instruction clears all bits ex-
cept bit 11. The program then counts through the two ISZ loops,
after which it rotates the bit one place left and then returns to the
count loops. With the console indicator select switch set to AC,
the accumulator and link displays will exhibit a rapidly rotating
light while waiting for an interrupt to initiate the foreground

program.

6-24



An interrupt request will cause the computer to perform the
following operations automatically: ‘

1. The interrupt system is disabled. ‘
2. The content of the program counter is stored at core mem- -
- ory location 0000. ' |
3. The JMP I 2 instruction in location 0001 is executed. Loca-
tion 0002 contains the entry address of the interrupt service
routine.

The interrupt service routine then performs the following op-
erations:

1. The contents of the accumulator and link are stored.

2. The source of the interrupt is determined.

3. A JMP to either the keyboard input routine or the printer
output routine is executed.

The keyboard input routine is entered from the interrupt service
routine whenever the keyboard flag is set. The flag is cleared to
prevent further interruptions when the interrupt system is re-
enabled. If the mode is set for output, program control returns to
the background program. Otherwise, the routine accepts a char-
acter (KRB), acknowledges receipt by printing the character on
the printer (TLS), and stores it in the buffer. No KSF, JMP .—1
loop is necessary. The routine then checks for the ASCII code for
a period, returning to the background program if the character
was not a period. Upon receipt of a period, the routine resets the
buffer and sets the mode for output. Program control then returns
to the background program. Since a TLS instruction was executed
previously, another interrupt will be requested as soon as the
printer becomes available, and the stored ASCII codes will be
typed out by the printer output routine. ~

The printer output routine is entered from the interrupt service
routine whenever the printer flag is set. This routine clears the
device flag and checks for output mode, then prints one character
from the buffer. No TSF, JMP .—1 loop is necessary. If the char-
acter is not a period, control returns to the background program

while the printer finishes typing the character. If the character is
- a period, the routine resets the buffer, sets the mode for input,

" and then returns to the background program.

6-25



The keyboard and printer service routines return control to the
background program via the exit routirie. This routine restores the
content of the accumulator, which was previously saved by the in-
terrupt_service routine, then re-enables the interrupt system by
means of an RTF instruction, which also restores the link. The
RTF instruction does not take effect until after the JMP I O in-
struction, which terminates the exit routine, has been executed.
This allows background program execution to resume before an-
other interrupt can occur. The constants used by the various

routines conclude the listing.

‘ START ;

EEg-

SET MODE RESTORE CLEAR CLEAR PRINTER
FOR INPUT AC AND L KEYBOARD FLAG FLAG
RESERVE TURN
BUFFER SPACE INTERRUPT ON
FOR CHARACTERS ‘
l RETURN TO
TURN BACKGROUND
INTERRUPT ON AM
READ THE
‘ CHARACTER
ROTATE BIT !
ENDLESSLY
ACCUMULATOR TYPE THE
CHARACTER

SAVE AC
AND L

KEYBOARD
FLAG SET
?

ENTER XEYBOARD
SERVICE ROUTINE
KB

ENTER PRINTER

| SERVICE ROUTINE

(Va4

&

STORE ASCII
CODE N
BUFFER

CHANGE MODE
TO INPUT

RESET BUFFER é

POINTER

[ chancE moDE
TO OUTPUT

Figure 6-19A Interrupt Facility Program Flowchart

6-26



*@

*200
START,

8 :
JMP I 2
SERVE

CLA CLL
DCA MODE
TAD K1777
DCA BUFFER
ION

ROTATE, CLA CLL IAC

SERVE,

ISZ COUNT
JMP =1

ISZ COUNT
JMP -1

RAL

JMP ROTATE+]

DCA AC
GTF

DCA FLAGS
KSF

SKP

JMP KB
ISF

SKP -

JMP TP
CAF

JMP EXIT

KCC

TAD MODE
SZA CLA
JMP EXIT
ISZ BUFFER
KRB

TLS

DCA 1 BUFFER

TAD I BUFFER
TAD MPER
SZA CLA

JMP EXIT

TAD K1777
DCA BUFFER
CLA CMA
DCA MODE
JMP EXIT

/FIRST INSTRUCTION
/AFTER AN INTERRUPT:

- /STORE RETURN ADDRESS

/JUMP TO SERVICE ROUTINE
/POINTER TO SERVICE ROUTINE
/INITIALIZATION ROUTINE:
/CLEAR ACCUMULATOR AND LINK
/SET MODE FOR INPUT
/INITIALIZE DATA

/BUFFER POINTER

/TURN INTERRUPT ON
/BACKGROUND PROGRAM:
/SET ACCUMULATOR BIT 1}
/COUNT

/TWICE

/THROUGH

/DELAY LOOP

/ROTATE BIT LEFT

/RETURN TO DELAY LOOP
/SERVICE ROUTINE:

/SAVE ACCUMULATOR

/SAVE INTERRUPT

/FLAGS AND LINK
/KEYBOARD FLAG RAISED?

" /NQO: CHECK PRINTER

/YESs SERVICE KEYBOARD
/PRINTER INTERRUPTI?

/NO: SKIP FOR EXIT

/YES: SERVICE PRINTER .
/CLEAR ALL FLAGS

/AND RETURN

/KEYBOARD INPUT ROUTINE:
/CLEAR KEYBOARD FLAG
/CURRENTLY 1IN

/INPUT MODE? :
/80: RETURN TO BACKGROUND
/YES: INCREMENT POINTER
/READ THE CHARACTER

/ECHO ON PRINTER

/STORE THE CHARACTER

/WAS THE

/CHARACTER A

/PERIOD?

/NO: RETURN TO BACKGROUND
/YES: RESET BUFFER :

/POINTER TO TYPE

/THE CHARACTERS
/SET MODE FOR OUTPUT AND
/RETURN TO BACKGROUND

Figure 6-19B Interrupt Facility Program Coding

6-27



1P,

EXIT,

COUNT,
MODE,
X177,
BUFFER,

FLAGS,
MPER,

TCF

TAD
SNA
JMP
1sZ
TAD
TLS
TAD
SZA
JHWP
DCA
TAD
DCA
JMP

TAD
RTF
CLA
TAD
JMP
)

@

L7177

2
@
@

MODE

CLA

EXIT
BUFFER

1 BUFFER

MPER
CLA

EXIT

MODE
K17717
BUFFER
EXIT

FLAGS

AC
1.8

-256.

/PRINTER OUTPUT ROUTINE:
/CLEAR PRINTER FLAG
/CURRENTLY IN

/0UTPUT MODE?

/N0: RETURN TO BACKGROUND
/YES: INCREMENT POINTER
/GET CHARACTER FROM BUFFER
/PRINT 1T

/WAS THE CHARACTER

/A PERIOD?

/NO: RETURN TO BACKGROUND
/YES: SET MODE FOR INPUT
/RESET BUFFER

‘/POINTER AND

/RETURN TO BACKGROUND
/EXIT ROUTINES

/GET FLAGS AND LINK
/RESTORE FLAGS AND LINK
/CLEAR ACCUMULATOR
/RESTORE" ACCUMULATOR
/RETURN TO BACKGROUND

/DELAY LOOP COUNTER

/MODE SWITCH

/LAST LOC BEFORE BUFFER
/DATA BUFFER POINTER
/SAVE ACCUMULATOR

/SAVE FLAGS AND LINK
/NEGATIVE OF ASCII CODE

Figure 6-19B (cont.) Interrupt Facility Program Coding

‘Multiple Device Interrupt Programming

Many programming applications use th
service several devices. For example, a P
ity to control the operation of DECtape and DEC-
disk systems through a Teletype console. Syst
rvice routine that determines the source of an interrupt
device flag is set). The following instruction
kip instructions to determine which device

interrupt facil

- quire a se
request (i.e., which
sequence uses dummy s

requested an interrupt.

6-28

e interrupt system to
DP-8/E may use the

ems of this type re-



DASF /SKIP ON DEVICE A FLAG

SKP | |
JMP SERVA /DEVICE A REQUESTED THE INTERRUPT
DBSF /SKIP ON DEVICE B FLAG

SKP -

JMP SERVB /DEVICE B REQUESTED. THE INTERRUPT

‘ DNSF' /SKIP ON DEVICE N FLAG
SKP ' -
JMP SERVN /DEVICE N REQUESTED THE INTERRUPT

The dummy instructions (DASF, DBSF, etc.) are skip-on-flag
instructions for each of the devices in the interrupt system. Be-
cause of the predominance of SKP instructions, the instruction
sequence which determines the source of an interrupt request is
often called a skip chain. '

A skip chain may be enlarged to test for almost any number
of device flags, provided that high-speed devices which retain in-
formation for a relatively short period of time are tested near the
top of the skip chain, so that the chain may be traversed and the
high-speed devices serviced before the information' is lost. High-
speed. devices should never be required to wait for service while
a long skip chain is traversed. If several high-speed devices are
tested at the top.of the chain, it may still be necessary to check
the timing constraints to ensure that the last high-speed device to
be tested will be serviced before any loss of information can oceur.

If two interrupts occur simultaneously, the high-speed device
will ‘be serviced first because it will be tested first in the skip
chain. The low-speed device may be serviced later in either of |
two ways: |

1. By terminating the high-speed device service routine in
the usual manner, in which case the low-speed device will
request another interrupt as soon as the interrupt system
has been re-enabled and background program execution
resumed. -

2. By terminating the high-speed device service routine with
a jump back into the skip chain, without re-enabling the
interrupt system. In this case, the skip chain must terminate

6-29 -



with an ION, JMP I O instruction sequence to return con-
trol to the background program if no further interrupt re-
quests are pending. -

A Software Priority Interrupt System

The techniques described in the previous section may be used
to guarantee that a high-speed device will be serviced before a
slower device when two interrupts occur simultaneously. How-
ever, information will still be lost if the high-speed device requires
servicing and requests an interrupt while the low-speed device is
being serviced, because the interrupt system is disabled during
this time. ‘

An interrupt service routine may be written in such a way that
a priority of device interrupts is established through software.
This may become necessary in a system that includes high-speed
devices which retain information for a short time and require im-
mediate attention. For example, a PDP-8/E system employing
Teletype and DECtape I/O may use a software priority interrupt
system which permits the Teletype service routines to be inter-
rupted whenever DECtape requests servicing. This is accom-
plished by modifying the keyboard and printer service routines to
permit the following sequence of operations:

-

1. Begin the keyboard and printer service routines by storing
the contents of location 0000, the accumulator, the link and
any other important registers in temporary storage locations.

2. Execute an ION instruction.

Clear the low-speed device flag. The ION instruction will

not take effect until this instruction has been executed.

4. Service the device. At this point, the service routine may
be interrupted without danger of the background program.
return address being lost.

5 Terminate the service routine by restoring the contents of .
the accumulator, the link and any other registers which were
stored in step 1, then executing a JMP 1 TEMP, where
TEMP is the location in which the return address from
location 0000 was stored.

A low-speed device service routine written in this manner op-

erates with the interrupt system enabled most of the time. The

6-30

w



" routine may be interrupted by an interrupt request from a higher
priority. device, and the second interrupt will not cause the con-
tents of -location 0000 (or any other important registers) to be
lost.

In the example cited above, the DECtape and DECdisk service
routines' would not re-enable the interrupt system until they are -
ready to return control to the background program. However, the
- Teletype routines re-enable the interrupt system almost. immedi-
ately. If DECtape or DECdisk interrupts one of the Teletype ser-
vice routines, the Teletype service routine is treated like a back-
ground program; . that is, execution of the Teletype service routine
is suspended until the high-speed device has been serviced. Control
 then reverts back to the Teletype service routine, and ﬁnally back

to the mainline program. :

Multiple Interrupt Demonstration Program

Figure 6- 20 presents a demonstration program designed to use
the program interrupt facility. This program rotates a bit through
the accumulator, with the speed and direction of rotation deter-
mined by switch register settings.- Simultaneously, the program
‘accepts 4-digit, positive octal numbers from the Teletype, auto-
matically terminating each 4-digit number with a carriage return
- and line feed. Upon receipt of a typed dollar sign ($), the program
sorts the data into ascending numerical order and prints the or-
dered numbers on the Teletype.

This example illustrates the power of mterrupt programming
because the computer appears to be performing two tasks at the
- same time. The programmer knows that this is impossible, and
that the two tasks are actually sharing computer time; however,
the appearance indicates simultaneous action. ,

When an interrupt request occurs, the current value of the PC
is stored in location 0000 of page O, while locations 0001 and
‘0002 contain an indirect jump to the interrupt service routine. The
program constants which are stored on page 0 beginning at loca-
tion 0050 include four software switches that record conditions
within the program. The contents of location MODE indicates
whether the program is currently performing input or output func-
tions. Location SW1 indicates whether the next digit to be received

- 6-31



*0

%50
“'MODE,

Rk SWl,

] SUZ,
SW3,
AC,

"FLAGS,

PRINTR,
KEYBRD,
ORDPTR,
EXITPT,
BUFF,
BUFFPT,
M4,
DIGCIR,

_TEMP1L,
TEMP,

MDOLAR,
mlo,
 HOLD,
_HOLDL,
M268,
AMOUNT,
FLAG,
TALLY,
X!,
X2, .
PRNTCT,
K7,
K268,
K212,
K215,
QUEST,
K4000,

260
212
215
277
4000

/PAGE ZERO

/INTERRUPT

/HANDLER

/PAGE ZERO CONSTANTS:
/INPUT=0 OUTPUT=-1
/NEW # = 0 OLD # = |

/CR=8 " LF==} DATA=!
/MODE BYPASS SWITCH
/SAVE ACCUMULATOR

/SAVE INTERRUPT FLAGS
/POINTER TO TP ROUTINE
/POINTER TO KB ROUTINE
/POINTER TO ORDER ROUTINE
/POINTER TO _.EXIT ROUTINE
/FIRST BUFFER LOCATION
/BUFFER POINTER

/-4 OCTAL

/DIGIT COUNTER

/TEMP STORAGE POINTER
/TEMP DIGIT STORAGE

/-244 OCTAL

/-18 OCTAL

/PACK ROUTINE STORAGE
/SAVE LINK

/-268 OCTAL

/DATA COUNTER

/ORDER ROUTINE FLAG
/ORDER ROUTINE COUNTER
/ORDER ROUTINE POINTER
/ORDER ROUTINE POINTER
/OUTPUT ROUTINE COUNTER
/ASCII CONSTANTS:
/ASCI1 CONVERSION FACTOR
/ASCII LINE FEED

/ASCII CARRIAGE RETURN
/ASC11 QUESTION MARK
/4200 OCTAL

Figure 6-20A Multiple Interrupt Demonstration Program

-

6-32



CR, TAD K215 - /GET. ASC11 CARRIAGE RETURN
: . TLS /PRINT IT 2 :
CLA CMA /LOAD -1 INTO ACCUMULATOR
DCA.sw2 - - - - /SET SW2 FOR LINE FEED
JMP T EXITPT /ENTER EXIT ROUTINE
LF, TAD K212 - /GET ASCII LINE FEED
- . TLS /PRINT IT
CLA /CLEAR ACCUMULATOR
TAD sw3 /GET MODE BYPASS SWITCH
SNA CLA /SET FOR BYPASS MODE?
JMP SW2SET /NO: SET SW2 AND RETURN
DCA sSW3 - /YES: TURN OFF MODE BYPASS
DCA sw2 /SET SW2 FOR CARRIAGE RETURN
JMP I EXITPT /ENTER EXIT ROUTINE
SW2SET, CLA CLL IAC - - /LOAD 1| INTO ACCUMULATOR.
DCA sw2 /SET Sw2 FOR DATA
JMP

I EXITPT

/ENTER EXIT ROUTINE

A Figtire 6-20B Multiple Interrupt Demonstration Program

is the first digit of a new number, to be packed into a new storage
location, or the next digit of a continuing number, to be packed
and stored with previous digits. Location SW2 indicates whether a
carriage return or line feed-should be printed to delimit input ele-
ments, arid location SW3 regulates the printing of carriage returns,
line feeds and question marks while the program is in input mode.
A question mark is printed whenéver a non-octal digit or non-
positive octal number is received. ‘ |
Other constants include location AC, in which the content of
the accumulator is-saved during an interrupt, and location FLAGS,
in which the interrupt flags and the link are stored. Location BUFF
-contains the address of the first data buffer location, which is the
core location following the last program instruction. Thus, the data
“buffer is all of memory following the end of the program.
The 5-word block beginning at location TEMP is used to store

6-33



*200
START,

ROTATE,
BEGIN,

GO,

INSTR,

SAVEAC,
SAVEL,
K728,
COUNTR,
COUNT,
LEFT,

RIGHT,

KRAR,
KRAL,

IOF
CLA
DCA
DCA
DCA
DCA
TAD
DCA
DCA
108

CLA:

DCA
RAL
DCA
TAD
OSR
DCA
OSR
RAL
SZL
Jiis
Jins
CLL
TAD
RAR
TAD
HLT
ISZ
JMP
152
JMP
JMP

2

15Z
TAD
DCA
JMP
2

TAD
DCA
JMP
RAR
RAL

CLL
MODE
Swi
Sw2
SW3
BUFF
BUFFPT
AMOUNT

CLL CML
SAVEAC

SAVEL
K7808

COUNT

CLA
LEFT

RIGHT
SAVEL
SAVEAC

COUNTR
INSTR+I
COUNT
INSTR+I
BEGIN

LEFT
KRAL
INSTR
I LEFT

KRAR
INSTR
I RIGHT

/INTERRUPT SYSTEM OFF

. /DURING INITIALIZATION

/CLEAR AGCCUMULATOR AND LINK
/SET INPUT MODE -

/SET SWl FOR NEW ENTRY

/SET Sw2 FOR CARRIAGE RETURN
/SET MODE BYPASS

/GET FIRST BUFFER LOCATION

/INITIALIZE BUFFER POINTER

/AND ELEMENT COUNTER
/ENABLE INTERRUPTS

/SET THE LINK

/CLEAR ACCUMULATOR STORAGE
/ROTATE LINK BIT LEFT
/SAVE LINK BIT

/GET OR MASK

/READ’ SWITCH REGISTER
/INITIALIZE DELAY COUNTER
/READ SR BIT ZERO
/ROTATE INTO LINK

/WAS BIT ZERO SET?

/YES: ROTATE LEFT

/N0: ROTATE RIGHT

/CLEAR THE LINK

/GET THE STORED LINK
/AND RESTORE IT

/GET STORED ACCUMULATOR
/OVERWRITTEN BY RAL OR RAR
/INCREMENT COUNTER
ZUNTIL IT OVERFLOWS
/INCREMENT COUNT

ZUNTIL IT OVERFLOWS
/LOOP BACK AND REPEAT
/STORAGE FOR ACCUMULATOR
/STORAGE FOR LINK

/SETS BITS 1-3

/ROTATE ROUTINE
/COUNTERS

/INSERT RAL INSTRUCTION
/INCREMENT RETURN ADDRESS
/GET RAL INSTRUCTION
/WRITE OVER HLT

/AND RETURN

/INSERT RAR INSTRUCTION
/GET RAR INSTRUCTION
/WRITE OVER HLT

/AND RETURN

/RAR INSTRUCTION

/RAL INSTRUCTION

Figure 6-20C Multiple Interrupt Demonstraﬁon:Program

6-34



SERVE,

ORDER,

TEST’""

REVERS,

INCPTR,

DCA

- GTF

DCA
TSF
SKP
JUP
KSF

SKP

JMP
CAF
JMP
CLA
TAD
CIA
IAC
DCA
DCA
TAD
DCA
TAD
IAC
DCA
TAD
CIA
TAD
SPA
JMP
TAD
DCA
TAD
DCA
TAD
DCA
CLA
DCA
1sz
1Sz
1sz
JMP
TAD
SzA
JMP

. CLA

DCA-
TAD
DCA
DCA
TAD
cla
DCA
LS
JMP

AC
FLAGS -

I PRINTR

I KEYBRD

I EXITPT =~

CLL
AMOUNT

TALLY
FLAG
BUFF
Xl
BUFF

X2

1 X2

I Xl
SNA CLA
INCPTR
I X1
HOLD

I x2

1 Xl
HOLD
Ix2
CLL CMa
FLAG
X1

X2
TALLY
TEST
FLAG
CLA
ORDER
CiMA
MODE
BUFF
BUFFPT
swr
AMOUNT

PRNTCT
I EXITPT

/SAVE ACCUMULATOR

/GET FLAGS

/SAVE FLAGS AND LINK
/PRINTER FLAG RAISED?
/NOs CHECK KEYBOARD
/YES: SERVICE PRINTER
/KEYBOARD FLAG RAISED?
/NQ: CLEAR ALL FLAGS
/YES: SERVICE KEYBOARD
/AND RESUME ‘
/BACKGROUND EXECUTION
/0RDER ROUTINE

/GET NUMBER OF ENTRIES

/SET TALLY ToO

/COUNT ITERATIONS

/THRU ORDER LOOP

/CLEAR FLAG ON EACH PASS
/GET FIRST BUFFER ADDRESS
/INITIALIZE X! POINTER
/FORM SECOND :
/BUFFER ADDRESS
/INITIALIZE X2 POJINTER
/GET X2 POINTER ENTRY
/FORM TWO'S COMPLEMENT
/ADD- X1 POINTER ENTRY

/1S ACCUMULATOR POSITIVE?
/NO: INCREMENT POINTERS
/YES: SWITCH THE ENTRIES
/HOLD X! ENTRY

/GET X2 ENTRY

/STORE AT X! LocaTIlown
/GET X1 ENTRY

/STORE AT X2 LOCATION
/LOAD -1 INTO FLAG TO
/SHOW SWITCH WAS MADE
/INCREMENT X! POINTER
/INCREMENT X2 POINTER
/COMPARED ALL ENTRIES?
/NO: LOOP BACK

/YES: WAS SWITCH MADE

/0N LAST PASS?

/YES: CONTINUE ORDERING
/NO: FORM =1 AND

© /SET MODE FOR OQUTPUT

/GET FIRST BUFFER ADDRESS
/INITIALIZE BUFFER POINTER
/SET SW! FOR NEW NUMBER
/GET NUMBER OF ENTRIES
/FORM TWO'S COMPLEMENT
/INITIALIZE COUNTER
/RAISE PRINTER FLAG
/RESUME BACKGROUND

Figure 6-20D Multiple Interrupt Demonstration Program

6-35



successive digits of a 4-digit number. Location TEMP serves as a
pointer to the following four locations, and the content of location
TEMPI is used to reset location TEMP for the first digit of a new
number. Page O also contains three subroutines which print car-
riage returns and line feeds, when indicated by the value of SW2,
and then reset SW2 to continue data I/O.

The program coding begins with an initialiation routine at loca-
tion 0200: This routine initializes the software switches and resets
the data buffer pointer and counter, then enables the interrupt
facility. At this point the background program is entered.

The ROTATE routine sets accumulator bit 11, then checks

* 400 /KEYBOARD SERVICE ROUTINE
KB, KCC /CLEAR KEYBOARD FLAG
TAD MODE /CURRENTLY 1IN
SZA CLA /INPUT MODE? :
JMP EXIT /NO: RESUME BACKGROUND.
TAD Swl /YES: EXPECTING CONTINUED
SZA CLA /NUMBER OR NEW NUMBER?
JMP CNTDIG /CONTINUED NUMBER
TAD M4 /NEW ENTRY
DCA DIGCTR JINITIALIZE DIGIT COUNTER
TAD TEMPI /AND TEMPORARY ’
DCA TEMP /DIGIT STORAGE
CNIDIG, KRS /READ A CHARACTER
’ DCA I TEMP /STORE 1T
CHECK, TaD I TEWP /GET THE CHARACTER
TLS /ECHO ON PRINTER
TAD MDOLAR /1S CHARACTER A
SNA CLA /DOLLAR SIGN ($)7
JMP 1 ORDPIR /YES: BEGIN ORDER ROUTINE
TAD 1 TEMP /NO: GET THE CHARACTER
TAD M269 /SUBTRACT 260
SPA /1S CHARACTER < 2607
JMP ERROR /YES: TAKE ERROR BRANCH
TAD Mi0 /80: ADD 10
SPA /1S CHARACTER > 2677
JMP LEGAL /#0s MUST BE LEGAL
ERROR, CLA IAC /YES: FORM 1 AND
DCA SW3 /SET SW3 FOR BYPASS
DCA swl /RESET Swl
TLS /RAISE PRINTER FLAG
- JMP EXIT /RESUME BACKGROUND

Figure 6-20E  Multiple Interrupt Demonstration Program

6-36



switch register bit 0 and rotates the accumulator right, if bit 0 is
off, or left, is bit 0 is on. The appropriate instruction (RAL or
RAR) is written into location INSTR, which is arbitrarily assigned
an initial content of 7402 (HLT). After determining the direction
of rotation, the ROTATE routine loads the value of switch register
bits 1-11 into a counter and uses this value to control the speed
of rotation. Increasing the value specified by switch register bits
1-11 decreases the speed of rotation.

LEGAL, CLA CMA | /FORM =1 IN ACCUMULATOR

DCA swl /SET swl
1SZ TEMP /INCREMENT STORAGE POINTER
I1SZ DIGCIR /INCREMENT DIGIT COUNTER
- JMP EXIT - /RESUME BACKGROUND

PACK, TAD TEMPI /INITIALIZE TEMP
DCA TEMP /STORAGE POINTER
DCA HOLD /CLEAR STORAGE LOCATION
TAD M4 © /INITIALIZE THE
DCA DIGCTR /DIGIT COUNTER

DIGPAK, TAD HOLD /ADD STORED LOCATION
RAL CLL . /ROTATE LEFT
RTL /THREE TIMES
TAD I TEMP /ADD IN A DIGIT
TAD M260 /SUBTRACT THE 2682
DCA HOLD /STORE PARTIAL NUMBER
1SZ TEMP /INCREMENT DIGIT POINTER
1SZ DIGCTR /PACKED 4 DIGITS YET?
JMP DIGPAK /NO: PACK ANOTHER
TAD HOLD /YES: GET PACKED NUMBER

DCA I BUFFPT /STORE IN BUFFER
TAD I BUFFPT /GET STORED NUMBER

TAD K4220 - /ADD 408@ OCTAL

SPA CLA /1S NUMBER NEGATIVE?

JMP NOTNEG /NO: KEEP ZERO ACCUMULATOR

IAC /YES: FORM 1 IN ACCUMULATOR

JMP DISALO /TAKE ERROR BRANCH
NOTINEG, ISZ BUFFPT /INCREMENT POINTER

1SZ AMOUNT /AND COUNTER

CLA CMA /FORM =I IN ACCUMULATOR
DISALO, DCA SW3 /SET MODE BYPASS

: DCA Swi /RESET SWi
ILS /RAISE PRINTER FLAG
JMP EXIT /RESUME BACKGROUND

Figure 6-20F Multiple Interrupt Demonstration Program
6-37



The interrupt service routine, which begins in location SERVE,
is simply a skip chain that directs control to the appropriate device
service routine. If an interrupt occurs when none of the devices
tested in the skip chain requested an interrupt, the routine clears
all flags and resumes background execution.

The ORDER routine is initiated whenever receipt of a dollar
sign indicates that input is complete. This routine uses techniques
introduced in Chapter 3 to sort the input data into ascending order.
The device service routines and the interrupt system exit routine
conclude the program listing.

P, ¢ . /CLEAR PRINTER FLAG
- TAD SW3 /Sw3 SET FOR
SNA CLA ~ /MODE BYPASS?
JMP MODCHK /NO: CHECK CURRENT MODE
TAD SW3 /15 SW3 SET FOR
SPA CLA /A QUESTION MARK?
JMP RETLF /NO: RETURN CARRIAGE
TAD QUEST /YES: GET QUESTION MARK
TLS /PRINT IT
CLA CMA /SET Sw3 FOR |
DCA SW3 /CR AND LF, THEN
JUP EXIT /RESUME BACKGROUND
MODCHK, TAD MODE /CURRENTLY IN
SNA CLA - /INPUT OR OUTPUT MODE?
JMP EXIT /INPUT: IGNORE REQUEST
RETLF, TAD Sw2 ~ /OUTPUT: BEGIN OUTPUT
SNA CLA - /PRINT A
JMP CR /CARRIAGE RETURN ON
TAD Sw2- /FIRST PASS, AND
SPA CLA /LINE FEED
JMP LF /0N SECOND PASS
DATA, TAD Swl /JPRINT DATA ON THIRD PASS
SZA CLA © /NEW NUMBER?
JMP DIGTYP /W0: TYPE ANOTHER DIGIT
TAD M4 /YES: GET DIGIT COUNT
DCA DIGCTR /RESET DIGIT COUNTER
DCA HOLD /CLEAR TEMPORARY
DCA HOLDL ~ /STORAGE LOCATIONS

TAD I BUFFPT /GET NEXT NUMBER TO PRINT

Figure 6-20G  Multiple Interrupt Demonstration Program
6-38 ’



'DIGTYP, TAD
| " CLL

-TAD-

RAL
RTL
DCA
RAR
DCA
TAD
AND
TAD
TLS
CLA
DCA
1Sz
JMP
CLA
DCA
DCA
1Sz
1Sz
Jip
RESTRT, CLA
DCA
DCA
CMA
DCA
TAD
DCA
DCA
JMP
EXIT, CLA
TAD
RTF
CLA

TAD

} JMp
END=, _

HOLDL
RAL
HOLD

HOLD

HOLDL
HOLD

K268

cMa
Swl
DIGCTR
EXIT

Swl
Sw2
BUFFPT
PRNTCT
EXIT
CLL
MODE
Sw2
SW3
BUFF
BUFFPT
AMOUNT
EXIT
CLL
FLAGS

/GET LINK AND

- /RESTORE 1T.

/ROTATE

/STORED VALUE

/LEFT

/THREE TIMES

/SAVE BIT THAT wAS
/ROTATED INTO LINK

/GET ROTATED NUMBER

/MASK OFF FIRST § BITS
/CONVERT TO ASCII

/AND PRINT A DIGIT

/FORM =1 IN ACCUMULATOR
/SET SW! TO CONTINUE NUMBER
/PRINTED 4 DIGITS YET?

/NO: RESUME BACKGROUND
/YES: SET SW! To

/SIGNAL A NEW NUMBER

/SET SW2 FOR CARRIAGE RETURN
/INCREMENT BUFFER POINTER
/AND ELEMENT COUNTER
/RESUME BACKGROUND

/CLEAR ACCUMULATOR AND LINK
/SET MODE FOR INPUT

'/SET SW2 FOR CARRIAGE RETURN

/SET SW3 FOR :

/INPUT MODE BYPASS

/GET FIRST BUFFER LOCATION
/RESET BUFFER POINTER

/AND ELEMENT COUNTER
/RESUME BACKGROUND

/CLEAR ACCUMULATOR AND LINK

- /GET INTERRUPT FLAGS

/RESTORE FLAGS
/CLEAR ACCUMULATOR
/RESTORE ACCUMULATOR
/RESUME BACKGROUND

Figure 6-20H Multiple Interrupt Demonstration Program

e

- 6-39



DATA BREAK

Programmed transfers of data, including program interrupt
transfers, pass through the accumulator. This requires that the
content of the accumulator be saved before the transfer is per-
formed, and later restored. This type of transfer is often too slow
for use with extremely fast peripheral devices. Devices which op-
erate at very high speed, or which require very rapid response
from the computer, use the data break facility. The data break
permits an external device to insert or extract core memory words
directly, bypassing all program control. Because a computer pro-
gram has no cognizance of transfers made in this manner, it is
necessary to check for the presence of transferred data prior to
using it. The data break is particularly well-suited to I/O devices
that transfer large amounts of data in block form, such as random
access disk files, high-speed magnetic tape systems, or high-speed
drum memories. )

Accessing Data

Before a peripheral storage device may accept data from the
computer, it must find the off-line location at which the data is to
be stored. In the same manner, a peripheral device cannot send
input data into the computer until it has found the location at
which the data is presently stored. The process of finding a stored
data word, or the location at which a data word is to be stored, is
called accessing data. The time required for this process is the de-
vice access time. It is important to realize that even very fast
peripheral storage devices have an access time of many machine
cycles, so that many instructions could be executed in the time
required for the peripheral device to access one data word.

Single-Cycle Data Break _

Data breaks are of two types: single-cycle and 3-cycle. In a
single-cycle data break, the 1/0O device contains two registers
which specify the core memory location with which the next data
word is to be transferred (current address, or CA, register) and
the negative of the number of words that remain to be transferred
(word count, or WC, register) »IOT instructions initiate the trans-
fer by setting the WC and CA registers. Other IOT instructions
~ indicate the direction of transfer and cause the device to perform

6-40



any preliminary operations which may be necessary to access the
desired data. At this point, program execution continues and the
device assumes full control of the data transfer.

