o
=)
S}

g6l >I009aNVYH S3.1LNdNOD TIVIAIS

£

B e —

dlilgliltlall

i

SMALL |

HANDB

AT

»
P
3

 THE
.SMALL COMPUTER HANDBOOK
| 1967-68 EDITION

Copyright 1967 by
Digital Equipment Corporation

PDP is a registered trademark
of Digital Equipment Corporation.

- PART I: SMALL:COMPUTE’R PRIMER
PART Iil: APPLICATION PROGRAM EXAMPLES
- PART 1Ii: PDP= /! USERS HANDROOK

PART IV: PRODUCT CATALOG

- - - - .

FOREWORD

The computer revolution is here in the sciences and engineering. No discipline
will remain the same. Computers open up too many new ways of knowing
and doing. Computers offer too much power for control and analysis.

~Small general purpose computers have become an impbrtant part of this revo-
lution. They give the scientist and engineer a way to have computer power
. under their direct control; they are personal approachable tools.

Research scientists use small computers to automatically control experiments
and fo collect and condense data. The small computer allows the researcher
to use emerging data to creatively vary experiment sequences and parameters,
and of course, to perform mathematical operations. Where massive compu-
tation is required, small computers are easily connected to the facilities of
large scale computer systems.

Small computers are also used by the engineer as the control element in
large data handling or process control systems and instruments. In these
applications, small computers not only have cost advantages as compared
with specially designed, fixed-purpose, sub-systems, they have almost un-
limited flexibility and they can be readily expanded if the system has to grow.

The computer described in this handbook, the PDP-8/1, is a new and important
member of this computer revolution. It is the newest in a family of compatible
machines designed with the same word length, instructions and programs. lts
predecessor, the PDP-8, the most popular computer ever made for the scien-
tific community, is presently in use in over 1000 installations. The little brother
to the PDP-8, the PDP-8/S, is active in over 500 installations. Both machines
were desugned to offer potential computer users the best price/performance
ratio ih the industry. The new PDP-8/1 is designed to carry on this tradition.

There is an investment to be made by the scientist and engineer. If they are
to get the most out of their machine, they have to learn how to use it. The study
of the computer fundamentals outhned on the following pages is a good start.

- The payoff for this learning investment is high. Dividends come in terms of an

*entire career; the computer discipline is added to the discipline of science or
engineering.

Digital’'s PDP-8 computer, shown here undergoing final production
testing, is one of the most popular on-line computers for physics
and biomedical analysis and process control.

FLIP CHIP assembly line combines automated manufacturing steps

with computer controlled checkout for lower cost, more reliable
circuits.

Vi

FOREWORD e ettt v
PART | SMALL COMPUTERPRIMER 1
Introduction e J 2
Patterns in Switches.......... ettt 3
Flow Diagrams et 4
Binary Countingt 6
Binary Addition i 8
Why Binary?t iieiiiiiiiiiiiennneannes
Octal Representationoeeeeeeeeeeeeeeeeeeeennn. 10
Storage and Retrieval of Binary Patterns

Organization of the Computer 13
Programming the PDP-8/Tic.ioviinunnn 18
Symbolic Machine Language 21
Programming Examplesc.cciviiiiiiiiiiiiin., 22
Address Modification i, 24
Setting Up Initial Valuescc.iiveniennenn.. 26
Subtractioncciiiiiii et e 27
Indirect Addressing < [
. Dealing with the Printed Characters PR . 33
PART 11 APPLICATION PROGRAM EXAMPLES e 37
111 o7 1311 A1) ¢ JPU AR 38
Real Time Techniques for. Oceanographic Applications 39
A Basic Program for Pulse Height Analysis 51
A Program to Generate and Display a Time-Interval Histogram - 58
Computer-Directed Process Control Techniques 72
PART Il PDP-8/1 USERS HANDBOOKc.cciivinnnn. 81
Chapter 1: System Introduction 83
Computer Organization 83

Memory and Processor Functions 85

Timing and Control Elements 89

Chapter 2: Standard PDP-8/1 Operatlon - 92
Controls and Indicators 92

Operating Procedures....................-. 97

Chapter 3: Memiory and Processor BaSIc Programmmg ‘101
Memory Addressing 101

Storing and Loading iiiin... 103

Program Control e ieeeceeciaaees 103

Indexing Operationccvinnn. 104

Logic Operationcccnuiiiinnnnnn. 104

Arithmetic Operation 105
Programming System 106

TABLE OF CONTENTS

Vil

Chapter 4: Memory and Processor Instructions 109

Memory Reference Instructions 109
Augmented Instructions 111
Program Interrupt (Also See Chapter 9)........ 118
Chapter 5: Data Break (Also See Chapter 10) 120
Single Cycle Data Break 122
Three Cycle DataBreak 122
Chapter 6: Optional Memory and Processor Equipment
and Instructions 124
Memory Extension and Control (MC8/1) 124
Memory Control and Memory Module (MM8/1) ... 124
Memory Parity (MP8/I) ceeeedeniae 129
Extended Arithmetic Element (KE8/I) 130
Power Failure (KP8/1):...... 137
Chapter 7: Input/Output Equipment Instructions ... 139
Teletype and Control 139
Teletype Option (PTO8) 145
High Speed Perforated Tape Reader and Control
o (PR8/T) . 146
High Speed Tape Punch and Control (PP8/I) 147
Digital-to-Analog Converter (AAOIA) 148
Display Equipment e ee... 149
Incremental Piotter and Control (VP8/I) 153
Card Reader and Control (CR8/I) 155
Automatic Line Printer and Control (Type 645) .. 158
Serial Magnetic Drum System (Type 251) i60
Serial Magnetic Drum System (Type RMOS8) 165
Random Access Disc File (Type DF32) 169
Automatic Magnetic Tape Control (Type TC58) .. 172
Magnetic Tape Transport (Type TU20) 181
Magnetic Tape Transport (Type TU20A) 182
Dectape Systems 183
Data Communications Systems (Type 680) 200
General Purpose Multinlexed Analog/Digital Con.
verter System (Type AFO1A) 209
Guarded Scanning Digital Voltmeter System (Type
AFO4A) 215
Chapter 8: Input/Output Facilities 222
Programmed Data Transfer (Also See Chapter 9) 223
Data Break Transfer (Also See Chapter 10) 223
logic Symbols 224
Chapter 9: Programmed Data Transfer 227
Timing and IOP Generator 230
Device Selector (DS) 232
Input/Output Skip (I0S) 234
Accumulator 236
Input Data Transfer 236
Output Data Transfer 237
Program Interrupt (PI) 239
Multiple Use of I0OS and Pl ...-............. 241
Chapter 10: Data Break Transfer 243
Single Cycle Data Breaks 244
Input Data Transfers 244
Output Data Transfers 247
Memory Increment e 250

Vil

Three-Cycle Data Breaks:.......

Chapter 11: Digital Logic Circuits
M506 Negative Input Converter
M650 Output Converter and Buss Driver
Module Selection for Interface Circuits of Periph-

eral Equipment

Chapter 12: Designing and Constructmg Interface
Equipmento ...
Physical e e
Module Layout
Cable Selection
Connector Selection
Connector Description e
“Wiring Hints o i,
Cooling ... i e e e
Octaids and Panelaids for Interfacing to the
PDP-8/1civiiiiiiiin... e

Chapter 13: Interfacing Techniques
Counting Applications
Serial Outputs [
Buffered Relay Outputs

Chapter 14: Interface Connections

Miscellaneous Interface Signals R

Chapter 15: Installation and Planning
Space Requirements [P
Environmental Requirements
Power Requirements
Cable Requirements e et e
Instaliation Procedure
System Configuration ...,

APPENDICES . ..o ee et e e, e)

Appendix 1 Program Abstracts y

Appendlx 2 Table of Instructions
PDP-8/1 Memory Reference Instructions
PDP-8/1 Group 1 Operate Microinstructions ...
PDP-8/1 Group 2 Operate Microinstructions ...

PDP-8/1 Extended Arithmetic '

_ Element Microinstructions
Basic 10T Microinstructions

Appendix 3 Tables of Codes
Model 33 ASR/KSR Teletype - '
Code (ASCII) in Octal Form
Model 33 ASR/KSR Teletype
+Code (ASCII) in Binary Form
Card Reader Code

Appendix 4 Perforated-Tape Loader Sequences cie
Appendix 5 Scales of Notations
Appendix 6 Powersof Two
Appendix 7 Octal-Decimal Conversion S

g

PART IV PRODUCT CATALOGciiiiniininnn..

PART I: SMALL COMPUTER PRIMER .

INTRODUCTION

Robert Benchley once wrote that although he realized that a modern bridge
was indeed a very large and complex structure, he nevertheless felt quite sure
he could build one himself, if only he could think of the very first thing that had
to be done. Once over this initial hurdle, he thought, the remaining steps
would fall readily into place one after the other until the bridge was complete.
It was just his inability to discover that first step that prevented him from be-
coming a master bridge builder!

You, perhaps, have been trying to discover the first step to be taken in building
a knowledge of just what a high-speed digital computer system is, how it oper-
ates, and in what ways it might be useful to you in your work. You have heard
that the computer can be an extraordinarily nowerful tool, that it can somehow
remember an enormous number of facts, make decisions automatically, and
solve arithmetic problems at incredible speeds, doing in a matter of seconds
an amount of work it would take you days or weeks to accomplish by hand.
Perhaps you have a large, difficult, or complex experimental problem that is
already beyond your scope without the aid of a computer. Or, you are trying to
find a way to capture and analyze an elusive signal, the slight variation of the
salinity of the ocean, the response of the human brain to a flash of light, or a
faint and fuzzy image on a photographic plate. It has become important to
you to know how to make use of the power and versatility that have charac-
terized the computer’s astonishingly rapid development in recent years.

That the modern computer is vastly more complex than Benchiey's bridge
should not discourage you, for it is by no means necessary to learn all there is
to know about the computer before it can be put to work. Indeed, its basic
operating principles are really. very simple, few in number, and can be learned
easily. Of course, the greater the extent and depth of your knowledge of the
computer and its application, the greater will be the computer's usefulness to
you as a tool. Starting with basic principles as they are applied in simple
situations, you will be able to extend your knowledge gradually to include more
and more complex ones. If only you could discover that first step. . .

It turns out that the first step is surprisingly simple. !t involves no more
a consideration of the kinds of on-off or up-down patterns you might find rep-
resented by a row of simple switches. For the digital computer, with all its
power and versatility, is basically little more than an automatic device for
manipulating just such patterns at high speed according to simple fixed rules.
The computer converts signals from its environment into switch patterns; it
changes one set of patterns into another in arithmetically useful ways; it stores
patterns away for further use, interprets them, combines them, translates
them into characters on a printed page, or into pictures, or sounds, or me-
chanical movements. Master the motion of switch patterns, and you have
made an important start in understanding how the digit computer works.
Not that you must understand how the computer works in detail to use it to
solve your problem. Not at all! Your main concern is going to be rather the
careful formulation of your problem in symbolic terms using pencil and paper.
Oh, occasionally you may want to flip a switch or two to modify or control the
behavior of the computer, and there may be times when interpreting switch
patterns as they are displayed in rows of indicator lights on a console will be
helpful. But by and large you will be content simply to “feed” the computer
your problem and its data in symbolic or electrical form, and have the results
returned to you with as little fuss as possible on some kind of printing, plot-
ting, or display device. You won't care how much pattern manipulation the

H +ha

[eY oY
LHicH

2

computer carries out in the process. The fact remains, however, that switch
patterns and their manipulation underlie and define everything that the com-
puter is capable of doing, and it is therefore a good idea to know somethmg
"about them.

"PATTERNS IN SWITCHES

Consider a row of three switches as shown in figure 1. Think of each switch
as being in either an UP or DOWN position. For the present, suspend your in-
terest in which position corresponds to on and which to off and describe the
pattern of switch settings by means of the letters U and D strung together in
the right way. Thus, you can write down the pattern represented |n figure 1
asUDU.

& @ & ROW OF SWITCHES
U D U

PATTERN

Figure 1 A Pattern 'of Three Switches.

Now, you rmghf ack some simple mlnehnnc about these patterns. For ex-

ample how many different patterns can be represented with three such
switches? With four switches? With no switches?

It is clear that with three switches you can represent twice as many as you can
with two switches, and with two switches, twice as many as with one switch.
One switch provides for the two patterns U and D; two switches, therefore, pro-
vide for 2 X 2 =4 patterns; and three switches, for 2 X 2 X 2 =8 patterns.
Adding a fourth switch doubles the number of possnble patterns again, giving
2 X 2 X 2 X 2 =16 patterns, and so on. Clearly, the rule is simply that the
~ number of patterns which can be represented by n switches is 2.

Is there a systematic way of writing down all of the 2" patterns possible with
n switches? Yes, there are many systematlc methods, the most important of
which can be summanzed by means of the followmg step-by-step procedure
stated in the all too familiar style of an income tax return:

LINE STEP
1 PUT ALL n SWITCHES DOWN
2 RECORD THE PATTERN
IF ALL n SWITCHES ARE UP, THEN STOP, IF NOT, GO ON
3 TO LINE 4
4 NOTE THE SETTING OF THE RIGHTMOST SWITCH
1 IF THIS SWITCH IS DOWN, PUT IT UP AND GO BACK TO
5 LINE 2. IF THIS SWITCH IS UP, PUT IT DOWN AND GO
ON TO LINE 6
6 ' NOTE THE SETTING OF THE NEXT SWITCH TO THE LEFT
AND GO BACK TOLINE 5

Figure 2 A Procedure for Systematically Producing
All 2~ Patterns Represented by n Switches

Try this step-by-step procedure. Imagine a row of three switches and mentally
carry out the specified actions. You will find that the sequence of settings and
the corresponding patterns will turn out to be:

© & © @ D D H D
& e cH D & @& D cH
e c® e cd @ H e D

Note that if step 3 is modified slightly to read, “If all n switches are UP, g0
back to line 1, if not, go on to line 4,” the set of patterns will be repeated
endlessly. Each pattern then specifies its successor, with pattern DDD being
the successor to pattern UUU. You might, in fact, think of the whole pro-
cedure as one for finding successors according to a simple fixed rule. Start at
line 3 with any pattern whatever, and the procedure will give you the successor
to that pattern.

FLOW DIAGRAMS

No doubt you have had at one time or another, some difficulty in following the
line-by-line tabular instructions on your income tax form. You will be pleased
to know, therefore, that there is another way to represent systematic pro-
cedures, a way which emphasizes the flow from step to step. Such a repre-
sentation is called a flow chart or flow diagram. You are going to find this flow
diagram technique extremely useful when you are ready to formulate your
problem in symbolic terms for the computer, and you will be making frequent
use of it. Let’s recast the table of figure 2 in flow diagram form so that you
can see just what a flow diagram looks like:

4

PUT ALL n SWITCHES
DOWN

|

RECORD THE
. PATTERN 1

ARE ALL
n SWITCHES
U?P

sToP)

NOTE THE SETTING
OF THE
RIGHTMOST SWITCH

T

PUT THIS SWITCH
UP

T DOWN

1]
THIS SWITCH
upP OR? DOWN

PUT THIS SWITCH
DOWN .

!

NOTE THE SETTING
OF THE NEXT SWITCH
TO THE LEFT

Figure 3 Flow Diagram of the Procedure for Systematically
Producing All 2" Patterns Represented by n Switches

" The doited line indicates the modification of the procedure which, if the STOP
is omitted, provides for continuous pattern sequencing.

Although not as compact as the tabular form of figure 2, the flow diagram is
considerably more graphic and is therefore easier to comprehend, especially
in the case of procedures involving many alternative steps. The shapes of the
boxes are not of primary importance, of course; the ones shown, however, are
convenient and more or less.standard.

BINARY COUNTING

Counting is one of the most basic operations of arithmetic. The procedure of
figure 2 or figure 3 is one which generates patterns by a process of counting
in a two-valued system. If you substitute the digit “O” for “D” and “1"” for
*U,"” the resulting patterns take the form of binary numbers. Unlike a decimal
number, which uses the ten digits O through 9, a binary number uses only the
two bits 0 and 1. Figure 4 shows the first four binary numbers and their deci-
mal equivalents generated by our counting procedure:

Count in Count in
Decimal Binary
0 00
1 . 01
2 : 10
3 ‘ 11

Figure 4 The First Four Binary Numbers and
Their Decimal Equivalents

To keep the notation straight, it will be a good idea to use the subscripts 2
and 10 in any statements of equivalence that you might want to write: 00, =
Oio; 01,=1,; 10, = 250; 11, = 3..

The generating procedure we have chosen is one in which binary patterns are
“counted out” in a way similar to the purely symbolic one you learned in grade
school for decimal numbers. You learned to say “ZERO plus ONE equals- ONE;
ONE plus ONE equals TWO; etc.; NINE plus ONE equals ZERO with ONE to
carry.” In binary terms you would say “ZERO plus ONE equals ONE; ONE plus
"ONE equals ZERO with ONE to carry.” Much simpler. The above sequence of
four binary numbers was generated in just that way by our procedure. The
counting went like this:

0> 00}

00

+ 1

1=-> 01
-1\7 carry

01

+ 1

+1

- 2> 10

10

+ 1

3> 11

You can see that if there were more than two switches, the next number gen-
erated would be . : :

1

1 carries
Y)

11
+1
4 = 100

and so on, the sequence continuing with 101, 110, 111, 1000, etc.

Symbolic procedures of the sort we have been using are known as algorithms
(after the ninth century Arabian arithmetician al-Kuwarizmi, to whom the
credit is due for this method of calculating by means of symbol manipulation,
a vast improvement over the method of counting pebbles). Thus you would
speak of the procedure of figure 3 as the binary counting algorithm, or of the
familiar grade school decimal counting algorithm, and so forth. All of the fixed
rules followed by a digital computer as it goes about solving a problem are, in
fact, algorithms of one kind or another. ‘ '

What is the meaning of a binary number, anyway? What is the quantity of
pebbles represented by a given binary number? The answer is that each bit
. Wwithin the string of bits stands for a different portion of the whole quantity,
- depending upon its position in the string, just as in decimal notation.

Recall that in the decimal system, a number such as 349, for example, has
the meaning “nine ones + four tens + three hundreds.” The values one, ten,
hundred, and so forth are the consecutive powers of ten; that is, 10°, 10,
102, etc.) S

3 49

I I'—S‘ll = 9
4x10 = 40
3x100-_3_02

SUM = 349

2 binary system, a number such as 10110 has the meaning (again read-
'm the right) “zero ones + one two + one four + zero eights + one six-
or twenty-two. The values one, two, four, eight, sixteen, and so forth are
nsecutive powers of two; that is, 2, 2!, 22, 23, 24, etc. The binary digits

1 are called bits (for binary digits), and just as we say that 349 is a
decimal number, we say that 10110 is a 5-bit binary number. Repre-
349 pebbles requires a 9-bit binary number:

101011101,=349,

1t 01t 011101

L-111 - 1

l Ox2 = O
1x4 = 4

1x8 = 8

1t x16 = 16

O0x 32 = 0]
1x64 = 64

Ox 128 = 0

1 x 256 = 256
SUM = 349

BINARY ADDITION

You may be wondering how addition of two binary numbers is accomplished
directly in binary. Very simple, really. The addition algorithm is just an exten-
sion of the counting algorithm. The bit strings of the two numbers, the
ADDEND and the AUGEND, are lined up one over the other, and for each col-
umn, the rule “ZERO plus ONE equals ONE; ONE plus ONE equals ZERO with
ONE to carry” is applied, starting from the rightmost, or least-significant bit
-column. You might try the following example for 12-bit numbers yourself.

Carries

1 11 11

) Xk &\
ADDEND ' 000 010 101 101 . (1730)
AUGEND 01} 010 001 011 (+ 1675,)
SUM 011 100 111 000 (= 1848,)

In the fourth column from the right, you will notice that three ONEs had to
be added together. Of course, you simply add two of them together first, get-
ting “ZERO with ONE to carry,” and then add the third ONE to this, getting
finally “ONE with ONE to carry.” If the sum is also supposed to be a 12-bit
number, any carry produced in the leftmost column, the end-carry, can simply
be discarded.

But discarding the end-carry means, doesn't it, that the sum is incorrect?
Yes, it does in a way, but it also makes possible a simple representation of
negative numbers within certain limits. For if the sum turns out to be zero,
i.e., 000 000 000 000, either the ADDEND and AUGEND are both zero, or,
more to the point, the ADDEND and AUGEND can be thought of as having
values which are equal in magnitude but opposite in sign since these are the
only kinds of values which add up to zero. For example, in the addition

end carry

@ 111 111 111 11 cary

AN
111 111 111 111 ADDEND

000 000 000 001 AUGEND
000 000 000 000 SUM (rightmost 12 bits)

you recognize the AbDEND as having the value “1” and it must be, therefore,
that the AUGEND has the value “—1.”

We say that the numbers 111 111 111 111 and 000 000 000 001 are 2fs
complements of one another; addition in which the end carry is discarded is
called 2's complement addition.

We car arrange the set of 12-bit numbers in a way which shows all of the 2's
complement pairs, and assign corresponding decimal values and their signs as
in figure 5. :

. PAIRING (Two‘saém{msm) DECIMAL
—_— | 011 111 111 111 +2047
* L]
. .
—— | 000 000 000 100 +4
—— | 000 000 000 011 +3
Q00 000 000 910 +2
000 000 000 001 +1
E 000 00C 000 000 0
°e* 11T 111 111 114 -1
111 111 111 110 -2
L——p [111 111 111 101 -3
L——p 111 111 111 100 -4
o [
- *
.) N .
& | 100 000 000 001 | -2047

Figure 5 Two's Complement 12-Bit Binary Numbers and Their
Signed Decimal Number Equivalents

The leftmost bit, you will notice, is ZERO for all the positive numbers and
ONE for all the negative numbers. It is called, therefore, the sign bit of the
- number. Actually there is one more “negative” number not shown in the

table. It is 100 000 000 000, = 2048,, — a bonus or a nuisance depending
on your point of view. .

You may have perceived that the way to negate either a positive or negative
number is to change all its bits from ONE to ZERO and vice versa (a process
called complementing) and then add 1 to the result.

The whole business is getting to be a bit tedious, isn’t it? Bear in mind,
though, that the computer is going to take care of practically all of these
binary details for you automatically, and that you can work with the decimal
number system directly if that is what you wish to-do. Conversion between the
two systems can be achieved by means of suitable algorithms, and at this
point perhaps, that's all you want to know about that.

9

WHY BINARY?

You can see that binary numbers are much less compact than decimal num-
bers. They are, however, quite the right sort of numbers to represent in two-
state devices as two-position switches. The reason that the binary rather than
the more compact decimal system is used in electronic digital computers is
primarily that two-state devices have been found to be technically and eco-
nomically sounder than ten-state devices in computer construction.

Two-state devices of various kinds are used extensively. The electronic version
of the two-position switch is picturesquely known as a flip-flop. The computer
is able to put a flip-flop into either of its two states by means of electrical
signals, just as you are able to put a switch into either of its two states by
hand. Computer memory unlts are composed of a Iarge number of tiny, mag-
netizable doughnuts misnamed cores, wired LogeLuer in geometricai arrays
and arranged so that each core can be magnetized in one of two ways. Binary
numbers can also be stored in the form of two-state magnettzed spots on
tapes, discs, or drums coated -with magnetic material, or in the form of holes
punched in paper tape or cards (the two states being “hole’ and “no hole”).
A set of n two-state, i.e., binary, devices used in the representation of an n-bit
number is called an n-bit register. Thus, a row of twelve two-position switches
is called a 12-bit switch register, and a set of twelve flip-flops, a 12-bit flip-
flop register. A 12-bit register can represent or “hold” 2'2, or 4096~ different

binary numbers.

OCTAL REPRESENTATION

Even though you may be talkmg about or writing down a 12-bit binary number
very rarely, it is still quite a nuisance to have to deal with binary digit strings
like 101101110010 or 001100101101. You will be relieved to learn that there
is a simple shorthand that can be used instead. It involves yet another
system, the octal number system, in which numbers are based on powers of
eight, and the digits O through 7 are used. But do not despair, for it is the
- notational rather than the arithmetic aspects of the octal system that wm con—

| o) ~ P e £ T ki bnlem
cern you. To usc it as a shorthand notation for a 12-bit binary number, for

example you S|mp!y divide the twelve bits into four groups of three bits and
assign irv piace of each group its octai equivaient taken from the 3-bit tabie of
figure 6, which you can surely memorize:

—;

OCTAL BINARY
0o 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

~

Figure 6 Octal-Binary Equivalents

10

For example, if you find it necessary to deal with the number 101101110010,
. you can subdue it as indicated below:

101101110010
3 ¥ 2
101 101 110 010
B2 A |
5 5 6 2

Octal digit equivalents
1011011100102 = 55625

It's easy to see that the process can be reversed. Given an octal number such ‘
as 1347, you use figure 5 to find the 3-bit binary equivalents of each octal -
digit and string these together. -

1347
¥ ¥ N\
001 011 100 111

13473 = 001011100111,

Handy. Almost as compact as decimal, furthermore.

STORAGE AND RETRIEVAL OF BINARY PATTERNS

By now you have the idea that a register can be thought of as “holding” a
number. A given 12-bit register can hold only one 12-bit binary number at a
time, but any of the 4096 possible 12-bit humbers can be accommodated. A
‘ number can be copied or transferred electronically into any flip-flop register
large enough to accommodate it, and a computer, in fact, makes many such
transfers in the course of a calculation. To accomplish a number transfer, the
state of each flip-flop or switch within the source register is represented as an
electrical signal which is then transmitted to the destination register where it
sets a corresponding flip-flop into-a matching state. If all n bits are copied
simultaneously, the transfer is said to be a parallel one; if the bits are copied
one at a time, a serial one.

One of the most important functions of a computer is the storage and retrieval
of information—facts, dates, measurements, names, messages, instructions,
data—all represeptable as binary patterns of one kind or another. Before the
computer can solve your problem, you must supply it with all the information
relevant to the problem, the procedures for solution as well as data. To do its
job the computer must have rapid access to many, many numbers, far too
many to hold entirely in flip-flop registers, which are relatively large and elabo-
rate devices. Instead, a special storage unit, the core memory, is used. In a
core memory, the two-state elements are the magnetic cores mentioned
earlier, rather than flip-flops. These cores are arranged to function as sets of
identical n-bit registers, into and out of which parallel n-bit transfers can be
made one register at a time.

The registers within a core memory have identifying numbers associated with
_them, much the way houses on a street have addresses. These numbers, in
fact, are called addresses, and you can speak of “storing a number at a cer-

11

tain address” in the memory. Addresses are also referred to as “patterns” or
L1 ”
words.

This process is so fundamental that you will want to see a specific example,.
perhaps one in which the address and pattern are copied from switch registers
-even though in a typical computer situation other kinds of number-input de-
vices will be used. A simple 64-word 12-bit memory system and a 6-bit ad-
dress register are shown in figure 7.

KXOXK 0 Ot OO Oy
? .

STORE
ADDRESS CORE MEMORY PUSHBUTTON
12 - BIT CORE
REGISTERS)

RETRIEVE
PAYTERN

080 80¢p| |0pd 9pd 9bg b

6~ BIT ADDRESS REGISTER 12-8IT PATTERN REGISTER

Figure 7 A Simple 64-Word 12-Bit Memory System

You will notice that because there are 64 addresses, the binary address regis-
ter must have 6 switches: 2 = 64,,, To store patterns or “words” in this
simple memory, you sct the switches of the address regisier 1o represent the
binary form of the address designating the core register you want to use, set
the switches of the pattern register to hoid the pattern you want to store, and
push the STORE push button. You can repeat this process with other ad-
dresses and patterns, if you wish, until all 64 registers are “full.” The registers
may be used in any order whatever, sequentially, if you wish, or compietely at
random. The core memory system is said to provide random access to its
registers.

To retrieve a pattern you have stored, you again set the address switches to the*
address of the register holding the pattern and then push the RETRIEVE push

button. The pattern held in the designated core register is copied into a spe-

cial 12-bit flip-flop register, which is connected to a set of twelve lights for

you to look at. Lights which are on correspond to ONEs in the binary pattern.

Simple? Logically yes, but electronically, no. The process of tuning electrical

signals into magnetic states and vice versa is one requiring many electronic

devices and circuits.

So, in a memory system like the one above you can store a set of quite arbi-
trarily chosen patterns: In figure 7, the switches are set to store the number
5123, in the register whose address is 76;. You can summarize the state of
affairs at any point by listing the patterns and their address locations in octal

12

notation (using the table of figure 6 which you have, of course, memorized).
You might have something like this: ' '

Ead

LOCATION | CONTENT
(OCTAL) | (OCTAL)
00 4321
o1 0000
02 7777
03 5123
04 0510
05. 7401
06 2111
07 3043
10 6571
) 11 1234
° ° ’

o []

. ®
76 5123
77 | 1234

Figure 8 The Contents of a 64-Word Memory
Register 07,, for example, holds the number 3043; and the “next” register,
+ 10, holds the number 6571:. Of course, if you are actually setting switches or
looking at lights, you can readily convert these octal numbers back to binary
if you wish:

07, =000 111. 3043, = 011 000 100 Ol1l,
10, = 001 000, 6571, = 110 101 111 001,

' ¢
By the way, notice the disconcerting skip from the number 7 to the number 10
in an octal counting sequence. This will probably always bother you, but
nothing can be done about it. The same thing happens at ‘17, which is fol-
lowed by 20, and 27,-37, 47, 57, and 67. The number following 77 is 100,
and so it goes. Just skip any numbers which have an 8 or 9 in them, and you
can count in octal if you really want to.

ORGANIZATION OF THE COMPUTER

“This is all very well,” you can be heard to say, “but what does it have to do
with ‘capturing and analyzing an elusive signal,” for’ example?” A fair question,
it must be admitted. The step from storingrand retrieving binary numbers
using switches set by hand to solving a complex problem is seemingly great,
but be assured that you are on the right track! For it turns out that a com-
plete digital computer can be built around just such a simple storage and
retrieval scheme as ‘the one outlined above. There will have to be more core
registers and correspondingly larger addresses; some kind of unit capable of
carrying out various arithmetic algorithms will have to be provided; for con-
venience, it will probably include at least a keyboard/printing device such as a
teletypewriter.

The structure and operating principles of such a computer might be repre-
sented in terms of a simple diagram: '

13

CONTROL
UNIT

INPUT = MEMORY QUTPUT

ARITHMETIC
UNIT

Figure 9 A Simple Mode! of the Computer

The input, memory, and output elements are similar in principle to the pattern
switches, memory, and indicator lights of figure 7. Input and output, of
course, can be and frequently are handled by a wide variety of devices much
more sophisticated than switches and lights, such as display scopes, magnetic
or paper tape units, analog/digital converters, and teletypewriters. No matter
how complex such a device might be, however, it always transmits information
into or out of a digital computer in binary patterns which could be set in
switches or readin lights. (How slow that would be!)

Storing and retrieving binary patterns in a core memory certainly has little
~appeal unless you can also manipulate the patterns in some useful way, per-
haps to do arithmetic calculations with binary data which is in the memory.
The arithmetic unit not only accepts numbers previously stored in the mem-
ory, but is capable of performing various algorithmic operations on these
numbers (i.e., adding two numbers together), and returning them eventually
to the memory or to an output device. Since it must be able to manipulate
numbers, as well as “hold” them, the arithmetic unit usually consists of spe-
cially designed flip-flop registers which aré more powerful (and more expen-
sive) than core registers.

If any part of a computer can be thought of as its “brain,” it is the controi
unit. This unit coordinates all the parts of the computer so that events hap-
pen in a logical sequence and at the right time. To show all the pathways
control signals might take to the other parts of even the simple computer
model shown in figure 9 would quite obscure the drawing! This is the unit
which “makes things happen.” :

This is neither as powerful nor as mysterious as it may sound, for the control
unit only does exactly what you tell it to do. Numerically encoded instruc-
tions, which you store in the memory, can be sent to the control unit to direct
it to carry out certain basic algorithmic steps. The control unit is designed to
“decode” each.number sent to it and to initiate a chain of events designated
by that number. For example, the instruction: code number 7001 might ini-
tiate a counting algorithm step in an arithmetic unit register. When one chain
of events has been completed, the control unit is ready to receive another
number from the memory and to initiate the chain of events designated by
that number, and so on. :

Relatively few algorithms or instructions which the control unit can interpret
are actually built into the computer, but they include ones which make it pos-

14

sible, when combined in the proper sequence, to synthesize any algorithm
whatever that could have been built in! This remarkable circumstance gives
the computer enormous versatility. We speak of this kind of computer, one
that stores its own instructions and provides for the general synthesis of algo-
rithms, as a general purpose computer. ' ' : '
The set of instructions which the computer is directed to carry out in a speci-
fied sequence is called a program. It is the program that states the pro-
cedure the computer is to follow in solving the problem at hand. The program
is thus a large problem soluation algorithm composed of many simpler algo-
rithms, namely, the basic ones provided in the repertory of the computer. .
Your task in using the computer to solve a given problem is primarily one of
“writing an effective program based ultimately on the simple operations the
computer “knows” how to do.

In principle, then, the steps you must take to use the computer to solve your
problem are the following: : :

1) Program: The problem must be analyzed and an algorithm for its solu-
tion constructed in the form of a program of instructions which
are in the repertory of the computer. '

2) Input: These instructions must be encoded.: in binary form and stored
in the memory together with any data and parameters required

by the program. ‘

3) Operation: The computer must be started at the first instruction; all the
steps of the program are then automatically carried out, the
computer alternately “fetching” instructions from its memory
.and “executing” them. ' '

4) Output: The binary results must be retrieved from the memory.

You would find these four steps quite tedious if you had to carry them out in
detail. Fortunately, in practice, there are many simplifying variations of these
four steps, designed to make your task easier. It will be possible, for example, -
to express your problem not in the relatively simple basic "instruction “lan-
guage” of the computer, but rather in a more powerful language better suited
to your needs, which wili be translated into the basic language and encoded
in the necessary binary form automatically. You will be able to incorporate
into your work some of the many programs already written by others, taking
“advantage of an ever-increasing base of useful procedures. Devices will be
available to ‘capture that elusive signal in binary numerical form and store it
away for you. Printers, plotters, and recorders of various kinds will simplify
the retrieval and display of results’'in decimal or graphic form.

A SPECIFIC EXAMPLE.

Someone once suggested that the ideal digital computer would be powerful
enough to solve any problem in one second or less, would cost no more than
ten dollars, and would be sa compact that you could simply paint it onto anye
handy surface. Such a machine is not yet available. Instead, focus your atten-
tion briefly on the organization of a specific available digital computer as a
preface ‘to learning just what kinds of instructions can be used in writing
programs. :

Figure 10 shows a diagram of the PDP-8, a simple, high-speed, general pur-
pose digital computer which operates on 12-bit binary numbers in parallel
fashion. _

° 15

SWITCH
REGISTER ‘2

h LINK

| . .
! PROGRAM MEMORY

ADDRESS
COUNTER REGISTER

ACCUMUL ATOR

TELETYPE
8
: - 12 12

MEMORY
12 BUFFER
REGISTER

INSTRUCTION
2 REGISTER |
4096 -WORD
CORE
MEMORY
NAJOR
STATE
GENERATOR 4

Figure 10 A Block Diagrdm of the PDP-8

The diagram clearly introduces several new terms with which you will become
familiar, but each component can be directly associated with the simple
model of figure 9. The switch register and the teletypewriter for example are
typical input output devices.

The PDP-8 memory contains 4096 12-bit core registers and therefore reguires
12-bit addresses. A 12-bit flip-flop register, the memory address register, is
provided to hold an address during a memory reference period, or memory
cycle as it is calied. Another 12-bit flip-fiop register, the memory buffer regis-
ter, holds ali words which move into and out of the memory. These two spe-
cial registers and the memory make up the memory unit.

The arithmetic unit has two elements in the PDP-8. The accumulator is a 12-
bit flip-flop register whose main use is in arithmetic and other operations on
numbers held in the memory; it is surrounded by electronic circuits which
implement the binary algorithms for these operations. lts name comes from
the fact that it accumulates partial results during the execution of the pro-
gram. Notice that the accumulator also communicates with a Teletype ma-
chine—about which more later—and has attached to it a 1-bit flip-flop regis-
ter, the link, which is used primarily in calculations in which twelve bits are not
enough to represent the numbers involved. The accumulator can also be set
from the switch register.

The instruction register and major state generator, together with the program
counter, can be identified as part of the control unit. The 3-bit instruction

16

register holds a code number specifying the main characteristics of the in-
striction being executed (other details are specified by other bits of the in-
struction being executed (other details are specified by other bits of the
instruction as they appear in the memory buffer register), and the major state
generator keeps track of the fetch and execution phases of operation.

The program counter is used by the control unit to keep track within the pro-
gram of the addresses, i.e., the locations in memory, of the instructions to be
" executed. Ordinarily these instructions are stored at numerically consecutive
locations, and the process of keeping track involves no more “counting along”
the.number in the program counter; that is, replacing it with its binary succes-
sor usirig built-in electronic circuits which implement the by now very familiar
binary counting algorithm of figure 3. The program counter can be set initially
to the address held in the 12-bit switch register so that operation can start
properly with the first instruction in the program. This setting procedure can
also be used in the simple kind of storing and retrieval scheme discussed
earlier. - ‘

Not shown on either of the computer diagrams is a very important component
called the operator console which makes it possible for you to communicate
with the computer directly, should you wish to do so. A simplified picture is
shown in figure 11: :

PROGRAM COUNTER

I0001I000I000I000

MEMORY ADDRESS

1000I000I0O0I0OO

MEMORY BUFFER

10.001000I10001I000

. LINK . ACCUMULATOR

O 10001000I000I000O

SWITCH REGISTER

909/000|09d|9pd¢g

C9) sTaRT

C9) LoAD ADDRESS
C9D) oeposIT

CH) EXAMINE

)} CONTINUE

C9 sTop

Figure 11 A Simplified Picture of the PDP-8 Operator Cohsole

On the console are manual keys which act as push buttons for storing, retriev-
ing, starting, etc. There are indicator lights for each flip-flop to provide a
binary form of visual output, and which you can read when the computer is
stopped. The single switch register, in conjunction with the keys, has many
applications.

Why not start by seeing how you might use this console to store binary pat-
terns in memory? The switch register supplies both the address and the

17

pattern itself, unlike the earlier example of figure 7 in which two switch regis-
ters were shown. In the PDP-8, the address is first set into the switch register
and the key labeled LOAD ADDRESS is momentarily lifted. This action causes
the address set in the switch register to be copied into the program counter.

Next, the pattern is set into the switch register and the key labeled DEPOSIT
is lifted momentarily. This causes the pattern to be copied into the core regis-
ter whose address has been put in the program counter. The number in the
program counter is increased by 1 in preparation for another DEPOSIT action
intended to copy the next pattern set in the switch register into the core regis-
ter “foliowing” the first one used, and the computer stops. .
Direct retrieval is accomplished by setting the address in a similar fashion.
The EXAMINE key corresponds to the RETRIEVAL push button of figure 7. The
pattern found at the address set in the switch register will be displayed in the
accumulator lights. Again, the address held in the program counter is in-
creased by one to facilitate consecutive addressing. ‘

PROGRAMMING THE PDP-8

Now that you have an idea of the structure of the computer, how it represents
and handles binary information, and how you can communicate with it, it is
time to look more specifically at some of the instructions which are in the
repertory of the PDP-8 and to see how they can be arranged into useful
programs.

Let.us begin with some simple sets of instructions. Suppose, for example,
that you have put the following numbers into the memory:

LOCATION | CONTENT
(OCTAL) (OCTAL) |-

L 4 L

* L J

L L J
0Qa0 7200
0041 7001
goc42 7001t
0043 | 7001
0044 7402

[] L J

[] ®.

. L]

Suppose, further, that you then set the number 0040: in the switch register
and press the START key. Nothing seems to happen, although the indicator
lights may appear*to blink. The computer is clearly not running, and the ac-
cumulator indicator lights show the pattern.

000 000 000 011
that is, the number 0003. The program counter lights show thé pattern
100

000 000 101

18

that is, the number 0045,. Other lights are lit in other patterns. What does it
all mean?

You have just “run” a small program on the computer. The steps of the pro--

~ gram were automatically carried out, the computer alternately “fetching” in- -

structions from its memory and “executing” them. The numbers you have
stored in registers 4 through 44 are the code numbers of instructions for gen-
erating the number 3 in the accumulator. Pressing the START key with 40
in the switch register set the program counter to 40 and started the computer
in its calcuiating mode. The computer “looked up” the contents of register
40, found the number 7200, and sent it off to its control unit for interpretation
as the first instruction in the program. The computer then executed sequen-
tially the five instructions in registers 40, 41, 42, 43, and 44.

To understand just which instructions in the repertory might generate the
number 3 in the accumulator, let us-rewrite the program using mnemonically
useful abbreviations. The mnemonic abbreviations used throughout the text
have been generated for explanation only. There are no standard mnemonics
used by the computer industry.)

Location Contents | Mnemonic
(octal) Comment
Start . . .
-3 (0040 7200 CLA Clear AC.

0041 7001 IAC
0042 7001 IAC Increment AC three times.
0043 7001 IAC .
0044 7402 HLT Halt the computer.

Program Example 1 Generating the Number 3 in the Accumulator

In the PDP-8, 7200 is the code number of the instruction “clear the accu- '
mulator,” i.e., the instruction to set the twelve accumulator, or AC, flip-flops
to the O state. These clearing actions were carried out, the number in the
program counter was increased by ONE to the value 41, and the computer
was then ready to look up, i.e., fetch, its next instruction which it proceeded
to do. In register 41 it found the number 7001, the PDP-8 code number of
the instruction to “increment accumulator,” i.e., to increase the number in
the accumulator by ONE. This instruction was then executed, and the step of
incrementing the program counter contents was also carried out as before.
‘And so it went. Two more increment accumulator instructions were fetched
and executed, leaving the number 3 in the accumulator. The instruction which
was then found in register 44, with the PDP-8 code 7402, simply directed the’
computer to halt, with the number in the program counter set to 0045 in an-
ticipation of another step.

The program might have been stored or relocated in a completely different
set of consecutive core registers without in the least changing its effect on the
accumulator. You have only to start it at the location of the first instruction,
wherever that might be.

19

The instructions CLA, IAC, and HLT are examples of a whole group of simple
built-in instructions called operate instructions, so called because almost all
of them “operate on,” or refer to the contents of the accumulator. Members
of this group are recognized by the control unit because they always have a
“7" as the leftmost (most significant) octal digit. By the way, it is always the
most significant octal digit that is sent to the 3-bit instruction register for de-
coding and interpretation.

What about instructions of other kinds, that is, ones with code values other
than 7? A very interesting and powerful instruction is the one having the code
value 5. It is called the “jump” instruction, and has the effect of changing
the program counter. In other words, the computer does not have to execute
instructions as they appear sequentially in consecutive memory registers. The
jump instruction can be used to direct the computer to another memory regis-
ter, out of sequence, for the next instruction,

The rightmost three octal digits, i.e., nine bits, of the jump instruction tell the
computer the address of the next instruction. For example, if the code num-
ber encountered in, say, register 123, during the instruction fetching phase is
5034, the “5” will direct the computer to replace the contents of the program
counter with the number 0034. The next instruction will, therefore, come not
from register 124 but rather from register 34, and the program will go on
from that point. In effect, the program “jumps” from register 123 to register
34. We write this instruction mnemonically as JMP 34, and can describe it
generally as “JMP Y.”* Look at the following example: ' ‘

Location Contents | Mnemaoanic Comment \
{octal) (octal)
S . . .
tart 5 0040 7200 CLA Clear AC.
0041 7001 IAC Increment AC.
0042 5041 ’ JMP 41 Go back to location 41.

4
Program Example 2 Endless Binary Counting in the Accumulator

The program endlessly repeats the entire counting sequence of 4096 num-
bers, replacing the number in the accumulator with its successor each time
“around the loop.” The contents of the program counter pass through the
values 40, 41, 42, 41, 42, 41 . . . endlessly, or rather, until the STOP key
is pressed or someone trips over the power cable.

You will agree that simply counting out the binary numbers isn't very interest-
ing, but the four instructions which these examples introducesshould give you
some notion of what it means to “program a computer.” Perhaps the instruc-
tions don’t look quite the way you expected!

The repertory of any general purpose computer, of course, reflects the organi-
zation of the particular computer for which it was designed, and although the
instructions may seem odd at first, they generally perform very simple opera-
tions which are quickly mastered by the programmer.

*For the present let Y stand for any number less than 200, i.e., any number
less than 128,. These are smaller numbers than you need to address the en-
tire memory, the restriction to small numbers will be explained later.

20

Perhaps the most important single thing to be aware of, as you put instruc-

tions together to form a program, is that the computer is really very simple-
minded. Remember the CLA instruction in the first example? If the computer .
had not first been directed to clear the accumulator, the LAC instructions in
locations 41, 42, and 43, which “increase the number in the accumulator by
ONE,” would have done just that; i.e., they would effectively have added 3 to .
whatever number was in the accumulator at the time. The computer has no-
- way of knowing that that wasn’t quite your intention, and, of course, at another
time that might have been exactly your intention. This necessary attention to
detail may seem picky at first, but you will quickly learn the combinations of
instructions which insure the smooth operation of your program. . :

The instruction repertory is then the “language” of the computer. The pro-
gramming examples which follow will introduce you to some of the PDP-8 in-
structions. The repertory includes instructions, such as JMP and HLT, which
simply direct the flow of events for the control unit. There are instructions
which send information between the accumulator and input or output devices
such as the Teletype, (KSF, KCC, KRS, KRB), and ones which send information
between the accumulator and the memory (called “memory reference instruc-
tions”). : '

Since all the “work” is done in the arithmetic unit, there are a number of in-
structions in the operate group which make it easy to use efficiently. These
include instructions which complement the accumulator .contents, rotate it
right or left, set it to the number helid in the switch register, or cause the com-
puter to skip one instrugction when the accumulator is in a certain state.

~ SYMBOLIC MACHINE LANGUAGE

Before proceeding with more specific programming examples, it will be helpful
to introduce a few more mnemonic aids which you will be able to substitute
for much of the octal notation. ; o :

~N . .
Program example 2, for instance, can be relocated in another set of core
registers, but notice, please, that in this case the program must be changed .
slightly before it will run correctly: the JMP Y must be recoded to match the
new location. Examples: ' _ -

———> 65 CLA ———> 123 ClA

66 IAC) i 124 IAC

67 JMP 66 125 JMP 124
This can become quite a nuisance,. especially with large prog'rams' in which
there will be many such references to memory addresses. |f, however, you as-

sign a name, say, “CAT,” to the memory register to which the JMP instruction
must return, you can write

——> CLA

CAT, IAC
_“ JMP_CAT

21

without, for now, concerning yourself with the actual memory location of the
IAC instruction. Note, in the above example, that CAT is followed by a comma
when it is used as an identifier for an instruction. When CAT is used to sym-
bolize the address portion of an instruction, nc comma is required.

These symbolic references to instruction locations are made possible because
of a special program, called an assembler. When you are ready to run your
program, the assembier will first translate this symbolic language you have
used* into the binary numbers which the computer will use. Clearly a very
useful program!

The PDP-8 assembler is one of many such symbolic translators and we will
use its notation in the examples which follow. Another translator, of which
you have perhaps heard, is called FORTRAN. It can translate more complex
combinations of symbols than an assembler, and may be the appropriate lan-
‘guage for writing some of your programs. '

PROGRAMMING EXAMPLES

Let us turn our attention first to the extremely important skip instructions,
ones that give the computer its ability to make decisions automatically, to
change the course of its calculations, to discriminate between one kind of
result and another. In the PDP-8 each of these instructions takes the form
of a conditional “skipping over” of the instruction stored in the immediately
following register in memory. This skipping action depends on the detection
of certain situations or states; for example, upon the detection of the number
0000'in the accumulator. (The control unit handles sRipping by simply incre-
menting the contents of the program counter one extra time if the designated
situation is found to exist.) ’

For example, if we include the instruction SZA, “skip if accumulator is zero,”
in program example 2, we can make the computer break out of its otherwise
endless loop after it has generated one complete sequence of the 2 binary
numbers. SZA has the effect of skipping the instruction following it if the num-
ber in the accumulator is 0000. The program would look like example 3 if
written in the symbolic language of the assembler. “*110" ic called an origin;
it “tells” the assembler that you want the program to occupy consecutive
memory locations starting at register 110, “C{AC)” is an abbreviation of “Con-
tents” of the accumulator”.

*110
START, CLA Clear AC. i
—» CAT, IAC Increment AC.

SZA Does C(AC) = 0? If not, go to next
______ 71 instruction; otherwise, skip
| next instruction.

JMP CAT ! Jump back to increment again.

Hl:T « Stop the computer; sequence is complete.

Program Example 3 Halting after Generation of One
Complete Binary Counting Sequence

*Note the arrows and lines, though. They are just your notes to yourself.

22

The program stops itself after counting out 22 numbers. As you can readily
see, it might instead have been made to go on to yet another calculation by
replacing the HLT with a JMP to the start of a new calculation. To complete
the picture, you might construct the flow diagram for this simple program. It
would look like this: '

'. (START)
'

CLEAR ACANDL

:

INCREMENT CONTENT
OF AC :

EQUAL ZERO
? ,

YES

C STOP,)

Figure 12 Flow Diagram of Example 3

The PDP-8 includes a very useful and powerful instruction which combines the
operation of incrementing and skipping. It is called a “memory refererice in-
struction”, and operates on a number held in the memory, using counting and
detection circuits on the memory buffer register instead of the accumulator. It
is the “increment and skip if zero” instruction, abbreviated I1SZ Y. Using this
instruction, the equivalent of the last program might be written:

»ISZ . COUNT Increment contents of COUNT. If
T T T T T T T7] theresultis 0, skip the next instruction.
JMP -1 | Return to increment AC again.
HLT < S Result is O, so halt.
COUNT, (0) The count itself.

Program Examplé 4 - Counting in a Memory Register

23

The notation “.-1” in the JMP instruction is used to go back one location from
the location of the JMP instruction, wherever that may be. (In other words,
the period is a symbol for “this address”.) Note that in this example the accu-
mulator is not used at all; it will remain unchanged throughout the operation
of the program.

ADDRESS MODIFICATION

Suppose that you want to have the computer clear a set of consecutive core
registers, or what is referred to as a table of registers in memory. You will
make use of the instruction, “deposit and clear accumulator,” or DCA Y (with
the same restriction on Y as before), which has the effect of copying the num-
ber in the accumulator into register Y and then clearing the accumulator.
Each number in the table of registers, say, 100s through 177, is to be set to
the value O in preparation for some further calculation or to be ready to accept

data from an input device. The sequence of instructions you are trying to
achieve is:

Sta_r_§__> CLA | Clear AC.
DCA 100 Deposit C(AC) in register 100.
DCA 101 Deposit C(AC) in register 101.
-DCA 102 Deposit C(AC) in register 102.
DCA 176 Deposit C(AC) in register 176.
DCA 177 : Deposit C(AC) in register 177.
HLT Stop the computer.

There is, however, a much more compact way of programming this example,
which is based on the fact that the code number of an instruction can be
modified arithmetically. The code number for the instruction DCA 100, 3100,
can be modified in place to become the code number for the instruction DCA
101, 3101, and that in turn, to 3102, etc. A jump back to the register holding
this successively incremented DCA instruction can be included so that the DCA
instruction will be repeatedly executed, each time depositing 0000 in one
more register of the table. The process can be stopped by including an ISZ in-
struction which increments the contents of yet another register holding a num-
ber designed to become 0000 just as, or rather, just after, the last register of
the table has been cleared by execution of the instruction DCA 177. The
process might be diagrammed: ‘

24

(START)
'

SET UP TO CLEAR
THE FIRST REGISTER
OF THE TABLE

lk

CLEAR THIS REGISTER
OF THE TABLE

SET UP TO CLEAR

THE NEXT REGISTER
OF THE TABLE .

ALL REGISTERS
BEEN CLEARED
?

YES

C ' STOI;)

Figure 13 Flow Chart of the Procedure for Clearing a Table of Registers

The program itself might be the following:

k]

CLEAR, CLA : _Clear 'accumulator.
—> DCA 100 Deposit in next table register.
ISZ -1 " Increment code number of DCA Y
~ instruction itself.
ISZ__ CNTR Increment CNTR contents. Have
—i ~all registers been cleared?
JMP -3 I No; go back to clear next register.
HLT < Yes; stop the computer.
CNTR, -100;

Program Example 5 Clearing a Table of Registers

25

The initial value in CNTR. -100;, is, of course, directly related to the number of
registers to be cleared. The first pass through the program will clear register
100, advance the DCA 100 code number to 3101, the code for DCA 101, and
increment the count in CNTR to -77. You can see that the 1SZ instruction will
never find a result of O after incrementing. It will therefore always direct the
computer to go on to the next instruction. But.the 1SZ CNTR will be changing
the count in CNTR in such a way that each pass brings it one step closer to 0,
so we'll have:

Before the DCA instruction is | CNTR holds Register cleared
' will be

 1st pass DCA 100 -100 100

2nd pass DCA 101 77 101

3rd pass DCA 102 76 102

Final pass DCA 177 -1 177

On the final pass, register 177 is cleared, and then the DCA 177 is advanced
to DCA 200 and the -1 in CNTR is incremented to 0, the value being “watched
for” by the ISZ CNTR instruction, which then causes a skip to the HLT in-
struction to stop the computer.

This trick of continuing toward O by counting with an ISZ instruction is enor-
mously useful. To go through a part of any program exactly n times, you
supply an initial count value of -n. Notice, however, that once you have exe-
cuted the program in example 5, you cannot get it to work again until the
initial value, -100, has been restored and the DCA instruction reset to the code
number for the instruction DCA 100, namely 3100.

SETTING UP INITIAL VALUES

The way to handle this problem of setting up initial values is to store the num-
bers -100 and 3100 in two extra registers, ones that won't be altered by opera-
tion of the program, and to copy each of them in turn into the accumulator
and from there into registers CNTR and CLEAR + 1 respectively by means of a
programmed “preface” to the table-clearing process. We'll use the instruction
TAD Y, “2's complement add,” execution of which adds a copy of the contents
of Y to the contents of the accumulator, leaving the result in the accumulator.
(Of course we'll be careful to clear the accumulator first so that the effect of
executing the TAD instruction will be only that of copying.) The preface to
program example 5 might then look like this

* 26

BEGIN, CLA Copy initial count value into AC.
TAD MCNT * Deposit in CNTR.
DCA CNTR <
b Copy code number for DCA 100 into
TAD K - E _
DCA CLEAR +1 | AC and then into CLEAR + 1.
JMP CLEAR Initialization complete; go to CLEAR program.
MCNT, -100°
K, . 3100

-

Program Example 5a Initialization Prefaces to Program Example 5

The complete program now starts at BEGIN rather than at CLEAR, and may be
repeated as often as you like. Notice that execution of the DCA CNTR instruc-
tion clears the accumulator so that execution of the TAD K will, like the TAD -
MCNT instruction, merely copy. The general process of prefacing a program
by setting to their proper initial values any numbers which are to be modified
during execution of the program is extremely important and helpful. Best to
carry out these set ups before rather than after execution of the modifying pro-
.gram because the intended execution, for some reason, may not go to com-
pletion (somebody really ought to put a cover over that power cable!).

SUBTRACTION

Now, of course, the TAD instruction can be used for more interesting purposes
than merely copying. After all, it is an arithmetic instruction, and in fact all
arithmetic procedures can make use of it: subtraction, by adding negated
numbers; multiplication, by repeated additions; division, by repeated subtrac-
tions; and the generation of square roots, sines, polynomials, etc., by combin-
ing addition, subtraction, multiplication, and division steps.