Figure 6-21 provides a diagram of the single-cycle data break.
After performing the necessary preliminary operations, the 1/0
device accesses the first data word and signals a data break re-
quest. This causes the central processor to suspend operation by
disabling its major state generator and instruction register, while
loading its memory address register with the contents of the de-
vice CA register. The device then generates a- signal which either

|

LOAD WC
_REGISTER
ACCESS DATA
LOAD CA
REGISTER 5
REQUEST
: DATA BREAK
EXECUTE IOT'S TO
AXCESS DATA
A LOAD CA
INTO CPMA
NELESTOLEN ‘ YT
. LOAD DATA INTO ACCEPT DATA FROM
“"Tr%EPSEERFORM { MB REGISTER MB REGISTERS
OPERATIONS ] ' ]
INCREMENT
WC & CA
REGISTERS
g
( continue ) ’

[raise pEvice FLaG |

Figure 6-21 Single-Cycle Data Break
6-41



loads the memory buffer register with data or accepts data from
this register, depending upon the direction of data transfer. When
this operation is complete, the device increments its WC and CA

registers and returns control to the central processor, which con-
" tinues mainline execution. ‘

Meanwhile, the I/O device begins to access the next data word
to be transferred. This process continues until the device WC
register overflows (contains 0000), indicating that no further data
transfers are required.

Cycle Stealing

The process by which one cycle is “stolen” from the central

processor in order to transfer data directly to or from core mem-
" ory is called a cycle-steal operation. Each single-cycle data break
causes the WC and CA registers to be incremented and transfers
one word of data to or from core memory. The 1/O device re-
quests a data break whenever it is ready to transfer a word, and
performs all transfers during cycles stolen from the central pro-
cessor. Program execution continues between data breaks, while
the I/0 device is accessing the next data word.

3-Cycle Data Break
Devices which operate by means of a 3-cycle data break do not
contain a WC register or a CA register. Instead, the addresses of
two core memory locations are hard-wired into the device, and
these core locations are used in place of the WC and CA registers.
When a 3-cycle data break is requested, the first cycle is used to
fetch the content of the core location designated as the WC reg-
ister into the device, increment it, test for WC overflow, and re-
turn it to core memory. The CA register is incremented in the
same manner during the second cycle, and loaded into the memory
“address register. The actual data transfer occurs during the third
cycle. ’
In contrast to devices which use the single-cycle data break,
3-cycle devices increment the CA register before performing the
actual data transfer. For this reason, the CA register of a 3-cycle
device must always be loaded with one less than the address of
the first data buffer location. The WC register of a 3-cycle device
is loaded with the two’s complement of the number of words to
be transferred, just as with a single-cycle device.

6-42



From a programming viewpoint, the only other major differ-
‘ence between single-cycle and 3-cycle data breaks is that a single-
cycle device contains its own WC and CA registers, which are
loaded by means of IOT instructions. A 3-cycle device uses two °
~ core memory locations as its WC and CA registers, so that the
registers must be loaded by means of memory reference instruc-

tions. '

EXERCISES

1. Write a subroutine ALARM which rings the teleprinter bell
five times. ~ '

2. Write a format subroutine for the teleprinter to tab space
the teleprinter carriage. The subroutine is entered with the
number of spaces to be tabbed in the accumulator.

3. Write a program that will type a heading at the top of the
paper and then type the numbers 1 through 10 down the
- left hand side of the page with a period after each number.

4. Write a program which will accept a 2-digit octal number
from the Teletype keyboard and type “SQUARED=" and
the value for the number squared, followed by “OCTAL”
and a carriage return and line feed.

5. Extend the program written in Exercise 4 by adding routines
to disallow the input of an 8 or-9 and type out an _ai)propriate
message.

6. Combine the program of Exercise 5 with a bit-rotating pro-
gram to use the program interrupt facility.

6-43



dectape
progr amming

. INTRODUCTION

The DECtape system is a standard option for PDP-8 series
computers that serves as an auxiliary magnetic tape data storage
facility. DECtape provides a distinct advantage over conventional
magnetic tape because it stores information at fixed positions
which may be directly addressed, much like conventional magnetic
disk or drum devices. Yet unlike magnetic disk or drum devices,
DECtape is bidirectional and adaptable to a wide variety of user
data formats. In this manner, DECtape combines the versatility
of magnetic disk and drum storage with the convenience and econ-
omy of magnetic tape.

DATA BLOCKS |
A reel of DECtape is organized into a series of addressable -
blocks. Each block consists of control words, used to identify the
block, and data words, used for data storage. The data words con-
tain twelve bits each; however, every control word contains eigh-
teen bits. Blocks are usually numbered in sequence, from 0 to
N-1, where N is the (octal) number of blocks on the tape. The
maximum number of addressable blocks per tape is 212, or 4096.
Every block contains ten control words. A block may contain
any number of data words, with the restriction that the number of
data words contained in each block must be an even multiple of
three. If the number of blocks on a tape is known, the number of
data words per block may be found by the following formula:

where Ny = Decimal number of words

N 212080 +o per block.
B : . .
Nw+135 Ny = Decimal number of blocks
per tape.
Disregard any fractional remainder.

7-1



DATA CHANNELS

DECtape is divided longitudinally into five pairs of identical
channels which run the entire length of the tape. Duplicating each
channel helps to minimize' any loss of information. The timing
channels are used to reference fixed locations on the tape. The
mark-track channels establish the format of information contained
in the data channels. The three pairs of data channels are arranged
in such a way that no two identical channels are adjacent. The
arrangement of channels on the tape is shown in Figure 7-1.

3/4 INCH MAGNETIC TAPE

Figure 7-1 DECtape Data Channels

STANDARD DECTAPES

Figure 7-2 indicates that a standard, 260 foot reel of DECtape
contains 2702 (or 1474,,) standard blocks and two end zones.
The figure also shows an enlarged diagram of one standard block,
which contains 2015 (or 129,,) twelve-bit data words and 10
" eighteen-bit control words. Note that only the top half of the tape
is shown. The five redundant channels have been omitted for
clarity. '

72



€L

.

ONE COMPLETE REEL =260 FT =1474 STANDARD BLOCKS

ONE STANDARD BLOCK =129 DATA WORDS AND 10 CONTROL WORDS

“rrenrr
[ T R |

TIMING TRACK
MARK TRACK

1

INFORM-~
ATION
TRACKS

Lt 129¢p DATA WORD LOCATIONS

|-—0NE DATA WORD= 4 LINES OF 3.BITS EACH-—I

TIMING TRACK
MARK TRACK
1

DATA . ! »
CHANNEL

I-i Lme—-l

Figure 7-2 Standard DECtape Format:



A further enlargement shows the structure of one data word.
Once again, the redundant channels have been omitted. If one
12-bit binary number is written into this data word in the forward
direction, the twelve bits will be stored sequentially in the num-
bered locations shown. ‘

Nonstandard DECtapes having more or less than 129,, data -
words per block may be prepared to the user’s specifications. As
with standard blocks, the number of data words per block must
“be an even multiple of three.

DECTAPE CONTROL UNIT

A DECtape system consists of up to eight single DECtape
Transport Units (TUS5) or four dual DECtape Transport Units
(TUS6), all operated by one TCO8 DECtape Control Unit. Data
is transferred between the computer and the DECtape Control
Unit by means of the 3-cycle data break facility, described in
Chapter 6. Transfers occur at a rate of one 12-bit word every 133
microseconds (*30%). The DECtape Control Unit uses core
memory location 7754 in field zero as its word count register and
core memory location 7755 in field zero as its current address
register. o

TC08 DECtape Control Unit

Register Core Address
Word Count (WC) 7754

Current Address (CA) 7755

DECTAPE STATUS REGISTERS

The DECtape Control Unit contains two 12-bit registers, des-
ignated Status Register A and Staus Register B, which may be
loaded and read by IOT instructions. These registers consist of
various switches and indicators, as shown in Figure 7-3 and
Figure 7-4. :

7-4



BiTPOSITlON_._O 1 2|3lalsle 7

LI

. DECTAPE TRANSPORT_J
TO BE USED
DIRECTION
= FORWARD
| =REVERSE
MOTION
@ =STOP
1=60
* MODE
@ =NORMAL
1 =CONTINUOUS
'FUNCTION .
 0@Q@=0g =MOVE
@01=1g =SEARCH
1@ =2g =READ DATA
@11=3g =READ ALL
100@-4g =WRITE DATA
101=5g =WRITE ALL
11@=6g =WRITE TIMING AND MARK TRACKS
111=7g =UNUSED

INTERRUPT CONTROL-

@=DISABLE DECTAPE FROM CAUSING INTERRUPTS
t = ENABLE DECTAPE TO CAUSE INTERRUPTS -

ERROR FLAG CONTROL
- 7 @=CLEAR ALL ERROR FLAGS
1 =LEAVE ERROR FLAGS UNDISTURBED

_DECTAPE FLAG CONTROL:

0 CLEAR DECTAPE FLAG
=LEAVE DECTAPE FLAG UNDISTURBED

Figure 7-3 Status Register A

ol1|2|3|a|5|6 7 8

10

ERROR FLAGI t
MARK TRACK ERROR
END-OF-TAPE

SELECT ERROR
PARITY ERROR
TIMING ERROR
'MEMORY FIELD
UNUSED:

DEC TAPE FLAG (DTF)

Figure 7-4 Status Register B .

7-5




Status Register B

Bits 0-5 of Status Register B provide six indicators which flag -
error conditions that may occur. These indicators normally contain
zeros, indicating the absence of an error condition. The possible
errors, their abbreviations and causes are listed in Table 7-1. Note
that parity and mark-track errors are hardware malfunctions, while
timing and select errors are generally caused by the software.

Bits 6-8 of Status Register B specify the memory field from or
to which data should be transferred. Bits 9 and 10 are not used.
Bit 11 is called the DECtape Flag (DTF). In general, a value of
0 in this bit at any given time indicates that a DECtape operation
- Is in progress. A value of 1 indicates that the current operation has
been completed.

Status Register A ‘

Status Register A designates which DECtape transport is to be
used (bits 0-2), in which direction it should operate (bit 3) and
whether operation shouid be commenced or discontinued (bit 4).

Bit 5 of Status Register A specifies the transfer mode, which
may be either normal or continuous. In normal mode, data trans-
fer continues until the end of a block is reached or a predetermined
number of words has been transferred, whichever occurs first. In
continuous mode data transfer continues, across block boundaries
if necessary, until WC overflow occurs, indicating that the required
number of words has been transferred.

Bits 6-8 of Status Register A designate the function to be per-
formed. The seven possible functions are summarized in Table 7-2.
The first four functions, MOVE, SEARCH, READ DATA and
WRITE DATA, are used exclusively for most applications.

The remaining three bits of Status Register A indicate whether
or not the interrupt system is to be used (bit 9), whether error
flags in Status Register B are to be cleared (bit 10) and whether
the DECtape Flag is to be cleared (bit 11). '

7-6



Table 7-1 TC08 Error Codes

Bit

Posi- -

tion

Designation -

A value of 1 in this bit indicates:

0

1

Error Flag
Mark-Track Error
End-of-Tape Error

Select Error

Parity Error

Timing Error

Detection of one or more of the follow-
ing errors.

Erroneous information was read from
the mark track.

The end zone on either end of the tape
is over the recording heads.

This error is flagged 5 microseconds

after loading Status Register A to indi-

cate one or more of the following
conditions: _

a. The unit select code is not assigned
to any transport or is assigned to
more than one transport. _

b. A write function was specified with
the WRITE ENABLE/WRITE
LOCK switch in the WRITE LOCK
position.

C. An unused function code was speci-
fied (111 in bits 6-8 of Status Regis-
ter A). s

d. A write timing and mark track func-

.. tion was specified with the WRTM/
- NORMAL switch in the NORMAL
position.

Checksum was incorrect during a read

data function, or else WC overflow did
not occur at the end of the first block

read in continuous mode. This flag is

only set simultaneously with the DTF.

A program fault caused one of the fol-

lowing conditions: _ '

a. A data break could not occur within
66 microseconds *30% of the data
break request. ,

b. The DTF was not cleared before the
control unit attempted to set it.

c. A read data or write data function
was specified after the current block
had been entered, preventing coms-
plete data transfer.,

7-7



Table 7-2 DECtape Functions

Possible
Function Description Errors :
MOVE Initiates motion of the specified Select
{000) tape drive in the specified direc- End-of-Tape
tion. Errors are inhibited, except
for end of tape errors. Used only
to rewind tape. DTF, WC and
CA are never changed.
SEARCH As the tape is moving in either Select
(001) direction, the sensing of a block End-of-Tape
| mark causes a data transfer of | Timing
the block number. The CA is not Mark-Track

—_—

READ DATA
(002)

WRITE
DATA
(004)

incremented.

Normal mode: | Continuous
DTE is set after | mode: WC is
each block incremented
number is"* after each ‘
transferred. block number
is transferred.
DTF is set
when WC over-
flow occurs.

———

Transfers data

into memory.
Only data words are transferred.

Continuous
mode: DTF is
set when WC
overflow
occurs.

Normal mode:
DTF is set at
the end of each
block or when
WC overflow

_.occurs.

Transfers data onto tape. When
WC overflow occurs in the mid-
dle of a block, the block is filled
out with zeros. Modes of opera-
tion are the same as for the
READ DATA function.

7-8

4____;:‘:-—-_—

Select
End-of-Tape
Timing
Parity
Mark-Track

I e e

Select
End-of-Tape
Timing
Mark-Track




Table 7-2 (Cont'd)

Possible

Function Description Errors
— — — —

READ ALL Transfers data into memory. The | Select

(003) entire content of the information End-of-Tape
tracks is transferred, including Timing

control words.! _ Mark-Track

Normal mode: | Continuous
DTF is set after | mode: DTF is
each data word | set when WC
is transferred. overflow

_ occurs..
ﬁ: 1. — m——
WRITE . Transfers data onto tape regard- | Select
ALL less of the data format. Only | End-of-Tape
(005) mark-track and end of tape er- | Timing

rors are checked. Used to write | Mark-Track
block numbers on tape. Modes
of operation are the same as for

S the READ ALL function.!.
WRITE | Used by DECtape formatting | Select
TIMING - routines to write timing and | Timing
AND MARK mark-tracks, and to establish or
TRACKS change the length of blocks.!

(006)

DECTAPE IOT INSTRUCTIONS

~ The six basic IOT instructions used to program the PDP-8 for
DECtape operation are listed in Table 7-3. An instruction to load
Status Register A is, in effect, an instruction to begin the operation
specified by the bit configuration loaded. Once begun, the operation
continues to execute until the DTF flags completion, and the tape
remains in motion until a 1 is loaded into bit 3 of Status Register A.

1 These functions are normally used only by DECtape formatting routines
and diagnostics.

7-9



The memory field bits (positions 6-8) of Status Register B are
loaded by means of a DTLB instruction. The remaining bits in
Status Register B are loaded by specifying proper values for bits
10 and 11 of Status Register A. Note that Status Register A is
loaded by exclusive ORing the contents of accumulator bits 0-9
into the register. Accumulator bits 10 and 11 are sampled directly,
without the exclusive OR operation, and used to set the Status
Register B flags.

Table 7-3 DECtape IOT Instructions

Octal
Mnemonic Code Operation

DTRA (Read Status 6761 The contents of Status Register A bits

Register A) 0-9 are ORed with the contents of
accumulator bits 0-9, and the result is
placed in accumulator bits 0-9.

DTCA (Clear Status 6762 Status Register A is cleared. Status

Register A) -+ Register B is undisturbed.
DTXA (Load Status 6764 Bits 0-9 in the accumulator are EX-

Register A) ' CLUSIVE ORed with bits 0-9 of
' Status Register A and the result is
loaded into bits 0-9 of Status Register
A. Bits 10 and 11 in the accumulator
are sampled, and the error flags are
cleared if bit 10 is a 0. The DECtape
flag is cleared if bit 11 is a 0. The
accumulator is cleared.

DTSF (Skip 6771 If either the error ﬁag or the DECtape

on Flags) flag is set, the program counter is in-
cremented to skip the next sequential
instruction.

DTRB (Read Status 6772 The content of Status Register B is
Register B) ORed with the content of the accumu-
o lator and the result is placed in the

accumulator.

DTLB (Load Status 6774 Bits 6-8 of the accumulator are loaded

-Register B) into bit positions 6-8 of Status Regis-
ter B. The accumulator is cleared.
Error flags and DECtape ﬁag are un-
disturbed.

7-10



PROGRAMMED DECTAPE OPERATION ,

Prior to using the TCO8 DECtape system for data storage, a
reel of DECtape must be prerecorded to insert the timing track,
mark-track and block numbers. This function is performed in two
passes by a DECtape formatting program utilizing the WRTM
control operation. Successful execution requires that the manual
switch on the DECtape Control Unit be placed in the WRTM
position during the first pass. After one prerecording; a reel of DEC-
tape may be used indefinitely.

Tape 1/0 operations are usually performed by a DECtape ser-
vice routine, which uses the six DECtape IOTs to clear, read and
load the status registers. Since the actual data transfer occurs by
means of the 3-cycle data break, service routines often begin by
using memory reference instructions to set the word count and
current address registers. By loading an appropriate bit configura-
tion into Status Register A, the SEARCH function is then initiated
to locate the block number selected for transfer.

While searching, the DECtape control reads only block num-
bers. In normal mode the DTF is raised at every block number
and the block number is transferred into the address specified by
the CA register, which is not incremented during SEARCH. The
. contents of this location may be monitored until the desired block

number is transferred, at which time a READ DATA operation
must be instituted promptly (within 400 microseconds +30%)
by reloading Status Register A. '

During the READ DATA operation, the DECtape service rou-
tine monitors Status Register B constantly by means of a DTSF
(skip on flags) loop to check for error conditions and determine
when the DTF flags completion of data transfer. Meanwhile, data
transfer continues without program control until the data block is
exhausted or WC overflow occurs. Either of these events will raise
the DTF (in normal mode), at which time the service routine may
~again load Status Register A, forcing a 0 into bit 4 to terminate
the operation.

With the interrupt facility enabled, the DECtape service routine
described above may be designed to execute as a foreground pro-
gram, and mainline operations in the background program may be
performed while the DECtape system is accessing data.

7-11



The operations summarized above may be broken down as -
follows:

1. Use an MRI to load the WC register with‘ the negafive
"~ (two’s complement) of the number of words to be trans-
ferred.

2. Use an MRI to load the CA register with one less than the
core address with which the first transfer is to be made.
Successive transfers will be made with successive core lo-
cations. '

3. Use a DTLB instruction to load Status Register B bits 6-8
with the desired memory field designation.

4. Begin to search for the desired block number by using a
DTXA instruction to load Status Register A with an ap-
propriate bit configuration. This should also clear all flags.

5. Remain in a skip-on-flag loop and test each block number
as it is transferred until the desired block number has been
transferred.

6. Reload Status Register A to clear all flags and begin READ
DATA function. '

7. Remain in skip-on-flag loop until the DTF flags completion.

8. Load a 1 into bit posmon 4 of Status Register A to halt
the tape.

The procedure summarized above is neither complete nor ef-
ficient, although it does 111ustrate the sequence of operations gen-
erally employed. Step 5 is inefficient because it may be necessary
to search the entire length of a tape before the desired block num-
ber is transferred. Steps 5 and 7 are incomplete because they do
not test for error conditions, and any error condition will cause
the program to skip out of the waiting loop before the current
operation is finished. Finally, this procedure makes no provision
for reversing the direction of tape motion, which may become nec-
essary if either end zone is reached or if the desired block is ini-
tially accessed in the wrong direction. Techniques for dealing with
all of these conditions will be developed in the following sections.

7-12



USE OF THE DECTAPE FLAG

‘The DECtape flag may be tested to- determme the status (in
progress, or finished) of the current operation. In normal mode,
the flag is set when WC overflow occurs. If WC overflow has not
occurred and the flag is set: |

1. During SEARCH function: A block mark has just been
read and transferred to the address contained in the CA
register. The CA register was not 1ncremented and the tape
is still moving. '

2. During READ DATA function: A full block of data has
just been transferred to core memory via data break. The
control unit is still in READ DATA mode and the tape is
moving. The CA register contains the address of the next
sequential core location following the last one read into.
The next data block will be read into core beginning at this
location.

3. During WRITE DATA function: A block of data has just
been written on tape from core memory via data break. The
control unit is still in WRITE DATA mode, and the tape
is moving. The CA register contains the address of the next
sequential core location following the last one transferred.
The contents of. core beginning at this location will be writ-

- ten into the next block on the tape.

In continuous mode, the DECtape flag is set only when WC
~overflow occurs, regardless-of the function being performed.? This
usually indicates that the current operation is complete and that
execution should now be terminated under program control. Note
that the tape does not stop moving automatically when the DTF
flags completion of the current operation; however, any error con-
dition except a parity error will cause the tape to stop.

2 If transfer has continued across one or more block boundaries, the Parity
Error Flag is also set as soon as WC overflow occurs.

7-13



SELECTING DIRECTION

Data is normally read in the direction in which it was written.
If data is read in the wrong direction, the data buffer will be filled
in reverse order, with what was originally the first data word being
placed in the last buffer position, and so on. Furthermore, since
the DECtape system breaks every word into four 3-bit increments
~ which it stores sequentially, each data word will be returned with
its bit positions changed as shown below:

ORIGINAL BIT POSITIONS: 0] 1| 2|3]4][5]6]|7]8] 9]i0]11
RETURNED BIT POSITIONS: 9 {10 |t1]{6]7[8[3[4[5] 0] 1|2

Finally, reading a data word in the wrong direction causes the
word to be returned with every bit complemented. Thus, an octal
1234 written in the reverse direction would be read as 3456 in
the forward direction.

REVERSING DIRECTION _

The DECtape transport requires at least one full standard block
to reverse direction and cycle back up to reading speed. Most
programmers allow two full blocks to assure successful turn
around. If block number 105 is to be read when block 200 is
positioned under the recording heads, for example, it is necessary
to search in the reverse direction for block 102. The tape may be
turned around just inside block 102, and it will cycle up to read-
ing speed before reaching block 105. In general, to read block N
forward, search in reverse for block N-3.

The standard DECtape format provides sufficient space be-
tween the end data blocks and the end of the tape to perform a
turn around in the end zone and successfully access either block 0O
in the forward direction or block 2701 in reverse. Some boatstrap
loaders take advantage of this by performing a MOVE reverse
until the end zone is reached, and then a READ forward to load
a routine stored in block 0.

7-14



ACCESSING DATA BLOCKS
The most efficient -method for accessing data blocks is sum-
- marized below:

I

1. SEARCH forward in normal mode until the first block
number is transferred into core at the location specified by
the CA register. '

2. When the DTF flags completion of thlS transfer, test the
block number to determine how many blocks must be by-
passed and in which direction. Allow two extra blocks if a
turn around is required. .

- 3. Load the WC register with the number of blocks which
must be bypassed, then SEARCH in continuous mode until
the DTF flags WC overflow. Turn around, if necessary.

4. The next block encountered will be the desired block.

ALLOCATING STORAGE AREAS

Any process which. attempts to access single DECtape blocks
sequentially will be inefficient, because it may be necessary to
turn around twice to access each block. This problem develops
whenever large amounts of code or slow I/O operations must be
executed between accessing adjacent blocks of DECtape. Under
these circumstances, the block being accessed may overshoot the
recording heads before the intermediate operation is complete.
Stopping the tape to allow full execution of the intermediate pro-
cess is not a solution, because the tape requires two blocks to
cycle up to reading speed, so that it will still overshoot the block
being accessed.

An efficient way of solving this problem is to break up data
files and programs into large segments spanning many blocks,
and then alternate -a recorded segment with a blank segment on
the tape. While a blank segment is passing under the recording
heads, it is possible to perform an intermediate process and com-
plete it in time to access the first block of the next recorded seg-
ment. Blank segments may be recorded in a similar manner in -
the reverse direction. The DECtape Copy program uses this type
of operation to access 14 block segments separated by 14 block
intervals. It is very efficient at reading and copying DECtapes.

7-15



PROGRAMMING FOR ERROR CONDITIONS

It is generally desirable for every DECtape service routine to
- provide an extensive method for handling error conditions. This
might include:

Requesting operator intervention after a select error.
Counting changes in tape direction to guard against tape
rocking loops, which can occur when the desired block is
nonexistent or when the tape mechanism is malfunctioning.
3. Attempting to read a block a second time following a parity
error.
4. Informing the user when a nonrecoverable error condition
exists.

N

PROGRAMMING FOR INTERRUPTS

The DECtape control unit contains a 1-bit register called the
DECtape Control Flag (DTCF, not to be confused with the DEC-
tape flag) which always contains the inclusive OR of the Error
Flag and the DECtape flag. It is this register which is actually
sampled by the DTSF skip-on-flag instruction.

If the interrupt facility is enabled (ION instruction) a 1 in bit
position 9 of Status Register A causes an interrupt to occur when-
ever an error condition or an operation-complete condition (or
both) is flagged by the DTCF. This makes it unnecessary for the
DECtape service routine to monitor Status Register B during
every operation by means of skip-on-flag waiting loops. The time
spent in waiting loops may be used to execute mainline instruc-
tions, provided that these instructions do not attempt to use data
before the DECtape service routine has had time to transfer it.

Because the DECtape system is comparatively fast, an interrupt:
service routine will normally test the DTCF-near the top of the
skip chain. This creates a problem when the DECtape system is
not in use. An interrupt from a lower priority device will eventu-
ally occur, in which case any bit configuration in Status Register A
will be interpreted as a select error when the DTCEF is tested, and
the program may loop indefinitely. Such problems may be pre-
“vented by replacing the DTSF skip-on- ﬂag test with a NOP when-
ever DECtape is not in use.

7-16



IDTAPE SUBROUTINE3

The IDTAPE subroutine illustrates one method of program-
ming for DECtape operation. IDTAPE operates with the interrupt
facility disabled. It performs data transfers in continuous mode, so
that multiple blocks of data may be transferred in a single oper-
ation. Searching may commence in either direction, to minimize
access time. One full block is allowed for turn around when search-
ing in the reverse direction. IDTAPE reads and writes in the for-
ward direction only.

IDTAPE must be stored in field zero, but it will read or write
data into any specified memory field. It will not automatically
cross field boundaries. Errors flagged while searching cause
IDTAPE to remain in the SEARCH loop indefinitely. If the
specified block number is nonexistent, it hangs up in a tape rock- -
ing loop. Errors flagged during data transfer cause the branch
IDSERR to be taken with tape motion halted and Status Register -
B error flags set.

The IDTAPE calling sequence is:

OOOO IMS (IDTAPE) Effective JMS to IDTAPE i.e., indirect
JMS if IDTAPE is not on same page
as calling sequence. -

0001 WORD 1, Bits 0—2, unit number.
Bit 3, start search (0= forward 1=re-
verse).

Bits 6-8, memory ﬁeld for transfer.

Bit 10, error return (0=JMP WORD 5
1=JMP I WORD 5).

Bit 11, function (0=READ 1=WRITE).

0002 WORD 2, Block number for start of transfer.

0003 WORD 3, Two’s complement of the number of
_ words to transfer.

0004 WORD 4, Memory address minus 1 of first transfer.

Error return or address for error return

(to correspond to Bit 10 of WORD 1).
0006 RETURN, Transfer completed; return with AC
cleared.

0005 WORD 5,

On exit, the DECtape drive will halt.

3 This subroutine is not currently available from the DEC Software Distri-
bution Center, and is included here for the user’s convenience.

7-17



*200

/AN ORIGIN OF 0200 1S USED FOR TESTING

/HOWEVER THIS SUBROUTINE MAY OCCUPY THE FIRST
/113 (OCTAL) LOCATIONS OF ANY PAGE IN FIELD ZERO
/LOCATIONS 7754 AND 7755 ARE ALSO USED .

- 1D7408, 7400

IBTAPE, ©
CLA
TAD I IDTAPE
DCA IDCODE
ISZ IDTAPE
~ TAD IDCODE
1D220@, AND ID7400
TAD 1D2G!10
DTCA DTXA
DTLB
TAD 1DWC
DCA I IDCA

IDSERR, RTL
RAL
CLA CML
TAD 1D0209

IDCONT, SNL
TAD 1D0400
DTXA
DTSF DTRB
JMP -1

~ SPA

JMP IDSERR
DTRA
RTL
RTL
SZL CLA
TAD IDO@@2
TAD I IDWC
CMA
TAD I IDTAPE
chMa
SZA CLA
JMP IDCONT
SZL
JMP IDCONT+!
1SZ IDTAPE
TAD 1 IDTAPE
DCA I IDWC
1SZ IDTAPE
TAD I IDTAPE
DCA I IDCA

/AND MASK MUST BE

/FIRST WORD IN PAGE
/ENTER SUBROUTINE

/CLEAR ACCUMULATOR

/GET WORD 1

/STORE IT

/ADVANCE POINTER TO WORD 2
/GET WORD !

/MASK OFF BITS 4-11

/PUT INTO SEARCH MODE
/CLEAR AND LOAD STATUS A
/LOAD STATUS B FOR FIELD @
/GET ADDR OF WC REGISTER
/INITIALIZE CA FOR SEARCH
/THEN FALL THRU ERROR
/ROUTINE TO START TAPE
/NORMALLY ENTERED WITH
/STATUS B IN ACCUMULATOR
/MOVE END ZONE FLAG

/INTO LINK

/COMPLEMENT LINK

/MASK STOP/GO BIT ON AND

. /ENTER DECTAPE SEARCH LOOP

/TAPE IN END ZONE?

/YES: REVERSE DIRECTION
/NO: BEGIN SEARCH :
/7MONITOR FLAGS UNTIL

/A FLAG IS RAISED

/ERROR FLAG RAISED?

/YES: TAKE ERROR BRANCH
/N0: MUST BE DTF, SO GET
/DIRECTION BIT AND

/ROTATE IT INTO THE LINK
/MOVING FORWARD?

/N0: GET "BLOCK TO FIND" -2
/YES: GET LAST BLOCK SEEN
/FORM ONE'S COMPLEMENT
/ADD IN BLOCK TO FIND
/TW0'S COMP MIGHT SET LINK
/BLOCK NUMBERS MATCH?

- /NO: REENTER SEARCH LooOP

/YES: MOVING FORWARD?

/NO: TURN AROUND

/ADVANCE POINTER TO WORD 3
/GET WORD 3

/LOAD WC REGISTER

/ADVANCE POINTER

/GET WORD 4

/LOAD CA REGISTER

7-18



TAD

DTLB
1AC -

AND

IDCODE

IDCODE

RTL CLL

" RTL
TAD

DTXA

1D@1 30

DTSF DTRB

.JMP
1sZ
SMA
ISz
SPA
TAD
RTR
SNL
JMP
TAD
DCA

DTRA

AND
TAD

DTXA

- JMP

IDWC, 7754
1bca, 1755

108010, 10
1D0400, 400
1DB130, 130
102002, 2
éDCODE, )

o1
IDTAPE -

IDTAPE
CLA
IDCODE

CLA
«+3

1 IDTAPE

IDTAPE

1D0200
1D8202

I IDTAPE .-

/GET WORD + .
/LOAD STATUS B FIELD BITS

/SET BIT 11 FOR

/READ OR WRITE THEN

. /ROTATE INTO POSITION AND
/BUILD XOR MASK TO

/LOAD ‘STATUS REGISTER A
/BEGIN READ/WRITE

/MONITOR STATUS B UNTIL

/4 FLAG IS RAISED
/ADVANCE TO WORD 5

-~ /1S ERROR FLAG SET? .

/N0: ADVANCE TO WORD 6
/YES: KEEP ERROR RETURN
/GET INDIRECT RETURN BIT
/ROTATE INTO LINK
/INDIRECT RETURN?

/NO: MAKE NORMAL RETURN
/YES: CHANGE INDIRECT RETURN
/T0 DIRECT RETURN

/GET STATUS REGISTER A
/MASK STOP/GO BIT OFF
/PRESERVE ERROR FLAGS

. /LOAD STATUS A TO STOP TAPE

/RETURN ,
/POINTER TO WC REGISTER
/POINTER TO CA REGISTER

/SETS BIT 8 FOR SEARCH

/SETS BIT 4 TO REVERSE TAPE
/BUILDS XOR MASK '

“/HANDY CONSTANT

/STORAGE FOR WORD 1!

DECTAPE SYSTEM SOFTWARE
'DECtape Software, described in the following sections, provides
the programmer with four major operational materials:

1. Input/output subroutmes which may be included in larger

programs.

2. .Routines for copying and formatting DECtapes These pro-
- grams will duplicate non-standard tapes, write timing and
mark-track channels, insert block format information and

. perform similar chores for the programmer.
3. A library system for StOI‘lIlg and retnevmg programs on

DECtape.

4. OS/8, which provides the most efficient means of using both
DECtape and disk storage.

7-19



DECTAPE SUBROUTINES

DECtape subroutines allow the programmer to read, write and
search DECtapes using prewritten and tested subroutines which
execute with the interrupt facility enabled, so that mainline in-
structions may be performed during tape operations. The DEC
library supplies these subroutines on one ASCII symbolic tape
which has no origin, and ends with the pseudo-op PAUSE. It must
be assembled with a user program, and the resulting binary tape
loaded with the Binary Loader. The following restrictions should
be observed:

1.