Look at the subtraction, for example. To find the difference A-B, you can first
copy B into the accumulator, then negate it (using the instruction CIA, “com-
plement and increment.accumulator”) to get -B, then add A. Or, if A is already
in the accumulator from a previous calculation, you can negate to get -A,
then add B to get B-A, and then negate the result to get: -(B-A) = -A-B.

Here is an example of an interesting and very useful application of subtraction
combined with a test of the sign of the result using the instruction SMA, “skip
on minus accumulator.” It is a program which finds the larger of two num-
bers, and leaves the answer in the accumulator.

27

Start, - CLA } Copy B into AC.

TAD NUMB
CIA Form -B.
TAD NUMA Form A-B.
SMA Is A-B negative? If so, B is
““““ ‘: ~greater than A so skip the
i next instruction. If not so,
I A is greater than or equal to
] B so go on to the next instruction.
JMP .+4 | Jump to copy A.
CLA=-=——-4
TAD NUMA Copy B into AC and halt.
HLT
—=CLA ,
TAD NUMA Copy A into AC and halt.
HLT
NUMA, A
NUMB, B Two numbers to be compared.

Program Example 6 Finding the Larger of Two Numbers

Number comparison is basic to many processes. In example 6 only the ques-
tion of which of two numbers is larger is answered, but you can see that it is
just as easy to find the smaller of two numbers instead. If the instruction
SZA, “skip if AC = 0,” is used, the question answered would be whether or
not A-B = 0, that is, A = B, enabling you to have the computer look for spe-
cific numerical values.

By using two comparisons you can have the computer find out whether a num-
ber x is in a specified range, being smaller than some numerical upper bound
M, and greater than some numerical lower bound N, perhaps having the com-
puter discard any x that is not in this range.

By combining the process of number comparison with the process of scanning
numbers stored in a table of registers, you can have the computer find either
the largest or the smallest of a whole list of numbers. There are many ways
to do this. One way to find the smallest number is to start by picking a candi-
date for the smallest number which is at least as large as the largest number

-in the list. Each number in the list is then compared with this candidate, and
whenever a number in the list is found to be smaller, it becomes the candi-
date and-displaces the old one. This “survival of the smallest” process clearly
leads to the identification of the correct member of the list.

The following program example will help to clarify things for you. It finds the
smallest number in the list of 40:(32,) randomly ordered numbers stored in
registers 100-137. All of the numbers are positive, and the largest any can be
is therefore 3777,, i.e. +2047,.

28

START, CLA '
TAD MAXCAN Set up first trial candidate.
DCA CAND :
TAD MINUSN | .
DCA ~ NCNTR } Set up for 40; entries.
TAD KTAD Set up to compare candidate
DCA T : with first table entry.
AGAIN, ——»TAD - CAND
CIA Subtract candidate from table entry.
T, - TAD 100 :
SMA : : Is difference negative?
———————— |
i N
JMP .13 | No; candidate survived the test.
'I:AD ' CAND o-l Yes; entry is smaller, so deposit |
DCA CAND- it in CAND as new*candidate.
~» |SZ T Advance to compare next entry.
ISZ NCNTR Have all entries been compared?
e = _
' |
JMP RET |
| _
HLT —— e Halt.
RET CLA .. No - o
JMP AGAIN Go back to compare next entry.
MAXCAN, 3777 T First trial candidate.
MINUS N, -40 : Minus number of table entries.
KTAD, TAD 100 ' Code number for “TAD 1_00.” '
CAND, : - Candidate for “smallest number.”
NCNTR, —_ Entry counter.
*100
TABLE, 1 I
2 Table of 40, different
> randomly ordered
) positive numbers.
e .

Program Example 7 Finding the Smallest of a Set of Numbers

29

After setting up proper initial values, the process begins with a comparison of
the trial candidate 3777 with the first table entry by forming their numerical
difference and checking its sign. A negative difference indicates that the table
entry is smaller than the candidate; a positive difference, that the table entry
is not smaller than the candidate.

If a negative difference is found, a copy of the table entry replaces the candi-
date. Notice that execution of the TAD CAND following the SMA simply re-
covers the table entry by adding the candidate back into the difference.

If a positive difference is found, the candidate has evidently survived the com-
parison test, that is, is still at least as small as the smallest number found so
far, and no replacement is made.

In either case the table entry address is advanced, and the entry counter is in-
cremented. If there are more eitries to Coimipare, the comparison pirocess is -
repeated. If all entries have been compared, the process is complete and the

program halts leaving a copy of the smallest number in CAND.

Yes, this all seems to be a rather elaborate way of doing what you could do
simply yourself by scanning a list of numbers (such as you might find, for ex-
ample, on a supermarket shopping receipt) to pick out the smallest one. But
the computer’'s repertory of basic operations is very limited. On the other
hand, the computer is tireless, extremely fast, and quite accurate, rewarding
your patient attention to the initial bother of writing the program by performing
your task on demand at any time thereafter. Furthermore, you will be able to
build on your efforts and on those of others, incorporating the programs which
carry out simple tasks into larger and more powerful programs for more diffi-

cult tasks. .
INDIRECT ADDRESSING

By now of course, you are familiar with some of the memory reference instruc-
tions such as TAD Y, JMP Y, DCAY, and ISZ Y and with the fact that they refer
directly to some register Y during their execution. If, for example, you write

ISZ 46, you know that the contents of the register whose address is 46 will be
incremented, This is called direct addressing, and while it seems a natural

way to refer to a memory register, you will recaH that the 9 bits of an instruc-

H . ~ HEN Y| £ A
tion word available for an address cannot address the entire 4096 registers of

the PDP-8 memory. Not directly, anyway. You can, however, address any
register indirectly by putting the full 12-bit address you want an instruction to
use into a register of its own.

For example, if you want to store the contents of the accumulator at location
3765, you can write

1703765
170 3765

-» DCA 1 170

3765 - Accumlator contents stored here. The new symbol, 1, for
indirect address, directs the computer to look in register 170 for the actual

address to be used. The accumulator contents will then be stored in register

30

3765. The contents of register 170 will not be changed.
Of course, you can write this with symbolic names, as

STORE, LATER

-=>»DCA 1 STORE

LATER, — ,

Not only does this ability to address indirectly make it possible to refer to all
memory registers, but also it simplifies the process of initialization and ad- .
dress modification as the foIIowmg example illustrates. Example 8 shows the
use of indirect addressing in a program to add a constant to each entry in a
table of N entries:

BEGIN, CLA : :

TAD MINUSN ‘ Set up for N entries.

DCA NCNTR J ,

TAD TABLOC ‘ . .

DCA ENTLOG } Set up initial entry location.
A, TAD 1 ENTLOC Add constant K to table entry and

TAD. CONST replace in table.
B, DCA 1 ENTLOC

ISZ ENTLOC Advance to next entry.

|§Z_NC_N'B_ Have all entries been handled?

1 No; go back for next entry

HLT «——— Yes; stop o
MINUSN, -N : ~ Minus the number of entries.
TABLOC, TABLE Location of first entry in table.
CONST, K Constant to be added to each entry.
ENTLOC, — The location of the entry.
NCNTR, — - Entry counter. _
TABLE, - X

Xz

: > Table of N entries.

Xn

Program Example 8 Adding a Constant to a Set of Numbers
Using Indirect Addressing

31

Notice that the two instructions at A and B both make indirect reference to
the same entry through ENTLOC, yet only the single number, ENTLOC, has to
be set up initially and incremented as the program proceeds.

SUBROUTINES

It has been mentioned that you will frequently be able to make use of pro-
- grams already written to help perform the task which you want the computer
to do. This is often accomplished by incorporating other programs as sub-
programs, or subroutines, in your own program. Or, if there is a particular
sequence of instructions which your program must execute frequently, you
might want to treat those instructions as a subroutine for convenience and
economy of memory registers. Think of subordinates as program building
blocks. :

. A subroutine is a self-contained sequence of instructions which carry out a
single task. A good example might be the subtraction of a number in the ac-
cumulator from a constant, a task which may be of importance in some larger
program and execution of which may be required at many different points in
that program. The sequence is of course: ’

CIA
TAD CONST
CIA

CONST, K

Instead of incorporating the required three instructions at every point in the
program requiring this subtraction, the sequence is put into the form of a
PDP-8 subroutine called, let us sav, SUBCON:

SUBCON,
o)
CIA
TAD CONST
CIA
JMP_ 1 SUBCON
CONST, K -

&

At each point in the program requiring the subtraction, the instruction JMS
SUBCON is written. JMSY, “jump to subroutine Y,” puts the location number
following the location number of itself into register Y, and then jumps to regis-
ter Y + 1. In the above case, if JMS SUBCON were executed at location P, the
number P + 1 would be put into register SUBCON and the program would -
jump to SUBCON + 1, executing the required sequence. After the sequence
has been completed, the JMP 1 SUBCON jumps indirectly to SUBCON, finding
the number P + 1 therein, and returning control to the program at location
P+ 1.

Many subroutines have been written for the PDP-8 and may be incorporated in
your program saving you a great deal of work. They constitute a library of use-
ful procedures and calculations from which appropriate routines may be bor-

32

rowed, including routines for square roots, multlpllcatlon division, trigonomet-

ric functlon .evaluation, and various high precision calculations; decimal/binary

conversion; memory content printout; Teletype readin; and so forth.

These program building blocks greatly enhance the usefulness of the computer

z{'}d simplify your programming task. In the next section we will see some
broutines which can be used for the Teletype. '

DEALING WITH THE PRINTED CHARACTERS

The Teletype is a device for both input and output of information. On your
side of the device, the information appears as ordinary type-print like that
found on a typewriter. On the computer’'s side, the information appears as
8-bit binary numbers.. Within the Teletype are mechanisms for translating one
form into the other.

For example, if you type the character “A” on the Teletype keyboard, it is
translated into the code number 301,. This code number can then be copied.
into the accumulator by the instruction designed KRB, “read keyboard.” Simi-
larly, if the code number 253; is held in the accumulator and the instruction
designated TLS, “load teleprinter” is executed, the character “+"” will be _
printed. Each character has a unique 8-bit code number, and 8-bit code num-
bers for such things as carriage-return, space, rub-out, and so forth are also
provided. Teletypes, though well matched to a typist in speed, are very, very
slow tortoises to the computer’s hare. The computer must wait or do some-
thing else while the Teletype is catching up at the rate of ten characters per
second. When the. Teletype is ready, it simply raises a “filag” which is being
watched for by the computer, and the computer then proceeds to transfer the
code number and lower the flag (so that there will be no confusuon with re-
spect to the next character).

A sequence of instructions to read a character from the keyboard would then
look like this: :

kCC Lower flag te prevent initial confusion.

k_S'_F_.___ Is flag up? o

JMP AT Noj ook again. } Wait.

KRB | @ Yes; read character into accumulator and lower flag.
etc.

and a sequence to print a character whose code number is in the accumulator
mlght look like this:

TLS Lower flag, transfer character, and [f)rint.
ISE_ _ s flag up? .
l JMP -1 —i No; look again. } Wait.
! Yes; continue with program.
etc. Y

33

KSF and TSF are flag-watching instructions of the skip variety.

Now you can see how numerical forms might be handled. A simple exampie
follows in which a binary number in the switch register is read into the accu-
mulator by the instruction designated LAS; “load accumulator with switch reg-
ister,” and then a digit representing its decimal value is printed (we'll restrigt
the binary number to decimal values less than ten for simplicity):

->» A, LAS Copy contents of switch register
into accumulator.
TAB B _ Add the number 260.
TLS Print digit.

_TSF e——]
r — J Wait.

{ JMP. -1

|

L JMP. NEXT Go on to whatever comes next.
B, 260,

Program Example 9 Printing the Decimal Digit Equivalent of the
Binary Number in the Switch Register

The Teletype code numbers for the digit characters 0, 1, ...9, happen to be
The Teletype code numbers for the digit characters O, 1, ... 9, happen to be
260, 261, ... 271 (octal) so that simply adding the number 260 to the binary
number in the switch register generates the proper code number. For ex-
ample, if the switches are set to 000 000 000 011, the addition of the number
260 produces the number 263, the code number for.the character “3.” The
waiting loop doesn't make much sense in this example unless the continuation
designated NEXT somehow returns to execute the program again (you would
have trouble setting switches at the rate of ten numbers per second to keep
up, thoughi). However, it wouid certainiy be necessary in a generai criaracier
print subroutine such as the following:

PRINT, 0]

TLS

Print the character
TSF - > whose code number is
- T held in the accumulator.

IMP -1
Ly JMP 1 PRINT

4

o

You might use such a subroutine in a program to print the full four octal digits
of the number in the switch register. In such a program, you would also want
another subroutine to aid in isolating each octal digit. The AND Y instruction
will be useful. Execution of AND Y sets to O each bit of the number in the
accumulator for which the corresponding bit of the number in register Y is O.

34

wt
The number in register Y can be thought of as a mask or template through
whic h certain bits of the number in the accumulator can be “erased.” »

The 12-bit number can be decomposed into the four groups of three bits by
shifting it three places to the left each time it is used. In the PDP-8, shifting
is carried out in the accumulator and link. The instruction RAL, “rotate accu-
mulator and link left one place,” causes each bit to be copied one position to
the left, the leftmost bit being copied into the link just as the bit in the link is
being copied into the rightmost position of the accumulator, in the manner aof
a digital Mad Tea Party; for exampie:

LINK ACCUMULATOR
110 101 11

(FIAIA I, /

After an initial shift of one place to take account of the inclusion of the link in
the “ring” formed by the shift-left pathways, the following subroutine can be
used repeatedly to isolate each octal digit in turn, form the digit code number,
and print the corresponding digit character using PRINT as a sub-subroutine.

NXTDIG, 0 ' I
CLA
*
TAD - TEMP Shift number in TEMP three places
RAL L left around the ring, leaving
' result in TEMP and in the
RAL Ac_cumulator.
RAL
DCA TEMP
TAD TEMP J
AND MASK)
Form code number
TAD DCODE . and go off to the
_ PRINT subroutine.
JMS PRINT J '

)
-

—3 JMP 1 NXTDIG T Return.

TEMP,

MASK. 0007
DCODE, 260

Program Exafnple 10 Octal Digit Isolation and Print Subroutine

35

Now that the subroutines PRINT and NXTDIG have been provided, they can be
used as components of the program to translate a 12-bit binary number in
the switch register (or, by an obvious extension, any other 12-bit number that
can be copied into the accumulator) into its printed octal equivalent:

OCPRINT, LAS 1 Read switch register,
RAL > ﬁake corrective shift,
DCA TEMP J and deposit in TEMP.
JMS NXTDIG | I
MS - NXTDIG > Print the four octal digits.
JMS NXTDIG
JMS NXTDIG J
CLA)

TAD CARRTN + Return the carriage.
JMS PRINT]
CLA |)

. TAD LN FEED
> Feed paper up one line and halt.

JMS PRINT

HLT J
CARRTN, 215 Carriage return code number.
LNFEED, 212 - Line feed code number.

Program Example 11 Printing the Octal Equivalent of the 12-Bit Number
in the Switch Register

After printing the four octal digits, the program uses the PRINT subroutine
directly to return the carriage and to feed the paper up one line.

You can readily see that similar programs can be written to read in and com-
bine octal digits as they are typed on the keyboard. Or, in translating from
symbolic language to binary number, to read in the characters “C,” “L,” “A”
and by a process of matching their code numbers to ones stored in a table,
decide that this string of 3 characters, CLA, should be assigned the value
7200, the code for “clear accumulator.” Or, after reading in the string of
characters “2,” “+.” “3" “c” a program might respond by printing out the
digit “5.” You can think of many other examples based on these simple no--
tions yourself. The possibilities are quite limitless.

36

PART II: APPLICATION PROGRAM EXAMPLES .

37

INTRODUCTION

Now that you are acquainted with the fundamentals of computer logic and pro-
gramming, you are probably anxious to see the machine in action. After all, for

most of you, the main question is “How will the computer assist me in solving

To answer your question, we have selected several representative scientific and
engineering computer program examples, specifically in the fields of oceanog-
raphy, physics, biomedicine, and process control. In the first example, we
describe a simple program language, similar to algebra, and its value to
oceanographers. In the second example, we analyze pulses generated by a
gamma-ray detector. The third example is a program for generating and dis-
playing a time-interval histogram designed for the biomedical scientist. Com-
puter-directed process control techniques are discussed in the fourth example.

38

REAL TIME TECHNIQUES FOR OCEANOGRAPHIC

APPLICATIONS

INTERFACING MARINE SENSORS

Marine sensing instruments are often considered unique devices that cannot be
connected directly to a computer. However, most instruments can be con-
nected directly to the computer with little additional equipment, figure 1. Let

.us examine the basic types of interfaces that would be necessary to connect the

computer to oceanographic sensors.

RIA S
gSLSELTRAIN | SERIAL TO _______ PARALLEL
2 »{ PARALLEL DIGITAL
CONVERTER : — INPUTS
SWITCH
 REGISTER
..._.
UP TO 64- A-TO-D i
ANALOG INPUTS |MULTIPLEXER| convERTER . POP-8 2 ASR —33
e ¢——>
CLOCK _’
'y PARALLEL
l ~—p STATIC QUTPUTS
HIGH SPEED | . DECTAPE
TAPE PUNCH CONTROL P'-g'gg“
754 552 .
DUAL DECTAPE
TRANSPORT
555

Figure 1. Typical Data Acquisition System

INTERFACING TRANSDUCERS

Three basic types of interfaces.are used with the PDP-8 computer to teceive
data from environment sensors. These interfaces allow data to enter the com-
puter under control.of a simple real-time symbolic compiler that gives you the
following flexibility when you sample the environment: :

1.

2.

A variety of preprogrammed interface devices that easily connect the com-
puter to instrumentation. '

Simple symbolic assignment of identifying names tb physical input vari-
ables such as pressure, temperature, etc.

Absolute control in>sampling the experimental environment with respect
to time. ' '

Computer compatibility with respect to rapid response sensors using up {o
176 separate sensing devices.

Capability to make logical decisions concerning the acquisition of data
while sampling the environment.

Storage of data for future computations as well as immediate output for
checking quality while obtaining data.

39

Transducers are sometimes considered unique devices that do not lend them-
selves to being connected directly to a computer; however, by the use of basic
standard interface types, most instruments can be connected directly to a
computer with little additional equipment. Let us examine the basic types of
intérfaces that would be necessary to interconnect a computer to various
transducers.

INTERFACE TYPES
Digital-Parallel Input Signal Buffer

This buffer permits the direct parallel insertion of a digital number into the
computer, using a method by which the number immediately becomes a com-
puter word. Examples of devices feeding data in by this method are shaft-posi-
tion encoders, switch registers, and other allied devices. Figure 2 shows the
general method for digital-parallel input.

f -_—t 0 ——tp 0 P 3
—_— 0 —— 0 b—n—
—_— 0 —— 0 b——
—_— e t —
- © — 0

TRANSDUCER < & COMPUTER
———i 0 e e 0 p—————
—_— — I —
- | —t— i ——
-_— 0 —t 0 pP——
— — b —
T —1° - o F—
AL GATING

Figure 2." Digital-Parallel Signal Buffer

This method can accommodate signals or pulses from a minimum range of
0 to —10mv up to a maximum of 20 to —15v. The system can include one
buffer for each of several dozen variables.

Serial-Parallel Input Signal Buffer
This method would be used, for example, in telemetry applications where the

40

transmitter is remotely located and able to transmit a number of input vi}ords
one bit at a time along a single conductor cable or by radio (see figure 3).

e 7] [Tl L o] =
- | Twmlll'lullu -
FrrTr T T

O IIIITIT1]
TT1rrrirobrri

COMPUTER

Figure 3. Serial-Parallel Signal Buffer ’

s

This buffer can convert a serial pulse train to a 12-bit word in 6 usec, or one
bit every 500 nsec. it accommodates ranges of input levels from a minimum of
0 to —10mv, up to a maximum of 20 to —15v. The flexibility provided in this
buffer allows you to format the data before it is finally assembled as computer
words; that-is, you can insert octal constants in the specific serial word of your
choice. It provides the programmer with the following additional instructions
in the computer:

1. Skip if data flag = O.

2. Skip if start flag = 0.

3. Clear data flag and start flag.
4. Read data into the accumulator.

Multiplexed Analog-to-Digital Conversion Input

This method is particularly advantageous in data acquisition when many de-
vices such as thermistors, pressure sensors, and strain gages are working to-
gether. ‘One example of where this method would prove advantageous is a
thermistor chain in which each thermistor, pressure sensor, or conductivity
sensor could be individually sampled by the computer. Figure 4 indicates this

relationship.

ANALOG TO

| ———— .
SENSORS { THRU MULTIPLEXER | g~ DIGITAL |—— COMPUTER
1 CONVERTER .
n

- Figure 4. Muitiplexed Analog-to-Digital Conversion

Switching from one input to the next in the muitiplexer is accomplished-in
2 psec, and up to 64 separate inputs can be sampled directly by the computer.
The analog-to-digital converter uses the range of O to —10v. ' '

PROGRAMMING

The task of writing a special-purpose program for each installation could be a
formidable problem involving a great deal of time and money. In order to allevi-
ate this problem, Digital has written DATAK, an algebraic compiler that allows
you to format your data acquisition problem in a simple language similar to
algebra. By using the DATAK language, you are given a great deal of flexibility

41

concerning the interface hardware available. This program offers you flexibility
-in choosing the frequency and conditions under which you sample the experi-
mental environment, as well as makes possible the addition or change of sen-
sors without the major task of reprogramming in machine coding. This
program is available for the PDP-8, a compact 12-bit computer with a 1.5 usec
cycle time. .

This program allows you to analyze a sample using the following inputs.

Up to 96 independent data variables using digital-parallel input.
Up to 64 independent data variables using a multiplexed A-to-D converter.
Up to 25 independent data variables via serial buffer input. _

Each independent variable can be sampled at a rate of up to 100 times per
second.

System Inputs

Data can come to the computer from the digital-paralle! input buffer, the serial
input buffer, and the multiplexed analog-digital converter. Each of these de-
vices is assigned a symbolic name that tells the computer which device is
transmitting information. . . '

The symbols are:

DGIN: Digital-parallel signal buffer; input can be converted from Gray
code to binary.

BUFR: Serial buffer input.

ADCV: Multiplexed analog-digital converter.

System Outputs

Data output can be distributed to a number of specifically named devices to
allow immediate presentation as well as permanent storage. The following out-
put symbols and their associated devices are available: :

TYPE On-line teleprinter. Variables can be typed in decimal or octal.
Decimal is specified by 4 immediately following the variable name.

PNCH High-speed paper tape punch. Variables can be punched in deci-
mal or octal. Decimal is specified by 1 immediately following the
variable name.

DCTP Digital's compa%t DECtape. Variables are recorded magnetically
on DECtape in binary with identifying words.

PLOT X-Y plotter. The plotter pen is moved to a new position each time
an output is specified.

DIG1 Up to four digital outputs are available through parallel buffers to
other devices such as relays, buffers, sense lines, and range
DIG 4 switching devices.

Variables
Input variables to the computer are assigned alphanumeric symbols by the

investigator. They can be one to four characters long, and must begin with a
letter. Some examples of these would be:

T123, SURF, DEEP, AIR, X, Y, TEMP, H20, H202)

In addition, variables that are inputted through the mult:plexer have specified
channels; that is, T123(1) would be mput through channel 1 of the multiplexer.
Time

Four types of time can be used by the computer: basic, program, vanable and
reference.

BASIC TIME

Basic time represents the bas1c interval of 0.01 sec in which a clock interrupts
the program.

PROGRAM TIME | ,

This time represents the basic rate at which the investigator desires to inter-
rogate the sensors. It is some multiple of the basic time and is under program
control. Its symbology is-simply expressed as follows:

QUNT:50 The investigator has specified that the program time will be
50 X .01 = 0.5 sec; that is, each sensor will be sampled
every 0.5 sec. If he desires the fastest rate possible, he may
express the following:

QUNT:1 In which case each variable will be sampled every 0.01 sec.

VARIABLE TIME

In order to allow more flexibility in timing, digital inputs can be sampled at a
slower rate than the program time specifies. For example, the expression:

DGIN:L1 (4, L2 (4

specifies that the digital input variables L1 and L2 should be sampled once in
four cycles of the program tume or every 4 < 0.5 =72 sec.

REFERENCE TIME

It is often desirable to know the reference time in order to associate data with
time. Within the program is a 3-word variable, CLOK, which counts the number
of seconds, minutes, and hours that have elapsed since start-up tlme it can be
used as an output varlable to reference data with time..

Arithmetic Operation

ADDITION AND SUBTRACTION

Variables can have constants added to or subtracted from them as they are
sampled, or the variables can be added to or subtracted from each other.

‘All arithmetic operations are done in 2’s complement arithmetic, with the oper-
ands being considered signed, fixed-point numbers. The following examples

43

mean that the variable T2 will have constants or variables added or subtracted
before output:

T2 + 137 Add a constant to the variable.
T2 -3 Subtract a constant.
T2 + T3 - Add a second variable.

ARITHMETIC. COMPARISON

Variables can be compared against constants, compared . against other vari-
ables, or compared against themselves with respect to sample time. The basic
comparison instructions are:

IFEQ X, Y ifXisequaltoY
IFLS X,Y ifXislessthanY
IFGR X, Y if X is greater than Y

An example of the comparison of a variable against a constant would be:
IFEQ X, 1000;

meaning that if X is equal to 1000,, execute the operation following the semi-
“colon; otherwise, go to the next line. .

Every time a variable is recorded and oufputted, its value is préserved and is
~given the name of the original variable. Thus, X and @ X represent the current
value of the variable X, and its value when last used as output, respectively.

The following example of the comparison of a variable and its predecessor:
IFLS X, @ X;

means that if X is less than' it was when last recorded and output, execute the
operation following the semicolon; otherwise, go to the next line.

Gray Binary Conversion

Gray binary code can be converted to simple binary under program control if
the input method is digital (DGIN). This provides you with a rapid means of
conversion in order to intercompare the usyal shaft-encoded Gray binary num-
bers, if the shaft encoder does not convert from Gray Code to simple binary
prior to buffering.

The conversion is accomplished by inserting ¢ immediately before the time
multiple.

*

DGIN L1p4

This means that the Gray binary variable L1 is sampled every fourth time
through the program and is converted to a simple binary number before com-
parison or storing. .

Format Statements

Format statements are numbered from 1-15 (decimal). They contain the names
of variables and their output forms (octal or decimal for the Teletype or
punch). Format numbers appear along with a device name in every output

44

* statement. Thus, the statement:
FORM: 1,X,Y},Z

indicates that the variables X, Y, and Z are to be outputted to the Teletype,
with X typed in octal, Y typed in decimal, and Z typed in decimal.

- GOTO Statement

Program control can be unconditionally transferred through the use of the
GOTO statement.

PROGRAM EXAMPLES
‘A Simple Programming Problem
An in situ pressure, temperature; and salinity sensing instrument is lowered

- into the ocean. Data is transmitted along a single conductor cable and is
brought into the computer using a serial buffer input.

We want to sample the ocean in the following manner: |

1. From the surface to 100 meters, record at each meter the pressure,
temperature, and salinity.

2. From 100 meters to- 1000 meters, record the pressure temperature i

' and salinity whenever the absolute change of temperature is greater
than 0.05°C or the absolute change of salinity is greater than 0.02%..
Also record the pressure, temperature, and salinity every 100 meters
from 100 meters to 1000 meters.

Let us assume that the oceanographic sensors have the following precision;
that is, unity is equal to the following:

1 unit of pressure — 1 meter
1 unit of temperature = 0.01°C
1 unit of salinity = 0.01%, '

A program' to accomplish this sampling is written as follows:

BUFR : PRES, TEMP, COND
FORM : 1, PRES, TEMP, COND
[: OUTP (1, DCTP)
1 : IFGR PRES, 144; GOTO 2
: IFGR (PRES —-@PRES), 1; OUTP (1, DCTP)
: : GOTO 1
2 : IFLS (PRES —@PRES), 144; IFLS (TEMP - @ TEMP}, 5 !

IFLS (COND —@COND), 1; GOTO 2
OUTP (1, DCTP); GOTO 2

END
~ This program says in effect:
BUFR: PRES, TEMP, COND

Three variables named PRES, TEMP, and COND are to be sampled using the
serial buffer.

FORM: 1, PRES, TEMP COND

45

Three variables named, PRES, TEMP, and COND are to be outputted together.
:OUTP (1, DCTP)
This says output is to be recorded on magnetic tape.
1:IFGR PRES, 144; GOTO 2

This states that if the absoluté change of pressure is greater than 100(144,),
the control of the sampling will be transferred to statement number 2; other-
wise, it will go to the next line.

AFGR(PRES ~@PRES), 1; OUTP (1, DCTP)

This line states that if the absolute change of the pressure between two suc-
cessive readings is greater than 1, output onto magnetic tape according to
- format 1; that is, OUTP (1, DCTP) which means store data on DECtape using
format 1; otherwise, go to the next line.

GOTO 1
This says to go to statement number 1 and test the environment again.

2: |IFLS (PRES -@PRES), 144; IFLS (TEMP -@TEMP), 5;
IFLS (COND -@COND), 1; GOTO 2

This states that if the absolute change of pressure is less than 100 meters or
the absolute change of temperature is less than .05°C, or if the absolute
change in salinity is less than .02%, then go to statement number 2 which
begins the tests over again. Otherwise go to the next line.

:OUTP (1, DCTP); GOTO 2

This says to output data onto magnetic tape and transfer control to statement
number 2. The sampling and testing procedure begins again.

END

This last instruction is self explanatory.

As shown in the above description, the computer has been programmed to
make logical decisions specified by the investigator in sampling the marine
environment. It also has been used as a means of storing data. In the above
instance, data has been stored on magnetic tape and can be used in other
programs to determine variables such as Sigma T, anomaly of specific volume,
and sound velocity. Table 1 shows a portion of the calculated output from
stored data on magnetic tape transport number 1 that can be run immediately
after the sample program. ' ®

46

TABLE 1 REDUCED DATA

Input Source? T
Observed Values

Depth Temp. Salin. Sigma-T Delta-A Sound-Vel
0000 . . 8.35 34.17 - 4+-26.590 +145.53 +1483.4
0001 8.28 ’34.19 +26.616 +143.08 +1483.2
0002 8.20 34.21 +36.644 +140.45 +1482.9
0003 8.13 34.24 126,678 +137.20 +1482.7
0004 805 = 3426 | +26.706 +134.59 +1482.4
0005 7.98 | 34.28 +26.732 ~+132.19 ‘;|—1482.2
0006 791 34.31 +-26.766 +128.98 114820
0007 7.83 3433 '.+26.793 +126.38 +1481.7
0008 7.76 34.35 . +26.819 4123.94 +1481.4
0009 7.69 34.37 | +26.845 +121.45 +1481.2
0010 7.61 34.39 +26.873 +118.89 +1480.9

A More SOphlstlcated Program

For a better demonstration of the flexibility of thls programming techmque
consider the following program.

An investigator desires to use a thermistor, pressure, and conductivity chain
towed from an oceanographic vessel. He wiil sample at the same time a
telemetering buoy that transmits data from these current meters. In addition,
he desires to obtain Loran lines of position and sample the ship’s speed and
ship’s heading. These can be summarized as follows:

1.

2.

Log the time on magnetic tape every 50 meters of distance traveled.
Ship’s speed is 10 knots; it will cover 50 meters in approximately 9.70 sec.

Sample each thermistor, conductivity, and pressure sensor in the chain -
every half second. Thus defines the program time as QUNT: 62.

Sample the Loran, ship’s speed, and ship's headnng every 2 sec, thus
L1(4, L2(4, SP(4, HEAD(4.

Conditional Output — Since the near-surface values of temperature and
conductivity will fluctuate the most, it might be most desirable to set
thresholds so that relatively large changes of temperature and salinity
will be stored. However, deeper values will not change as significantly,
so small incremental changes have more meaning and thus should be
outputted and stored. Arbitrary values have been chosen and are shown
in table 2.

47

Determination of Octal Constants to be Used in Testing — In order to
test the variable it must be determined to what its unit value corresponds.
This is found by dividing the range of the thermistor, pressure transducer,

or other device by the precision of measurement; thus if the range of the

thermistor is 20°C and the precision of measurement is 1 part in 2000,
then each unit equals 0.01°C.

5. General Qutput Requirement '

Every variable should be recorded on magnetic tape if the specified con-
ditions are met.

Plot TO versus SO if it is recorded.
Type current meter data in decimal if it is recorded.
Punch TO, PO, and SO if they are recorded.
By outlining the problem, the investigator will have thresholds established for

recording changes in the variables listed in tables 3, 4, and 5 Figure 5 shows
the equipment needed to do the work.

CTABLE 2 SUMMARY

Variable Range Precision - UNITY Corresponds to
Thermistorv 20°C 1:2000 = .01<C
Pressure 100 meters 1:2000 = .05 meters
Conductivity ~ 20%, 1:2000 = .01% e
Vane - 360° 1:120 = 3°
Compass 360° 1:120 == 3°
Rotor - == 1 centimeter per second

TABLE 3 MULTIPLEXER A-D CONVERTER ASSIGNMENT
(Data Originating in Thermistor Chain)

Record Record Record

Mutlti- if Multi- n‘ Conduc- Multi- if
Depth Thermistor plexer Absolute Pressure plexer Absolute tivity plexer Absolute
in Variable Channel Change Variable Channel Change Variable Channel Change

Meters Name # of Name e of Name b2 o of
0 T0 © 1 PO (6) .5meter SO (14) .05%
10 T1 (1) 07°C Pl (7) 5meter Sl (15) .05%
20 T2 (2) .05°C P2 (10) .5meter S2 (16) .04%
30 T3 (3 03°C P3 (11) 3meter S3 an 0%
40 - T4 (4) .02°C P4 (12) 2meter S84 | (20) 02%
50 15 (6) .01°C P5 (13) .lmeter S5 (21) .01%

48

TABLE 4 SERIAL DATA INPUT BUFFER ASSIGNMENT
(Data Originating in Moored Current Meter String) |

Vane Compass Rotor
Variable Variable Record if - Variable Record if
Name Name Name
Current Meter 1 V1 Cl V14Cl=9 RI1 R1 > 10
Current Meter2 V2 - C2 V24+C2=6° R2 R2> 10"
Current Meter 3 V3 C3 V34+€3=3> R3 R3> 10

TABLE 5 DIGITAL INPUT BUFFER
"~ ASSIGNMENT
(Data Originating_in Ship’s Instrumentation)

Variable | Time Gray
Name Muitiple Code?
Loran Line L1 (4
Loran Line L2 (4
 Ship's Speed sP . (4
Ship’s Head HEAD - 14 yes

The program listing to sample these varlables and record those which exceed
the established thresholds is given below. .

ADCV :

BUFR :
DGIN :
‘QUNT :
FORM:

FORM:
FORM:

FORM:
FORM:

[
3

TO(0), T1(1), T2(2) T3(3), T4(4), T5(5), PO(6),
P1(7), P2(10), P3(11), P4(12), P5(13), S0(14), S1(15),
S2(16), S3(17), S4(20), S5(21)

V1, C1, R1, V2, C2, R2, V3,C3, R3

L1(4, L2(4, SP(4, HEAD 14

62

1, TO T1, T2, 13, T4, T5, PO, P1, P2, P3/

P4 P5, SO Sl S2, S3, S4, S5
2, 70,80 .
3,V1,C1,R1,V2,C2 R2V3/
C3,R3 :

4, T0, PO, SO

5, L1, L2, SP, HEAD, CLOK
<5, DCTP, 22>

- QUTP(1, DCTP); OUTP(2, PLDT); OUTP(3, TYPE); OUTP(4, PNCH)

IFEQ (V1 + C2), 3; GOTO 1
IFEQ (V2 4 C2), 2; GOTO 1
IFEQ (V3 + C3), 1; GOTO 1
IFLS R1, 12; IFLS R2, 12; IFLS R3, 12;.GOTO 2

49

1 : OUTP (3, TYPE)

2 : IFLS (TO-@T0), 12; IFLS (PO~@PO0), 12; IFLS (SO—-@S0), 5;’
IFLS (T1-@T1), 7; IFLS (P1-@P1), 12; IFLS (S1-@S1), 5;
IFLS (T2-@T2), 5; IFLS (P2-@P2), 2; IFLS (52-@S2), 4;
IFLS (T3-@T3), 3; IFLS (P3-@P3), 6; IFLS(S3-@S3), 3,
IFLS (T4-@T4), 2; IFLS (P4-@P4), 4; IFLS (S4-@S4), 2;’
IFLS (T5-@T5), 2; IFLS (P5-@P5), 2; IFLS (S5-@S5), 1.’

TELETYPE
33 ASR

PAPER TAPE
PUNCH
758

5557552

GOTO 2
OUTP(1, DCTP); OUTP(2, PLDT); OUTP(4, PNCH); GOTO 3
]
END
MOORED CURRENT SMIP'S INSTRUMENTATION
METER STRING 1l A lI
,__. SER";J:F‘E‘:‘LLEL PARALLEL BUFFERS
{BUFR) (DGIN)
PDP-8 COMPUTER
\388 PARALLEL
apcv
100 CPS
cLocx
{ADCV) {cLoK)

139 MULTIPLEXER
CONTROL

T

A
THERMISTOR CHAIN

Figure 5. Equipment Configuration for Problem 2

DECTAPE

X-Y
PLOTTER

PARALLEL BUFFERS

“..Y.._l

OUTPUT CONTROL SIGNALS

50

A BASIC PROGRAM FOR PULSE HEIGHT ANALYSIS

The problem of pulse height analysis is basic to the physicist. With this
example, we will demonstrate the computer’s ability to rapidly sense and
analyze large numbers of events in real time. In this example, the pulses to
be analyzed are generated by a charged-particle or gamma-ray detector that
produces a stream of pulses proportional to the energies of the particles in-
tercepted by the detector. If we write a computer program to sort and count
the resulting pulses according to height, and then display the result, we will
obtain the radioactive spectrum of the source, as shown in figure 6. '

Figure 6. An Oscilloscope Phbtograph that Shows the Number of Nuclear
Particles as a Function of Energy. ' .

The first step in settin®t up the experiment is to construct a basic algorithm -
for the required computer program (figure 7). The computer continuously
monitors the detector, waiting for output pulses. When a particle is detected,
the program notes the amplitude of the resulting output pulse. The particle is
then counted by incrementing a location in memory used to record the number
of detected particles within that particular energy level. When a statistically
significant number of particles are counted, the résults are displayed on the
oscilloscope. g '

51

WAIT FOR NEXT
DETECTOR PULSE

NOTE HEIGHT OF
DETECTOR PULSE

(1.E., ENERGY OF
INCIDENT PARTICLE) |

3

COUNT PARTICLE
BY INCREMENTING
LOCATION IN MEMORY
CORRESPONDING TO
ENERGY OF
INCIDENT PARTICLE

#

DISPLAY OR PRINT
"RESULTS

Figure 7. Basic‘Algorithm for Pulse Height Analysis Experiment.

The algorithm shown in figure 7 becomes .somewhat unsatisfactory when we
consider that we are requiring computers capable of some 30,000 to 300,000
instructions a minute to wait for a detector that outputs pulses at irregular
intervals. Could not this wasted time be put to better use? Say, to produce a
continuous, dynamic display of the energy spectrum. The answer is yes —
we need only connect the analog-to-digital converter to the computer interrupt
line. Then, whenever a particle is detected, the computer program will be
interrupted. The interruption is a signal to the program that the analog-to-digital
converter should be read and the appropriate memory register incremented.
At all other times, the program generates a continuous display of the radio-
active source’s energy spectrum.

) The computer' responds to the interrupting signal as foltows:
1. the computer concludes the instruction being executed;

2. the location of the instruction that would normally be executed
next by the main program (that is, the contents of the program
counter) is storedéin memory location 0; -

3. the computer takes its next instruction from memory Iocationsl..

52

Thus, the first instruction of any program responding to an interrupt signal
must be placed in location 1. The interrupt-servicing program should also save
the contents of the accumulator and any other active register that is to be
used by the interrupt program before issuing any instructions that alter the
contents of these registers. When the interrupt-servicing program is complete,
the original contents of the accumulator must be restored, and an indirect
jump through location 0 (JMP | 0) must be made to return control to the
main routine at the point where the interruption occurred.

Figure 8 illustrates the equipment needed for the experiment. The particle
detector generates a voltage proportional to the energy of the incident
* particle; this is converted to a binary number by the a_nalog—to-dig\tal con-
verters. Conversely, two digital-to-analog converters are used to drive the X
and Y deflection amplifiers of the display oscilloscope.

5

" FLAG
PDP-8 "
OSCILLOSCOPE
COMPUTER oAy
‘ RESET DATA AND
DUAL . CONTROL
LINES :
PHOTOMULTIPLIER AN%OG]
DETECTORS DIGITAL _ : -
CONVERTER o
: 4096 WORDS
. : OF MEMORY
L] .
12 DATA LINES
DATA AND
CONTROL
LINES
ASR-33
TaPE ' KEY-

PUNCH | BOARD. /
READER | PRINTER

Figure 8. Block Diagram of Pulse Height Analysis Experiment.

CONSTRUCTING THE DETAILED ALGORITHM

The pulse height analysis program, then, will .consist of two separate and
distinct routines: the display routine to provide the dynamic display, and the
interrupt routine, which periodically interrupts the display routine to store
new data. The flow charts for these routines are shown in figures 9 and 10,
respectively. \

53

START

1. TURN OFF INTERRUPT,
CLEAR ACCUMULATOR

2. GET ADDRESS OF FIRST
COUNTER AND DEPOSIT
IN "POINTER" LOCATION
(yLoc)

f CLEAR +

USING POINTER, CLEAR
NEXT REGISTER/COUNTER
IN TABLE OF COUNTERS

INCY

Y

INITIALIZATION
PHASE

YLOC
%“MMAX

(CLEAR NEXT

TABLE LOCATION)

INCREMENT - POINTER
"YLOC" TO POINT TO
NEXT REGISTER /COUNTER

COMPARE
ADDRESS OF CELL
JUST CLEARED (YLOC)
WITH LAST TABLE
ADDRESS
(M%Ax)

YLOC = MMAX
(ALL TABLES CLEARED)

pispLAY
PHASE

<

BEGIN

DISPLAY NEXT

ENERGY RANGE IN
TABLE ON X- AXIS

v

DISPLAY
CORRESPONDING
Y-VALUE USING
YLOC POINTER

INCX ‘

INCREMENT X TO
OBTAIN NEXT

ENERGY LEVEL

COMPE

COMPARE
CURRENT ENERGY
LEVEL (X) WITH MAX
ENERGY LEVEL
{ MEMAX)

X = MEMAX

SET X TO ZERO

.

X ok
MEMAX.

Figure 9. Display Routine.

54

INTERRUPT

0001

t SAVE CONTENTS OF
ACCUMULATOR

2. GET LOCATION OF
FIRST COUNTER (INI)
FROM MEMORY; ADD
PULSE AMPLITUDE TO ‘ .
OBTAIN "POINTER" TO '
DESIRED COUNTER

3. USING POINTER,
RETRIEVE AND

INCREMENT DESIRED
PARTICLE COUNTER

DID
COUNTER -
OVERFLOW
?

YES FUALT EXPERIMENT

COMPLETE

RESET

1. CLEAR ACCUMULATOR

2 RESTORE SAVED CON--
TENTS OF ACCUMULATOR

3. TURN INTERRUPT ON

4 RETURN TO DISPLAY
PROGRAM

Figure 10. Interrupt Routine.

Note that the display program consists of two phases: the -value initiation
phase, and the display phase. In the. initial phase, the table of memory
locations used by the program to count the incident particles is cleared. In
the display phase, the number of particles are displayed on the scope as a
function of energy. '

As a first step in clearing the table of particle-counting registers, we load the
accumulator with the address of the first counter within the table and store
this address in symbolic location YLOC. YLOC can then be used as a “pointer”
to enable clearing of the first counter, as follows: '

CLA /CLEAR AC :

TAD INI /GET ADDRESS OF FIRST COUNTER
DCA YLOC /STORE FOR USE AS POINTER
CLA /CLEAR AC

DCA 1 YLOC /CLEAR COUNTER,

Similarly, by incrementing YLOC, we can clear the next counter in the table,
and so on until all the counters are cleared.

55

The routine for displaying counter contents is equally simple: for each discrete
energy level (X-axis position) the contents of the corresponding counter are
displayed on the Y-axis, proceeding from the lowest selected energy level to
the highest in a continuous, interruptible loop.

The task of the interrupt routine (figure 10) is to count each particle by in-
crementing the appropriate memory register. The simplest way to accomplish
this is'to let the pulse amplitude itself specify the address of the appropriate
memory register. Thus, the address of the first counter (symbolic location
INI) is added to the binary value of the pulse amplitude, and the sum is used
as a pointer to locate and increment the desired register. The interrupt routine
compares the resultant counter contents with an arbitrary maximum (full-
scale) value — in this case, 1023.

The coding of the complete program — interrupt routine and main routine —
is shown in table 6. Labels appended to boxes on the flow charts correspond
to symbolic location names within the program to simplify the task of keying
the flow charts to the program.

TABLE 6. COMPLETE PULSE HEIGHT ANALYSIS PROGRAM

PULSE HEIGHT ANALYSIS PROGRAM

/ RECORDING NUMBER OF PARTICLES (P) AS A FUNCTION OF ENERGY (E).
/PLOTTING NUMBER OF PARTICLES (Y AXIS) VS. ENERGY (X AXIS).

{ DATA INPUT WRITING.

0000 /RESERVED FOR INTERRUPT.
0001 DCA STORE / SAVE ACCUMULATOR.
ADRR /READ ENERGY FROM ADC INTO AC.
TAD INI /OBTAIN P LOCATION BY ADDING.
/ADDRESS OF FIRST COUNTER.
DCA TEMP - /STORE P LOCATION FOR INDIRECT
ADDRESSING. :
ISZ | TEMP
JMP RESET
. HLT
/RESET AND RETURN .
RESET CLA /CLEAR AND
TAD STORE " /RESTORE AC.
ION /TURN ON INTERRUPT.
JMP I O /RETURN TO DISPLAY.
/CLEAR ROUTINE
START, IOF /TURN OFF INTERRUPT.
CLA /CLEAR AC.
TAD INI /GET ADDRESS OF FIRST COUNTER.
DCA YLOC /DEPOSIT FOR INDIRECT ADDRESSING.
/CLEAR REGISTERS
CLEAR CLA /CLEAR AC. '

DCA | YLOC /CLEAR COUNTER
/ADVANCE ADDRESS

INCY TAD YLOC /READ ADDRESS.

IAC / INCREMENT ADDRESS.

DCA YLOC /DEPOSIT ADDRESS FOR NEXT LOOP.
/CHECK FOR COMPLETION AND LOOP OR ADVANCE '
ENDAD TAD YLOC /READ ADDRESS.

56

TAD MMAX

SZA
JMP CLEAR
[ON
/ DISPLAY ROUTINE
BEGIN, CLA
- TAD X
DXL
TAD INI

DCA YLOC

TAD | YLOC
. . Dbys
JADVANCE ADDRESS
INCX - CLA~

TAD X

[AC - -

DCA X
/CHECK FOR FULL SCALE
COMPE TAD X

TAD MEMAX

SZA

JMP BEGIN

DCA X

JMP. BEGIN

~ /LIST OF CONSTANTS

STORE, 0
INI 1000
TEMP, 0
MFS, —1023
YLOC, 0
MMAX, —2024
X, 0
MEMAY, —1024

/SUBTRACT MAXIMUM VALUE OF Y
LOCATION.

/1S IT ZERO?

/IF NO, CLEAR NEXT COUNTER.
/IF YES, TURN ON INTERRUPT.

/CLEAR AC.

" /LOAD AC WITH ENERGY RANGE.

/ DISPLAY ON X AXIS

/COMPUTE Y LOCATION FOR' INDIRECT
ADDRESSING.

/STORE FOR lNDIRECT ADDRESSING.
/READ NUMBER OF PARTICLES.
/DISPLAY ON Y AXIS AND INTENSIFY.

/CLEAR AC.

/ READ ENERGY.
/INCREMENT 'ENERGY.

/ DEPOSIT NEXT ENERGY

/READ NEW ENERGY.
/SUBTRACT E MAXIMUM.

/1S IT ZERO?

/IF NO DISPLAY NEXT POINT.
/IF YES, SET ENERGY =0

/ JUMP TO DISPLAY FIRST POINT

/STORAGE REGISTER FOR AC DURING
/INPUT ROUTINE.

/LOCATION OF INITIAL DATA REGISTER.
/TEMP. STORAGE FOR ADDRESS OF P.

~/MINUS FULL SCALE.

/ TEMP. STORAGE FOR ADDRESS OF Y.

/MINUS (MAXIMUM Y LOCATION —+1)

/X
/MINUS (E MAXIMUM 1)

57

A PROGRAM TO GENERATE AND DISPLAY A
- TIME-INTERVAL HISTOGRAM

The time-interval histogram generated and displayed by a computer has be-
come an important biomedical tool in the analysis of neuroelectric and cardio-
vascular data. The post-stimulus time histogram, for example, is an effective
means of revealing the response patterns elicited by controlled experimental
stimuli. In brief, it provides an estimate of the relative firing rates of a single
unit in successive intervals of time following the presentation of a stimulus.

Another example of the value of the time-interval histogram is in the study of
heart action. From the standpoint of the computer, cardiovascular research has
much in common with neurophysiological research. The basic data is often a
time-voltage function produced by the system under study. Perturbations in the
rhythmic activity of the heart may be detectable, and quantifiable, in distribu-
tions of interbeat intervals derived from the EKG.

Digital has pioneered in the development of computer applications for biomedi-
cal research. The most popular Digital computer for these applications is the
LINC-8, specifically designed for the research laboratory. The LINC-8 combines,
in a single, self-contained system, all the features of the standard PDP-8 com-
puter, plus the unusual man-machine communication capability of the LINC
(Laboratory Instrument Computer). The LINC section includes an oscilloscope
display, analog-to-digital converter, mass storage through LINC-tape, relay
register, and an instruction repertoire that greatly enhances man-machine
communication. The basic LINC computer was developed by the Massachusetts
Institute of Technology, supported by grants from the National Institute of
Health and the National Aeronautics and Space Administration.

The LINC-8 operates in one of two modes. In one mode, it operates as a stan-
dard PDP-8 computer. In the other mode, it operates as a LINC, having certain
special input-output and speed characteristics, but otherwise functionally iden-
tical to the original LINC. In the following discussion, you will be introduced to
some of the basic concepts of programming for the LINC.

LINC MODE PROGRAMMING

As you learned from the previous example of pulse height analysis, the sam-
pling and display of on-line data requires a substantial number of instructions
when a conventional computer such as the PDP-8 is used. The LINC-8 greatly
simplifies such programming tasks. For example, the single instruction
SAM n
will cause analog channel n to be sampled, the voltage to be converted to a
binary number, and deposited in the accumulator. Again, the single instruction
DISn
will cause a spot to be displayed and intensified on the scope. The horizontal

58

coordinate of the spot will be obtained from the nine rightmost bits of the word
at location n, and the vertical coordinate of the spot will be obtained from the
nine rightmost bits of the word in the accumulator. If an “i” bit is included in
the instruction thusly, '

~ DISin

the contents of location n will be incremented by one (“indexed”) before the
spot is brightened. Of course, the indexing will also increase the herizontal co-
ordinate by one. Which suggests a convenient way to get a horizontal trace
across the scope. : :

The following brief program will display a continuous horizontal line through

the middle of the scope (display coordinate = 0) via display channel 0. Memory

addresses and instruction codes are shown both in symbolic code and as
- absolute octal values.

Memory | Memory Contents - _
Address ' | Symbolic Octal Comments
5 o - . 0000 | Horizontal Coordinate location
START — 20 | CLR 0011 | Clear accumulator (Set Vert. Coord. = 0)
21 i'DISi5 0165 | Increment horizontal coordinate, and dis-
. play spot
22 | JMP 20 6020 | Repeat indefinitely to obtain trace.

Now let's try something a trifle more ambitious and practical — say, a dy-
namic display of a voltage waveform hooked up to one of the LINC input chan-
nels. The following program continuously displays the input from channel 12
until the operator strikes a key.

59

Memory Memory Content
Address | Symbolic Octal

Comments

110 0000 | Horizontal Coordinate location

START — 20 | SAM 12 0112 | Sample line 12 (i.e., Vert. Coord. to ac-

cumulator) _
21 | DISi1 0161 | Increment Horiz. Coord. and display spot
22 | KST 0415 | Skip next instruction if key has been struck
23| JMP20 - 6020 | Key not struck; continue sampling and
displaying
24 | HLT 0000 | Key struck; halt-

Thus, the'LINC~8 is in very close touch with the “outside world” through its
very communicative instructions, which sample input channels, display data,
and respond readily to operator commands, through console switches and
other controls. LINC programming is somewhat more complex than other
12-bit computers since LINC addressing and control schemes are so much
more flexible and extensive. However, the versatility and power of the LINC

language should prove to be an ample reward for the additional investment of
learning time.

Before describing the time-interval histogram program, it will be necessary to
discuss in detail certain LINC instructions. In particular, we will define the
formation of the “effective addtess,” and the function of the SET instruction.

The “effective address” of a memory reference instruction is defined as the
actual address referred to by the instruction after all address modification
and indirect addressing operations have been completed. (Recall that these
operations were discussed earlier in the primer.) The LINC uses the i bit in
conjunction with location 1-17, of memory to specify effective addresses for
so-called “index class” memory reference instructions. A typical index class

memory reference instruction, “load the accumulator” (LDA) has the general
form

LDAiB

where i = 1 or 0, and B equals value between 0 and 17. If either i or B is to be
set to zero, it is simply omitted from the symbolic code. If B is to be non-zero,
the value must be speciified. According to the values assumed by i and B, LINC

60

assigns the effective address of an index class memory reference instruction
as follows: '

i B . . -

(Bit 7) (Bits 8-11) _Locatlon of Effectfve Address

0 0 The contents of bits 1-11 of the register immedi-

' 5 ately following the instruction. :

1 0 - The address of the registerj immediately following .
the instruction. (The operand itself appears in this
register.) . ST : ’

0 1-17, The contents of bits 1-11 of register B

1 1-17, Th»e contents, incremented by 1, of bits 1-11 of
register B~

The SET _instruction as the form
SETia | ”
c .

and always occupies two consecutive memory locations. As LINC fetches se-
quential memory instructions, it always skips the second location. If the i bit of
the SET instruction equals zero, LINC replaces the contents of the register at
memory location “a” with the contents of the register at memory location C.
If the i bit of the SET instruction equals one, LINC replaces the contents of the
register at memory location “a” with the value C.

We will build our time interval histogram program out of a series of sub-
routines, each of these subroutines does a specific function (accept data, dis-
play a point in a histogram, clear storage areas to start a new histogram, etc.).
It is important therefore to understand how these - subroutines can be called
into play and how they can return control to the correct place in the main pro-
gram. This is accomplished through the JMP instruction. Whenever JMP in-
struction is executed, a JMP P -1 (where P is contents of the program count-
er) is inserted into location O. Thus, when we execute JMP 2C, a JMP (P + 1)
or JMP 3H is inserted into locatioh ¢, to exit from the initialization subroutine,
then a JMP ¢ is executed and control reverts to location 0. Since location O con-
tains a JMP 3H instruction, the program then goes to symbolic location 3H in
the main program. Note that when the initialization subroutine is entered from -
the display subroutine (after results of all bins have been displayed), the JMP
0 in this case reverts to location 4H + 1 since the last JMP executed was from
4H. In a similar manner, all JMP O instructions in this sample program pro-
vide a return to the main program.