The routines are designed to be used with standard tapes
(129 words per block). The last data word in each block is
not accessed, so that each block is effectively one core page
long.

The routines will read ‘or write in the forward direction only.

. Data may be transferred from or into any memory field,

but these routines will not transfer data across field bound-
aries. '

The routines require 200g consecutive storage locations.
They may be located on any page of core in field 0, except
page 0, and they must all reside on the same page, filling
that page completely.

An ION instruction will be executed by the routines upon
entry; however, the user is responsible for storing the con-
tents of the accumulator and link when an interrupt occurs.
The user must define a register called MCOM on page 0.
This register is initialized by the tape.routines and is used
for communication with the interrupt system. If the DTF is
set on the occurrence of an interrupt, the accumulator must
be cleared and the instruction JMP I MCOM must be
executed to return control to. the tape routines.

7-20



DWAIT Subroutine

The DWAIT subroutine tests the motion bit (b1t 4) of Status
Register A. If the motion bit is a 1, the routine cycles through this
test process until the motion bit is cleared, indicatirig that the tape
has stopped and the previous operation is now complete. It then
" returns control to the location following the JMS which called it.
DWAIT is called automatically, whenever necessary, by all of the
follewing DECtape subroutines. - '

DWAIT ‘
Calling Sequence _ Explanation

GOSUB., JMSIDWAITI Where DWAITI contains the address of
C subroutine DWAIT.

RETURN, : After tape motion has stopped, DWAIT
. " returns control to the location following
the JMS which called it.,

SEARCH Subroutine

The SEARCH subroutine should only be used to position the
tape. It is called automatlcally by the READ and WRITE sub-
routines. In the event that the tape is moving, the SEARCH sub-
routine will transfer control to the DWAIT subroutine, and con-
tinue to execute when the tape stops moving. If the user wishes
to continue mainline execution immediately upon completion of
the search, the completion return address in the following calling
sequence should be the address of the 1nterrupt exit routme

SEARCH
Calling Sequence Explanation

GOSUB, CLA CLL
TAD BLOCK Where BLOCK contains the number
' of the block being sought. Any other
method of getting the block number
into the AC is acceptable.

7-21



SEARCH
Calling Sequence

JMS I SERCHI

CMPADD

U000

IRETRN

Explanation

Where SERCHI contains the address
of routine SEARCH. SERCHI may be
on page 0 or the same page as the call-

ing sequence. ?

Where CMPADD is the completion
return address. When the correct
block has been found, control trans-
fers to the address contained on this
line with the tape stopped and the in-
terrupt system off.

Bits 0-2 contain the DECtape trans-
port unit number. The rest of the word

contains zeros. For example, using
unit 3 this would be 3000.

Where IRETRN is an intermediate
absolute return. When searching starts,
control is transferred to this line with
the interrupt on to allow multiprocess-
ing while the tape is in motion. If mul-
tiprocessing is not desired this line
should read “JMP .—1” which causes
the program to idle in a closed loop
consisting of one instruction until the
requested block has been found and
an interrupt occurs.

READ and WRITE Subroutines

The READ and WRITE subroutines will transfer any number

of memory pages to or from standard-blocks of DECtape, how-
ever only whole pages will be transferred onto whole data blocks,
and vice versa. The user’s calling sequence specifies the starting
location, the memory field, the starting block number and the tape
unit number. As with the SEARCH routine, the program waits
until any previous tape operation has been completed. These rou-
tines use the SEARCH subroutine to find a specified block num-
ber, however they. do not stop the tape until after execution is
complete.

7-22



READ/WRITE
Calling Sequence i L Explanation -

IMS 1READI - Where READI contains the address of R128 and
or WRITEI contains the address of W128
JMS I WRITEI ' _ L

CORADD Where CORADD is the address of the first core -
- location on the page to be used for transfer.

UOFO0 Where bits 0-2 contain the DECtape transport
unit number and bits 6-8 contain the memory field.
The remainder of the word contains zeros. (E.g..
for unit 3 and memory field 1 this would be 3010.)

_NUM Where -NUM is the negative (2’s complement) .

of the number of successive blocks to be read or
written.

BLCK Where BLCK is the number of the first block on
tape to be read or written. ' _

IRETRN Where IRETRN is an intermediate absolute re-
turn. When the routines start searching for the
block specified, control is transferred to this line
to allow multiprocessing while the tape is in mo-
tion. If multiprocessing is -not desired, this line
may contain a JMS to the DWAIT routine.

DECtape Copy Program :

The DECtape Copy program (DTC8) provides a simple, ef-
ficient method for copying from one DECtape to another on
PDP-8 series computers, Features include the capability of han-
dling nonstandard block lengths (up to 1550y, 12-bit words per
block) and the ability to reread and verify the copied data. The
routine is internal and monitor independent. : '

DTCS resides in memory between locations 0000 and 1547,
with the remainder of core divided into two buffers. The starting
address is 0200, and the routine may be restarted at this address
at any time. DTC8 is normally distributed as a binary tape and
loaded with the Binary Loader. Alternately, it may be stored on
DECtape or disk and loaded with the monitor system. Two DEC-
tapes must be mounted, with WRITE LOCK enabled on the input
tape. -

7-23



Teletype input is required at the conclusion of each printed
message generated by DTCS8. The operator may type:

1. CTRL/C, which causes a branch to location 7600.

2. A string of octal digits (0 to 7), which will be interpreted
as an octal number. Only the rightmost four digits are pre-
served, so that 1234567 is interpreted as 4567.

3. RETURN, which terminates the input string. If no digits

- were typed, the input value is zero.

4. Any other characters which are ignored and not echoed

The operator is expected to respond to the following messages
printed by the program:

DECTAPE COPY FROM UNIT
Type the input unit number (0-7). Only the last digit
typed is accepted. Terminate with a carriage return.

10O UNIT ’
Type the output unit number, which must be different
from the input unit number. Terminate with a carriage
- return.

FINAL BLOCK TO COPY (OCTAL)
Type the octal block number of the last block to be copied.
If no digits are typed, the program will copy to the end
of the tape. If a number is typed, it must be greater than
or equal to the number of the first block to be copied.
Terminate with a carriage return.

PDP-8 WORDS PER BLOCK nnn
The program types the octal number of 12-bit words in
each block. No operator response is required.

VERIFY OUTPUT? (0=YES, 1=NO):
If a 1 is typed, the program does not reread and verify the
output copy. Terminate with a carriage return.

DONE
Program indicated completion. Type RETURN key to
restart the program or CRTL/C to branch to location
7600.

7-24.



~ the message:

- Any illegal Teletype input causes the program to restart
itself. CTRL/C may be typed any time after the start of the
program to cause a branch to location 7600.

A parity error whlle readmg from the input umt causes

PARITY ERROR 'oN BLOCK nnn

Copying continues, but when execution is finished the operator

‘may attempt to copy the designated block separately. '
A validation error is flagged when the information written

is not the same as the information read in. Three consecutive

validation errors cause the message:

WRITE ERRORS ON UNIT #n

Th1s message can occur only if validation was requested. Typmg
the RETURN key causes the program to attempt to reread and

. validate the erroneous data.
A select error on either tape drive causes the message:

SELECT ERROR ON UNIT #n

After a select error, the operator should correct the error con-
_dition and then type the RETURN key to continue program
execution.

Mounting an output tape with more than 155010 12-bit

words per block causes the message:
BLOCK LENGTH ERROR

After a block length error, the program automaticzilly restarts.

DECtape Formatting Program

A software package is available to perform formatting and
maintenance operations on DECtapes. It provides for recording
of timing and mark-track channels and permits block formats to
be recorded for any block length. Patterns may be written in these
blocks, and then read out and verified. Specified areas of tape may
also be “rocked” for specified periods of time. In this manner, a
reel of tape may be thoroughly checked before it is used for data

storage. For detailed information, refer to the TCO1-TU55 DEC-
tape Formatter (DEC-08-EUFB) available from the DEC Software -

Distxibution Center.

7-25



DECTAPE LIBRARY SYSTEM

The DECtape Library System permits the user to build a com-
plete file of his active programs and continuously update it. It is
capable of calling programs by name from the keyboard and
allowing for expansion of programs stored on tape. It conforms
to existing system .conventions, in that all of core except for the
last memory page is available to the programmer, and it permits
the Binary Loader to reside in core at all times. The Library
System fully restores the initial state of the computer when it
exits.

One use for the Library System may be illustrated as follows.
A program that will be run repeatedly is written in PDP-8/E
FORTRAN. At the keyboard, the operator may call the FOR-
TRAN compiler from the library tape and compile his program,
obtaining an object program on paper tape. He may then call
the FORTRAN operating system from the library to load and
run his object program. Finally, the library program UPDATE may
be called. The operator defines a new program file, consisting of
his object program and the FORTRAN operating system, then
adds it to the library tape. The program is now available for easy
access on the library tape.

The minimum library system, called a skeleton library, occupies
the first 40,4 blocks of a standard DECtape. It contains the follow-
ing routines:

INDEX —— Causes the names of all routines on the library
tape to be printed on the Teletype.

UPDATE — Allows the user to add routines to the library
tape.

" GETSYS — Used to generate a new library tape.

'DELETE — Causes a specified routine to be deleted from
the library tape. ‘

ESCAPE — Causes the library system to exit.
7-26



A prerecorded skeleton library tape may be obtained from the
DEC Software Distribution Center. This tape should be duplicated
with DTCS (or else GETSYS should be used to generate a second
skeleton library tape) and the original should then be stored in a
safe place.

The Directory '-

The directory is part of the library system. It contains the names
of files on the library tape and all information that is required by
the library system to Jload, delete, or add named files. The direc-
tory contains 348, usable locations, with each entry requiring a
minimum of seven locations. The structure of a single directory
entry is as follows: -

~ First 3 Words:  File name in trimmed ASCII with characters
packed 2 per word. For example, INDEX
would appear as:

1116 /IN
0405 /DE
_ 3000 /X
Fourth Word: Starting DECtape block number for the file. -
Fifth Word: Starting core address of the file.
Sixth Word: First in a list of core specifications for the file.
The format of these specifications is shown in
) Figure 7-5. ‘ o ‘
Last Word: 0000 to terminate list of core specifications. If.

there is only one specification, the directory
entry is seven words long. This is the mini-
mum length for an entry. '

o 1l2 3 4 5 |7 8 9 10
[ | I R | [ R DR |

\ J U -/ \ J
FLAG BITS —F T -
PAGE. A
PAGE B

Figure 7-5 Format of Core Specifications

7-27



Bit O: - If set to O, the two 5-bit page-number specifica-.
tions (page A and page B) designate discrete
single pages which belong to the file.

If set to 1, page A signifies the first page in a
series of contiguous pages and page B signifies
the last page in the series.

For example: 0247 or 00 00101 00111 means
that page 5 and page 7 belong to this file. Ob-

serve that the user may not save the last page
of core (7600-7777) with one of his files.

Bit 1: This is always set to the same value as bit 0.
Bits 2-6: Five bit page number specification (Page A
above).

Bits 7-11: Five bit page number specification (Page B
above). '

There are spaces for almost 50,, names in the directory. UP-
DATE will determine whether or not the directory is full and if
so, it will print a message to this effect. There are 2640, usable
blocks on the library tape, which is more than adequate in view
of this limitation on the directory size. |

Using the Library System

All skeleton library routines are called from the Teletype by
typing the name of the routine and then a carriage return. Some of
the routines generate messages which request operator input.
Typing a RUBOUT causes any input on the current line to be

ignored and the line to be retyped.
~ Typing INDEX and RETURN causes a list of all routines stored -
on the library tape to be generated on the Teletype.

The UPDATE routine assumes that a file to be added to the:
library tape was in core before the library system was loaded.
Typing UPDATE and RETURN generates the message:

NAME OF PROGRAM:

The operator must type, a name consisting of one to six charac-
ters,. and then a carriage return. All characters are legal except:

7-28



@, 1, TAB, FORM FEED, and LINE FEED. UPDATE will
now type: .

SA (OCTAL):

The operator must type the octal starting address of the file
being loaded. If the file does not have a proper starting address (as,
for example, the floating point package), the starting address of
the system loader (7600) or the HLT in the BIN Loade1 (7700)
- may be specified. UPDATE will now type:

PAGE LOCATIONS:

The operator must specify the page locations in core memory at
which the file is presently stored. This information may be pro-
vided to UPDATE in either of two forms: <XXXX> which means
the single page on which the octal address XXXX falls, or
<XXXX, XXXX> which means the page on which the first ad-
dress falls through and including the page on which the second
address falls. UPDATE accepts information of this type until a
semicolon (;) is received.'Spaces, tabs, carriage returns, and line A
feeds are ignored between location elements. For example, if a
program occupies locations 1-2354, 4600-7577, and 2400-2577,
UPDATE might be told: <0,2200> <2400> <4600,7577>. The
numbers must be in ascending order, and any numbers lying within
the same page are considered equivalent. UPDATE will now add
the new file to the library, add an entry to the directory, and trans- .
fer control to the file-loading program, leaving the directory in -
core. . '

- Typing DELETE and RETURN generates the following mes-
sage: _

NAME OF FILE TO BE DELETED

The operator must type a name (up to six characters) followed
by a carriage return. DELETE searches the directory for the des-
ignated name and generates an error message if it is not found or
if it is the name of a system program. If the name is found,
DELETE removes it from the directory, removes the named pro-
gram from the tape, and repacks the tape. DELETE then transfers
control to the file-loading program, leaving the directory in core.

7-29



Typing GETSYS and RETURN generates the following message:

SKELETON TAPE WILL BE CREATED ON UNIT #

The operator must type a single digit (1-7) and then a carriage
return. GETSYS expects a preformatted, standard DECtape to be
mounted on the specified tape unit, with the WRITE ENABLE
/WRITE LOCK switch in the WRITE ENABLE position. When
the new library system has been created, GETSYS transfers control
to the file-loading program, leaving the directory in core.

Typing ESCAPE and RETURN causes the library system to
restore all of core and exit. The condition of the computer should
be identical to. its condition before the library system was loaded.

In the example shown below, the operator used the Binary
Loader to load the FORTRAN compiler. He then loaded the
library system, and the following interaction took place:

INDEX =~ Typed by user.
ESCAPE
UPDATE Presently stored pro-
DELETE ams listed b {

. GEISYS gr ed by system.
PALIII | _
UPDATE _ Typed by user.
ggggggzL;lAME §2F§§,R““ User supplies data re-
PAGE LOCATIONS :<0,7400>; quested by system.
INDEX ‘ , Second INDEX.
ESCAPE |
gggg Stored programs listed
GETSYS by system.
PAL1II
FRTRAN
DELETE - e Typed by user.
NAME OF FILE TO BE DELETED:PALL User typed a mistake
INDEX - key.
ESCAPE Third INDEX.
DELETE
GETSYS
FRTRAN
ESCAPE

7-30



The amount of time required to load a file from tape into core
memory depends upon the file location on the tape. If the file is
near the beginning, loading time will be about 8 seconds. UPDATE
executes in 30 to 45 seconds. DELETE time varies too much to
" make an estimate possible; it may take as long as several minutes.
GETSYS requires approximately 30 seconds.

The system has one DECtape error halt at location 7670. No
recovery is possible at this point, and any attempt to restart may
result in destruction of the library tape data.

TCO1 Bootstrap Loader _

The library system bootstrap loader resides in the last page of
core with the RIM and BIN loaders; however, with the bootstrap
in core, only the RIM loader is operable. Since this bootstrap con-
sists of only a few ‘instructions, it may be Joaded from the switch
register, following the procedure for toggling in the RIM loader,

TCO01 Bootstrap Loader
Location | Instruction
7600 : 6224
7601 6774
7602 1221
7603 - 4213
7604 1222
7605 _ , 3355
7606 1223
7607 4213
7610 0000
7611 - 0000
7612 0000
7613 ' 0000
7614 6766
7615 3354
7616 6771
7617 5216
7620 , 5613
7621 0600
7622 _ 7577
7623 N 0220

7-31



explained in Appendix E. Check carefully to ensure that the boot-
strap is loaded correctly. If it is not, the system tape may be de-
stroyed by an attempt to load the system. For checking procedures,
See Figure 4-3..

To load the library system using the bootstrap loader, ensure
that the library system tape is mounted on a DECtape transport.
The tape may be wound to any point along its length, but at least
four turns of tape should be on either reel.

1. Set the transport unit selector dial to O (or 8). .

2. Set the LOCAL/OFF/REMOTE rocker switch to REMOTE.

3. Set the WRITE LOCK/WRITE ENABLE rocker switch to
WRITE ENABLE.

4. Set the starting address of the bootstrap (7600) into the con-
sole switch register and press ADDR LOAD and CLEAR
then CONT. The library system will load from the DECtape
into core. ‘

When the system is loaded, the Teletype keyboard will be enabled,
awaiting operator commands.

TD8-E DECTAPE SUBROUTINE

A TD8-E DECtape system consists of up to four TU56 dual
DECtape transport units with one TD8-E DECtape control unit for
each dual transport unit. This system is similar to the TCOS
DECtape system in that it uses the same hardware transport unit
and tape data format as the TCOS. However, the TD8-E system
relies on programmed transfer for I/O operations, rather than the
3-cycle data break, and requires that status monitoring operations
such as error sensing and checksum generation be performed by
software under program control. -

A TD8-E DECtape system is best employed by utilizing 0S/8
or the TD8-E DECtape Subroutine, which is a general data han-
dling routine with a standardized calling sequence that facilitates
tape 1/O operations and provides full compatibility with OS/8
device handlers. This subroutine requires two adjacent pages of
core memory, in any memory field, for each TU56 dual transport
to be serviced. Thus, operation of a maximum configuration system
requires that four copies of the subroutine (with four different sets
of assembly parameters) reside in core.

7-32



Assembly Parameters ' :

Values for five parameters must be supphed when the TD8-E
subroutine is assembled. These parameters and the permissible
values which may be supplied are listed below.

10 DECtape units 0 and 1

~ ]20 DECtape units 2 and 3

DRIVE = 134 DECtape units 4 and 5

_ 40 DECtape units 6 and 7
ORIGIN = nnnn Specify an absolute origin, which will also --

be the entry point for the lowest-numbered
DECtape transport unit. The entry point for
the other unit will be ORIGIN + 4.

AFIELD =n Designate a field (0 < AFIELD < 7) into
Wthh the subroutine will be loaded.

MFIELD =n0 Specify 10 times the value demgnated for
AFIELD.

WDSBLK = Indicate the octal number of data words per>
block.

Assume, for example that an assembly of the subroutine to
handle DECtape units 0 and 1 is to be loaded into memory field
0, pages 24 and 25, and standard DECtape format is to be used
Input to the assembler would consist of:

DRIVE = 10
ORIGIN = 5000
AFIEID =0
MFIELD =0
WDSBLK = 201

This would be followed by a source copy of the subroutine. If
DECtape units 2 and 3 are to be used simultaneously, a second
assembly of the subroutine may be loaded into, say, memory field -
1, pages 35 and 36. Assuming that standard format is also em-
ployed on these tape drives, the assembly parameters will be:

DRIVE = 20
ORIGIN = 7200
AFIELD =1
MFIELD = 10
WDSBLK = 201

7-33



In this manner, as many assemblies of the TD8-E Subroutine as
are necessary may be loaded into amy availabie core iocations,
provided that each assembly occupies two contiguous pages. The
subroutine may be relocated temporarily during program execution,
if necessary, but it may not be called at any location except the one

for which it was asscmbled.

Calling Sequence
A call to the TD8-E Subroutine should have the following gen-

. eral format:

GOSUB, CDF DATA /DESIGNATE DATA FIELD=
/CURRENT FIELD ’

CIF MFIELD /FIELD IN WHICH SUBROUTINE
/WAS LOADED

JMS ENTRY /EITHER “ORIGIN” OR
/“ORIGIN + 4”

ARG1
ARG2

ARG3

JMP ERROR /ERROR RETURN
JMP CONT  /NORMAL RETURN

The first argument which must be supplied has the 'following
format:

BIT POSITION. | © t 2 3 4 516 7T 8|l9ilt0]n

1 =WRITE ,
BINARY NUMBER OF

BLOCKS TO TRANSFER

MEMORY FIELD OF DATA BUFFER
UNUSED
@=TRANSFER \WDSBLK" WORDS PER DECTAPE BLOCK

1 =TRANSFER “WDSBLK -1"WORDS PER DECTAPE BLOCK
@=SEARCH REVERSE INITIALLY

1 =SEARCH FORWARD INITIALLY

7-34



The second argument (ARG2) contains the core memory address
of the data buffer. Data will be transferred to or from sequentlal
core locations, beginning at this address. :
The third argument (ARG3) specifies the DECtape block number
at which transfer should commence. Data will be transferred to or
_from sequential blocks until the number of blocks designated by
bits 1-5 of the first argument (ARG1) has been transferred. -
. If no errors are encountered, the subroutine takes the ngrmal
return to the fifth location following the JMS which called it with
all tape motion stopped, the accumulator cleared and the instruc-
tion and data fields equal to the value of DATA specified in the -
- subroutine calling sequence: Any error condition sensed during a
data transfer operation causes the subroutine to take the error -
return to the fourth location following the JMS which called it. An
_ error return with the accumulator cleared indicates a select error.
~ Parity; timing and checksum errors return a value of 4000 in the
accumulator, as does any attempt to access a non-existent block
number.

7-35



: INTRODUCTION - :
Floating-point packages provide an easy means Of. performmg
basic arithmetic operations, such as addition, subtraction, multi-
plication and division, using floating-point numbers. They also pro-
vide extended function capabilities for the computatlon of natural
logarlthms exponential functions, basic trlgonometrlc functions
and the like. The floating-point package maintains a high degree
of precision, and greatly facilitates I/O operations in floating-point
notation. This is particularly useful for computations involving
numerous arithmetic operations on variables whose magnitudes
may vary widely. The floating-point package, or FPP, stores very
large or very small numbers by saving only the significant digits
and assigning an exponent to account for leading'and trailing zeros.

‘There are three floating-point packages designed for use with
the PDP-8/E. The 23-bit Extended Arithmetic Element Floating-
Point Package (EAE FPP) may be employed on any PDP-8/E
equipped with a KE8-E Extended Arithmetic Element and an
LT33 Teletype. The EAE FPP is described in detail in this chapter.

The 23-bit Floating-Point Package (non-EAE FPP) may be
used on any PDP-8 series computer with an LT33 Teletype.
This FPP is functionally equivalent to the EAE FPP in many re-
spects; in particular, the two are fully program compatible. Impor-
tant differences between the EAE FPP and the non—EAE FPP are -
noted throughout this chapter.

8-1



The 27-bit Floating-Point Package (27-bit FPP) is also de-
signed for use on any FDF-8 series computer equipped with an
LT33 Teletype. The 27-bit FPP provides extended precision for
computations that require accuracy in excess of 6 or 7 significant
digits. The 27-bit FPP is program compatible with both the EAE
FPP and the non-EAE FPP, and similar to these packages in
- most respects. Differences are noted throughout the chapter.

Each floating-point package is supplied as a binary paper tape
and is loaded into memory via the Binary (BIN) Loader (see
-Appendix E). Since a floating-point package is actually a collec-
tion of subroutines, the user must also load a program of his own
which calls the floating-point package (or one of the individual
subroutines) and tells it what operations to perform. The binary
tape of the user-program is normally loaded after that of the
package; this is particularly important if the user is not calling
part of the package (for example, the extended functions) and his

nrooram overlavs that nart
rlve ¥ WwWiai JU CiAilA Y tlul,l.

. ASSEMBLY INSTRUCTIONS B

- Each Floating-Point Package is also available on three source

paper tapes which the user may assemble with PAL III (or the

equivalent) if he intends to alter the package. The source tapes

- should be assembled in ascending numerical order: tape 1 first,
" followed by .tape 2 and tape 3. Tapes 1 and 2 end with the

pseudo-op PAUSE, while tape 3 ends with a dollar sign.

If the FPP is assembled with PALS, the user must define several
floating-point and PDP-8/E instructions which are used by the in-
: terpreter but not contained in the PAL8 symbol table. The follow-
ing paper tape should be prepared and used as the first tape of the
assembly, before tape 1 of the FPP '

8-2



EAE ‘FPP
(DEC-8E-NEAEA-A-PA1,
PA2, and PA3)

JFIXMRI FADD =— 1000
FIXMRI FSUB ' = 2000
FIXMRI FMPY = 3000
FIXMRI FDIV = 4000
FIXMRI FGET = 5000

FIXMRI FPUT = 6000
FEXT = 0000

FNOR - = 7000

SWP — 7521

CAM = 17621

MQA = 7501

MQL = 7421

SGT = 6006

PAUSE

non-EAE FPP
(DEC-08-NFPPA-A-PAL,
PA2, PA3)
27-bit FPP
(DEC-08-NFPEA-A-PA1,
PA2, PA3)

FIXMRI FADD = 1000
FIXMRI FSUB =2000
FIXMRI FMPY = 3000

- FIXMRI FDIV - = 4000

FIXMRI FGET = 5000

FIXMRI FPUT = 6000
FEXT = 0000

FNOR = 7000

PAUSE

Following assembly of the FPP, a user program may be assem-
bled. The user program should begin with the following pseudo-in-
struction sequence, or a tape containing the following sequence
terminated with a PAUSE pseudo-op should be assembled before

the user program:

8-3



Assembling with PAL III

FIXMRI FJMP = 0000

FIXMRI FIMS = 7000

Assembling with PALS

FIXMRI FIMP = 0000
FIXMRI FADD — 1000

FISZ = 0000 FIXMRI FSUB — 2000
FEXT = 0000 FIXMRI FMPY = 3000
FSQU = 0001 FIXMRI FDIV = 4000
FSQR = 0002 FIXMRI FGET -= 5000
FSIN = 0003 FIXMRI FPUT = 6000
FCOS = 0004 FIXMRI FIMS = 7000
FATN = 0005 FISZ = 0000
FEXP — 0006 FEXT = 0000
FLOG = 0007 FSQU = 0001
" FNEG = 0010 FSQR = 0002
FIN —=0011 FSIN = 0003
FOUT = 0012 FCOS = 0004
FFIX = 0013 FATN = 0005
FLOT = 0014 FEXP = 0006
FNOR = 7000 FLOG = 0007
FCDF = 7001 FNEG = 0010
FSW0 = 7002 FIN = 0011
FSW1 — 7003 FOUT = 0012
FHLT = 7004 FFIX = 0013
FSMA = 7110 FLOT = 0014
FSZA = 7050 FNOR = 7000
FSPA = 7100 FCDF = 7001
FSNA = 7040 FSW0 = 7002
FNOP = 7010 FSW1 = 7003
FSKP = 7020 FHLT = 7004
FSMA — 7110
FSZA = 7050
FSPA = 7100
FSNA = 7040
FNOP = 7010
FSKP = 7020

FLOATING POINT NOTATION

" A floating-point number may be written as a mantissa, which
consists of the floating-point number with its decimal point shifted
a given number of places in either direction, and an exponent,

8-4



. which indicates the number of places that the decimal point was
shifted and the direction of the shift. A negative exponent corres-
ponds to a shift to the right, while a positive exponent corresponds
to a shift to the left. For example, the decimal number 12.625 may
be expressed in the followmg ways:

Mantissa Exponent
12.625 = 12.625 x 10° 12.625 0
= 1.2625 x 10¢ ' 1.2625 1
= (0.12625 x 102 0.12625 2

= 1265.0x 103 12625.0 -3

A floating-point number which has been converted to a mantissa-
and an exponent may be recovered by mutiplying the mantissa by
the Eth power of the radix (base) in use, where E is the exponent.

Normalization

A floating-point number may be represented in an infinite va-
riety of ways, since the decimal point may be shifted any number
of places in either direction. If the decimal point is shifted until it
appears immediately to the left of the most significant digit, the
number is said to be normalized. The mantissa of a normalized
floating-point number may be stored as an integer, since the dec-
imal point is understood to appear to the left of the most signifi-
cant digit. In the discussion which follows, all floating-point num-
bers are assumed to be expressed in normalized floating-point
notation, as indicated below.

‘Decimal Normalized Floating-Point Notation
Number Mantissa Exponent
12.625 : 12625 2
0.0012 12 ~2
—1530.0 —-.153 | 4 -
0.0 o .0 0
—89.9 —.899 2
—0.0899 —.899 -1

8-5



When a floating-point number is expressed in normalized notation,

the mantissa nsuallv falle in the range:

1<
weaellly i8S

R < | mantissa | < 1

where R is the radix of the number system used. Thus, the abso-
lute value of the mantissa of a decimal floating-point number wiil
be greater than or equal to 1/10 but less than 1 if the decimal
point is positioned to the left of the most significant digit, in ac-
cordance with the convention presented above. The only exception
to this rule is the floating-point number zero, which is defined to
have a mantissa and an exponent both equal to zero.

In computer applications, all numbers are manipulated and
stored in binary notation. The preceding discussion applies equally
"well to decimal or binary numbers, in that a binary number may
be converted to normalized floating-point notation by shifting the
decimal point to the left of the most significant digit and assigning
an exponent equal to the (directed) number of places that the dec-

imal point was shifted. Since the left-most significant digit will
-always be a binary 1, the mantissa conforms to the convention:

1/2 < | mantissa | < 1

except for the special case of zero.

Number Representation
PDP-8 floating-point numbers are stored in three consecutive
12-bit core memory locations as follows.

EAE AND NON-EAE FPP

The first location, which has the lowest core address, contains
the exponent. The second word contains the twelve most significant
bits of the mantissa, called the high-order mantissa. The third
word, which has the highest core address, contains the last twelve
(least significant) bits of the mantissa, or the low-order mantissa.
As with one-word integers stored in the conventional manner, if
the exponent or mantissa is negative, its two’s complement is
used, thus the first bit of both the exponent and the high-order
mantissa may be considered as sign bits. The low-order mantissa
is unsigned, however, and should be considered an extension of
the high-order mantissa. :

The core storage location of a floating-point number may be
tagged with a symbolic address, as shown in Figure 8-1. In this

8-6



example, the floating-point number 12.625 is stored in core loca-
tion “FPNUM.” The tag FPNUM is associated with the core lo-
cation at which the exponent is stored, while the mantissa occupies
locations FPNUM+1 and FPNUM+-2.

r—SlGN BIT

FPNUM olo ojo o o0oj0 O 01 O O |EXPONENT

(] 1 L L ) 1 1

' HIGH-ORDER
FPNUMH | O f 1 10 O t]|0 1 010 O O JuiTiSSA

' LOW-ORDER
FPNUME2} O O 0} 0 O O} 0 O 0|0 O O |pANTISSA

[ L ) [ J 1 | 1

Figure 8-1 Storage Allocation for a 23-bit Floating-Point Number

27-BIT FPP
The first word (lowest core address) contains the sign of the
mantissa, the exponent in bias 2003 notation, and the higher-
 order 3 mantissa bits. The second two words are the middle order
and low order mantissa, respectively, in sign-magnitude notation.

EXPONENT +200g HIGH ORDER 3
_ MANTISSA BITS
0 1 8 9 1
MIDDLE ORDER
MANTISSA
12 23
LOW ORDER
: MANTISSA

Figure 8-2 Storage Allocation for a 27-bit Floating-Point Number

The sign of the number is bit 0 of the first word. The value of
the exponent is obtained by subtracting 200s from bits 1 through
8 of the first word. '

USING THE FLOATING-POINT PACKAGE

The Floating-Point Package contains subroutines which perform
floating-point operations using three core memory locations—44,
45 and 46, which are collectively designated as the floating accum-
ulator, or FAC. Some of the subroutines require a floating-point

8-7



argument. The Floating Add Subroutine, for example, must be
supplied with the address of a floating-point number which is to
be added to the content of the FAC. Other floating-point sub-
routines do not require an argument because they operate on the
FAC directly. The Floating Square Root Subroutine, for example,
operates directly on the FAC by replacing the current value of
the FAC with the square root of this value. It does not require an

argument.

Most of the floating-point subroutines may be called by a user
program at any time, in precisely the same manner that user sub-
routines are called, subject to the restriction that the subroutine
call, the FPP itself and the argument (if required) must all reside
in the same memory field. In general, all FPP subroutines should
be entered with the hardware accumulator cleared.

The Floating Subtract Subroutine, for example, may be called
_ by an indirect JMS to its entry address. The location following the
subroutine call must contain the address of the floating-point argu-
ment to be subtracted from the FAC. Once this operation has been
performed, the subroutine will return control to the core location
following the address of the argument (i.e. the second location fol-
lowing the JMS). The Floating Square Subroutine may also be
called by an indirect JMS to its entry address. Since this subroutine
does not require an argument, it will square the contents of the
FAC and return control to the location immediately following the
JMS which called it.

When used in this manner, the FPP is being employed in single-
instruction mode. In this mode of operation, every call to an FPP
subroutine causes one floating-point operation to be performed on
the FAC. Table 8-1 lists the floating-point subroutines which may
be called in single-instruction mode, specifying which subroutines
require an argument and which don’t, along with their absolute
entry addresses and a description of the operations they perform.

- NOTE

Subroutine addresses are constant for all three floating-
point packages. Thus, the user may easily upgrade from
a NON-EAE to an EAE system if greater speed is re-
quired and from either 23-bit FPP to the 27 bit FPP
if greater accuracy is required.

8-8



Figure 8-3 is a program which calls the 23-bit floating-point
subroutines in single-instruction mode. This program calls the
Floating Input Subroutine to accept a floating-point number from
the Teletype, then calls the Floating Multiply Subroutine to multi-
ply the input by 10.0. Finally, the program stores the result of
these operations and halts. )

* J .
200 Kce /INITIALIZE KEYBOARD
LS /AND TELEPRINTER
JMS I FINP /CALL INPUT SUBROUTINE
JMS I FMPYP /CALL MULTIPLY SUBROUTINE
TEN /ADDRESS OF OPERAND
JMS I FPUTP /CALL PUT SUBROUTINE
STORE /STORAGE ADDRESS
HLT /HALT UPON COMPLETION
FINP, 6200 /POINTER TO INPUT ROUTINE
FMPYP, 6600 /POINTER TO MULTIPLY ROUTINE
FPUTP, 17322 . /POINTER -TO PUT ROUTINE
TEN, 4 /EXPONENT
2400 ' /HIGH-ORDER MANTISSA
0000 /LOW-ORDER MANTISSA
STORE, @ /3-WORD FLOATING-POINT
) : /STORAGE LOCATION
2 _
$

Figure 8-3 Using the FPP in Single-Instruction Mode

The same program could be cohverted for use under the 27-bit
FPP by changing the constant TEN (necessary because of the
different floating-point format) to look like:

TEN. 2045 ZEXPONENT
2000 /HIGH-ORDER MANTI SSA
15 119] /1. OW- ORDER MANTI SSA

The user should note that in single-instruction mode, the hard-
ware AC must be zero when calling a floating-point routine. The
contents of the link are not important. :

8-9



Table 8-1 Floating-Point Subroutines

Subroutine and
Entry Address

Function

FLOATING ADD
7000

FLOATING SUBTRACT
7117

FLOATING MULTIPLY
6600

FLOATING DIVIDE
6722

FLOATING GET
7306

FLOATING PUT
7322

"FLOATING INVERSE
SUBTRACT
6400

FLOATING INVERSE
DIVIDE
6412

FLOATING
NORMALIZE
7265

FLOATING SQUARE
7564

FLOATING SQUARE
ROOT
6451

FLOATING SINE
5000

FLOATING COSINE
5053 '

- FLOATING
ARCTANGENT
5200

“Add the argument to the content of the

FAC and store this result in the FAC.

Subtract the argument from the content
of the FAC and store this result in the
FAC.

Multiply the argument by the content of
the FAC and store this result in the FAC.

_Divide the content of the FAC by the ar-

gument and store this result in the FAC,
An error results from any attempt to di-
vide by zero.

Load the argument into the FAC.

Replace the argument with the content
of the FAC.

Subtract the content of the FAC from
the argument and store this result in the
FAC.

Divide the content of the FAC into the
argument and store this result in the FAC.

Normalize the content of the FAC and
store this result in the FAC.

Multiply the content of the FAC by itself
and store this result in the FAC.

Compute the positive square root of the

absolute value of the content of the FAC

and store this result in the FAC.

Compute the sine of the content of the
FAC (in radians) and store this result in
the FAC.

Compute the cosine of the content of the
FAC and store this result in the FAC.

Compute the primary arctangent of the
content of the FAC and store this result
in the FAC.

8-10



'Table 8-1 (Cont.) Floating-Point Subroutines

Subroutine and
Entry Address

Function

FLOATING :
EXPONENTIAL
5135

FLOATING
LOGARITHM
5263

FLOATING NEGATE
7135 -

FLOATING INPU
6200 :

FLOATING OUTPUT
5600

FIX
5500

FLOAT
5533

Compute the exponential function of the
content of the FAC and store this result
in the FAC.

Compute the natural logarithm of the
content of the FAC and store this result
in the FAC. An error results if the con-

“tent of the FAC is negative or zero.

Negate the content of the FAC and store
this result in the FAC.

Accept a floating-point decimal number

- from the Teletype keyboard, convert it to

a floating-point binary number, normalize

+and truncate if necessary, and store this-

result in the FAC.,

Convert the content of the FAC to a dec-
imal floating-point number and print this.
result on the Teletype printer.

Compute the largest integer that is not
larger than the content of the FAC and-
store this result in the exponent word
of the FAC (loc. 44). An error oc-
curs if this result falls outside the range
—2047 < X < 2047. '

Compute the floating-point number that
is equal to the content of the exponent
word of the FAC (loc. 44) and store
this result in the FAC. '

The FPP also contains an interpreter, which is a subroutine that
decodes and executes floating-point pseudo-instructions. The in-
terpreter may be called in the same manner as any other subrou-
tine, however the FPP loads a pointer to the interpreter into core
location 0007 of the memory field in which it resides, so that the
interpreter is most conveniently called by a JMS I 7 instruction.

To call the FPP from a memory field other than the one in
which it resides, use an effective JMS to location 7400 of the
field in which the package has been loaded. The following is an

8-11



example of a call to the floating-point package where multiple

data fields are involved.

LT L - ~

N=MEMORY FIELD CONTAINING CALL

M=MEMORY FIELD CONTAINING FPP

COF N2 © /MAY BE OMITTED IF CURRENT DF=N
CIF MO /MAY BE OMITTED IF CURRENT [F=M
JMS I P7400 ‘

(PSEUDO INSTRUCTIONS)

P7408, 7400

The floating data field is originally set to the hardware data
field upon entry to the interpreter. This may be changed via the
'FCDF instruction which has a format similar to the normal PDP-8
CDF instruction. The floating data field is interpreted like the

it o fhin o]
normal data field in that it apphes Gr‘u_y {0 tne operana of an in-

directly addressed memory reference instruction (op codes 1-6).

The interpreter essentially accepts all of the pseudo-instructions
following the JMS which called it as arguments. Beginning with
the first pseudo-instruction following the interpreter call, the in-
terpreter decodes each pseudo-instruction as an effective JMS to
the appropriate floating-point subroutine and passes the subroutine
an argument, if required. When used in this manner, the FPP is
being employed in interpretive mode. In the interpretive mode the
package can be called from any memory field, and the user can
access data in any memory field.

The pseudo-instructions which are interpreted as calls to those
subroutines that require an argument are closely analogous to
standard memory reference instructions. The first three bits of the
pseudo-instruction specify which floating-point operation is to be
- performed (i.e. which subroutine to call) while the last nine bits
specify the effective address of the argument according to the same
conventions used for effective address generation by standard
memory reference instructions. The pseudo-instructions which are
interpreted as calls to those subroutines that do not require an ar-
gument are analogous to the operate microinstructions in that these
pseudo-instructions do not reference a core memory location.

8-12



The basic arithmetic operations (FADD, FSUB, FMPY, FDIV)
require that both FAC and floating operand be normalized. All
four yield a normalized result.

NOTE

Pseudo-Instructions are the same for each of the three
FPP’s to facilitate conversion of user programs from one
‘package to another. No alteration of the user program is
necessary to convert from the EAE FPP to the NON-
EAE FPP and vice versa. To convert a user program
from either 23-bit package to the 27-bit FPP, only the
floating-point constants need be changed.

Table 8-2 Floating-Point Pseudo-Instructions

Mnemonic Octal Operation
FEXT 0000 Exit thé interpreter and execute the next se- -
guentia! instruction as a normal machine
instruction.,
"FSQU 0001 Call the Floating Square Subroutine.
FSQR 0002 | Call the Floating Square Root Subroutine.
FSIN 0003 Call the Floating Sine Subrqhtine.
FCOS 0004 Call the Floating Cosine Subroutine.
FATN 0005 | Call the Floating Arctangent Subroutine.
FEXP 0006 Call the Floating Exponential Subroutine.
FIL.OG 0007 | Call the Floating Logarithm Subroutine.
FNEG 0010 Call the Floatihg Negate Subroutine.
FIN 0011 | Call the Floating Input Subroutine.
- FOUT | 0012 | Call the Floating Output Subroutine.
FFIX | 0013 | Call the Fix Subroutine.
FLOT 0014 Call the Float éubroutine.

8-13



Table 8-2 (Ceont.) Floating-Point Pseudo-Instructions

Mnemonic Octal- Operation

FNOP 0015 No operation. Available to the user,

FNOP 0016 Ne operation. Available to tHe user.

FNOP 0017 | No operation. Available to the user.

FISZ | 0020 | Floating Increment and Skip if Zero:

to 0177 Increment the content of the core memory lo-

cation designated by bits 5-11 of the FISZ
pseudo-instruction and skip the next sequen-
tial pseudo-instruction if the content of this
locaton becomes zero. An FISZ pseudo-in-
struction may only reference page zero loca-
tions between 0020 and 0177 inclusive.

FIMP 0200 Floating Jump: Performs the same function

to 0777 as a standard JMP memory reference instruc-
tion except that it is not possible to FIMP to
_ a location on page zero directly.

FADD Innn Call the Floating Add Subroutine. Use nnn to
calculate the effective address of the operand.

FSUB 2nnn Call the Floating Subtract Subroutine. Use
nnn to calculate the effective address of the
operand.

FMPY 3nnn Call the Floating Multiply Subroutine. Use
nnn to calculate the effective address of the

a operand.

FDIV 4nnn Call the Floating Divide Subroutine. Use nnn
to calculate the effective address of the
operand. A

FGET Snnn Call the Floating Get Subroutine. Use nnn to
calculate the effective address of the operand.

FPUT 6nnn Call the Floating Put Subroutine. Use nnn to
calculate the effective address of the operand.

FNOR 7000 | Call the Floating Normalize Subroutine.

FNOP 7010 No operation.

FSKP 7020 Floating Skip: Skip the next sequential

pseudo-instruction.

8-14



Table 8-2 (Cont.) Floating-Point Pseudo-Instructions

Mnemonic Octal Operation
FSNA 7040 Floating Skip on an-Zero Accumulator:
Skip the-next sequential pseudo-instruction if
_ the content of the FAC is not zero.
FSZA 7050 Floating Skip on Zero Accumulator: Skip the
' next sequential pseudo-instruction if the con-
tent of the FAC is zero. "
FSPA 7100 Floating Skip on Positive Accumulator: Skip
' : ' the next sequential pseudo-mstructlon if the
_ content of the-FAC is positive.
FSMA 7110 Floating Skip on Minus Accumulator: Skip
' the next sequential pseudo-instruction if the
_content of the FAC is less than zero. .
FCDF ~ 70n1 Change Floating Data Field: Obtain the op-
S | erand for all subsequent indirectly addressed,
‘floating-point, memory reference pseudo-in-
-structions from memory field n.
71inl Unused. _
FSW0 70n2 Restore the normal order of all FDIV and
= B or 71n2" | FSUB operatlons until the next FSW1 pseudo-
| : ) instruction is executed. -
- FSW1 | . 70n3 .| ‘Reverse the order of all FDIV and FSUB”
“for:71n3 operations until either the next FSW0 pseudo-
instruction ‘is -executed, the interpreter is re-
entered by the next effective JMS I 7 instruc-
tion,-or the Floating Input Subroutine is en-
tered.
- FHLT 70n4 Floating Halt: Halt and display the content
o or 7In4 - | 'of the floating PC in the hardware accumu-
lator.
70n5 Unused.
to 70n7
71n5 | -Unused.
to7ln7 | _
FIMS | 7200 Floating Jump to Subroutine: Performs the.
: to 7777 same function as a standard JMS memory

reference instruction,. except that it is not
possible to FIMS to a location on page zero
directly.

8-15



Table 8-2 lists all of the floating-point pseudo-instructions, their
-mnemonics and the operations they perform. The memory refer-
ence pseudo-instructions (octal codes 1nnn to 6nnn inclusive) are
interpreted as calls to floating-point subroutines which require ar-

guments. All of these functions are also available to the user in

single-instruction mode. The FIMP and FIMS pseudo-instructions
perform operations which are not possible in single-instruction
mode, but they are essentially equivalent to the standard PDP-8
'JMP and JMS instructions. Note, however, that no directly ad-
dressed FJMP or FIMS pseudo-instruction may reference a loca-
tion on page 0. This restriction allows octal codes 0000 to 0177
and 7000 to 7177 to be interpreted as extended pseudo-instructions.

» The pseudo-instructions corresponding to octal codes 0001 to
0017 generate calls to subroutines which are available to the user
in single-instruction mode. 0000 is the FEXT (leave interpreter)
operation, and 0020 to 0177 are FISZ operations (see Table 8-2). -
Aside from the FNOR operation, the pseudo-instructions corre-
sponding to octal codes 7000 to 7177 are not available in single-
instruction mode. The octal codes for some of these pseudo-in-
structions may have either a 1 or a 0 in bit position 5; this is
because. the interpreter does not decode bit 5 of the designated
pseudo-instructions. Several possible octal codes do not have as-
‘signed pseudo-instructions (e.g. 71n1). These codes are unused,
and should not be supplied as input to the interpreter.

*2@@

KCC /INITIALIZE KEYBOARD
LS /AND. TELEPRINTER
Jms 17 /ENTER INTERPRETER
FIN - /GET NUMBER FROM TELETYPE
FMPY TEN /MULTIPLY BY 19.0
FPUT STORE /STORE RESULT
FEXT - /LEAVE INTERPRETER
HLT /AND HALT
TEN, 4 /EXPONENT
2400 /HIGH-ORDER MANTISSA
| 0000 /LOW-ORDER MANTISSA
STORE, @ /3-WORD FLOATING=-POINT
) /STORAGE LOCATION
‘ )
$

Figure 8-4 Using the 23-bit FPP in Interpretive Mode

- 8-16



Using the 27-bit' FPP, the constant TEN would appear as
follows: _ '

TEN, 2045 ZEXPONENT

- 0000  MIGH-ORDER MANTI SSA
0800 /L 0W- ORDER MANTI SSA

The program example of Figure 8-4 performs the same opera-
tions as the example of Figure 8-3, however this program has been
coded to execute in interpretive mode; Note that this program re-
quires less core storage than the equivalent single-instruction mode
version, however the execution time required in interpretive mode
will be considerably longer. ' -

Floating Input and Qutput o

The FIN pseudo-instruction calls the Floating Input Subroutine
to accept one decimal floating-point number from the Teletype
keyboard, convert this input to a binary floating-point number,
normalize and truncate the number if necessary, and load the num-
ber into the FAC.' The input routine is normally called in intér-
pretive mode using the FIN command.  The input routine may
also be called by an effective JMS to the start of the routine (see
Table 8-1 for exact memory location). Input is terminated when
‘the routine recognizes any typed character which could not be part
of the input. For example, the conversion of “12.0.” would be
terminated upon receipt of the second “.”. The characters + and
— will not be recognized as input terminators and should not be
used as such. The following numbers, all terminated by carriage
returns, are examples of legal input. They are all equivalent.

726.7
« 126 TE+B83
+7267E-1

The Floating Input Subroutine echoes each character as it is
typed, including the terminator. Upon completion of any floating
input operation, core memory location 0052 of the memory field

1 Programs using floating input should begin with a KCC instruction to
initialize the Teletype keyboard and a TLS instruction to initialize the
printer.

8-17



in which the FPP resides contains zero if the input was invalid,
and a non-zero value if the input was valid. Core iocation 0053 in
this field contains the ASCII code for the terminating character
last received. Core location 0054 of this field may be set by the
aser. A value of zero loaded into this location causes the input

routine to echo only a carriage return whenever a carriage returi
is typed as an input terminator. Any non-zero value loaded into
location 0054 causes the input routine to echo a carriage return
and a line feed whenever a carriage return is received. Location
0054 is originally loaded with 7777,

~ Using the 23-bit FPP’s, if the example illustrated in Figure 8-5
" is started at location 0200 and the user types “0X1.0Y” at the
Teletype, the program will halt at location 0210 with storage
locations A and B containing:

As geee

P00
0171%1%)
. Bs 0n01
2000
poeo

while location 0053 will contain 0331, the ASCII code for the
second terminator.

Using the 27-bit FPP, storage locations A and B contain:’

As /ZERO

A Bp 814 /0NE

@G_NGQ@

and register 0053 will contain 0331 —the second terminator.

NOTE

Since the input routine calls the floating-point interpreter,
after input, FSWITCH is set to 0 (FSWO) even if it was
set to 1 when input was called (see the section, Floating
Switch).

8-18



The input routine recognizes RUBOUT as a special character
which is not echoed. If a RUBOUT is typed during input, all char-
acters received since the last input terminator are ignored. For
example;, typing:

276 (RUBOUT) 1T

to the input routine has the same effect as typing:

IT

Inpuf will be terminated with the binary floating-point equivalent
if decimal 1 in the FAC. The current input element must be re-
typed from the beginning.

- %200

KCC /INITIALIZE KEYBOARD
ILs /AND TELEPRINTER
JMS 1 7 /ENTER INTERPRETER
FIN /INPUT A NUMBER
FPUT A _ - /STORE IN LOCATION A
FIN /ACCEPT ANOTHER NUMBER
FPUT B ~ /STORE«IN LOCATION B
FEXT /EXIT INTERPRETER
HLT /AND HALT

A’ g
%
@

B, 0
2

_ 2

$

Figure 8-5 Floating Input Routine

The FOUT pseudo-instruction calls the Floating Output Sub-
routine to print the contents of the FAC on the Teletype.? The
'FPP maintains four core memory locations on page 0 of the
memory field in which it resides. These locations may be set by
the user to determine- the format for all floating-point output.

Loading any non-zero value into location 0056 causes all output
to be printed in FORTRAN. Fa.b format, where a is the content

2 Programs using ﬂoatmg output should begm with a TLS instruction to
initialize the Teletype printer.

8-19



of core location 0057 and b is the content of location 0060. As
with FORTRAN, field overflow causes the fieid to be fiiiled with
asterisks, while field underflow causes the output to be right justi-
fied. ’

If location 0056 contains zero, the FPP ioads 00164 into ioca-
tion 0057 and 00064 (0007, for the 27-bit FPP) into location 0060,
then prints all output in FORTRAN E14.6 format (E14.7 for 27-bit
FPP). :

In either case, each element of output will be followed by a
carriage return and line feed if the content of location 0055 is not
zero. Loading a zero into location 0055 suppresses the terminating
carriage return and line feed.

Upon loading, the FPP initializes these four core locations for
E14.6 format (E14.7 in 27-bit FPP), with each element termi-
nated by a carriage return and line feed.

NOTE

‘The output routine destroys the contents of the FAC.
If the number to be typed is-needed for further calcu-
lation, it should be saved prior to calling the output
routine.

OVERFLOW AND UNDERFLOW

Under the 27-bit FPP only, overflow and underflow on input
are treated like exponent overflow and underflow (see section on
Error traps). Typing a number like:

100000E+61

will result in exponent overflow, and the error trap will be taken
if the user has set it. The capacity of the input routine is approx-
imately 10-3% < X < 10%8. If more than 8 significant digits are
input, the result will be truncated.

Use of FISZ and Auto-Indexing

Core memory locations 0010 through 0017 may be used for
auto-indexing in interpretive mode. If one of these locations is
referenced indirectly in interpretive mode, the contents of the loca-
tion will be incremented by three before it is used for effective
address generation. ‘

8-20



. The Floating ISZ (FISZ) operation is only available in inter-
pretive mode. A FISZ pseudo-instruction must be directly ad-
dressed, and may only reference a page O location greater than
0017. A hardware ISZ is performed on the referenced page 0
location, and the next pseudo-instruction is skipped if the content
of the location becomes zero. If the content of the referenced loca-
tion does not become zero, the next sequential pseudo-instruction
is executed.

The program example of Figure 8-6 uses auto-indexing in inter-
pretive mode to pick up 20 (octal) floating-point numbers from
a buffer in core and calculate the sine of each. The sines of the
- numbers are stored in a separate buffer area and are also printed
on the Teletype. After each iteration, an FISZ is performed on a
- .counter and the program loops back until the counter becomes
zero, at which time the program exits the interpreter and halts.
(Assume that the floating-point package and the user’s program
-are in the same data field.)

BUF1=400 /INPUT BUFFER BEGINS AT 8409

BUF2=6080 /0UTPUT BUFFER BEGINS AT 0600
*16 .
R16, ] /INPUT BUFFER POINTER
R17, 7 /0UTPUT -BUFFER POINTER
R20, 2 /DATA ELEMENT COUNTER
*200 '
KCC
TLS Z/INITIALIZE TELEPRINTER
JMS 1 7 /ENTER INTERPRETER
FGET INDXR ZINITIALIZE THE THREE
FPUT R16 /AUTO-INDEX REGI STERS
LOOP, FGET I R16 /GET NUMBER FROM INPUT BUFFER
FSIN /TAKE ITS SINE
FPUT I R17 /PUT RESULT IN OUTPUT BUFFER
FOUT /PRINT RESULT
FI1SZ R20 /DONE ALL NUMBERS?
FJMP LOOP _ N0 LOOP BACK
FEXT /YES: EXIT INTERPRETER
HLT /AND HALT
INDXR, BUF1-3 /INITIAL VALUE OF R16
BUF2-3 ZINITIAL VALUE OF R17
-20 ZINITIAL VALUE OF R20
s

Figure 8-6 Use of FISZ and Auto-Indexing

8-21



User Subroutines

~ Users who require special floating-point functions may code the
functions as assembly language subroutines and call them through -
.the interpreter in the same manner as the extended functions are
called. Up to three such subroutines may be inserted in place of
the three FNOPs having octal codes 0015, 0016 and 0017. This
is accomplished by assigning a mnemonic to the user function,
equating the assigned mnemonic to the octal code of the FNOP to
be deleted, and inserting the entry address of the user subroutines
into core location 7246 (for octal code 0015), 7247 (for octal
code 0016) or 7250 (for octal code 0017) of the memory field
in which the FPP and user subroutine reside.

User subroutines called through the interpreter can themselves
call the interpreter and use all interpreter functions except calling
another user function or extended function through op code O.
The extended functions could be called, however, using single-

CNPPL SR 11 ., » 3 i
instruction mode. All user subroutines must be in the same memory

field as the floating-point package. They may enter the inter-
preter and change the floating data field. They can even change
the hardware data field, but when one user subroutine returns to the
interpreter, the floating data field, hardware data field, and float-
ing instruction field are all restored to the value they had prior to
calling the user subroutine.

The program example of Figure 8-7 contains a user subroutine
called through the interpreter. This subroutine has been assigned
the mnemonic FUSR and octal code 0015. If the FPP is loaded
into the same memory field, the program will accept floating-point
numbers from the Teletype, add all such input elements greater
than 0.5 to a running sum, and print the sine of the cumulative
total after each input element is received.

8-22



*x203 .
START,

KUSR,
INTABL,

usus,

PSIN,
COMPR,
sum,

TEM,

*200
PT5,

SINvE T O

FUSR=0015
FIELD @

KCC

ILS

TAD KUSR

DCA I -INTABL
JMS I 7

. FIN

FUSR
FOUT

UsuB -
7246

)

JMS I 7
FPUT TEM
FCDF 10

FGET I COMPR
FSUB TEM
FSMA

FJWP .+4
FGET SUM
FADD TEM
FPUT sum
FGET sum
FEXT ,
JMs I PSIN
JMP I USUB
5000

PTS

g

IELD 1

goo

/ASSIGN MNEMONIC AND CODE

/INITIALIZE KEYBOARD

/AND TELEPRINTER

/INSERT USER SUBROUTINE ENTRY
/ADDRESS IN INTERPRETER TABLE
/ENTER INTERPRETER

/ACCEPT NUMBER FROM KEYBOARD
/CALL USER SUBROUTINE

/PRINT RESULT (SINE OF SUM
/ACCEPT NEW INPUT

' /ENTRY ADDRESS FOR USER

/SUBROUTINE TO BE ENTERED
/IN INTERPRETER TABLE
/POINTER TO INTERPRETER
/TABLE ENTRY CORRESPONDING
/TO OCTAL CODE 2215

/ENTER USER SUBROUTINE
JENTER THE INTERPRETER
/STORE INPUT

/CHANGE TO FLOATING

/DATA FIELD 1

/LOAD 9.5 INTO FAC
/SUBTRACT INPUT

/1S INPUT GREATER THAN 8.57 .
/NO: DON'T ADD TO SuM

/YES: GET CUMULATIVE sum
/ADD IN LATEST INPUT

/STORE NEW SUM

/LOAD SUM INTO FAC AND
/LEAVE INTERPRETER

/TAKE SINE OF SUM

/RETURN TO MAINLINE
/POINTER TO SINE ROUTINE
/POINTER TO FIELD 1 CONSTANT
/FLOATING-POINT STORAGE

/FLOATING-POINT TEMPORARY

/FIELD 1 CONSTANT =

Figure 8-7 Coding a User Subroutine (23-bit FPP)

8-23



If using the 27-bit FPP, the field 1 constant is stored as:

eroct n ]
T A Glwis i

*200

PTS, 20084 /CONSTANT = .5°
)
]

Floating Skips

The interpreter maintains a core memory locatlon designated
as the floating program counter (floating PC) which is originally

set to the address of the location following the JMS I 7 which
called the interpreter, and thereafter updated by the interpreter

whenever a floating-point pseudo-instruction is executed. The float-
ing PC may be incremented by the floating skip pseudo-instruc-
tions, which are functionally equivalent to normal PDP-8 skip
microinstructions except that floating skips reflect the status of the
FAC rather than the hardware accumulator. Floating skip pseudo-

instructions may be microprogrammed in the same manner as
orann ) nnerate mirrninetrmcetinone All floatine ckme assume that

5luuy & UPUIAL aliivi VIOV BRIV LS, SRER SSRLIE ST LR

the content of the FAC is normalized. There is no provision for
- clearing the FAC when skipping on condition.

The example of Figure 8-8 uses floating skip pseudo-instruc-
tions to accept floating-point numbers from the Teletype until it
receives a number with an absolute value greater tian 10.0.

*200 : ‘ :
KCC , /INITIALIZE KEYBOARD

TLS /AND TELEPRINTER
JMs 1 7 - /JENTER INTERPRETER
INPUT, FIN /ACCEPT INPUT FROM XEYBOARD
FSNA /1S THE INPUT NUMBER 8.07
FdMP .-2 /YES: GET NEW INPUT
. FPUT TEM /N@: STORE TEMPORARILY
-FSPA /1S INPUT POSITIVE?
FNEG -/NO: TAKE ABSOLUTE VALUE
FSuB TEN /YES: SUBTRACT 102.8
FSPA FSNA /1S INPUT GREATER THAN 10.08?
FJMP INPUT /N0: GET NEW INPUT
FGET TEM /YES:s USE THIS INPUT
FEXT /LEAVE INTERPRETER
HLT /HALT WITH INPUT IN FAC
TEN, 4 /CONSTANT = 18,0
2400
2000
TEM, 0;0;0

Figure 8-8 Use of Floating Skips (23-bit FPP)
8-24



Using the 27-bit FPP, the constant ten is stored as follows:

TEN» 2845 /CONSTANT = 10.0
P00
- 9000
Floatmg Data Field

- The floating CDF ( FCDF) pseudo-mstructlon is used to change
the data field from which the operand of an indirectly addressed,
floating-point, memory reference pseudo-instruction is obtained.
The program example shown in Figure 8- -9 illustrates the use of the
FCDF pseudo—mstructlon :

/LOAD FPP INTO FIELD 1 AND

. FIELD @
*2008 /USER PROGRAM INTO FIELD @
KCC . '
TLS . ZINITIALIZE PRINTER
CDF 28 /SET DATA FIELD = @
CIF 10 ZINSTRUCTION FIELD = 1
JMS I K7400 7/ENTER INTERPRETER FROM
FGET I PF8PTI /FIELD @ THEN
FCDF 1@ /SET DATA FIELD = 1
FPUT I KSé6 /SET OUTPUT REGISTER
FGET TEN ~ /GET NUMBER FROM FIELD 1
FOUT /AND PRINT IT
FEXT : v /LEAVE INTERPRETER
HLT /7AND HALT . :
K7400, 740D /POINTER TO INTERPRETER
TEN» 43 24003 0 /CONSTANT = 10.0
KS56» 56 /POINTER TO OUTPUT REGI STER
PF3PT1, F8PTI /POINTER TO FORMAT SPEC
*400 3
FSPT1, 1 /CONSTANTS TO
: 10 /SET OUTPUT TO
1 /F8.1 FORMAT
$

Figure 8-9 Use of the FCDF Pseudo-Instruction (23-bit FPP)

Using the 27-bit FPP, the constant ten is stored as:

TENS

2045
21o 1o 1%)
2000

/CONSTANT =

18.9

If the FPP is loaded into memory field 1, this program will enter
the interpreter from memory field 0, load the floating output regis-

8-25



ter with a format specification stored in field O; and then print a
floating-point number which is also stored in field O.

Floating Switch

The floating switch instructions (FSWO and FSW1) regulate the
operation of the FDIV and FSUB pseudo-instructions. Using
floating switch 0, FSUB and FDIV are interpreted normally. Fol-
lowing any occurrence of an FSW1 pseudo-instruction in inter-
pretive mode, the order of all FDIV and FSUB operations is
reversed. That is, every FDIV operation will divide the content
of the FAC into the floating-point argument supplied (rather than
vice versa) and every FSUB operation will subtract the content
of the FAC from the floating-point operand. The result of these
operations will be stored in the FAC in either case. After each
occurrence of an FSW1 pseudo-instruction, the order of FDIV
and FSUB operations will continue to be reversed until either:

Tha navt cann

1 1antin EQ‘I/“ ngeu An_inctirintinn 1c. avanntard
i. 110 IivAal D\a\iuvllblul 9 vv v poCUlT-ILS dululIl 15 TASTUE,
2. The interpreter is re-entered by the next effective JIMS I 7

instruction.
3. A floating input operation is performed in either mode.

The floating switch is normally set to 0.

Certain mathematical calculations may be facilitated by using
the FSW1 pseudo-instruction to reverse the order of FDIV and
FSUB operations. For example, Figures 8-10 and 8-11 contain two
program segments, both of which calculate the value of the ex-
pression:

A

5= X [By+
X2 4+ B; + — Az

. Ag
X= + B2 + X2 + B3
_ Both program segments execute in interpretive mode, however the
first program segment uses the FSW1 pseudo-instruction to reverse
the order of certain FDIV and FSUB operations, while the second
program segment does not.

8-26



*200 ”

JMS 1 7  /ENTER INTERPRETER
FGET X /GET X

FSQu /SQUARE IT

FPUT XSQR  /STORE TEMPORARILY

FADD B3 /FORM X12+B3 s

FSwl /USE INVERSE DIV AND SUB

FDIV A3 /FORM A3/(X12+B3) :

FADD B2 /FORM B2+A3/(X12+B3)

FADD XSGR / (X12+B2+A3/ (X12+B3))

FDIV A2 ' /A2/(X12+B2+A3/(X12+B3))

FADD Bl | . »

FADD XSQR = /X1t2+B1+A2/(X12+B2+A3/(X12+B3))
FDIV Al

FADD B® |

FMPY X N

FSUB PIOVZ. /P1/2-X(B@+A1/(X124+B1+A2/(e..)))
FPUT ANS |

FEXT /EXIT INTERPRETER

HLT -

Figure 8-10 Use of the FSW1 Pseudo-Instruction

-

Floating Halt
The floating halt pseudo-instruction is used mainly for debug-
ging floating-point code. When a floating halt is detected in inter-
pretive mode, the interpreter will halt with the address of the next
floating-point instruction displayed in the hardware accumulator.
-The user can continue execution by pressing the CONT switch on
the programmer’s console. Normally, the floating halt pseudo-
instructions would be removed or replaced by FNOPs once the
- program has been debugged. ‘ :

SINGLE INSTRUCTION MODE VERSUS
INTERPRETIVE MODE * :

The relative advantages and disadvantages of each of the two
modes of FPP operation are summarized in Table 8-3. For most -
applications, interpretive mode is more convenient than single-
instruction mode and more economical in terms of core storage
requirements. However, the user who is especially speed-conscious
may employ single-instruction mode to eliminate interpreter over-
head and reduce execution time.