61

THE TIME-INTERVAL HISTOGRAM PROGRAM

This program shows you how to use the LINC to accumulate a frequency dis-
tribution of time between events (the occurrence of a pulse) and to continuously
display the distribution as an interval histogram. When an acceptable sample
is detected, LINC records the event by incrementing a location in memory,
called a “bin”, that records the number of samples within the corresponding
“class interval” or frequency range. Five hundred and twelve bins are used to
“accumulate the occurrence of up to 512 separate time intervals. Suppose
that we have a histogram with four horizontal graduates or bins of l-milli-
second intervals as shown in figure 11. -

‘—-—'l’ﬁ' ——— img ————P————— ims imsg ————pn

BIN 1 BIN 2 BIN 3 BIN 4

Figure 11, Four 1-Millisecond Interval Bins

When recording the time interval of pulses (events), for all pulse intervals that
occur between 0 and 1 milliseconds, a one will be added to bin 1; for intervals
of 1-to 2 milliseconds, a one will be added to bin 2, etc. If a pulse train
(figure 12) were monitored over a period of time, a histogram of the pulse

f—

train would be as shown in figure 13.
35 >je 3\2——4 ’

JEHUNE I Hus

ms

Figure 12. Pulse Train

7 7
VI

BIN 1 BIN 2 BIN 3 BIN 4

Figure 13. Pulse Train Histogram

62

Since there are two 0.9-millisecond pulse intervals that fall within the O to 1
ms interval, a vertical bar length of two is recorded for bin 1. Similarly, vertical
bar lengths of 1, 2, and 1 are recorded for bins 2 through 4, respectively.
+The foregoing histogram provides a foundation for further perusal of the
histogram generating program developed for the LINC-8 programming example.
We will retain the bin widths of 1 ms for this example.

° _

We will also use external clock circuitry (external to the LINC-8 equipment, but
connected to the LINC-8 as an input/output device) to detect the event and
record the time interval. The clock is a digital counter with input detection cir-
cuits. An input event stops the digital counter and sets a flip-flop to “flag” the -
occurrence of an event. The program tests for the occurrence of the event by
using a “Skip on External Level” instruction to sense the flag. The program
reads the digital counter into the accumulator and resets the flip-flop and the
digital counter to 0. The digital counter then starts counting for the next event.

Now let us examine the data collection subroutine which will classify the
events into bins of 1 ms intervals. Our histogram will contain 512 bins,
hence a classification range of 0-511 ms. (Overflows stop the counter so that
all intervals greater than 511 ms would increment bin 512 by 1 to indicate
the overflow condition.) We will refer to both the flow diagram (figure 14)
and subroutine listing. for the explanation of the data collection subroutine.

~ __ENTRY POINT FOR
DATA COLLECTION ROUTINE

" HAS NO
EVENT
OCCURRED

YES

1

-READ AND -
RESET CLOCK

1

SET UP LOCATION
TO BE INCREMENTED
BY ADDING CLOCK
READING (R) TO
400

INCREMENT
LOCATION
400 +R

- Figure 14. Data Collection ASubroUtine

63

DATA COLLECTION SUBROUTINE

#1A SXL O /1S THERE AN EVENT
JMP O /NO; EXIT
OPR O /YES; READ AND RESET CLOCK

ADD 1C /SET UP ADDRESS FOR INCREMENTING
STC 1B . /TEMPORARILY STORE-ADDRESS OF BIN TOWBE

R - INCREMENTED
LDA i /ONE TO ACCUMULATOR
1
, ADM : /INCREMENT APPROPRIATE BIN
#1B O / ADDRESS OF BIN TO BE INCREMENTED STORED HERE
JMP O {EXIT

The external clock is connected to the LINC-8 computer via the /0 bus and
the clock flip-flop is connected to LINC external line ¢. Thus, the first in-
struction in the data collection subroutine, (SXL ¢) senses line ¢ and skips
the next instruction if an event occurred; if the event did not occur, the
next instruction JMP ¢ is executed causing control to exit from this sub-
routine. Assuming an event occurred, we go to the OPR ¢* instruction which
reads the external glock and resets the clock so that it starts recording time
for the next interval. After the execution of OPR ¢ the clock reading is held in
the LINC accumulator. The next instruction, ADD 1C, adds 400 to the ac-
cumulator which has the clock reading and then stores the results into
symbolic location 1B. Let us digress a moment to see the significance of this.

BIN 1 OR BIN 2 OR BIN 3 OR BIN 512 OR
LOCATION 400 LOCATION 401 LOCATION 402 LOCATION 1377

L3

* The OPR instruction is executed by the PDP-8 section of the LINC-8 com-
puter; when the LINC detects the OPR instruction, it alerts the PDP-8 com-
puter via computer interrupt. The PDP-8 executes the instruction through a
PDP-8 subroutine that reads the clock, resets the clock and flag, and transfers
the clock reading to the LINC accumulator. To the LINC programmer, it
appears that the LINC executed the instruction.

64

If we let location 400 be the address of bin 1, and 401 bin 2, etc., then by
adding 400 to the clock reading and storing the results into symbolic location
#1B, location #1B contains the address. of the appropriate bin.

Going back to the subroutine, the next instructions add one to the addressed.bin
and control exists. Hence, if the time-interval read from the clock was 2.1
ms, then location #1B would address 402 or bin 3, and bin 3 is incremented
by one. Note that each entry into the data collection subroutine processes
only one event (if it occurs). If we connect the subroutines so that we con-
tinually loop through- the data collection subroutine, we will accumulate data
counts for those bins corresponding to the number of pulse interval detections.
For example, over a period of time, 5 events of 3.5 ms were detected, then
bih 4 (location 405), which holds the 3-4 ms intervals, contains a 5.

Suppose we let the data collection subroutine collect data over a period of
time and then in some manner terminate the subroutine. We, in effect, have
our histogram stored in locations 400-1377,s. Now, we want to display our histo-
gram. The display subroutine will accomplish this.

Let us first examine the display . initialization subroutirie (Figure 15) which
sets up the display subroutine. The SET i 1 and 400 instruction combination
sets index register 1 to a value of 400. Similarly, index register 2 is set to O
so that the histogram display starts ‘at the left side of the CRT at a horizontal
coordinate of 000. The LDA 1 instruction loads the accumulator with the con-
tent of memory location 400 which contains the count of bin 1 (the height
of the bar to be displayed). To:this height we add —377, so that the vertical
display will start at the bottom of the CRT. The height is then stored in
symbolic location 2B. C .

65

- _ENTER
DISPLAY SUBROUTINE
\

DISPLAY POINT
IN HISTOGRAM

SUBTRACT 4

FROM VERT

COORDINATE

IS VERT
COORDINATE
FOR PRESENT
POINT BELOW
LOW END
OF DISPLAY

DISPLAY
fSUBROUTINE

YES

INCREMENT
BIN POINTER
TO DISPLAY .
NEXT BIN

HAVE ALL NO

BINS BEEN

DISPLAYED J
YES
_____ ENTER

! INITIALIZATION ROUTINE

INITIALIZE N
BIN POINTER
(SET INDEX

12377)

SET BIN DISPLAY
COUNTER = -1000 INITIALIZATION

" (512 DECIMAL) SUBROUTINE

SET UP HORIZ

DISPLAY COORDINATE

TO START AT
FIRST BIN

'Figure 15.; Display and Display Initialization Subroutines

66

POINT DISPLAY OF HISTOGRAM SUBROUTINE

- 2A LDA /VERTICAL COUNT TO ACCUMULATOR
2B
. DIS3 / GENERATE DISPLAY _
ADA i /SUBTRACT 4 FROM ACCUMULATOR
—4
STA /STORE VERTICAL COORDINATE FOR NEXT DISPLAY
2B :
ADA i . /ACCUMULATOR WILL BE NEGATIVE IF NEXT DIS-
377 PLAY IS BELOW BOTTOM EDGE OF SCOPE
APO i /SKIP IF ACCUMULATOR NEGATIVE POINT IS BE-
LOW BOTTOM EDGE OF SCOPE
JMP O JNO; EXIT _
LDAIi 1l - /LOAD COUNT OF VERTICAL COORDINATE FOR
NEXT BIN -
: -STAi /AND STORE IN 2B
2B+~ 0000 '
' - CLR /CLEAR ACCUMULATOR
XSKi3"- - /MOVE HORIZONTAL COORDINATE-
XSKiZ2 /HAVE ALL BINS. BEEN DISPLAYED? °
JMP O /NO; EXIT .
Display Initialization Subroutine _
2C SETil /SET INITIAL TABLE ADDRESS
1C 400 /DATA BEGINS IN 400
SETi2 /SET COUNTER FOR 512 BINS
—1000
LDA 1 /LOAD COUNT FOR FIRST BIN
ADA i /BIN COUNTS DISPLAYED FROM BOTTOM OF SCOPE
—377 - ' ‘
STC 2B /LOAD VERTICAL COORDINATE
SETi3 /SET HORIZONTAL COORDINATE
0 . :
JMPO JEXIT

" The display subroutine has been set up by the display initialization subroutine
so that it starts with bin 1 or location 400. Upon entry ihto the display sub-
routine at symbolic location #2A, we load the accumulator with the vertical
coordinate of the first bin. The DIS 3 instruction is issued to generate a display;
the DIS 3 instruction takes the vertical coordinate from the accumulator and
horizontal coordinate from index register 3 which was initially set to equal O,
thus an intensified spot appears at a CRT horizontal coordinate of 000 with the
vertical coordinate as specified by the content of bin 1.

Next, we subtract 4 from the vertical coordinate. This causes the display sub-
routine to skip 4 vertical CRT coordinate positions between points in the verti-
cal bar for each entry into the subroutine. This reduces the overall display pro-
gram time required to display a complete histogram. This is not detrimental to
the display since the bar appears to be continuous.

It should be noted that since the maximum vertical coordinate is 4377 and the
vertical coordinates of the histogram are obtained by incrementing a memory
location, if the data collection subroutine obtains a count in excess of 777, for
any bin, the display will show a full length line-independent of how much in
excess the count in that bin was.

67

We next test to see if the complete bar of the histogram has been displayed.
This is accomplished by adding 377 to the vertical coprdinates. If. the vertical
coordinate is in the interval —377 to 377, a negative number results from the
addition (i.e., if the vertical coordinate is below the bottom line, the result of
the addition is negative). Therefore the APO i senses for a positive accumulator;
if positive, we exit from the subroutine and re-enter later to complete the
present vertical bar. If negative, we have completed the vertical bar and must
go to the next bin to obtain the vertical coordinate of that bin. This is accom-
plished by the LDA i 1 which indexes (since i= 1) location 1 to a value of 401
(the second bin) and then loads the accumulator with the content of 401, the
vertical coordinate of the second bin. This coordinate is stored in location #2B
which is used by display subroutine to obtain the vertical coordinate. We must
now increment the horizontal display coordinate; this is accomplished by the
XSK i 3 which increments location 3 (the horizontal coordinate). To test for the
end of the histogram, the routine executes an XSK i 2 which adds 1 to location 2,
skips the next instruction if bits 2 thru 11 of location 2 equal 1777,. If all bins
have not been displayed, we will not skip; therefore, we exit. If all bins have
been displayed location 2 (bits 2 thru 11) contains 1777, and we skip the next
instruction and enter the display initialization routine to initialize the display
routine so that we can redisplay the histogram.

We have not discussed the core initialization subroutine (Figure 16); This sub-
routine serves to clear all bins in corememory so that a new histogram may be
accumulated and stored. This is accomplished by setting index register 1
(memory location 1) to 377 and index register 2 to —1000 (the octal number
of bins in the histogram), the accumulator is cleared. The STA i 1 instruction
increments the content of index register 1 (the first increment is to 400, the
start of our histogram), and then stores a.zero into the addressed location.
We loop through this routine until index register 2 contains 1777; we then
return to the main program. '

We next test to see if the complete bar of the histogram has been displayed.
This is accomplished by adding 377 to the vertical coordinates. If the vertical
coordinate is in the interval —377 to 377, a negative number results from the
addition (i.e., if the vertical coordinate is below the bottom line, the result of
the addition is negative). Therefore the APQ i senses for a positive accumulator;
if positive, we exit from the subroutine and re-enter later to complete the
present vertical bar. If negative, we have completed the vertical bar and must
go to the next bin to obtain the vertical coordinate of that bin. This is accom-
plished by the LDA i 1 which indexes (since i = 1) location 1 to a value of 401
(the second bin) and then loads the .accumulator with the content of 401, the
vertical coordinate of the second bin. This coordinate is stored in location #2B
which is used by display subroutine to obtain the vertical coordinate. We must
now increment the horizontal display coordinate; this is accomplished by the
XSK i 3 which increments location 3 (the horizontal coordinate). To test for
the end of the histogram the routine executes an XSK i 2 which adds 1 to loca-
tion 2 skips the next instruction if bits 2 thru 11 of location 2 equal 1777,. If
all bins have not been displayed, we will not skip; therefore, we exit. If all bins"
have been displayed, location 2 (bits 2 thru 11) contains 1777, and we skip the
next instruction and enter the display initialization routine to initialize the dis-
play routine so that we can redisplay the histogram.

We have not discussed the core initialization subroutine (Figure 16); This sub-

routine serves to clear all bins in core memory so that a new histogram may be
accumulated and stored. This is accomplished by setting index register 1

68

(memory location 1) to 377 and index register 2 to —1000. (The octal number
of bins in the histogram). The accumulator is cleared. The STA i 1 instruction
increments the content of index register 1 (the first increment is to 400, the
start of our histogram and then stores a zero into the addressed location. We
ioop through this routine until index register 2 contains 1777; we then return
to the main program.

We have now seen how to accumulate data for the histogram, display the his-
togram, and initialize core storage for the data collection and histogram display.
Now we will combine all these subroutines with a main program which calls for
these routines under manual control of the sense switches. (The sense
switches are front panel controls which the program can sense via the SNS
instruction to change the programming sequence). From Figure 17, we see
that after starting, we enter subroutines that initialize the data collection and
display subroutines. Assuming sense switch 1 is in down position, we loop
through the “accumulate data” and “display” subroutines. This loop permits us
to accumulate data for this histogram, with an apparently concurrent display
of the generated histogram. When enough data has been collected, we can
terminate the data collection by setting sense switch ¢ to the up position. We
can continue displaying the histogram by leaving sense switch 1 in the down
position. When we want to generate a new histogram, we set both sense
switches 0'and 1 to the up position so that we enter 1H to clear out the old his-
togram from core memory and to initialize the display subroutine. We then set
sense switch 1 down and ¢ down so that we loop through the “accumulate
data” subroutine.

CORE INITIALIZATION

SUBROUTINE
L1z SETil ' /INITIALIZE POINTER TO FIRST LOCATION OF
377 ‘HISTOGRAM o '
SETi2 /SET NUMBER OF BINS
—1000 /10005 = 512,50
CLR /CLEAR ACCUMULATOR
STAI 1l /CLEAR NEXT BIN : :
XSKiZ2 ‘ /ADD 1 TO LOCATION 2; SKIP WHEN CONTENTS OF
LOCATION 2 > = 1777, (BITS 2 THROUGH 11)
JMP p-2 /JUMP BACKWARD TWO LOCATIONS (CONTINUE
CLEARING) ‘ o
JMP 2H. /RETURN TO MAIN PROGRAM TO SETUP DISPLAY

COUNTERS AND POINTERS

69

ENTRY FOR
CORE RETRACT

INITIALIZE
BIN POINTER
(SET INDEX
REG 1+377)

INITIALIZE
BIN COUNTER
(SET INDEX
REG2 = -777

CLEAR
NEXT BIN

HAVE ALL

BINS BEEN NO
CLEARED

TEST YR2

YES

Figure 16. Core Initialization Subroutine

70

MAIN PROGRAM — TIME INTERVAL HISTOGRAM

JMP

JMP
JMP
JMP
SNS

JMP

SNS
JMP
JMP

17 /CLEAR TABLES

2C /SET UP COUNTERS AND POINTERS
1A /GET DATA '

2A "~ /DISPLAY ONE DATA POINT

0. /SKIP IF SENSE SWITCH 0 IS UP
3H /GET NEXT POINT

1 /SKIP IF SENSE SWITCH 1 IS UP
4H /STATIC DISPLAY SELECTED

1H /O AND 1 UP; RESTART

START
CLEAR
HISTOGRAM
DATA TABLE
. DISPLAY
INITIALIZE
. SUBROUTINE
3H

ACCUMULATE
DATA

4H

DISPLAY
DATA)

COLLECT

DATA?
(SENSE SWITCH
& DOWN)

CLEAR
DATA TABLE?
(SENSE SWITCH
1 DOWN)

Figure 17. Main Program

71

COMPUTER-DIRECTED PROCESS
CONTROL TECHNIQUES

Among the most rapidly developing applications of digital computers are those
requiring automatic control of machines and processes. In industrial process
control, for example, digital computers are displacing conventional analog
controliers and other components of conventional control loops with ever--
increasing frequency. "

Before we explore the techniques of computer-directed process control, let's
examine the characteristics of the conventional process control loop. Figure 18
shows such a system for controlling a single process-variable. The measured
process-variable signal (pressure, temperature, flow, etc.) is compared to the
value entered by the operator to determine the magnitude and direction of
the error. The error signal then serves as input to a small, special-purpose
analog device or controller. The controller calculates the valve position that
will reduce the steady-state error to zero.

The equations solved by the controller will usually be one of the following
forms: :

Valve position = Ko + Kie (proportional control P)

t

Valve position = Ko -+ Kie + Kzf edt {proportional integral control PD
0 .

. t :
Valve position = Kg + Kie + Kz‘[edt 4 K3 (de/dt} (proportional derivative control PID)
0 .

Where K, = initial valve position
K, = proportional-term adjustment
K2 = integral term adjustment
Ks = derivative term .adjustment

e = error (i.e., measured variable — set point)

72

CONTROL

VALVE
TRANSDUCER

GENERATE

CONTROL .
SIGNAL _ @ —> FLOW

COMPUTE ‘ b
valve | MEASURE

POSITION

OPERATOR SET CALCULATE LIMIT
INPUT] POINT > “ErrOR [CHECK

Figure 18. Single Process-Variable System

The adjustment terms (Ko, K,, K,, and K;) permit adaptation of the control
loop to a broad range of processes having different control characteristics.
By varying the adjustment terms, the controller can be “tuned” to the process
characteristics. Since each controller solves only a single loop equation, large
conventional process control systems require a correspondingly large number
of controllers. The control engineer must choose the equation, and thus the
controller, which best fits the process. Once an analog controller has been
installed, an equipment change is required if process characteristics change
significantly. ’

Now let us examine a process control.system directed by a digital computer
such as the PDP-8 (figure 19). In this system, the control loop variables are
applied to a single multiplexer, permitting the computer to monitor all variables
within the system on a time-shared basis. The control loop algorithms are
solved by computer subroutines instead of analog controllers. The subroutines
compute the required error signals, which are converted to analog voltage
swings and multiplexed to the appropriate valve-positioning device. o

You can readily see some of the advantages of digital computer control over
the conventional analog controller: to change the control algorithm, you have
only to change parameters within the computer program; a costly and time-
consuming redesign of the equipment is not required. To increase the num-
ber of control loops, you need add only a transducer and actuator or control
valve for each additional loop. Addition of such features as limit checking of
valve positioning to prevent damage can easily be effected, since the program
can be written to clamp the error signal to specified limits before sending it
the valve positioning device. Changes of tuning adjustments, alarm limits,
and set points can easily be accomplished with conventional computer input
devices such as typewriters. In most cases, however, these inputs will be
channeled through a specially designed operator console.

73

NORMAL) AZD . POINTS
PDP-8 g f— i MULTIPLEXER, BEING
1/0 o CONVERTER | ~ MONITORED

>

OUTPUT . VALVE
DRIVER [PMULTIPLEXER POSITIONING

— D/A [——

PDP-8
COMPUTER

OPERATOR
CONSOLE

OUTPUT
TYPEWRITER

Figure 19. Computer-Dirécted System

Although digital computers have been in use in process control for over a
decade, their inclusion as the computational element in the control loop (direct
digital control) is a comparatively recent phenomenon. The early computers in
process applications operated at a speed of about one thousand operations
per second. Computers of this speed are presently guiding the operations of
chemical plants and refineries, starting up power plants, and replacing con-
ventional controls in case of failures. These machines made no attempt to
compete with standard controls; the amount of computer time required would
have produced too severe a drain on the computational capacity of the system.
These systems justified their existence in process control. by performing func-
tions of which standard analog controls were incapable.

Today, computers such as the PDP-8 operate at speeds which are more than
sufficient to provide direct digital control for every loop in a typical process
control system. Moreover, as the speed has increased the price of com-
puters has decreased, so that today a redundant two-computer PDP-8 system
costs about the same as an earlier single-computer system.

A PROCESS CONTROL SYSTEM USING
DIRECT DIGITAL CONTROL

To achieve direct digital control of all loops within a process system such as
the oné shown in figure 19, we require an “executive” program which will
sequentially scan or monitor the field points (measured variables). Let's
examine, to begin with, the over-simplified executive control program of figure
20. Here, a program called the level executor supervises the allocation of
processing time to the various programs and subroutines that scan the mea-
sured variables, effect the required control loop computations, service operator
requests, and output timely messages to assist him in his control decisions.
Transfer of control between major system programs is accomplished as
follows. A program sets a request for entry into another program, then trans-
fers control to the level executor. The level executor either grants the transfer

74

request immediately, or places it in a “queue” for later servicing, depending
upon the relative priorities of the program in progress and the requested
program.

Typically, a real-time clock is used to initiate the scanning of the measured
variables, or “field points.” The interrupt handler program services the real-
time clock interrupt by requesting entry into the scan initiation and multi-
plexing (SCAN) level program. SCAN directs the hardware multiplexer to start
multiplexing the field points.

When the multiplexer has obtained the field point reading, it generates an
interrupt to- reenter SCAN. When reentered, SCAN linearizes the field point
reading. If the point is outside specified limits, SCAN requests entry into the
message compiler and output program to output the alarm message to the
control process operator. SCAN then requests entry into the algorithm processor
(ALGO), and initiates multiplexing of the next field point. Using the previously.
acquired point reading, ALGO computes the error signal and requests entry
into the Output Driver program to provide the output to the processing system.

The operator console handler enables the operator to change parameters for
control computations and field points, such as set points and alarm limits.

SCAN INITIATION
AND MULTIPLEXING

1 ALARM PROCESSOR
: AND ALGORITHM
SEQUENCER

INTERRUPT LEVEL MESSAGE COMPILER
HANDLER EXECUTOR - AND OUTPUT

OPERATOR CONSOLE
PROCESSOR

OUTPUT DRIVER

——— TIME LOOP

5656 6 6

Figure 20. Process Control Software System

it is useful to divide the several system programs into four priority levels, as
follows. To the first (highest) priority level, we assign the programs that
perform the principal functions of the conventional analog controller; i.e.,
field point scanning and error signal output. To the second priority level, we
assign such functions as error signal computation. The lower two priority
levels perform such functions as message output and servicing operator re--
quests. Processing time for lower level programs is normally allocated during
“wait” - periods, as, for example, when the program is waiting for the multi-
plexer to return the measured variable.

75

TIMING THE POINT-SCANNING PROCESS

One of the principal differences between direct digital control and analog
control is that the analog controller continuously monitors the process-variable,
while in direct digital control systems, the process-variable is monitored peri-
odically. Thus, the control engineer is required to determine how frequently
the control loop should be monitored. When this parameter has been es-
tablished, it is used to set the real-time clock, which periodically interrupts
the computer and initiates a timing program. :

The timing program initiates the scanning of all field points through a
sequencing program (SEQ). The timing program also schedules execution of
the other time-based level programs, as shown in figure 21. Note that since
the timing program is initiated periodically, it is a simple matter to implement
a time-of-day clock. The time-of-day clock may be used for logging and data
collecting operations. For example, if an alarm condition occurs, the alarm
message generated on the output typewriter can log the time of occurrence
by referencing the time-of-day clock.

T™R
(ENTER TIMER)

" YES mmAqu SEQ AND
(' ™ME For seq)—n REQUEST ENTRY

“TIME FoR YES REQUEST ENTRY
CONSOLE FUNCTION consor s oRIVER
e .
4
TIME FOR YES REQUST ENTRY
FUNCTION (x)¥% INTO FUNCTION (X)%*
e
Y YES | INCREMENT MINUTE
L COUNTER AND RESET
~(10) SECOND COUNTER
e
4
WINUTE YES INCREMENT HOUR
COUNTER = 59 COUNTER AND RESET
{10) MINUTE COUNTER
e

% FUNCTION (X) CAN BE
ANY TIME-BASED
LEVEL PROGRAM

Figure 21. The Timing Program

76

Sequencing and Multiplexing the Point-Scanning Process

The point-scanning process (flgure 22) is initiated by a sequencing program
(SEQ). SEQ maintains a list or table of all points to be scanned. The table
describes such parameters as its point number or multiplexer address. To
sequentially select field points for multiplexing, a pointer cell is used to
indicate the present field point being processed. The pointer is initialized to
point to the first word in the list of field points. The table is completely
scanned each period of the real-time clock. SEQ obtains the multlplexer ad-
dress of the point being processed, inserts the address into a location or “slot”
* within the Multiplexer program (MPXR), then increments the pointer so that
on the next entry into SEQ, the next pointer will be processed. SEQ then re-

quests entry into MPXR to obtain the measurement.
4

. SEQ

(ENTER SEQ)
DEPOSIT MPLXR POINT]

ADDRESS INTO MPXR
(582»'1 c%)brP'T_LEE'I'ED MPXR SLOT YES SLOT AND REQUEST
~ FLAG SET) AVAILABLE ENTRY INTO MPXR

WITH A RETURN
REQUEST TO ALGO

h

INCREMENT SCAN SCAN POINTER
POINT POINT POINTS TO LAST SET SCAN

TO NEXT POINT POINT. IN COMPLETED FLAG
IN SCAN LIST SCAN LIST .

Figure 22. Point—Scanniné Process

The multiplexer program sets up the hardware multiplexer to obtain the
measurement, then transfers control to the level executor. When the multi-
plexer hardware has obtained the measurement,an interrupt is generated, and
the measurement is set into MPXR. MPXR then recalls the program that re-
quested the measurement. However, when SEQ is the requestmg program,
control is transferred to the Algorithm Processor.

77

PROCESSING THE ALGORITHM

The algorithm processor (figure 23) solves the basic proportional, rate, and
reset control equations shown earlier in this discussion.

No [REQUEST ENTRY INTO]
MESSAGE

IS MEASUREMENT GENERATOR
 WITHIN UMITS TO GENERATE
MESSAGE

ves | CALCULATE ERROR
DOES POINT ie. E=SP-M
CONTROL A LOOP (SET POINT-
- MEASUREMENT
NO ‘
CALCULATE P TERM
Ky de

IS THIS PI
OR PID
CONTROL
°

CALCULATE Ko At o

IS

THIS PID CALCULATE

CONTROL X3 aae
? At

STORE AP
AND REQUEST ENTRY
INTO OUTPUT DRIVER

-

y

REQUEST ENTRY
INTO SEQ TO
INITIATE SCAN

OF NEXT POINT

Figure 23. Algorithm Processor

78

Moreover, feed-forward and combination systems can be used more widely,
since the only elements which must be added to the system are transducers
and mathematical expressions. In brief, computer control of processes enables
you fo engineer the control system, rather than requiring you to select an
_ alternative solution from among the available analog devices.

However, we cannot solve the equations for the proportional, proportional in-
tegral, and proportional derivative (P, Pl, and PID) algorithms ‘in as straight-
forward a manner as the analog controller, since the computer can only add
or subtract. Since the terms of the P and Pl equations also appear in the PID
algorithm, we will show the implementation of the PID algorithm for direct
digital control. The PID algorithm is defined as:

e
- d
P=K1e+K2f dt+K3£ , m

where P represents the steady state value position arid e the steady state error,
which is the difference between set point and measurement.

Since we monitor the field points at discrete intervals of time (Ay), we can
represent the PIP equation as follows: -
(&)
i = Kj —-+ Koe + K3A at | @

At At

Where At is the sampling interval and A. is the difference between e signals
from present sampling and the previous sampling period.

Equation (2) cah be reduced to:

Ap = K1Ae + K2 At e + A(Ae) (3}

where A (Ae) is the second order change in error signal, i.e.

AlAe) = [(Ae)y — (Aeln—1

Equation (3) represents PID equation sin ‘a_ form that can be computed by

the program. Note that the K, At, and—A—at- terms can be considered constants
since we know the sampling interval At. From equation (3) the P.and PI

equations are as follows:

P algorithm = AP = K_]Ae (4}

Pl algorithm = AP = Kj Ae + K2 Ate (5)

Now we have the P, Pl, and PID equations in forms that are readily resolved
by the computer. Furthermore, since the terms are common for all three, we
can use one routine (figure 27) to calculate the algorithms for all- control
loops in the system. The constants for the control loops are stored in each

79

«control loops respective table entries.

As shown in figure 27, the P algorithm is calculated first since its term ap-
pears in all three algorithms; hence, if the loop requires Pl control, the K,ae
term is computed an added to the K,Ate term; if the control loop requires P

K
control, the KyAte and—ﬁ— A®® calculations are by passed.

80

PART Ill: PDP8/I USERS HANDBOOK .

81

Typical PDP-8/1 in Table Top and Rack Mounted Configurations

Figure 1.

82

CHAPTER 1
SYSTEM INTRODUCTION

The Digital Equipment Corporation Programmed Data Processor-8/1 (PDP-8/1)
is a small-scale general-purpose computer. TTL monolithic integrated circuit
modules are used throughout thereby providing efficient packaging, high re-
liability and noise immunity. The PDP-8/1 is a one-address, fixed word length,
parallel computer using 12 bit, two's complement arithmetic. Cycle time of
the 4096-word random-address magrietic-core memory is 1.5 microseconds.
Standard features of the system include indirect addressing and facilities for
instruction skipping and program interruption as functions of input-output

device conditions. . '

The 1.5-microsecond cycle time of the machine provides a computation
rate of 333,333 additions per second. Addition is performed in 3.0 micro-
seconds (with one number in the accumulator) and subtraction is per-
formed in 6.0 microseconds (with the subtrahend in the accumulator).
Multiplication _is _performed _in approximately 315 microseconds by a
sdbroutine that operates on two signéd 12-bit numbers to produce a 24-bit
product, leaving the 12 most significant bits in the accumulator. Division
of two signed 12-bit numbers is performed in approximately. 444 micro-
seconds by a subroutine that produces a 12-bit quotient in the accumulator
and a 12-bit remainder in core memory. Similar multiplication and division
operations are performied by means of th& optional extended arithmetic
element in approximately 6.0 and 6.5 microseconds, respectively.

Fiexible, high-capacity, input-output capabilities of the computer allow it
to operate a variety of peripheral equipmeft. In addition to standard Tele-
type and perforated tape equipment, the system is capable of operating
in conjunction with a number of optional devices such as high-speed -
perforated tape readers and punches, card equipment, a line printer, analog-
to-digital converters, cathode-ray-tube displays, magnetic drum systems, mag-
netic-tape equipment, and a 32,000 word random access disc file. Equipment
of a special design is easily adapted for connection into the PDP-8/I system.
The computer does not have to be modified when peripheral devices are
added.

The PDP-8/1 is completely self-contained, requiring no special power
sources or environmental conditions. A single source of 115-volt, 60-cycle,
. single-phase power is required to operate the machine. Internal power sup-
plies produce all of the operating voltages required. Modules utilizing TTL
monolithic integrated circuits and built-in provisions for marginal checking
insure reliable operation in ambient temperatures between 32 and 130 degrees
Fahrenheit.

COMPUTER ORGANIZATION

The PDP-8/1 system is organized into a processor, core memory, and input/
output equipment and facilities. All arithmetic, logic, and system control
operations of the standard PDP-8/I are performed by the processor. Per-
manent (longer than one instruction time) local information storage and
retrieval operations are performed by .the core memory. The memory is
continuously cycling, automatically performing a read and write operation
during each computer cycle. Input and output address and data buffering

83

for the core memory is performed by registers of the processor, and opera-
tion of the memory is under control of timing signals produced by the
processor. Due to the close relationship of operations performed by the
processor and the core memory, these two elements are described together
in this chapter of this handbook.

Interface circuits for the processor allow bussed connections to a variety of
peripheral equipment. Each input/output device is responsible for detecting
its own select code and for providing any necessary input or output gating,
Individually programmed data transfers between theé processor and the pe-
ripheral equipment take place through the processor accumulator. Data
transfers can be initiated by peripheral equipment, rather than by the
program, by means of the data break facilities. Standard features of the
PDP-8/1 also allow peripheral equipment to perform certain control functions
such as instruction skipping, and a transfer of program control initiated
by a program interrupt.

Standard peripheral equipment provided with each PDP-8/1 system consists
of a Teletype Model 33 Automatic Send Receive set and a Teletype control.
The Teletype unit is a standard machine operating from serial 11-unit-code
characters at a rate of ten characters per second. The Teletype provides a
means of supplying data to the computer from perforated tape or by means
of a keyboard, and supplies data as an output from the computer in the
form of perforated tape or typed copy. The Teletype control serves as a serial-
to-parallel converter for Teletype inputs to the computer and serves as a
parallel-to-serial converter for computer output signals to the Teletype unit.

The Teletype and all optional input/output equipment are dlscussedm Chapter
7 of this handbook.

SYMBOLS

The following special symbols are used throughout this handbook to explain
the function of equipment and mstructlons

Symbol , Explanation
A=>8B The content of regiSter A is transferred into
register B
0=>A Register A is cleared to contain all binary
o zeros .
Aj Any given bit in A
A5 The content of bit 5 of register A
A5(1) Bit 5 of register A contains a 1
A6 — 11 The content of bits 6 through 11 of register A

A6 — 11 = >B0—5 The content of bits 6 through 11 of register A
is transferred into bits O through 5 of
register B

The content of any core memory location
Inclusive OR

Exclusive OR

AND

Ones complement of the content of A

Pl>4<<

84

MEMORY AND PROCESSOR FUNCTIONS
.Major Registers

To store, retrieve, control, and modify information and to perform the required
logical, arithmetic, and data processing operations, the core memory and the

- processor employ the logic complement shown in Figure 2 and described in
the following paragraphs. ‘

MAJOR
INSTRUCTION
[o || STATE
REGISTER . GENERATOR

SWITCH REGISTER

> :
-ACCUMULATOR TELETYPE
—— , :
3 | MEMORY SWITCH REGISTER
BUFFER .
REGISTER

F——9» PROGRAM COUNTER

3™ MEMORY ADDRESS REGISTER

'

L
o CORE MEMORY
e——

Figure 2 Simplified Block Diagram

ACCUMULATOR (AC)

Arithmetic and logic operations are performed in this 12-bit register. Under
program control the AC can be cleared or complemented, its content can be
rotated right or left with the link. The content of the memory buffer register
can be added to the content of the AC and the result left in the AC. The con-
tent of both of these registers may be combined by the logical operation AND,
the resuit remaining in the AC. The memory buffer register and the AC also
have gates which allow them to be used together as the shift register and .
buffer register of a successive approximation anajog-to-digital converter. The
inclusive OR may be performed between the AC and the switch register on the
operator console and the result left in the AC.

The accumulator also serves as ah input-output register. All programmed in-
formation transfers between core memory and an external device pass through
the accumulator.

85

LINK (L)

This one-bit register is used to extend the arithmetic facilities pf the‘accumu-
lator. It is used as the carry register for two's complement arlthmetlc... 0v¢_ar-
flow into the L from the AC can be checked by the program to greatly simplify
and speed up single and multiple precision arithmetic routines. Under pro-
gram control the link can be cleared and complemented, and it can be rotated
as part of the accumulator.

PROGRAM COUNTER (PC)

The program sequence, that is the order in which instructions are performed,
is determined by the PC. This 12-bit register contains the address of the core
memory location from which the next instruction will be taken. Information
enters the PC from the core memory, via-the memory buffer register, and
from the switch register on the operator console. Information in the PC is
transferred into the memory address register to determine the core memory
address from which each instruction is taken. Incrementation of the content
of the PC establishes the successive core memory locations of ‘the program
and provides skipping of an instruction based upon a programmed test of in-
formation or conditions. ‘

MEMORY ADDRESS REGISTER (MA)

The address in core memory which is currently selected for reading or writing
is contained in this 12-bit register. Therefore, all 4096 words of core memory
can be addressed directly by this register. Data can be set into it from the
memory buffer register, from the program counter, or from an |/O device
using the data break facilities.

SWITCH REGISTER (SR)

Information can be manually set into the switch register for transfer into the
PC as an address by means of the LOAD ADDRESS key, or into the AC as data
to be stored in core memory by means of the DEPOSIT key.

CORE MEMORY

The core memory provides storage for instructions tobe performed and infor-
mation to be processed or distributed. This random address magnetic core
memory holds 4096 12-bit words in the standard PDP-8/1. Optional equip-
ment extends the storage capacity in fields of 4096 words or expands the word
length to 13 bits to provide parity checking. Memory location Qg is used to
store the content of the PC following a program interrupt, and location 1, is
used to store the first instruction to be executed following a program
interrupt. (When a program interrupt occurs, the content of the PC is stored
in location Qg and program control is transferred to location 1 automati-
cally.) Locations 10 through 17; are used for auto-indexing. All other
locations can be used to store instructions or data.

The core memory contains numerous circuits such as read-write switches,
address decoders, inhibit drivers, and sense amplifiers. These circuits
perform the electrical conversions necessary to transfer information into or
out of the core array and perform no arithmetic or logic operations upon
the data. Since their operation is not discernible by the programmer or
operator of the PDP-8/1, these circuits are not described here in detail.

MEMORY BUFFER REGISTER (MB)

All information transfers between the processor registers and the core
memory are temporarily held in the MB. Information can be transferred into
the MB from the accumulator or memory address register. The MB can

86

- be cleared, incremented by one or two, or shifted right. Information can
be set into the MB from an external device during a data break or from
core memory, via the sense amplifiers. Information is read from a memory
location in 0.75 microsecond and rewritten in the same location in another
0.75 microsecond of one 1.5 microsecond memory cycle.

INSTRUCTION REGISTER (IR)

This 3-bit register contains the operation code of the instruction currently be-
ing performed by the machine. The three most significant bits of the current
instruction are loaded into the IR from the memory buffer register during a
Fetch cycle. The conient of the IR is decoded to produce the eight basic in-
structions, and affect the cycles and states entered at each step in the
program. ~

MAJOR STATE GENERATOR

One or more major states are entered serially to execute programmed instruc-
tions or to effect a data break. The major state generator establishes one
- state for each computer timing cycle. The Fetch, Defer, and Execute states
are entered to determine and execute instructions. Entry into these states is
produced as a function of the current instruction and the current state. The
Word Count, Current Address, and Break states are entered during a data
break. The Break state or all. three of these states are entered based upon
request signals received from peripheral 1/0 equipment.

Fetch : _

During this state an instruction is read into the MB from core memory at the
address specified by the content of the PC. The instruction is restored in core
memory and retained in the MB. The operation code of the instruction is
_transferred into the IR to cause enactment, and the content of the PC is in-
‘cremented by one. '

If a multiple-cycle instruction is fetched, the following major state will be
either Defer or Execute. If a one-cycle instruction is fetched, the operations
specified are performed during the last part of the Fetch cycle and the next
state will be another Fetch.

Defer

When a 1 is present in bit 3 of a memory reference instruction, the Defer
state is entered to obtain the full 12-bit address of the operand from the ad-
dress in the current page or page O specified by bits 4 through 11 of the
instruction. The process of address deferring is called indirect addressing
because access to the operand is addressed indirectly, or deferred, to another
memory location.

Execute

This state .is entered for all memory reference instructions except jump. Dur-
ing an AND, two's complement add, or increment and skip if zero instruction, .
the content of the core memory location specified by the address portion of
the instruction is read into the MB and the operation specified by bits 0
through 2 of the instruction is performed. During a deposit and clear accu-
mulator instruction the content of the AC is transferred into the MB and is
stored in core memory at the address specified in the instruction. During a
jump to subroutine instruction this state occurs to write the content of the
PC into the core memory address designated by the instruction and to transfer
+his address into the PC to change program control.

87

Word Count

This state is entered when an external device supplies signals requesting a
data break and specifying that the break should be a 3-cycle break. When this
state occurs, a transfer word count in a core memory location designated by
the device is read into the MB, is incremented by 1, and is rewritten in the
same location. If the word count overflows, indicating that the desired number
of data break transfers will be enacted at completion of the current break, the
computer transmits a signal to the device. The Current Address state imme-
diately follows the Word Count state.

Current Address

As the second cycle of a 3-cycle data break, this cycle establishes the address
for the transfer that takes place in the following cycle (Break state). Normally
the location following the word count is read from core memory into the MB, is
incremented by 1 to establish sequential addresses for the transfers, and is
transferred into the MA to determine the address selected for the next cycle.
When the word count operation is not used, the device supplies an inhibit
y signal to the computer so that the word read during this cycle is not incre-
mented. Transfers occur at sequential addresses due to incrementing during
the Word Count state. During this sequence the word in the MB is rewritten at
the same location and the MB is cleared at the end of the cycle. The Break
state immediately follows the Current Address state.

Break

This state is entered to enact a data transfer between computer core memory
and an external device, either as the only state of a 1-cycle data break or as
the final state of a 3-cycle data break. When a break request signal arrives
and the cycle select signal specifies a 1-cycle break, the computer enters the
Break state at the completion of the current instruction. Information transfers
occur between the external device and a device-specified core memory loca-
tion, through the MB. When this transfer is complete, the program sequence
resumes from the point of the break. The data break does not affect the con-
tent of the AC, L, and PC.

OUTPUT BUS DRIVERS

Output signals from the computer processor are power amplified by output
bus driver modules of the standard PDP-8/1; allowing these signals to drive a
heavy circuit load. :

FUNCTIONAL SUMMARY

Operation of the computer is accomplished on a limited scale by keys on the
operator console. Operation in this manner is limited to address and data .
storage by means of the switch register, core memory data examination, the
normal start/stop/continue control, and the single step or single instruction
operation that allows a program to be monitored visually as a maintenance
operation. Most of these manually initiated operations are performed by exe-
cuting an instructiort in the same manner as by automatic programming, ex-
cept that the gating is performed by special pulses rather than by the normal
clock pulses. In automatic operation, instructions stored in core memory are
loaded into the memory buffer register and executed during one or more com-
puter cycles. Each instruction determines the major control states that must
be entered for its execution. Each control state lasts for one 1.5-microsecond
computer cycle and is divided into distinct time states which can be used to
perform sequential logical operations. Performance of any function of the
computer is controlled by gating of a specific instruction during a specific
major control state and a specific time state.

88

68

wesBeiq %90|g JusWa[3 [0U0J pue Sulw] 1/g8-ddd

€ émSg 4

r;__—_“"——__j

'sj03u00 wesgoid pue s

| g".‘.z"' SHIFTER !
MEMORY | 1
INCREMENT - -
N i o ! socen b
OPTIONAL A INCREMENT
PERIPHERAL CONTROL I I
EQUIPMENT .
USING DATA . |
BREAT |
FaCIITIES
: REGISTER REGISTER i
= - REGISTER | OQUTPUT GATES UTPUT GATES
CLEAR AC W{?.:,’{.‘a‘"‘ L o~ T> Ca < b ﬁ L - J
ALL OPTIONAL | | [o e | [[=] =] | —
PERIPHERAL MEMORY
EQUIPMENT __ vAtamus J — CONTROL
___DATAADDRESS N JE |
OPTIONAL — —=li= % l
PERIPHERAL .
EQUIPMENT mmn Bus —
USING DATA ——
AR -
FACILITIES °‘"‘ o DATA (owB) | b == == :_‘-‘> e
| MEMORY
o AT BT | —
OPTIONAL PERIPHERAL
P T il
PROGRAED TaARS Eng SELECT CODE
TELETYPE —
L RECEIVER —
ASR-33
1/0 TELETYPE TELETYPE |0 -
LEVEL RECEIVER [pansl
B8IOP 1,2 AND 4
PULSES BUSS
LT SwITCH
REGISTER
ALL
OPTIONAL :mmuxs ©”
PERIPHERRL o1 AND 153
INTERRUPT]
REQUEST -
N INTERRUPT TAMING Y0
AND BREAK WEWORY
EQUIRMENT FUNCTIONS
USING DATA { WC OVERTLOW(0) CONTROL AND RUN CONTROL
AREAK [I
l 7
AL . N .
opTioNAL 120 sKip NPT CONTROL Liw | MCCUMLL ATOR AoRess COUNTER SrrEn MEMORY
PERIPHERAL AND SKIP L | recisTen REGSTER 12 REGISTER 12 REGISTER 12 REGISTER
EQUIPMENT
I i .
. ADORESS ACCER
OPTIONAL
PERIPHERAL | __BREAK REQUEST e INSTRUCTION 1AL
EQUIPMENT — o] A3 -
USING THE 3cvcLE *H - GENERATOR i - :
DATA BREAK .
FACILITIES | o BREAX (0}
DATA FLOW

» JRANSFER DIHECTION 18 INTO 'NE FOP-8/1 WHEN -3 VOLTS,

% % DATA BREAK REGUEST IS FOR THREE - CYCLE SREAK WHEN
. GROUNI

D OR OME - CYCLE SREAK WHEN -3 VOLYS

——3» CONTROL AMD TIMING LOGIC FLOW

——» DEC STAMDARD POSITIVE PULSE { -3V TO GROUND)
—&» DEC STANDARD NEGATIVE PULSE (GROUND TO -3V}
—— DEC STANDARD GROUNO LEVEL SIGNAL

—— DEC STANOARD ~3 VOLT LEVEL SIGNAL

‘sjo4ju0d J9)si8al ‘siojesausl Buiwll ol Ajjeolio8eleo padnoi8 ag ued sjusw
-9]9 9sayl ‘sialsi8al Jofew ayy o3 diysuoiejal 119y saiedipul pue sydesdeled

8ulpesdons dyl Ul pPaqliossp SJUBWSI |0JIU0D pue-BugLugJ, 3yl smoys ¢ aindi4

4

‘€ ain814 wJo} 01 Z aing8i4 0} pappe ale 1/8-ddd 2yl Jo sielsi3al Jolew ay; Jo

19 8yl

SIN3IW3IT3 TOULNOD ANV ININWIL

1nJJ

jesado a8y} jo joljuod pue Sujwi

uot

I} 9U} SUIWIRIBP Jey} SIUSWSYS 3

TIMING GENERATORS

Timing pulses used to determine the computer cycle time and used to initiate
sequential time-synchronized gating operations are produced by the timing
signal generator. Timing pulses used during operations resulting from the
use of the keys and switches on the operator console are produced by the spe-
cial pulse generator. Pulses that reset registérs and control circuits during
power turn on and turn off operations are produced by the power clear pulse
generator. Several of these pulses are available to peripheral devices using
programmed or data break information transfers.

Register Controls

The AC, MA, MB and PC each have gated inputs and gated outputs. The gated
input bus of each register is tied to a common register bus that is the out-
put of the major register gating circuit. The data on Q’\e common register bus
originates from the various outputs of each register and can be modified by
the ADDER or SHIFTER in the major register gating circuit. When the con-
‘tents of a register are to be transferred to another register, its contents
are gated by the register output gate control onto the common register bus
and strobed into the appropriate register by the register input control. Data
can therefore be transferred between registers directly by disabling the
ADDER and SHIFTER or can be modified during transfer to provide SHIFT,
CARRY and SKIP operations. Operations such as incrementing a register are
accomplished simply by gating the output of the register onto the register
bus, enabling the ADDER, and strobing the results back into the same
register.

PROGRAM CONTROLS

Circuits are also included in the PDP-8/I that produce the IOP pulses which
initiate operations involved in input-output transfers, determine the advance
of the computer program, and allow peripheral equjpment to cause a
program interrupt of the main computer program to tranSfer program control
to a subroutine which performs some service for the I/O device.

"Interface

The input/output portion of the PDP-8/I is extremely flexible and interfaces
readily with special equipment, especially in real time data processing
and control environments. .

The PDP-8/1 utilizes positive logic within the computer but inverts the
input/output “bus” system into negative logic. This makes the PDP-8/I
compatible with existing peripheral equipment offered by Digital and other
manufacturers. Two options expand the flexibility of the PDP-8/1 for inter-
facing to peripheral equipment, particularly those designed . with positive
logic. An internal option modifies the standard negative (—3v) “bus” system to
a positive (43v) “bus” system. An external option splits the standard “bus”
iinto both a positive (43v) and a negative (—3v) “bus” system. (Information
on this option may be obtained from your nearest DIGITAL EQUIPMENT
CORP. sales office.)

The PDP-8/1 utilizes a “bus” 1/0 system rather than the more conventional
“radial” system. The “bus” system allows a single set of data and control
lines to communicate with all 1/0O devices.The bus simply goes from one
device to the next. No additional connections to the computer are required.
A “radial” system requires that a different set of signals be transmitted to
each device; and thus the computer must be modified when new devices are
added. The PDP-8/1 need not be modified when adding new peripheral de-
vices. _ ‘

90

Data transfers may also be made directly with core memory at a high speed
using the data break facility. This is a completely separate 1/O system from
the one described previously. It is standard equipment in every PDP-8/I and
is ordinarily used with fast 1/O devices such as magnetic drums or tapes.
Transfers through the data break facility are interlaced with the program in
progress. They are initiated by a request from the peripheral device and not
by programmed instruction. Thus, the device may transfer a word with mem-
ory whenever it is ready and does not have to wait for the program to issue
“an ‘instruction. Computation may proceed on an interlaced basis with these
transfers.

Interface signal characteristics are indicated in Chapter 11.

91

CHAPTER 2

STANDARD PDP-8/1 OPERATION

Controls and Indicators

Manual control of the PDP-8/1 is exercised by means of keys and switches on
the operator console. Visual indications of the machine status and the content
of major registers and control flip-flops is also given on this console. Indicator
" lamps light to denote the presence of a binary 1 in specific register bits and
in control flip-flops. The function of these controls and indicators is listed
in Table 1, and their location is shown in Figure 4. The functions of all
controls and indicators of the Model 33 ASR Teletype unit are described in
Table 2, as they apply to operation of the computer. The Teletype console is

shown in Figure 5.

Figure 4.

TABLE 1. OPERATOR

Control or Indicator

PANEL LOCK switch

POWER switch

PDP-8/1 Operator Console

CONSOLE CONTROLS AND INDICATORS
Function

With this key-operated switch turned clockwise,
all keys and switches except the SWITCH REG-
ISTER switches on the operator console are
disabled. In this condition the program can not
be disturbed by inadvertent key operation. The
program can, however, monitor the content of
the SR by execution of the OSR instruction.
With this switch turned counterclockwise, all
operator console keys and switches function
normally. :

In the counterclockwise position this key-oper-
ated switch removes primary power from the
computer, and in the clockwise position it ap-
plies power.

92

TABLE 1. OPERATOR CONSOLE.CONTROLS AND INDICATORS (continued)

Cohtrol or Indicator

Function

START key

LOAD ADDRESS key

DEPOSIT key

EXAMINE key

"CONTINUE key

STOP key

SINGLE STEP
switch

Starts the computer program by turning off the

program interrupt circuits; clearing the AC, L,
MB, and IR; setting the Fetch state, transfer-

ring the content of the PC into the MA; and set-

ting the RUN flip-flop. Therefore, the word

stored at the address curtently held by the PC

is taken as the first instruction.

. Pressing this key sets the content of the SR into

the PC, sets the content of the INST FIELD
switches into the IF, and sets the content of the
DATA FIELD switches into the DF.

Lifting this key sets the content of the SR into
the MB and core memory at the address speci-
fied by the current content of the PC. The con-
tent of the PC is then incremented by one, to
allow storing of information in sequential mem-
ory addresses by repeated operation of the DE-
POSIT key. '

Pressing this key sets the content of core mem-
ory at the address specified by the content of
the PC into the MB. The content of the PC is
then incremented by one to allow examination

- of the content of sequential core memory ad-

dresses by repeated operation of the EXAMINE
key. ' :

‘Pressing this key sets the RUN flip-flop to con-
tinue the program in the state and instruction
designated by the lighted console indicators, at

- the address currently specified by the PC.

Causes the RUN flip-flop to be cleared at the
end of the cycle in progress at the time the key
is pressed. °

The switch is off in the down position. In the
up position the switch causes the RUN flip-flop
to be cleared to disable the timing circuits at
the end of one cycle of operation. Thereafter,
repeated operation of the CONTINUE key steps
the program one cycle at a time so that the
content of registers can be observed in each
state. :

93

TABLE 1. OPERATOR CONSOLE CONTROLS AND INDICATORS (continued)

Control or Indicator

Function

SINGLE INSTRUCTION
switch

SWITCH REGISTER
switches

DATA FIELD indicators
and switches™

INST FIELD

indicators and switches*

PROGRAM COUNTER
indicators

MEMORY ADDRESS
indicators

The switch is off in the down position. In the up
position the switch causes the RUN flip-flop to
be cleared at the end of the next instruction
execution. When the computer is started by
means of the START or CONTINUE key,. this
switch causes the RUN flip-flop to be cleared at
the end of the last cycle of the current instruc-
tion. Therefore, repeated operation of the CON-
TINUE key steps the program one instruction at
atime.

Provide a means of manually setting a 12-bit
word into the machine Switches in the-up posi-
tion; corresponds to binary ones, down to zeros.
The content of this register is loaded into the
PC by the LOAD ADDRESS key or into the MB
and core memory by the DEPOSIT key. The

‘content of the SR can be set into the AC under

program control by means of the OSR instruc-
tion.

The indicators denote the content of the data
field register (DF) and the switches serve as an
extension of the SR to load the DF by means of
the LOAD ADDRESS key. The DF determines
the core memory field of data storage and re-
trieval.

The indicators denote the content of the in-
struction field register (IF) and the switches
serve as an extension of the SR to load the IF
by _means of the LOAD ADDRESS key. The IF
determines the core memory field from which
instructions are to be taken.

Indicate the content of the PC. When the ma-
chine is stopped the content of the PC indicates
the core memory address of the first instruction
to be executed when the START or CONTINUE
key is operated. When the machine is running
the content of the PC indicates the core mem-
ory address of the next instruction.

Indicate the content of the MA. Usually the
content of the MA denotes the core memory ad-
dress of the word currently or previously read or
written. After operation of either the DEPOSIT
or EXAMINE key, the content of the MA indi-
cates the core memory address at which infor-
mation was just written or read.

*Actlvated only on systems containing the Type MCB/I Memory Extensmn

Control option.

94

TABLE 1. OPERATOR CONSOLE CONTROLS AND I_NDlCATORS (éontinued)

Control or Indicator

Function

- MEMORY BUFFER
indicators

ACCUMULATOR indicators
LINK indicator

MULTIPLIER QUOTIENT
indicators*

STEP COUNTER
indicators™®

Instruction indicators
(AND, TAD, 1SZ, DCA,
JMS, JMP, 10T, OPR)

FETCH, EXECUTE DEFER,
WORD COUNT, CURRENT -

ADDRESS, BREAK
indicators

JON indicator

PAUSE indicator

Indicate the content of the MB. Usually the
content of the MB designates the word just read
or written at the core memory address held in
the MA. '

‘Indicates the content of the AC.

Indicates the content of the L.

Indicate the content of the ‘multiplier quotient -

(MQ). ‘The MQ holds the multiplier-at the be-
ginning of a multiplication and holds the least
significant half of the product at the conclusion.
It holds the least significant half of the dividend
at the start of a division and at the end holds
the quotient.

Indicate the contents of the step counter (SC).

“The step counter holds the complement of the

contents of bits 7-11 of the memory location
following the instruction. :

Indicate the decoded output of the IR as. the
instruction currently in progress. :

Indicate the primary control state of the ma-
chine and that the current memory cycle is a
Fetch, Execute, Defer or Break cycle, respec-
tively. Word Count and Current Address indi-
cate the first and second cycles of a Break
cycle, respectively. :

Indicates the 1 status of the INT. ENABLE flip-
flop. When lit, the program in progress can be
interrupted by receipt of a Program Interrupt
Request signal from an 1/O device. :

Indicates the 1 status of the PAUSE flip-flop
when lit. An 10T instruction sets the PAUSE
flip-flop at TP1 time to initiate operation of the
IOP generator and to inhibit advance of the
normal timing generator. When IOP generator
operation is completed (approximately 3.8
microseconds later), a TP4 pulse is generated
and the PAUSE flip-flop is cleared to enable
advance of the timing generator in synchronism
with the basic computer clock.