8-27



=200

JMS i

FGET
FSGU
FPUT
FADD
FPUT
FGET
FDIV
FADD
FADD
FPUT
FGET
FDIV
FADD
FADD
FPUT
FGET
FDIV
FADD
FMPY
FNEG
FADD
FPUT
FEXT
HLT

TEM, 0

Figure 8-11

As an example of the trade-offs to be considered when choosing
between interpretive mode and single-instruction mode, the inter-
ent of Figures 8-10 and 8-11 is recoded
d presented in Figure 8-12 (pointers
to FPP routines are given in Table 8-1). The single instruction
mode version requires 18 (decimal) additional storage locations,
but it is approximately 800 microseconds faster than the inter-
pretive mode version.

pretive mode program segm
in single-instruction mode an

X.SOR
B3

‘TEM

A3
TEM
B2
XS8R
TEM
A2
TEM
B1 -
XSGR
TEM
Al
TEM
B

PIOV2
ANS

/ENTER INTERPRETER

/GET X
/SQUARE IT
/STORE Xt2

/FORM Xt 2+B3

/STORE -TEMPORARILY

/GET A3
/DIVIDE BY Xt2+B3

Xt2+B2+A3/7(X12+B3)
/STORE TEMPORARILY

7X12+B1+A2 /(X1 2+ B2+A3/(X12+B3))
/STORE TEMPORARILY

/XCB@+A1/(X12¢B1+A2/Ceee))) ~

- NEGATE AND ADD RATHER

/THAN INVERSE SUBTRACT

/EXTRA TEMPORARY LOCATION
/NEEDED IF FLOATING SWITCH
M OT USED

Program Segment of Figure 8-10 Without
FSW1 Pseudo-Instruction

- 8-28



Table 8-3 Single-Instruction Mode Versus Interpretive Mode -

Single-Instruction -

Interpretive Mode

Instruction Set:

FISZ, FIMP, FIMS
and floating skips not
available.

Full instruction set.

Execution Time:

- Generally shorter.

(50 microseconds or
20-25% shorter for
the EAE FPP.)

' Generally longer.

Core Requirements:

Generally up to 33%
higher (requires 2 or 3
words per operation).

Generally lower (re-
quires 1 or 2 words
per operation).

Memory Field
Limitations:

Instructions must re-
side in the field which
contains the FPP.

All of extended mem-
ory is available for
program and data
storage.

Other Advantages:

User programs may
overlay the unavail-
able floating-point

functions and the

interpreter.

ERROR - TRAPS

The following error conditions are detected by the FPP:

1. Attempt to FIX a number whose absolute value is
greater than 2047. -
2. Attempt to divide by zero.

3. Tlegal function argument ( log(
tive number).

X) where X is not a posi-

4. Exponent Overflow (27-bit FPP only).
5. Exponent Underflow (27-bit FPP only).

Exponent overflow and underflow errors are detected only by
the 27-bit FPP. These conditions occur whenever a calculation
results in a number whose exponent has an absolute value greater
- than 128,,. The result of such a calculation is meaningless. In the
23-bit FPP’s, underflow or overflow occurs when a calculation

results in a number whose exponent has

than 615,,.

8-29

an absolute value greater



-

FGETP, 7386
FSQP, 7564
FPUTP, 7322
FADDP, 7000
FDIVIP, 6412
FMPYP, 6600
FSUBLP, 6400

FGETP

FSQP
FPUTP

FADDP
FDIVIP
FADDP
FADDP
FDIVIP

- FADDP

FADDP
FDIVIP
FADDP
FMPYP
FSUBIP-
FPUTP

/GET X

/SQUARE IT
/STORE X12

/FORM X12+B3

/INVERSE DIVIDE TO GET

/437 (X12+B3)

/FORM B2+A3/(X12+B3)
/X12+B2+A3/ (X12+B3)

/A2/ (X12+B2+A3/ (X12+B3))
/ADD Bl

/ADD X12
JAL/(X12+BI+A2/Cess))

/ADD BD

JX(BO+AL /C(X124BI+A2/ (v o))
/CALL INVERSE SUBTRACT TO GET
JP1/72-X(B@+A1/(..0))

/POINTERS TO FPP ROUTINES:
/FLOATING GET

/FLOATING SQUARE
/FLOATING PUT

/FLOATING ADD

/FLOATING INVERSE DIVIDE
/FLOATING MULTIPLY

/FLOATING INVERSE SUBTRACT

Figure 8-12 Program Segment of Figure 8-10 in Single
Instruction Mode

Error 3 leaves the FAC unchanged, while errors 1 and 2 set the
FAC to zero. Error 4 in the 27-bit FPP sets the FAC to a very
large number. Error 5 in the 27-bit FPP sets the FAC to 0. The
contents of the hardware accumulator and multiplier quotient regis-
ter are unpredictable when any of these errors occurs. The user
may set the interpreter to jump to a specific location in his pro-
gram upon detection of one of these errors. To do this using the

8-30



. 23-bit FPP, core locations 7574, 7575 and 7576 should be loaded
with the address (in the same memory field) to which control
should be transferred upon detection of error 1, 2, or 3, respectively.
- Using the 27-bit FPP, core locations 7574, 7575, 7576, 7573,
- and 7577 should be loaded with the address for transfer of control
“upon detection of error 1, 2, 3, 4, or 5 respectively. Normally,
. these locations would. be set to point to user error message routines,
“and the user program would abort upon detection of one of these
errors. - | o

'EXTENDED FUNCTION ALGORITHMS
.- The algorithms to approximate the extended functions use either
. Chebyshev optimized Taylor series expansions or continued frac-
tion polynomials to calculate the value of a function over some
small range. These algorithms provide fairly. uniform accuracy
- over the specified range and, as opposed to converging series, they
consist. of a definite number of ‘computations. Various extended
function algorithms are described individually in the following
paragraphs. -

SIN(X) o

--The argument (the FAC in radian measure) is first reduced to
the interval: - .
T ex< ™
7 XS5
using ‘the proper identities, and the quadrantjo.f the original argu-
‘ment is determined. SIN(X) is then calculated as a function of
the modified argument Y — G(F) as follows:

" Quadrant Y= Using the Identity:
o  F SIN(Y) = SIN(Y)
1 1-F . SIN(Y) = SIN(z—Y)
2 “F SIN(Y) = SIN(—(Y=) )
3 - F-1 SIN(Y) = SIN(=(2r—Y) )

-where F is the fractional portion of (x/2)X.

Using either of the 23-bit FPPs, SIN(Y) is then calculated
8-31



over the range (—=/2, =/2) using the Chebychev optimized Tay-
lor series expansion:

SIN —’iﬂY = A, YA Y3+A YA Y?

where:

A, = 1.570949
Ay = —.64592098
A= .07948766
A, = —.004362476

Using the 27-bit FPP, SIN(Y) is calculated:

SIN —’25—Y =A; YH4AY3HAYS+AYT+AY®

where:

A, = 1.57079633
A; = —.645963711
A;= .079689679
A, = —.00467376557
A, = .00015148419

COS(X)

The function COS(X) is calculated using the SIN function on
the basis of the following identity:

COS(X)=SIN((x/2) +X)
EXP(X)

The algorithin for the calculation of EXP(X) uses a continued
fraction polynomial to calculate e* as: -

log ex Xlog e
ex= 276" =27 2

If: n = Integer part of Xlog.e

r = Fractional part of Xlog.e
then: ex = 282r
where: r]<1

8-32



Under the 23-bit FPP, the algorithm calculates 27 as follows:

. 2y o
r —
_2 1+ Ay —y+ Ay
B, +y*
r In2
where: y= >
log.e = 1.442695
“‘22 = 34657359
A, = 12.015017
A; = —601.80427

B, = 60.090191
Under the 27-bit FPP, 2r is calculated using the values:

__rin2
T2

' log.e = 1.442695

“2’2 — 3465735903

Ay= 1201501675
A, = —601.804267 -
B,= 60.0901907
ARCTANGENT (X)
The algorithm for the calculation of TAN-1(X) also uses a con-

tinued fraction- polynomial to calculate the TAN-}(X) for
0<X<1. | |

The argument is reduced to the range 0<X<1 using the identi-
ties: '

If: X<0, TAN-(=X) = —~TAN-(X)
0<X<1, TAN-YX) = TAN-1(X)
1<X, TAN-Y(X) = (x/2)-TAN-1(1/X)

8-33



Once X has been reduced, TAN-!(X) is calculated as:

TAN-1 (X)=X | B, + Ay
X2+ B; + As
e . A,
\ : X2+ B, + 3
\ T,
. where (under the 23-bit FPP): B, =  .17465544
: : A= 3.7092563
B, = 6.762139
A, = —-7.10676
. By= 3.3163354
o A; = — .26476862
B; = 1.44863154
while under the 27-bit FPP: B,=  .174655439
. . A= 3.70925626
B, = 6.7621392
- A = —7.10676005
B.= 3.31633543
A; = — 26476862
B; = 1.44863154

LOG(X)

Log(X) is calculated by.using a Chebyshev optimized Taylor
series to approximate the log. of the mantissa of X.

If F = Mantissa of X
I = Exponent of X
then log, (X) = [I + log»(F)] log, (2)

The log,(F) :is approximated as follows:
' logs (F) =C,Z +C3Z3 4+ C;Z5 — 1/2

Under the 23 bit FPP:

Z =(F~— ./’5)/(F+ v'5)
C, = 2.8853913

C, = .9614706
C; = .59897865
VoS < = 7071068

log,2 = .6931472

8-34



while under th_e 27-bit FPP:

Z = (F—=V3)/(F+V5)
C, = 2.88539129
C, = .961470632
C, = .59897865
V5 = .707106781
log. 2 = .69314718

The ranges of the extended functions are as follows:

SIN,COS  —2047<X<2046

EXP —1415<X<1415
ATAN all X
'LOG all X>>0

The SQUARE SQUARE ROOT, FIX and FLOAT routines
are explalned in Table 8-1.

Execution Time for EAE Floating-Point Operations

Instruction times are for single-instruction mode calls. Add 50
psec. for interpretive mode, or 71 usec. for interpretive mode with
indirect addressing. ‘

Operation | Typical Time

FADD 160 psec.

FSUB = . 180 psec.

FMPY . 200 pSeC.

FDIV 160 usec. or 190 usec.
FGET = - 55 usec.

FPUT - 35 psec.

ESUB (with FSW1) 215 psec.

FDIV (with FSW1) | 210 psec. or 240 psec.

8-35



Execution Time for EAE Extended Functions

Average Execution

-~ Function Range - Time

SIN —10%1 <X <0 2.30 misec.
0 <X <1085 2.25 msec.

COS ) —10815 <X <0 - 2.45 msec.
0 <X <1083 2.40 msec.

ATAN —10813 <X < —1 2.78 msec.
-1 <£X<0 2.33 msec.

0<Xxl 2.27 msec.

1 <X <1085 2.73 msec.

EXP —1415 <X < 1415 ' 2.33 msec.
LOG 0 <X <1085 2.43 msec.
SQROOT —10815 < X < 10915 1.43 msec.
SQUARE —10300 < X < 10300 200 psec.

Execution Time for Non-EAE Floating-Point Operations

Instruction times are for single-instruction mode calls on the
PDP-8/E. All 55 psec. for interpretive mode, or 72.8 usec. for
interpretive mode with indirect addressing.

Instruction _ Typical Time

FADD (Operands have same 180 psec. plus normalization
order of magnitude.) time.

FADD (Operands differ by 3 270 ,Léec. plus normalization
orders of magnitude.)  time.

FADD (Operands differ by 6 - 360 psec. plus normalization
orders of magnitude.) time. :

FADD (Operands differ by 12 530 psec. plus normalization
orders of magnitude.)  time.

FSUB _ FADD time plus 25 usec.
FMPY (Positive operands.) 990 usec. average.

FMPY (At least one 1025 usec. average.
" negative operand.)

8-36



FDIV (Both operands
- positive.)

FDIV (At least one _
negative operand.)

FNOR

FGET
 FPUT

- FSUB with FSW1
FDIV with FSW1
FSQU

FSQR

1077 usec. or 1113 sec.
1118 psec. or 1153 psec.

21+41.6N usec. where N
shifts are required.

57.6 usec.

39.6 usec.

Same as FSUB. ,

Add 54.0 ysec. to FDIV time.
Same as FMPY.

1965 psec. average.

Accuracy of Extended Funections '

Function .

SIN

COS
EXP

LOG
TAN-!

Approximate
Range

—n/2<X< x/2

| —50<X<50

—200<X <200

—n/2<X< »/2
—30<X<30

—100<X<100

—125<X<125

—89<X <88
—50<X <100
—25<X<35
—1<X1

0<X <1000

—1<X<1
all X

23-Bit

6 digits

5 digits

6 digits

5 digits

5 digits
6 digits
6 digits

6 digits

6 digits

8-37

Accuracy (no. of significant digits)

27-Bit

7 digits

62 digits

6 digits
6 digits
612 digits

6 digits

6Y% digits

7 digits

-7 digits

7 digits

7 digits
7 digits



Conditions determining function accuracy:

1. All functions are accurate to six digits (7 digits under
27-bit FPP) over their primary range. Primary ranges.
are as follows:

SIN, COS i “'7r/’2<X<“—"— 11'/2
EXP —1<X<=1
LOG 0<X<=1
TAN-1 —1<X<=1

2. The SIN and COS functions are accurate to six digits (7
digits under 27-bit FPP) for all X, but the answer loses
significance as X diverges from zero.

3. Accuracy decreases as X becomes very large, or very
close to critical points.

CORE STORAGE MAPS

‘User programs may overiay portions of the FPP which are not
used, such as I/O routines and extended functions. The following
storage maps list core allocations for the Extended Arithmetic
Element FPP, the non-EAE package, and the 27-bit FPP. Page 0
storage is the same for all packages.

EXTENDED ARITHMETIC ELEMENT
FLOATING-POINT PACKAGE

Core location Contents

7400-7577 Interpretive dispatch routines.

7200-7377 Argument fetch, FPUT, FGET, FNOR and
‘ extended functions calling sequence.

7000-7177 FADD, FSUB, FNEG and part of FDIV.
6600-6777 FMPY and FDIV.

6400-6577 Inverse Floating Subtract and Divide, FSQR
and FHLT.

5600-6377 FIN and FOUT.

5400-55717 FIX, FLOT and constants for extended func-
tions.

5200-5377 FATN and FLOG.
5000-5177 - FSIN, FCOS, FEXP and utility routines.

8-38



NON-EAE FLOATING POINT PACKAGE

Core location

7400-7577

7200-7377

7000-7177

6600-6777
6400-6577

5600-6377
5400-5577

5200-5377
5000-5177
4600-4777

Contents

‘Interpretive dispatch routines,- FSQU, FIMP

and FIMS.

Argument fetch, FPUT, FGET, FNOR, ex-
tended functions calling sequence and part
of FDIV.

FADD, FSUB, FNEG, part of FDIV.

- FMPY and part of FDIV.

Inverse Floating Subtract and Divide, and
FSQR.

- FIN and FOUT

FIX, FLOT and constants for extended func-
tions.

FATN and FLOG
FSIN, FCOS, FEXP and utility routines.

‘-Part of FMPY and FDIV and . mterpreter

routines.

27-BIT 'FLOATING-POINT PACKAGE

Core location

7400-7577
7200-7377

7000-7177
6600-6777

6400-6577

5600-6377

5400-5577

5200-5377
5000-5177
4600-4777

- Contents _
Interpretive Dispatch Routines; Floating Square,
JMP, IMS.

FPUT, FGET; Normalize; Extended Functlons
Call Sequence; Floating Halt.

Floating Add, Subtract, Negate.
Floating Multiply, Divide.

Inverse Floating Subtract and Divide; Square
Root.

- Floating Input and Output Routines.

FIX; FLOAT; Constants for Extended Func-
~ tions. ’

Arctangent; Log,
SIN; COS; Exponential; Utility Routines.

~ Parts of Floating Multiply, Divide; Interpre-

ter Routines; Argument Fetch.
8-39



PAGE ZERO STORAGE MAP (all FPPs)

Core location- - Contents
0007 Pointed to interpreter.
0040-0042 Floating-point temporary storage.

0043 . Interpreter constant storage.
0044-0046 Floating accumulator (FAC).
0047-0051 Floating-point operand storage.

0052 Valid input switch.

0053 Last input terminator register.

0054 Line feed after carriage return switch.
0055 CR/LF after output switch. -

0056 E/F output format switch.

0057 F format output field width specification.
0060 F format decimal digit specification.
0061 ~ Internal pointer for interpreter.

0062 Reserved for future expansion.

SUMMARY OF FLOATING-POINT INSTRUCTIONS

Memory Reference Instructions

Instr Code
FIMP - 0000
FADD 1000
FSUB 2000
FMPY 3000
FDIV ' 4000
FGET 5000
FPUT 6000

FIMS 7000

8-40



-

Expanded Instructions

Instr Code
FISZ= 0
FEXT= 0 '
FSQU= 1 (Square)
FSQR= 2 (Square Root)
FSIN= 3
FCOS= 4
FATN= 5
FEXP= 6
FLOG= 7
FNEG= 10
FIN= 11
FOUT= 12
FFIX= 13
FLOT= 14 o
- FNOP= 15 (Available to User)
FNOP= 16 (Available To User)
FNOP= 17 - (Available To User)
FNOR= 7000 . '
FCDF= 7001 . (Bits 6-8 New Fltg.
' Data Field)
FSWO0= 7002
FSW1= 7003
FHLT= 7004
FNOP= 7005
FNOP= 7006
FNOP= 7007
FSMA= 7110
FSZA= 7050
FSPA= 7100
FSNA= = 7040
FNOP= 7010
FSKP= 7020

8-41 -






Chapter 1 |

- Answers to selected exercises on page 1-10
a. 2. 10010 12. 10 111 011 110
4. 1100100 14. 111 110 101
6. 1 16. 1 110 001 011
8. 1110101 18. 110 110 000 000
10. 111 111 111 010 20. 11 110 101 111
b.2. 5 10. 3641
4. 94 12. 4087
6. 31 14. 63
8. 55 16, 4095
Answers to selected exercises on page 1-14
a. 2. 6 - 10. 7777
4. 575 12. 7664
6. 40 14. 255
8. 30 B 16. 2372
b. 2. 111 011 110 10. 110 100.
4. 1 000 ' C12. 111 111 110 101
6. 101 100 010 100 14. 100 101 011 010
8. 1 001 000 001 16. 1 010 100 011
c. 2. 40 ' ‘ 8. 2500
4. 1104 10. 6005
6.3 12. 7777
d. 2. 31 8. 4095
4. 512 10. 2431
6. 482 12. 174
Answers to selected exercises on page 1-26
a. 2. 110 8. 11 100
4. 10 111 000 10. 10 001 101
6. 1 100 12. 1 010 010 101
b. One’s Complement Two’s Complement
2. 101 000 100 000 101 000 100 001
4. 111 111 111 111 000 000 000 000
6. 111 011 011 011 ‘111 011 011 100
- 8. 011 111 111 111 100 000 000 000
10. 011 110 011 001 011 110 011 010
12. 000 000 000 000 000 000 000 001
c. 2. 101 000 101 4. 11 001 110 101
d. 2. 110 110 010 4. 1 010 011



e. 2. 111 010 001

f. 2. 100

g. 2. 70 6. 1331
4. 110 8. 3623

h. 2. 42 6. 205
4, 7 8. 1105

i. 2. 667 6. 25
4, 2767 8. 112

j. 2. 204
4, 433,254
6. 172,166

Chapter 2
Answers to selected exercises

1. The locations listed in parts b, f, g b, and i must be addressed in-
directly. All others may be addressed directly.

2.

L L

Group 2
MRI
Group 1
Group 1
MRI
Group 2

(SZL)
(AND)
(CLA CMA)
(NOP)
(IMS)

(SMA CLA)

Parts a, ¢, and e contain digits which can not be represented with
binary numbers. Part b has too many digits to be represented by
12-bits. Part d is a legal instruction if a leading zero is assumed.

a.

-
13

® oo P

AND 0

LISZ Y

DCAIY

TAD 30

JIMP Y

The logical AND of the AC with the contents of
location O replaces the accumulator.

Increment the contents of location 100 on the
current page and skip the next instruction if the
contents become O after the incrementation.

Deposit and clear the accumulator indirectly into

_ the location whose address is contained in loca-

tion 100.

Two’s complement add the contents of location 30
to the accumulator.

Transfer program control to location 73 on the
current page of memory.

CLA CMA CML

SZA

SPA SNA

CLA SPA SNA SZL

A-2



6. Program: After Execution

7200 Location Content (octal)
1205 AC | 0000
1206 © 205 1537
3207 206 2241
7402 207 - 4000
1537 V ' :
2241
0000

7. a. 7360

c. 7710

e. illegal One instruction may not be used to rotate once and
- rotate twice at the same time. On the PDP-8 and
PDP-8/S it is also illegal to combine an increment
and a rotate microinstruction, thus part d is legal on the -
PDP-8/1 and PDP-8/L but lt is illegal on the PDP-8
o~ . and PDP-8/8S.
‘g illegal. One-instruction may not mclude members of both skip
& groups.
i. illegal - One instruction may not combme mlcromstrucﬁons from
a Group 1 and Group 2.
8. SZA
SKP
SNL
Instruction to be skipped

9. Any testing of the accumulator is done before the OSR ° 1nstruct10n
is executed. o _ .
10. a.. Location Content Octal

200 ~ CLA . 7200
201 TAD 210 1210
202 -~ TAD 211 1211
203 DCA 212 3212
204 HLT : 7402
-210 0002 ‘ 0002.
211 0010 . 0010
212 - 0000 0000
b. Location’ Content Octal
400 CLA 7200 -
401 TAD 550 1350
402 DCA 552 . - 3352
403 . TAD 551 1351
404 DCA 550 . 3350
405 TAD 552 1352
406 DCA: 551 3351
407 "HLT ) 7402

A-3



Chapter 3

Answers to selected exercises

1.

2a.

/SUBROUTINE TO SUBTRACT TWO NUMBERS

NN
LIS

START, CLA CLL

TAD K1200
JMS SUB
. 1500
HLT
*300 B
SUB, 0
CIA
TAD I SUB
ISZ SUB
JMP 1 SUB
- K1200, 1200
$
/LOAD LOCATIONS 2000 TO 2777
*200 :
START, CLA CLL
TAD K2000
DCA LOCPTR
DCA COUNT

DEPOSIT, TAD COUNT ..
DCA I LOCPTR
ISZ COUNT
'ISZ LOCPTR
TAD LOCPTR
TAD M3000
SZA CLA |
JMP DEPOSIT
HLT

COUNT, ©

K2000, 2000

LOCPTR, O

M3000,  —3000

$

JTRIPLE PRECISION ADD

*zm : .

TRIADD, . CLA CLL

TAD AL

TAD BL
DCA ANSL
RAL

" TAD AM

 TAD BM

. DCA ANSM

A4



TAD AH

TAD BH
DCA ANSH
HLT

AH, 1211

AM, 0314

AL, 7125

BH, 0114

BM, 4157

BL, 0176

ANSH, ©

ANSM, 0

ANSL, 0

s -

/DOUBLE PRECISION RESULT

*200 . -

START, CLA CLL

- TAD A .

CIA ,
DCA MINUSA
TAD'B
SZL
1SZ CH
NOP
CLL o
ISZ MINUSA
IMP .—6
‘DCA CL
HLT

MINUSA, 0

A, 0011

B, 1234

CL, , 0

CH, 0

$

/DOUBLE PRECISION MULTIPLE OF 2
*200 ' S
START, CLA CLL
DCA NH
TAD EXP
CIA '
DCA MINUSE
ROTATE, TAD N
DCA N
TAD NH
RAL
DCA NH

A-S



CLL

ISZ MINUSE
JMP ROTATE
HLT
N, 1234
'NH, ~ 0
EXP, 3
MINUSE, 0
$
/HOW MANY NEGATIVES?
*200
START, CLA CLL
. DCA NEGS
‘TAD K2777
DCA 10
TAD M1000
'DCA COUNT
TEST, TAD I 10
SPA CLA
ISZ NEGS
ISZ COUNT
" JMP TEST
TAD NEGS
- HLT
NEGS, 0o
K2777, 2777
‘M1000,  —1000
COUNT, 0
$
/20 SECOND DELAY
*200
START, TAD CONST
" DCA COUNT
TAD CONSTI1
DCA COUNTI
ISZ COUNTI
JMP —1
ISZ COUNT
JMP .—3
HLT
CONST, 6030 /—1000 DECIMAL
COUNT, ©
CONST1, 64 /52 DECIMAL
COUNT1, 0

A-6



9.
) *200
START, @ CLA CLL
TAD M2
HLT
OSR .
DCA TWICE
DELAY, TAD CONST
DCA COUNT
TAD CONST1
DCA COUNT1
ISZ COUNT1
JMP .—1
ISZ COUNT
JMP -3
ISZ TWICE
JMP DELAY
HLT
CONST, 5703
COUNT, 0
CONST1, 44
COUNT1, O
M2, —2
TWICE, 0
$
Chapter 4
Answers to selected exercises o
3. /SET LOCATIONS TO SWITCH
/ VALUE
LOC. CONT. *200 ,
0200 7300 CLA CLL
0201 1214 TAD K2000
0202 3215 DCA FOINT
0203 1213 TAD M10
0204 3216 DCA COUNT
0205 7404 OSR
0206 3615 DCA I POINT
0207 2215 ISZ POINT
0210 2216 ISZ COUNT
0211 5205 JMP —4
0212 7402 HLT
0213 7770 MI10, 7770
0214 2000 K2000, 2000
0215 0000 POINT, 0
0216 0000 COUNT, 0
$

/20 OR 40 SECOND DELAY

A7

REGISTER



/ ADD TWO NUMBERS AND DISPLAY SUM

LOC. CONT, *200

0200

N e N

0201
0202
0203
0204
0205
0206
0207 7402
0210 5200
0211 0000 A,
$

7300

-~

7402
7404
3211
7402
7404
1211

Chapter 6

CI A

N Adi

HLT

OSR

DCA A
HLT
OSR-
TAD A
"HLT

JMP .—-10
0 .

1T

Answers to selected exercises
1. /SUBROUTINE ALARM AND CALLING FOR IT

*200
START,

ALARM,

TYPE,

M5,
RINGS,
KBELL,

CLA CLL
TLS

JMS ALARM
HLT

0

TAD M5

DCA RING5
TAD KBELL
JMS TYPE

ISZ RINGS
IMP —~3
JMP I ALARM
0

TSF

JIMP .—1

TLS

CLA CLL

JMP I TYPE
-5

0

207 / ASCII FOR THE BELL

A-8



/TAB SPACE THE TELEPRINTER

*200

- START,

TAB,

TYPE,

NUMTAB,
KSPACE,
S .

CLA CLL

TLS

HLT

OSR

IMS TAB

JMP -3

0

CIA .
DCA NUMTAB
TAD KSPACE
JMS TYPE

ISZ NUMTAB

"JMP -3

JMP I TAB
0.
TSF

- JMP .—1

TLS
CLA CLL

-JMP 1 TYPE

0
240

JTEST ANSWER SHEET

*200
START,

HEADING,

NUMBRS,

CLA CLL

TLS

TAD HEADI
DCA POINTR .

TAD AMOUNT

DCA COUNT
JMS CRLF
TAD 1 POINTR
JMS TYPE

ISZ POINTR
ISZ COUNT
IMP .—4

JMS CRLF
TAD K260
DCA INTS

ISZ INTS

TAD INTS
JMS NUMTYP
TAD INTS
TAD M271

SZA CLA

IMP .—6

A-9

'/ ACCEPT NUMBER OF
/SPACES FROM SR
/READY TO TAB MORE



TEN, TAD K260

IAC
IMS TYPE
TAD K260
iMS NUMTYP
HLT
HEADI, HEAD
POINTR, -0
HEAD. 310 /H
311 /1
323 /S
324 /T
317 /0
322 /R
331 /Y
240  /SPACE
324 /T
305 /E
323 /S
324 /T

AMOUNT, —14 /# OF HEADING CHARACTERS
COUNT, 0
K260, . 260
INTS, 0
M271, —271 /NEGATIVE OF ASCIIFOR A9
K215, 215 /ASCII FOR CR
K212, 212 /ASCII FOR LF
K256, - 256 /ASCII FOR PERIOD
TYPE, 0

TSF

JMP —1

TLS

CLA CLL

_ JIMPITYPE

CRLF, 0

TAD K215

JMS TYPE

TAD K212

JMS TYPE

JMP I CRLF
NUMTYP, O

JMS TYPE

TAD K256

IMS TYPE

JMS CRLF

JMP I NUMTYP

A-10



/TWO DIGIT OCTAL SQUARE CONVERSATIONAL-.
/ PROGRAM
200
START, CLA CLL
"TLS
JMS CRLF |
JMS LISN, /GET FIRST DIGIT
TAD M260
'RAL CLL
RTL |
DCA NUMBER ™ . |
JMS LISN JGET SECOND DIGIT
TAD M260 ~
- TAD NUMBER /NUMBER IS NOW IN AC
, DCA NUMBER. =
MULT, TAD NUMBER
CIA
DCA TALLY
TAD NUMBER
ISZ TALLY
IMP .—2 -
DCA NUMSQR
TYPSQU, TAD MESAGI
| " DCA POINTR
TAD M10
DCA ENDCHK
- 'JMS MESAGE
TYPANS, TAD M4
DCA DIGCTR
DCA STORE
TAD NUMSQR
CLL RAL
UNPACK, TAD STORE
RAL
RTL
DCA STORE
TAD STORE
AND K7
TAD K260
JMS TYPE
ISZ DIGCTR
- JMP UNPACK
TYPOCT, TAD MESAG2
DCA POINTR
TAD M7
DCA ENDCHK
JMS MESAGE
‘JMS CRLF.
JMP START+2

A-11



TYPE,

- CRLF,

LISN,

MESAGE,

NUMBER,
M260,
TALLY,
NUMSQR,
MESAG,
POINTR,
M10,
ENDCHK,
STORE,
M4,
DIGCTR,
K7,

M7,

K260,
K212,
K215,
MESAG?2,
STARTI,

0

TSF
JIMP —1

TLS

CLA

JMP I TYPE
0

TAD K215

MS TYPE
TAD K212
JMS TYPE
JMP I CRLF
0

KSF

IMP —1
KRB

TLS

JMP I LISN
0 .
TAD I POINTR
JMS TYPE
ISZ POINTR
ISZ ENDCHK
JMP .—4
JMP 1 MESAGE
0 ‘
—260

0

0

START1

0

—10

0

0

—4

7

—7

260

212

215

START2

323 /8

321 /Q
325 /U
301 /A
322 /R
305 /E
304 /D
215 /=

A-12



START2,

240

317

303

324

301
314

256

/SPACE
/0
/C
/T
/A
/L

/PERIOD

A-13



ASCII! Character Set

8-Bit 6-Bit : 8-Bit 6-Bit
Lharacter | Octal Octal Character Octal Octal
A 301 01 ! 241 41
B 302 02 ” 242 42
C 303 03 H 243 43
D 304 04 $ 244 44
E 305 05 % - 245 45
F 306 06 & 246 46
G 307 07 ’ 247 47
H 310 10 ( 250 50
I 311 11 ) 251 51
J 312 12 * 252 52
K 313 13 + - 253 53
L 314 14 > . 254 54
M 315 15 - 255 55
N 316 16 . - 256 56
0] 317 17 / 257 57
P 320 20 K 272 72
Q 321 21 ; 273 73
R 322 22 < 274 74
S 323 23 = 275 75
T 324 24 > 276 76
U 325 25 ? 277 77
A\ 326 26 @ 300
w 327 27 [ 333 33
X 330 30 \ 334 34
Y 331 31 ] .335 35
Z 332 .32 T(A)2 336 36
0 260 60 “(—)2 337 37
1 261 61 Leader/Trailer 200
2 262 62 LINE FEED 212
3 263 63 Carriage RETURN 215
4 264 64 SPACE 240 40
-5 265 65 RUBOUT 377
6 266 66 Blank 000
7 267 - 67 BELL 207
8 270 70 TAB 211
9 271 71 . FORM 214

1 An abbreviation for_American Standard Code for Information Interchange.

2 The character in parentheses is printed on some console terminals.

B-1



_ CHARACTERiCO_DES

c
o
8-bit DEC029 DEC028 - =
ASCIl. 6-bit: Card Card 25
Code Code Code - Code - Remarks
» 58
£ o
Oox L
240 40 blank blank space (non-printing)
241 41 11-8-2 12-8-7 ! exclamation point
242 42 8-7 0-8-5 " quotation marks
243 43 8-3 0-8-6 # number sign'1®
244 44 11-8-3 11-8-3 $ dollarsign
245 45 0-8-4 0-8-7 o ° percent
246 46 12 - 11-8-7 & ampersand
247 47 8-5 8-6 ' apostrophe or acute accent
250 50 12-8-5 0-8-4 ( opening parenthesis
251 51 11-8-5 12-8-4" ) closing parenthesis
252 52 11-8-4 11-8-4 . asterisk
253 53 12-8-6 12 + plus
254 54 0-8-3 0-8-3 , comma
255 55 11 11 - minus sign or hyphen
256 56 12-8-3 12-8-3 . period or decimal point
257 57 0-1 0-1 / slash
260 60 0 0 0
261 61 1 1 1
262 62 2 2 2
263 63 3 3 3
264 64 4 4 4
265 65 5 5 5
266 66 6 6 6
267 67 7 7 7
270 70 8 8 8
271 71 9 9 9
- 272 72 8-2 11-8-2 : colon
273 73 11-8-6 0-8-2 : semicolon
274 74 12-8-4 12-8-6 < lessthan
275 75 8-6 8-3 = _ equals
276 76 0-8-6 11-8-6 > greater than
277 77 0-8-7 12-8-2 ? question mark
300 00 8-4 8-4 @ atsign
301 01 12-1 12-1 A
302 02 12-2 12-2 B
303 03 12-3 12-3 C
304 04 12-4 12-4 D
305 05 12-5 12-5 . E
306 06, 12-6 12-6 F
307 07 12-7 12-7 G-



CHARACTER CODES

c
L
. - .
'8-bit DEC029 DECO026 &5
ASCHl  6-bit  Card Card e 9
Code Code Code Code. ;ci §. Remarks
" - 5Y-3
310 10 12-8. 12-8 H
311 - 11 12-9 12-9 !
312 12 11-1 o111 J
313 13 11-2 11-2 K
314 14 11-3 11-3 L
315 15 11-4 . 11-4 M
316 16 11-5 11-5 N
317 -17 11-6 11-6 0
320 20 11-7 11-7 P
321 + 21 11-8 11-8 Q
322 22 11-9 11-9 R
323 23 0-2 0-2 S
324 24 0-3 0-3 T
325 25 0-4 0-4 U
326 26 - 0-5 0-5 Vv
327 27 0-6 - 0-6 W
330 30 0-7 0-7 X
331 31 0-8 0-8 Y
332 32 0-9 0-9 - Z
333 33 12-8-29 11-8-5 [ opening bracket, SHIFT/K
334 34 11-8-7® 8-7 N\ backslash, SHIFT/Lt8"
"335 35 0-8-2 12-8-5 ] closing bracket, SHIET/M -
336 36 12-8-7 8-5 A circumflext
337 37 0-8-5 8-213 — underline4:9
Footnotes:
(1) Onsome DEC 026 Keyboards this character is graphically
representedaso.

(2) Onmost DEC Teletypes circumflexis replaced by up-arrow (4).

(3) * Acard containing this code in column 1 with all remaining
columns blank is an end-of-file card.

(4) Onmost DEC Teletypes underline is replaced by backarrow (e).

(5) Onsome 029 keyboards this characteris graphically represented
asacentsign (¢).

(6) Onsome 029 keyboards this character is graphically represented
aslogical NOT ().

(7) Onsome 029 keyboards this characteris graphically represented
asvertical bar (]). .

(8) Onsome LP8line printers, the character diamond {(¢) is printed
instead of backslash. :

(9) Onsome LP8line printers, the character heart (o) is printed
instead of underline, :

(10) The numbersign onsome terminals is replaced by pound sign (£).

B-3



The following is a,partial list of flowchart symbols which can be used
- to diagram the logical flow of a program. The symbols may be made
‘sufficiently large to include the pertinent information. _

. REPRESENTATION
OF FLOW

LEFT TO.RIGHT

OR

RIGHT TO LEFT

TOP .
TO OR
BOTTOM .

BOTTOM
TO
TOP

Y

TERMINAL

PROCESSING

The direction of flow in a program is repre-

sented by lines drawn between symbols. These
lines indicate the order in which the opera-
tions are to be performed. Normal direction
of flow is from left to right and top to bot-
tom. When the flow direction is not from left
to right or top to bottom, arrowheads are
placed on the reverse direction flowlines.

- Arrowheads may also be used on normal flow

lines for increased clarity. .

~ The oval symbol represents a terminal point

in a program. It can be used to indicate a
start, stop, or interrupt of program flow. The
appropriate word is included within the

symbol.

The rectangular symbol represents a process-
ing function. The process which the symbol
is used to represent could be an instruction or
a group of instructions to carry out a given .
task. A brief description of the task to be per-
formed is included within the symbol.



E

CONNECTOR

DECISION _

PREDEFINED

PROCESS

ANNOTATION

INPUT/OUTPUT
’///‘l

MANUAL
INPUT

. PUNCHED
TAPE

MAGNETIC
TAPE

o

A diamond is used to indicate a point in a
program where a choice must be made to de-
termine the flow of the program from that
point. A test condition is included within the

. -symbol and the possible results of the test are

used to label the respective flows from the

symbol.

" This symbol is used to represent an opera-

tion or group of operations not detailed in
the flowchart. It is usually detailed in another
flowchart. A subroutine is often represented
in this manner.

- The circular symbol reprééents an entry from

or an exit to another part of the program

flowchart. A number or a letter is enclosed

to label the corresponding exits and entries.
This symbol does not represent a program
operation. ’

An addition of descriptive comments or €X-
planatory notes for clarification is included
within this symbol.

This symbol is used in a flowchart to repre-
sent the input or output of information. This
symbol may be used for all input/output
functions, or symbols for specific types of in-
put or output (such as those which follow)
may be used.

This symbol may be used to represent the
manual input of information by means of on-
line keyboards, switch settings, etc.

The input or output of information in which
the medium is punched tape may be repre-
sented by this symbol.

This symbol is used in a flowchart to repre-
sent magnetic tape input or output.

C-2



Table
D-1 PDP-8/E Memory Reference Instructions .............. e D22
D-2 Loading Constants into the Accumulator ............c....... - D=2
D-3 Group 1 Operate Microinstructions .........c..coeeerereenn. D-3
D-4  Group 2 Operate Microinstructions ...........cecceceeueevenn D-4
D-5 Group 3 Operate Microinstructions ..............cecereene. D-5
D-6 Programmed Data Transfer Instructions ..................... D-5
- D27 KMBS-E Memory EXtension ..., D-§
D-8 - KE8-E Extended Arithmetic Element ............cccccenee. D-6
D9 Teletype Keyboard/Reader .......cervevinenriviniininncnns D-7
 D-10 Teletype Teleprinter/Punch .......coevuinirniicen. eevenaens D-7
* D-11 PR8-E Paper Tape Readers ......cccvriviniviininienncncen. . D-7
D-12 PP8-E Paper Tape Punch .......ccoiriieninciiinicnceninne D-7
D-13 PC8-E Reader/Punch ......c.cccociememrnieeneeerenrsivessensssnons D-8
D-14 TCO8-P DECtape Control ........ccoverinienineiniieeeennn D-8
"D-15 TC58 DECmagtape SyStem .....cccccvneieineeiiinnininnensnnnane D-8
~ D-16 RKO08-P Control and RK01 Disk Drive and Control .... D-9
D-17 DF32-D Disk File and Control .........cocvevenrecrencneesnnns D-9
D-18 RF08 Disk Filé ....cccccomirrriiiiiniinciiiiiieecineieene ... D-10
D-19 TMS8-E/F Control .......ccccormnmreeccmrneions rereeereseteenatenaeen D-10
. D-20 LE-8 Line Printer ......... SSRVRIOTRUVRUPURIUOUIRURIURN D 25 § |
D-21 CRS8-E Card Reader and Control or
Optical Mark Card Reader and Control .............. D-11
‘D-22 XY8-E Incremental Plotter Control ......... ererereeneeaneranns D-11
D-23 VC8-E CRT Display Control ............... virerernean e . D-12
D-24 VW01 Writing Tablet .....cocooveeeriiiieicitirnniniinenierens D-12
D-25 DCO02-F 8-Channel Muttiple Teletype Control ...... e D-12
D-26 BBOS-P General Purpose Interface Unit ...........c.......... D-13
- I-27 Universal Digit Controller .........ccciovnvicinnnininnicsinnennnens D-13
D-28 DRS8-EA 12-Channel Buffered Digital I/0 ....... reeerenees D-13
D-29 MPS8-E Memory Parity ......cocooiiivninniinnriininenieniinees D-14
D-30 Synchronous Modem Interface .........ccccovvveereicienennce. D-14
D-31 Muiticycle Data Break Locations .......cccccevniininennnine. D-15
D-32 KM8-E Time-Share .....c.c.cccoeveraeecrmrneincosemseeriessesens D-15
D-33 DKS-EP Programmable Real Time Clock ................. D-15
D-34 DKS8-EA Line Frequency ClOck ...oecceerreeneecreneerunnns D-15
D-35 DKB8-EC Crystal Clock ............ ereteeetseenrereeseaaneanraeaneen D-16
D-36 KP8-E Power Fail Detect ......c..c.ccovviisricninnnnne rereeenees D-16
D-37 DPS-EP Redundancy Check Option ......ccccecceivvniinns D-16
D-38 DRS-E Interprocessor Buffer ........cccoecocevnvviinninninnnnnn. D-16
D-39 ADO1A 12-Bit Analog-to-Digital Converter ................ D-17
D-40 AAS50 Digital-to-Analog Converter .........ccoccevvenenieennsn. D-17
D-41 ADS-EA A/D Converter .......ccoeemeerivmessvseecnnnsinesnaens D-17
D-42 AAO05A/AAOQ7 Digital-to-Analog Converter ‘
- and Control ... D-18
D-43 AFC-8 Low-Level Analog Multiplexer ........ccccoveuvenne. D-18
- D-44 AFO04A Guarded Scanning Integrated Digital
Voltmeter (IDVM) ..o D-18



Table Dfl PDP-8/E Memory Reference Instructions

(Refer io Chapier 3)

Execution Times

Mnemonic Octal Direct Indirect Auto-
Symbol Code Indicators Address Address Indexed  Operation
AND Y 0 IR=0FE 26 3.8 4.0 -Logical AND
between Y and
. _ AC
TAD Y 1 IR=iFE 26 3.8 4.0 Two’s comple-
' ment Add Y to
AC
ISZ Y 2 IR=2FE 26 38 40 Increment Y
and skip if zero
DCA Y 3 IR=3FE 26 3.8 4.0 Deposit at Y
' and clear AC
JIMS Y 4 IR=4FE 26 3.8 4.0 Jump to sub-
routine at Y
JMP Y 5 IR=5F 1.2 2.4 26 JumptoY
Table D-2 Loading Constants Into The Accumulator
Decimal Octal
Mnemonic Constant  Code Instructions Combined
NLOO0O = 0 7300 CLA CLL
NLOOO] = 1 7301 CLA CLL IAC
NLO0O2 = 2 7305 CLA CLL IAC RAL
(or)
NLOO(2 = 2 7326 CLA CLL CML RTL
NLO0O3 = 3 7325 CLA CLL CML IAC RAL
NL0004 = 4 7307 CLA CLL IAC RTL
NLO006 = 6 7327 CLA CLL CML IAC RTL
NLO100 = 64 7203 CLA 1IAC BSW
NL2000 = 1024 7332 CLA CLL CML RTR
NL3777 = 2047 7350 CLA CLL CMA RAR
NL4000 = -0 7330 CLA CLL CML RAR
NL5777 = —1025 7352 CLA CLL CMA RTR
NL6000 = —-1024 7333 CLA CLL CML IAC RTL
NL7775 = -3 7346 CLA CLL CMA RTL
NL7776 = -2 - 7344 CLA CLL CMA RAL
-1 7340 CLA CLL CMA

NL7777 =

D-2



‘Table D-3 Group 1 Operate Microinstructions

Mnemonic  Octal

Symbol - Code Sequence Operation

NOP 7000 —_ No operatioh Causes a 1.2 )us
_ program delay.

IAC 7001 3 Increment AC. The content of

.the AC is incremented by one in
two’s complement arithmetic.
RAL 7004 4 Rotate AC and L left. The con-
tent of the AC and the L are
: rotated left one place.
RTL 7006 4 Rotate two places to the left.
' ' Equivalent to two successive
, RAL operations.
RAR 7010 4 Rotate AC and L right. The con-
: tent of the AC and L are rotated
right one place.
RTR 7012 4 Rotate two places to the rlght
' Equivalent to two . successive
- RAR operations. - |

BSW 7002 4 Byte swap.

CML 7020 2 Complement L.

CMA 7040 2 Complement AC. The content of
the AC is set to the one’s com-

- plement of its current content.

CIA 7041 2,3 - Complement and increment ac-
cumulator. Used to form two’s
complement.

CLL 7100 1 - Clear L.

CLL RAL 7104
CLL RTL 7106
CLL RAR 7110
CLL RTR 7112

. Shift positive number one left.
Clear link, rotate two left.
Shift positive number one right.
Clear link, rotate two right.

»

-

Pt b e ek e
NS I SN N O

STL 7120 , Set link. The L is set to contain
a binary 1.
CLA 7200 1 Clear AC. To be used alone or in
' OPR 1 combinations. :

CLA IAC 7201 1,3 Set AC = 1.

GLK 7204 1,4 Get link. Transfer L into AC11.
CLA CLL 7300 1 Clear AC and L.

STA 7240 2 Set AC =-1. Each bit of the AC

is set to contain a 1.

D-3



Table D-4 Group 2 Operate Microinstructions

Mnemonic  Octal
Symbol Code Sequence Operation

HLT 7402 3 Halt. Stops the program after
; completion of the cycle in pro-
cess. If this instruction is com-
bined with others in the OPR 2
group the other operations are
completed before the end of the
cycle.

OSR 7404 3 OR with switch register. The OR
function is performed between
the content of the SR and the
content of the AC, with the re-
sult left in the AC.

SKP 7410 1 Skip, unconditional. The next in-
‘ struction is skipped.

SNL 7420 1 Skip if L # 0.

SZL 7430 1 Skipif L=0.

SZA 7440 1 Skip if AC = 0.

SNA . 7450 1 Skip if AC # 0.

SZA SNL 7460 1 Skip if AC = 0, or L # 1, or

both.
SNA SZL 7470 1 Skip if AC # 0 and L = 0.
SMA 7500 1 Skip on minus AC. If the content

of the AC is a negative number,
the next instruction is skipped.

SPA 7510 1 Skip on positive AC. If the con-
tent of the AC is a positive num-
ber, including zero, the next in-
struction is skipped.

SMA SNL 7520 1 Skip if AC < 0,or L =1, or
both.

SPA SZL 7530 1 Skip if AC >0 andif L = 0.

SMA SZA 7540 1 Skipif AC< 0.

SPA SNA 7550 1 Skip if AC > 0.

CLA 7600 2 Clear AC. To be used alone or in
OPR 2 combinations.

LAS 7604 , Load AC with SR.

SZA CLA 7640
SNA CLA 7650
SMA CLA 7700
SPA CLA 7710

Skip if AC = 0, then clear AC.
Skip if AC # 0, then clear AC.
Skip if AC < 0, then clear AC.

)

e
N RRNNNVW

~»

Skip if AC = 0, then clear AC.

D-4



~

Table D-5 Group 3 Operate Microinstractions

Mnemonic

Octal
Symbol Code Operation
NOP 7401 No Operation
-MQL 7421 Load Multiplier Quotient
MQA 7501 Multiplier Quotient OR into Accumulator
SWP 7521 Swap Accumulator and Multiplier
' Quotient
CLA 7601 Clear Accumulator _ -
CAM 7621 Clear Accumulator and Multiplier
: Quotient (CLA MQL)
ACL 7701 Clear Accumulator, Load Multiplier
Quotient into Accumulator (CLA
| MQA) '
CLA SWP 7721 Load Multiplier Quotient into Accumula-

.- tor, Clear Multiplier Quotient

Table D-6 Programmed Data Transfer Instructions

Mnemonic Octal

Symbol Code Operation
ION 6001 Interrupt Turn On
- IOF 6002 Interrupt Turn Off

SKON 6000 Skip if Interrupt On, IOF

SRQ 6003 Skip if Interrupt Request

GTF 6004 Get Flags

RTF 6005 Restore Flag, ION

SGT 6006 Skip if “Greater Than” Flag is Set

CAF 6007 Clear All Flags

Table D-7 KM8-E Memory Extension
Mnemonic Octal
Symbol - Code Operation
GTF 6004 Get Flags -
RTF 6005 Restore Flags, ION
CDF 62N1 Change to Data Field N (N=0 to 7)
CIF 62N2 Change to Instruction Field N (N=0 to 7)
CDI 62N3 Change Data Field, Change Instruction Field
(CDF CIF) '

RDF 6214 Read Data Field
RIF - 6224 Read Instruction Field
RIB 6234 Read Interrupt Buffer
RMF 6244 Restore Memory Field

D-5



Table D-8 KES8-E Extended Arithmetic Element

111111111

i

Nrtal

NSwEL

Symbol Code Operation
MODE CHANGING INSTRUCTIONS
SWAB 7431  Switch from Mode Ato B
SWBA 7447  Switch from Mode B to A
SKB 7471  Skip if Mode B
STANDARD INSTRUCTIONS
CAM 7621 0> AC, 0-> MQ
MQA 7501  MQ “OR”ed with AC» AC
ACL 7701 MQ->AC (MQA CLA)
MQL 7421 AC-> MQ, 0~ AC
SWP 7521 AC-> MQ, MQ- AC
MODE A INSTRUCTIONS
SCA 7441  Step Counter “OR” with AC
SCA CLA 7641  Step Counter to AC
SCL 7403  Step Counter Load from Memory
MUY 7405  Multiply
DVI 7407  Divide
NMI 7411  Normalize
SHL 7413  Shift Left
ASR 7415  Arithmetic Shift Right
LSR 7417  Logical Shift Right
MODE B INSTRUCTIONS
ACS 7403  AC to Step Count
MUY 7405  Multiply
DVI 7407 Divide
NMI 7411  Normalize
SHL 7413 Shift Left
ASR 7415  Arithmetic Shift Right
LSR 7417  Logical Shift Right
DOUBLE PRECISION INSTRUCTIONS
DAD 7443  Double Precision Add
DST 7445  Double Precision Store
DPIC 7573  Double Precision Increment
DCM 7575  Double Precision Complement
DPSZ 7451  Double Precision Skip if Zero

D-6



Tablé D-9 ’Telet)vf'pé; Keyboard/ Reéder .

Mnemonic  Octal
Symbol Code Operation
- KCF 6030  Clear Keyboard Flag
KSF 6031 . Skip on Keyboard Flag
KCC 6032 Clear Keyboard Flag, and AC, Advance
Reader
KRS 6034  Read Keyboard Buffer Static
KIE 6035 Set/Clear Interrupt Enable
KRB 6036 ‘Read Keyboard Buffer, Clear Flag
.Table D-10 Teletype Teleprinter/Punch
Mnemonic: Octal _
Symbol Code Operation
TFL 6040 Set Teleprinter Flag
TSF 6041 Skip on Teleprinter Flag
TCF 6042 - Clear Teleprinter Flag
TPC 6044 Load Teleprinter and Print
TSK . 6045 Skip on Printer or Keyboard Flag
TLS 6046 Load Teleprinter Sequence
Table D-11 PR8-E Pal;er Tape Readers
Mnemonic Octal |
Symbol Code Operation
RPE - 6010 Set Reader/Punch Interrupt Enable
RSF 6011 Skip on Reader Flag
RRB 6012 Read Reader Buffer
REC 6014 Reader Fetch Character )
RCC 6016 Read Buffer and Fetch New Character
\ (RRB, RFC)
PCE 6020 Clear Reader/Punch Interrupt Enable
Table D-12 PP8-E Paper Tape Punch
Mnemonic Octal
Symbol Code Operation
RPE 6010 Set Reader/Punch Interrupt Enable
PCE 6020 Clear Reader/Punch Interrupt Enable
PSF - 6021 Skip on Punch Flag
RCF 6022 Clear Punch Flag
PPC 6024 Load Punch Buffer and Punch Character
PLS 6026 Load Punch Buffer Sequence

D-7



Table D-13 PC8-E Reader/Punch

Mnemonic Octal
Symbol Code Operation
RPE 6010 Set Reader/Punch Interrupt Enable
RSF 6011 - Skip on Reader Flag
RRB 6012 Read Reader Buifer
RFC 6014 Reader Fetch Character
RFC, RRB 6016 Read Buffer and Fetch New Character
PCE 6020 Clear Reader/Punch Interrupt Enable
PSF 6021 Skip on Punch Flag
PCF 6022 Clear Punch Flag
PPC 6024 Load Punch Buffer and Punch Character
PLS 6026 Load Punch Buffer Sequence
Table D-14 TC08-P DECtape Control
Mnemonic Octal Time
Symbol Code Operation (us)
DTRA 6761 Read Status Register A 2.6
DTCA 6762 Clear Status Register A 2.6
- DTXA 6764 Load Status Register A 2.6
DTLA 6766 Clear and Load Status Register A 3.6
DTSF 6771 Skip on Flag ' 2.6
DTRB 6772  Read Status Register B 2.6
DTXB 6774 Load Status Register B - 2.6
Address Locations: 7754 = Word Count
7755 = Current Address
Table D-15 TC58 DECmagtape System
Mnemonic Octal
Symbol Code Operation
MTSF 6701 . Skip on Error Flag or Magnetic Tape Flag
MTCR 6711 Skip on Tape Control Ready
MTTR 6721 Skip on Tape Transport Ready
MTAF 6712 Clear Registers, Error Flag and Magnetic
Tape Flag
MTRC 6724 Inclusive OR Contents of Command Register
MTCM 6714 Inclusive OR Contents of AC
MTLC 6716 . Load Command Register
none 6704 Inclusive OR Contents of Status Register
MTRS 6706 Read Status Register
MTGO 6722 Mag Tape “GO”

none

6702

Clear AC

D-8



Table D-16 RK08-P Control and RK01 Disk Drive and Control

Mnemonic Octal ' Time
Symbol . Code Operation (us)
DLDA 6731 Load Disk Address -

(Maintenance Only) 2.6
DLDC 6732 = Load Command Register 2.6
DLDR 6733 Load Disk Address and Read 2.6

- DRDA 6734 Read Disk Address 2.6
DLDW - 6735 Load Disk Address and Write 2.6
DRDC 6736 Read Disk Command Register - 3.6
DCHP 6737 Load Disk Address and Check Parity 4.6
DRDS 6741 Read Disk Status Register . 2.6
DCLS 6742 Clear Status Register 2.6
DMNT 6743 Load Maintenance Register - 36
DSKD 6745 Skip on Disk Done ' 3.6
DSKE * 6747 Skip on Disk Error 4.6
DCLA 6751 Clear All : 2.6
DRWC 6752 Read Word Count Register 3.6
DLWC 6753 Load Word Count Register 3.6
DLCA - 6755 Load Current Address Register 3.6
DRCA 6757 Read Current Address Register 4.6

Table D-17 DF32-D Disk File and Control

Mnemonic Octal - ) Time
Symbol Code - Operation (us)
DCMA 6601  Clear Disk Address Register- - 2.6
DMAR 6603 Load Disk Address Register and Read 3.6
DMAW . 6605 Load Disk Address Register and Write 3.6
DCEA 6611 Clear Disk Extended Address 2.6
DSAC 6612- Skip on Address Confirmed Flag 2.6
DEAL 6615 = Load Disk Extended Address 3.6
DEAC 6616 Read Disk Extended Address 3.6
DFSE 6621 Skip on Zero Error Flag 2.6
DFSC 6622 Skip on Data Completion Flag 2.6
DMAC 6626 Read Disk Memory Address Register 3.6

Address Locations: © 7750 = Word Count

7751 = Memory Address
D-9 '



Table D-18 RF08 Disk File

Mnemonic Octal
- Symbol Code Operation _
DCIM 6611 = Clear Disk Interrupt Enable and Core
‘ Memory Address Extension Register
DIML 6615 Load Interrupt Enable and Memory Ad-
dress Extension Register
DIMA 6616 Load Interrupt and Extended Memory Ad-
dress
DFSE 6621 Skip on Disc Error
DISK 6623 Skip Error or Completion Flag
DCXA 6641 Clear High Order Address Register
DXAL 6643 Clear and Load High Order Address Reg-
ister .
DXAC 6645 Clear AC & Load DAR into AC
DMMT 6646  Initiate Maintenance Register
Table D-19 TMS8-E/F Control
Mnemonic Octal
Symbol Code Operation
LWCR 6701 Load Word Count Register
CWCR 6702 Clear Word Count Register
LCAR 6703 Load Current Address Register
CCAR 6704 Clear Current Address Register
LCMR 6705 Load Command Register
LFGR 6706 Load Function Register
LDBR 6707 Load Data Buffer Register
RWCR 6711 Read Word Count Register
CLT 6712 Clear Transport
RCAR 6713 Read Current Address Register
RMSR 6714 Read Main Status Register
RCMR 6715 Read Command Register
RFSR 6716 Read Function Register & Status
RDBR 6717 Read Data Buffer
SKEF 6721 Skip if Error Flag
SKCB 6722 Skip if Not Busing
SKID 6723 Skip if Job Done
SKTR 6724 Skip if Tape Ready
CLF . 6725 Clear Controller and Master

D-10



Table D-20 LE-8 Line Printer

Mnemonic Octal :
Symbol Code Operation
PSKF 6661 Skip on Character Flag
PCLF 6662 Clear the Character Flag
PSKE * 6663 Skip on Error
PSTB - - 6664 Load Printer Buffer, Print on Full Buffer or
Control Character
PSIE 6665 Set Program Interrupt Flag .
PCLF, PSTB 6666 Clear Line Printer Flag, Load Character
~ and Print .

PCIE 6667 Clear Program Interrupt Flag

Table D-21 CRS-E Card Reader and Control or CMS8-E
Optical Mark Card Reader and Control

Mnemonic Octal .
Symbol Code Operation
RCSF 6631 Skip on Data Ready
RCRA 6632 Read Alphanumeric
RCRB 6634 Read Binary -
RCNO 6635 Read Conditions Out to Card Reader
RCRC 6636 Read Compressed
RCNI 6637 Read Condition In From Card Reader
RCSD 6671 Skip on Card Done Flag
RCSE 6672 Select Card Reader and Skip if Ready
RCRD 6674 Clear Card Done Flag
RCSI 6675 Skip If Interrupt Being Generated
RCTF 6677 Clear Transition Flags

Table D-22 XY8-E Incremental Plotter Control

Mnemonic Octal A
Symbol Code Operation
PLCE 6500 _Clear Interrupt Enable
- PLSF 6501 Skip on Plotter Flag
- PLCF . 6502 Clear Plotter Flag
PLPU 6503 Pen Up
PLLR 6504 Load Direction Register, Set Flag - "
PLPD 6505 Pen Down
PLCF, PLLR 6506 Clear Flag, Load Direction Register, Set Flag
* PLSE 6507 Set Interrupt Enable

D-11



Table D-23 VC$-E CRT Display Control

Mnemonic Octal
Symbol Code Operation
DILC 6050 Clears Enables, Flags and Delays
"DICD 6051 Clears Done Flag
DISD 6052 Skip on Done Flag
DILX 6053 Load X Register
DILY 6054 Load Y Register
DIXY 6055 Clear Done Flag; Intensify; Set Done Flag
DILE 6056 Transfers AC to Enable Register
DIRE 6057 ‘Transfers Display Enable/Status Register
to AC
Table D-24 VW01 Writing Tablet
Mnemonic Octal
Symbol Code Operation
WTSC 6054 Set Tablet Controls
WTRX 6052 Read X
WTRS 6072 Read Status
WTSE 6074 Select Tablet
WTMN 6064 ~ Clear Set XY

Table D-25 DC02-F 8-Channel Multiple Teletype Control

Mnemonic Octal
Symbol Code Operation
MTPF 6113 Read Transmitter Flag
MINT 6115 Set Interrupt Flip-Flop
MTON 6117 Select Specified Station
MTKF 6123 Read Receiver Flag Status
MINS 6125 Skip on Interrupt Request
MTRS 6127 Read Station Status '
MKSF 6111 Skip on Key Board Flag
MKCC 6112 Clear Receive Flag
MKRS 6114 Receive Operation
NONE 6116 Combined MKRS & MICCC
MTSF 6121 Skip on Transmitter Flag
MTCF 6122 Clear Transmitter Flag
MTPC 6124 Transmit Operation
NONE

6126 Combined MTCF & MTPC

D-12



Table D-26 BB08-P General Purpose Interface Unit

Mnemonic Octal . Time
Symbol Code Operation (us)
GTSF 6361 Skip on Transmit Flag 2.6
GCTF 6362 Clear Transmit Flag 2.6

6564 (User-Assigned) 2.6
GRSF 6371 Skip on Receive Flag 2.6

- GCRF - 6372 Clear Receive Flag 2.6

GRDB 6374 Read Device Buffer 2.6
Table D-27 Universal Digit Controller (UDC)

Mnemonic Octal Time
Symbol Code Operation (us)
UDSS 6351 Skip on Scan Not Busy 2.6
UDSC 6353 Start Interrupt Scan _ 3.6
UDRA 6356 Read Address and Generic Type 3.6

- UDLS 6357 Load Previous Status 4.6 .
UDSF 6361 Skip on UDC Flag and Clear Flag 2.6
UDLA 6363 Load Address 3.6

- UDEI 6364 Enable UDC Interrupt Flag 2.6
UDDI 6365 Disable UDC Interrupt Flag 3.6
UDRD 6366 - Clear AC and Read Data 3.6
UDLD 6367 = Load Data and Clear AC 4.6

Table D-28 DRS8-EA 12-Channel Buffered Digital I/ 0O

Mnemonic Octal

- Symbol Code Operation
DBDI - 65x0 Disable Interrupt
DBEI - 65x1 Enable Interrupt

- DBSK 65x2 Skip on Done Flag
DBCI 65%3 Clear Selective Input Register
DBRI 65x4 Transfer Input to AC
DBCO 65x5 Clear Selective Output Register
DBSO 65x6 Set Selective Output Register
DBRO 65x7

Transfer Output to AC

D-13



‘Table D-29 MPSE-Memory Parity

Mnemonic Octal
Symbol Code Operation
DPI 6100 Disable Memory Parity Error Interrupt
SMP 6101 Skip on No Memory Parity Error
EPI 6103 Enable Memory Parity Error Interrupt
CMP 6104 Clear Memory Parity Error Flag
‘SMP, CMP 6105 Skip- on No Memory Parity Error, Clear
Memory Parity Error Flag
CEP 6106 Check for Even Parity
SPO 6107 Skip on Memory Parity Option
Table D-30 Synchronous Modem Interface
Mnemonic Octal
Symbol Code Operation
SGTT 6405 Transmit Go
SGRR 6404 Receive Go
SSCD 6400 Skip if Character Detected
SCSD 6406 Clear Sync Detect
SSRO 6402 Skip if Receive Word Count Overflow
SCSI 6401 Clear Synehronous Interface
SRTA 6407 Read Transfer Address Register
SLCC 6412 Load Control
SSRG 6410 Skip if Ring Flag .
SSCA 6411 Skip if Carrier/ AGC. Flag
SRS2 6414 Read Status 2
SRS1 6415 Read Status 1
SLFL 6413 Load Field
SSBE 6416 Skip on Bus Error
SRCD 6417 Read Character Detected (if AC0=0)
Maintenance Instruction (if ACO=1)
SSTO Skip if Transmit Word Count Overflows

6403

Break Address Locations:

7720

. 7721 Test Characters

7722
7723

For additional interfaces:

Device Codes Break Locations

42, 43 - 7700-7710
44, 45 7660-7670
46, 47 7640-7650

7724 Receive Word Count
7725 Receive Current Address
7726 Not Used :
7727 Transmit Word Count
7730 Transmit Current Address

D-14



Table D-31 Multicycie Data Break Locations

| Assigned

Date Break '
Locations Device ~ Channel
7640-7650 DPS8-EA/EB 4
7660-7670 DPS8-EA/EB o 3
.7700-7710 DP8-EA/EB -2
~7720-7730 DP8-EA/EB ' 1
7750,7751 ~ DF32-D - .
7752,7753 (Reserved for Industry Standard Magnetic Tape)
7754,7755 TCO08-P ' _
Table D-32 KMS-E Time-Share
Mnemonic Octal
Symbol Code - Operation
CINT 6204 Clear User Interrupt
SINT 6254 Skip on User Interrupt
CUF 6264 - Clear User Flag
SUF 6274 Set User Flag

‘Table D-33 DKS-EP Programmable Real Time Clock __

Octal

Mnemonic _ : :
Symbol Code _ Operation
CLZE 6130  Clear Clock Enable Register per AC
CLSK 6131 - "Skip on Clock Interrupt
CLOE 6132 - Set Clock Enable Register per AC
- CLAB 6133 . AC to Clock Buffer
CLEN 6134 Load Clock Enable Register
CLSA 6135 - Clock Status to AC
CLBA 6136 Clock Buffer to AC
CLCA 6137 Clock Counter to AC

Table D-34 DK8-EA Line Frequency Clock

-Mnemonic ~ Octal
Symbol Code " ' Operation
CLEI 6131 Enable Interrupt
CLDI 6132 Disable Interrupt : :
6133 Skip on Clock Flag and Clear Flag -

- CLSK

D-15



" Table D-35 DK8-EC Crystal Clock

Mnemonic - Octal : '
Symbol = Code Operation
CLEI 6131 Enable Interrupt
CLDI 6132 Disable Interrupt
CLSK 6133 Skip on Clock Flag and Clear Flag

Table D-36 KP8-E Power Fail Detect

Mnemonic Octal
Symbol Code Operation
SPL 6102 Skip on Power Low

Table D-37 DP8-EP Redundancy Check Option

Mnemonic Octal .
Symbol Code Operation
RCTV 6110 Test VRC and Skip
RCRL 6111 Read BCC Low
RCRH 6112 Read BCC High
RCCV 6113 Compute VRC
RCGB 6114 Generate BCC
‘RCLC 6115 Load Control
RCCB 6116 Clear BCC Accumulation

Table D-38 DRS-E Interprocessor Buffer

Mnemonic Octal
Symbol Code Operation
DBRF 65x1 Skip if the receive settoa 1
DBRD 65x2  Read incoming data into the AC, clear re-
: : ceive flag
DBTF 65x3 Skip if the transmit flag is set to a 1
DBTD 65x4 Load the AC into the transmit buffer, trans-
mit and set the transmit flag
- DBEI © 65%5 Enable the Interrupt Request line
DBDI 65x6 Disable the Interrupt Request Line
DBCD 65x7 Clear done flag

D-16



Table D-39 ADO1A 12-Bit Analog-to-Digital Converter

~Mnemonic . . Octal : Time
Symbol Code Operation o (ps)
ADSF 6531 Skip on A/D Done Flag 2.6
ADRB - 6532  Read A/D Buffer - 2.6
ADCV 6534 Convert ‘Analog Input . 2.6
ADSC 6535 Select Multiplexer Channel and Gain 3.6
ADRC 6536 Read A/D Buffer, Clear Flag, and
) : Start Conversion ' 3.6
ADSR 6537 Select Channel and Gain and
Read A/D Buffer 4.6

T Table D -40 AAS50 Digital-to-Analog Converter

Mnemonic Octal o . Time
Symbol Code Operation _ (ps)
DAC 1 6551 _ Select DAC 1 2.6
DAC?2 6552 Select DAC 2 _ : 2.6
DAC3 6553 - Select DAC 3 3.6
DAC4 6554 Select DAC 4 2.6
DACS5 6555 ' Select DAC 5 _ 3.6

DAC 6 6556 Select DAC 6 3.6

Table D-41 ADS-EA A/D Converter

__ Mnemonic Octal _ ,
Symbol Code Operation
ADCL 6530 Clear Flags
ADILM 6531 Load Multiplexer
ADST 6532 Start Conversion
ADRB 6533 Read A/D Buffer :
ADSK 6534 Skip on A/D Done Flag
ADSE 6535 Skip on Timing Error
ADLE 6536 Load Enable Register -
ADRS 6537 Read Status Register

D17



Table D-42 AA05A/AA07 Dlgltal-to-Analog Converter

Qnd Cvllllvl

N Mnemonic Octal Time
Symbol Code Operation (us)
DACL 6551 Clear DAC Address 2.
DALD 6552 Load DAC Address - 2.6 .
DALI 6562 Load DAC Input Register 2.6
DAUP 6564 Update All Channels 2.6

Table D-43 AFC-8 Low-Level Analog Multiplexer

Mnemonic Octal ' Time‘
Symbol Code _ Operation (us)
ADSG 6542 Set Multiplexer Gain 2.6
ADSA 6544 Set Multiplexer Address 2.6
ADSF 6531 Skip on A/D Flag 2.6
ADRB 6534 Read A/D Converter Buffer 2.6
ADSG 6542 Set-Multiplexer Gain 2.6
ADSA 6544 Set Multiplexer Address 2.6

Table D-44 AF04A Guarded Scanning Integrated Dlgltal
Voltmeter (IDVM)

Mnemonic Octal Time
Symbol - Code Operation (us)
VCNV 6541 Select Channel and Convert 2.6
VSEL 6542 Select Range and Gate 2.6
VINX 6544 Index Channel and Convert 2.6
VSDR 6561 Skip on Data Ready 2.6
VRD 6562 Read Data and Clear Flag 2.6
VBA 6564 Byte Advance 2.6
VSCC 6571 - Sample Current Channel 2.6

D-18



READ-IN MODE (RIM) LOADER

The RIM Loader is used to load programs punched on RIM
format paper tape into core memory. It is stored in core memory
locations 7756-7776 (215 locations), and started at location 7756.
There are two versions of the RIM Loader, permitting either the
high- or the low“speed reader to be used as an input device. The
locations and -corresponding instructions for both versions are
listed below. Figure E-1 provides instructions for loading the

RIM Loader.