*Activated only on systems containing the KE-8/I‘ Extended Arithmetic Ele-

ment option.

95

TABLE 1. OPERATOR CONSOLE CONTROLS AND INDICATORS (continued)

'Cbntrol or Indicator

Function

RUN indicator

Indicates the 1 status of the RUN flip-flop.
When lit, the internal timing circuits are en-
abled and the machine performs instructions.

Figure 5. Teletype Model 33 ASR Console

TABLE 2. TELETYPE CONTROLS AND INDICATORS

Control or Indicator

Function

REL. pushbutton

B. SP. pushbutton

OFF and ON pushbuttons

Disengages the tape in the punch to allow tape
removal or tape loading.

Backspaces the tape in the punch by one space,
allowing manual correction or rub out of the
character just punched.

Control use of the tape punch with operation of .
the Teletype keyboard/ printer.

96

Control or Indicator Function

START/STOP/FREE switch Controls use of the tape reader with operation of
' ' - the Teletype. In the lower FREE position the
reader is disengaged and can be loaded or un-
loaded. In the center STOP position the reader
mechanism is engaged but de-energized. In
 the upper START position the reader is engaged
and operated under program control.

- . Keyboard 3 - Provides a means of printing on paper in use'as
a typewriter and punching tape when the punch
ON pushbutton is pressed, and provides a
means of supplying input data to the computer
when the LINE/OFF/LOCAL switch is in the
LINE position. '

LINE/OFF/LOCAL switch Controls application of primary power in the
C . Teletype and controls data connection to the
processor. In the LINE position the Teletype is
.energized and connected as an |/O device of
the computer. In the OFF position the Teletype
is de-energized. In the LOCAL position the Tele-
type is energized for off-line operation, and sig-
nal connections to the processor are broken.
Both line and local use of the Teletype require
‘that the computer be energized through the
POWER switch.

OPERATING PROCEDURES

Many means are available for loading and unloading PDP-8/1 information.
The means used are, of course, dependent upon the form of the information,
time limitations, and the peripheral equipment connected to the computer.
~ The following procedures are basic to any use of the PDP-8/I, and although
they may be used infrequently as the programming and use of the camputer
become more sophisticated, they are valuable in preparing the initial pro-
grams and learning the function of machine input and output transfers.

Manual Data Storage and Modification -

Programs and data can be stored or modified manually by means of the facili-
ties on the operator console. Chief use of manual data storage is made to
load the readin mode leader program into the computer core memory. The
readin mode (RIM) loader is a program used to automatically load programs
into PDP-8/1 from perforated tape in RIM format. This program and the RIM
tape format are described in Appendix 5 and in Digital Program Library de-
scriptions. The RIM program listed in the Appendix can be used as an exer-
cise in manual data storage. To store data manually in the PDP-8/I core
' memory: _ i ' :

1. Turn the PANEL LOCK switch counterclockwisé and turn the POWER
switch clockwise. .

97

2. Set the bit switches of the SWITCH REGISTER (SR) to correspond
with the address bits of the first word to be stored. Press the LOAD AD-
DRESS key and observe that the address set by the SR is held in the PC,
as designated by lighted PROGRAM COUNTER indicators corresponding
to switches in the 1 (up) position and unlighted indicators corresponding
to switches in the O (down) position.

3. Set the SR to correspond with the data or instruction word to be
stored at the address just set into the PC. Lift the DEPOSIT key and ob-
serve that the MB, and hence the core memory, hold the- word set by
the SR.

Also, observe that the PC has been incremented by one so that addi-
tional data can be stored at sequential addresses by repeated SR setting
and DEPOSIT key operation.

To check the content of an address in core memory, set the address into the

PC as in step 2, then press the EXAMINE key. The content of the address is

then designated by the MEMORY BUFFER indicators. The content of the PC

is incremented by one with operation of the EXAMINE key, so the content of

sequential addresses can be examined by repeated operation after the original

(or starting) address is loaded. The content of any address can be modified
by repeating both steps 2 and 3.

Loading Data Under Program Control

Information can be stored or modified in the computer automatically only by
enacting programs previously stored in core memory. For example, having the
RIM loader stored in core memory allows RIM format tapes to be loaded as
follows: '

1. Turn the PANEL LOCK sw:tch counterclockwise and turn the POWER
switch clockwise.

2. Set the Teletype LINE/OFF/LOCAL switch to the LINE position.

3. Load the tape in the Teletype reader by setting the START/STOP/
FREE switch to the FREE position, releasing the cover guard by means of
the latch at the right, loading the tape so that the sprocket wheel
teeth engage the feed holes in the tape, closing the cover guard, and set-
ting the switch to the STOP position. Tape is loaded in the back of the
reader so that it moves toward the front as it is read. Proper positioning
of the tape in the reader finds three bit positions being sensed to the left
of the sprocket wheel and five bit positions being-sensed to the right of
the sprocket wheel. .

4. Load the starting address of the RIM loader program (not the address
of the program to be loaded) into the PC by means of the SR and the
LOAD ADDRESS key.

5. Press the computer START key and set the 3-position Teletype reader
switch to the START position. The tape will be read automatically.

Automatic storing of the binary loader (BIN) program is performed by means
of the RIM loader program as previously described. With the BIN loader

98

stored in core memory, program tapes assembled in the program assembly
language (PAL IlI) binary format can be stored as described in the previous
procedure except that the starting address of the BIN loader (usually 7777)
is used in step 4. When storing a program in this manner, the computer stops
and the AC should contain all zeros if the program is stored properly. If the
computer stops with a number other than zero in the AC, a checksum error
has been detected. When the program has been stored, it can be initiated by
loading the program starting address (usually designated on the leader of the
tape) into the PC by means of the SR and LOAD ADDRESS key, then pressing
the START key. ‘ '

Off-Line Teletype Operation

The Teletype can be used separately from the PDP-8/1 for typing, punching
tape, or duplicating tapes. To use the Teletype in this manner:

-

1. Assure-that the computer PANEL LOCK switch is turned countercloék—
wise and turn the POWER swi‘;ch clockwise. :

2. Set the Teletype LINE/OFF/LOCAL switch to the LOCAL position.

3. If the punch is to be used, load it by raising the cover, manually feed-
ing the tape from the top of the roll into the guide at the back of the
punch, advancing the tape through the punch by manually turning the
friction wheel, and then closing the cover. Energize the punch by press-
ing the ON pushbutton, and produce about two feet of leader. The
leader-trailer. can be code 200 or 377. To produce the code 200 leader,
simultaneously press and hold the CTRL and SHIFT keys with the left
hand; press and hold the REPT key; press and release the @ key. When
the required amount of leader has been punched release all keys. To
produce the 377 code, simultaneously press and hold both the REPT and

RUB OUT keys until a sufficient amount of leader has been punched.

If an incorrect key is struck while punching a tape, the tape can be corrected
as follows: if the error is noticed after typing and punching. N characters,
press the punch B. SP. (backspace) pushbutton N + 1 times and strike the
keyboard RUB OUT key N + 1 times. Then continue typing and punching with
the character which was in error.

To duplicate and obtain a listing of an existing tape: Perform the procedure
under the current heading. Then load the tape to be duplicated as described
in step 2 of the procedure under Loading Data Under Program Control. Initiate
tape duplication by setting the reader START/ STOP/FREE switch in the START
position.. The punch and teleprinter stop when the tape being duplicated is
completely read.

Corrections to insert or delete information on a perforated tape can be made
by duplicating the correct portion of the tape, and manually punching addi-
tional information or inhibiting punching of information to be deleted. This is
accomplished by duplicating the tape and. carefully observing the information
being typed as the tape is read. In this manner the reader START/STOP/FREE
switch can be set to the STOP position just before the point of the correction
is typed. Information to be inserted can then be punched manually by means
of the keyboard. Information can be deleted by pressing the punch OFF push-

99

button and operating the reader until the portion of the tape to be deleted has
been typed. It may be necessary to backspace and rub out one or two charac-
ters on the new tape if the reader is not stopped precisely on time. The num-
ber of characters to be rubbed out can be determined exactly by the typed
copy. Be sure to count spaces when counting typed characters. Continue
duplicating the tape in the normal manner after making the corrections.

New, duplicated, or corrected perforated tapes should be verified by reading
them off line and carefully proofreading the typed copy.

Program Control

If the program is stopped at the end of an instruction by raising the SINGLE
STEP key, then the LOAD ADDRESS, EXAMINE, and DEPOSIT keys may be
used without changing the AC. The program may then be resumed by resetting
the PC using LOAD ADDRESS and by pressing CONTINUE. '

100

CHAPTER 3

MEMORY AND PROCESSOR

BASIC PROGRAMMING*

MEMORY ADDRESSING

The following terms are used in memory address programming:

Term

Page.

Current Page

Page Address

Absolute Address

Effective Address

Definition

A block of 128 core memory Iocatlons (200,
addresses).

The page containing the instruction being exe-
cuted; as determined by bits O through 4 of the
program counter.) \

The page containing the instruction being executed;
as determined by bits O through 4 of the program
counter.

An 8-bit number contained in bits 4 through 11 of an
instruction which designates one of 256 core mem-
ory locations. Bit 4 of a page address indicates that
the location is in the current page when a 1, or
indicates it is in page O when a 0. Bits 5 through 11
designate one of the 128 locations in the page .
determined by bit 4.

A 12-bit number used to address any location in
core memory.

The address of the operand. When the address of
the operand is in the current page or in page O, the
effective address is a page address. Otherwise, the
effective address is an absolute address stored in
the current page or page O and obtained by indirect
addressnng

Organlzatlon of the standard core memory or any 4096-word field of extended
memory is summarized as follows:

Total locations (decimal) 4096 -
Total addresses (octal) 7777
Number of pages (decimal) - o . 32
Page designations (octal) 0-37
Number of locations per page (decimal) 128
Addresses within a page (octal) _ - 0177

*See Appendix | for Program Abstracts.

101

Four methods of obtaining the effective address are used as specified by com-
binations of bits 3 and 4.

Bit 3 Bit 4 Effective Address

0 0 The operand is in page O at the address specified by
bits 5 through 11.

0 1 ~ The operand is in the current page at the address
specified by bits 5 through 11.

1 0 The absolute address of the operand is taken from
‘ the content of the location in page O designated by
bits 5 through 11. :

1 1 The absolute address of the operand is taken from
the content of the location in the current page .
designated by bits 5 through 11.

The following example indicates the use of bits 3 and 4 to address any loca-
tion in core memory. Suppose it is desired to add the content of locations A,
B, C, and D to the content of the accumulator by means of a routine stored in
page 2. The instructions in this example indicate the operation code, the con-
tent of bit 4, the content of bit 3, and a 7-bit address. This routine would take
the following form:

Page 0 Page 1 Page 2
Location Content Location Content Location Content Remarks

R TAD 00 A DIRECT TO DATA IN
PAGE 0

S TAD 01 B DIRECT TO DATA IN
SAME PAGE

T TAD 10 M INDIRECT TO ADDRESS
SPECIFIED IN PAGE O

U TAD 11 N INDIRECT TO ADDRESS
SPECIFIED IN SAME PAGE

A XXXX C XXXX B x>;xx
M C D XXXX N D

 Routines using 128 instructions, or less, can be written in one page using di-
rect addresses for looping and using indirect addresses for data stored in’ other
pages. When planning the location of instructions and data in core memory,
remember that the following locations are reserved for special purposes:

102

Address : Purpose
0: ' _ - Stores the contents of the program counter
following a program interrupt.

1, _ ' Stores the first instruction to be executed
following a program interrupt.

10; through 175 Auto-indexing.
Indirect Addressing

When indirect addressing is specified, the address part (bits 5-11) of a mem-
ory reference instruction is interpreted as the address of a location containing
not the operand, but containing the address of the operand. Consider the
instruction TAD A. Normally, A is interpreted as the address of the location
containing the quantity to be added to the content of the AC. Thus, if location
100 contains the number 5432, the instruction TAD 100 causes the quantity
5432 to be added to the content of the AC. Now suppose that location* 5432
contains the number 6543. The instruction TAD | 100 (where | signifies in-
direct addressing) causes the computer to take the number 5432, which is
in location 100, as the effective address of the instruction and the number in
location 5432 as the operand. Hence, this instruction results in the gquantity
6543 being added to the content of the AC. ’

Auto-Indexing

When a location between 10; and 17 in page O of any core memory field is

addressed indirectly (by an instruction in which bit 3 is a 1) the content of
that location is read, incremented by one, rewritten in the same location, and
then taken as the effective address of the instruction. This feature is called
auto-indexing. If location 12; contains the ‘number 5432 and the instruction
DCA I Z 12 is given, the number 5433 is stored in location 12, and the content
of the accumulator is deposited in core memory location 5433.

STORING AND LOADING

Data is stored in any core memory location by use of the DCA Y instruction.
This instruction clears the AC to simplify loading of the next datum. If the
data deposited is required in the AC for the next program operation, the DCA
must be followed by a TAD Y for the same address.

All loading of core memory information into the AC is accomplished by means
of the TAD Y instruction, preceded by an instruction that clears the AC such
as CLA or DCA. ‘ : :

Storing and loading of information in sequential core memory locations éan
.make excellent use of an auto-index register to specify the core memory
address. . . '

PROGRAM CONTROL

Transfer of program control to any core memory location uses the JMP or:
JMS instructions. The JMP | (indirect address, 1 in bit 3) is used to transfer
program control to any location in core memory which is not in the current
page or page O. &
The JMS Y is used to enter a subroutine which starts at location Y + 1 in th
current page or page 0. The content of the PC + 1 is stored in the specified

103 B

address Y, and address Y + 1 is tranéferred into the PC. To exit a subroutine
the last instruction is a JMP | Y, which returns program control to the loca-
tion stored in Y.

INDEXING OPERATIONS

External events can be counted by the program and the number can be stored
in core memory. The core memory location used to store the event count can
be initialized (cleared) by a CLA command followed by a DCA instruction.
Each time the event occurs, the event count can be advanced by a sequence
of commands such as CLA, TAD, IAC, and DCA.

The ISZ instruction is used to count repetitive program operations or external
events without disturbing the content of the accumulator. Counting a speci-
fied number of operations is performed by storing a two’s complement nega-
tive number equal to the number of iterations to be counted. Each time the
operation is performed, the I1SZ instruction is used to increment the content
of this stored.number and check the result. When the stored number becomes
zero, the specified number of operations have occurred and the program skips
out of the loop and back to the main sequence.

This instruction is also used for other routines in which the content of a mem-
ory location is incremented without disturbing the content of the accumulator,
such as storing information from an 1/0 device in sequential memory locations
or using core memory locations to count I/ O device events.

LOGIC OPERATIONS

The PDP-8/1 instruction list includes the logic instruction AND Y. From this
instruction short routines can be written to perform the inclusive OR and ex-
clusive OR operations.

Logical AND

The logic AND operation between the content of the accumulator and the con-
tent of a core memory location Y is performed directly by means of the
AND Y instruction. The result remains in the AC, the original content of the
AC is lost, and the content of Y is unaffected.

Inclusive OR

Assuming value A is in the AC and value B is stored in a known core memory
address, the following sequence performs the inclusive OR. The sequence is
stated as a utility subroutine called I10R.

/CALLING SEQUENCE JMS IOR

/ ' (ADDRESS OF B)

/ : (RETURN)

{ENTER WITH ARGUMENT IN AC; EXIT WITH LOGICAL RESULT IN AC

IOR, 0
DCA TEM1
TAD | IOR
DCA TEM2
TAD TEM1
CMA
AND | TEM2

104

TAD TEM1

ISZ 10R
JMP | IOR
TEM1, 0
TEM2, 0

Exclusive OR

The exclusive OR operation for two numbtrs, A and B, can be performed by a
subroutine called by the mnemonic code XOR. I[n the following general pur-
pose XOR subroutine, the vaiue A is assumed to be in the AC, and the address
of the value B is assumed to be stored in a known core memory location.
. /CALLING SEQUENCE JMS XOR
1 (ADDRESS OF B)
/ (RETURN)
JENTER WITH ARGUMENT IN AC; EXIT WITH LOGICAL RESULT IN AC
XOR, 0
DCA TEM1
TAD | XOR
DCA TEM2
TAD TEM1
AND | TEM2
CMA IAC
CLL RAL
TAD TEM1
TAD | TEM2
ISZ XOR
: JMP | XOR
TEM1, 0]
TEM2, 0

An XOR subroutine can be written using fewer core memory locations by mak-
ing use of the IOR subroutine; however, such a subroutine takes more time to
execute. A faster XOR subroutine can be written by storing the value B in the
second instruction of the calling sequence instead of the address of B; how-
ever, the resulting subroutine is not as utilitarian as the routine given here.

ARITHMETIC OPERATIONS

One arithmetic instruction is included in the PDP-8/I order code, the two’s
complement add: TAD Y. Using this instruction, routines can easily be written
to perform addition, subtraction, multiplication, and division in two’s comple-
ment arithmetic. :

[y

Two’s (:omplement Arithmetic

In two’s complement anthmetlc,addltlon subtractlon multlpllcatlon and divi-
sion of binary numbers is performed in accordance wuth the common rules of
binary arithmetic. In PDP-8/1, as in other machines utilizing complementation
techniques, negative numbers are represented as the complement of positive
numbers, and subtraction is achieved by complement addition. Representa-
tion of negative values in one’s complement arithmetic is slightly different
from that in two’s complement arithmetic.

105

The one's complement of a number is the complement of the absolute positive
value; that is, all ones are replaced by zeros and all zeros are replaced by
ones. The two's complement of a number is equal to the one’s complement
of the positive value plus one.

In one’s complement arithmetic a carry from the sign bit (most significant bit)
is added to the least significant bit in an end-around carry. In two's comple-
ment arithmetic a carry from the sign bit complements the link (a carry would
set the link to 1 if it were properly cleared before the operation), and there is
no end-around carry.

PROGRAMMING SYSTEM

* The programming system for the PDP-8/I includes: the Symbolic Assemblers,
FORTRAN System Compiler, Symbolic Tape Editor, Floating Point Package,
DISC/DECtape Keyboard monitor, mathematical functlon subroutines, and
utility and maintenance programs. All operate with the basic computer. The
programming system was designed to simplify and accelerate the process of
learning to program. At the same time, experienced programmers will find that
it incorporates many advanced features. The system is intended to make
immediately available to each user the full, general-purpose data processing
capability of the computer and to serve as the operating nucleus for a
growing library of programs and routines to be made available to all installa-
tions. New techniques, routines, and programs are constantly being developed,
field-tested, and documented in the Digital Program Library for incorporation
in users’ systems.

Assemblers

The use of an assembly program has become standard practice in program-
ming digital computers. This process allows the programmer to code his
instructions in a symbohc language, one he can work with more conveniently
than the 12-bit binary numbers which actually operate the computer. The
assembly program then translates the symbolic language program into its
machine code equivalent. The advantages are significant: the symbolic lan-
. guage is more meaningful and convenient to a programmer than a numeric
code; instructions or data can be referred to by symbolic names without con-
cern for, or even knowledge of, their actual addresses in core memory; deci-
mal and alphabetical data can be expressed in a form more convenient than
binary numbers; programs can be altered without extensive changes; and de-
bugging is considerably simplified.

Two Assemblers Are Available:

1. PAL Il is a basic assembler allowing symbolic references, symbolic ori-
gins, and expressions. The output is in a form suitable for input to the
. binary loader. High or low-speed paper tape input is accepted.
2. MACRO-8 is an advanced assembler which has the same basic features
of PAL I and in addition, MACRO capability, literals, off-page refer-
ences, and high/low-speed paper tape input and output.

106

DISC/DECtape Keyboard Mo_nitor.

A Keyboard Monitor is available to users with a DISC or DECtape System which
allows the user to save core images on the DISC or DECtape System device
and restore these core images to memory. Programs modified to work under
the Monitor include: FORTRAN, EDITOR, DDT LOADER, and an Assembler.
In addition, the user. may save his own core images and restore them and
use the remainder &f the available device storage for temporary storage of
source or binary data. - o

FORTRAN Compiler (4K)

The FORTRAN (for FORmula TRANslation) compiler lets the user express the
problem he is trying to solve in a mixture of English words and mathematical
statements that is close to the language of mathematics and is also intelli-
gible to the computer. In addition to reducing the time needed for program
preparation, the compiler enables users with little or no knowledge of the
computer's organization and operating language to write effective pro-
grams for it. The FORTRAN Compiler contains the instructions the computer
requires to perform the clerical work of translating the FORTRAN version of
the problem statement into an object program in machine language. It also
produces diagnostic messages. .After compilation, the object program, the
operating system and the data it will work with, are loaded into the computer -
for selution of the problem. ‘

The FORTRAN language consists of four general types of statements: arith-
metic, logic, control, and input/output. FORTRAN functions includé addition,
subtraction, multiplication, division, sine, cosine, arctangent, square root,
natural logarithm, and exponential.

FORTRAN Compiler (8K)

The 8K FORTRAN compiler is an extension of the 4K FORTRAN compiler
which features the following additions: ’ -

U.S.A.-Standard FORTRAN Syntax

Subroutines _

Two levels of subscripting .
Function subprograms

1/O supervisor

Relocatable link loadable output - ' -
Common '

I, E, F, H, A, X, format specification

Arithmetic and trigonometric library

WoOoNOT AW

This compiler will utilize all of available core from 8K to 32K and will cor-
rectly load programs over field boundary.

Symbolic On-Line Debugging Program

On-line debugging with DDT-8 gives the user dynamic printed program status
information. It -gives him close control over program execution, preventing
errors (“bugs”) from destroying other portions of his program. He can moni-
tor the execution of single instructions or subsections, change instructions or
data in any format, and output a corrected program at the end of the de-
bugging session. '

107

Using the standard Teletype keyboard/reader and teleprinter/punch, the user
can communicate conveniently with the PDP-8/I in the symbols of his source
language. He can control the execution of any portion of his object program
by inserting breaks, or traps, in it. When the computer reaches a break, it
transfers control of the object program to DDT. The user can then examine
and modify the content of individual core memory registers to correct and
improve his object program.

)

Symbolic Tape Editor

The Symbolic Tape Editor program is used to edit, correct, and update sym-
bolic program tapes using the PDP-8/1, the teletype unit and/or the high-
speed reader. With the editor in core memory, the user reads in portions of
his symbolic tape, removes, changes, or adds instructions or operands, and
gets back a complete new symbolic tape with errors removed. He can work
through the program instruction by instruction, spot check it, or concentrate
on new sections. A character string search is available. The user can move
one or more lines of text from one place to another.

Floating Point Package

The Floating Point Package permits the PDP-8/I to perform arithmetic opera-
tions that many other computers can perform only after the addition of costly
optional hardware. Floating point operations automatically align the binary
points of operands, retaining the maximum precision available by discarding
leading zeros. In addition to increasing accuracy, floating point operations
relieve the programmer of scaling problems common in fixed point opera-
tions. This is of particular advantage to the inexperienced programmer.

S
2

Mathematical Function Routines

The programming system also includes a set of mathematical function routines
to perform the following operations in both single and double precision: addi-
tion, subtraction, muitiplication, division, square root, sine, cosine, arctan-
gent, natural logarithm, and exponential.

~Utility and Maintenance Programs

PDP-8/1 utility programs provide printouts or punchouts of core memory con-
tent in octal, decimal, or binary form, as specified by the user. Subroutines
are provided for octal or decimal data transfer and binary-to-decimal, decimal-
to-binary, and Teletype tape conversion. '

A complete set of standard diagnostic programs is provided to simplify and
expedite system maintenance. Program descriptions and manuals permit the
user to effectively test the operation of the computer for proper core memory
functioning and proper execution of instructions. In addition, diagnostic pro-
grams to check the performance of standard and optional peripheral devices
are provided with the devices.

108

'CHAPTER 4
MEMORY AND PROCESSOR INSTRUCTIONS

Instruction words are of two types: memory reference and augmented. Mem-
ory reference instructidns store or retrieve data from core memory, while
augmented instructions do .not. All instructions utilize bits 0 through 2 to
specify the operation code. Operation codes of O, through 5, specify memory
reference instructions, and codes of 6; and 7, specify augmented instructions.
Memory reference instruction execution times are multiples of the 1.5-micro-
second memory cycle. Indirect addressing increases the execution time of a
memory reference instruction by 1.5 microseconds. The augmented instruc-
tions, input-output transfer and operate, are performed in 4.25 and 1.5 micro-
seconds, respectively. (All computer times are +=20%.)

MEMORY REFERENCE INSTRUCTIONS

Since the PDP-8/I system contains a 4096-word core memory, 12 bits are re-
quired to address all locations. To simplify addressing, the core memory is ,
divided into blocks, or pages, of 128 words (200, addresses). Pages are num-
bered Os through 37, each field of 4096-words of core memory uses 32
pages. The seven address bits (bits 5 through 11) of a memory reference
‘instruction can address any location in the page on which the current in-
struction is located by placing a 1 in bit 4 of the instruction. By placing a0
in bit 4 of the instruction, any location in page O can be addressed directly
from any page of core memory. All other core memory locations can be ad- .
dressed indirectly by placing a 1 in bit 3 and placing a 7-bit effective address
in'bits 5 through 11 of the instruction to specify the location in the current
page or page 0 which contains the full 12-bit absolute address of the operand.

OPERATION MEMORY
CODES 0-5 PAGE
r A N . t—A—\
0 1 2 3 4. 3 3 4 ['Y 10 1
\ J . - i)
INDIRECT ' ADDRESS .
ADDRESSING :)

Figure 6 Memory Reference Instruction Bit Ass'i'gnments

Word format of memory reference instructions is shown in Figure 4 and the
instructions perform as follows: : :

Logical AND (AND Y)

Octal Code: 0
Indicators: AND, FETCH, EXECUTE : :
Execution Time: 3.0 microseconds with direct addressing, 4.5 microseconds
with indirect addressing.
Operation: The AND operation is performed between the content of memory
location Y and the content of the AC. The result is left in the AC, the original -
- content of the AC is lost, and the content of Y is restored. Corresponding bits
of the AC and Y are operated upon independently. This instruction, often
called extract or mask, can be considered as a bit-by-bit multiplication. Ex-
ample:

¢

109

Original - Final
ACj ACj

=00
OO0

Symbol: ACj A Yj = > ACj

Two’s Complement Add (T. AD Y)

Octal Code: 1.

Indicafors: TAD, FETCH, EXECUTE '

Execution Time: 3.0 microseconds with direct addressing, 4.5 microseconds
with indirect addressing. -

Operation: The content of memory location Y is added to the content of the AC
in two's complement arithmetic. The result of this addition is held in the AC,
the original content of the AC is lost, and the content of Y is restored. If there
is a carry from ACO, the link is complemented. This feature is useful in mul-
tiple precision arithmetic. '

Symbol: ACO — 11 + YO — 11 =>AC0— 11

Increment and Skip If Zero (1SZ Y)

Octal Code: 2
Indicators: 1SZ, FETCH, EXECUTE
Execution Time: 3.0 microseconds with direct addressing, 4.5 microseconds
with indirect addressing. ,
Operation: The content of memory location Y is incremented by one in two's
complement arithmetic. If the resultant content of Y equals zero, the content
of the PC is incremented by one and the next instruction is skipped. If the re-
sultant content of Y does not equal zero, the program proceeds to the next
instruction. The incremented content of Y is restored to memory. The con-
tent of the AC is not affected by this instruction.
Symbol: Y +1=>Y '

If resultant YO — 11 = 0, thenPC + 1 = > PC

Deposit and Clear AC (DCA Y)

Octal Code: 3

Indicators: DCA, FETCH, EXECUTE

Execution Time: 3.0 microseconds with direct addressing, 4.5 microseconds
with indirect addressing.

Operation: The content of the AC is deposited in core memory at address Y
- and the AC is cleared. The previous content of memory location Y is lost.
Symbol: AC=>Y

then0 = > AC
Jump to Subroutine (JMS Y)
Octal Code: 4

Indicators: JMS, FETCH, EXECUTE

Execution Time: 3.0 microseconds with direct addressing, 4.5 microseconds
with indirect addressing.

Operation: The content of the PC is deposited in core memory location Y and
the next instruction is taken from core memory location Y + 1. The content of
the AC is not affected by this instruction.

Symbol: PC+1=>Y

Y +1=>PC

110

Jump to Y JMPY)

Octal Code: 5

Indicators: JMP, FETCH -

Execution Time: 1.5 microseconds with direct addressing, 3.0 microseconds

with indirect addressing. _ _

Operation: Address Y is set into the PC so that the next instruction is taken

from core memory address Y. The original content of the PC is lost. The con-
~ tent of the AC is not affected by this instruction. _ T

Symbol: Y = > PC _

AUGMENTED INSTRUCTIONS

There are two augmented instructions which do not reference core memory.
They are the input-output transfer, which has an operation code of 6, and the
operate which has an operation code of 7. Bits 3 through 11 within these in-
structions function as an extension of the operation code and can be micro-
programmed to perform several operations within one instruction. Augmented
instructions are one-cycle (Fetch) instructions that initiate various operations
as a function of bit microprogramming. '

" Input/Output Transfer Instruction .

Microinstructions of the input-output™ transfer (IOT) initiate operation of
peripheral equipment and effect information transfers between the processor
and an 1/0 device. Specifically, upon recognition of the operation code 6 as
an 10T instruction, the computer enters a 4.25 usec expanded computer
FETCH cycle by setting the PAUSE flip-flop and enabling the I0P_ generator
to produce IOP 1, IOP 2 and IOP 4 pulses as a function of the three least
significant bits of the instruction (bits 9 thru 11). These pulses occur at 1
microsecond intervals designated as event times 3, 2 and 1 as follows:

instruction ' 0P 10T . Event
Bit - Pulse _ Pulse - Time
11 P11 16T 1 1
10 IOP 2 10T 2 .2
9 IoP 4 - 10T 4 3

The 10P pulses are gated in the device selector of the program-selected equip-
ment to produce 10T pulses that enact a data transfer or initiate a control
-operation. Selection of an equipment is accomplished by bits 3 through 8 of

the 10T instruction. These.bits form a 6-bit code that enables the device
selector in a given device.

The format of the IOT instruction is shown in Figure 7. Operations performed
by 10T microinstructions are explained in Chapter 7. -'

111

GENERATES GENERATES
AN I0P 4 AN 10P 1

PULSE AT PULSE AT
OPERATION EVENT TIME 3 EVENT TIMEt
CODE 6 iF A IF A1

A] . [\J " }

o 1 2 3] - 5 6 7 8 9 o "

DEVICE GENERATES
SELECTION AN IOP 2
PULSE AT
EVENT TIME 2
F A

Figure 7. 10T Instruction Bit Assignments

Operate Instruction

With operate instructions, the programmer can consider logical sequences
occurring during one computer FETCH cycle. These sequences provide a
logical method of forming microinstructions.

The operate instruction consists of two groups of microinstructions. Group
1 (OPR 1) is principally for clear, complement, rotate, and increment opera-
tions and is designated by the presence of a 0 in bit 3. Group 2 (OPR 2) is
used principally in checking the content of the accumulator and link and
continuing to, or skipping, the next instruction based on the check. A 1 in bit
3 designates an OPR 2 microinstruction.

GROUP 1

The Group 1 operate microinstruction format is shown in Figure 8. and the
microinstructions are explained in the succeeding paragraphs. Any logical
combination of bits within this group can be combined into one microinstruc-
tion. For example, it is possible to assign ones to bits 5, 6, and 11; although
it is not logical to assign ones to bits 8 and 9 simultaneously since they
specify conflicting operations. (The most frequently used combinations are
listed in Appendix 2.) '

ROTATE POSITON I &
OPERATION AC AND L 2 POSITIONS "
COOE 7 cLa cMA RIGHT e s
r a) —— — — —A—
0 i 2 3 4 5 6 7 8 9 10 "
— — —— — ——
CONTAINS cLL CML ROTATE 1AC
a0 TO AC AND L
SPECIFY LEFT

LOGICAL SEQUENCE:

1 —CLA, CLL
2—CMA,CML
3—IAC

"4 — RAR, RAL, RTR, RTL,

Figure 8. Group 1 Operate Instruction Bit Assignments

112

No Operation (NOP)

. * Octal Code: 7000.

Sequence: None

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds : '
Operation: This command causes a 1-cycle delay in the program and then
the next sequential instruction is initiated. This command is used to add
execution time to a program, such as to synchronize subreutine or loop timing
with peripheral equipment timing.)
Symbol: None -

Increment Accumulator (1AC)

Octal Code: 7001

Sequence: 3

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds: ~
Operation: The content of the AC is incremented by one in two's complement
arithmetic. -

Symbol: AC4+ 1= >AC

Rotate Accumulator Left (RAL)

Octal Code: 7004
Sequence: 4
Indicators: OPR, FETCH
Execution Time: 1.5 microseconds ~ ,
. Operation: The content of the AC is rotated one binary position to the left
with the content of the link. The content of bits AC1 — 11 are shifted to the
- next greater significant bit, the content of ACO is shifted into the L, and the
- content of the L is shifted into AC11. :
Symbol: ACj = > ACj—1 '
ACO=>1L
L = > AC11

Rotate Two Left (RTL)

Octal Code: 7006

Sequence: 4

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the AC is rotated two binary positions to the left
with the content of the link. This instruction is logically equal to two succes-
sive RAL operations. - .

Symbol: ACj = > ACj — 2

ACl =>1L
ACO = > ACl1
L= >AC10

Rotate Accumulator Right (RAR)

Octal Code: 7010
Sequence: 4
Indicators: OPR, FETCH
Execution Time: 1.5 microseconds
Operation: The content of the AC is rotated one binary position to the right
with the content of the link. The content of bits ACO — 10 are shifted to the
next less significant bit, the content of AC11 is shifted into the L, and the
content of the L is'shifted into ACO.
Symbol: ACj = >ACj+1
ACll = >1L
L = > ACO

*

113

Rotate Two Right (RTR)

Octal Code: 7012
Sequence: 4
Indicators: OPR, FETCH -

. Execution Time: 1.5 microseconds

Operation: The content of the AC is rotated two binary positions to the right
with the content of the link. This instruction is logically equal to two succes-
sive RAR operations.

Symbol: ACj = > Acj + 2

AC10 = L
AC11 = ACO
L = >ACl

Complement Link (CML)

Octal Code: 7020

Sequence: 2

Indicators: OPR, FETCH _

Execution Time: 1.5 microseconds

Operation: The content of the L is complemented.
Symbol: L = > L

Complement Accumulator (CMA)

Octal Code: 7040

Sequence: 2

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the AC is set to the one’s complement of the cur-
rent content of the AC. The content of each bit of the AC is complemented
individually.

Symbol: ACj = > ACj

Complement and Increment Accumulator (CIA)

Octal Code: 7041 '
Sequence: 2, 3
Indicators: OPR, FETCH
Execution Time: 1.5 microseconds
‘Operation: The content of the AC is converted from a binary value to its
equivalent two’s complement number. This conversion is accomplished by
combining the CMA and IAC commands, thus the content of the AC is com-
plemented during sequence 2 and is incremented by one during sequence 3.
Symbol: ACj = > Acj,

thenAC 4+ 1 = > AC

Clear Link (CLL)

Octal Code: 7100

Sequence: 1

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the L is cleared to containa 0.
Symbol: 0 = > L :

114

Set Link (STL)

Octal Code: 7120

Sequence: 1,2 :

Indicators: OPR, FETC

Execution Time: 1.5 microseconds -

Operation: The L is set to contain a binary 1. This instruction is logically
equal to combining the CLL and CML commands. : .
Symbol: 1 = > L.

Clear Accumulator (CLA)

Octal Code: 7200

Sequence: 1

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of each bit of the AC is cleared to contain a binary O.
Symbol: 0 = > AC '

Set Accumulators (STA)

Octal Code: 7240
Sequence: 1, 2
Indicators: OPR, FETCH
Execution Time: 1.5 microseconds
Operation: Each bit of the AC is set to contain a binary 1. This operation is
logically equal to combining the CLA and CMA commands.
. Symbol: 1 = > ACj
' GROUP 2

The Group 2 operate microinstruction format is shown in Figure 9.and the pri-
mary microinstructions are explained in the following paragraphs. Any logical
combination of bits within this group can be composed into one microinstruc-
tion. (The instructions constructed by most logical command combinations
are listed in Appendix 2.)

If skips are combined in a single instruction the inclusive OR of the condi-
tions determines the skip when bit 8 is a 0; and the AND of the inverse of the
conditions determines the skip when bit 8 is a 1. For example, if ones are
designated in bits 6 and' 7 (SZA and SNL), the next instruction is skipped if
either the content of the AC = 0, or the content of L = 1. If ones are con-
tained in bits 5, 7, and 8, the next instruction is skipped if the AC contains
a positive number and the L contains a O.

REVERSE
SKIP
OPERATION v - SENSING OF
. CODE 7 . CLA SZA 8iTS 5,67 HLY
— A \ — — , —
(¢] 1 2 3 4 5 6 7 8 9 10 1"
.‘.
——— — —— —— ——
CONTAINS A 1 SMA SNL OSR CONTAINS A O
TO SPECIFY TO SPECIFY
GROUP 2 GROUP 2

Logical Sequence:

1 (Bit 8 is a zero) — Either SMA or SZA or SNL
1 (Bit 8 is a one) — Both SPA and SNA and SZL
2 —CLA

3 — OSR, HLT

Figure 9. Group 2 Operate Instruction Bit Assignments

115

Halt (HLT)

Octal Code: 7402

Sequence: 3

Indicators: OPR, not RUN

Execution Time: 1.5 microseconds

Operation: Clears the RUN flip-flop at Sequence 3. so that the program stops
at the conclusion of the current machine cycle. This command can be com-
bined with others in the OPR 2 group that are executed during either se-
quence 1, or 2, and so are performed before the program stops.

Symbol: 0 = > RUN

OR with Switch Register (OSR)

Octal Code: 7404

Sequence: 3

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds ,

Operation: The inclusive OR operation is performed between the content of
the AC and the content of the SR. The result is left in the AC, the original con-
tent of the AC is lost, and the content of the SR is unaffected by this com-
mand. When combined with the CLA command, the OSR performs a transfer
of the content of the SR into the AC,

Symbol: ACjV Srj = > ACj

Skip, Unconditional (SKP)

Octal Code: 7410

Sequence: 1

-Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the PC is incremented by one so that the next se-
quential instruction is skipped.

Symbol: PC 4+ 1 = > PC

Skip on.Non-Zero Link (SNL)

Octal Code: 7420

Sequence: 1 o

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the L is sampled, and if it contains a 1 the content
of the PC is incremented by one so that the next sequential instruction is
skipped. If the L contains a 0, no operation occurs and the next sequential
instruction is initiated.

Symbol: If L= 1,thenPC4+ 1 = > PC

Skip on Zero Link (SZL)

Octal Code: 7430

Sequence: 1

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the L is sampled, and if it contains a 0 the content
of.the PC is increment_ed by one so that the next sequential instruction is

Skip on Zero Accumulator (SZA)

Octal Code: 7440

Sequence: 1 ‘

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of each bit of the AC is sampled, and if any bit con-
tains a O the content of the PC is incremented by one so that the next se-
quential instruction is skipped. If all bits of the AC contain a 0, no operation
oceurs and the next sequential instruction is initiated. :

Symbol: If ACO — 11 =0, then PC+1=>PC

Skip on Non-Zero Accumulator (SNA)

Octal Code: 7450

Sequence: 1 -

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds ,

Operation: The content of each bit of the AC is sampled, and if any bit con-
tains a 1 the content of the PC is incremented by one so that the next se-
quential instruction is skipped. If all bits of the AC contain a 0, no operation
occurs and the next sequential instruction is initiated.

Symbol: If ACO — 11 =£ 0, then PC+1=>PC

Skip on Minus Accumulator (SMA)

Octal Code: 7500

Sequence: 1

Indicators: OPR, FETCH
Execution Time: 1.5 microseconds
Operation: The content of the most significant bit of the AC is sampled, and
if it contains a 1, indicating the AC contains a negative two's complement
number, the content of the PC is incremented by one so that the next sequen-
tial instruction is skipped. If the AC contains a positive number no operation
occurs and program control advances to'the. next sequential instruction.
Symbol: If ACO = 1,thenPC+1=>PC

skip on Positive Accumulator (SPA)

Octal Code: 7510

Sequence: 1

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds , ‘
Operation: The content of the most significant bit of the AC'is sampled, and
if it contains a 0, indicating a positive (or zero) two’s complement number,
the content of the PC is incremented ‘by one so that the next sequential in-
struction is skipped. If the AC contains a negative number, no operation
occurs and program control advances to the next sequential instruction.
Symbol: 1f ACO = O, then PC+1=>PC

Clear Accumulator (CLA)

Octal Code: 7600

Sequence: 2 -

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds _

Operation: Each bit of the AC is cleared to contain a binary O.
Symbol: 0 = > AC

117

PROGRAM INTERRUPT

The program interrupt feature allows certain external conditions to interrupt
the computer program. It is used to speed the information processing of in-
.put-output devices or to allow certain alarms to halt the program in progress
and initiate another routine. When a program interrupt request is made the
computer completes execution of the instruction in progress before acknowl-
edging the request and entering the interrupt mode. A program interrupt is
similar to a JMS to location O; that is, the content of the program counter is
stored in location 0, and the program resumes operation in location 1. The
interrupt program commencing in location 1 is responsible for identifying the
signal causing the interruption, for removing the interrupt condition, and for
returning to the original program. Exit from the interrupt program, back to
the original program, can be accomplished by a JMP | Z 0 instruction.

Instructions

The two instructions associated with the pfogram interrupt synchronization ele-
ment are 10T microinstructions that do not use the IOP generator. These
instructions are:

Interrupt Turn On (ION)

Octal Code: 6001

Event Time: Not applicable

Indicators: 10T, FETCH, ION

Execution Time: 1.5 microseconds

Operation: This command enables the computer to respond to a program in-
terrupt request. If the interrupt is disabled when this instruction is given, the
computer executes the next instruction, then enables the interrupt. The addi-
tional instruction allows exit from the interrupt subroutine before allowing
another interrupt to occur. This instruction has no effect upon the condition
of the interrupt circuits if it is given when the interrupt is enabled.

Symbol: 1 = > INT. ENABLE

Interrupt Turn Off (10F)

Octal Code: 6002

Event Time: Not applicable

Indicators: 10T, FETCH

Execution Time: 1.5 microseconds .

Operation: This command disables the program interrupt synchronization ele-
ment to prevent interruption of the current program.

Symbol: 0 = > INT. ENABLE, INT. DELAY

Programming

When an interrupt request is acknowledged, the interrupt is automatically dis-
abled by the program interrupt synchronization circuits (not by instructions).
The next instruction is taken from core memory location 1. Usually, the in-
struction stored in location 1 is a JMP, which transfers program control to a
subroutine which services the interrupt. At some time during this subroutine,
.an ION instruction must be given. The ION can be given at the end of the
subroutine to allow other interrupts to be serviced after program control is
transferred back to the original program. In this application, the ION instruc-

118

tion immediately precedes the last instruction in the routine. A delay of one
instruction (regardless of the execution time of the following instruction) is
inherent in the ION instruction to allow transfer of program control back to the
original program before enablirlg the interrupt. Usually exit from the sub-
routine is accomplished by a JMP | Z O instruction.

The ION command can be given during the subroutine as soon as it has de-

termined the 1/ 0 device causing the interrupt. This latter method allows the

subroutine which is handling a low priority interrupt to be interrupted, possibly

by a high priority device. Programming of an interrupt subroutine which-
checks for priority and allows itself to be interrupted, must make provisions to

relocate the content of the program counter.stored in location O; so that if

interrupted, the content of the PC during the subroutine is stored in location O,

and the content of the PC during the original program is not lost.

119

CHAPTER 5
DATA BREAK

Peripheral equnpment connected to the data break facility can cause a tempo-
rary suspension in the program in progress to transfer information with the
computer core memory, via the MB. One I/0O device can be connected di-
rectly to the data break facility or up to seven devices can be connected to it
through the Type DMO1 Data Multiplexer. This cycle stealing mode of opera-
tion provides a high-speed transfer of individual words or blocks of information
at core memory addresses specified by the |/ O device. Since program execu-
tion is not involved in these transfers, the program counter, accumulator, and
instruction register are not disturbed or involved in these transfers. The pro-
gram is merely suspended at the conclusion of an instruction execution, and
the data break is entered to perform the transfer, then .the Fetch state is en-
tered to continue the main program..

Data breaks are of two basic types: single-cycle and three-cycle. In a single-
cycle data break, registers in the device (or device interface) specify the core
memory address of each transfer and count the number of transfers to deter-
mine the end of data blocks. (See discussion of Data Break Transfers in Chap-
ter 10.) In the three-cycle data break two computer core memory locations
perform these functions, simplifying the device interface by omitting two
hardware registers. :

The computer receives the following signals from the device during a data
break:

Signal —3 Volts - 0 Volts

Break Request No break request Break request
Cycle Select One-cycle break Three-Cycle break
Transfer Direction Data into PDP-8/1 Data out of PDP-8/1
Increment CA Inhibit CA incremented CA not incremented
Increment MB (pulse) MB not incremented MB incremented
Address (12 bits) Binary O Binary 1

Data (12 bits) Binary O Binary 1

The computer sends the following signals to the device during a data break:

Signal Characteristics
Data (12 bits) —3 volts = binary 0, 0 volts = binary 1
Address Accepted .35 — .45 microsecond negative pulse beginning at
TP4 of a break cycle.
WC Overflow —3 volts level change occuring at TP2 time of the
WC state and lasting for one machine cycle.
Buffered Break —3 volts when in Break state.

(The above input/output signals can be changed to positive “bus” logic as
described in Chapter 1.)

To initiate a data break an I/ 0 device must supply four signals simultaneously
to the data-break facility. These signals are the Break Request signal, which
sets the BRK SYNC flip-flop in the major state generator to control entry into
the data break states (Word Count for a three-cycle data break or Break for a
single-cycle data break); a Transfer Direction signal, supplied to the MB con-
trol element to allow data to be strobed into the MB from the peripheral

120

equipment and to inhibit readlng from core memory; a Cycle Select Signal

which controls gating in the major state generator to determine if the one-

cycle or three-cycle data break is to be selected; and a core memory address

of the transfer which is supplied to the input of the MA. When the break re-
quest is made, the data break replaces entry into the Fetch state of an in-

struction. Therefore the data break is entered at the conclusion of the Ex-

ecute state of most memory reference instructions and at the conclusion of a

Fetch state of augmented instructions. Having established the data bredk,

each machine cycle is a Word Count, Current Address, or Break cycle until all -
data transfers have taken place, as indicated by removal of the Break'Request-
signal by the peripheral equipment.

More exactly, the Break Request srgnal enables the BRK SYNC flip- flop. At
TP1 time, the BRK SYNC flip-flop is set if the Break Request signal has been
received, and is cleared otherwise.

At TP4 time of each machine cycle, the major state generator is set to estab- "
lish the state for the cycle. At this time, the status of the BRK SYNC flip-fiop
is sampled and if in the 1 state, the Word Count or Break state is set into
the major state generator and a data break commences.

Therefore, to initiate a data break, the Break Request must be at ground
potentlal for at least 500 nanoseconds preceeding TP1 of the cycle preceed-
ing the data break cycle. A Break Request signal should be supplied to the
computer when the address, data, transfer direction, and cycle select sugnals
are supplied to the computer.

When a data break occurs, the address designated by the device is loaded
into the MA at TP4 time of the last cycle of the current instruction, and the
‘major state generator is set to the World Count state if the Cycle Select
signal is at ground or is set to the Break state if this signal is at —3 volts.
The program is delayed for the duration of the data break, commencing in the
following cycle. A break request is granted only after completion of the cur-
rent instruction as specified by the following conditions:

1. At the end of the Fetch cycle of an OPR or 10T mstructlon or a
directly addressed JMP instruction.

2. At the end of the Defer cycle of an indirectly addressed JMP .in-
struction.

3. At the end of the Execute cycle of a JMS, DCA, 1SZ, TAD, or AND
instruction.

At the beglnnmg of the Word Count cycle of a three-cycle data break or the
Break cycle of a one-cycle data break, the address supplied to the input of the
MA is strobed into the MA and the computer supplles an- Address Accepted
signal to the device. Entry intothe Break cycle is indicated to the peripheral
equipment by a Buffered Break srgnal and by an Address Accepted signal
that can be used to enable gates in the device to perform tasks associated
~with the transfers. The Address Accepted signal is the most convenient
control to be used by 1/0 equipment to disable the Break Request signal,
since this signal must be removed at TP4 time to prevent continuance of
the data break into the next cycle. If the Transfer Direction signal establishes
the direction as out of the computer, the content of the core memory register
at the address specified is transferred into the MB and is immediately avail-
able for strobing by the peripheral equipment. If the Transfer Direction
signal specifies a data direction into the PDP-8/1, reading from core memory
is inhibited and data is transferred into the MB from perlpheral equipment.

121

The status of the BRK SYNC flip-flop is sensed at the beginning of a Break
cycle to determine if an additional Break cycle is required. If a Break Request
signal has been received since TP4, the Break state is maintained in the
major state generator; if the Break Request signal has not been received by
this time; the Fetch state is set into the major state generator to continue
the program. The Break Request signal should be removed by the end of
the Address Accepted signal if additional Break cycles are not required.

SINGLE-CYCLE DATA BREAK

One-cycie breaks transfer a data word into the computer core memory from
the device, transfer a data word into a device from the core memory, or in-
crement the content of a device-specified core memory location. In each of
these types of data break one computer cycle is stolen from the program by
each transfer; Break cycles occur singly (interleaved with the program steps)
or continuously (as in a block transfer), depending upon the timing of the
Break Request signal at rates of up to 660 kh.

During the memory strobe portion of the Break cycle, the content of the ad-
- dressed cell is read into the MB if the transfer direction is out of the computer
(into the 1/0 device). If the transfer direction is into the computer, generation
of the Memory Strobe pulse is inhibited -so that the MB (cleared during the
previous cycle) remains cleared. Information is transferred from the output
data register of the 1/0 device into the MB and is written into core memory
during TS3 and TS4 times of the Break cycle. In an outward transfer, the
write operation restores the original content of the address cell to memory.

If there is a further break request, another Break cycle is initiated. If there
is no break request, the content of the PC is transferred into the MA, the
IR is cleared, and the major state generator is set to Fetch. The program
then executes the next instruction.

The increment MB facility is useful for counting iterations or events by means
of a data break, so that the PC and AC are not disturbed. Within oné Break
cycle of 1.5 microseconds, a word is fetched from a ‘device-specified core
memory location, is incremented by one, and is restored to the same memory
location. The Increment MB signal input must be supplied to the computer
only during a Break cycle in which the direction of transfer is out of the
PDP-8/1. These restrictions can be met by a simple AND-gate in the device;
anincrement MB signal is generated only when an event occurs, the Buffered
Break signal from the computer is present, and the Transfer Direction signal
supplied to the computer is at ground potential.

THREE-CYCLE DATA BREAK

The three-cycle data break provides an economical method of controlling the
transfer of data between the computer core memory and fast peripheral de-
vices. Transfer rates in ‘excess of 220 kh are possible using this feature of
the PDP-8/1.

The three-cycle data break differs from the one-cycle break in that a ground-
level Cycle Select signal is supplied so that when the data break conditions
are fulfilled the program is suspended and the Word Count state is entered.
The Word Count state is entered to increment the fixed core memory location
containing the word count. The device requesting the break supplies this ad-
dress as in the one-cycle break, except that this is a fixed address supplied by
wired ground and —3v signals rather than from a register.

122

Following the Word Count state a Current Address state occurs in which the
location following the Word Count address (bit 11 = 1 after4+ 1 = > MA) is
read, incremented by one, restored to memory, and loaded into the MA to be
used as the transfer address. Then the normal Break state is entered to effect
the transfer between the device and the computer memory cell specified by
the MA.

Word Count State

When this state is entered, the contents of the core memory address specified
by the external device plus 1 is loaded into the MB at TP2 time. The word"
count, established previously by instructions, is the 2's completment nega-
tive number equal to the required number of transfers. If the word becomes
0 when incremented, the computer generates a WC overflow signal and sup-
plies it to the device. During TS3 and TS4 times, the incremented word
count is rewritten in memory, the contents of the MA is incremented by 1
to establish the next location as the address for the following memory cycle,
and the major state generator is set to the Current Address state.

Current Address State

Operations during the second cycle of the three-cycle data break depend
upon the condition of the Increment CA Inhibit (+1 - CA Inhibit) signal
supplied to the computer from the 1/O device. At TP2 time, the MB is loaded
with either the contents of the memory cell following the word count (Cur-
rent Address register) or the incremented contents of the current address
register (i.e. if CA Inhibit is at ground, the contents are loaded; if CA Inhibit
is at —3 volts; the incremented contents are loaded). The Current Address
register may be incremented to advance the address of the transfer to the
next sequential location. During TS3 and TS4 times, the contents of the
MB is rewritten into core memory, the address word in the MB is transferred
into the MA to designate the address to be used in the succeeding memory
cycle, and the major state generator is set to Break state.

Break State

The actual transfer of data between the external device and the core memory,
through the MB, occurs during the Break state as during a single-cycle data
break, except that the address is determined by the current content of the
- MA rather than directly by the device.

123

CHAPTER 6

OPTIONAL MEMORY AND PROCESSOR EQUIPMENT
AND INSTRUCTIONS

MEMORY EXTENSION CONTROL AND
'MEMORY MODULE (MC8/I)
MEMORY MODULE (MM8/I)

(The logic for the Memory Extension Control Type MC8/1 is Iocated
in the PDP-8/I central processor.)

Extension of the storage capacity of the standard 4096-word core memory is
accomplished by adding fields of 4096-word core memories. Field select con-
trol and extended address control for up to 32,768 words is provided by the
MEMORY EXTENSION CONTROL (MCS8/1) that also adds 4096-word core
memory internal to the machine for a total of 8K of memory. Each MEMORY
MODULE (MMS8/1) adds either 4096-word core memory or 8192 word core
memory external to the machine. Up to six fields of 4096-word core memory
can be added external to the machine, providing a maximum storage of
32,768 words (internal and external). Direct address of 32,768 words requires
15 bits (215 = 32,768). However, since programs and data need not be directly
addressed for execution of each instruction, a field can be program-selected,
and all 12-bit addresses are then assumed to be within the current memory
field. Program interrupt of a program in any field automatically specifies field
0, address O for storage of the program count. The memory extension control
consists of several 3-bit flip-flop registers that extend addresses to 15 bits to
establish or select a field.

Addition of a memory extension control to a standard PDP-8/1I requires a
simple modification of the operator console to activate indicators and switches
associated with the instruction field register and the data field register of the
control. These switches function in the same manner as the switch register,
to load information into associated registers when the LOAD ADDRESS key is
pressed.

The functional circuit elements which comprlse the memory extensron control
perform as follows:

Instruction Field Register (IF): The IF is a 3-bit register that serves as an ex-
tension of the PC. The content of the IF determines the field from which all
instructions are taken and the field from which operands are taken in directly-
addressed AND, TAD, ISZ, or DCA instructions. Operating the LOAD ADDRESS
key JAM transfers the contents of the INSTRUCTION FIELD switch register
on the operator console into the IF register. During a JMP or JMS instruction
the IF is set by a transfer of information contained in the instruction buffer
register. When a program interrupt occurs, the content of the IF is auto-
matically stored in bits O through 2 of the save field register for restoration
to the IF from the instruction buffer register at the conclusion of the program
interrupt subroutine.