" Table E-1 RIM Loader Programs

INSTRUCTION

Location - Low-Speed Reader High-Speed Reader
7756 6032 - _ 6014
7757 6031 o 6011
7760 5357 5357
7761 ' 6036 6016

- 7762 7106 7106
7763 7006 7006
7764 7510 _ 7510
7765 5357 - 5374
7766 7006 7006
7767 ' 6031 6011
7770 5367 5367
7771 6034 6016
7772 7420 7420

© 7773 3776 3776 -
7774 - 3376 3376
7775 5356 - 5357

Note: Location 7776 is used for temporary storage.

E-1



< INITIALIZE >

SET ROTARY
SELECTOR SWITCH
TO MD

)

SET SWITCHES 6-8
TO DESIRED
!NSTR\XZTION FIELD*

SET SWITCHES 9-14

TO DESIRED
#DECTAPE USERS SHOULD. "
- LOAD RiM INTO FIELD @ DATA FIELD
PRESS

EXTD ADDR LOAD

SET SR
TO0 7756

v

PRESS
ADDR LOAD

SET SR=
FIRST INSTRUCTION

LIFT DEP

RIM IS LOADED

Figure E-1 Loading the RIM Loader
E-2



BINARY (BIN) LOADER ‘
The BIN Loader is used to load programs punched on BIN

. format paper tape into core memory. It is stored in core memory

locations 7625-7752 and 7777 (1275 locations), and started at
location 7777. The RIM Loader is usually used to load a RIM
format tape of the BIN Loader.

‘When the BIN Loader is used to load a binary tape, cautlon‘
must be exercised to ensure that the tape is started with binary
* leader code (code 200) under the read station. If the tape is-
started before this code, the contents of core memory may be lost.

Figures E-2 and E-3 provide instructions for loading the BIN
Loader by means of the RIM Loader and using the BIN Loader
to store a binary program.

E-3



0 LCAD RiM

SET ROTARY

SELECTOR SWITCH
TO MD

RIM

'

SET SWITCHES
9-11 TO FIELD IN
WHICH BIN IS
TO BE LOADED

PRESS
EXTO ADDR LOAD

SET SR=7756

PRESS ADDR LOAD

HIGH-SPEED
READER

TURN HSR ON
[ PuTBIN LOADER
| _IN_HSR*

LOW-SPEED

PUT BIN LOADER
IN_LSR*

EJT LSR TO START

PRESS HALT

SET SWITCHES
6-8 TO FiELD
BIN WAS LOADED
INTO

SET SR=777T
PRESS

ADDR LOAD

PRESS EXAM

YES

BIN LOADER
IS_LOADED

Figure E-2 Loading the BIN Loader
. E-4



o LOAD BIN

SET ROTARY
SELECTOR SWITCH
T0 AC

‘

SET SWITCHES
6-8 TO FIELD IN
WHICH BIN IS
LOADED

SET SWITCHES 9-11

TO FIELD IN WHICH

PROGRAM iS TO BE
LOADED

PRESS
EXTD ADDR LOAD

ISET SR TQ 7777 l

[

PRESS
ADDR LOAD

HIGH-SPEED READER

TURN HSR ON
SET SR=3777
PUT TAPE N HSK

PRESS CONT

STOPS AT
NO /BEGINNING OF
/TRAIL

YES
OBJECT TAPE
IS LOADED

Figure E-3 Using the BIN Loader to Load a Binary Tape
E-5



- Powers of Two

n

1
2
4

16
32

128

- 256

512
024

2 048

32
65
131

262
524

097
194
.388

[+ - BN N

16 777
33 554
67 108

134 217
268 435
536 870

192
384

768
536

‘072

144
288

576

152
304
608

216
432
864

728
456
912

N~O0 3

S AW

~NO

10
11

12
13
14
15
16

17

18
19
20

21
22
23

24
25
26

27
28
29

1.0
0.5
0.25

0.125

0.062

0.031

0.015
0.007
0.003

0.001
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

25

625
812
906

953
976
488
244
122
061

030
015
007

003
001
000

000

000
000
000

000
000

5

125
562
281

140
070
035

517
258
629

814
907
953

476

238
119

059
029

014

007
003
001

5

625
312
156

578
789
394

697
348
674

837
418
209

604
802
901

450
725
862

125
062
531

265
632
316

158
579
289

644
322

161

580
290
645

625
812
406

203
101

550

775
387
193

596
298
149

125
562
781

390
695
847

923
461
230

5
25

625
312 5
656 25

828 125
914 062 5
957 031 25



~ Octal-Decimal Conversion
The following tabie gives the multiples of the powers of 8 To
convert a number from octal to decimal using the table, add the
decimal number opposite the digit value for each digit position.
To convert 40277, to decimal, the following numbers are obtained
from the table and added. '

Position Digit Table entry
5 4 16384
4 0 0
3 2 128
2 1 56
1 7 7

————

16575,, = 40277

This process is reversed to convert a number from decimal to

octal. Subtract out the largest table entry which allows a positive
remainder, then take the column number {position cocflicient)
of the table entry as the Nth digit of the result, where N is the
row number (digit position) of the table entry. Continue this
process, operating on the remainder from each step in the next
step, until all digits of the result have been found. For example,

to convert 233651, to an equivalent octal number:

20480 = 5x8%

5% 83

!
)
Q
o)
o
il

—320 = ' 5% 82

= 0x81

—5 = 5x 8¢

55505, = 233653,

F-2



/Octal-Decimal Lonversion Table

Position Coefficients
(Multipliers)
QOctal ' '
Digit
Position/ -
8n 0 1 2 3 4 5 6 7
Ist (8%)] O 2 3 4 5 6 7
2nd (81){ 0 8 ‘16 24 32 40 48 56
3rd (82)| 0 64 128 192 256 320 384 448
4th (83)] 0 512 1,024 1,536 2,048] 2,560| 3,072| 3,584
Sth (8%)]| 0} 4,096 8,192(12,288| 16,384} 20,480 24,576| 28,672
6th (8%)] 0]32,768165,53698,304|131,0721163,840{196,6081229.376




Octal-Decimal Fraction Conversion Table

Octal Decimal Octal Decimal Octal  Decimal Octal Decimal
. 000 . 000000 . 100 . 125000 . 200 . 250000 . 300 .375000
. 001 001953 101 . 126953 .201 251933 301 376953
. 002 , 003906 L1020 128906 . 202 253906 . 302 .378904
©.003 . 005859 . 103 . 130859 203 . 235859 .303 . 380859
. 004 007812 104 132812 - 204 .257812 364 . 382812
..005 . 009765 . 105 . 134765 205 . 259765 4305 384765
. 006 .011718 . 106 . 136718 206 261718 306 386718
..007 L 013671 ~407 - 138671 207 .263671 L3077 L 3HaeTL
.010 015625 .110 . 140625 210 . 265625 .310 . 390625
011 .017578 L 142578 211 _L2R7578 .31 .392578
012 .019531 .112 L 144531 212 . 269531 .32 394531
.013 021484 .13 . 146484 213 .271484 .313 396184
.014 .023437 J114 T 148437 1214 .273437 L3114 399437
.015 . 025390 L115 . 150390 215 . 275390 315 . 400390
016 .027343° 7 B $1 3 .152343 216 L.277343 .36 . 402343
.017 029296 2 3% 154296 217 . 279296 .37 404296
. 020 .031250 .120 . 156250 L2200 7281250 .320 . 406250
.021 .033203 .121 .158203 .221 .283203 .321 . 408203
.022 .035156 122 160156 222 285156 322 .410156
- .023 . 037109 2123 162109 .223 . 287109 .323 .412109
.024 035062 .124 . 164062 .22 . 289062 .3 414062
. 025 . 041015 .125 . 166015 225 - 291015 325 . 415015
. 026 . 042968 . 126 . 167968 .226 .252968 .326 . 417968
027 044921 J127 . 169921 227 . 294921 327 419921
. 030 . 046875 .130 . 171875 .230 . 296875 .330 . 421875
.031 . 048828 L131 . 173528 .231 298928 .33 . 423828
1032 . 050781 132 . 175781 .232 . 300781 .332 . 4256781
033 . 052734 .133 L177734 .233 302734 .333 L 427734
034 . 054687 L134 179687 .234 .304687 L334 . 429687
.035 . 056640 .135 . 181640 .235 . 306640 .335 431640
. 036 . 058593 . 136 . 183593 .236 .308593 .336 . 433593
037 . 060546 L1317 . 185546 .237 .310346 337 L 435546
.040 . 062500 . 140 . 187500 . 240 . 312500 .340 . 437500
. 041 064453 141 . 1893533 .241 .314453 L34 439453
042 L 0RG106 . 142 . 191406 242 316406 .342 . 441406
.043 . 068359 143 . 193359 .243 .318359 L343 . 443359
. 044 .070312 144 . 195312 .244 . 320312 . 344 445312
. 045 . 072265 . 145 . 187265 . 245 .322265 L3453 . 447265
. 046 .073218 . 146 .199218 L246 . 324218 . 346 . 449218
. 047 L0761TH 147 L201178 L247, .326171 . 347 .451171
.050 078125 150 .203125 . 250 .328125 . 350 453125
. 051 . 080078 . 151 . 205078 .251 . 330078 . 351 . 455078
. 052 . 082031 . 152 207031 . 252 . 332031 .352 . 457031
. 053 083984 . 183 . 208984 .253 .333984 353 L, 458984
. 054 . 085937 .154 .210937 254 . 335937 L3540 . 460937
. 055 . 087890 . 155 . 212950 . 255 . 337890 311 L, 462890
. 056 . 089843 . 156 .214843 .256 . 339843 .3%6 . 464843
. 087 L09179% . 157 216796 . 257 L 341796 .357 466796
. 060 . 093750 . 160 , 218750 . 260 . 343750 .360 468750
. 061 . 095703 . 161 .220703 .261 . 345703 .361 . 470703
. 062 . 097656 . 162 . 222656 .262 . 347656 .362 . 472656
.063 . 093609 . 163 224609 .263 . 349609 .363 . 474609
064 101562 . 164 . 226562 . 264 . 351562 . 364 . 476562
. 065 . 103515 . 165 .228515 . 265 . 353515 . 365 478515
. 066 . 105468 . 166 . 230468 .266 , 355468 . 366 . 460468
. 067 .107421 . 167 . 232421 .267 L 357421 .367 . 482421
070 .109375 .170 234375 L2710 . 359375 370 .484375
.on . 111328 L1 236328 .21 . 361328 .an , 486328
012 , 113281 172 239281 L2712 .363281 L3712 . 488231
013 L115234 173 . 240234 L2713 . 365234 .an .490234
.074 .117187 L174 . 242187 214 .367187 L3 . 492187
.07 .119140 175 L 244140 275 369140 .318 L 494140
.07 . 121093 176 . 246093 .27 .371083 .316 L 496083
.077 . 123046 A1 . 248046 L2717 .373048 L3717 . 498046

F-4




Scales of Notation

- ~ .
2x in Decimal
X 2 X 2" X 2¢ .
0.001 1. 33874 62581 0.01 1.00695 55500 56719 0.1 1.07177 34625 36293
0.002 1.00138 72557 11335 0.02 1.01395 94797 90029 0.2 1.14869 83549 97035
0.003 1.00208 16050 79633 0.03 1.02101 21257 07193 0.3 1.23114 44133 44916
0.004 1.00277 64359 01078 0.04 1.02811 38266 56067 0.4 1.31950 79107 72894
0.005 1.00347 17485 09503 0.05 1.03526 49238 41377 0.5 1.41421 35623 73095
0.006 1.00416 75432 38973 0.06 1.04246 57608 41121 0.6 1.51571 65665 10398
0.007 1.00486 38204 23785 0.07 1.04971 66836 23067 0.7 1.62450 47927 12471
0.008 1.00556 05803 98468 0.08 1.05701 80405 61380 0.8 1.74110 11265 92248
0.009 1.00625 78234 97782 0.09 1.06437 01824 53360 0.9 1.86606 59830 73615
. *n =
10*" in Octal
10° n 10 100 n 10"
1 0 1.000 000 000 000 000 00 112 402 762 000 10 0.000 000 000 006 676 337 66
12 1 O0.063 146 314 631 463 146 31 1 351 035 564 000 11 0.000 000 000 000 537 657 77
144 2 0.005 075 341 217 270 243 66 16 432 451 210 000 12 0.000 000 000 OO0 043 136 32
1750 3 0.000 406 111 564 570 651 77 221 411 634 520 00Q. 13 0.000 000 000 000 3 411 35
23 420 4 0.000 032 155 613 530 704 15 2 657 142 036 440 000 14 0.000 000 000 000 000 2 11
303 240 5 0.000 002 476 132 610 706 64 34 327 724 461 500 000. 15 0.000 000 000 000 000 022 01
3 641 100 6 0.000 O 206 157 364 055 37 434 157 115 760 200 000 16 0.000 000 000 000 000 001 63
46 113 200 7 0.000 000 015 327 745 152 75 § 432 127 413 542 400 000 17 0.000 000 000 000 000 000 i4
575 360 400 8 0.000 000 001 257 143 561 06 67 405 553 164 731 000 000 18 0.000 000 000 000 000 000 01
7 346 545 000 9 0.000 000 000 104 560 276 41 .
. .
n log,, 2, n log; 10 in Decimal
n nilogio 2 n logy 10 n nlogoe 2 nlog, 10 .
1 0.30102 99957 3.32192 80949 [ 1.80617 99740 19.93156 85693
2 0.60205 99913 6.64385 61898 7 2.10720 99696 23.25349 66642
3 0.90308 99870 9.96578 42847 8 2.40823 99653 26.57542 47591
4 1.20411 99827 13.28771 23795 9 2.70926 99610 29.89735 28540
5 1.50514 99783 16.60964 04744 10 3.01029 99566 33.21928 09489
Addition and Multiplication Tables
Addition Multiplication
Binary Scale
0+0= 0 O0x0=20
04+1=140= 1 O0X1=1X0=0
1+1=10 1xXx1=1
Octal Scale
0101 02 03 04 05 06 07 1/02 03 04 05 06 07
1102 03 04 05 06 07 10 2104 06 ld 12 14 16
2103 04 05 06 07 10 11 3106 11 14 17 22 25
3104 05 06 07 10 11 12 4110 14 20 24 30 34
4j05 06 07 10 11 12 13 5)12 17 24 31 36 43
5106 07 10 11 12 13 14 6] 14 22 30 36 44 52
6107 10 11 12 13 14 '15 7|16 25 34 43 52 61
7110 11 12 13 14 15 16
Mathematical Constants in Octal Scale
7= 3.11037 552421, e = 255760 521305: vy = 0.44742 147707,
7-! = 0.24276 301556, e-! = 0.27426 530661 Iny = — 0.43127 233602,
Vr'= 1.61337 611067, Ve = 151411 230704,  log:y = — 0.62573 030645,
inm = 1.11206 404435, logiwe = 0.33626 754251, VZ =  1.32404 746320,
logam = 1.51544 163223, log:e = 1.34252 166245, In2 = 054271 027760,
V10 = 3.12305 407267, log: 10 = 3.24464 741136, Inl0 =  2.23273 067355,

F-5



cppencXg

 digital equipment.
. computer users
society

OBJECTIVES

Digital Equipment Computer Users Somety (DECUS) was
~ established in March of 1961 to advance the effective use of
- Digital Equipment Corporation’s computers and penpheral equip-.
ment. . It is a voluntary, non-profit users group supported by
DIGITAL, whose objectives are to:

. advance the art of computation through mutual educatlon
- and interchange of ideas and information,

e establish standards and provide channels to facilitate the free
exchange of computer programs among members, and

+ provide feedback to the manufacturer on equipment and pro-
gramming needs. |

The Society sponsors technical symposia; twice a year (Spring
‘and Fall) in the U.S., once a year in Europe, Canada, and Austra-
lia. It maintains a Program Library, publishes a library catalog,
proceedings of symposia, and a periodic newsletter: DECUSCOPE.

A DECUS-Europe organization was formed in 1970 to assist
in the servicing of European members. o

G-1



DECUS PROGRAM LIBRARY -

The DECUS Program Library is one of the major activities of the
users group. It is maintained and operated separately from the
DIGITAL library and contains programs contributed by users. Pro-

grams are available for all DIGITAL computer lincs. The Library

contains many types of programs, such as executive routines, editors,
debuggers, special functions, games, maintenance and various
other classes of programs. Library Catalogs are issued which list
all programs available from DECUS.

There are submission standards which programs must meet be-
fore they are accepted into the Library. Review procedures deter-
mine whether the program remains in the Library, is changed,
or is removed.

Forms and information for submitting programs to the Library
may be obtained from a DECUS office.

Programs are available to all members on a request basis. Re-
quests for programs should be made on DECUS Library Request
forms and directed to the DECUS Program Library. In most
cases, a nominal service charge will be associated with a program.
Information on program charges is published in the Library Cata-
log. European members may forward requests through the Euro-
pean DECUS office in Geneva.

As of December 1972, the Library contained approximately
1,600 programs.

DECUSCOPE

DECUSCOPE is the Society’s technical newsletter, published
since April, 1962. The aim of this informal news “scope” is to
facilitate the interchange of information. Society members are
invited to submit ideas, programming notes, letters, and appli-
cation notes for publication. DECUSCOPE is mailed as issued to
all members. Circulation reached 16,500 int 1972. "

All submissions to DECUSCOPE should be sent to the Editor,
DECUSCOPE, at the DECUS Office in Maynard or Geneva.

G-2



ACTIVITIES o : .

Two nation-wide symposna are held each year—one in the spring
and the other in the fall. Seminars are also held annually in Europe,
Canada, and Australia. The proceedings and papers presented at
the symposia and seminars are pubhshed shortly after each meet-
ing and are sent automatically to meeting attendees and, for a
nominal charge, upon request to others.

DECUS sponsored the first workshop meeting of the Joint Users
Group of the Association for Computing Machinery in April,
1966, and has actively participated in workshops held each year
- since. The purpose of the Joint Users Group meetings is to estab-
lish means for intercommunication among user groups.

DECUS is also a member of the Joint User Group Library
Catalog Project sponsored by JUG. This catalog. contains lists
of programs available from several major user groups. Members
of the participating user groups will be eligible to request program
documentation from other groups through their Program Inter-
change Chairman, i.e., for DECUS members, the DECUS Execu-
tive Director. Specific details on this interchange program are
available from the DECUS office.

_DECUS encourages subgrouping of users with common inter-
~ ests. Local User Groups (LUG’s) have formed in many areas for

the purpose of providing closer communication between users in
a specific field or area. Special Interest Groups (SIG’s) have
‘formed for the purpose of providing closer communication be-
tween users of a specific product or application area. They provide
valuable group feedback to the manufacturer on specific program-
~ming and hardware needs. Current Special Interest Groups are:
PDP-6/10 Mainframe Group, Education SIG, Physics SIG,
Graphics SIG, PS/8 SIG, PDP-8 Newspapers Users Group,
LUDEC—Laboratory Users of Digital Equipment Computers, and
BATCH Users SIG.

MEMBERSHIP

Membership in DECUS is voluntary and does not requite the
payment of dues. Members are invited to take an active interest
in the Society by contributing to the program library, to DE-
CUSCOPE, and by participating in its meetings and symposia.
There are two types of membership in DECUS: Installation Mem-
bership and Individual Membership. :

G-3



- MEMBERSHIP—DECEMBER 1972
Installation Delegates—7,052 Individual Members—38,243
Installation Membership

An oreganization which hag nurchas
& PSSttt AN TaAIASAAL MGU puRviiOOwG UL

puter manufactured by Digital Equipment Corporation is auto-
matically eligible for installation membership in DECUS. Mem-
bership status is acquired by submitting a written application to
the Executive Director or European Secretary for approval by
the DECUS Board.

An organization may appoint one delegate for each DEC com-
puter owned. The delegate should be one who is immediately
- concerned with the operation of the computer he represents and
who is willing to take an active part in DECUS activities. He is
entitled to vote on all DECUS policies and during the election
of officers.

- Individual Membership
There are two classes for individual membership:

DA ner ‘"nn Pat el r\«dn_‘- ol aTet e e]
1ad vil il a vuLe

1. Individuals desiring membership in DECUS who are em-

‘ ployed at an installation but are not appointed delegates.

2. Individuals who have a direct interest in DECUS or DEC
computers but are not employees of a DECUS installation
member.

An individual member is not entitled to vote on DECUS policies
or during elections. Written application indicating desire to join
must be submitted to the DECUS office for approval by the
DECUS Board. There is no limit to the number of individual mem-
~ bers that may join from either an installation or a non-installation.

EXECUTIVE BOARD, POLICIES AND ADMINISTRATION
The Society’s policies are formulated by an Executive Board
elected by vote of Installation Member delegates.
- The Administrative office is located at Digital Equipment Corpo-
ration, Maynard, ‘Massachusetts, 01754, and all correspondence
should be directed to‘ the attention of the DECUS Executive
Director. BESE : .
“The European Regional Administrative office is located at Digi-
tal Equipment ‘S.A., 81" Route de I'Aire, CH-1211 Geneva 26,
Switzerland. SRR A

G-4



DECUS PROGRAM LIBRARY CATALOG A
. The DECUS Program Library Catalog contains detailed infor-
mation on programs available from the DECUS Library. Catalogs

are divided according to computer line. A member must request
the catalog of his interest. Periodic updates are sent automatically.



Absolute address: A binary number
that is permanently assigned as
the address of a core storage loca-
tion.

Absolute value, 8-6

Access time: The time required to
locate an -off-line storage location.

Accessing data: The process of lo-
cating the off-line storage location
with” which data is to be trans-
ferred. .

Accessing data blocks, 7-15

Accumulator: A 12-bit register in
which the result of an operation
is formed; abbreviation: AC, 2-6

- Accuracy of extended functions, 8-37

Address: A label, name, or Qumber

- which designates a location where
information is stored.

Address modification, 3-19

Address load switch, 4-3

Addressing, 2-13
Direct, 2-16
Indirect, 2-16

Algorithm: A prescribed set of well-
defined rules or processes for the
solution of a problem in a finite

_number of steps.

Alphabetic data, 1-34

Alphanumeric: Pertaining to a char-
acter set that contains both letters
and numerals, and usually other
characters.

AND group microinstructions, 2-25

AND instruction, 2-9

AND logical operation, 1-29

Answers to exercises, A-1

Appending symbols to extended
symbol table, 5-46
Argument:

1. A variable or constant which
is given in the call of a sub-
routine as information to it.

2. A variable upon whose value
the value of a function de-
pends.

3. The known reference factor

_ Assemble:

necessary-to find an item in a
table or array (i.e. the index).

Arithmetic

Binary and octal operations, 3-11
Division, 3-13

Double precision, 3-14
Multiplication, 3-13

Overflow, 3-11

Powers of two, 3-16
Programming operations, 3-10
Subtraction, 3-13

Arithmetic unit: The component of
a computer where arithmetic and
logical operations are performed,
1-32, 2-5.

Array: A set or list of elements,
usually variables or data.

ASCH: An abbreviation for Ameri-
can Standard Code for Informa-
tion Interchange, 4-16

To translate from a
symbolic program to a binary
" program by substituting binary
operation codes for symbolic op-
eration codes and. absolute or re-
locatable addresses for symbolic
addresses.

Assembler: A program which trans-
lates symbolic op-codes into ma-
chine language and assigns mem-
ory locations for variables and
constants.

Auto-indexing: When one of the

- absolute locations from 0010
through 0017 is addressed indi-
rectly, the content of that location
is incremented by one rewritten
in that same location, and used as
the effective address of the cur-
rent -instruction.

Auto-indexing, 8-20
Automatic processes, 1-3

Auxillary storage: Storage that sup-
plements core memory such as
disk or DECtape.

B

Background program, 6-24
Base address: A given address from

Index—1



which an absolute address is de-
rived by combination with a rela-
tive address, synonymous with ad-
dress constant.

BIN Format, 4-17

BIN Loader, 4-18, 5-8
Self-Starting BIN, 5-9

Binary: Pertaining to the number
system with a radix of two.

Binary

Addition, 1-18

Counting, 1-7

Division, 1-25

Format, see Binary format.
Loader, see BIN Loader.
Multiplication, 1-23
Notation, 8-6

Number system, 1-6
Subtraction, 1-20

Binary code: A code that makes use
of exactly two distinct characters,
0 and 1. Same as object code,
2-2

Bit: A binary digit. In the PDP-8
computers, each word is com-
posed of 12 bits.

Block: A set of consecutive machine
words, characters or digits han-
dled as a unit, particularly with
reference to I/0.

Bootstrap: A technique or device
designed to bring a program into
the computer from an input de-
vice.

Bootstrap loaders, see BIN Loader,
Hardware bootstrap, etc.

Branch: A point in a routine where
one of two or more choices is
made under control of the rou-
tine.

Branching program, 3-30
Breakpoint, 5-56, 5-68, 5-73
Buffer: A storage area.

Bug: A mistake in the design or im-
plementation of a program result-
ing in erroneous results.

Byte: A group of binary digits usu-
ally operated upon as a unit.

C

CA register, see Current address
register.

Call: To transfer control to a speci-
fied routine.

Calling sequence: A specified set of

instructions and data necessary to
set up and call a given routine.

Careers in programming, 1-2

Central processing unit: The unit of
a computing system that includes
the circuits controlling the inter-
pretation and execution of in-
structions—thé computer proper,
excluding I/0 and other periph-
eral devices.

Channels,

DECtape, 7-2
Mark-track, 7-2

Timing, 7-2

Character: A single letter, numeral,
or symbol used to represent in-
formation.

CIA (complement and increment
AC), 227 .

CLA (clear the AC), 2-19, 2-20 to
2-22

Clear: To erase the contents of a
storage location by replacing the
contents, normally with zeros or
spaces; to set to zero.

Clear switch, 4-3

CLL (clear the link), 2-19, 2-20

CMAO(complement the AC), 2-19,
2-2

CML (complement the link), 2-19,
2-20
Coding: To write instructions for a
computer using symbols meaning-
ful to the computer, or to ‘an as-
sembler, compiler or other lan-
guage processor.
Coding a program, 3-6
Combined microinstruction mne-
monics, 2-27
Combining
Microix_xstructions, 2-23
Skip microinstructions, 2-25

"Command: A user order to a com-

puter system, usually given
through a Teletype keyboard.

Command summaries,
Editor, 5-40
DDT, 5-65
ODT, 5-83
Comments, inserting, 3-22
Compatibility: The ability of an in-
struction or source language to be
used on more than one computer.

Compile: To produce a binary-coded
program from a program written

Index—2



«in:source (symbolic) language, by
selecting appropriate ' subroutines
from a subroutine library, as di-
rected by the instructions or other
symbols of the source program.
The linkage is supplied for com-
bining the subroutines into a work-

—able program, and the subroutine
and linkage are translated into bi-
nary code. :

Compiler: A program which trans-
lates statements and formulas
‘written in a source language into
a machine language program; e.g.
a FORTRAN Compiler. Usually
generates more than one machine
instruction for each statement.

Complement: (One’s) To replace all
0 bits with 1 bits and vice versa.

(Two’s) To form the one’s com-

- plement and.add ‘1.
Computer console, 4-1 to 4-6
Computer fundamentals, 1-1

Conditional assembly: Assembly of
certain parts of a symbolic pro-
gram only if certain -conditions
have been met. .

Conditional skip: Depending upon
whether a condition within the
program is met, control may trans-
fer to another point in the pro-
gram. See Operate group instruc-

- tionms. -

Console: Usually the external front

side of a device where controls

and indicators are available for
manual operation of the device.
See Computer console or Teletype
console.

Continue switch, 4-4
Control unit, 1-32, 2-5, 2-6

Conversion
Decimal to binary, 1-9
Decimal to octal, 1-12
Of fractions, 1-12, 1-17, F1-4
Octal to decimal, 1-12 :

- Convert: _
- 1. To change numerical data from
one radix to another.
2. To transfer data from one re-
corded format to another.

Core memory: The main high-speed
storage of a computer in which
binary data is represented by the
switching polarity of magnetic
cores, 2-7 '

Count: The successive increase arf
decrease of a cumulative total, of
the number of times an event oc-
curs. _

Counter: A register or storage loca-
tion (variable) used to represent
the number of occurrences of an
operation (see Loop).

'Counting, in binary, 1-7

Current address register, 7-4
Current Location Counter: A counter
kept by an assembler to deter-
mine the address assigned_ to an -
instruction or constant being as-
sembled. - ,
Current page or page zero bit, 2-15
Cycle time: The length of time it

takes the computer to reference
one word of memory.