Data Field Register (DF): This 3-bit register determines the memory field from
which operands are taken in indirectly-addressed AND, TAD, 1SZ, or DCA in-
structions. Operating the LOAD ADDRESS key JAM transfers the contents
of the DATA FIELD switch register on the operator console into the DF
register. The DF is set by a transfer of information from bits 6 through 8 of
the MB during a CDF microinstruction to establish a mlcroprogrammed data
field. When a program interrupt occurs, the content of the DF is automatically
stored in the save field register. The DF is set by a transfer of information
from bits 3 through 5 of the save field register by the RMF microinstruction
to restore the data field at the conclusion of the program interrupt subroutine.

124

Instruction Buffer Register (IB): The IB serves as a 3-bit input buffer for the
instruction field register. All field number transfers into the instruction field
register are made through the instruction buffer, except transfers from the.
operator console switches. The IB is set by operation of the LOAD ADDRESS
key in the same manner as the instruction- field register. A CIF micro-
instruction loads the IB with the programmed field number contained in MB
6-8. An RMF microinstruction transfers the content of bits O through 2
of the save field register into the IB to restore the instruction field to the
conditions that existed prior to a program interrupt.

Save Field Register (SF): When a program interrupt occurs, this 6-bit register
is loaded from the instruction field and data field registers. The RMF micro-
instruction can -be given immediately prior to the exit from the program
interrupt subroutine to restoré the instruction field and data field by trans-
ferring the content of the SF into the instruction buffer arid the data field
register. The SF is cleared during the cycle in which the program count is
stored at address 0000 of the JMS instruction forced. by a program interrupt .
request, then the instruction field and data field are strobed into the SF.

Break Field Register (BF): This 3-bit register receives three ADDRESS EX- -
TEND signals from any |/O device using the data break facility. When the
B SET signal arrives from the processor, this register is loaded with the
bit combination of the three inputs. :

Extended Address Signal Generator When the PDP-8/I core memory capacity
is extended, the standard memory is designated as field 0. This circuit pro-
duces the EXTEND ADDRESS FIELD O signal when data field O is selected,
or instruction field 0 is selected. This circuit-will produce the other seven
possible EXTEND ADDRESS FIELD signals determined by the bit combination
applied to its input.

Accumulator Transfer Gating: This gating allows the contents of the save field -
register, instruction field register, or the data field reglster to be strobed into
the accumulator. Transfer of information in this manner is accomplished by
circuits which sample the content of registers and supply positive pulses to
the AC upon receipt of 10T command pulses. During an RIB microinstruction,
bits 6 through 11 of the AC are set by the content of the save field register.
During ar: RIF microinstruction, bits 6 through 8 of the AC are set by the
content of the instruction field register. During an RDF microinstruction, bits
6 through 8 of the AC are set by the content of the data field register.

Device Selector: Bits 3 through 5 of the 10T instruction are decoded to pro-
duce the IOT command pulses for the memory extension control. Bits 6
through 8 of the instruction are not used for device selection since they
specify a field number in some commands. Therefore, the select code for
this device selector is designated as 2X.

The Memory Control and ‘Memory Module option Type MM 8/I adds memory
control and read/write switches for each 8K of additional memory. Two 4K
memory modules or one 4K memory module may be specified. Each 4K
memory consists of a core array, address selection circuits and inhibit
selection circuits which are identical with those housed with the PDP-8/1.

Instructions

The instructions for the Type MC 8/I option do not use the I0P generator
and extend the IOT instruction list to include the following:

125

Change to Data Field N (CDF)

Octal Code: 62N1

Event Time: Not applicable

Indicators: 10T, FETCH

Execution Time: 1.5 microseconds

Operation: The data field register is loaded with the program-selected field
number (N =0 to 7). All subsequent memory requests for operands are
automatically switched to that data field until the data field number is changed
. by a new CDF command, or during a program interrupt.

' Symbol: MB6 — 8 = > DF

Change Instruction Field (CIF)

Octal Code: 62N2

Event Time: Not applicable

Indicators: 10T, FETCH

Execution Time: 1.5 microseconds

Operation: The instruction buffer register is loaded with the program-selected
“field number (N = 0 to 7). The next JMP or JMS instruction causes the new
field to be entered.

Symbol: MB6 — 8 = > 1B

Read Data Field (RDF)

Octal Code: 6214

Event Time: Not applicable

Indicators: 10T, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the data field register is transferred into bits 6, 7, 8
of the AC. AH other bits of the AC are unaffected.

Symbol: DF = > AC6 — 8

Read Instruction Field (RIF)

Octal Code: 6224

Event Time: Not applicable

Indicators: 10T, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the instruction field register is transferred into bits
6, 7, 8 of the AC. All other bits of the AC are unaffected.

Symbol: IF = >AC6 — 8

Read Interrupt Buffer (RIB)

Octal Code: 6234
Event Time: Not applicable
Indicators: 10T, FETCH
Execution Time: 1.5 microseconds 4
Operation: The instruction field and data field held in the save field register
during a program interrupt are transferred into bits 6 through 8, and 9
through 11 of the AC respectively.
Symbol: SFO— 2= > AC6— 8
SF3—-5=>AC9-11

126

Restore Memory Field (RMF)

Octal Code: 6244
Event Time: Not applicable
Indicators: 0T, FETCH
Execution Time: 1.5 microseconds ‘
Operation:- This command is used upon exit from the program interrupt sub-
routine in another field. The data and instruction fieldsthat were interrupted by
the subroutine are restored by transferring the content of the save field regis-
ter into the instruction buffer and data field registers. :
Symbol: o '

SFO—-2=>1B

SF3—-5=>DF

Programming

Instructions and data are accessed from the currently assigned instruction and
data fields, where instructions and data may be stored in the same or different
-memory fields. When indirect memory references are executed, the operand
address refers first to the instruction field to obtain an effective address, which
in turn, refers to a location in the currently assigned data field. All instruc-

- tions and operands are obtained from the field designated by the content of
the instruction field register, except for indirectly-addressed operands which
are specified by the content 'of the data field register. In other words, the DF
is effective only in the Execute cycle that is directly preceded by the Defer
cycle of a memory reference instructions, as follows: '

Indirect Page or ZBit Field Field _ Effective
(Bit 3) (Bit 0) InIF InDF : Address
-0 0 m n The operand is in page O of field m

at the page address specified by bits
, : 5 through 11. = '

0 1 m n The operand is in the current page of

: field m at the page address specified
by bits 5 through 11.

1 0 m n . - The absolute address of the operand
in field n is taken from the content
of the location in page O of field m

: _ designated by bits 5 through 11.

1 1 m n ‘The absolute address of the operand
in field n is taken from the content
of the location in the current page of
field m designated by bits 5 through
11.

Each field of extended memory contains eight autoindex registers in addresses
10 through 17. For example, assurhe that a program in field 2 is running
(IF = 2) and using operands in field 1 (DF = 1) when the instruction TAD | 10
is fetched. The Defer cycle is entered (bit 3 ="1) and the content of location
10 in field 2 is read, incremented, and rewritten. If address 10 in field 2
originally contained 4321, it now contains 4322. In the Execute cycle the
operand is fetched from location 4322 of field 1.

127

Program control is transferred between memory fields by the CIF commands.
The instruction does not change the instruction field directly, since this would
make it impossible to execute the next sequential instruction. The CIF instruc-
tion sets the new instruction field into the IB for automatic transfer into the IF
when either a JMP or JMS instruction is executed. The DF is unaffected by
the JMP and JMS instructions. The 12-bit program. counter is set in the nor-
mal manner and, since the IF is an extension on the most significant end of
the PC, program sequence resumes in the new memory field following a JMP

or JMS. Entry into a program interrupt is inhibited after the CIF instruction
until a JMP or JMS is executed.

To call a subroutine that is out of the current field, the data field register is set
to indicate the field of the calling JMS, which establishes the location of the
operands as well as the identity of the return field. The instruction field is
set to the field of the starting address of the subroutine. The following se-
quence returns program control to the main program from a subroutine that
is out of the current field.

/PROGRAM OPERATIONS IN MEMORY FIELD 2

/INSTRUCTION FIELD = 2; DATA FIELD = 2

/CALL A SUBROUTINE IN MEMORY FIELD 1

/ INDICATE CALLING FIELD LOCATION BY THE CONTENT OF THE DATA FIELD

CIF 10 . /CHANGE TO INSTRUCTION
/FIELD 1 = 6212

JMS 1 SUBRP /SUBRP = ENTRY ADDRESS

CDF 20 /| RESTORE DATA FIELD
SUBRP, SUBR / POINTER
/CALLED SUBROUTINE ‘ '

0 /SUBR = PC + 1 AT CALLING POINT

RDF /READ DATA FIELD INTO AC

TAD RETURN /CONTENT OF THE AC = 6202 + DATA

' /FIELD BITS

DCA EXIT /STORE INSTRUCTION SUBROUTINE
EXIT, 0 /A CIE INSTRUCTION

JMP 1 SUBR / RETURN
RETURN, CIF

When a program interrupt occurs, the current instruction and data field num-
" bers are automatically stored in the 6-bit save field register, then the IF and
DF are cleared. The 12-bit program count is stored in location 0000 of field
0 and program control advances to location 0001 of field 0. At the end of the
program interrupt subroutine the RMF instruction restores the IF and DF from
the content of the SF. The following instruction sequence at the end of the
program interrupt subroutine continues the interrupted program after the
interrupt has been processed:

128

/RESTORE MQ IF REQUIRED

/RESTORE L IF REQUIRED

CLA

TAD AC . /RESTORE. AC

RMF /LOAD IB FROM SF

ION /TURN ON INTERRUPT SYSTEM
JMP 10 - /RESTORE PC WITH CONTENT OF

/LOCATION O AND LOAD IF FROM IB

A device using the computer data break facility supplies a 12-bit address ta
the MA and a 3-bit address extension to the Memory ‘Extension Control Type
MC 8/1. The address extension is received by a break field decoder which
selects the memory field used for the data break.

i

MEMORY PARITY (MP-8/1) (The logic for this option is housed
within the PDP-8/I central processor.)

Data transmission checking of each word written in and read from core mem-
ory is provided by this option. The option replaces the 12-bit core memory
with a 13-bit system (driving, inhibiting, sensing circuits as well as a core
array constructed of 13 planes) and includes a parity generator and a parity
checking circuit. The parity generator produces the 13th bit for each 12-bijt
data word written in core memory so that the entire word contains an odd
humber of binary ones. The parity checking circuit monitors each word read
from core memory to assure that the odd parity is maintained. If a word read
contains an even number of ones a transmission error is indicated by setting a
parity error flag. This flag is connected to the program interrupt synchroniza-
tion element of .the computer to initiate a program interrupt subroutine. This
routine sequentially checks all equipment error flags to determine the option
causing the interrupt and initiates an appropriate service and returns to the
main program; or provides a suitable error printout and halts programmed
operations. Upon determining that a memory, parity error has occurred the
program interrupt subroutine can repeat the main program step that caused
the error to check the reliability of the error condition, can perform a simple
write/ read/ check routine at the error address, or can determine the status of
the machine when the error was detected and re-establish or print out these
conditions and halt.

Instructions

Two instructions are associated with the Type MP 8/1 option. They are:

Skip on No Memory Parity Error (SMP)

Octal Code: 6101 .
Event Time: 1 :

Indicator: IOT, FETCH, PAUSE

Execution Time: 4.25 microseconds

129 ’

Operation: The memory parity error flag is sensed and if it contains a O
(signifying no error has been detected) the PC |s mcremented so that the
next successive instruction is skipped. :
Symbol: If Memory Parity Error Flag = O, then PC + 1 = > PC

Clear Memory Parity Error Flag (CMP)

Octal Code: 6104 -

Event Time: 3

Indicator: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: - The memory parity error flag is cleared.
Symbol: 0 = > Memory Parity Error Flag

Programming

Both instructions for this option are used in the program interrupt subroutine
and in diagnostic maintenance programs. The SMP command is used as a
programmed check for memory parity error. In the program interrupt sub-
routine this command can be followed by a jump to a portion of the routine
that services the memory parity option as described previously. The CMP
command is used to initialize the memory parity option in preparation for nor-
mal programmed operation of the computer.

EXTENDED ARITHMETIC ELEMENT (KE-8/I)

(The logic for this option is located within the PDP-8/1 central
processor.)

This option consists of circuits that perform parallel arithm:tic operations on
positive binary numbers. A 12-bit multiplier quotient register (MQ), a 5-stage
step counter (SC), and various shifting and control logic constitute the option.
The AC and MB are used in conjunction with these logic elements to perform
arithmetic operations. With the addition of this option to a PDP-8/1 system,
indicators on the operator console for the content of each bit of the MQ are
activated and a class of instructions is added to the Group 2 Operate in-
struction list.

fnstructions

The extended arithmetic element (EAE) microinstructions are specified by an
operate instruction (operation code 7) in which bits 3 and 11 contain binary
ones. Being augmented instructions, the EAE commands are micropro-
grammed and can be combined with each other to perform non-conflicting
logical operations. Format and bit assignments of the EAE commands are
indicated in Figure 10.

t=scL

. 2:=MUY 3:0vI
OPERATION 4:NMT 5=SHL
COOE 7 CLA SCA 6:zASR T=LSR
r - ~ —* —— — A \
(o] i 2 3 4 5 6 7 8 9 10 1
—— i —— ——
CONTAINS MQA MQL CONTAINS
A1 TO : A1TO
SPECIFY SPECIFY
EAE GROUP EAE GROULP

130

Logical Sequence:

1 — CLA

2 — MQA, MQL, SCA
3 (Bits 8 thru 10 = 1) — SCL

3 (Bits 8 thru 10 = 2) — MUY

3 (Bits 8 thru 10 = 3) — DVI

3 (Bits 8'thru 10 = 4) — NMI

3 (Bits 8 thru 10 = 5) — SHL

3 (Bits 8 thru 10 = 6) — ASR

3 (Bits 8 thru 10 = 7) — LSR

Figure 10. EAE Mlcromstructlon Bit A55|gnments

Muitiply (MUY)
Octal Code: 7405
Sequence: 3 .
Indicators: OPR, FETCH, PAUSE
-Execution Time: 4.8 to 7.2 microseconds
Operation: The number held in the MQ is multiplied by the number held in
core memory location PC + 1 (or the next successive core memory location
after the MUY command). At the conclusion of this command the link con-
_ tains a 0, the most significant 12 bits of the product are contained in the AC
and the Ieast significant 12 bits of the product are contained in the MQ.
Symbol:

Y x MQ = > AC, MQ

O0=>L

Divide (DVI)

. Octal Code: 7407

Sequence: 3 '

Indicators: OPR, FETCH, PAUSE

Execution Time: 5.2 to 7.8 microseconds -

Operation: The 24-bit dividend held in the AC (most significant 12 bits) and
the MQ (least significant 12 bits) is divided by the divisor held in core memory
location PC 4 1 (or the next successive core memory location following the
DVl command). At the conclusion‘of this command the quotient is held in
the MQ, the remainder is in the AC, and the L contains a 0. If the L contains
a 1, divide overflow occurred so the operation was concluded after the first
cycle of the division. _

Symbol: AC,MQ +~ Y = >MQ

Normalize (NMI)

Octal Code: 7411

Sequence: 3

Indicators: OPR, FETCH, PAUSE

Execution Time: 1.5 m:croseconds + 0.25 mxcrosecond for each shift
Operation: ~This instruction is used as part of the conversion of a binary
number to a fraction and an exponent for use in fioating-point arithmetic.
The combined content of the AC and the MQ is shifted left by this one
command until the content of ACO is not equal to the content of AC1, or
until 6000 0000 is contained in the combined AC and MQ, to form the
fraction. Zeros are shifted into vacated MQ11 positions for each shift. At the

131 .

conclusion of this operation, the step counter contains a number equal to
the number of shifts performed, which can be loaded into the AC by an SCA
command to form the exponent. The content of L is lost. Both positive and
negative two's complement numbers can be normalized.

Symbol:
ACj =>ACj—1
ACO =>1L
MQO = > ACl1
MQRj = >MQj—1

0 = > MQ11 until ACO £ AC1 or until AC MQ = 6000 0000

Shift Arithmetic Left (SHL)

Octal Code: 7413
Sequence: 3
Indicators: OPR, FETCH PAUSE
Execution Time: 3.0 mlcroseconds + 0.25 microsecond for each shift
Operation: This instruction is used for scaling by shifting the combined
content of the AC and MQ to6 the left one position more than the number of
positions indicated by the content of core memory at address PC + 1 (or the
next successive core memory location following the SHL command). During
the shifting, zeros are shifted into vacated MQ11 positions. The L, AC, and
MQ are treated as one long register during this operation. Bits shifted out of
ACO enter the L, and bits shifted out of the L are lost.
Symbol:

Shift Y + 1 positions as follows:

ACj =>ACj—1

ACO = >L
MQO = > AC11
MQj = > MQj—1

0 =>Mall

Arithmetic Shift Right (ASR)

Octal Code: 7415

Sequence: 3

Indicators: OPR, FETCH, PAUSE

Execution Time: 3.0 microseconds + 0.25 microsecond for each shift.
Operation: This instruction is used for scaling and treats the AC and MQ as
one long register. The combined content of the AC and the MQ is shifted right
one position more than the number contained in memory location PC + 1 (or
the next successive core memory location following the ASR command). The
sign bit, contained in ACO, enters vacated positions, the sign bit is preserved
in the link, informaton shifted out of MQ11 is lost, and the L is set to cor-
respond to the sign bit during this operation.

Symbol:
Shift Y 4 1 positions as follows:
ACO =>1L
ACO = > ACO
ACj =>ACj+1
AC1l1 = > MQO

MQj =>MQj+1
132

Logical Shift Right (LSR)

Octal Code: 7417

Sequence: 3

Indicators: OPR, FETCH, PAUSE

Execution Time: 3.0 microseconds 4 0.25 microsecond for each shift.
Operation: This instruction is used for scaling and treats the AC and MQ as
one long register. The combined content of the AC and MQ is shifted right
one position moré than the number contained in memory location PC 4- 1 (or
the next successive core memory location following the LSR command). This
command is similar to the ASR command except that zeros enter vacated posi-
tions instead of the sign bit entermg these locations. Information shifted out
of MQ11 is lost and the L |s cleared during this operaton.

Shift Y 4+ 1 positions as follows:

0 =>L

0 = > ACO
ACj =>ACj+1
AC11 = > MQO

MQj =>MQj+1

Load Multiplier Quotient (MQL) ,

Octal Code: 7421

Sequence: 2

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: This command clears the MQ, loads the content of the AC into
the MQ, then clears the AC. This operation is essential to initializing any
multiply or divide routine and can be combined with a MUY or DVi command
to perform the operation just prior to executing a multiplication or a division
using a 12-bit dividend./

Symbol:]
0 =>MQ
AC = > MQ
0 =>AC : S

Step Counter Load from Memory (SCL)

Octal Code: 7403
Sequence: 3 .
Indicators: OPR, FETCH, EXECUTE
Execution Time: 3.0 microseconds
Operation: Loads complement of bits 7 thru 11 of the word in" memory
following the mstructlon into the step counter.
Symbol:
MBs = > SC
PC+2=>PC
Step Counder Load into Accumulator (SCA)

Octal Code: 7441

Sequence: 2

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the step counter is transferred into the AC. This
command is used following an NMI| command to establish the exponent of a
normalized number to be used in floating point arithmetic. The AC should be
cleared prior to issuing this command or the CLA command can be combined
with the SCA to clear the AC then effect the transfer. -

Symbol: SCVAC= > AC

133

Multiplier Quotient Load into Accumulator (MQA)

Octal Code: 7501

Sequence: 2

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operatlon The content of the MQ is transferred into the AC. This command
is given to load the 12 least significant bits of the product into the AC follow-
ing a multiplication or to load the quotlent into the AC followmg a division.
The AC should be cleared prior to issuing this command or the CLA command
can be combined with the MQA to clear the AC then effect the transfer.
Symbol: - MQVAC = > AC

Clear Accumulator (CLA)

Octal Code: 7601

Sequence: 1

Execution Time: 1.5 microseconds

Indicators: OPR, FETCH

Operation: The AC is cleared, allowing this command to be combined with
the other EAE commands that load the AC (such as SCA and MQA).
Symbol: O = >AC

Programming

MULTIPLICATION
Multiplication is performed as follows:

1. Load the AC with the multiplier using the TAD instruction.
2. Transfer the content of the AC into the MQ usmg the MQL command.
3. Give the MUY command.

Note that steps 2 and 3 can be combined into one instruction.-)
The content of the MQ is then muitiplied by the content of the next successive
core memory address (PC + 1). At the conclusion of the multiplication the’
most signicant 12 bits of the product are held in the AC and the least S|gmf|-
cant bits are held in the MQ. This operation takes a maximum of 7.2 micro-
seconds, at the end of this time the next instruction is executed.

The following multlphcatmn program examples indicate the operation of the
KE 8/1 option in closed subroutines (routines which are incorporated into
larger routines and are not written in a form which allows them to be called
as a normal mathematical subroutine).

Multiplication of 12-Bit Unsigned Numbers

Enter with a 12-bit multiplicand in AC and a 12-bit multiplier in core
~ memory. Exit with high order half of product in a core memory location
labelled HIGH, and with low order half of product in the AC. Prograni time
is from 9.3 to 11.7 microseconds.

MQL MUY /LOAD MQ WITH MULTIPLICAND, INITIATE
{ MULTIPLICATION

MLTPLR / MULTIPLIER

DCA HIGH /STORE HIGH ORDER PRODUCT

MQA /LOAD AC WITH LOW ORDER PRODUCT

134

Multiplication of 12-Bit Signed Numbers, 24-Bit ‘Signed Product

Enter with a 12-bit multiplicand in AC and a 12-bit multiplier in core
memory. Exit with signed 24-bit product in core memory locations desig-
nated HIGH and LOW. Program time is from 36.3 to 52.5 microseconds.

CLL , |
SPA | /MULTIPLICAND “POSITIVE?
CMA CML IAC ~ /NO. FORM TWO'S COMPLEMENT
MQL /LOAD MULTIPLICAND INTO MQ
TAD MLTPLR
SPA | /MULTIPLIER POSITIVE?
CMA CML IAC /NO. FORM TWO'S COMPLEMENT
DCA ~ MLTPLR .
_RAL - -

DCA ~ SIGN JSAVE LINK AS SIGN INDICATOR
MUY JMULTIPLY

MLTPLR, O | /MULTIPLIER
DCA HIGH
TAD SIGN | ~
RAR JLOAD LINK WITH SIGN INDICATOR
MQA
SNL /IS PRODUCT NEGATIVE?
JMP LAST /NO
CLL CMA IAC /YES
DCA LOW
TAD HIGH
CMA
SZL
IAC -
DCA HIGH

| SKP
LAST, DCA LOW

DIVISION

Division is performed as follows:

1. Load the 12 least significant bits of the dividend into the AC using the
TAD instruction, then transfer the content of the AC into the MQ
using the MQL command.

2. Load the 12 most significant bit of the d|V|dend into the AC.

3. Give the DVI command.

The 24-bit dividend contained in the AC and MQ is then divided by the 12-bit

divisor contained in the next successive core memory address (PC + 1). This
operation takes a maximum of 7.8 microseconds and is concluded with a
12-bit quotient held in the MQ, the 12-bit remainder in the AC, and the link
holding a O if divided overflow did not occur. To prevent divide overflow, the
divisor in the core memory must be greater than the 12-bits of the dividend
held in the AC. When divide overflow occurs, the link is set and the division

135

is concluded after only one cycle. Therefore the instruction following the
divisor in core memory should be an SZL microinstruction to test for over-
flow. The instruction following the SZL can be a jump to a subroutine that
services the overflow. This subroutine can cause the program to type out an
error indication, rescale the divisor or the dividend, or perform other mathe-
matical corrections and repeat the divide routine.

The following division program examples indicate the operation of the Type
KE 8/1 option in closed subroutines. '

Division of 12-Bit Unsigned Numbers

Enter with a 12-bit unsigned dividend in the AC and a 12-bit unsigned divisor
in core memory. Exit with remainder in core memory location labeleld RE-
MAIN and with the quotient in the AC. Program time is a maximum of 15.3
microseconds.

CLL

MQL DvVI /LOAD MQ, INITIATE DIVISION
DIVSOR / DIVISOR

SZL / OVERFLOW?

JMP [YES, EXIT

DCA REMAIN

MaQL /LOAD AC WITH QUOTIENT

Division of a 12-Bit Signed Numbers

Enter with a 12-bit signed dividend in the AC and a 12-bit signed divisor in
core memory. Exit with unsigned remainder in core memory location REMAIN
and a 12-bit signed quotient in the AC. Program time is a maximum of 36.3
microseconds.

CLL

SPA /DIVIDEND POSITIVE?
CMA CML IAC /NO

MQL -

TAD .+11

SPA /DIVISOR POSITIVE?
CMA CML IAC /NO

DCA .+6

SNL - /QUOTIENT NEGATIVE?
CMA /NO

CLL

BS/{\ SIGN /SET SIGN INDICATOR
DIVSOR / DIVISOR

szL / OVERFLOW

JMP /EXIT ON OVERFLOW
MQL

ISZ SIGN

CMA IAC

136

POWER FAILURE (KP-8/1) (The logic for this option is housed
within the PDP-8/I central processor.)

This prewired option protects an operating program in the event of failure
of the source of computer primary power. If a power failure occurs, this option
causes a program interrupt and enables continued operation for 1 miilisecond,
allowing the interrupt routine to detect the power low condition as initiator of
the interrupt, and to store the content of active regisers (AC, L, MQetc.) ana
the program count in known core memory locations. When power is restored,
the power low flag clears and a routine beginning in address 0000 starts auto-
matically. This routine restores the content of the active ‘registers and pro-
gram counter to the conditions that existed when the interrupt occurred, then
continues the interrupted program.

The KP8/I option consists of three logic circuits:

A power interrupt circuit monitors the status signal of the computer power
supply, and sets a power low flag when power is interrupted (due to a power
failure or due to the operation of the POWER lock on the operator console).
This flag causes a program interrupt when an interruption in computer power
s detected. B -

A restart circuit assures that when a power interrupt occurs the logic circuits
of the computer continue operation for 1 millisecond to allow a program sub-
routine to store the content of the active registers; maintains the inoperative
condition of the computer during periods of power fluctuation; and clears the
power low flag and restarts the program when power conditions are suitable
for computer operation. A manual RESTART switch enables or disables the
automatic restart operation. With this switch in the ON (down) position,*the
option clears the program counter immediately and produces a signal to
simulate operation of the START key on the operator console 200 milli-
seconds after power conditions are satisfactory. The PC is clear so that
operation restarts by executing the instruction in address 0000. This in-
struction is a JMP to the starting address of the subroutine which restores
the content of the active rggisters and the program counter to the conditions
that existed prior to the power low ‘interrupt. The 200-millisecond delay
assures that slow mechanical devices, such as Teletype equipment, have
come to-a complete stop before the program is resumed. Simulation of
the manual START function causes the processor to generate a Power
Clear pulse to clear internal controls and 1/O device registers. With the
RESTART switch in the OFF (up) position, the power low flag is cleared but
the program must be started manually, possibly after resetting peripheral
“equipment or by starting the interrupted program from the beginning.

A skip circyit provides programmed sensing of the condition of the. power low
flag by adding the following instruction to the computer repertoire:

Skip on Power Low (SPL)

Octal Code: 6102

Event Time: 2

Indicators: 10T, FETCH, PAUSE
Execution Time: . 4.25 microseconds

137

Operation: The content of the power low flag is sampled, and if it contains a 1
(indicating a power failure has been detected) the content of the PC is incre-
mented by one so the next sequential instruction is skipped.

Symbol: If Power Low flag = 1, then PC +1 = > PC

Since the time that operation of the computer can be extended after a power
failure is limited to 1 millisecond, the condition of the power low flag should
be the first status check made by the program interrupt subroutine. The be-
ginning of the program interrupt subroutine, containing the SPL microinstruc-

tion and the power fail program sequence can be executed in 26 mictosec-
onds on a basic PDP-8/I with an extended arithmetic element. The power
fail program sequence stores the content of the active register and program
count in designated core memory location, then relocates the calling instruc-
tion of the power restore subroutine to address 0000, as follows:

Address Instruction Remarks |
0000 — / STORAGE FOR PC AFTER PROGRAM INTERRUPT
0001 JMP FLAGS /INSTRUCTION EXECUTED AFTER PROGRAM
[INTERRUPT
FLAGS, SPL / SKIP IF POWER LOW FLAG =1

JMP OTHER /INTERRUPT NOT CAUSED BY POWER LOW,
/CHECK OTHER FLAGS '

DCA AC /INTERRUPT WAS CAUSED BY POWER LOW,
. /SAVE AC

RAR /GET LINK

DCA LINK / SAVE LINK

MQA /GET MQ

DCA MQ / SAVE MQ

TAD 0000 /GET PC

DCA PC / SAVE PC

TAD RESTRT /GET RESTART LOCATION
DCA 0000 { DEPOSIT RESTART LOCATION IN 0000
HLT

RESTRT JMP ABCD / ABCD IS LOCATION OF RESTART ROUTINE

Automatic program restart begins by executing the instruction stored in ad-
dress 0000 by the power fail routine. The power restore subroutine restores
the content of the active registers, enables the program interrupt facility, and
continues the interrupted program from the point at which it was interrupted,

as follows:

Address Instruction Remarks
0000 JMP ABCD
ABCD, TAD MQ . /GET MQ
MQL /RESTORE MQ
TAD LINK /GET LINK
CLL RAL . /{RESTORE LINK
TAD AC /RESTORE AC -
iON {TURN ON INTERRUPT
JMP | PO /RETURN TO INTERRUPTED PROGRAM

138

CHAPTER 7
INPUT/OUTPUT EQUIPMENT INSTRUCTIONS

TELETYPE AND CONTROL
Teletype Model 33 ASR

(The'contro| circuitry for this device is located in the PDP-8/1 central
processor.) S

The standard Teletype Model 33 ASR (automatic send-receive) can be used to
type in or print out information at a raté of up to ten characters per second, or
to read in or punch out perforated paper tape at a ten characters per second
rate.” Signals transferred between the 33 ASR and the control! logic are stand-
ard serial, 11 unit code Teletype signals. The signals consist of marks and
spaces which correspond to idle and bias current in the Teletype, and to zeros
and ones in the control and computer. The start mark and subsequent eight
character bits are one unit of time duration and are followed by the stop mark
which is two units. -

The 8-bit code used by the Model 33 ASR Teletype unit is the American
-Standard Code for Information Interchange (ASCII) modified. To convert the
ASCII code to Teletype code add 200 octal (ASCIl + 200 = Teletype). This
code is read in the reverse of the normal octal form used in the PDP-8/1since
bits are numbered from right to left, from 1 through 8, with bit 1 having the
least significance. Therefore perforated tape is read:

8 7 6 5 4 s 3 2 1

Most Significant Least Significant
Octal Bit Octal Bit

The Model 33 ASR set can generate all assigned codes except 340 through 374
and 376. Generally codes 207, 212, 215, 240 through 337, and 377 are suf-
ficient for Teletype operation. The Model 33 ASR set can-detect all characters,
but does not interpret all of the codes that it can generate as commands.
The standard number of characters printed per line is 72. The sequence for
proceeding to the next line is a carriage return followed by a line feed (as op-
.posed to a line feed followed by a carriage return). Appendix 3 lists the
character code for the Teletype. Punched tape format is as follows: :

Tape Channel
87 654 S 321

Binary Code

(Punch = 1) 10 110 100

Octal Code o2 6 | 4
Teletype Control

Serial information read or written by the Teletype unit is assembled or dis-
assembled by the control for parallel transfer to the accumulator of the proces-
sor. The control also provides the program flags which cause a program inter-
rupt or an instruction skip based upon the availability of the Teletype and the
processor as a function of the program.

139

In all programmed operation, the Teletype unit and control are considered as
a Teletype in (TTI) as a source of input intelligence from the keyboard or the
perforated-tape reader and is considered a Teletype out (TTO) for computer
output information to be printed and/or punched on tape. Therefore; two de-
vice selectors are used; the select code of 03 initiates operations associated
with the keyboard/reader, and the device selector, assigned the select code
of 04, performs operations associated with the teleprinter/ punch. Parallel
input and output functions are performed by corresponding 10T pulses pro-
duced by the two device selectors. Pulses produced by 10P1 pulse trigger skip
gates; pulses produced by the IOP2 pulse clear the control flags and/or the
~accumulator; and pulses produced by the IOP4 pulse initiate data transfers to
or from the control.

Keyboard/Reader

The keyboard and tape reader control contains an 8-bit buffer (TTI) which as-
sembles and holds the code for the last character struck on the keyboard or
read from the tape. Teletype characters from the keyboard/reader are re-
ceived serially by the 8-bit shift register TTI. The code of a teletype charac-
ter is loaded into the TTI so that spaces correspond with binary zeros and
holes (marks) correspond to binary ones. Upon program command the content
of the TTI is transferred in parallel to the accumulator.

When a Teletype character starts to enter the TTI the control de-energizes a
relay in the Teletype unit to release the tape feed latch. When released, the
latch mechanism stops tape motion only when a complete character has been
sensed, and before sensing of the next character is started.

A keyboard flag is set to a binary one, and causes a program interrupt when
an 8-bit computer character has been assembled in the TTI from a Teletype
character. The program must sense the condition of this flag with a KSF
microinstruction, and if the flag is set, issue a KRB microinstruction which
clears the AC, clears the keyboard flag, transfers the content of the TTi into
the AC, and enables advance of the tape feed mechanism.

Instructions for use in supplying data to the computér from the Teletype are:

Skip on Keyboard Flag (KSF)

Octal Code: 6031

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The keyboard flag is sensed, and if it contains a binary 1 the con-
tent of the PC is incremented by one so that the next sequential instruction
is skipped. ' ' :
Symbol: If Keyboard Flag = 1, thenPC + 1 = > PC

Clear Keyboard Flag (KCC)

Octal Code: 6032

Event Time: 2

Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds

Operation: The AC is cleared in preparation for another microinstruction to
transfer a character from the TTI into the AC. The keyboard flag is also
cleared, this allows the hardware to begin assembling the next input charac-

140

ter in the TTI. If there is tape in the reader and the reader is on, the char-
acter over the read head will be loaded into the TTiand the tape advanced one
frame. If there is no tape or the reader is turned off (STOP or FREE) the -
character struck on the keyboard will be assembled into the TTI. In either
case, when the character is completely assembled in the TTI the hardware

causes the keyboard flag to be set to a binary 1.

Symbol: 0 = >AC - _
0 = > Keyboard flag allowing the hardware to cause:
Keyboard/ Tape Character = > TTI
1 > Keyboard flag when done

Read Keyboard Buffer Static (KRS)

Octal Code: 6034

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds '
Operation: The content of the TTI is transferred into bits 4 through 11 of the
AC. This is a static command in that neither the AC nor the keyboard flag is
cleared. ~
Symbol: TTIV AC4-11 = > AC 4-11

Read Keyboard Buffer Dynamic (KRB)

Octal Code: 6036

Event Time: 2,3 :

indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds :
Operation: This microinstruction combines the functions of the” KCC and
KRS. The AC and keyboard flag are both cleared and the content of the TTI -
is transferred into bits 4-11 of the AC. Clearing the keyboard flag allows the
hardware to begin assembling. the next input character into the TTI (as dis-
cussed with the KCC). When the character is completely assembled in the
TTl, the hardware causes the flag to be set indicating it again has a character
ready for transfer.

Symbol: 0 = > AC C(TTI) V C(AC 4-11) = > AC 4-11
0 = > Keyboard Flag allowing the hardware to cause:
Keyboard/Tape Character = > TTI
1-= > Keyboard flag when done.

The following are examples. of possible sequences of instruétion to read a
character into the AC from the teletype: '

LOOK, KSF JSKIP IF FLAG =1
: JMP LOOK /JMP BACK & TEST FLAG AGAIN
KRB /TRANSFER TTI CONTENTS INTO AC

This sequence waits for the TTI to set its flag, indicating that it has a char-)
acter ready to be transferred. It then skips to the KRB command which
causes the character to be read into the AC from the TTI. ‘

By making this sequence of instructions a subroutine of a larger program, it
can be accessed each time an input character is desired.

141

READ, 0 /STORE DC HERE FOR RETURN ADDRESS

KSF /SKIP IF FLAG =1
JMP.-1 ITEST FLAG AGAIN
KRB /READ CHAR INTO AC

JMP | READ /EXIT TO MAIN PROGRAM

The above sequence will operate properly on a PDP-8/1 since all flags are
cleared upon pressing START, however, the flags are not cleared on the
PDP-5 when START is pressed, hence the reader flag should be cleared by
~a KCC as part of the initialization done at the beginning of any program.
Failure to clear this flag could cause an extraneous character to be input
{whatever happened to be in the TT| buffer would be interpreted as the first
input character). -

KCC /CLEAR TTI FLAG
READ, 0 -
KSF ISKIP IF FLAG = 1
JMP.-1 JTEST FLAG AGAIN
KRB /READ CHARACTER INTO AC

JMP | READ [EXIT

Teleprinter/Punch

On program command a character is sent in parallel from the accumulator
(AC) to the TTO shift register for transmission to the teleprinter/punch unit.
The control generates the start space, then shifts the eight character bits
serially into the printer selector magnets of the teletype unit, and then gen-
erates the stop marks. This transfer of information from the TTO into the
teleprinter/punch unit is accomplished at the normal teletype rate and re-
quires 100 milliseconds for completion. The flag in the teleprinter control is
again set to a 1 when the last of the character code has been sent to the
- teleprinter/punch, indicating that the TTO is ready to receive a new character
from the AC. The flag is connected to both the program interrupt synchroniza-
tion element and the instruction skip element. Unless using the interrupt, the
program must check the flag and, upon detecting the ready or set (binary 1)
condition of the flag by means of the TSF microinstruction, the program must
issue a TLS microinstruction which clears the flag and sends a new character
from the AC to the TTO to be shifted out to the teleprinter/punch. The
process of sending a character to the TTO from the AC is a great deal shorter
than that of shifting the character out to the teleprinter/punch, therefore,
the program must account for the time differential by waiting for flag to be
set (1) before issuing a TLS.

142

Instructions for use in outputting data to the teletype are as follows:

Skip on Teleprinter Flag (TSF)

Octal Code: 6041

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The teleprinter flag is sensed, and if it contains a binary 1 the con-
tent of the PC is incremented by one so that the next sequential instruction is
skipped.

Symbol: If Teleprinter Flag = 1,thenPC + 1 = > PC

Clear Teleprinter Flag (TCF)

Octal Code: .6042

Event Time: 2 _

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 mlcroseconds :
Operation: The teleprinter flag is cleared to 0.
Symbol: 0 = > Teleprinter Flag

Load Teleprinter and Print (TPC)

Octal Code: 6044

Event Time: 3

Indicators: 10T, FETCH, PAUSE

‘Execution Time: 4.25 mlcroseconds

Operation: The contents of bits 4-11 of the AC are sent to the TTO, then the
hardware starts shifting the character out to the printer/punch unit. This
microinstruction does not clear the teleprinter flag. ,

Symbol: C(AC 4-11) = > TTO causing:
' C(TTO) = > printed and (if punch on) punched

Load Teleprinter Sequence (TLS)

Octal Code: 6046

Event Time: 2,3

" Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds

Operation: This microinstruction combines the functions of the TCF and the
TPC. The teleprinter flag is cleared (set to 0) then the contents of bits 4-11 of
the AC are sent to the TTO, where the hardware shifts the character out to
the printer/punch unit. When the printer/punch has finished outputting the
character and is ready for another character, the hardware has again raised
the teleprinter flag (set it to a 1) to indicate this free condition. The whole
operation, from the time at which the TLS has cleared the flag and sent out
the character until the time at which the hardware finishes with the character
and sets the flag to a 1 again, requires 100 milliseconds with the time re-
quired for the character to travel from the TTO to the paper being consid-
erably greater than that required for it to be sent from the computer to the

143

Symbol: 0 = > Teleprinter flag
C(AC 4-11) = > TTO causing:
C(TTO) = > Printed and (if punch on) punched
1 = > Teleprinter flag when done

The following are examples of possible ways to use these instructions to out-
put a character to the teletype. The last is recommended:

CLA
TAD X /PUT CHARACTER CODE INTO AC FROM
: /LOCATION X ’
TLS /LOAD TTO FROM AC & PRINT/PUNCH
FREE, TSF ITEST FLAG TO SEE IF DONE PRINTING,
ISKIP IF =1
JMP FREE /TEST FLAG AGAIN

CLA /CLEAR CHARACTER CODE FROM AC

continue program

This sequence sends one character code to the TTO and waits for it to finish
printing/punching before continuing program. It does not require that the
flag to be set, in order to output the character. By making this sequence of
instructions a subroutine of a larger program, it can be accessed (by a JMS)
each time a character is to be output. Assume that the subroutine is entered
with the character code in the AC:

TYPE, 0
TLS . /LOAD TTO FROM AC AND PRINT/PUNCH
TSF ITEST FLAG, SKIP IF =1
JMP.-1 /[JMP BACK & TEST FLAG AGAIN
CLA /CLEAR CHARACTER FROM AC

JMP I TYPE ~ [EXIT TO MAIN PROGRAM

-

By rearranging this subroutine the present time spent waiting for the
character to be output and the flag to be set to 1 (100 milliseconds) can be
used to continue the calculations, etc., of the main program thus making
more efficient use of time.

TYPE, 0 |
TSF JTEST FLAG TO SEE IF PRINTER FREE,
ISKIP IF YES OR . . .
JMP.-1 JWAIT TIL IT IS BY TESTING AGAIN AND
JAGAIN .
TLS JOUTPUT CHARACTER
CLA -

JMP | TYPE [EXIT TO CONTINUE PROGRAM

144

This. subroutine tests the flag first and waits only if a previous character is
still being output. It clears the AC and exits immediately after sending the
character to the TTO and is continuing to run the user’s program instead of
waiting while the teletype (a much slower device} is off typing/punching the
last character. The PDP-8/1 clears all flags which are on the clear flag bus (this
includes teletype flags) when key START is depressed. This means that
the user program must account for setting the teleprmter flag initially and
after each TCF (if any) or else the program will hang up in the wait loop of
the print routine. The only way to set the flag to a 1 is through issuing a
microinstruction which leaves the flag set when alone. This instruction should
appear among the first few executed and must appear before any attempt to
output a character.

The following example initializes the flag"with a TLS as the first instruction
of the program and makes optimum use of the time that would be spent wait-
ing for the teletype to finish.)

BEGIN, = TLS /INITIALIZE TELEPRINTER FLAG
TYPE, 0 x
TSF /SKIP IF FLAG=1 or . . .
IMP-1 JWAIT UNTIL IT IS LOAD TTO &
LS /TYPE CHARACTER
CLA

» JMP | TYPE JEXIT & CONTINUE PROGRAM WHILE
. ITELETYPE IS FINISHING CHARACTER

TELETYPE OPTION (TYPE PT08)

The Teletype facility of the basic computer can be expanded to accommo-
date several Model 33 or Model 35 Automatic Send Receive or Keyboard
Send Receive units with the PTO8 option. A PTO8 option allows a Teletype
to be interfaced to the PDP-8/I. Each Teletype line added contains logic
elements that are functionally identical to those of the basic Teletype con-
trol. Therefore, instructions and programming for each PTO8 are similar to
those described previously for the basic Teletype unit. The following device
select codes have been assigned for 5 PTO8 options.

Line Select

Unit ~ Codes

40 and 41
42 and 43
44 and 45
46 and 47
11 and 12

bW+

Instruction mnemonics for Teletype equipment in the PTO8 system are not
recognized by the program assembler (PAL) and must be defined by the
programmer. Mnemonic codes can be defined by the mnemonic code of the
comparable basic Teletype microinstruction, suffixed with “PT” and the line
number. For example, the following instructions can be defined for line 3:

145

Mnemonic Octal - Operation

TSFPT3 6441 Skip if teleprinter 3 flagisa 1.

TCPPT3 6442 Clear teleprinter 3 flag.

TPCPT3 6444 Load teleprinter 3 buffer (TT0O3) from the content
of AC4-11 and print and/or punch the character.

TLSPT3 6446 Load TTO3 from the content of AC4-11, clear tele-
printer 3 flag, and print and/or punch the character

- KSFPT3 6451 Skip if keyboard 3 flagis a 1.

KCCPT3 6452 Clear AC and clear keyboard 3 flag.

KRSPT3 6454 Read keyboard 3 buffer (TTI3) static. The content
of TTI3 is loaded into AC4-11 by an OR transfer.

KRBPT3 6456 Clear the AC, clear keyboard 3 flag, and read the
content of TTI3 into AC4-11.

HIGH-SPEED PERFORATED TAPE READER
AND CONTROL (TYPE PR8/I)

(The control circuitry for this device is located in the PDP-8/1 central proc-
essor.)

This device senses 8-hole perforated paper or Mylar tape photoelectrically at
300. characters per second. The reader control requests reader movement,
transfers data from the reader into the reader buffer (RB), and signals the
computer when incoming data is present. Reader tape movement is started
by a reader control request to simultaneously release the brake and engage
the clutch. The 8-bit reader buffer sets the reader flag to 1 when it has been
filled from the reader and transfers data into bits 4 through 11 of the accumu-
lator under program control. The reader flag is connected to the computer
program interrupt and instruction skip facilities, and is cleared by 10T pulses. -
Tape format is as described for the Teletype unit. Computer instructions for
the reader are:

Skip on Reader Flag (RSF)

Octal Code: 6011

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds .

Operation: The reader flag is sensed, and if it contains a binary 1 the content
of the PC is incremented by one so that the next sequential instruction is

skipped.
Symbol: If Reader Flag = 1,thenPC + 1 = > PC

Read Reader Buffer (RRB)

Octal Code: 6012
Event Time: 2
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: The content of the reader buffer is transferred into bits 4 through
11 of the AC and the reader flag is cleared. This command does not clear
the AC. \
Symbol: RBVAC 4-11 = > AC 4-11

0 = > Reader Flag

146

Reader Fetch Character (RFC)

Octal Code: 6014
Event Time: 3
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds _ '
Operation: The reader flag and the reader buffer are both cleared, one char-
acter is loaded into the reader buffer from tape, and the reader flag is set when
this operation is completed.- ‘ . A
Symbol: 0 = > Reader Flag, RB

Tape Data = > RB

1 = > Reader Flag when done

A program sequence loop to read a character from perforated tape can be
written as follows: - ~

. RFC /FETCH CHARACTER FROM TAPE
- LOOK, RSF / SKIP WHEN RB FULL
JMP LOOK'
CLA
RRB /LOAD AC FROM RB

 HIGH-SPEED TAPE PUNCH AND CONTROL (TYPE PP8/I)

(The control circuitry for this device is located in the PDP-8/I central proc-
essor.) a

This option consists of a Royal McBee paper tape punch that perforates 8-hole
tape at a rate of 50 characters per second. Information to be punched on a
line of tape is loaded in an 8-bit punch buffer (PB) from AC bits 4 through 11.
The purich flag becomes a 1 at the completion of punching action, signaling
that new information may be transferred into the punch buffer, and punching
initiated. The punch flag is as described for the Teletype unit. The punch
instructions are:

skip on Punch Flag (PSF)

Octal Code: 6021

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds _ '

Operation: The punch flag is sensed, and if it contains a binary 1 the content
of the PC is incremented by one so that the next sequential instruction is
skipped. : -

Symbol: If Punch Flag = 1,thenPC + 1 = > PC

Clear Punch Flag (PCF)

Octal Code: 6022

Event Time: 2 o

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds _

Operation: Both the punch flag and the punch buffer are cleared in prepara-
tion for receiving a new character from the computer.

Symbol: 0 = > Punch Flag, PB :

147

Load Punch Buffer and Punch Character (PPC)

Octal Code: 6024

Event Time. 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: An 8-bit character is transferred from bits 4 through 11 of the AC
into the punch buffer and then this character is punched. This command ‘does
not clear the punch flag or the punch buffer.

Symbol: AC4-11VPB = > PB

Load Punch Buffer Sequence (PLS)

Octal Code: 6026
Event Time: 2,3
Indicators: 0T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: The punch flag and punch buffer are both cleared, the content of
bits 4 through 11 of the AC is transferred into the punch buffer, the character
in the PB is punched in tape, and the punch flag is set when the operation is
completed.
Symbol: 0 = > Punch Flag, PB

AC4-11 = >PB

1 = > Punch Flag when done

A program sequence loop to punch a character when the punch buffer is
“free” can be written as follows: ’

FREE, PSF /SKIP WHEN FREE

JMP FREE
PLS /LOAD PB FROM AC AND PUNCH
/CHARACTER

DIGITAL-TO-ANALdG CONVERTER (TYPE AAO1A) :

The general-purpose Digital-to-Analog Converter Type AAQ1A converts 12-bit
binary computer output numbers to analog voltages. The basic option consists
of three channels, each containing a 12-bit digital buffer register and a
digital-to-analog converter (DAC). Digital input to all three registers is pro-
vided, in common, by one 12-bit input channel which receives bussed output
connections from the accumulator. Appropriate precision voltage reference
supplies are provided for the converters.

One 10T microinstruction simultaneously selects a channel and transfers a
digitai number into the selected register. Each converter operates continu-
ously on the content of the associated register to provide an analog output
voltage.

Type AAO1A options can be specified in a wide range of basic configurations;
e.g., with from one to three channels, with or without output operational ampli- -
fiers, and with internally or externally supplied reference voltages. Configura-
tions with double buffer registers in each channel are also available.

Each single-buffered channel of the equipment is operated by a single 10T
command. Select codes of 55, 56, and 57 are assigned to the AAOLA, making
it possible to operate nine single-buffered channels or various configurations of
double-buffered channels. A typical instruction for the AAO1A is:

148

Load Digital-to-Analog Converter 1 (DAL1)
Octal Code: 6551
Event Time: 1 ’ _
Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The content of the accumulator is loaded into the digital buffer
register of channel 1. - ' .

Symbol: AC = > DAC1

The analog output voltage of a standard converter is from ground to —9.9976
volts (other voltages are available in equipment containing output operational
amplifiers). All binary input numbers are assumed to be 12 bits in length with
negative numbers represented in 2’s complement notation. An input of 4000,
“yields an output of ground potential; an input of 0000; yields an output of —5
volts; and an input of 1777; yields an output of —10 volts minus the analog
value of the least significant digital bit. Output accuracy is =0.0125% of full
scale and resolution is 0.025% of full scale value. Response time, measured
directly at the converter output, is 3 microseconds for a full-scale step change
to 1 least significant bit accuracy. Maximum buffer register. loading rate is 2
megahertz. . '

DISPLAY EQUIPMENT

Cathode-ray tube display equipment available for use with the PDP-S/I in-
cludes the Oscilloscope Display Type VC8/I and the Precisipn Display Type
30N. The Light Pen Type 370 operates with either of these devices.

OSCILLOSCOPE DISPLAY CONTROL (TYPE VCBII)

(The control circuitry for this device is located in the PDP-8/1 central proc-
essor.) : ' '

‘The oscilloscope available for use with the Type VC8/I control is a Textronic
Osciiloscope Modei RM503 with 10 bits per axis.

Type VC8/I is a two axis digital-to-analog converter and an intensifying cir-
cuit, which provides the Deflection and intensify signals needed to plot data
on an oscilloscope. Coordinate data .is loaded into an X buffer (XB) or a Y-
buffer (YB) from bits 2 through 11 of the accumulator. The binary data in
these buffers is converted to a —10 to O volt Analog Deflection signal. The 30-
volt Intensify signal is connected to the grid of the oscilloscope CRT. The
duration of this signal, and hence the intensity of the point displayed, is de-

" termined by a 2-bit brightness register (BR). The content of the BR controls
timing circuits that establish nominal durations of 1-, 2-, or 4-microsecond
for the Intensify signal. The BR is loaded from a number contained in the ap-
propriate 10T instruction. Application of power to the computer or pressing of -
the START key resets the BR to the maximum brightness. Points can be
plotted at approximately a 30-kilohertz rate. The instructions for this display
are: :

149

Clear X Coordinate Buffer (DCX)

Octal Code: 6051

Event Time: 1°

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The X coordinate buffer is cleared in preparation for receiving
new X-axis display data.

Symbol: 0 = > XB

Clear and Load X Coordinate Buffer (DXL)

Octal Code: 6053
Event Time: 1,2
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds ,
Operation: The X coordinate buffer is cleared, then loaded with new X-axis
data from bits 2 through 11 of the AC.
Symbol: 0 = > XB
AC2-11 = > XB

Clear Y Coordinate Buffer (DCY)

Octal Code: 6061

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The Y coordinate. buffer is cleared in preparation for receiving
new Y-axis display data.

Symbol: 0 = > YB

Clear and Load Y Coordinate Buffer (DYL)

Octal Code: 6063
Event Time: 1,2
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: The Y cordinate buffer is cleared then loaded wnth new Y-axis
data from bits 2 through 11 of the AC.
Symbol: 0 = > YB
AC2-11 = >YB

Intensify (DIX)

Octal Code: 6054

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: Intensify the point defined by the content of the X and Y coordi-
nate buffers. This command can be combined with the DXL command.

Symbol: None

Intensify (DY)

Octal Code: 6064

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: Intensify the pomt defined by the content of the X and Y ¢oordi-
nate buffers. This command is identical to the DIX command except that lt
can be combined with the DYL command

Symbol: None

150

X Coordinate Sequence (DXS)

Octal Code: 6057
Event Time: 1,2,3
Indicators: IOT FETCH, PAUSE
Execution Time: 4.25 mlcroseconds
Operation: This command executes the combined functions performed by the
DXL and DIX commands. The X coordinate buffer is cleared then loaded from
the content of AC2 through AC11, then the point defined by the content of the
X and Y buffers is intensified.
Symbol: 0 = > XB

AC2-11 = >XB

then intensify

Y Coordinate Sequence (DYS)

Octal Code: 6067
Event Time: 1, 2,3
Indicators: IOT FETCH PAUSE
Execution Time: 4.25 microseconds
Operation: This command executes the combined functions performed by the
DYL and DIY commands, The Y coordinate buffer is cleared, then loaded
from the content of bits AC2 through 11, then the point deflned by the con-
tent of the X and Y coordinate buffers is mtensrfled :
Symbol: 0 = > YB

AC2-11 = >¥B

then intensify

Set Brightness Control (DSB)

Octal Code: 607X

Event Time: 3

indicators: 10T, FETCH, PAUSE .

Execution Time: 4.25 microseconds

Operation: The brightness register (BR) is loaded from the content of bits 10
and 11 of the instruction. When the instruction is 6075 the minimum brlght-
ness (0.4 microsecond) is set, when 6076 the medium brightness (0.8 micro-
second) is set, and when 6077 the maximum brightness (3.0 mlcroseconds)
is set. 6074 Instruction sets zero brightness.

Symbol: MBlO 11=>BR.

The follownng program sequence to display a point assumes that the coordlnate
data is stored in known addresses X and Y.

X,
Y, -
BEG, CLA

TADX /LOAD AC WITH X

DXL /CLEAR AND LOAD XB

CLA S

TADY /LOAD ACWITHY

DYS /CLEAR AND LOAD YB, DISPLAY POINT

Precision CRT Display Type 30N

Type 30N functions are similar to those of the Type VC8/I Oscilloscope Display
in plotting pomts on a self-contained 16-inch cathode ray tube. A 3-bit bright-
ness register is contained in Type 30N to control the duration of the Intensify
signal supplied to the CRT. The content of this register specifies the bright-
ness of the point being displayed according to the following scale:

151

BR Content Intensity

3 brightest
2

1

0 average
7

6

5

4 dimmest

The BR register is loaded by jam transfer (transfer ones and zeros so that
clearing is not required) from the AC by the instruction:

Load Brightness Register (DLB)_

Octal Code: 6074

Event Time: 3 v

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds _

Operation: The brightness register (BR) is loaded by a jam transfer of infor-
mation contained in bits 9 through 11 of the AC.