Cycle stealing, 6-41

b

Data: A general term used to denote
any or all facts, numbers, letters
and symbols. It connotes basic el-
ements of information which can
be processed or produced by a
computer.

Data blocks, DECtape, 7-1
Data break: A facility which per- -
mits I/O transfers to occur on a
cycle-stealing basis without dis-
turbing program execution, 6-1
Single cycle, 6-41
3-cycle, 6-42
Data channels, DECtape, 7-2
Data field, 4-5, 4-20
Data formats, 1-34
DCA (deposit and clear AC), 2-10
DDT, see Dynamic Debugging
Technique
Debug: To detect, locate and correct
mistakes in a program.
Debugging programs, 5-42
DECdisk systems, 4-23

. DECtape

Bookstrap, TC01, 7-31

Control flag, 7-16

Control words, 7-11

Controls, 4-22

C70P3Y program (DTC-8), 7-15,
-2

Current address register, 7-4

Data blocks, 7-1

Data channels, 7-2

Index—3



Data word format, 7-1
DELETE program, 7-29
DEWAIT program, 7-21
Error codes, 7-7
Error conditions, 7-16
Error flag, 7-6
ESCAPE program, 7-30
Flag, use of, 7-13
Format, 7-1
'ngrmatting program (TOG-8), 7-
Functions, 7-8
GETSYS program, 7-30
IDTAPE subroutine, 7-17
INDEX program, 7-28
Interrupt handling, 7-16
IOT instructions, 7-10
Library directory, 7-27
Library system, 7-26
Mark-track channels, 7-2
Programming, 7-11
READ program, 7-22
SEARCH program, 7-21
Skeleton library, 7-27
Software, 7-20
Standard format, 7-3
Subroutine, TD8-E, 7-32
Status registers, 7-6
Subroutines, TC08, 7-20
System, 4-21
Timing channels, 7-2
Transport unit, 4-22
UPDATE program, 7-29
DECUS, G-1
Defer state, 2-7
Delays, programming, 3-29
DELETE program, 7-26

Delimiter: A character that sepa-
rates, terminates and organizes el-
ements of a statement or program.

Deposit switch, 4-4

Device flags: One-bit registers which
record the current status of a de-

vice.
Device selection code, 6-2
DF32D DECdisk, 4-23

Digit: A character used to rqpresent
one of the non-negative integers
smaller than the radix, e.g., in bi-

nary notation, either 0 or 1.
‘Digits, significant, 1-8

Digital Computer: A device that op-
erates on discrete data, perform-
ing sequences of arithmetic and

logical operations on this data.

Direct address: An address that spec-

ifies the location of an instruction
operand, 2-16

Directory device: A device (such as
a disk) which is partitioned by
software into several distinct files.
A directory of these files is main-
%ained on the device to locate the

les.

Division in binary and octal, 1-23
Division, programming, 3-14

Double precision: Pertaining to the
use of two computer words to
represent one number. In the
PDP-8, a double precision result
is stored in 24 bits. 1-35, 3-14

Downtime: The time interval during
which a device is inoperative.

DTC-8, see DECtape COPY Pro-
gram

DTF, see DECtape flag

Dummy: Used as an adjeciive i0 -
dicate an artificial address, instruc-
tion, or record of information
inserted solely to fulfill prescribed
conditions, as in a “dummy” vari-
able.

Dump: To copy the contents of all
or part of core memory, usually
onto an external storage medium.

DWAIT subroutine, 7-21

Dynamic Debugging Technique
(DDT), 543

Command summary, 5-65
Defining symbols, 5-46

Errors, 5-49

Example program debugged, 5-63
Execution commands, 5-35
Internal symbol table, 5-67
Loading, 5-43

Qutput, 5-50

Program modification, 5-50
Storage requirements, 5-48

E

Editor, see Symbolic Editor

Effective address: The address ac-
tually used in the execution of a
computer instruction.

Eight’s complement arithmetic, 1-22

Elementary programming tech-
niques, 3-1 .
Address modification, 3-19
Arithmetic overflow, 3-11

Index—4



Auto indexing, 3-27

Coding a program, 3-6

Double precrsron arlthmetm, 3—14

Flowcharting, 3-3

Inserting comments and headings,
3-22

Location assignment, 3-6

Looping a program, 3-24

Multiplication and division, 3-13

Powers of two, 3-16

Program branching, 3-30

Program delays, 3-29

Programming arithmetic operatrons '

3-10
+ Programming phases, 3-2
Subtraction, 3-13
Symbolic addresses, 3-7
' Symbohc programming
tions, 3-8
Writing subroutines, 3-16
End-zone, 7-2
Error traps, 8-29
Equivalents, decimal-octal-binary, 1-
11

- ESCAPE program 7-26
Examine switch, 4-4
Exclusive OR, 1-30

Execute: To carry out an mstructlon
Oor run a program on the com-
puter.

Execute state, 2-7

Exercises,

Answers to, A-1-

conven-

Arithmetic operatrons, 1-26, 1-27,
1-28
Elementary programming = tech-

niques, 3-1
Input/Output programming, 6-1
Number systems, 1-5
Programming fundamentals, 2-28
System operation, 4-24
Exponent, in floating-point numbers,
1-35, 84
Overflow, 8-29
Underflow, 8-29

Extended address lgad switch, 4-4

- Extended arithmetic element, 4-23
Extended function algorithms, 8-31
Extended memory, 4-20

External storage: A separate facility

or device on which data usable
by the computer is stored (such
as paper tape, DECtape or disk).

F
FAC, 8-7

3

~ Fixed - point:

Fetch state, 2-7

Field: '

1. One or more characters treated
as a unit.

2. A specified area of a record
used for a single type of data.

3. A division of memory on a
PDP-8 computer referring to
a 4K section of core.

File: A collection of related records
treated as a unit.

File structured device: A device such
as disk or DECtape which con-
tains records organized into files
and accessible through file names
found in a directory file. See di-
rectory device.

Filename: Alphanumeric_ characters
used to identify a particular.file.

Filename extension: A short append-
age to the filename used to iden-
tify the type of data in the file;

- e.g. BIN signifying a binary pro-
gram.

The position of the
radix point of a number system is
constant according to a predeter-
mined convention.

Flag: A variable or register used to
record the status of a program or
device. In the latter case, also
called a device flag.

Flip-flop: A device with two stable
states. '

Floating point: A number system in
which the position of the radix
point is indicated by one part of
the number (the exponent) and
another part represents the signif-
icant digits (the mantissa).

Floating-point packages, 8-1

Core storage maps, 8-38
Floating data field, 8-12, 8-22, 8-25

. Floating halt, 8- 27

Input and output, 8-17
Instruction field, 8-22 -
Instruction summary, 8-40
Notation, 8-4
Operand, 8-26
Pseudo-instructions, 8-13-8- 15
Subroutines, 8-8, 8-10, 8-11
Using, 8-7
Flowchart: A graphical representa-
tion of the operations required to
carry out a data processing opera-
tion
Flowcharting, 3-3

Index—S5



Foreground program, 6-24

Format: The arrangement of data.
Also a FORTRAN statement.

Farmat routines, 6-8

Fractions,
Binary and octal, 1-15

Converting binary and octal ¢

imal, 1-17

Full duplex: Describes a communi-
cations channel capable of simul-
taneous and independent transmis-
sion and reception.

Function subprogram: A subprogram
which returns a single value result,
usually in the accumulator.

G

GETSYS program, 7-26

Greater Than Flag (GTF), 4-24

Group 1 (operate) microinstruc-
tions, 2-18

CLA (clear AC), 2-19 to 2-22
CLL (clear link), 2-19, 2-20
C:;n(/)iA (compiement AC), 2-19, 2-

7o) o
“ SC~

CML (complement link ), 2-19, 2-20

Format, 2-19

JAC (increment AC), 2-10

Legal combinations, E-2

NOP (no operation), 2-20

RAL (rotate AC and L left), 2-20

RAR (rotate AC and L right), 2-
19, 2-20

RZT%O(rotate AC and L twice left),

RTR (rotate AC and L twice
right), 2-19, 2-20

Group 2 (skip) microinstructions, 2-
21 ‘
Format 2-21

HLT (halt), 2-22
Illegal combinations, 2-23

OSR (inclusive OR of AC with

switch register), 2-22 .

SKP (unconditional Skip), 2-22

SMA (skip on minus AC), 2-21,
2-22

SNA (skip on non-zero AC), 2-21,
2-22

SNL (skip on non-zero link), 2-22

SPA (skip on positive AC), 2-21;
2-22

SZA (skip on zero AC), 2-21, 2-22

SZL (skip on zero link), 2-22

H
Halt switch, 4-4

Half duplex: Describes a communi-
cations channel capable of trans-
mission and/or reception, but not
both simultaneously. :

Hardware: Physical equipment, e.g.,
mechanical, electrical or electronic
devices. . ‘

Hardware bootsirap loader, 5-10

Head: A component that reads, re-

cords or erases data on storage
device.

Headings, inserting, 3-22
High-speed reader/punch, 4-18
HLT (halt), 2-22

I

IAC (increment the AC), 2-20

IDTAPE Subroutine, 7-17

Inclusive OR, 1-30

Incrementing a tally, 2-11

INDEX program, 7-26 :

Indirect address: An address in a
computer instruction which indi-
cates a location where the address -
of the referenced operand is to be
found, 2-15, 2-16

Initialize: To set counters, switches,
and addresses to zero or other
starting values at the beginning of,
or at prescribed points in, a com-

. puter routine.

Input and output units, 2-5

Input unit, general organization of
PDP-8, 1-32, 1-33

Input/output transfer instructions,
see 10T instructicns.

Inserting comments and headings, 3-
32

Instruction: A command which

causes the computer or system to

~ perform an operation. Usually one
line of a source program.

Instruction field, 4-5, 4-20
Instruction register (IR), 2-7

Internal storage: The storage facili-
ties forming an integral physical
part of the computer and directly
controlled by the computer. Also
called main memory and core
memory, 1-32

Interpreter: A program that trans-
lates and executes source language
statements at run-time, 8-11

Interpretive mode, 8-12, 8-20, 8-27 -

Index—6



Interrupt program debugging, 5-81
Interrupt programming, 6-22
Interrupt request flag, 6-22
Interrupt service routine, 6-25
I/0: Abbreviation for mput/output
IOT instructions,

Format of, 6-2
DECtape, 7-10°
Usage, 6-3

IR (instruction register), 2-7
Iteration: Repetition of a group of
© instructions.
J

Job: A unit of code which solves a
problem, i.e. a program and all its
related subroutines and data.

JMP (jump), 2-10 _
JMS (jump to subroutine) 2-12

Jump: A departure from the normal
sequence of executing instructions
in a computer.

K

K: An abbreviafion for the prefix
kilo, i.e. 1000 in decimal notation.

-Keyboard /printer devices, 4-9
L

Label: One or more characters used

to identify a source language state-
ment or line. .

Language, assembly: The machine-
oriented programming Jlanguage

used by an assembly system, e.g. .

PAL III, MACRO-8/and SABR.

Language, computer: A systematic
means of communicating instruc-
tions and information to the com-
. puter.

Language, machme Information that
can be directly processed by the
computer, expressed in binary no-
tation.

Language, source: A computer lan-
guage such as PAL III or FOCAL
in which programs are written and
which require extensive translation
in order to be executed by the
computer.

LAS (load AC from switch register),
2-27

Leader: The blank section of tape at
the beginning of the tape.

Least significant binary digit, 1-8

Least significant digit: The right-most
digit of a number. -

Library routines: A collection of
standard routines which can be
incorporated into larger programs.

Library system, DECtape, 7-26
LINC-8 Computer system, 1-3.

Line feed: The Teletype operation
which advances the paper by one
line.

Line number: In source languages
such as FOCAL, BASIC, and
FORTRAN, a number which be-
gins a line of the source program
for purposes of identification. A
numeric label.

Link:

1. A one- blt
PDP-8, 2-6

2. An address pointer generated
automatically by the PALS
or MACRO-8 Assembler to in-
directly address an off-page
symbol. .

3. An address pointer to the next
element of a list, or the next
block number of a file.

Linkage: The code that connects two-
separately coded routines.
List: '

1. A set of items.

2. To print out a listing on the
line printer or console termi-
nal.

"~ 3. See Pushdown list.

Literal: A symbol which defines it-
self

Load: To place data mto mternal
storage.

Loaders, 3-1

Location: A place in storage or mem-

ory where a unit of data or an in-
struction may be stored, 3-6

register in the

- Locatjon assignment, 3-6
" Logic operations, 1-29

Loop: A sequence of instructions
that is executed repeatedly until a
terminal condition prevails.

| Looping a program, 3-24

M

MA (memory address register), 2-8
Machine language programming: In
this text, synonymous with assem-
bly language programming. This

Index—7



term is also used to mean the ac-
tual binary machine instructions.
Macro instruction: An instruction in
a source language that is equiv-
alent to a specified sequence of
machine instructions.
Major state generator, 2-7
Mzingisssa of floating-point number,
High-order, 8-6
Low-order, 8-6
Manual Input: The entry of data by

hand into a device at the time of ‘

processing.

Manual operation: The processing of
data in a system by direct manual
techniques.

Manual program loading, 4-6, 4-7

Mask: A bit pattern which selects
those bits from a word of data
which are to be used in some sub-
sequent operation, 1-29

Mass storage: Pertaining to a device
such as disk or DECtape which

stores large amounts of data read-
ily accessible to the central pro-

cessing unit.

Marrix: A rectangular array of ele-
ments. Any table can be consid-
ered a matrix,

MB (memory buffer register), 2-7

Memory:
1. The alterable storage in a com-
puter.

2. Pertaining to a device in which

data can be stored and from

which it can be retrieved.

Memory address register (MA), 2-8,
4-5

Memory buffer register (MB), 2-7
Memory, extended, 4-20
Memory field, 4-20

Memory protection: A “method of
preventing the contents of some
part of main memory from being
destroyed or altered.

Memory reference instructions, see
also Programming fundamentals.
AND (Boolean AND), 2-9

DCA (deposit and clear AC), 2-10
Format, 2-14

ISZ (mcrement and skip if zero),
2-10

List of, D1-2

JMP (jump), 2-10

JMS (Jump to subroutine), 2-12
TAD (two’s complement add), 2-9

Memory unit, 1-33, 2-5, 2-7

Microinstructions, see also Program-
ming fundamentals.
Combined mnemonics, 2-23, 2-27
Skip, 2-25
Mnemonic coding, 2-3
Mode,
Interpretive, 8-27
Single instruction, 8-27

Modes of operation,
Command, 5-12
Text, 5-12

Monitor: The master control pro-
gram that observes, supervises,
controls or verifies the operation
of a system.

Most significant digit: the left-most
non-zero digit, 1-8, §-5

Multiplication in binary and octal,
1-23 :

Multiplier quotient register, 4-5, 4-24

Muitiprocessing: Utilization of sev-
eral computers or processors to
logically or functionally divide
jobs or processes, and to execute
them simultaneously.

Mult:programmmg Pertains to the
execution of two or more pro-
grams in core at the same time.
Execution cycles between pro-
grams.

N

Negative numbers and subtraction,
1-20

Nesting:
1. Including a program loop in-
side loop.

2. Algebraic nesting, such as
(A+B*(C+D)), where exe-
cution proceeds from the in-
nermost to the outermost level.

NOP: An instruction that specifically
does nothmg (control proceeds to
the next instruction in sequence),

- 2-20
Normal mode, 7-2,7-13

Normalize: To adjust the exponent
and mantissa of a floating-point
number so that the mantissa ap-
pears in a prescribed format, 8-5

Numeric translation routines, 6-11

Index—8



Numbers,
Double precision, 1-35
Floating-point, 1-35
Representation in the PDP-8, 1-34,
8-6 ' :
Number systems,
Definition of basic concepts, 1-5
Primer, 1-5

O

Object Program: The binary coded
program which is the output after
translation of a source language
program.

Octal: Pertaining to the number sys-

tem with a radix of eight.
Octal coding, 2-2

"Octal [_)ebugging Technique (ODT),

5-68
Commands, 5-71
Errors, 5-81
Features, 5-68 :
Loading and starting, 5-70
Operation, 5-69
Programming notes, 5-82
Punching binary tapes, 5-77
Storage requirements, 5-69
Using, 5-69
Octal numbers, 1-11
Addition, 1-19
Division, 1-26
Multiplication, 1-24
Multiplication table, 1-25
Subtraction, 1-22
Octal to decimal conversion, 1-12
Off-line: Pertaining to equipment or
devices not under direct control
of the computer, or processes per-
formed on such devices.

On-line: Pertaining to equipment or
devices under direct control of the
computer and to programs which
respond directly and immediately
to user commands, e.g., DDT.

Operand:

1. A quantity which is affected,
manipulated or operated upon.

2. The address, or symbolic name,
portion of an assembly lan-
guage instruction.

Operate microinstructions, 2-18
Operation code, 6-2

Operation specification bits, 6-3
Operator: The symbol or code which

indicates an action (or operation)
to be performed, e.g. + or TAD.

OR: (Inclusive) A logical operation
such that the result is true if either
or both operands are true, and
false if both operands are false.
(Exclusive) A logical operation
such that the result is true if either
operand is true, and false if both
operands are either true or false.
When- neither case is specifically
indicated, Inclusive OR is assumed.
See also Inclusive OR and Exclu-
sive OR.

Group of microinstructions (SMA,
SZA, SNL), 2-25
Logical operation, 1-30

Order of execution for combined
microinstructions, 2-26

Origin: The absolute address of the
beginning of a section of code, 3-6

OSR (inclusive OR switch register
and AC), 2-22 . :

Output: Information transferred from
the internal storage of a computer -
to output devices or external stor-
age.

Overflow: A condition that occurs
when a mathematical operation
yields a result whose magnitude is
larger than the program is capable
of handling, 8-20

P
Page: A 128-word section of PDP-8

core memory beginning at an ad-
dress which is a multiple of 200.

Panel lock, 4-3 -
Paper tape formats, 4-14 to 4-17
Paper tape loaders, 4-18

- Parity error, 7-6, 7-7 .

Pass: One complete cycle during -
which a body of data is processed.
An assembler usually requires two
passes during which a source pro-
gram is translated into binary
code.

Patch: To modify a routine in a
rough or expedient way.

Peripheral equipment: In a data pro-
cessing system, any unit of equip-
ment distinct from the central
processing unit which may provide
the system with outside storage or
communication, 4-18

Phases of programming, 3-2

Pointer address: Address of a core
memory location containing the

Index—9



actnal ( effective) address of de- Major state generator, 2-7
sired data, 2-15 Memory address register (MA), 2-
Position coefficient, as used in num- 8, 4-5 )
i Memory buffer register (MB), 2-7
ber systems, 1-6
Memory page, 2-13

Powers of two, 3-16 Memory reference instruction
Priority interrupt: An interrupt which {MRIi), 2-8, 2-i4 :

is given preference over other in- Memory unit, 2-5, 2-7

terrupts within the system, 6-30 Microprogramming, 2-23

Mnemonic coding, 2-3

Procedure: Th [ acti
rocedure: The course of action NOP (no operation), 2-20

tak t i ) -
aken for the solution of a prob- Octal coding, 2-2

lem. S ithm. ? &4 .
em. See also Algorithm _ OR group microinstructions (SMA,
Program: The complete sequence of SZA, SNL), 2-25

instructions and routines necessary Order of execution of combined
to solve a problem. microinstructions, 2-26
Program counter (PC), 2-6 OSR (exclusive OR switch register
with AC), 2-22

Program interrupt, 6-1, 6-22 to 6-30 PDP-8 organization and structure,

Programmed transfer, 6-1 to 6-4 2-4, 2-5 .

Programmer’s console, 4-1 to 4-6 - gointer addresges,(%-ég ”t

Programming fundamentals, 2-1 rogram counter 2
Accurnulator (AC), 2-6 R2A2L0 (rotate AC and link left),
Addressing, 2-13 BAR (rotate AC i link right)
A&D grsoup microinstructions (SPA, R :,f\ ;(9 (502%[6 AL ana Lnk Hphts,

A, SZL), 2-25 Ll . :

AND instruction, 2.9 Rl'gfItJ) (rgfg:)e AC and link twice
Arithmetic unit, 2-5 RTR (rotate AC and link twice

Binar{ riodini, 2-2 )
CLA (clear the AC), 2-19, 2-22 e .. )
CLL (clear the link), 2-19, 2-20 Rules for combining microinsruc

CMA (complement the AC), 2-19,  gyp (unconditional skip), 2-22

right), 2-19, 2-20

220 ‘ . . ‘
CML (complement the link), 2-19, SMA (skip on minus AC), 2-21,
2-2 ‘ - .
Combining microinstructions, 2-23 Slz\{gz (skip on non-zero AC), 2-21,
Cgm;:ining skip microinstructions, SNL (skip on non-zero link), 2-22
22 . 2 ;
Control unit, 2-5, 2-6 Sgéz(sklp on positive AC), 2-21,
Core memory, 2-5, 2-7 SZA (skip on zero AC), 2-21, 2-22

Current page or page zero bit, 2-15 SZL (ski .
DC . . _ skip on zero link), 2-22
Exeii(sg:?gflztgand clear AC), 2-10 TAD (two’s complement add), 2-9

Group. 1 microinstructions, 2-18 Pseudo-operation: An instruction to
Group 2 microinstructions, 2-21 “the assembler; an operation code
HLT (halt), 2-22 that is not part of the computer’s
IAC (increment the AC), 2-20 hardware command repertoire.
%ﬁcrﬁf{‘e“ﬁn%.a tally, 2‘1f1 .. Pushdown list: A list that is con-

::ga ti comznggnons of microin- structed and maintained so that
Isc{_uc 1ton(si,d e 2-15 the next item to be retrieved is

ndirect addressing, - the item most recently stored in
Input and output units, 2-3 the list
Instruction register (IR), 2-7° :

Interrupts, 6-22 to 6-30 Q
ISZ (increment and skip if zero), ‘ .

2-10 Queue: A waiting list. In time-shar-
IMP (Jump), 2-10 ‘ ing, the monitor maintains a
JMS (Jump to subroutine), 2-12 queue of user programs waiting
Link, 2-6 for processing time.

Index—10



, R
Radix: The base of a number sys-
tem; the number of digit symbols
required by a number system.

RAL (rotate AC and link left), 2-20

Random access: A storage device in
which the addressability of data
is effectively independent of the
location of the data. Synonymous
with direct access.

RAR (rotate AC and link right),

©2-19, 220

Read: To transfer mformatlon from
an input device fo core memory.

Read-in mode, see RIM.
READ subroutine, 7-22
Ready status, 6-3

Real-time: Pertaining to computation
performed- while the related phy-
sical process is taking place so
that results of the computation
can be used in gu1d1ng the physi-

~ cal process.

Record: A collection of related items
of data treated as a unit.

 Recursive subroutine: A subroutine
capable of calling itself.

Register: A device capable of stor-
ing a specified amount of data,
usually one word. .

Register, auto-index, 3 27

Relative address: The number that

- specifies the difference between
the actual address and a base ad-
dress. 1

Relocatable: Used to describe a rou-
tine whose instructions are written

. -s0 that they can be located and
executed in dlﬁerent parts of core
memory.

" Response time: Time between initiat-
ing an operation from a remote
terminal and obtaining the result.
Includes transmission time to and
from the computer, processing
time and access time for files em-
ployed. :

Restart: . To resume execution of a
program.

Restrictions using breakpoints, 5-58

Reversing DECtapes, 7-14 ‘

RF08 DECdisk controller, 4- 23 A

RIM format 4-17 '

RIM LOADER, 4-18, 5-2-

RKS8 DECdisk, 4-23

Routine: A set of instructions ar-
ranged in . proper sequence to
cause the computer to perform a
desired task. A program or sub-

© program. :

RS08 DECdisk, 4-23

RTL (rotate AC and link -twice
left), 2-20

RTR (rotate AC and link twice

right), 2-19, 2-20

. Rules for combining microinstruc-

tions, 2-28

Run: A single, continuous execution
of a program.

Run light, 4-5 .
S
Search mask, 5-75

" SEARCH subroutme, 7 21

Segment:

1. That part of a long program
which may be resident in core
at any one time.

2. To divide a program into two
or more segments or to store
part of a routine on an ex-
ternal storage device to be
brought into core as needed.

Serial access: Pertaining to the se-
. quential or consecutive transmis-
sion of data to or from core, as
with paper tape: contrast w1th
random access.

Shift: A movement of brts to the

left or right frequently performed
in the accumulator.

_Sign-magnitude notation, 8-7

Simulate: To represent the function
of a device, system or program
with another device, system or
program.

Single-cycle data break, 6-40

Single instruction mode, 8-8, 8-27

Single- step: Operation of a computer
in such a manner that only one
_instruction is executed each time
the computer is started.

Single step switch, 4-4

Skip chain, 6-29

Skip mlC['OlnStl'UCtIOHS, see Group: 2
microinstructions.

SKP (unconditional skip), 2-22

SMA (skip on minus AC), 2-21,
2:-22 ' .

Index—11



SNA (skip on non-zero AC), 2-21,

222
SNL (skip on non-zero link), 2-22
Software: The collection of pro-

grams and routines associated
with a computer.

Software priority interrupt system,
6-30

Sorting program, 3-31

Source language: See Language,
‘source.

‘Source program: A computer pro-
gram written in a-source language.

SPA (skip on positive AC), 2-21,
2-22

Starting address of a program, 3-6

- State display indicators, 4-6

Statement: An expression or instruc-
tion in source language.

Status display indicators, 4-5
Status registers, 7-6
STL (set the link), 2-27

Storage allocation: The assignment
of blocks of data and instructions
to specified blocks of storage.

Storage capacity: The amount of
data that can be contained in a
storage device.

Storage device: A device in which
data can be entered, retained and
retrieved.

Store: 'To enter data into a storage
device.

String: A connected sequence of en-
tities such as characters in a com-
mand string.

Subroutine, closed: A subroutine not
stored in the main part of a pro-
gram, such a subroutine is_nor-
mally called or entered with a
JMS’ instruction and provision is
made to return control to the
main routine at the end of the
subroutine.

Subroutine, open: A subroutine that
must be relocated and inserted
into a routine at each place it is
used.

Subroutines, programming, 3-16

Subscript: A number or set of pum-
bers used to specify a particular
item in an array.

Subtraction, programming, 3-13

Swapping: In a time-sharing cnvimn—

ment, the action of either tem-
porarily bringing a user program
mnto core or storing it on ihe sys-
tem device.

Switch: A device or programming
technique for making selections.
Switch register, 4-3 :

Symibol table: A table in which sym-
bols and their corresponding val-
ues are recorded.

Symbolic address: A set of charac-
ters used to specify a memory
location within a program, 3-7

Symbolic Editor: A PDP-8 system
library program which helps users
in the preparation and modifica-
tion of source language programs
by adding, changing or deleting
lines of text, 5-11

Commands, 5-24
Example of use, 5-35
Generating a tape, 5-30
Loading a tape, 5-31
Loading and operation, 5-28
Switch register options, 5-18
Summaries, 5-38, 5-40

Symbelic language,

Conventions, 3-8
Special characters, 3-9

System: A combination of software
and hardware which performs
specific processing operations.

SZA (skip on zero AC), 2-21, 2-22

SZL (skip on zero link), 2-22

T

Table: A collection of data stored
for ease of reference, generally
as an array.

TAD (two's complement add), 2-9

Tape formatting, see DECtape for-
matting

Text routines, 6-8

- TCO1 Bootstrap Loader, 7-31

TC08 DECtape Control Unit, 7-4
TDS8-E DECtape System, 7-32
TDS8-E DECtape Subroutine, 7-32
TUS56 DECtape Transport, 7-4

Teletype
Console, 4-11
Controls, 4-11, 4-12
10T instructions, 6-4 to 6-6
Keyboard, 4-12
Printer, 4-13
Punch, 4-14
Reader, 4-13

Index-—12.



Temporary storage: Storage loca-
tions reserved for immediate re-
sults.

Terminal: A peripheral device in a
-system through which data can
enter or leave the computer.

Timesharing: A method of allocat-
ing central processor time and
other computer resources to multi-

ple users so that the computer, in

effect, processes a number of pro-
grams simultaneously.

Time quantum: In time-sharing, a
unit of time allotted to each user
by the monitor.

“Toggle:
data into the computer memory.

Translate: To convert from one lan-
guage to another.

Truncation: The reduction of pre-
cision by dropping one or more
of the least significant digits; e.g.
3.141592 truncated to four deci-
mal digits is 3.141.

Two’s complement arithmetic, 1-20
U

Underflow: A condition that occurs
when a floating point operation

To use switches to enter-

yields a result whose magnitude is
smaller than the program is cap-
~ able of expressing.

UPDATE program, 7-26
Updating current line counter, 5-15

User: Programmer or operator of a
computer. .

A\

Variable: A symbol whose value
changes during executlon of a pro-
-gram.

W

wC regxster, see word count reg-
ister. )
Weighting tables, 1-6, 1-8

Word: In the PDP-8, a 12-bit unit
of data- which may be stored in
one addressable location.

Word count register, 7-4
Word searches (DDT), 5-58

_.WRITE subroutine, 7-22

Write: To transfer information from
core memory to a peripheral de-
vice or to auxiliary storage." ‘

Index—13



NOTES




DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard,
Massachusetts 01754, Telephone: (617) 897-5111

SALES AND SERVICE OFFICES

DOMESTIC — ARIZONA, Phoenix and Tucson « CALIFORNIA, Los Angeles, Monrovia,
Oakland, Ridgecrest, San Diego, San Francisco (Mountain View), Santa Ana, Sunnyvale
and Woodland Hilis ¢« COLORADQ, Englewood « CONNECTICUT, Fairfield and Meriden
e DISTRICT OF COLUMBIA, Washington (Latham, Md.) ¢ FLORIDA, Orlando « GEORGIA,
Atlanta e ILLINOIS, Chicago (Rolling Meadows) « INDIANA, Indianapolis « IOWA,
Bettendorf ¢ KENTUCKY, Louisville ¢ LOUISIANA, Metairie (New Orieans)

¢ MASSACHUSETTS, Marlborough and Waltham ¢ MICHIGAN, Detroit (Farmington
Hills) e MINNESOTA, Minneapolis « MISSOURI, Kansas City and St. Louis ¢« NEW
HAMPSHIRE, Manchester ¢ NEW JERSEY, Fairfield, Metuchen and Princeton « NEW
MEXICO, Albuquerque « NEW YORK, Albany, Huntington Station, Manhattan, Rochester
and Syracuse « NORTH CAROLINA, Durham/Chapel Hill -:OHIO, Cleveland, Columbus
and Dayton « OKLAHOMA, Tulsa ¢« OREGON, Portland ¢« PENNSYLVANIA, Philadelphia
(Bluebell) and Pittsburgh « TENNESSEE, Knoxville « TEXAS, Austin, Dallas and Houston
» UTAH, Salt Lake City e WASHINGTON, Bellevue e WISCONSIN, Milwaukee (Brookfield) ¢
INTERNATIONAL — ARGENTINA, Buenos Aires s AUSTRALIA, Adelaide, Brisbane,
Canberra, Melbourne, Perth and Sydney « AUSTRIA, Vienna « BELGIUM, Brussels

e BOLIVIA, La Paz « BRAZIL, Puerto Alegre, Rio de Janeiro and Sao Paulo ¢« CANADA,
Calgary, Halifax, Montreal, Ottawa, Toronto and Vancouver « CHILE, Santiago

o DENMARK, Copenhagen » FINLAND, Helsinki ¢« FRANCE, Grenoble and Paris

¢ GERMANY, Berlin, Cologne, Hannover, Hamburg, Frankfurt, Munich and Stuttgart

e HONG KONG e« INDIA, Bombay » INDONESIA, Djakarta ¢ ISRAEL, Tel Aviv

e ITALY, Milan and Turin ¢« JAPAN, Osaka and Tokyo » MALAYSIA, Kuala
Lumpur ¢« MEXICO, Mexico City ¢« NETHERLANDS, Utrecht « NEW

ZEALAND, Auckland « NORWAY, Oslo ¢ PHILIPPINES, Manilla ¢« PUERTO RICO,
Santurce ¢« SINGAPORE ¢ SPAIN, Barcetona and Madrid « SWEDEN, Gothenburg
and Stockholm ¢ SWITZERLAND, Geneva and Zurich ¢ TAIWAN, Taipei and Taoyuan
« UNITED KINGDOM, Birmingham, Bristol, Dublin, Edinburgh, Leeds, London,
Manchester and Reading ¢ VENEZUELA, Caracas ¢ YUGOSLAVIA, Ljubljana e



	cover
	contents
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	4-00
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-76
	5-77
	5-78
	5-79
	5-80
	5-81
	5-82
	5-83
	5-84
	6-00
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	B-01
	B-02
	B-03
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	E-01
	E-02
	E-03
	E-04
	E-05
	F-01
	F-02
	F-03
	F-04
	F-05
	G-01
	G-02
	G-03
	G-04
	G-05
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	xBack