Symbol: AC 9-11 = > BR

All other instructions and the instruction sequence are similar to those used
in the Type VC8/1.

Light Pen Type 370

The light pen is a photosensitive device which detects the presence of infor-
mation displayed on a CRT. If the light pen is held against the face of the
CRT at a point displayed, the display flag will be set to a 1. The light pen dis-
play flag is connected into the computer instruction skip facility. The com-
mands are:

Skip on Display Flag (DSF)

Octal Code: 6071 ~

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds ,
Operation: The content of the display flag is sensed, and if it contains a 1 the
content of the PC is incremented by one so that the next sequential instruc-
tion is skipped. _

Symbol: If Display Flag = 1,thenPC + 1 = > PC

Clear the Display Flag (DCF)

Octal Code: 6072

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The display flag is cleared in preparation for sensing another
point on the CRT.

Symbol: 0 = > Display Flag

152

INCREMENTAL PLOTTER AND CONTROL (TYPE VP8/I)

(The control circuitry for this device is located in the PDP-8/I central proc-
essor.)

Four models of California Computer Products Digital Incremental Recorder
can be operated from a Digital Type VP8/1 Incremental Plotter Control. Char-
acteristics of the four recorders are: '

Step Paper

CCp Size ~ . Speed Width
Model (inches) (steps/ minute) . (inches)

563 0.01 or 0.005 12,000 31

565 0.01 or 0.005 18,000 12 -

The principles of operation are the same for each of the four models of Digital
Incremental Recorders. Bidirectional rotary step motors are employed’ for -
both the X and Y axes. Recording is produced by movement of a pen relative
to the surface of the graph paper, with each instruction causing an incremen-
tal step. X-axis deflection is produced by motion of the drum; Y-axis deflec-
tion, by motion of the pen carriage. Instructions are used to raise and lower
the pen from the surface of the paper. Each incremental step can be in any
one of eight directions through appropriate combinations of the X and Y axis
instructions. All recording (discrete points, continuous curves, or symbols) is
accomplished by the incremental stepping action of the paper drum and pen
carriage. Front panel controls permit single-step or continuous-step manual
operation of the drum and carriage, and manual control of the pen solenoid.
The recorder and control are connected to the computer program interrupt
and instruction skip facility. ‘

Instructions for the recorder and control are:

Skip on Plotter Flag (PLSF)

Octal Code: 6501

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds _

Operation: The plotter flag. is sensed, and if it contains a 1 the content of -
the PC is incremented by one so the next sequential instruction is skipped.
Symbol: If Plotter Flag = 1, thenPC + 1 = > PC

Clear Plotter Flag (PLCF)

Octal Code: 6502

Event Time: 2 -

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The plotter flag is cleared in-preparation for issuing a plotter op:
eration command.

Symbol: 0 = > Plotter Flag

Pen Up (PLPU)

Octal Code: 6504

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds-

Operation: The plotter pen is raised from the surface of the paper.
Symbol: None

153

Pen Right (PLPR)

Octal Code: 6511

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The plotter pen is moved tc the right in either the raised or
lowered position. '

Symbol: None

Drum Up (PLDU)

Octal Code: 6512

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds '

Operation: The plotter paper drum is moved upward. This command can be
combined with the PLPR and PLDD commands. ‘
Symbol: None

Drum Down (PLDD)

Octal Code: 6514

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The plotter paper drum is moved downward.
Symbol: None

Pen Left (PLPL)

Octal Code: 6521

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The plotter pen is moved to the left in either the raised or
lowered position.

Symbol: None

Drum Up (PLUD)

Octal Code: 6522

JEvent Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The plotter paper drum is moved upward. This command is simi-
lar to command 6512 except that it can be combined with the PLPL or PLPD
commands. :

"~ Symbol: None

Pen Down (PLPD)

Octal Code: 6524

Event Time: 3 "

Indicators: 10T, FETCH, PAUS

Execution Time: 4.25 microseconds

Operation: The plotter pen is lowered to the surface of the paper.
Symbol: None

Program sequence must assume that the pen location is known at the start
of a routine since there is no means of specifying an absolute pen location in
an incremental plotter. Pen location can be preset by the manual controls on
the recorder. During a subroutine,the PDP-8/I can track the location of the

154

pen on the paper by counting the instructions that increment position of the
pen and the drum.

CARD READER AND CONTROL TYPE (dRBII)

(The control circuitry for this device is located ‘in the PDP-8/1 central proc-
essor.) N

The Card Reader and Control Type CR8/I reads standard 12-row, 80-column
punched cards at a maximum rate of 100 cards per minute. Cards are read
by column, beginning with column 1. One select instruction starts the card
moving past the read station. Once a card is in motion, all 80 columns are
read. Data in a card column is sensed by mechanical star wheels which close
an electrical contact when a hole (binary 1) is detected. Column information
is read in one of two program selected modes: alphanumeric and binary. In
the alphanumeric mode the 12 information bits in one column are automati-
cally decoded and transferred into the least significant half of the accumulator
as a 6-bit Hollerith code. Appendix 3 lists the Hollerith card codes. In the
binary mode the 12 bits of a column are transferred directly into the accumu- -
lator so that the top row (12) is transferred into ACO and the bottom row (9) is
transferred into AC11. A punched hole is interpreted as a binary 1 and no
hole is interpreted as a binary O.

Three program flags indicate card reader corfﬁjitions to the computer. The
data ready flag rises and requests a program interrupt when a column of in-
formation is ready to be transferred into the AC. A read alphanumeric or read
binary command must be issued within 1.5 milliseconds after the data ready
flag rises to prevent data loss. The card done flag rises and requests a pro-
gram interrupt when the card leaves the read station. A new select command
must be issued within 25 milliseconds after the card done flag rises to keep
the reader operating at maximum speed. Sensing of this flag can eliminate
the need for counting columns, or combined with column counting-can provide
a check for data loss. The reader-not-ready flag can be sensed by a skip com-
mand to provide indication. of card reader power off, no card in the read sta-
tion, or that a reader failure has been detected. When this flag is raised the
reader cannot be selected and select commands are ignored. The reader-not-
ready flag is not connected to the program interrupt facility and cannot be
cleared under program control. Manual intervention is required to clear the
reader-not-ready flag. Instructions for the CR 8/1 are:

Skip on Data Ready (RCSF)

Octal Code: 6631

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds :

Operation: The content of the data ready flag is sensed, and if it contains a 1
(indicating that information for one card column is ready to be rgad) the con-
tent of the PC is incremented by one so the next sequential instruction is
skipped.

Symbol: If Data Ready Flag = 1, then PC+1=>PC

155

Read Alphanumeric (RCRA)

Octal Code: 6632
- Event Time: 2 :
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: The 6-bit Hollerith code for the 12 bits of a card column are trans-
ferred into bits 6 through 11 of the AC, and the data ready flag is cleared.
- Symbol: AC6-11 V Hollerith Code = > AC6-11 -
0 = > Data Ready Flag '

Read Binary (RCRB)

Octal Code: 6634

Event Time:. 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds - o
‘Operation: The 12-bit binary code for a card column is transferred directly
into the AC, and the data ready flag is cleared. Information from the card col-
umn is. transferred into the AC so that card row 12 enters ACO, row 11 enters
AC1, row O enters AC2, . . . and row 9 enters AC 11. ‘

Symbol: AC V Binary Code = > AC ¢
' 0 = > Data Ready Flag

Skip on Card Done Flag (RCSP) |

Octal Code: 6671

Event Time: 1 .

- Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds s ‘
Operation: The content of the card done flag is sensed, and if it contains a 1
(indicating that the card has passed the read station) the content of the PC is

incremented to skip the next sequential instruction. .
Symbol: If Card Done Flag = 1, then PC +1=>PC. .

Select Card Reader and Skip If Ready (RCSE)

Octal Code: 6672

Event Time: 2
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds:
Operation: The content of the reader-not-ready flag is sensed and if it con-
- tains a 1 (indicating that the card reader is ready for programmed operation)
the PC is incremented to skip the next sequential instruction; a card is started
towards the read station from the feed hopper; and the card done flag is
cleared. If the reader-not-ready flag contains a 0 (indicating power is off or
no card is in the read station) card selection (motion) does not occur and the
skip does not occur. '
Symbol: If Reader-Not-Ready F lag = 1,thenPC + 1 = > PC

- 0 = > Card Done Flag : :

Clear Card Done Flag (RCRD)

Octal Code: 6674

Event Time: 3 '

Indicators: 0T, FETCH, PAUSE

Execution Time: 4.25 microseconds : : _

Operation: The card done flag is cleared. This command allows a program to
stop reading at any point in a card deck.

Symbol: 0 = > Card Done Flag '

156

A logical instruction sequence to read cards is:

START, RCSE / START CARD MOTION AND SKIP IF READY
JMP NOT RDY /JUMP TO SUBROUTINE THAT TYPES OUT
/“CARD READER MANUAL INTERVENTION

/REQUIRED” OR HALTS

NEXT, RCSF ' /DATA READY? - °
JMP; —1 /NO, KEEP WAITING
RCRA or RCRB ~ /YES, READ ONE CHARACTER OR ONE
- /COLUMN-:

DCA | STR /STORE DATA .

RCSD /END OF CARD?

JMP NEXT - /NO, READ NEXT COLUMN

JMP OUT / YES, JUMP TO SUBROUTINE THAT CHECKS
/CARD COUNT OR REPEATS AT START FOR
/NEXT CARD .

No validity or registration checkig is performed by the CR8/I. A pro-
grammed validity check can be made by reading each card column in both
- the alphanumeric and the binary mode (within the 1.5 millisecond time limi-
tation), then performing a comparison check.

Before commencing a card reading program energize the reader, load the
feed hopper with cards, and manually feed the first card to the read stationt
The ‘function of the manual .controls :and indicators are as follows (as they
appear from right to left on the card reader):

¢

Control or Indicator ' Function’
ON/OFF switch _ - Controls the application of primary power to the

reader. When power is applied, the reader is
ready to respond to operation of the other keys
or programmed commands.

AUTO/MAN switch Controls card reading. In the manual position
- _ this switch disables the card feed mechanism
so that cards must be manually placed on the
read table and registered by pressing the REG
key. In the automatic position card motion
from the feed hopper through the read station
is under program control.

REG switch When the AUTO/MAN switch is in the AUTO
position the REG key is used to feed the first
card to the read station. When the AUTO/MAN
switch is in the MAN position the REG key is

- used to feed a card manually placed on the
read table. :

SKIP switch This key is not connected on the CR8/1 and
_ - has no effect on equipment operation.

CHECK READER indicator This lamp is not connected on the CR8/I .

157

READY indicator Lights when the reader is energized and cards
are present in the feed hopper. The plastic
card cover should always be used on top of a
deck of cards to assure that the ready switch
and indicator are activated.

CARD RELEASE pus'hbutton When pressed, this pushbutton (adjacent to the
read station) releases a card already in the read
station.

AUTOMATIC LINE PRINTER AND CONTROL (TYPE 645)

The line printer can print 300 lines of 120 characters per minute. Each
" character is selected from a set of 64 available, by a 6-bit binary code (Ap-
pendix 3 lists the ASCIl character specified for each code). Each 6-bit code is
loaded separately into a core storage printing buffer (LPB) from bits 6 through
11 of the AC. The LPB is divided into two]120-character sections. To load one
section of the LPB requires 120 load instructions. A print command causes
the characters specified by the last-loaded section of the LPB to be printed
on one line. As printing of one section of the LPB is in progress, the other
section can be reloaded. After the last character in a line is printed, the sec-
tion of the LPB from which characters were just printed is cleared automati-
wally. The section of the LPB that is loaded and printed is alternated auto-
matically within the printer and is not program specified. S

The line printer can load characters into the LPB at a 10-microsecond rate,
clears one section of the LPB in 3 to 6 milliseconds, and moves paper at the
rate of one line every 18 milliseconds. When transfer of one code into the
LPB is completed, the line printer done flag rises to indicate that the printer
is ready to receive another code. When printing of the last character of a sec-
tion of the LPB is completed, the line printer done flag rises and causes a
program interrupt to request reloading of that section of the LPB. A line
printer error flag rises and causes a program interrupt if the line printer de-
tects an inoperative condition (printer power off, control circuits not reset,
paper supply low, etc.).

A 3-bit format register (FR) in the printer is loaded from bits 9 through 11 of
the AC during a print command. This register selects one of eight channels of
a perforated tape in the printer to control spacing of the paper. The tape
moves in synchronism with the paper until a hole is sensed in the selected
channel to halt paper advance. A recommended tape has the following charac-
teristics:

FR Code Paper Tape
(Octal) Spacing _Track _

0 1 line 2

1 2 lines 3

2 3 lines 4

3 6 lines (1/4 page) 5

4 11 lines (1/2 page) 6

5 22 lines (3/4 page) 7

6 33 lines (line feed) 8

7 top of form 1

The 10T instructfons which command the line printer are:

158

Skip on Line Printer Error (LSE)

Octal Code: 6651

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The content of line printer error flag is sensed, and if it contains a
binary 1, indicating that an error has been detected, the content of the PC
is incremented by one so that the next sequential instruction is skipped.
Symbol: If Line Printer Error Flag — 1, then PC 4+ 1 = > PC

Clear Printer Buffer (LCB),

Octal Code: 6652
"Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: Both sections of the line printer buffer are cleared in preparation
for receiving new character information.

Symbol: 0 = > LPB

Load Printer Buffer (LLB)

Octal Code: 6654

Event Time: 3 -

Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: A section of the printer buffer is loaded from the content of bits 6 -
through 11 of the AC, then the AC is cleared.
Symbol: AC6 — 11 = > LPB, then 0 = > AC

Skip on Line Printer Done Flag (LSD)

Octal Code: 6661
Event Time: 1
- Indicators: . 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: The content of the line pnnter done flag is sewsed and If it con-
tains a binary 1 the content of the PC is incremented by one so that the next
sequential instruction is skipped.
Symbol: If Line Printer Done Flag = 1, then PC +1=>PC

Clear Line Printer Flags (LCF) .

~ Octal Code: 6662
Event Time: 2
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: ' The line printer doné and error ﬂags are cleared
Symbol 0 = > Line Printer Done Flag
0 = > Line Printer Error Flag

Clear Format Register (LPR)

Octal Code: 6664

Event Time: 3

Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: The line printer format register (FR) is cleared then loaded from
the content of bits 9 through 11 of the AC, and the AC is cleared. The line
contained in the section of the printer buffer (LPB) loaded last is printed.
Paper is advanced in accordance with the selected channel of the format tape
if the content of the AC8 is a 1. If AC8 is a O paper advance is inhibited.

159

Symboi:

0=>FR
AC9 — 11 =>FR
0=>AC

The content of half of the LPB is printed
If AC8 = 1, then advance paper according to format tape channel FR

The following routine demonstrates the use of these commands in a sequence
which prints an unspecified number of 120-character lines. This sequence
assumes that the printer is not in operation, that the paper is manually posi-
tioned for the first line of print, and that one-character words are stored in
sequential core memory locations beginning at 2000. The PRINT location
starts the routine.

PRINT, tc/a\ /INITIALIZE PRINTER BUFFER
1 _
TAD LOC /LOAD INITIAL CHARACTER ADDRESS
DCA 10 /STORE IN AUTO-INDEX REGISTER
LRPT, TAD CNT /INITIALIZE CHARACTER COUNTER
DCA TEMP
LOOP, LSD /WAIT UNTIL PRINTING BUFFER READY
JMP LOOP . _ »
LCF JCLEAR LINE PRINTER FLAG
TAD | 10 /LOAD AC FROM CURRENT CHARACTER
-/ ADDRESS
LLB /LOAD PRINTING BUFFER
ISZ TEMP /TEST FOR 120 CHARACTERS LOADED
- JMP LOOP
TAD FRM /LOAD SPACING CONTROL AND
LPR JPRINT A LINE '
JMP LRPT /JUMP TO PRINT ANOTHER LINE
LOC, 1777 /INITIAL CHARACTER ADDRESS —1
CNT, —170 ~ /CHARACTER COUNTER — 120 DECIMAL
TEMP, 0 _ JCURRENT CHARACTER ADDRESS

FRM, 10 / SPACING CONTROL AND FORMAT
SERIAL MAGNETIC DRUM SYSTEM (TYPE 251)

The Type 251 Serial Magnetic Drum System is a standard option that serves
as an auxiliary data storage device. Information in the PDP-8/I can be stored
(written) in the drum system and retrieved (read) in sectors of 128 computer
words. After program initialization, sectors are transferred automatically be-
tween the computer core memory and the drum system, transfer of each word
being interleaved with the running computer program under control of the
computer data break facility. A word is transferred in parallel (12 bits at a
_ time) and is read or written around the surface of the drum serially (one bit
at a time). Within the drum system words consist of 12 information bits and
a parity bit. Parity bits are generated internally during writing, and are read
and checked during reading. Each word is transferred in about 66 microsec-
onds; a sector transfer is completed in 8.2 milliseconds. Average access time
is 8.65 milliseconds (17.3 milliseconds maximum). Track and sector format on
the drum surface is such that all transfers require the same amount of time,
so track and sector are specified together as an 11-bit address for 128 words.

160

Drum systems are available with 8, 16, 32, 64, 128, 192, or 256 tracks; each
track holds 8 sectors of 128 13-bit words. The various drum system capaci-
ties are designated by a letter suffix to the system type number as follows:
Type 251A, 8K words; 251B, 16K words; 251C, 32K words; 251D, 65K words;
251E, 131K words; 251F, 196K words; and 251G, 262K words.

Indicator lamps on a .front -panel usually display the content of the four major
registers and the status of control flip-flops. The major registers are:

Drum Core Location Counter (DCL): A 15-bit register which addresses the next
core memory location to or from which a word is to be transferred. As a word
is transferred, DCL is incremented by one.

Drum Address Register (DAR): An 11-bit register which addresses the drum
track and sector which is currently transferring data. The eight most signifi-
cant bits of the DAR specify the track and the least significant three bits "
~ specify a sector on that track. At the completion of a successful sector trans-
fer (error flag is O) DAR is incremented by one. k
Drum Final Buffer (DFB): A 12-bit register under control of the data break fa-
cility which is a buffer between the memory buffer register and the drum
serial buffer. During writing, the DFB holds the next word to be written.
During reading, the DFB stores the word just read from the drum until it is
transferred to the PDP-8/I.

Drum Serial Buffer (DSB): A 14-bit register which contains a data word and
two control bits. It is a serial-to-parallel converter during drum reading, and a
parallel-to-serial converter during drum writing. Information is read from the
drum into DSB serially and transferred to DFB in parallel. During drum-writ-
ing, a word is transferred in parallel from DFB into DSB and written serially
around the drum.

|nstruction$

The commands for'thte drum system are as follows: '

Load Drum Core Location Counter and Read (DRCR) .

Octal Code: 6603
Event Time: 1,2 :
Indicators: 0T, FETCH, PAUS
" Execution Time: 4.25 microseconds :
Operation: The core memory location information in the AC is transferred into
. the DCL and the drum is prepared to read one sector of information for trans-
fer to the specified core memory location.*
Symbol: AC = > DCL

1 = > Read Control

*The sector, track, and core memory address are suitably incremented and
allow transfer of the next sequential sector without respecifying addresses.
The DRCN instruction must be given within 50 microseconds after the comple-
tion flag is set to 1 during the previous sector.-

161

Load Drum Core Location Counter and Write (DRCW)

Octal Code: 6605
‘Event Time: 1,3 -
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 m|croseconds
Operation: The core memory location information in the AC is transferred
into the DCL and the drum is prepared to write on one sector the information
beginning at the specified core memory address.*
Symbol AC = > DCL
1 = > Write Control

Clear Drum Flags (DRCF)

Octal Code: 6611
Event Time: 1
Indicators: 10T, FETCH, PAUSE on computer and COMPLETION FLAG and
ERROR FLAG on the drum system become dark. '
Execution Time: 4.25 microseconds
Operation: Both completion flag and error flag are cleared
Symbol: 0 = > Completion Flag
9 = > Error Flag

Load Parity and Data Error (DREF)

Octal Code: 6612
Event Time: 2
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds .
Operation: The content of both the parity error and data timing error flip-flops
of the drum control is transferred into bits ACO and AC1, respectively. The
command allows the program to evaluate the cause of an error flag setting.
Symbol: Parity Error = > ACO

Data Timing Error = > AC1

Load the Track and Sector (DRTS)

Octal Code: 6615 s
Event Time: 1,3
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: Track and sector information in bits 1-11 of the AC is transferred
into the DAR, the completion and error flags are cleared, and a transfer (read-
ing or writing) is begun.
Symbol: AC1-11 = > DAR
0 = > Completion Flag
0 = > Error Flag

- Skip on Drum Error (DRSE)

Octal Code: 6621

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds -

Operation: The error flag is sampled and if it. contalns a 0 (indicating no
error has been detected) the PC is incremented to skip the next |nstruct|on
Symbol: If Error Flag = 0, then PC +1=>PC-

162

Skip on Drum Completion (DRSC)

Octal Code: 6622

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The completion flag is sampled and if it contains a 1 (indicating a
sector transfer is complete) the PCis incremented to skip the next instruction.
Symbol: If completion Flag = 1, then PC+ 1 = > PC

Initiate Next Transfer (DRCN)

Octal Code: 6624
Event Time: 3
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds.
Operation: Both the error and completion flags are cleared, then the transfer
of the next sector is initiated.
Symbol: 0 = > Error Flag
0 = > Completion Flag
then start transfer

~ Programming

Two instructions cause the transfer of a 128-word sector. The first (DRCR or
DRCW) specifies the initial core memory location of the transfer and the direc-
tion of the transfer (drum-to-core or core-to-drum). The second instruction
(DRTS) specifies the track and sector address and initiates the transfer.
Transfer of each word is under control of the-computer data break facility and
completion of a sector transfer is indicated by a completion flag that causes a
program interrupt..

The eight most significant bits of a drum address select one of 256 tracks;
the three least significant bits select one of eight sectors on the track. A 300-
microsecond gap identifies the beginning of a track (sector 0). Even num-
bered sectors (0, 2, 4, and 6) are recorded consecutively following the 300- -
microsecond gap. A 50-microsecond gap identifies the beginning of the odd
number sectors (sector 1). Odd numbered sectors (1, 3, 5, and 7) are re-
corded consecutively following the 50-microsecond gap. This format allows
the transfer of two consecutively numbered sectors in one drum revolution,
provided the continuation instruction (DRCN) is issued in the first 50 micro-
seconds after the drum flag rises to indicate completion of a sector transfer.
The program interrupt subroutine can easily determine that the drum system
caused an interrupt, check the number of sectors transferred, check for drum
errors by sampling the error flag, and issue the continuation instruction in
.50 microseconds.

Because the selection of a track read-write head requires 200 microseconds
stabilization time, a new track must be specified during the first 200 micro-
seconds of the 300-microsecond gap for continuous transferring. If selected
tracks and sectors are consecutive, unlnterrupted transferring may. be pro-
grammed merely by specifying contmuat:on since the drum system address
and the core memory address are automatically incremented. However, if a
data timing or parity error occurs, the track and sector number is not ad-
vanced and operations stop at the conclusion of a sector transfer. This
feature allows the program to sense for error conditions and to locate the
track and sector at which transmission fails.

163

The drum completion flag is set to 1 upon completion of a sector transfer,
causing a program interrupt. The flag is cleared either by a clear flag instruc-
tion (DRCF) or automatically when one of two transfer instructions (DRTS,
DRCN) is given. .

The error flag, which should be checked at the completion of each transfer,
indicates either of the following conditions:

(1) That a parity error has been detected after readmg from drum to core.

(2) That the Break Request signal from the drum system was not answered
within the required 66-microsecond period. This condition occurs either
because other devices with higher priority are being serviced by the data
break facility, or because an instruction requiring longer than 66 micro-
seconds for completion is in progress when the break request is made.

In reading from the drum, a data word is incorrect in core memory. In
writing on the drum, the next word has not been received from the com-
puter. _

The following program examples indicate the operation of the drum system
in single and multiple sector transfers.

SUBROUTINE TO TRANSFER (READ) ONE SECTOR

CLA /CALLING SEQUENCE
TAD ADDR /INITIAL CORE MEMORY ADDRESS
JMS READ
0 / TRACK AND SECTOR ADDRESS
o /RETURN
READ, O
DRCR ‘ /DRCW TO WRITE
TAD | READ /LOAD AC WITH TRACK AND SECTOR ADDRESS
DRTS
DRSC / DONE?
JMP .—1 {NO
DRSE / ERRORS? _
JMP ERR /JUMP TO ERROR CHECK ROUTINE
ISZ READ)

JMP | READ /RETURN

SUBROUTINE TO TRANSFER SUCCESSIVE (TWO) SECTORS

CLA /CALLING SEQUENCE

TAD ADDR /INITIAL CORE MEMORY ADDRESS
JMS READ

0 / TRACK AND SECTOR ADDRESS

0 /{RETURN

164

READ, 0

DRCR /DRCW TO WRITE

TAD | READ /LOAD AC WITH TRACK.AND SECTOR ADDRESS -
» DRTS

DRSC / DONE?

JMP .—1 - INO

DRSE { ERRORS? :

JMP ERR {JUMP TO ERROR CHECK ROUTINE

DRCN - /CLEAR FLAGS, CONTINUE TRANSFER

/OF NEXT SECTOR

DRSC '

JMP .

DRSE

JMP ERR

ISZ READ

JMP | READ /RETURN

SERIAL MAGNETIC DRUM SYSTEM (TYPE RMO08)

The Type RMOS8 Serial Magnetic Drum System is an option for Programmed
Data Processor — 8/1 (PDP-8/1) that serves as an auxiliary data storage
device. Information in the PDP-8/I can be stored (written) in the Type RM08
and retrieved (read) in sectors of 16 computer words. After program initializa-
tion, sectors are transferred between the computer core memory and the

"~ drum automatically, transfer of each word being interleaved with the running

computer program under control of the computer data break facilities. A
word is transferred in parallel (12 bits at a time) and is read or written
around the surface of the rotating -drum serially (one bit at a time). Within
the drum system words consist of 12 information bits and a parity bit. -
Parity bits are generated internally when writing and checked when reading.
Each word is transferred in about 15.6 us (3600 rpm).19.5 us (3000 rpm);
a sector transfer is completed in.250 us (3600 rpm); 313 us (3000 rpm).
Average access time is 10.3 milliseconds (20.5 milliseconds maximum)
(3000 rpm) and 8.65 us (17.3 ms. maximum for 3600 rpm). The Drum system .
has 64 tracks; each track holds 64 sectors of 16, 13-bit words. The drum
is expandable to 256 tracks (262K words). '

Drum Core Location Counter (DCL)

A 15-bit register which addresses the next core location or from which a
ward is to be transferred. As a word is transferred, DCL is incremented by
one. :

Drum Address Register (DAR)

A 14-bit reglster (8 track, 6 sector) which addresses the drum track and
sector which is currently transferrlng data. At the completion of a success-
ful last sector transfer (error flag is 0) DAR is incremented by one.

Drum Final Buffer (DFB)

A 12-bit register under control of the data break facility whlch is a buffer
between the memory buffer register and the drum serial buffer. During
writing, the DFB holds the next ‘word to be written. During reading the
DFB stores the word just read from the drum until it is transferred to the
PDP-8

165

Drum Serial Buffer (DSB)

A 14-bit register which contains a data word and two control bits. It is
a serial-to-parallel converter during drum readmg, and a parallel-to-serial
converter during drum writing. Information is read from the drum into
DSB serially and transferred to DFB in parallel. During drum writing, a
word is transferred in parallel from DFB to DSB and written serially arourid
the drum.

The Drum Field and Sector Number

An 8-bit Register that holds the drum field and the number of sectors to be
transferred. The contents of this register can only be changed by an IOT.
The Drum Field, a 2-bit Register specifies in which one of four Drum
Fields . (64K works per field) will the data be transferred. The selector:
number, a 6-bit register, contains the number of sectors to be transferred
from 1 to 100.

The Sector Number Counter (7 bits)

Contains the two's complement of the Sector Number Re;gister. It counts
the number of sectors transferred and its overflow produces a flag interrupt
condition.

Instructions
The commands for the drum system are as follows:

Load Drum Core Location Counter and Read (DRCR)

Octal Code: 6603

Event Time: 1,3 ’

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The core memory location information in the AC is transferred
into the DCL and the drum is prepared to read one sector of information
for transfer to the specified core memory location.* Clears AC on completion.
- Symbol: AC = > DCL

1 = > Read Control

Load Drum Core Location Counter and Write (DRCW)

Octal Code: 6605
Event Time: 1,3
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: The core memory location information in the AC is transferred
into the DCL and the drum is prepared to write on one sector the mformatlon
beginning at the specified core memory address.* Clears the AC. _
Symbol: AC = > DCL

1 = > Write Control

*The sector, track, and core memory address are suitably incremented and
allow transfer of the next sequential sector without respecifying addresses
up to 64 sectors. .

166

Clear Drum Flags (DRCF)

Octal Code: 6611
Event Time: 1
Indicators: . 10T, FETCH, PAUSE on computer and COMPLETION FLAG and
ERROR FLAG on the drum system become dark
Execution Time: 4.25 microseconds
Operation: Both completion flag and error flag are cleared
Symbol: 0 = > Completion Flag
9. = > Error Flag

Load Parity and Data Error and Sector Counter (DRES)

Octal Code: 6612
Event Time: 2
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 mrcroseconds
Operation: The contents of both parity error and data timing error flip-flops
of ‘the drum control are transferred into bits ACO and AC1, respectively.
The contents of the drum sector counter are transferred into bits AC6 —
AC11. The command allows the program to evaluate the cause of an error
flag setting and evaluate the -drum address. The instruction flrst clears the
AC, then loads.
Symbol Parity Error = > ACO’
Data Timing Error = > AC1
-DSC = > ACsny)

Octal Code: 6615
Event Time: 1,3
Indicators: IOT 'FETCH, PAUSE
Execution Time: 4.25 mlcroseconds
Operation: Track and sector information in bits 1-11 of the AC is transferred
into the DAR, the completion and error flags are cleared, and a transfer (read- ~
ing or writing) is begun.
Symbol: AC1-11 = > DAR
0 = > Completion Flag
-0 = > Error Flag

Skip on Drum Error (DRSE)

Octal Code: 6621

Event Time: 1 :

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The error flag is sampled and if it contains a O (indicating no
error has been detected) the PC is incremented to skip the next mstructlon
Symbol: if Error Flag = O, thenPC + 1 = > PC

Skip or. Drum Completion (DRSC)

Octal Code: 6622

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The completion flag is sampled and if it contains a 1 (indicating a
sector transfer is complete) the PC is incremented to skip the next instruction.
Symbol: If completion Flag = 1,then PC + 1 = > PC

167

Load Drum Field and Sector Registers (DRFS)

Octal Code: 6624

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: Loads the Drum Field Register with the contents of the accu-
mulator Bits 10 and 11 (AC,, AC,; = > Field 0). Loads the Sector Number
Register with the contents of the accumulator Bits 0-5, to specify the
number of sectors to be transferred (1 to 100).* Loads the three most
~ significant bits of the Drum Core Location Register (DCL,-,) with the conterits
of the AC bits 6, 7, 8, to specify the core memory block to be used during
the drum transfer. If the DRFS is not given before each DRTS instruction,
the.drum will transfer the field and sector number left in the Drum Field
and Sector Number Register.

if memory blocks are changed (4K), then 6624 must be given before 6605
in order to break to the correct extended memory block.

Symbol: AC0-5 = > SNR
AC6-8 = > DCL,-,

ACio-n = > DFR
*100; = 00
PROGRAMMING

Three instructions cause the transfer of from 16 to 1024 words. The first
10T specifies the core memory bank, the drum memory field and the number
of sectors “to transfer. This instruction needs to be given only once, if the
core memory bank (4K), drum field (64K) and number of sectors to be
transferred remain the same. The second specifies the core memory location
of the transfer and the direction of transfer (drum-to-core or core-to-drum).
The third instruction specifies the initial sector and track number and initi-
ates the transfer. Transfer of each word is under contol of the computer
data break facility and computation continues during a sector transfer.

A transfer begins when the continuously rotating drum reaches the selected
sector address, 1.2 microseconds before the beginning of the data in a
selected track and sector. A 300-microsecond interval separates the end of
the last sector from the beginning of the first on one track. The selection of
the track read-write head requires 200 microseconds of stabilization time.
The largest single data transfer is 1024 words. Since the drum automatically
increments the track and sector counter during the gap time, a 1024 word
transfer can begin on one track and end up on the next. The drum completion
flag is set to 1 upon completion of a data transfer, causing a program in-
terrupt. The flag is cleared either by a clear flag instruction (DRFC) or auto-
matically when the transfer instruction (DRTS) i is given.

The error flag, which should be checked at the completion of each transfer,
indicates either of the following conditions:

1. That a parity error has been detected after reading from drum to core.

2. That the break request signal from the drum was not answered within
the 15.6 microsecond period. This condition occurs either because other
~ devices with higher priority are connected to the data break facility, or be-
cause an instruction requiring longer than 15.6 microseconds for completion

168

was in progress when the break reques't was made. In reading from the drum,
a data word is therefore incorrect in core memory. In writing on the drum,
the next word has not been received from the computer.

RANDOM ACCESS DISC FILE (TYPE DF32)

The Type DF32 Disc File is a fast, low-cost, random-access, bulk-storage
device and control for the PDP-8/1. Operatmg through the 3-cycle data-break
channel, -the DF32 provides 32,768 13-bit words (12 bits plus parity) of .
storage, and is economically expandable to 131,072 using Expander Disc
Type DS32.

Transfer rate of the DF32 is 66 usec per word; average access time ‘is 16.67
msec for 60-cycle power (20 msec with 50-cycle power).

Two basic assemblies comprise the DF32: the storage unit with read/write
electronics, and computer interface logic. The storage unit contains a nickel-
cobalt plated disc driven by a hysteresis synchronous motor. Data is recorded
on a single disc surface by 16 read/write heads which are in a fixed position.
A photo-reflective marker is used on the disc’s outer perimeter to denote be-
ginning and end of timing and address tracks.

Disc motor and shaft, read/write data heads, timing and address heads, and
photocell assembly are mounted on a rack assembly which permits sliding
the unit in and out of a standard Digital Equipment Corporation cabinet.

The disc is designed for rack mounting in a 19 inch relay rack._

INSTRUCTIONS

The commands for the disc system are as follows:

Clear Disc Memory Address Reg}ster (DCMA)

Octal Code: 6601
Event Time: 1
Indicators: 10T, FETCH PAUSE
Execution Time: 4.25 microseconds
Operation: Clears Memory Address Register, parlty error and completlon flags.
This instruction clears the disc memory request flag and mterrupt flags.
Symbol: 0 = > completion flag
0 = > error flag

Load Disc Memory Address Register and Read (DMAR)

Octal Code: 6603
Event Time: 1,2
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: The contents of the AC are loaded into the disc memory -address
register and the AC is cleared. Begin to read information from the disc into
the specified core location. Clears parity error and completion flags. Clears
interrupt flags.
SymbOI ACo_" -> DMAU-"

0 = > completion flag

0 = > error flag

169

Load Disc Memory Address Register and Write (DMAW)

Octal Code: 6605
Event Time: 1,3
Indicators: |0T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: The contents of the AC are loaded into the disc memory address
register and the AC is cleared. Begin to write information into the disc from
the specified core location. Clears parity error and completion flags. Clears
interrupt flags. Data break must be allowed to occur within 66 usec after
issuing this instruction. :
SymbOl: ACO_" -> DMAO—"
- "~ 0 = > completion flag

0 = > error flag

Clear Disc Extended Address Register (DCEA)

Octal Code: 6611
Event Time: 1
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: Clears the Disc Extended Address and memory address extension
register.
Symbol: 0 = > Disc Extended Address Register
0 = > Memory Address Extension Register

Skip on Address Confirmed Flag (DSAC)

Octal Code: 6612
Event Time: 2
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: Skips next instruction if address confirmed Flag is a 1. Flag is
set for 16 usec (AC is cleared)
Symbol: If address confirmed flag = 1, then
PC+1=>PC

Load Disc Extended Address (DEAL)

Octal Code: 6615
Event Time: 1,3
Indicators: * 0T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: The Disc extended address and memory address extension reg-
isters are cleared and loaded with the track address data held in the AC.
Symbol: ACs4 = > EA;-; Core Memory Extension
: ACi-s = > EMA;., Disc Address Extension 32K, 64K, 96K, 128K
AC,, ¢-11 used in DEAC instruction

Note: Write lock switch status is true only when disc module contains write
command. The non-existent disc condition will appear following the comple-
tion of a data transfer during read, where the address acknowledged was the
last address of a disc and the next word to be addressed falls within a noh-
existent disc. The completion flag for this data transfer is set by the ron-
existent disc condition 16 microseconds following the data transfer.

170

Read Disc Extended Address Register (DEAC)

Octal Code: 6616
Event Time: 2,3
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 mlcroseconds
Operation: Clear the AC then loads the contents of the disc extended address
- register into the AC to allow program evaluation. Skip next instruction if
address confirmed flag is a 1.
Symbol: 32K, 64K, 120K: EMA;s-y= > ACy-s
‘Computer Memory EA; ; = > ACq-¢
Photo-cell sync mark = > AC, (Available 200 y.SGC)
Data Request Late flag = > AC,
Non-existent or write Lock switch on = > AC,,
Parity Errors = > ACy,)

Skip 0ld Zero Error Flag (DFSE)

Octal Code: 6621

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 mlcroseconds

Operation: Skips next instruction if partial error, data request late, or write

lock switch flag is a zero. Indicates no errors. .

Symbol: [f parity error flag = 1, then PC + 1 = > PC
If Data Request late flag =1,thenPC +1 = >PC
If Write lock switch Flag = 1,then PC + 1 = > PC

Skip on Data Completion Flag (DFSC)

Octal Code: 6622

Event Time: 2 ‘

Indicators: 10T, FETCH, PAUSE _

Execution Time: 4.25 mlcroseconds

Operation: Skips next instruction if the completion flag is a 1 Indicates data
transfer is complete. ;

Symbol: If completionflag = 1,PC + 1 = > PC

Il II

Read Disc Memory Address Register (DMAC)

Octal Code: 6626 :

Event Time: 2,3 -

Indicators: 10T, FETCH PAUSE

Execution Time: 4.25 mlcroseconds

Operation: Clears the AC then loads contents of the Disc Memory Address
Register into the AC to allow program evaluation. During read, the final ad-.
dress will be the last one transferred. _

SymbOI DMAo-" = > ACo-n1 ‘

SOFTWARE

DF32 Disc System, available with PDP-8/1,is a fast convenient keyboard ori-
ented monitor which will enable the user to efficiently control the flow of
programs through his PDP-8/I. This system is modular and open ended,
allowing the user to build the software components required in his environ-
ment. The user may specify the system device (Disc or DECtape), the amount
of core, number of discs available and the number, name and size of his
resident system programs. '

171

AUTOMATIC MAGNETIC TAPE CONTROL, TYPE TC58
Functional Description

The Type TC58 will control the operation of a maximum of eight digital
magnetic tape transports, Types TU20 and TU20A. The Type TC58 interfaces
to and uses the PDP-8/I 3-cycle data break facility for data transfer directly
to or from system core memory and magnetic tape. The tape transports offer
industry-compatible (or IBM-compatible) in both 7 and 9 channel tape trans-
ports with the following characteristics:

TRANSPORT TAPE SPEED DENSITIES
‘ (ips) (bpi)
TU20 (7-channel) 45 ips _ 200/556/800
TU20A (9-channel) 45 ips . 800

Transfers are governed by the in-memory word count (WC) and current
address (CA) register associated with the assigned data channel (memory
locations 32; and 33;). Since the CA is incremented before each data trans-
fer, its initial contents should be set to the desired initial address minus one.
The WC is also incremented before each transfer and must be set to the 2's
complement of the desired number of data words to be transferred. In this
way, the word transfer which causes the word count to overflow (WC becomes
zero) is the last transfer to take place. The number of 10T instructions re-
quired for the TYPE TC58 is minimized by transferring all necessary control
data (i.e., unit number, function, mode, direction, etc.) from the PDP-8/1
accumulator (AC) to the control using 10T instructions. Similarly, all status
information (i.e., status bits, error flags, etc.) can be read into the AC from
the control unit by 10T lnstructlons

During normal data reading, the control assembles 12-bit computer
words from successive frames read from the information channels of the tape.
During normal data writing, the control disassembles 12-bit words and dis-
tributes the bits so they are recorded on successive frames of the information
channels. .

INSTRUCTIONS
The commands for the Magnetic Tape Control System are as follows:

Skip on Error Flag or Magnetic Tape Flag (MTSF)
Octal Code: 6701 :

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The status of the error flag (EF) and the magnetic tape flag (MTF)
are sampled. If either or both are set to 1, the content of the PC is incre-
mented by one to skip the next sequential instruction.

Symbol: If MTForEF =1,PC+ 1 = >PC

Skip on Tape Control Ready (MTCR)

Octal Code: 6711

Event Time: 1 -

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: If the tape control is. ready to receive a command, the PC is incre-
mented by one to skip the next sequential instruction.

Symbol: If Tape Control Ready, PC + 1 = > PC

172

Skip on Tape Transport Ready (MTTR)

Octal Code: 6721

Event Time: 1 o

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operatlon The next sequential instruction is skipped if the tape transport
is ready.

Symbol: If tape unit ready, PC + 1 = > PC

Clear Registers, Error Flag and Magnetic Tape Fiag (MTAF)

Octal Code: 6712
Event Time: 2
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: Clears the status and command registers, and the EF and MTF
if tape control is ready. If tape control not ready, clears MTF and EF flags
only.
Symbol: If tape control is ready, 0 = > MTF, 0 = > EF,
0 = > command register
If tape control not ready, 0 = > MTF, 0-= > EF

Inclusive OR Contents of Command Register

Octal Code: 6724

Event Time: 3

Indicators: 10T, FETCH PAUSE

- Execution Time: 4.25 microseconds

Operation: Inclusively OR the contents of the command register into bits.
0-11 of the AC. _

Symbol: AC \/ command register = > AC

Inclusive OR Contents of Accumulator (MTCM)

Octal Code: 6714
Event Time: 3 ,
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 mlcroseconds
Operation: Inclusively OR the contents of AC bits 0-5, 9-11 mto the command
register; JAM transfer bits 6, 7, 8 (command functlon)
Symbol: ACq-s, ACs-1 V command register = > command reglster
ACss — > command register bits 6-8

Load Command:Register (MTLC)

Octal Code: 6716

Event Time: 2,3

Indicators: IOT FETCH, PAUSE

Execution Time: 4.25 mlcroseconds

Operation: Load the contents of AC bits 0-11 into the command reglster
Symbol: ACs-3 = > command register

Inclusive OR Contents of Status Register
Octal Code: 6704

Event Time: 3

Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 mlcroseconds

Operation: Inclusively OR the contents of the status register into blts 0-11 of
the AC. , :
"~ Symbol: Status Register \/ AC = > ACp-11

173

Read Status Register (MTRS)

Octal Code: 6706

Event Time: 2,3

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: Read the contents of the status register. into bits 0-11 of the AC.
Symbol: Status Register = > ACq-1y

Mag Tape “GO" (MTGO)
Octal Code: 6722
Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 mlcroseconds

Operation: Set “GO” bit to execute command in the command register if
command is legal.

Symbol: None

Clear the AC

Octal Code: 6702

Event Time: 2

Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: Clear the accumulator.
Symbol: 0 = > AC

Although any number of tapes may be simultaneously rewinding, data trans-
fer may take place to or from only one transport at any given time. In this
context, data transfer includes these functions: read or write data, write EOF
(end of file), read/compare, and space. When any of these functions are in
process, the tape control is in the “not ready” condition. A transport is said
to be “not ready” when tape is in motion, when transport power is off, or
when it is off line.

Data transmission may take place in either parity mode, odd-binary or even-
BCD. When reading a record in which the number of characters is not a
multiple of the number of characters per word, the final characters come into
memory left-justified.

Ten bits in the magnetic tape status register retain error and tape status
information. Some error types are combinations, such as lateral and longi-
tudinal parity errors (parity ehecks occur after both reading and writing of
data), or have a combined meaning, such as illegal command, to allow for
the maximum use of the available bits.

The magnetic tape status register reflects the state of the currently selected
tape unit. Interrupts may occur only for the selected unit. Therefore, other
units which may be rewinding, for example, will not interrupt when done.

A special feature of this control is the “Write Extended Inter-Record Gap”
capability. This occurs on a write operation when Command Register bit 5 is
set. The effect is to cause a 3-inch inter-record gap to be produced before the
record is written. The bit is automatically cleared when the writing begins.

This is very useful for creating a 3-inch gap of blank tape over areas where
tape performance is marginal.

174

Magnetic Tape Functions A :
For all functions listed below, upon completion of the data operation (after
the end-of-record character passes the read head), the MTF (magnetic tape
flag) is set, an interrupt occurs (if enabled), and errors are checked.

'No Operation

A NO OP command defines no function in the command register. A MTGO
iAnstruction with NO OP will cause an illegal command error (set EF).

Space :

There are two commands for spacing records, SPACE FORWARD and SPACE
REVERSE. The number of records to be spaced (2's complement) is loaded
into the WC. CA need not be set. MTF (magnetic tape flag) is set, and an
interrupt occurs at WC overflow, EOF (end of file), or EOT (end of tape), -
whichever occurs first. When issuing a space command, both the density and
parity bits must be set to the density and parity in which the records were
originally written. - .

Load Point or Beginning of Tape (BOT) detection during a backspace termi-
nates the function with the BOT bit set. If a SPACE REVERSE command is
given when a transport is set at BOT, the command is ignored, the illegal
command error and BOT bits are set, and an interrupt occurs.

Read Data : :

Records may be read into memory only in the forward mode. Both CA and
WC must be set: CA, to the initial core address minus one; WC, to the 2's
complement of the number of words to be read. Both identify and parity bits
must be set.

If WC is set to less than the actual record length, only the desired number
of words are transferred into memory. If WC is greater than or equal to the
actual record length, the entire record is read into memory. In either case,
both parity checks are performed, the MTF is set, and an interrupt occurs
when the end-of-record mark passes the read head. If either lateral or longi-
tudinal parity errors or bad tape have been detected, or an incorrect record
length error occurs, {WC not equal to the number of words in the record), the
appropriate status bits are set. An interrupt occurs only when the MTF is set.

To continue reading without stopping tape motion, MTAF (clear M];F) and
MTGO instructions must be executed” If the MTGO command is not given
. pefore the shut down delay terminates, the transport will stop.

Write Data

Data may be written on magnetic tape in the FORWARD DIRECTION ONLY.
For the WRITE DATA function, the CA and WC registers and density and
parity bits must be set. WRITE DATA is controlled by the WC, such that
when the WC overflows, data transfer stops, and the EOR (end of record)
character and IRG (inter-record gap) are written. The MTF is set after the
EOR has passed the read head. To continue writing, a MTGO command must
be issued before the shut down delay terminates. If any errors occur, the EF
will be set when the MTF is set.

Write EOF

The WRITE EOF command transfers a single character (17 record to mag-
netic tape and follows it with EOR character. CA and WC are i_gnored for

WRITE EOF. The density bits must be set, and the command register parity
bit should be set to even (BCD) parity. If it is set to odd parity, the control

175

will automatically change it to even.

When the EOF marker is written, the MTF is set and an interrupt occurs. The
tape transport stops, and the EOF status bit is set, confirming the writing
of EOF. If odd parity is required after a WRITE EOF, it must be specifically
requested through the MTLC command.

Read/Compare

The READ/COMPARE function compares tape data with core memory data.
It can be useful for searching and positioning a magnetic tape to a specific
record, such as a label or leader, whose content is known in core memory, or
to check a record just written. READ/COMPARE occurs in the forward direc-
tion only; CA and WC must be set. |f there is a comparison failure, increment-
ing of the CA ceases, and the READ/COMPARE error bit is set in the status
register. Tape motion continues to the end of the record; the MTF is then
set and an interrupt occurs. If there has been a READ/COMPARE error, ex-
amination of the CA reveals the word that failed to compare.

Rewind

The high speed REWIND command does not require setting of the CA or
WC. Density and parity settings are also ignored. The REWIND command re-
winds the tape to loadpoint (BOT) and stops. Another unit may be selected
after the command is issued and the rewind is in process. MTF is set, and
~an interrupt occurs (if the unit is selected) when the unit is ready to accept
a néw command. The selected unit’s status can be read to determine or verify
that REWIND is in progress.

Continued Operation

1. To continue operating in the same mode, the MTGO instruction is given*
before tape motion stops. The order of commands required for continued
operation are as follows:

a. LCM, if the command is to be changed.

b. MTAF, will only clear MTF and EF flags since tape control will be in

a Not Ready state.

c. MTGO, if LCM requested an irlegal condition, the EF will be set at
this time. ‘

2. To change modes of operation, either in the same or opposite direction,
the MTCM command is given to change the mode and a MTGO command is
given to request the continued operation of the drive. If a change in direc-
tion' is ordered, the transport will stop, pause, and automatically start up
again.

3. If the WRITE function is being performed, the only forward change in
command that can be given is WRITE EOF,

4. If no MTGO instruction is given, the transport will shut down in the
inter-record gap.

(Note: No flags will be set when the control becomes ready or the transport
becomes ready, except if the REWIND command is present in the command
register and the selected drive reaches BOT and is ready for a new command.)

176

5. If a WRITE (odd parity) command is changed to WRITE EOF, the panty
is automatically changed to even,

(Note: Even parity will remain in the command register unless changed by a
new command instruction, MTLC, which clears and loads the entire command
register.)

Status or Error Conditions

Twelve bits in the magnetic tape status register indicate -status or error
conditions. They are set by the control and cleared by the program.

The magnetic tape status register bits are:

- BIT* -FUNCTION (WHEN SET)

Error flag (EF)
Tape rewinding
Beginning of tape (BOTY
lllegal command
Parity error (Lateral or Longitudinal)
End of file (EOF)
End of tape (EOT)
Read/compare error
Record length incorrect
WC = 0 (long)
C = 0 (short)
9 Data request late
, 10 Bad tape
o 11 _ Magnetic tape flag (MTF) or job done

oO~NOOTPAWNEO

*The register bits are equnvalent in position to the AC bits (i.e., SR, = AC,,
etc.).

MTF (SR11)
The MTF flag is set under the following conditions:

1. Whenever the tape -control has completed an operatlon (after the EOR
mark passes the read head).

2. When the selected transport becomes ready following a normal REWIND
function.

These functions will also set the EF if any errors are present

EOF (SR5)

- End-of-file (EOF) is sensed and may be encountered for those functions which
come under the heading of READ STATUS FUNCTION, i.e., SPACE, READ
DATA, or READ/COMPARE and WRITE EOF. When EOF is encountered, the
tape control sets EOF = 1. MTF is also set; hence, an interrupt**occurs and
the EOF status bit may be checked.

**All references to interrupts assume the tape flags have been enabled to the
interrupt (command register bit 9 = 1) and that the unit is selected.

177

EOT (SR6) and BOT (SR2)

End-of-tape (EOT) detection occurs durmg any forward command when the
EOT reflective strip is sensed. When EOT is sensed, the EOT bit is set, but
the function continues to completion. At this time the MTF is set (and EF is
set), and an interrupt occurs. _ :

Béginning—of-tape (BOT) detection status bit occurs only when the beginning-
of-tape reflective strip is read on the transport that is selected.

When BOT detection occurs, and the unit is in reverse, the function termi-
nates. If a tape unit is at load point when a REVERSE command is given, an
illegal command error bit is set, causing an EF with BOT set. An mterrupt
then occurs.

lHlegal Command Error (SR3)
The illegal command error bit is set under the following conditions:

‘1. A command is issued to the tape control with the control not ready.

2. A MTGO command is issued to a tape unit which is not ready, and the
tape control is ready.

3. Any command which the tape control, although ready, cannot perform;
e.g.:

a. WRITE with WRITE LOCK condition ‘ '

b. 9-channel tape and incorrect density

¢. BOT and SPACE REVERSE

Parity (SR4)

Longitudinal and lateral parity checks will occur in both reading and writing.
The parlty bit is! set for either lateral or Iongntudmal parity failure. A func-
tion is not interrupted, however, until MTF is set. Maintenance panel indica-
tors are available to determine which type of parity error occurred.

Read Compare Error (SR7)

When READ/COMPARE function is underway, SR7 is set to 1 for a READ/
COMPARE ERROR (see earlier section on READ/COMPARE for further details).

Bad Tape (SR10)

A BAD TAPE ERROR indicates detection of a bad spot on the tape. Bad tape
is. defined as three or more consecutive missing characters followed by data,
within the period defined by the READ SHUTDOWN DELAY. The error bit is
set by the tape control when 'this occurs. MTF and interrupt do not occur
until the end of the record in which the error was detected.

Tape Rewinding (SR1)

When a REWIND command has been issued to a tape unit and the function
is underway, the tape rewinding bit is set in the control.” This is a transport
status bit, and any selected transport which is in a high speed rewind will
cause this bit to be set.

Record Length Incorrect (SR8)

During a read or read/compare, this bit is set when the WC overflow differs
from the number of words in the record. The EF flag is set.

178

Data Request Late (SR9)
This bit can be set whenever data transmission is in progress. When the
DATA FLAG causes a break cycle, the data must be transmitted before a
write pulse or a read pulse occurs. If it does not, this error will occur, and
data transmission will cease. The EF flag and bit 9 of the status register are
‘set when the MTF is set.

Error Flag (SRO)

The ERROR FLAG (EF) is set whenever any error status bit is present at the
time that MTF is set. However, when an ILLEGAL COMMAND is glven the EF
is set and the MTF is not set.

Command Register Contents

Unit Selection (0-7) Core Command Density
—\ Dump A—
{_ 1\ i [_ A\ g
0 1 2 3 4 5 6 7 8 9 10 11
Parity Write " Flags
0 = even extended 0 = disable
1 = odd inter-record 1 = enable.
gap (3” of
blank tape

before record)

Unit Selection Density Selection
Unit Selection Bits Density Density Bits
Unit O 1 2 , _
0 0 0. O 200 BPI : -0 0
1 0 0 1
2 0 1 0 556 BPI 0 1
3 -0 1 1
4 1 O 0 800 BPI 1 0
5 1 0 1 _
6 1 1 0 800 BPI
7 1 1 1 9 channel 1 1
Command Selection
COMMAND _ BITS
~ 6 7 8
NO OP 0] 0 0
Rewind 0 0 1
Read 0 1 0
Read/Compare 0 . 1 ., 1
Write ' 1 0 0
Write EOF 1 0 1
Space Forward 1 1 1
Space Reverse 1 1 1 .

179

Magnetic Tape Function Summary

LEGEND: CA = Current Address Reglster = 32,
WC = Word Count Register = 33,
F = Forward
R = Reverse
DS = Density Setting -
PR = Parity Setting
EN = Enable Interrupt

Function Characteristics Status of Error Types
NO-OP CA: Ignored lliegal
. WC: Ignored BOT
DS: lIgnored : Tape Rewinding
PR: Ignored '
EN: Ignored
SPACE FORWARD - CA: Ignored Hlegal
WC: 2's comp. of humber EOF
of records to skip Parity
DS: Must be set Bad Tape
PR: Must be set MTF, BOT,
EN: Must be set EOT
SPACE REVERSE ' Hlegal
EOF
Parity
Same as Space Forward Bad Tape
BOT
MTF
READ DATA CA: Core Address — 1 llegal
WC:. 2's comp. of number EOF
of words to be Parity
transferred Bad Tape
DS: Must be set MTF
PR: Must be set EOT
EN: Must be set Data Request Late
Record Length
Incorrect
WRITE DATA Hlegal
EOT
Parity
Same as READ DATA MTF
Bad Tape
Data Request Late
WRITE EOF CA: lIgnored Same as WRITE
* WC: Ignored DATA plus EOF

DS: Must be set
PR: Must be set
EN: Must be set

180

Function Characteristics Status of Error Types

READ/COMPARE Same as READ DATA Illegal
EOF

Read/Compare Error

Bad Tape

MTF

EOT

Data Late

Record Length
Incorrect

REWIND CA: lIgnored ° Ilegal

_ : WC: Ignored Tape Rewmdmg
DS: lIgnored - MTF
PR: Ignored BOT
EN: Must be set

Magnetic Tape Trahsport Type TU20 (7-channel)

The Type TU20 is a digital magnetic tape transport designed to be com-
patible with the Type TC58 Magnetic Tape Control. The transport operates
at a speed of 45 inches per second and has three selectable densities:
200, 556, and 800 bpi. The maximum transfer rate is 36,000 six-bit charac-
ters per second. Standard seven-channel [BM-compatible tape format is used.
The specifications for the unit are as foHows:

FORMAT: NRZ| ._Slx data bits plus one parlty'bit.
End and loadpoint sensing compatible with IBM 729 [-VI.

TAPE: Width of 0.5 inch. Length of 2400 ft. (1.5 mil.). Reels are 10.5
in., IBM-compatible, with. file protect (WRITE LOCK) ring.

HEADS: Write-read gap of 0.300 in. Dynamic and static skew is less than
.14 usec.

TAPE SPECIFICATIONS: 45 IPS speed. Rewind time is less than 5 msec.
Start distance is 0.080 in. (+0.035, —0.025 in.). Stop time is less than
1 5 msec. Stop distance is 0.045 in. (+0.015 in.).

DENSITY 200, 556, and 800 BPI. Maximum transfer rate is 36 kHz
TRANSPORT MECHANISM: Pinch roller drive; vacuum column tension

CONTROLS: ON/OFF, ON LINE, OFF LINE FORWARD, REVERSE, REWIND,
LOAD, RESET.

PHYSICAL SPECIFICATIONS: Width of 22y in., depth of 27% in., height
of 69). Weight — 600 Ibs. -

READ (READ/COMPARE) SHUTDOWN DELAY: 3.6 milliseconds.
WRITE SHUTDOWN DELAY: Approximately 4.5 milliseconds.

181

8-TRACK OPERATION ,

9- and 7-track transports may be intermixed on the Type TC58 control. When
a transport is selected, it automatically sets the control for proper operation

with its number of tracks.
Control of 9-track operation is identical to 7-track, except as noted below:

Write
A word in memory is written on tape with format shown below:

l—_ LATERAL PARITY BIT OF CHARACTER 1

x | x| x |-x ' CHARACTER 1

BIT 0 t 2 3 4——— - - - - - - ===

X- THESE BITS ARE IGNORED

Read _
A word is read into memory from tape with the. format shown below:

'—- LATERAL PARITY BIT OF CHARACTER 1

X X X P{ CHARACTER §

BIT O 1 2 3 4
X- THESE BITS ARE IGNORED

ReadlCompa;e :
A direct comparison of the characters on tape is made with those in memory.

The parity bit is ignored, as are bits 0-3 in each memory word.

Core Dump Mode
This mode is used only with 9-track transports. It is entered by setting bit 4

of the command register.

Core dump mode permits the dumping of complete memory words in the
form of two six-bit characters. The format is:‘

CHARACTER! CHARACTER 2

BITS 0 - -~ - ==~ - - - 5 6

This is accomplished by only utilizing 7 of the 9 tracks on the tape.

Tape written in CORE DUMP MODE,-must be READ (READ/COMPARE) in the
same mode. These operations are the same as for a 7-track transport.

Magnetic Tape Transport, Type TU20A (9-channel) _

The Type TU20A is a digital magnetic tape transport designed to be com-
patible with the Type TC58 Magnetic Tape Control. The transport operates
at a speed of 45 inches per second and a density of 800 bpi. The maximum
transfer rate is 36,000 eight-bit characters per second. Standard nine-channel

182

IBM-compatible tape format is used. The specifications for the unit are as
follows:

FORMAT: NRZI. Eight data bits’plus on parity bit.
End and loadpoint sensing compatible with IBM.

‘TAPE: Width of 0.5 inch. Length of 2400 ft. (1.5 mil.). Reels are 10.5
in., IBM-compatible, with file protect (WRITE LOCK) ring.

HEADS: Write-read gap of 0.150 in. Dynamic and static skew is less than
14 usec.

TAPE SPECIFICATIONS: 45 IPS speed. Rewind time is less than 5 msec.
Start distance is 0.080 in. (4+0.035, —0.025 in.). Stop time is less than
1.5 msec. Stop distance is 0.045 in. (=0.015 in.).

DENSITY: 800 BPI. Maximum transfer rate is 36 kHz.
TRANSPORT MECHANISM Pinch roller drive; vacuum column tension.

CONTROLS: ON/OFF, ON LINE, OFF LINE FORWARD, REVERSE, REWIND,
LOAD, RESET.

PHYSICAL SPECIFICATIONS: Width of 22y in., depth of 27y in., height
. of 69%%. Weight — 600 Ibs. .

READ (READ/COMPARE) SHUTDOWN DELAY: 3.6 milliseconds.
WRITE SHUTDOWN DELAY: Approximately 4.5 milliseconds.

DECTAPE SYSTEM

The DECtape system is a standard option for the PDP-8/1 which serves as an
auxiliary magnetic tape data storage facility. The DECtape system stores infor-
mation at fixed positions on. magnetic tape as in magnetic disk or drum

storage devices, rather than at unknown or variable positions as is the case in’
conventional magnetlc tape systems. This feature allows replacement of
blocks of data on tape in a random fashion without disturbing other previously
recorded information. In particular, during the writing of information on tape,

the system reads format (mark) and timing information from the tape and

uses this information to determine the exact posifion at which to record the
information to be written. Similarly, in reading the same mark and timing
information is used to locate data to be played back from the tape.

This system has a number of features to improve its reliability and make it
exceptionally useful for program updating and program editing applications.
These features are: phase or polarity sensed recording on redundant tracks,
bidirectional reading and writing, and a simple mechanical mechanism utiliz-
ing hydrodynamically lubricated tape guiding (the tape ﬂoats on air and does
not touch any metal surfaces).

DECtape Format

DECtape utilizes a 10-track read/write head. Tracks are arranged in five non-
adjacent redundant channels: a timing channel, a mark channel, and three
information channels. Redundant recording of each character bit on non-
adjacent tracks materially reduces bit drop outs and minimizes the effect of

183

skew. Series connection of corresponding track heads within a channel and
the use of Manchester phase recording techniques, rather than amplitude
sensing techniques, virtually eliminate drop outs. :

The timing and mark channels control the timing of operations within the con-
trol unit and establish the format of data contained on the information chan-
nels. The timing and mark channels are recorded prior to all normal data
reading and writing on the information channels. The timing of operations
* performed by the tape drive and some control functions are determined by the
information on the timing channel. Therefore, wide variations in the speed of
tape motion do not affect system performance. Information read from the
mark channel is used during reading and writing data, to indicate the begin-
ning and end of data blocks and to determine the functions performed by the
system in each control mode.

During normal data reading, the control assembles 12-bit computer length
words from four successive lines read from the information channels of the
tape. During normal data writing, the control disassembles 12-bit words and
distributes the bits so they are recorded on four successive lines on the infor--
mation channels. A mark channel error check circuit assures that one of the
permissible marks is read in every six lines on the tape. This 6-line mark
channel sensing requires that data be recorded in 12-line’ segments (12 being
the lowest common multiple of 6-line marks and 4-line data words) which cor-
respond to three 12-bit words.

184

S81

TIMING TRACK
MARK TRACK !
INFORMATION TRACK
INFORMATION TRACK

INFORMATION TRACK

INFORMATION TRACK
{Same as IT |I)

INFORMATION TRACK
{Some as T 2}

INFORMATION TRACK
{ Same os IT 3)

MARK TRACK IA
(Same as MT |)

TIMING TRACK 1A
{(Same as TT I) ~

2A

3A ' REDUNDANT

TRACKS

3/4"

Figure 11. DECtape Track Allocations

981

ONE COMPLETE REEL - 260 FT 4096 BLOCKS -

ONE BLOCK, 86 18-BIT WORD LOCATIONS

TIMING TRACK

MARK TRACK

INFORM-
ATION
TRACKS

_ ONE 'WORD -

- ONE ‘worD |

CONE WORD'

CONE WORD.

P e CONTROL WORDS

£ Do aNe ain b aa oy
& E EN & - AE & &
‘o g% ‘o%v.%ooa. ol
3 ¥ $EEERFEEE 2
3 g gty gny 2
58838606 E8 85585 G
-t 129, DATA WORD LOCATIONS t

Figure 12. DECtape Mark Channel Format

CONTROL WORDS

;

DATA
WORDS

L81

Forward direction of tape motion -

TTTTTY

_ONE BLOCK 86,g 18-BIT WORD LOCATIONS

|EXPAND BLOCK REVERSE
ICODE MARK GUARD LOCK

CHECK REVERSE PRE-
FINAL FINAL DATA

12910 12-81T DATA WORD LOCATléNS

|
|
|
|
|
|
1
REVERSE I
PRE- CHECK REVERSE BLOCK EXPANDI
DATA DATA FINAL FINAL SUM LOCK GUARD, MARK CODE

PERMITS EXPANSION OF
BLOCK NUMBER

SIGNIFIES START OF BLOCK AND
ALLOWS COMPUTER PROGRAM TO
IDENTIFY BLOCKS

PROVIDES WRITE PROTECTION IN REVERSE
DIRECTION AND SYMMETRY

NOT USED IN PDP-8 CONFIGURATIONS BUT
PROVIDED TO ALLOW COMPATIBILITY WITH
OTHER COMPUTERS

PROVIDES SYMMETRICAL ERROR PROTECTION

IN BOTH DIRECTIONS

SAME AS FINAL IN REVERSE DIRECTION

(FIRST DATA WORD)

SAME AS PRE-FINAL IN REVERSE DIRECTION
{ SECOND DATA WORD}

SUCCESSIVE DATA WORDS

Figure 13.

b b

Diz Dize Dizz Dize Digg

* PERMITS EXPANSION OF BLOCK
NUMBER

BLOCK NUMBER AS REVERSE DIRECTION

SAME FUNCTION AS REVERSE LOCK

PROTECTS TAPE IN EVENT OF MARK CHANNEL

ERRORS

PROVIDES AUTOMATIC ERROR DETECTION
AND END OF BLOCK DETECTION WHEN READING

IDENTIFIES FINAL DATA WORD AND REQUESTS

CHECKSUM

NOT USED 8UT PROVIDED TO ALLOW TAPE

COMPATIBILITY WITH OTHER SYSTEMS

NOTE: END MARKS WHICH IDENTIFY THE PHYSICAL ENDS
OF THE TAPE, ARE THE ONLY MARKS NOT SHOWN.

Code functions listed apply only in the direction indicated.

" DECtape Control Word and Data Word Assignments

ADDITIONAL DATA WORDS

" 881

TIMING TRACK

MARK TRACK
t
INFORM-
ATION 2
TRACKS
3

aE | MARK TRACK coos

Lme Lme Ltne Llne Llne Lme

Llne Llne Llne Llne Lme Lnne

MARK TR ACK CODE

: tings - : 6.:lines
- _QI- : ;} ;'65‘.. .9] ‘ '232 3 o_% 3!:_ s} 7 (.
| CONTROL o | “CONTRQL : /
v «i '-;NQRD[_.-."Q% 131 = |! ’ WORD ,_ I6
| _Eil i wbial '2‘ 51 ai % / 7]
———— 6 lines (I8 bits) ————wmjest——o- & |ines (I8 bits) ~———mm

Line Line Line Line
! 2 3 4

h 1.0
MARK TRACK

6 lines

o

[B 9

ST pata

1} WORD: 71 40

zj 5] a;l' 1

j=- 4 {ines. (12 bits)

-4 lines (12 bi's)j

Figure 14. DECtape Format Details

Line Line Line Line
[2 3

Line Line Line Line
2 3 4

4 lines (12 bits)

- REDUNDANT

"TRACKS
NOT
SHOWN

A tape contains a series of data blocks that can be of any length which is a
multiple of three 12-bit words. Block length is determined by information on.
the mark channel. Usually a uniform block length is established over the en-
tire length of a reel of tape by a program which writes mark and timing infor-
mation at specific locations. The ability to write variable-length blocks is use-
ful for certain data formats. For example, small blocks containing index or tag
information can be alternated with large blocks of data. (Software supplied
with DECtape allows writing for fixed block lengths only.)

Between the biocks of data are areas calied interblock zones. The interblock
zones consist of 30 lines on tape before and after a block of data. Each of
these 30 lines is divided into five 6-line control words. These 6-line control
words allow compatibility between DECtape written on any of the DEC's 12-,
18-, or 36-bit computers. As used on the PDP-8/I, only the last four lines
of each control word are used.

Block numbers normally occur in sequence from 1 to N. There is one block
numbered O and one block N + 1. Programs are entered with a statement of
the first block number to be used and the total number of blocks to be read or
written. The total length of the tape is equnvalent to 849,036 lines which can
be divided into any number of blocks up to 4096 by prerecording of the mark
track. The maximum number of blocks is determined by the following equa-
tion in which Ns = number of blocks and N. = number of words per block
(N. must be divisible by 3).

212112

Ne= N 15 2

DECtape format is illustrated in Figures 11 through 14.

DECtape Transport (Type TU55) and

DECtape Control (Type TCO1)

- A DECtape system configuration contains up to eight TU55 transports operated

from one TCO1 control. All data transfers occur between the computer and
the control and are effected by the three-cycle data break facility. A 12-bit
data buffer in the control synchronizes transfers between the TCOl1 and the
PDP-8/1 data break facility. Data read from four consecutive lines on tape
by the transport are assembled into 12-bit words by a read/write buffer
from the computer is disassembled by the read/write buffer and supplied
to the transport for writing on four lines of tape.

Transfer of command and control signals between the computer and the
control is effected by normal 10T instructions. Small registers and control
flip-flops in the TCO1 are joined to serve as two status registers for the
transfer of command and control information with the PDP-8/1 accumulator.
Bit assignments of these registers are indicated in Figure 15 and Figure 16.

DECTAPE TRANSPORT (TYPE TUS5)

The TU55 is a bidirectional magnetic-tape transport consisting of a read/wrlte
head for recording and playback of information on five channels of the tape.
Connections from the read/write head are made directly to the external con-
trol which contains the read and write amplifiers.

189

The logic circuits of the TU55 control tape movement in either direction over
the read/write head. Tape drive motor control is exercised completely through
the use of solid state switching circuits to provide fast reliable operation.
These switching circuits contain silicon controlled rectifiers which are con-
trolled by normal DEC diode and transistor logic circuits. These circuits con-
trol the torque of the two motors which transport the tape across the head
according to the established function of the device, i.e., go, stop, forward, or
reverse. In normal tape movement, full torque is applied to the forward or
leading motor and a reduced torque is applied to the reverse or trailing motor
to keep proper tension on the tape. Since tape motion is bidirectional, each
motor serves as either the leading or trailing drive for the tape, depending
upon the forward or reverse control status of the TUS55. A positive stop is
achieved by an electromagnetic brake mounted on each motor shaft. When a
stop command is given, the trailing motor brake latches to stop tape motion.
Enough torque is then applied to the leading motor to take up slack in the

tape.

Tape movement can be controlled by commands originating in the computer
and applied to the TU55 through the TCO1 DECtape Control, or can be con-
trolled by commands generated by manual operation of rocker switches on the
front panel of the transport. Manual control is used to mount new reels of tape
on the transport, or as a quick maintenance check for proper operation of the
control logic in moving the tape.

TUSS5 Dectape Transport Characteristics '

Times ‘given are typical but are not accurately controlled. Since DECtape is
a fixed address system the programmer need not know accurately where the
tape has stopped. To locate a specific point on tape he must merely start tape
motion in search mode. The address of the block currently passing over the
head will be automatically transferred to core where it can be compared with
the desired block address and tape motion continued or reversed accordingly.

Start Time — ' 200 M Sec*
Stop Time — 200 M Sec*
Turn Around Time — 275 M Sec*

*Note Also see control spec. These times are frequently lengthened by
the particular control.

DECTAPE CONTROL TYPE TCO1

The TCO1 DECtape Control operates up to eight TU55 DECtape Transports.
Binary information is transferred between the tape and the computer in 12-bit
computer words approximately every 133 microseconds. In writing, the con-
_trol disassembles 12-bit computer words so that they are written at four suc-
cessive lines on tape. Transfers between the computer and the control always
occur in parallel for a 12-bit word. Data transfers use the three-cycle data
break facility of the computer. As the start and end of each block of data are
detected by the mark track detection circuits, the control raises a DECtape
control flag (DTCF) which requests a computer program interrupt. The pro-
gram interrupt is used by the computer program to determine the block
number. When it determines that the forthcoming block is the one selected
for a data transfer it establishes the appropriate read or write function. Each
time a word is assembled or the DECtape system is ready to receive a word
from the computer, the control raises a data flag (DF). This flag is connected
to the computer data break facility to request a data break. Therefore, when
each 12-bit computer word is assembled, the data flag causes a transfer via
the three-cycle data break. By using the mark channel decoding circuits and

190

the data break in this manner, computation in the main computer program
can continue during DECtape operations.

Four program flags in the control serve as condition indicators and request
originators. :

DECtape Flag (DT): This flag indicates the active/done status of the current
function.

Data Flag (DF): This flag requests a data break to transfer a block number
into the computer during a search function, or when a data word transfer is
required during read or write function.

DECtape Control Flag (DTCF): This flag, when enabled by a binary 1 in bit 9 of
- status register A, requests a program interrupt if either the DECtape flag or the
error flag is set and is connected to the instruction skip facility. _

Error Flag (EF): Detection of any non-operative condition by the control sets
this flag in status register B and stops (except for parity errors) the selected
transport. The error conditions-indicated by this flag are:

a. Mark Track Error: This error occurs any time the information read
from the mark channel is erroneously decoded.

b. End of Tape: The end zone on either end of the tape is over the read
head.

c. Select Error: This error occurs five microseconds after loading status
register A to indicate any-one of the following conditions:
- 1. Specifying a unit select code which does not correspond to any
transport select number, or which is set to multiple transports.
2. Specifying a write function with the WRITE ENABLED/WRITE
LOCK switch in the WRITE LOCK position on the selected trans-
port. ‘
Specifying an unused function code (i.e. AC6-8 = 111). :
Specifying any function except read all with-the NORMAL/WRTM/
RDMK switch in the RDMK position.
Specifying any function except write timing and mark track with
- the NORMAL/WRTM/RDMK switch in the WRTM position.
Specifying the write timing and mark track function with the
NORMAL/WRTM/RDMK switch in a position other than WRTM.'

o o AW

d. Parity Error: This error occurs during a read data function if the
longitudinal parity over the entire data word, the reverse checksum,
and the checksum is not equal to 1..

e. Timing Error: This error indicates a program fault caused by one of
" the following conditions:

1. A data break did nbt occur within 66 microseconds (+30%) of the
data break request.

2. The DT flag was not cleared by the program before the control
attempted to set it.

3. The read data or write data function was specified while a data

block was passing the read head.

INSTRUCTIONS

Instructions for a TCO1/TU55 system' are microprogrammed commands of the
PDP-8/1 10T instruction and are defined as follows:

191

Read Status Register A (DTRA)

Octal Code: 6761

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The content of status register A is transferred into the accumu-
lator by an OR transfer. The AC is not cleared before the transfer. The
AC bit assignments are:

ACO-2 = Transport unit select number
AC3(0) = Forward

AC3(1) = Reverse

AC4(0) = Stop

AC4(1) =Go

AC5(0) = Normal mode

'AC5(1) = Continuous mode

AC6-8 = 0 = Move function

AC6-8 = 1 = Search function

AC6-8 = 2 = Read data function

AC6-8 = 3 = Read all function

AC6-8 = 4 = Write data function

AC6-8 = 5 = Write all function

AC6-8 = 6 = Write timing and mark tracks function
AC6-8 = 7 = Unused (causes a select error if issued)

AC9(0) = DECtape Control Flag (DTCF) and error flag disabled from caus-
ing a program interrupt
AC9(1) = DECtape Control Flag (DTCF) and error flag enabled to cause a
program interrupt.
Symbol: ACO0-9 V Status Register A = > AC0O-9

Clear Status Register A (DCTA)

Octal Code: 6762

Event Time: 2 '

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: Status register is cleared. The DECtape flag and error flags are
undisturbed.

Symbol: 0 = > Status Register A

Load Status Register A (DTXA)

Octal Code: 6764
Event Time: 3
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: The exclusive OR of the content of bits O through 9 of the accumu-
lator is loaded into status register A, and bits 10 and 11 of the accumulator
are sampled to control clearing of the error and DECtape flags, respectively.
Loading status register A from ACQ-9 establishes the transport unit select
code, motion control, function, and enables or disables the DECtape control
flag to request a program interrupt as described in the DTRA instruction. The
sampling of AC10 and AC11 is as follows:

AC10(0) = Clear all error flags

AC10(1) = All error flags undisturbed

AC11(0) = Clear DECtape flag

AC11(1) = DECtape flag undisturbed

192

~

The accumulator is cleared at the end of this instruction.
Symbol: ACO-9 \/ Status Register A = >> Status Register A
If AC10 = O, then 0 = > EF Flag
If AC11 = O, then 0 = > DT Flag
0=>AC

skip on Flags (DTSF)

Octal Code: 6771
“Event Time: 1

Indicators: 10T, FETCH, PAUSE

- Execution Time: 4.25 mlcroseconds

Operation: The content of both the error flag and the DECtape flag is sampled
and if any flag contains a binary 1, the content of the program counter is in-
cremented by one to skip the next sequentlal instruction.

Symbol: If EF Flag = 1V DT Flag = 1, then PC + 1.= > PC

_Read Status Reglster B (DTRB)

- Octal Code: 6772 '
Event Time: 2
Indicators: 10T, FETCH PAUSE
Execution Time: 4.25 mlcroseconds
Operation: The content of status reglster B is transferred into the accumu-
lator by an OR transfer. The AC is not cleared before the transfer. The AC
bit assignments are:
ACO = Error flag (Error flag — mark track error V end of tape V select
error V parity error V timing error)
AC1 = Mark track error
AC2 = End of tape
AC3 = Select error
AC4 = Parity error
AC5 = Timing error
AC6-8 = Memory-field
AC9-10 = Unused
AC11 = DECtape flag -
Symbol: AC V Status Register B = > AC

Load Status Register B (DTLB)

Octal Code: 6774

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The memory field register portion status register B is loaded from
the content of blts 6 through 8 of the accumulator. The accumulator is then
cleared.

Symbol: AC6-8 = > Memory Field, then 0 = > AC

- CONTROL MODES

The DECtape system operates in either the normal or continuous mode, as de-
termined by bit 5 of status register A during a DTXA command. Operation in
each mode is as follows:

Normal (NM): Data transfers and flag settings are controlled by the format of
information on the tape.

Continuous (CM): Data transfers and flag settings are controlled by a word
count (WC) read from core memory during the first cycle of each three-cycle
data break; and by the tape format.

193

FUNCTIONS

The DECtape system pé?forms one of seven functions, as determined by the
octal digit loaded into status register A during a DTXA command. These func-
tions are:

Move: Initiates movement of the selected transport tape in either direction.
Mark channel decoding is inhibited in this mode except fbr end of tape.

Search: As the tape is moved in either direction, sensing a block mark causes
a data transfer' of the block number. If the word count overflows (WCO) in
either NM or CM, the DT flag is set and causes a program interrupt. After
finding the first block number, the CM can be used to avoid all intermediate
interrupts between the current and the desired block number. This makes a
- virtually automatic search possible.

Read Data: This function is used to transfer blocks of data into core memory
with the transfer controlled by the tape format. In NM the DT flag is set at
the end of a block and causes a program interrupt. In CM transfers stop when
the word count overflows, the remainder of the block is read for parity check-
ing, and then the DT flag is set.

Read All: Read all is used to read tape in an unusual format, since it causes
all lines to be read. In NM the DT flag is set at each data transfer. In CM the
DT flag is set when WCO occurs. In either case the DT flag causes a program
interrupt. -

Write Data: This function is used to write blocks of data with the transfer con-
trolled by the standard tape format. After WCO occurs, zeros are written in all
lines of the tape to the end of the current block. Then the parity checksum for
the block is written. The DT flag rises as the in the read data function .

Write All: The write all function is used to write an unusual tape format (e.g.,
block numbers). The DT flag raisings are similar to the read all function.

Write Timing and Mark Track: This function is used to write on the timing and
mark tracks. This permits blocks to be established or block lengths to be
changed. The DT flag raisings are also similar to the read all function. This
function is illegal unless a manual switch in the control is on.

PROGRAMMED OPERATION

Prerecording of a reel of DECtape, prior to its use for data storage, is ac-
complished in two passes. During the first pass, the timing and mark channels
are placed on' the tape. During the second pass, forward and reverse block
mark numbers, the standard data pattern, and the automatic parity checks are
written. These functions are performed by the DECTOG program. Prerecord-
ing utilizes the write timing and mark channel function and a manual switch on
the control which permits writing on the timing and mark channels, activates
a clock which produces the timing channel recording pattern, and enables
flags for prograim control. - Unless both this control function and switch are
used simultaneously, it is physically impossible to write on the mark or timing
channels. A red indicator lamp on the control lights when the manual NOR-
MAL/WRTM/RDMK switch is in the WRTM position. Under these conditions
only, the write register and write amplifier used to write on information chan-
nel 1 (bits O, 3, 6, and 9) is used to write on the mark channel. This operation
of prerecording need only be performed once for each reel of DECtape.

194

There are two registers in the TCO1 DECtape Control that govern tape opera-
tion and provide status information to the operating program. Status register
A (see Figure 15) contains three unit selection bits, two motion bits, the con-
tinuous mode/normal mode bit, three function bits, and three bits that control
the flags. Status register B (see Figure 16) contains the three memory field
bits and the error status bits. PDP-8/1 I0T microinstructions are used to clear,
read, and load these registers.. In addition, there is an 10T ‘skip instruction
to test control status.

ENABLE DECTAPE
CONTROL

NORMAL / FLAG TO CAUSE CLEAR/CLEAR
TRANSPORT UNIT CONTINUOUS A PROGRAM DECTAPE
SELECT NUMBER MODE INTERRUPT FLAG
4 A N f—J\-q . ,_.)_ — A
) 1 2 3 4 s 6 7 8 9 10 1
= — N — , N——
FORWARD/ STOP/ FUNCTION CLEAR/CLEAR
REVERSE GO R ERROR
Y 0= MOVE 5:WRITE ALL ' FLAGS
MOTION
1 = SEARCH 6= WRITE TIMING
2 *READ DATA AND MARK TRACKS
3:READ ALL 7=UNUSED (CAUSES ¢
4= WRITE DATA SELECT ERROR)

F igure 15. DECtape Status Register A Bit Assignments

ERROR END OF PARITY MEMORY DECTAPE
FLAG TAPE ERROR FIELD : FLAG
. A
— — ~ - ~ ~—
0 1 2 3 4 5 6 7 8 9 10 1"
N
MARK SELECT TIMING UNUSED
TRACK ERROR ERROR
ERROR

Figure 16. DECtape Status Register B Bit Assignments

~Since all data transfers between DECtape and PDP-8/1 memory are con-
trolled by the data break facility, the program must set the word count (WC)
and current address (CA) registers (locations 7754 and 7755 respectively)
before a data break. After initiating a DECtape operation, the program should
always check for error conditions (a program interrupt would be initiated if
the error flag is enabled and if the program interrupt system is enabled). The
DECtape system should be started in the search function to locate the block
number selected for transfer and then, when the correct block is found, the
transfer is accomplished by programmed setting of the WC, CA, and status
register A. ' ~

195

When searching, the DECtape control reads only block numbers. These are
used by the operating program to locate the correct block number. In NM, the
DECtape flag is raised at each block number. In CM, the DECtape flag is
raised only after the word count reaches zero. The current address: is not in-
cremented during searching and the block number is placed in core memory
at the location specified by the content of the CA. Data is transferred to or
from the PDP-8 core memory from locations specified by the CA register;
which is incremented by one before each transfer.

When the start of the data position of the block is detected, the data flag is
raised to initiate a data break request to the data break facility each time the
DECtape system is ready to transfer a 12-bit word. Therefore, the main com-
puter program continues running but is interrupted approximately every 13314
microseconds for a data break to transfer a word. Transfers occur between
DECtape and successive core memory locations specified by the CA. The initial
transfer address -1 is stored in the CA by an initializing routine. The number
of words transferred is determined ony by tape format in NM, or by tape for-

mat and the word count in CM. At the conclusion of the data transfer the
DT flag is raised and a program interrupt occurs. The interrupt subroutine
checks the DECtape error bits to determine the validity of the transfer and
either initiates a search for the next information to be transferred or returns
to the main program.

During all normal writing transfers, a checksum (the 6-bit logical equivalence
of the words in the data block) is computed automatically by the control and
is automatically recorded as one of the control words immediately following the
data portion of the block. This same checksum is used during reading to de-
termine that the data playback and recognition take place without error.

Any one of the eight tape transports may be selected for use by the program.
After using a particular transport, the program can stop the transport currently
being used and select another transport, or can select another transport while
permitting the original selection to continue running. This is a particularly use-
ful feature when rapid searching is desired, since several transports may be
used simultaneously. Caution must be exercised however, for although the
original transport continues to run, no tape end detection or other sensing
takes place. Automatic end sensing that stops tape motion occurs in all func-
tions, but only in the selected tape transport.

The following is a list of timing considerations for programmed operations.
(Ns = the number of block numbers to be read in the search function and con-
tinuous mode, counting through the one causing the WCO. Only the block
number causing the WCO requests a program interrupt No = number of words
transferred + the number of words per block. If the remainder = 0, use the
next larger whole number. N. = number of words transferred.)

196

- QOperation
Answer a data break
request
Word transfer rate
Block transfer rate
Start time
Stop time
Turn around time
Change function from
search to read data for
the current block after
DT flag from block
number
Change function from
search to write data for
current block after DT
flag from block number
Change function from
read data to search for
the next block after DT
flag from transfer com-
pletion-

Change function from
write data to search for

Timing «
Up to 66 microseconds, i30°§o

One 12-bit word every 133 microseconds, =30%
One 129-word block every 18.2 m|II|seconds *30%
375* milliseconds, +20%

375* milliseconds, =20%

375* milliseconds, =20%

400 microseconds, =30%

400 microseconds, =30%

1000 microseconds, =30%

1000 fhicroseconds, *+30%

*These times are typical but not accurately controlled.

Operation
next block after DT flag

from transfer completion

DECtape flag rises

in continuous mode
Move function
Search function
Read data function
Read all function
Write data function
Write all function
Write T &M function

In normal mode
Move function
Search function
Read data function
Read all function
Write data function
Write all function
Write T &M function

Software

Four types of programs

PDP-8/I:

Timin

Never

(Ns) x (18.2 milliseconds, =30%)
(No) x (18.2 milliseconds, =30%)
(Na) x (133 microseconds, =30%)
(Np) x (18.2 milliseconds, =30%)
(N4) x (133 microseconds, =30%)
(N4) x (133 microseconds, +30%) |

Never

Every 18.2 milliseconds, =30%
Every 18.2 milliseconds, =30%
Every 133 microseconds, =30%
Every 18.2 milliseconds, =30%
Every 133 microseconds, =30%
Every 133 microseconds, =30%

have been developed as DECtape software for the

197

a. Subroutines which the programmer may easily incorporate into a pro-
gram for data storage, logging, data acquisition, data buffering (que-
ing), etc.

b. A library calling system for storing named programs on DECtape and
a means of calling them with a minimal size loader.

c. System software which provides for storing, assembling and editing
of programs on DECtape thereby greatly increasing the versatility and
flexibility of the PDP-8/1.

d. Programs for preformatting tapes controlled by the content of the
switch register to write the timing and mark channels, to write block
formats, to exercise the tape and check for errors, and to provide
ease of maintenance.

Program development has resulted in a series of subroutines which read or
write any number of DECtape blocks, read any number of 129-word blocks as
128 words (one memory page), or search for any block (used by read and
‘write, or to position the tape). These programs are assembled with the user’s
program and are called by a JMS instruction. The program interrupt is used
to detect the setting of the DECtape flag, thus allowing the main program to
proceed while the DECtape operation is being completed. A program flag is
set when the operation has been completed. Thus, the program effectively
allows concurrent operation of several input/output devices along with opera-
tion of the DECtape system. These programs occupy two memory pages
(400, = 256, words). :

The library system has the following features: First and perhaps foremost, the
system leaves the state of the computer unchanged when it exits. Second, it
calls programs by name from the keyboard and allows for expansion of the
program file stored on the tape. Finally, it conforms to existing system con-
ventions, namely, that all of memory, except for the last memory page (7600;-

7777:), is available to the programmer. This convention ensures that the
Binary Loader program (paper tape), and/or future versions of this loader, can
reside in memory at all times.

The PDP-8/1 DECtape library system is loaded by a 17,,-instruction bootstrap
routine that starts at address 7600s. This loader calls a larger program into
the last memory page, whose function is to preserve on the tape, the content
of memory from 6000, through 7577, and then load the INDEX program and
the directory into those same locations. Since the information in this area of
memory has been preserved, it can be restored when operations have been
completed. The basic system tape contains the following programs:

a. INDEX: Typing this word causes the names of all programs currently
on file to}be typed out.

b. UPDATE: Allows the user to add a new program to the files. Update
queries the operator about the program’s name, its starting address,
and its location in core memory.

c. GETSYS: Generates a skeleton library tape on a specified DECtape
unit.

d. DELETE: Causes a named file to be deleted from the tape.
198

Starting with the basic library tape, the user can build a complete file of his
active programs and continuously update it. One of the uses of the library -
tape may be illustrated as follows:

A program is written in PDP-8/1 FORTRAN that is to be used repeatedly. The
programmer may call the FORTRAN compiler from the library tape and with it,
compile the program, obtaining the object program. The FORTRAN operating .
system may then be called from the library tape and used to load the object

program. At this time the library program UPDATE is called, the operator de-

fines a new program file (consisting of the FORTRAN operating system and
the object program), and adds it to the library tape. As a result, the entire
operating program and the ebject program are now available on the DECtape
library tape.

The DECtape system software is permanently stored on DECtape, from which
it can be rapidly loaded. Any systems programs such as the assembler's
(XPAL and XMACRO), the Symbolic Editor (XEDIT), or the Binary Loader
(XLOAD) can be loaded in less than one minute.

The system software uses a standard DECtape format. There are 128 (200,)
words per block and 1464 (2701,) blocks, so the user has the remaining 1336
blocks for rapid access storage of his own programs. '

The primary advantages for users are:

1. Efficient ‘use of high-speed transfer rates between DECtape and core
memory. '

2. Symbolic programs may now be stored, edited, and assembled on
DECtape, greatly increasing the versatility and flexibility of the
PDP-8/1.

3. The computational workload can be more than doubled compared to
* high-speed paper tape systems.

User's programs are written exactly as before for assembly by the PAL or
MACRO-8 -assemblers. Using the Symbolic Editor, source programs are typed
directly on to DECtape. After assembly, fast symbolic debugging can be done -
with DDT-8 — after loading the program Symbol Table into DDT with the
symbolic loader, XSYM.

The Binary Loader (XLOAD) can load the assembled binary program directly
from the DECtape for program execution. Source files, symbol tables, and
program listings can be stored on DECtape and listed later, if desired. A
duplicating program, XDUP, is available for copying programs. ’

This DECtape system also includes system calls to load any program from
DECtape, to update or delete source files, and to restore the system for use
by another programmer.

Although the system operates with one DECtape, a two-DECtape configuration
is strongly recommended. This will permit duplication of programs and sav-
ing of back-up master tapes. In a single DECtape system, if the system
library is accidentally clobbered, all is lost and cannot be replaced immedi-
ately because there is no means of recovery.

The last group of programs, called DECTOG, is a collection of short routines
controlled by the content of the switch register. It provides for the recording

199

(3

of timing and mark channels and permits block formats to be recorded for any
block length. Patterns may be written in these blocks and then read and
checked. Writing and reading is done in both directions and checked. Speci-
fied areas of tape may be “rocked” for specified periods of time. A given reel
of tape may thus be thoroughly checked before it is used for data storage.
These programs may also be used for maintenance and checkout purposes.

DATA COMMUNICATION SYSTEMS (TYPE 680)

A data communication system consists of a PDP-8/I computer with a Data Line
‘Interface DL8/I option, a Serial Line Multiplexer Type 685, and other equip-
ment connected to form a message switching system or to form a data link
between serial data transmission equipment and a larger computer. As a mes--
sage switching system, the 680 system transmits and receives data with up to
128 local or distant Teletype units. As a data link, the 680 system is an eco-
nomical device for buffering, formatting, and transferring information between
a computer and Teletype, or other serial processing equipment operating at
one or more data speeds. Assuming only minor data handling before trans-
mission to the larger computer, a 680 system can handle up to 128 5-bit Tele-

type lines at 50 baud. Although the 680 system programming has provision
for handling only Teletype lines, programs to pack and unpack massages for
other equipment are easily written.

Software for the 680 system is designed to concentrate Teletype data in serial
bit format. Although Teletype format is assumed, other data transmission for-
mats that present information in serial format can be used. Subroutines, as
presently written, are designed for the 8-bit Teletype code, the 5-bit Teletype
code, or a combination of both codes. They also handle mixed speeds on
either 8-bit or 5-bit lines with minor changes. Full duplex lines are assumed,
but the subroutines operate with half duplex lines, providing the user handles
the expected echo.

A Data Communication System Type 680 hardware configuration varies accord-
ing to the number, type, and distribution of the Teletype units it contains, and
upon the use made of the system. Figure 17 shows the basic 680 system con-
figuration, assuming 15 lines: eight local lines, and seven remote lines.

Teletype signals from remote stations are transmitted and received by a Tele-
* graph Level Converter Type 683. Interface for local units is provided by a
Teletype Connector Panel Type 682. Teletype signals for each station run
from the 682 or 683 to a Serial Line Multiplexer Type 685. A Matricon
Patchboard Type 684 also provides manual selection of channel connections
between the 683 and 685. The 685 consists of a multiplexer for Teletype’
lines and a clock that causes a program interrupt at a rate eight times the
line baud frequency. Single line connections are made between the 685 and
the Data Line interface Type DL8/I, and between the 685 and the normal
computer interface. The Type DL8/I option provides an output instruction to
transfer Teletype information from the accumulator to the 685 and provides
an input instruction to read Teletype information directly into the computer
core memory from the 685. All Teletype information transfers occur serially,
one bit at a time. :

200

8 LOCAL LINES

— LOCAL
! ! 1 : TTY
z o v LINES
: 3 :. | ————>
«—*t 3 : <>
«——»)] TELETYPE [>
s e—S— 3! f&——>] CONNECTOR [&—>
—1 3! !) PéﬁgL ——>
POP-8/1 SERIAL LINE ‘—H' ' MATRICON :
r————-- lmuLTiPLEXER ' | PATCH 1. <>
DATA LINE 685 PANEL . | >
| INTERFACE |@&————»] (P TO | esa |
L _ bLe/I 64 LINES) .) oPTIONAL) |
----- - v , 9 " REMOTE
>l " TTY
‘_JH ! , LINES
121 I | ¢
-~ — ! TELEGRAPH l&—>
g '_‘H g CONVERTER [€&—>
14y | 683 «——»
15 1 ¢ 3
. ‘ | SR |
1 LINE CARRIES 7 REMOTE LINES

ALL LOCAL ANO
REMOTE SIGNALS

Figure 17. Data Communication System Block Diagram

In any serial data transmission system a word consists of an indication that
character transmission is about to start, several bits that specify a character
code, and an indication that the character is done. Figure 17 shows the for-
mat of 11-unit code Teletype words as -a typical word format used in serial
data transmission. In such a system, the device receiving the word signal
must determine the bit sampling time so that information is transferred re-
liably, even though the digital information signal is severely integrated (pulse
rise and fall times increased and pulses rounded) due to transmission path
impedance, and even though no 'synchronization is provided between sending
and receiving units or between information on different lines. In addition,
jitter (time displacement) of the information signal caused by the mechanical
contact nature of the equipment originating the signal, must be considered
when determining the strobe time.

j——————e——— 100 MILLISECONDS

START 1 2 3 4 5 6 1 8 sTOP
110 BAUD LINE MARK 1 — YT TTT T T TTT T T]
11-UNIT CODE 1 H \ , ! L \ . H
8-BIT CHARACTER CODE SPACE 0 — S PR UPNIPIPY (NS UPNIpI (N R SPp S | L
— J
I
8 CHARACTER BITS

680 CLOCK I ete. START BIT = 1 UNIT {9.090 MILLISECONDS)

(8 X BAUD UNIT RATE . CHARACTER BITS<1 UNIT EACH

OR EVERY 1.135 MILLISECONDS) STOP BIT =« 2 UNITS

Figure 18. Typical Teletype Line Timing

201

The Data Communication System Type 680 uses a clock which operates at
eight times the bit rate of information on the signal line to determine the
sampling time. By counting pulses from this clock, strobe time in receiving
and bit timing in transmitting can be controlled within 12.5 percent. Character
transmission and reception in the 680 system is controlled by a combination
of the hardware and software, providing the most flexibility and economy. This
clock in the Serial Line Multiplexer Type 685 requests a program interrupt
eight times during each character bit. The program interrupt subroutine
counts the clock pulses and strobes a received bit after four clock pulses have
occurred since the line became active, thus assuring that the bit is sampled
after the middle of the pulse and within 12.5 percent of the center of the
pulse. In like manner, clock pulses are counted by the program interrupt
subroutine to transmit a bit after eight clock pulses have occurred.

s

Data Line Interface (DL8/I)

(The control circuitry for this device is located in the PDP-8/I central
processor.) '

The Type DL8/I option of the PDP-8/I enables use of the computer with a
Data Communication System Type 680. The Type DL8/1 option controls and
executes transmission and reception of Teletype information between the
computer and the Type 680 system. Installation of a Type DL8/I option in a
PDP-8/1 system adds a Teletype IN (TTl) and a Teletype OUT (TTO) instruc-
tion to the instruction repertoire, and adds two major states to the processor
major state generator. The Status (S) and Character (C) states are entered in
executing the complex Teletype In instruction.

The TTl and TTO instructions transfer one bit of a Teletype character between
the computer and the Serial Line Multiplexer Type 685. These instructions are
executed in subroutines entered through the program interrupt subroutine.
These subroutines are responsible for determining when a character is com-
pletely assembled in the character assembly word (CAW), and for any reloca-
tion or translation of assembled characters. Characters are always assembled
so that the last bit transmitted shifts into the most significant bit of the CAW
and preceding bits are loaded into less significant bits of the CAW, regardless
of the Teletype code or transmission path being used.

Teletype In is a complex memory reference instruction which deals with the
incoming Teletype line and with two core memory locations. The two locations
addressed by the TTl instruction are the next two successive locations following
it. These locations contain a line status word (LSW) and a_character assembly
word (CAW), respectively, so the following sequence is established:

Address Content

1T
1 LSw
2 CAW

Bits in the LSW are assigned to record the active/inactive status of the line
and serve as a real time clock which determines when line sampling should
take place. The format of the LSW is:

202

Not .Used

| =

01 2 3 45 6 7 8 9: 10 11
- b ,
Active Count

The CAW stores partially assembled characters. Individual bits on the incom-
ing line enter the most significant bit (bit 0) and are shifted towards the less
significant bit (to the right) during the assembly process.

The TT! instruction is normally executed following a program interrupt caused
by the clock in the multiplexer. Figure 19 shows the flow diagram of the
TTI instruction. : ‘

+ FETCH CYCLE STATUS CYCLE CHARACTER CYCLE
{ADDRESS TTt N Y} (ADDRESS LSW IN Y+1) (ADORESS CAW IN Y+2)

SHIFT CHARACTER
(IN_LOCATION Y+2)'
RIGHT ONE POSITION|
AND ENTER LINE
varue mto et o |
OF CHARACTER F

INCREMENT MB0 =t (ACTIVE)

LINE REGISTER

INCREMENT
LINE STATUS
WORD (REAY
THIME CLOCK W
LOCATION Y+1)

i\
Figure 19. Teletype Ialnstruction Flow Diagram

Execution of the TTI instruction causes the next iocation in memory to be read
and examined. This location contains the LSW. The first bit examined is the
active bit (bit 0). If bit O contains a 0, indicating that the line was inactive
when last tested, the current content of the line will be set into the active bit.
That is, if a start bit is currently being received, the active indicator bit will
be set to 1. If no start bit is being received it remains a 0. In either event the
character assembly word is skipped over and the next instruction will be
executed. Should examination of the active bit indicate that the line is already
active, the count portion of the LSW is incremented by one and, unless the
resulting count equals 4, the CAW is skipped. When the count becomes equal
to 4, indicating that four clock interrupts have been received since the line .
first became active or that 4/8 of a bit time has elapsed so the center of the
bit has been reached and it should be sampled. Thus the character assembly
word is read, its content is shifted right one position, and the bit presently
being received on the line is set into the leftmost position of the CAW. After
the first bit has been received eight clock periods occur before the count is
again equal to 4 and thus each bit in the serial train is sampled within 12.5%
of the center of the bit.

203

The Teletype Out instruction affects only the content of the accumulator and
the outgoing line. It is executed during a single memory cycle. It shifts the
content of the accumulator one position to the right and transmits the least
significant bit on the outgoing line. Since a bit is transmitted every time this
instruction is executed it should be programmed to occur only after eight clock
interrupts have been receivéd since the last output.

These instructions are used only in subroutines_and are not qsed in the main
‘program. The following explanation of their use is for description only.

The Teletype In command brings the bits coming over the line into memory
and assembles the bits into one Teletype character. The TTI command uses
three memory locations. as follows:

TTI :
0 / status and counter word (LSW)

2000 /character assembly word (for 8-bit code) (CAW)
The program then returns to TTI + 3

The character assembly word is preset so that 1 appears in bit 11 when the
entire character, including one stop bit, has been shifted in. The subroutines,
finding a 1 in bit 11, assume that an entire character has been read, place the
character in its own internal buffer together with the line number.it came
from, and reinitializes the TTI command by resetting the line status word to
0 and the character assembly word to the proper number. At each clock pulse
the program only checks 1/8th of the lines (1/4 for 5-bit codes) for comple-
tion. : “

Unlike the TTO command, the TTI cornmand is executed for all lines at each
clock-produced pragram interrupt. However, once the incoming character
is started (i.e., bit O of the LSW = 1) the first bit (the start code) is read at
the fourth pulse and each succeeding bit\is read at the eighth pulse thereafter,
thus guaranteeing that the_bit is read at the optimum time. '

The Teletype Out command shifts ‘the cofptent of the accumulator right one
position, sends the previous content of bit 11 to the Teletype line specified by
the line select register, and brings a 0 intd bit O of the accumulator. The pro-
gram sequence to transmit a word from ?{)re memory to a Teletype unit might
be as follows:

TAD CHAR /GET CHARACTER TO TRANSMIT
0 /SHIFT AND TRANSMIT ONE BIT
DCA CHAR /SAVE REMAINDER OF CHARACTER

This sequence assumes that the line select register has been loaded with the
correct line number using commands for the Serial Line Multiplexer Type 685.

~ Serial Line Multiplexer Type 685

The 685 is simply a switch which allows the DL8/I to be connected to any
one of 64 Teletype lines. To select a line, the accumulator is set to the
number of the desired line, and its content is then transferred into the line
select register of the 685 by an 10T command. The line select register (LSR)
. may be loaded at any time with a program-selected address, or can be incre-
mented by a command which may be microprogrammed with the TTI or TTO
instructions to scan all lines in numbered sequence. Incrementing is used
for high-speed sequential scans. This unit also contains a flip-flop for each

204

outgoing line. This flip-flop is set’ or cleared by a TTO instruction and holds
the line in the proper state until the next TTO instruction is exequted.

INSTRUCTIONS

All instructions for the 680 system contain an operation code of 6, indicating
that they are 10T commands. Commands which are associated with the 681
transfer one bit of a character with the computer and have a select code of
40. These commands are functionally memory reference instructions used to
perform an input/output transfer operation. Commands associated with the
line select register of the 685 use select codes 40 and 41. Commands asso-
ciated with the clocks of the 685 use select code 42 through 45. All com-
mands using select codes of 41 and 42 use the IOP pulses and are true 10T

instructions. The instructions for the 680 system are:

Teletype Increment (TTINCR)

Octal Code: 6401 . '

Event Time: Not applicable in the normal sense of IOT event times. However it
can be considered event time 1, since it is executed before all other opera-
tions in the TT! or TTO commands with which it can be combined.

Indicators: 10T, FETCH

_Execution Time: 1.5 micreseconds when performed individually, or equal to the
execution time of other commands when microprogrammed.

Operation: The content of the line select register (LSR) in the Serial Line Multi-
plexer is incremented by one to address the next sequentially numbered line
unit. This operation occurs at T1 time of the Fetch cycle. '

Symbol: LSR + 1 = > LSR

Teletype In (TTI)

Octal Code: 6402 _

Event Time: Not applicable

Indicators: 10T, FETCH

Execution Time: 3.0 or 4.5 microseconds

Operation: Three core memory locations are required by the TTI instruction.
The first location contains the TTI instruction, and the two succeeding loca-
tions contain a line status word (LSW) and a character assembly word (CAW),
respectively. Bit O of the LSW records the active/inactive status of the se-
lected Teletype line, and bits 9 through 11 of the LSW serve as a real time
" clock to determine the bit assembly time for the CAW. Both of these words
should be cleared prior to the first use of the TTI instruction in a subroutine.
The TTI instruction checks the status of the selected line and the number in
the real time clock. If the line is active and the clock indicates the center of a
bit has passed, one bit of the Teletype line is shifted into the CAW.

The TTI instruction is executed in two or three computer cycles. The first
cycle is in the Fetch state to read the instruction from core memory and to
establish the next sequential core memory location as the address to be read
during the next cycle. By placing a 1 in bit 11, this instruction can be micro-
programmed to increment the content of the flip-flop line register of the
Serial Line Multiplexer Type 685 during the Fetch cycle.

The second cycle is a Status state in which the LSW is read, the active/ inactive
status of the line is checked, the timing of the current bit is checked, and

205

(based on these conditions) the inactive status of the line is recorded in MBO
and the -program advances to the next instruction, the real time clock count
is incremented in the LSW and the program advances to the next instruction,
or the real time clock count is incremented and the third cycle is initiated.

The active/inactive status of the Teletype line is checked by sampling the con-
dition of bit 0 of the LSW. If MBO(0), indicating that the line is inactive (not:
transmitting a character) the LSW is shifted one position to the right in the
MB, and the complement of the Teletype line is set into MBO. Therefore, if
the line is now active, a 1 is set into MBO and will be read during the Status
cycle of the next TTl instruction. The program count is then incremented by
one to skip over the CAW, the LSW is restored to core memory, the MB is
cleared, and (providing no break request had been received) the Fetch state
is entered to fetch the next instruction.

If the MBO(1) at the beginning of the Status cycle, the LSW is incremented
by one to advance the real time clock and the LSW number is sampled. If

LSW s 3 it is too early to sample the active line so the program count is
incremented to skip over the CAW, the LSW is restored to core memory, the
MB is cleared, and the program advances to the Fetch state for the next in-
struction. If LSW = 4 after incrementation, the LSW is rewritten in memory
and the major state generator (MSG) is set to the Character state to strobe the
line into the CAW during the next cycle.

The third cycle is a Character state in which the CAW is read into the MB
from core memory, the character is shifted right one position with the line bit
being shifted into MBO, then the CAW is rewritten in memory. The program
then advances to the Fetch state for the next instruction.

Symbol: Status state

If MBO(0), then line shifted into LSW and F = > MSG for next instruction.
If MBO(1), and MB # 3, then LSW + 1 = > LSW and F = > MSG for next
instruction.

If MBO(1) and MB = 3, then LSW + 1 = > LSW andC = > MSG to continue
TTI instruction in next cycle.

Character state .
Line shifted into CAW and F = > MSG for next instruction.

Teletype Out (TTO)

Octal Code: 6404
Event Time: Not applicable
Indicators: 10T, FETCH
Execution Time: 1.5 microseconds
Operation: This instruction must be preceded by a command sequence (such
as CLA and TAD) that loads the AC with the character to be (or being) trans-
ferred to the external Teletype equipment. The TTO instruction clears the L,
shifts the content of the AC and the L one position to the right, then transfers
the bit contained in AC11 to the selected Teletype line.
Symbol:

0=>1L

L = > ACO and ACj = > ACj + 1, then

.AC11 = > Selected Line

206

Clear Line Select Register (TTCL)

Octal Code: 6411

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 mlcroseconds

Operation: The line select register is cleared, so line O i is addressed

Symbol: 0 = > LSR.

Load Line Select Register (TT SL)

Octal Code: 6412
Event Time: 2
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: The line select register is set by an OR transfer from the content
of bits 5 through 11 of the accumulator, then the accumulator is cleared
Symbol: AC5-11 \V LSR = > LSR, then
0=>AC

Read Line Select Register (TTRL)

Octal Code: 6414

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The content of the line select register is loaded into bits 5 through
11 of the accumulator by an OR transfer.

Symbol: LSRV AC5-11 = > AC5-11

Skip on Clock 1 Flag (TTSKP)

Octal Code: 6421

Event Time: 1

indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds ‘
Operation: The content of clock 1 flag of the Serial Line Multiplexer is
- sampled, and if it contains a 1 (indicating that a clock pulse has occurred
-and the flag has been enabled to request a program interrupt) the content of
the program counter is incremented by 1 to skip the next sequential instruc-
tion. If the skip occurs, clock 1 caused a program interrupt if the interrupt
system was enabled when the clock pulse occurred.

. Symbol: If Clock 1 Flag = 1,thenPC + 1 = > PC

- Turn On Clock 1 (TTXON)

Octal Code: 6424
Event Time: 3
Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: The CLOCK 1 ENABLE flip-flop is set and the clock 1 flag is
cleared. When the CLOCK 1 ENABLE flip-flop is set the next clock pulse sets
the clock 1 flag and requests a program interrupt.
Symbol: 1 = > Clock 1 Enable
0 = > Clock 1 Flag

Turn Off Clock 1 (TTXOFF)

Octal Code: 6422

Event Time: 2

Indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds

207

Operation: The CLOCK 1 ENABLE flip-flop is cleared and the clock 1 flag is
cleared. When the CLOCK 1 ENABLE flip-flop is cleared the clock 1 flag can
not be set by the clock, and can not request a program interrupt or be
skipped upon. The ciock is unaffected and continues to run, but aii operations
caused by clock pulses are disabled.
Symbol: 0 = > Clock 1 Enable

0 = > Clock 1 Flag
When the system handles multipte-baud frequencies additional clocks and
instructions are provided. Instructions similar to TTSKP, TTXON, and TTXOF
use select code 43 for ciock 2, select code 44 for ciock 3, and select code 45
for clock 4.

Software) L

SUbroutines for the 680 system, as presently coded, occupy 400; core memory
locations plus locations for internal buffering of the input and output charac-
ters and for the TTl instructions. In addition, autoindex registers and core

memory locations in page O are required as specified in the following list:

5-Bit
8-Bit 5-Bit (2nd speed) Meaning
TT8BGN TT5BGN TT4BGN Beginning of subroutine
T8AX1 T5AX1 T4AX1 Autoindex register
T8AX2 THAX2 T4AX2 Autoindex register
T8AX3
T8AX3 THAX3 T4AX3 Autoindex register)
T5AX4 - T4AX4 Autoindex register (5-bit only)
TT8PGO TT5PGO TT4PGO Start of area in page O
T808F2 T50BF2 T40BF2 Start of 2nd output buffer (length = N)
T81BF T51BF T51BF Start of input buffer (length = 2N)
T81N T51N T51IN - Start of TT1 area (length = 3N + 1)
TTCHAR TTCHAR TTCHAR Character area (appears only once)

The total amount of core memory used by 680 subroutines, including the tags
and autoindex registers in page 0, is as follows:

422, + 7N (for 8-bit) or 438, + 7N (for 5-bit)

where N is the number of lines speci'fied to the subroutines. Within limits, the
programs can be stored anywhere in the PDP-8/1 core memory.

If the 5-bit subroutines are being used all of the tags mentioned should substi-
tute 5s for 8s shown. If both 8-bit and 5-bit systems are being used, both sets
of subroutines are necessary and all tags and memory requirements must be
duplicated for the second system. At present, coding is available for a single
8-bit system and for two different 5-bit systems to allow the programmer to
assemble all of the necessary components with a main program at one time.

Percentages of machine time used in the average case for various types of
systems are presented in the following list. Any additional features which may
be required for the Teletype handling must 'be added to these times. The for-
mulas for calculating these times are included so that times for systems with
an intermediate number of lines or with combinations of lines can be calcu-
Jated. For combined systems, add the percentages for each component.

208

Number 8-Bit 5-Bit 5-Bit

of lines 110 Baud* 50 Baud** 75 Baud***
' 32 341% - 7 20.0% 30.0%
64 57.7% - 35.1% 52.7%
96 81.3% 50.3% 75.5%
128 ' 104.9% 65.5% 98.3%

- *Formula Used: Where N = the number of lines, the 8-bit subroutines re-
quire an average of 8.38N + 119.5 microseconds.

**Formula Used: Where N = the number of lines, the 5-bit subroutines re-
quire an average time of 11.85N +120 mlcroseconds Clock flags (at 50
baud) occur every 2500 microseconds.

***Formula Used: The percentages for 75 baud are merely 1.5 x 50 baud
rate. Clock flags occur every 1667 microseconds.

For further information, refer to DEC Program Library documents DIGITAL-8-
35-S-A and DIGITAL-8- 35 S-B.

GENERAL PURPOSE MULTIPLEXED ANALOG-TO- DIGITAL
CONVERTER SYSTEM (TYPE AF01A)

The Type AFO1A General- Purpose Multiplexed Analog-to-Digital Converter
combines a versatile, multi-purpose converter with a multlplexer to provnde
a fast, automatic, multichannel scanning and conversion capability. It ‘is
mtended for use in systems in which computers sample and process analog
. data from sensors or other external signal sources at high rates. The Type
AFO1A option is used with the PDP-8/I to multiplex up to 64-analog signals
and to convert the signals to binary numbers. Analog data on each of 64
channels can be accepted and converted into 12-bit digital numbers 420
times per second.* ‘

Switching point accuracy in this instance is 99.975 per cent, with an addi-
tional quantization error of half the least significant bit (LSB). If less resolu-
tion and accuracy is required, all 64 channels can be scanned and the ana-
log signals on them converted into 6-bit digital numbers 1420 times each
second.**

Switching point accuracy in this case is 98.4 per cent, again with the addi-
tional quantization error of half the digital value of the LSB.

*Conversion rate = [(35 4 2) (10—¢) (64)]—1 = 420 cycles/sec.
**Conversion rate = [(9 + 2) (10—¢) (64)]-1" = 1420 cycles/sec. -
A/D CONVERTER SPECIFICATIONS

The Type AFO1A has a successive approximation converter that measures a
0 to —10 volt analog input signal and provides a binary output indication of
the amplitude of the input signal. The characteristics of the A/D converter
are as follows:

Accuracy and Conversion Times: See Table 2 (includes all linearity and
temperature errors)

Converter Recovery Time: - Zero

209

Input and Input Impedance: Oto—10V at 10 megohms standard. Input
scaling may be specified using the ampli-
fier or sample and hold options (see Table

1)

Input Loading: *1 wA and 125 pf for 0 to —10V input
signal.

Output: ~ Binary number of 6 to 12 bits, with nega-

tive numbers represented in 2’s comple-
ment notation. A OV input gives a 4000;
a —5V input a 0000; and a —10V (minus 1
LSB*) input gives 3777s number.

Provision is made for using the Type A400 Sample and Hold Amplifier
(AHO2 option) between the multiplexer output and A/D converter input to
reduce the effective aperture to less than 150 nsec. The Type A400 may also
be used to scale the signal input to accept =10v, *5v, or O to +10v. The
Type A200 amplifier (AHO3 option) may be substituted for the Type A400
to accomplish the same signal scaling without reducing the effective aper-
ture. Both the AHO2 and AHO3 options may be used to obtain high input
impedance and small aperture.

MULTIPLEXER SPECIFICATIONS

The multiplexer can include from 1 to 16 Type A121 Switch Modules. Each
module contains four single-pole, high speed, insulated gate FET switches
with appropriate gating. The Type A121 Switches are arranged as a 64-
channel group of series-switch single-pole switches with a separate con-
tinuous ground wire for each signal input. The switched signal input wire
and the continuous ground for each channel are run as twisted pairs to
the input connectors mounted on the rear panel. The continuous grounds for
all channels are terminated at the high quality ground of the AFO1A System.
Specifications (measured at input connector) are as follows:

Input Operating Signal Voltages: 410V to —10V

Current: - 1 mA
On Resistance 450 ohm (max)
Voltage Offset 0

- “Off Leakage” 10 nA (max)
Capacitance 10 pf (max)

Speed

 10% Input to within 2.us
1 LSB* of eutput

jperate Time The time required to switch from one
) channel to another is 2 us to within 1 LSB*
of the final voltage. This time is preset
within the control and starts when a set
or index command is received.

*LSB—Least Sgnificant Bit.
210

OPERATION

The Type AFO1 System may be operated in either the random or sequential
address modes. In the random address mode, the control routes the analog
signal from any selected channel to the A/D converter input. In the sequen-
tial address mode, the multiplexer control advances its channel address by
one each time an index command is received. After indexing through the
maximum number of channels implemented, the address is returned to O.
When using sequential operation, the conditioning levels for random ad-
dressing are ignored. S

The multiplexer switch settiing time is preset within the controi to initiate
the conversion process automatically after a channel has been selected in |
either the random or sequential address mode. Two separate A/D Convert
/O Transfer Commands may also initiate one or more conversions on a
currently selected channel. '

A/D conversion times are increased by 2 usec when multiplexer channels
are switched to allow for settling time of the analog signal at the multiplexer
output. Conversion times are increased an additional 3 usec when AHO3:
is used. These times are added to the conversion times shown in Table 2
under selected channel conversion time, which is the only time required for
each successive conversion on a selected channel.

When the Type AHO2 Sample and Hold option is required, the multiplexer
switch settling time and the sample and hoid acquisition time are overlapped.
The total conversion and switching time is increased by 10 usec. (See A400

specifications.)

A/D CONVERTER/MULTIPLEXER CONTROLS

DESIGNATION FUNCTION :
WORD LENGTH: Rotary switch used to select digital word length or.

conversion accuracy. Refer to Table 2 for correspond-
ing conversion times. :

POWER ON/OFF: Applies 117 Vac‘power to internal power supplies.

CLR: Clear multiplexer channel-address registers; i.e.,
selects analog channel O for conversion.

INDEX: Advances multiplexer channel-address register by one
each time it is depressed, enabling manual address-
ing of channels (up to 64) in sequential mode. Re-

" turns address to zero when maximum value is reached.

ADC: Starts conversion of the analog voltage on the se-
lected channel to a binary number when depressed.
A/D CONVERTER: - Indicates binary contents of A/D converter register.
MULTIPLEXER: Indicates binary contents of multiplexer channel-
‘ address register.
POWER: Indicates ON/OFF status.

. 211

TABLE 3. INPUT SIGNAL SCALING

CONFIGURATION GAIN INPUT INPUT BINARY OPTION
SIGNAL IMPEDANCE OUTPUT DESIGNATION
0 10 meg. 4000;
Standard : -5 10 meg. 0000, STD
. —10 10 meg. 3777,
Sampie & —1 +5 10K 3777,
Hold -1 0 10K 0000, AHO2
—1 -5 10 K_ 4000,
Sample & —1s +10 10K 3777,
Hold -1 0 10K 0000, AHO2
—1s —10 10K 4000,
+1 +5 >100 meg. 4000,
Amplifier +1 0 . >100 meg. 0000, AHO3
+1 -5 >100meg. 3777,
+v2 +10 >100 meg. 4000, ‘
Amplifier +¥ 0 >100 meg. 0000, AHO3
+2 -10 >100 meg. 3777,
Amplifier —1 45 +10 >100meg. 3777, AHO3
and Sample or Oor O >100 meg. 0000, &
& Hold —% -5 —10 >100meg. 4000, AHO2

Note: Unipolar signals (0 to +5, or O to +10v) may also be specified with
either the AHO3 or AHO2 option.

TABLE 4. SYSTEM CONVERSION CHARACTERISTICS**

SELECTED RANDOM OR W.'AHO3 W/AHO2 W'AHO3 &
CHANNEL SEQUENTIAL AMP, SAMPLE & HOLD AHO2
{A/D) (MPX. & A/D) (MPX. & A.-D) {MPX. & A D) (MPX. & A/ D)
WORD LENGTH MAX SWITCHING CON_\I_IIENF‘?ESION CON_!\{IENF‘?SION CON]Y’E'\;?ESION CON"\{'E;ESION CON¥|EJ\'ES!ON
NO. OF BITS) POINT ERROR* . ” . - "
({4SEC) (uSEC) (uSEC) («SEC) (+SEC)
6 ~1.6% 9.0 11.0 (9.5) 14.0(11.0) 19.0(140) 210 (18.0)
7 +0.8% 10.5 125(11.0) 155(125) 205(155 22.5(19.5)
8 *0.4% 12.0 14.0 (12.5) 17.0(140) 220(170) 24.0(21.0)
9 *0.2% 135 15.5(140) 185(155) 235(185) 255 (22.5)
10 *+0.1% 180 20.0 (18.5) 23.0 (20.0) 280 (2300 30.0(27.0)
11 +0.05% 25.0 27.0 30.0 35.0 37.0
12 +0.025% 35.0 37.0 40.0 5.0 47.0

~

*+15 LSB for quantizing error.
**If system is to operate at less than 10 bits continuously, conversion times
may be reduced to times shown in parentheses.

212

Programming

Programmed control of the converter/multiplexer by the PDP-8/1 is accom-
plished with the IOT instructions listed below. PDP-8/1 selects the con-
verter/multiplexer with two device selection codes, depending upon whether
conversion of multiplexing functions are being selected; 53, and 54,. The
converter/ multiplexer interprets the device selection code to enable execution
of the IOP command pulse generated by the 10T instruction.

Skip on A-D Flag (ADSF)

Octal Code: 6531

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds :
Operation: The A-D converter flag is sensed, and if it contains a bmary 1 (in-
dicating that the conversion is complete) the content of the PC is incre-
mented by one so that the next instruction is skipped.

Symbol: If A-DFlag = 1,thenPC + 1 = > PC

Convert Analog Voltage to Digital Value (ADCV)

Octal Code: 6532
Event Time: 2
Indicators: 10T, FETCH, PAUSE
Execution Time: This time is a function of the accuracy and word length
switch setting as listed in Table 2.
Operation: The A-D converter flag is cleared, the analog input voltage is con-
verted to a digital value, and then the A-D converter flag is set to 1. The
number of binary bits in the digital-value word and the accuracy of the word
is determined by the preset switch position.
Symbol: 0 = > A-D Flag at start of conversion, then

= > A-D Flag when conversion is done.

Read A-D Converter Buffer (ADRB)

Octal Code: 6534
Event Time: 3
Indicators: 0T, FETCH, PAUSE
Execution Time: 4.25 microseconds
Operation: The converted number contained in the converter buffer (ADCB)
is transferred into the AC left jUStIfled unused bits of the AC are left in a
clear state, and the A-D converter flag is cleared. This command must be pre-
ceded by a CLA instruction.
Symbol: ADCB = > AC

0 = > A-D Converter Flag

Clear Multiplexer Channel (ADCC)

Octal Code: 6541

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operatlon The channel address register (CAR) of the multiplexer is cleared
in preparation for setting of a new channel.

Symbol: 0 = > CAR

213

Set Multiplexer Channel (ADSC)

Octal Code: 6542

Event Time: 2

Indicators: 10T, FETCH, PAUSE

" Execution Time: 4.25 microseconds

Operation: The channel address register of the multiplexer is set to the chan-
nel specified by bits 6 through 11 of the AC. A maximum of 64 single-ended
input channels can be used.

Symbol: AC 6-11 = > CAR

Increment Multiplexer Channel (ADIC)

Octal Code: 6544

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds :

Operation: The content of the channel address register of the multiplex is in-
cremented by one. If the maximum address is contained in the register when
this command is given, the minimum address (00) is selected.

Symbol: CAR + 1 = > CAR

The converter/ multiplexer may be operated by the computer program in either
the random or sequential addressing mode. In the random addressing mode,
the analog channel is selected arbitrarily by the program for. digitizing and
the resultant binary word is read into the accumulator. A sample program for
the random addressing mode is as follows:

TAD ADDR /YES — GET CHANNEL ADDRESS
ADSC /AND SEND TO MULTIPLEXER
ADCV /CONVERT A TO D

ADSF /SKIP ON A/D DONE FLAG
JMP. —1 /[WAIT FOR FLAG

ADRB /AND READ INTO AC

In the sequential address mode, the program advances the multlplexer chan-
nel-address register to the next channel each time an analog value is con-
verted and read into the accumulator.

Should the converter/multiplexer be operated in the lnterrupt mode, the com-
puter will be signaled each time that a binary word is ready, enabling the
system to use processor time more efficiently. f

AMPLIFIER, SAMPLE AND HOLD OPTIONS FOR AF01‘A

AHO3 AMPLIFIER OPTION

The AHO3 consists of a DEC amplifier (part #1505379) mounted on an
A990 Amplifier Board with appropriate scaling networks and gain trim and
balance pptentiometers.

Open loop gain 2 x 108
Rated output voltage (@ 10 ma) =11v
Frequency response
Unity Gain, small signal 10 me
Full output voltage _ 300 ke
Slewing rate 30v/usec
Overload recovery 200 usec

214

Input voltage offset =~ - Adjustable to O

Avg vs temp 20 uv/°C

Vs supply voltage 15 uv/%

Vs time 10 uv/day
Input current offset *2na

Avg vs temp ' 0.4 na/°C

Vs supply voltage 0.15na/%
Input impedance

Between inputs _ : 6 meg

Common mode . 500 meg
Input voltage | " +15v

Max common mode : *+10v

Common mode rejection 20,000
Power

Voltage : +15t6 16v

Current atrated load : 35 ma

AHO2 SAMPLE AND HOLD OPTION

A400 (standard gain options) : :
Acquisition time to 0.01% (full-scale step) <12 usec

Aperture time <150 nsec

Hold inaccuracy (droop) <1 mv/msec

Temperature coefficient 0.1 mv/msec/°C

Gain (negative) ' 1.0 0.5

Input range (volts) . +=5.0 =*=10.0
Impedance . 10K 10K

Output voltage Oto —10v
Impedance " <1.0 ohm

GUARDED SCANNING DIGITAL VOLTMETER (TYPE AF04A)

DESCRIPTION

The Type AFO04A is a guarded scanning digital voltmeter system, with wide
dynamic range and high common-mode rejection, and fully capable of expan-
sion to 1000 channels. The Type AF04A is used with a PDP-8/I computer to
multiplex up to 1000 3-wire analog channels into a 6-decimal-digit (BCD) inte-
grating digital voltmeter. Full scale ranges are from +=10mv to =300v, with
automatic ranging, 300 percent over ranging, and a usable 5 uv resolution.
Guarded input construction and active integration assist in attaining an
effective common-mode rejection of greater than 140 db at all frequencies.
(Normal-mode rejection is infinite at multiples of power line frequency.)

This system is ideally suited for data acquisition or process monitoring where
a wide range of signals requires large dynamic range. The 10-mv range has
0.001 percent resolution and, coupled with excellent noise rejection, allows
accurate direct measurement of thermocouples, strain gauges, load cells, and
other low-level transducers without additional amplification.

The AF04A Voltmeter, operated under program control, is capable of either
random channel selection or sequential channel selection. The computer
selects either program controlled ranging (for fastest speed) or autoranging,
as well as the integration .time of the integrating digital voltmeter (IDVM).

215

The digitized data, as well as the current channel address, is read by the
computer in either two or three bytes.

i3

~A ey ot el Ada i o T e

A decimal dwp.a; of the uighiZEU value, lf‘uudlus sign and decimal lULdlIUII,
is continuously displayed on the front panel. The current channel number is
also displayed. Front-panel controls on the digital voltmeter allow manual
setting of all the programmed functions. A front-panel control allows con-
tinuous display of the internal secondary standard, which can be prewired to
a particular channel for reference checking during normal operation.The AF04A
Voltmeter System may be marua'ly controlled, completely independent of

the computer

SPECIFICATIONS
Full scale =

Over ranging

Resolution

Accuracy (overall
worst case with
daily calibration at
calibration temper-
ature)

Stability (RMS full
scale and zero drift)

Temperature

coefficient
Full scale
Zero

Line voltage
stability

Maximum common-
mode voltage

Common-mode re-
jection (166.6
msec integration
period and 1000
ohm-source
unbalance)

Normal-mode
rejection

Input impedance
10, 100, 1000 mv
ranges
10, 100, 300v
ranges

internal secondary

standard

10mv, 100mv, 1v, 10v, 1
100v, 300v, and automatic
ranging

300% on all but highest
range

5 uv (usable), 0.1 uv (LSB)

#+0.004% of reading
#0.01% of full scale+5uv

+0.006%/day

*+0.003% of reading/°C
*+0.002% of full scale/°C
(*+0.006% of full scale/°C
on 10mv and 1v range)

#0.0005%/10% change

+300v from power line
ground

> 140 db at all frequencies

Infinite at multiples of
line frequency

1000 meg/v

10 meg

216

Value +1.000v

Accuracy +0.002% traceable to
, N.B.S.
Stability =+0.005%/month
Temperature
coefficient negligible

SELECTED RESOLUTION

0.001% 0.01% 0.1%
DC Voltage Maximum] A Maximum . Maximum .
Range Reading Resolution Reading Resolution Reading Resolution
10 mv © 30.0000 mv 0.1 uv 030.000 mv 1av 0030.00 mv 10 uv
100 mv 300.000 mv 1 uv 0300.00 mv 10 uv 00300.0 mv 100 pv
1000 mv 3000.00mv - 10 uv 03000.0 mv’ 100 uv 003000. mv 1 mv
10v 30.0000v 100 pv 030.000v 1 mv 0030.00v 10 mv
100v 300.000v 1mv 0300.00v 10 mv 00300.0v 100 mv
- '1000v* 0300.00v 10mv 00300.0v 100 mv 000300.v 1v

*1000v range is scanner-limited to 300v peak maximum

SCANNING SPEED
(Programmed Range)

Resoluti Integration Total Scanning
esotution Time ~ Time Speed
0.1% : 1.6 msec 20 msec 50 ch/sec.
0.01% 16.6 msec 40 msec 25 ch/sec.
0.001% 166.6 msec '_ 188 msec 5 ch/sec.

Scanning Speéd (Auto Range)—Add 6-36 msec depending on per-channel volt-
age span. '

INSTRUCTIONS) o |

The 1/0O transfer (I0T) commands associated with the scanning digital volt-
meter system are designed to minimize the computer overhead associated
with this option while retaining maximum program controlled flexibility. The
10T instructions are:

Select Ranfge and Gate (VSEL)

Octal Code: 6542

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The contents of the accumulator are transferred to the AFO4A
control register as shown below:

Symbol: C(AC) = > C(VCR)

217

CONTROL WORD 1 (FROM PDP-8/1)

0 1 2 3 4 5 6 7 8 9 10| 1

J
SELECT R T N | N Y A
—>ac DC o F P OPTION RANGE %\L%
SCANNER
RESET

Control Word 1 only used if a range change is required.

Seiect Channel and Convert (VCNV)

Octal Code: 6541

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The contents of the accumulator are transferred to the AFQ4A
channel address register as shown below. The analog signal on the selected
channel is automatically digitized.

Symbol: C(AC) = > C(VAR)

CONTROL WORD 2 (FROM POP-8/1)

0 1 2 3 4 5 6 7 8 - 16 | Y

102 _ | 10! 100

Y
CHANNEL SELECT

Index Channel and Convert (VINX)

Octal Code: 6544

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: The last channel address is incremented by one and the analog
signal on the selected channel is automatically digitized. The contents of the
control register is unchanged.

Symbol: VAR 4+ 1 = > VAR

Skip on Data Ready (VSDR)

Octal Code: 6531
Event Time: 1
Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds

Operation: When the scanning voltmeter has selected a channel and digit-
ized the analog signal, a data ready flag is set. This instruction is used to
test for the data ready flag.

Symbol: If Flag = 1,thenPC + 1 = > PC

218

Read Data and Clear Flag (VRD)

Octal Code: 6532

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds ,
Operation: The contents of the selected byte of the voltmeter output word is
transferred to the accumulator and the data ready flag is cleared. The first
data flag after the flag is set, is always byte 1 (see below). Subsequent bytes
are program selected using the byte advance command. :

Symbol: C(VOR) = > C(AC)

DATA WORD (TO POP-8/1) BYTE 1

0 1 2 3 4 5 6 7| 8 9 1001

. S TR | 104 a
A . _J
N ~v—" v
SIGN RANGE _OPTION DIGITIZED VOLTAGE
10~ X
X=0-7

DATA WORD (TO POP-8/1) BYTE 2

o|1}l2|3|a]|5s5|e|7]|]8]9]w0|n

103 102 10!

Y
- DIGITIZED VOLTAGE

DATA WORD (TO POP-8/1) BYTE 3

0 1 2 3 4 5 6 7 8 9 10 R

| 100 10! 100

A\ A : : J
Yo Y

DIGITIZED VOLTAGE CURRENT CHANNEL

Data word 3 seldorh required, all address and digitized data are in 8-4-2-1
BCD format.

219

Byte Advance (VBA)

Octal Code: 6534
Event Time: 3
indicators: 10T, FETCH, PAUSE
Execution Time: 4.25 microseconds _
Operation: The total data word from the AFO4A is 36-bits long. The first
data word after the flag is set, is always the twelve most significant bits.
The BYTE ADVANCE command requests the next twelve most significant bits.
When the data is available, the data ready flag is set again. To select the
twelve least significant bits, a second BYTE ADVANCE command is required.
When the data is available, the data ready flag is set again.
Symbo‘: C(VORo-n) = > C(VOR]3-23)

or C(VORy3-53) = > C(VOR 4-35)

Sample Current Channel (VSCC)

Octal Code: 6571

Event Time: 1 ’

Indicators: 10T, FETCH, PAUSE

Execution Time: 4.25 microseconds :

Operation: The analog signal on the current channel is digitized. This
command is not required except when multiple samples are required on
any channel. (Using this command on a preselected channel saves up to
10 milliseconds per sample.) ’

Symbol: None.

FREQUENCY AND PERIOD MEASUREMENT OPTIONS
FOR AF04A

A separate input permits the IDVM to be used as a frequency counter ca-
pable of counting to 2mHz with selectable gate times of 1, 10, and 100
milliseconds, providing measurement resolution of 10Hz. Increased accu-
racy at low frequencies (to 10kHz with automatic 250% overranging) is
accomplished” with the period-measurement mode. This mode counts an
internal frequency source for 1 ,» 10, or 100 periods of the frequency being
measured, thereby providing increased full-scale accuracy. Period readout
is in milliseconds.

Frequency and voltage measurements may be made within one scanning
cycle by grouping all frequency inputs in one master or slave scanner and
all voltage inputs in another master or slave scanner. The output of one
scanner may then be connected to the frequency-input connector of the
IDVM and the output of the other scanner to the voltage input. One of the
optional control word bits is used to program the IDVM for frequency or
period measurements.

SPECIFICATIONS
Frequency Measurements
Range: 10Hz to 2mHz

Sensitivity: 100mv rms or —1v pulses, at least 0.3 usec wide at 50% points.
100v rms maximum working voltage.

Input Impedance: 22k ohms shunted by less than 1000 pf, including internal -
cabling.

*

Accuracy: =1 count + time base accuracy

220

Time Base: 100 KHz crystal oscillator with initial accuracy of +0.0005%,
long-term stability +0.0001%/wk; temp. coefficient +0.0002%/°C.

Period Measurements

Range: 1, 10, and 100 period average. Input frequency from 10Hz to
25kHz sine wave or 0.1 pps. to 25,000 pps.

Sensitivity: 100 mv rms or —1v pulses, at least 0.3 usec wide at 50%
points. 100v rms maximum working voltage.

- Input Impedance: 22k ohms shunted by less than 1000pf, including' in-
ternal cabling.

Accuracy: =+1 count + timé base accuracy + trigger error. Trigger error
< =+ 0.03%, for 100mv rms sine wave with 40db signal-to-noise ratio.

Time Base: 100kHz crystal oscillator with initial accuracy of =0.0005%,
long-term stability +0.0001%/wk; temp. coefficient +0.0002%/°C.

oelected 0.001% 0.01% 0.1%
Function Maximum Resolution Maximum Resolution Maximum Resolution
Reading Reading Reading _
Frequency 2000.00kHz 10Hz 02000.0kHz 100Hz 002000kHz | 1kHz
Period 99.9999msec 0.1us 999.999msec 1.0us 9999.99msec 10us

Additional AFO4A Options

Information on the following options may be had from your nearest DIGITAL
EQUIPMENT CORPORATION Office: -

Frequency (period) measurements.

AC/ohms/DC Converter

Time-of-day clock.

Thumb-wheel data entry panel.

Thermocouple reference junctions.

Extended scanner for more than 1000 channels.

Special cabinet with roll-out drawer chassis accessibility.

221

CHAPTER 8
PDP-8/I INPUT/OUTPUT FACILITIES

Since the processing power of the computer depends largely upon the range
and number of peripheral devices that can be connected to it, the PDP-8/1
has been designed to interface readily with a broad variety of external
equipment. The following chapters of this handbook define the interface
characteristics of the computer to allow the reader to design and implement
any electrical interfaces required to connect devices to the PDP-8/I.
Chapters 9 and 10 functionally describe the logic circuit elements involved
in programmed data transfers and data break transfers, respectively. Chapter
11 gives detailed information on digital logic circuits used for computer
interfacing. Chapter 12 describes the design and construction of interface
equipment. Chapter 13 describes additional interfacing techniques which
demonstrate efficiency and flexibility of the PDP-8/1 1/0 facility. Chapter
14 lists connection point, module type, and module location, etc., for each
interface signal; gives detailed loading and driving characteristics for each
module in the computer interface; then presents some general rules and
characteristics to be considered in selecting or designing electrical circuits
to be connected to the PDP-8/1. Chapter 15 presents information for plan-
ning the installation of a basic PDP-8/1 and the available standard optional
equipment.

The simple 1/0 technique of the PDP-8/1, the availability of DEC's FLIP CHIP
logic circuit modules, and DEC’s policy of giving assistance wherever pos-
sible allow inexpensive, straightforward device interfaces to be realized.
Should questions arise relative to the computer interface characteristics, the
design of device interfaces using DEC modules, or installation planning,
customers are invited to telephone the main plant in Maynard, Massachusetts,
or any of the sales offices. Digital Equipment Corporation makes no repre-
sentation that the interconnection of its circuit modules in the manner de-
scribed herein will not infringe on existing or future patent rights. Nor do
the descriptions contained herein imply the granting of license to use, manu-
facture, or sell equipment constructed in accordance therewith.

The basic PDP-8/I contains a processor and core memory composed of
Digital's M Series TTL circuit modules. These circuits have an operating tem-
perature exceeding the limits of 32°F to 130°F, so no air-conditioning is
required at the computer site. Standard 115V, 60-CPS power operates an
internal solid state power supply that produces all required voltages and
currents. High-capacity, high-speed 1/0 capabilities of the PDP-8/1 allow
it to operate a variety of peripheral devices in addition to the standard
- Teletype keyboard/printer, tape reader, and tape punch. DEC options,_ con-
sisting of an interface and normal data processing equipment, are available
for connecting into the computer system. These options include a random
access disc file,card equipment, line printers, magnetic tape transports, mag-
_netic drums, analog-to-digital converters, CRT displays, and digital plotters.
The PDP-8/1 system can also accept other types of instruments or hardware
devices that have an appropriate interface. Up to 61 devices requiring three
programmed command pulses, or up to 183 devices requiring one programmed
command pulse can be connected to the computer. One machine using the
data break facility can be connected directly to the PDP-8/I or up to seven
such machines can be connected through a Data Muitiplex Type DMO1. Inter-
facing of any devices to the computer requires no modifications to the proc-
essor and can be achieved in the field.

222

Control of some kind is needed to determine when an information exchange
is to take place between the PDP-8/1 and peripheral e_qu1pment and to indi-
cate the location(s) in the computer memory which will accept or yield the
data. Either the computer program or the device external to the computer
can exercise this control. Transfers controlled by the computer, hence under
control of its stored program, are called programmed data transfers. Transfers
made at times controlled by the external devices through the data break
facility are called data break transfers.

Programmed Data Transfers

The majority of 1/O transfers occur under control of the computer program.
To transfer and store information under program control requires about six
times as much computer time as under data break control. In terms of real
time, the duration of a programmed transfer is rather small, due to the high
speed of the computer, and is well beyond that required for laboratory or
process control instrumentation. :

To realize full benefit of the built-in control features of the PDP-8/I pro- |
grammed 1/0 transfers should be used in most cases. Controls for devices
using programmed data transfers are usually simpler and less expensive than
controls for devices using data break transfers. Using programmed data
transfer facilities, simultaneous operation of devices is limited only by the
relative speed of the computer with respect to the device speeds, and the
search time required to determine the device requiring service. Analog-to-
digital converters, digital-to-analog converters, digital plotters, line printers,
message switching equipment, and relay control systems typify equipment
using only programmed data transfers.

Data Break 'fransfers

Devices which operate at very high speed or which require very rapid response
from the computer use the data break facilities. Use of these facilities
permits an external device, almost arbitrarily, to insert or extract words from
the computer core memory, bypassing all program control logic. Because the
computer program has no cognizance of transfers made in this manner, pro-
grammed checks of input data are made prior to use of information received
in this manner. The data break is particularly well-suited for devices that
transfer large amounts of data in block form, e.g., random access disc file,
high-speed magnetic tape systems, high-speed drum memories, or CRT display
systems containing memory elements.

223

Legic Symbols

Figure 20 defines the symbols used in the following chapters of this hand-
book to express signals and digital logic circuits.

—_p DEC STANDARD NEGATIVE PULSE
—_D DEC STANDARD POSITIVE OR POSITIVE -GOING PULSE
—_— DEC STANDARD NEGATIVE LEVEL
—_—— DEC STANDARD GROUND LEVEL
—_— FLOW

AN~ -15V LOAD RESISTOR CLAMPED AT —~3v

PNP TRANSISTOR INVERTER
1. EMITTER
2. BASE
3. COLLECTOR

LOGIC AND GATE FOR
NEGATIVE SIGNALS
WITH COMPLEMENTARY
OUTPUT SIGNALS

LOGIC OR GATE FOR
GROUND LEVEL SIGNALS
WITH COMPLEMENTARY
OUTPUT SIGNALS

LOGIC NAND GATE FOR

2
NEGATIVE SIGNALS

3
/"
3 DIODE ~CAPACITOR - DIODE GATE
1. CONDITIONING LEVEL INPUT
2. TRIGGERING PULSE INPUT
3. PULSE OUTPUT
- /

1
s
FLIP-FLOP (BISTABLE MULTIVIBRATOR)
1. GATED SET-TO-1 INPUT
~ 2.GATED CLEAR-TO-0 INPUT
4 . 3. DIRECT CLEAR-T0-0 INPUT
! 4,5 OUTPUTS
2

Figure 20. Logic Symbols

224 .

o

DEVICE SELECTOR
LOGIC AS USED FOR ONE
SELECT CODE

INVERTING BUS DRIVER

8 OR W SERIES

PULSE AMPLIFIER, OUTPUT
CAN BE MADE POSITIVE OR
NEGATIVE BY REVERSING
GROUND AND SIGNAL OUTPUT
TERMINALS

R OR S SERIES PULSE AMPLIFIER
OUTPUT ALWAYS POSITIVE,
REFERENCED TO -3V. -

The PDP-8/1 uses TTL logic internally. In order to discuss some of the internal
logic pertaining to interfacing, it is necessary to understand the TTL sym-
bology used in the 8/1. The figures are as follows:

— ’ + 3V INPUT

GND INPUT

)
Ba

GND OUTPUT

Figure 20. Logic Symbols (continued)

225

| |
¥

Y

@

0 1
—C FLIP-FLOP

T

LOGICAL AND GATE
FOR POSITIVE SIGNAL
WITH POSITIVE OUTPUT

LOGICAL OR GATE
FOR POSITIVE SIGNALS

- WITH POSITIVE OUTPUT

LOGICAL AND GATE FOR
POSITIVE SIGNALS

LOGICAL NOR GATE FOR
GND SIGNALS

CLOCK PULSE WILL CAUSE
DATA INPUT TO APPEAR
AT """ ouTPUT

! SHSEC rappED DELAY

— FILTER

Figure 20.

AMPLIFIER
(OR LEVEL CONVERTER)

SINGLE SHOT WITH
COMPLEMENTARY OUTPUTS

GENERAL
PURPOSE .

Logic Symbols (continued)

226

I

CHAPTER 9
PROGRAMMED DATA TRANSFERS

The majority of 1/O transfers take place under control -of the PDP-8/I pro-
gram, taking advantage of control elements built into the computer. Although
programmed transfers take more computer and actual time than do data
break transfers, the timing discrepancy is insignificant, considering the high
speed of the computer with respect tc most peripheral devices, The maximum
_data transfer rate for programmed operations of 12-bit words is 148 kc when
no status checking, end transfer check, etc., is done. This speed is well
beyond the normal rate required for typical laboratory or process control in-
strumentation. ‘

The PDP-8/1 is a parallel-transfer machine that distributes and collects data
in bytes of up to twelve bits. All programmed data transfers take place
through the accumulator, the 12-bit arithmetic register of the computer. The
computer program controls the loading of information into the accumulator
(AC) for an output transfer, and for storing information in core memory from
the AC for an input transfer. Output information in the AC is power amplified
and supplied to the interface connectors for bussed connection to many
peripheral devices. Then the program-selected device can sample these signal
iines to strobe AC information into a control or information register. input
data arrives at the AC as pulses received at the interface connectors from
bussed outputs of many devices. Gating circuits of the program-selected
device produce these pulses. Command pulses generated by the device flow
to the input/output skip facility (I0S) to sample the condition of 1/0 device
flags. The 10S allows branching of the program based upon the condition or
availability of peripheral equipment, effectively making programmed decisions
to continue the current program or jump to another part of the program, such
as a subroutine that services an /O device.

The bussed system of input/output data transfers imposes the following re-
quirements on peripheral equipment.

a. The ability of each device to sample the select code generated by

the computer during 10T instructions and, when selected, to be capable

of producing sequential IOT command pulses in accordance with com-

puter-generated 0P pulses. Circuits which perform these functions in
- the peripheral device are called the device selector (DS).

b. Each device receiving output data from the computer must contain
gating circuits at the input of a receiving register capable of strobing
the AC signal information into the register when triggered by a com-
mand pulse from the DS. -

c. Each device which supplies input data to the computer must con-
tain gating circuits at the output of the transmitting register capable of
sampling the information in the output register and supplying a pulse
to the computer input bus when triggered by a command pulse from
the DS. :

d. Each device should contain a busy/done flag (flip-flop) and gating
circuits which can pulse the computer input/output skip bus upon
command from the DS when the flag is set in the binary 1 state to indi-
cate that the device is ready to transfer another byte of information.

227

Figure 21 shows the information flow within the computer which effects a
programmed data transfer with input/output equipment. All instructions
stored in core memory as a program sequence are read into the memory
buffer register (MB) for execution. The transfer of the operation code in the
three most significant bits (bits 0, 1, and 2) of the instruction into the
instruction register (IR) takes place and is decoded to produce appropriate
control signals. The computer, upon recognition of the operation code as an
I0T instruction, enters a 4.25 usec expanded computer cycle and enables the
IOP generator to produce time sequenced IOP pulses as determined by the
three least significant bits of the instruction (bits 9, 10, and 11 in the MB).
These IOP pulses and the buffered output of the select code from bits 3-8
of the instruction word in the MB are bussed to device selectors in all
peripheral equipment. Figure 22 indicates the timing of programmed data
. transfers and Figure 23 shows the decoding of the 10T instruction.

ars

107
0-2 | INSTRUCTION
AEGSTER | e loopn oo TN
1Z-BT IR 0P 10P_PULSES N
NSTRUCTION MEMORY GENERATOR ~ >
coRe WORD BUFFER | BITs 911
MEMORY REGISTER
M8}
8i7s 3-8 BITS 3-8
OUTPUT
DATA
ACCUMULATOR

“E(G"ISCT,E" INPUT DATA CONMECTIONS
-

> TO INPUT 7 DUTPUT
DEVICE

oUTPUT
sce | P

FACILITY

{105

PROGRAM
PROGRAN] INTERRUPT
INTERRUPT REQUEST
facry [@—————
{21

Figure 21. Programmed Data Transfer Interface Block Diagram

228

622

‘gz 2in3i4

1 J9jsuel] ejeq pawwel3old

Surw

MEM START
STROBE

PAUSE

TS1 (AVAILABLE
TO DEVICE)

Ts2

™2

TS 3 (AVAILABLE
TO DEVICE)

™3

TS 4

101

{TO DEVICE)
© iop2
(O DEVICE)
10Pa

{TO DEVICE)
.1/70 END

170 STROSE

| 1
! |
35-48
USEC '
0
1 1

-3V

GND

-3V

10T CYCLE TiME BETWEEN
4.1% AND 4 25 JISEC

o + USEC 2 psec 3 usec o psec
|
In—- JOT INSTRUCTION - e e s e e + NEXT INSTRUCTION
I
]
4 33745 Ly STROBE TIME IS ADJUSTED FOR EACH MEMORY. (0T INSTRUCTION TIME DEPENDS ON STROBE DELAY SINCE TS 1 ENDS AND TP 1 OCCURS AT STROBE TIME

MSEC

|] PAUSE CLEAR‘ED AT TP
'——. - "—‘. : r
I

PAUSE IN THE ONE STATE INHIBITS GATE WHICH MEM. DONE. PULSE FROM GENERATING MEM t PAUSE FF CLEARED

START AND TP 4

|

|

1
25 !
HSEC)

A

. 3}LSEC AFTER 1/0 END GENERATES

MEM START AND TP 4

BEGINS TS2

FIXED DELAY

OCCURS AT END OF
TS 2 BEGINS TS3

FIXED DELAY

QCCURS AT END OF
TS 3 BEGINS 10P}

BEGINS AT 1/0 ENO
END AT TP 4

QCCURS AT END OF 154
BEGINS NEXT MEM START

10P1 BEGINS AT TP 3
FIXED DELAY

FIXED DELAY

FIXED DELAY

BEGING TS4 £ND STARTS
3 MSEC DELAY

OCCURS .3 J4 SEC AFTER 1OP PULSES

OPERATION T0P GENERATOR
CODE : CONTROL

DEVICE

SELECTION
CODE

Figure 23. Typical 10T Instruction Decoding

Devices which require immediate service from the computer program, or
which take an exorbitant amount of computer time to discontinue the main
program until transfer needs are met, can use the program interrupt (PI)
facility. In this mode of operation, the computer can initiate operation of
1/0 equipment and continue the main program until the device requests
servicing. A signal input to the P| requesting a program interrupt causes
storing of the conditions of the main program and initiates a subroutine to
service the device. At the conclusion®f this subroutine, the main program
is reinstated until another interrupt request occurs.

Timing and IOP Generator

When the IR decoder detects an operation code of 6, it identifies an 10T
instruction and the computer generates a slow cycle pulse. The Slow Cycle
signal ANDS with TP3 to generate 1/0 Start and consequently generates 1 —»
Pause pulse. The computer enters the Pause state thereby disabling the
normal timing generator of the processor. The logic circuits of the IOP
generator are shown in Figure 24 to consist of three similar channels each
consisting of a delay, gated flip-flop and output level converter. The 110
Start signal initiates the first delay and the operation of the other two
channels is triggered by the pulse output of the delay in the previous channel.
Series connection of the delays produces sequential operations of the three
channels. The pulse output of the third channel delay restarts the normal
timing generators of the processor. (10T instructions associated with enabling
and disabling the program interrupt facility and those for the Memory Exten-
sion Control Type MC-8/1, and the Data Line Interface Type DL-8/1 inhibit
generation of the Slow Cycle signal; thereby, preventing the computer to
enter the Pause state. In these commands the IOP generator is inhibited so
the normal timing pulses of the processor and special device selectors exe-
cute these instructions.)

Note: All cycle times of the PDP-8/I have a tolerance of +=20%.

230

1£2

¥ @Insi4

7 Jojessusn 4|

2180

o7 s
380418 071 < l. q
)

QN3 0/] ——4

olgn
G 1D

ERRY0]
MO8
- ONY

(s D
(1) 60aM () o1 thsien
aNy [any | €
e
aq N a 01 S1LINW
2 2 b e |
] ~ ‘
q ¥ dol LY 1 401 0]
l [} ' o 9021
At+ - g
zor
(Zd‘ zx‘ Lom

{0} ¥ dOl8

0} 2 J018

{0} | d018

The AND gates associated with flip flops IOP 1,10P 2,and 10P 4 sample the
contents of MB11(1), MB 10 (1), and MBO9 (1) respectively. The delay chain
is initiated by 1/0 Start which occurs when its preceding AND gate is en-
abled by the Slow Cycle original and strobed by TP3. 1/0 Start sets the
Pause flip flop which disables the normal cycling of the computer. The 1/0
Start pulse will set 10P 1 flip flop to a one if MB 11 (1) has enabled the
input and gate and also starts the first delay chain. At the end of a micro-
second delay IOP 1 flip flop is reset to zero and IOP 2 flip flop is set to a
one if MB 10 (1) has enabled its input AND gate. This procedure continues
~ until all three MB bits have been sampled and the appropriate IOP pulses
have been generated. The 1 microsecond output pulses from the 10P flip
flops are converted to DEC levels of zero and —3V. A Standard 8/1 IOP
pulse is a pulse which goes from ground to —3V for .8 microsecond and re-
- turns to ground. 1/0 STROBE PULSES are generated .3 microseconds after
the beginning of each IOP pulse and are used, by the processor, for internally
strobing the content input buss lines after they have been enabled by 10T
pulses. The instruction bit that enables or disables generation of each .|OP
pulse, the corresponding number of the 10T pulses produced in the DS from
the I0OP pulse, and the event time for each 0P puise is:

Instruction 10P | 10T Event Used Primarily
Bit Pulse Pulse Time For
11 iIOP 1 I0T 1 1 Sampling Flags, Skipping.
10 IOP 2 10T 2 2 Clearing Flags, Clearing AC.
9 IOP 4 . 10T 4 3 Reading Buffers, Loading
: Buffers and Clearing Buff-
ers.

Device Selector (DS)

Bits 3 through 8 of an 10T instruction serve as a device or subdevice select
code. Bus drivers in the processor buffer both the binary 1 and O output
signals of MB3-8 and distribute them to the interface connectors for bussed
connection to all device selectors. Each DS is assigned a select code and is
enabled only when the assigned code is present in the MB. When enabled, a
DS regenerates IOP pulses as 10T command pulses and transmits these
pulses to skip, input, or output gates within the device and/or to the proces-
sor to clear the AC.

Each group of three command pulses requires a separate DS channel (W103
module), and each DS channel requires a different select code (or 1/O device
address). One 1/O device can, therefore, use several DS channels. Note that
the processor produces the pulses identified as IOP 1, I0P 2, and I0P 4 and
supplies them to all device selectors. The device selector produces pulses
IOT 1, 10T 2, and 10T 4 which initiate a transfer or effect some control.
Figure 25 shows generation of command pulses by several DC channels.

232

: \c‘g: =2 & 5T
Sl <1
P35 « S
10P 1 %
T O
N o
.
KXY =

BME 4
BmB 5
BMB 6
ame 7
BMEB

4
%

& COMMAND
p> . > PULSES TO
<% DEVICE 34
® =7
A
O
O,
a
g .
»® e
t“%‘o =
2@\." // ~
e
-~
g
I

SELECTORS

K4
5
0%
5
A\

885
i
5
W%
/

\L.__—————-—l/

Figure 25. Generation of IOT Command Pulses by Device Selectors

The logical representation for a typical channel of the DS, using channel 34,
is shown in Figure 26. A 6-input NAND gate wired to receive the appropriate
signal outputs from MB3-8 for select code 34 activates the channel. In the
DS module, the NAND gate contains 14 diode input terminals; 12 of these
connect to the complementary. outputs of MB3-8, and 2 are open to receive
subdevice or control condition signals as needed. Either the 1 or the O signal
from each MB bit is disconnected by removing the appropriate diode from
the NAND gate when establishing the select code. The ground level output
of the NAND gate indicates when the 10T instruction selects the device, and
can therefore enable circuit operations within the device. This output also
enables three gating inverters, allowing them to trigger a pulse amplifier if
an IOP pulse occurs. The positive output from each pulse amplifier is an
IOT command pulse identified by the select code and the number of the
initiating I0OP pulse. Three inverters receive the positive 10T pulses to pro-
duce complementary 10T output pulses. A pulse amplifier module can be
connected in each channel of the DS to provide greater output drive or to
produce pulses of a specific duration required by the selected device.

233

Figure 26. Typical Device Selector (Device 34)

Input/Output Skip (10S)

Generation of an 10T pulse can be used to test the condition or status of a
device flag, and to continue to or skip the next sequential instruction based
upon the results of this test. This operation is performed by a 2-input AND
gate in the device connected as shown in Figure 27. One input of the skip
gate receives the status level (flag output signal), the second input receives
an |0T pulse, and the output drives the computer 10S bus to ground when
the skip conditions are fulfilled. When the 10S bus is driven to ground, the
content of the program counter is incremented by 1 to advance the program
count without executing the instruction at the current program count. In this
manner an 0T instruction can check the status of an 1/0 device flag and
skip the next instruction if the device requires servicing. Programmed testing
in this manner allows the routine to jump out of sequence to a subroutine
that services the device tested.

234

STATUS FLIP-FLOP OF NAND GATE

2-INPUT DIODE
EXTERNAL DEVICE l

/-

-“ CONNECTED TO THE IN/OUT
/ SKIP BUS OF THE .
- COMPUTER

INSTRUCTION 6342,
SKIP NEXT INSTRUCTION
IF DEVICE 34 iS READY
TO RECEIVE DATA

Figure'27. Use of 10S to Test the Status of an External Device

Assuming that a device is already operating, a possible program sequence
to test its availability follows:

Address - Instruction Rema.rks
100, 6342 /SKIP IF DEVICE 34 IS READY
101, 5100 [JUMP . —1 .
102, 5XXX /ENTER SERVICE ROUTINE FOR
/DEVICE 34

When the program reaches address 100, it executes an instruction skip with
6342. The skip occurs only if device 34 is ready when the 10T 6342 com-
mand is given. If device 34 is not ready, the flag signal disqualifies the skip
gate, and the Skip pulse does not occur. Therefore, the program continues
to the next instruction which is a jump back to the skip instruction. In this
_example, the program stays in this waiting loop until the device is ready to
transfer data, at which time the skip gate in the device is enabled and the
Skip pus is sent to the computer 10S facility. When the skip occurs, the
instruction in location 102 transfers program control to a subroutine to
service device 34. This subroutine can load the AC with data and transfer
it to device 34, or can load the AC from a register in device 34 and store
it in some known core memory address.

\
235

Accumulator

The binary 1 output signal of each flip-flop of the AC, buffered by a bus
driver, is available at the interface connectors. These computer data output
lines are bus connected to all peripheral equipment receiving programmed
data output information from the PDP-8/1. A direct-set terminal on each
flip-flop of the AC is connected to the interface connectors for bussing to
all peripheral equipment supplying programmed data input to the PDP-8/I.
A pulse that drives the direct-set terminal to ground causes setting of an
AC flip-flop to the binary 1 state. Output and input connections to the ac-
cumulator appear in Figure 28.

Figure 28. Accumulator Input and Output

Figure 28 illustrates the twelve bits of the accumulator and the link bit.
The status of the link bit is not available to enter into transfers with periph-
eral equipment (unless it is rotated into the AC). A bus driver continuously
buffers the output signal from each AC flip-flop. These buffered accumulator
(BAC) signals are available at the interface connectors.

Input Data Transfers

When ready to transfer data into the PDP-8/1 accumulator, the device sets a
‘flag connected to the 10S. The program senses the ready status of the flag
and issues an IOT instruction to read the content of the external device
buffer register into the AC. If the AC is not cleared before the transfer, the
resultant word in the AC is the inclusive OR of the previous word in the AC
and the word transferred from the device buffer register.

236

STANDARD 2-INPUT
DIODE\NAND GATES

COMPUTER
ACCUMULATOR

ACCUMULATOR
INPUT BUSES

Figure 29. Loading Data into the Accumulator from an External Device

The illustration in Figure 29 shows that the accumulator has an input bus
for each bit flip-flop. Setting a 1 into a particular bit of the accumulator
necessitates grounding of the interface input bus by the standard DEC in-
verter. In the illustration, the 2-input AND gates set various bits of the
accumulator. In this case an 10T pulse is AND combined with the flip-flop
state of the external device to conditionally set 1's into the accumulator.
(The program must include a clear AC command prior to loading in this
manner; otherwise an inclusive OR takes place between the previous content
of the accumulator and the content of the register being read.)

Following the transfer (possibly in the same instruction). the program can
issue a command pulse to initiate further operation of the device and/or
clear the device flag.

Output Data Transfers |

The AC is loaded with a word (e.g., by a CLA TAD instruction sequence); then
the 10T instruction is issued to transfer the word into the control or data
register of the device by an 10T pulse (e.g, IOP 2), and operation of the
device is initiated by another 10T pulse (e.g., IOP 4). The data word trans-
ferred in this manner can be a character to be operated upon, or can be a
control word sampled by a status register to establish a control mode.

Since the BAC interface bus lines continually represent the status of the
AC flip-flops, the receiving device can strobe them to sense the value in the
accumulator. In Figure 30 a strobe pulse samples six bits of the accumulator
to conditionally set an external 6-bit data register. Since this is not a jam
transfer, it is necessary first to clear the external data register before setting
1’s into it. The readin gates driving the external data register are part of the

237

external device and are not supplied by the computer. The data register can
contain any number of flip-flops up to a maximum of twelve. (If more tha_n
twelve flip-flops are involved, two or more transfers must take place.) Obvi-
ously the clear pulse and the strobe pulse shown in Figure 30.must occur
when the data to be placed in the external data register is held in the accu-
mulator. These pulses therefore must be under computer control to effect
synchronization with the operation or program of the computer.

Figure 30. Loading a 6-Bit Word into an External Device
from the Accumulator -

Figure 31 illustrates the use of two of the pulses being gated by the device
selector coded for “34.” Pulse 10T 1 clears the data register and 10T 4 strobes
the data from the accumulator into the data register. Note that the processor
produces the IOP 1, IOP 2, and OP 4 pulses and supplies them to all device

- selectors. The program-selected DS produces 10T 1, I0T 2, and 10T 4 pulses

which initiate a transfer or effect some control. As indicated in Figure 31
this particular system adds two new microinstructions to the PDP-8/1 reper-
toire. One generates a pulse to clear the data register of device number 34.
The other microinstruction produces a pulse to load the data register of
device number 34 with the content of the accumulator,

238

DATA REGISTER OF
EXTERNAL DEVICE
34 7

CODED FOR 34

LOAD DATA REGISTER
. OF DEVICE 34 WITH -
~ N CONTENT OF ACCUMULATOR

Figure 31. Use of a Device Selector for Activating and
Controlling an External Device ~

The timing of the IOT cycle is shown in Figure 22. Note that the AC bus
drivers are quiescent 400 nsec before the IOP 1 pulse occurs. Since FLIP
CHIP DCD gates require a 400-nsec set-up time, the IOP 1 pulse cannot be -
used to load the content of the AC into an external buffer register having
input DCD gates. If the device register has DCD gates, IOP 1 should be used
to reset or clear registers, controls, or flags. The IOP 1 pulse can be used
to read the content of the AC into an external device register that is equipped
with input diode gates. IOP 2 or IOP 4 can be used to strobe the content of
the AC through DCD gates if the lead lengths of the BAC lines and the pulse
lines provide equivalent transmission delays. Only IOP 1 or IOP 2 (not IOP 4)
can be used with the 10S facility.

Program Interrupt (PI)

When a large amount of computing is required, the program should initiate
operation of an I/O device then continue the main program, rather than wait
for the device to become ready to transfer data. The program interrupt facility,
when enabled by the program, relieves the main program of the need for
repeated flag checks by allowing the ready status of 1/O device flags to
automatically cause a program interrupt. When the program interrupt occurs,
program control transfers to a subroutine that determines which device re-
quested the interrupt and initiates an appropriate service routine.

In the example shown in Figure 32, a flag signal from a status flip-flop oper-
ates a standard inverter with no collector load. When the status flip-flop
indicates the need for device service, the inverter drives the Program Interrupt
Request bus to ground to request a program interrupt.

239

CONNECTED TO PROGRAM
INTERRUPT REQUEST BUS
OF COMPUTER

STATUS
FUP-FLOP

10T PULSE TO REMOVE
CONDITION CAUSING THE
INTERRUPT BY CLEARING
THE STATUS FLIP-FLOP

Figure 32. Program Interrupt Request Signal Origin

If only one device is connected to the Pl facility, program control can be
transferred directly to a routine that services the device when an interrupt
occurs. This operation occurs as follows:

Tag Address Instruction Remarks
1000 . /MAIN PROGRAM
1001 . /MAIN PROGRAM CONTINUES
1002 . /INTERRUPT REQUEST OCCURS
INTERRUPT OCCURS
0000 . /{PROGRAM COUNT (PC = 1003) IS

/STORED IN 0000
0001 JMP SR /ENTER SERVICE ROUTINE
SR 2000 . /SERVICE SUBROUTINE FOR
/INTERRUPTING DEVICE AND
/SEQUENCE TO RESTORE AC, AND

3001 . /RESTORE L IF REQUIRED
3002 ION /ITURN ON INTERRUPT

3003 JMP 1 0000 /RETURN TO MAIN PROGRAM
1003 .. /{MAIN PROGRAM CONTINUES
1004 .

In most PDP-8/I systems numerous devices are connected to the PI facility,
so the routine beginning in core memory address 0001 must determine which
device requested an interrupt. The interrupt routine determines the device
requiring service by checking the flags of all equipment connected to the
Pl and transfers program control to a service routine for the first device en-
countered that has its flag in the state required to request a program inter-
rupt. In other words, when program interrupt requests can originate in
numerous devices, - each device flag connected to the PI must also be
connected to the 10S.

240

Multiple Use of 10S and PI

In common practice, more than one device is connected to the PI facility.
Therefore, since the computer receives a request that is the inclusive OR of
requests from all devices connected to the Pi, the 10S must identify the device
making the request. When a program interrupt occurs, a routine is entered
from address 0001 to sequentially check the status of each flag connected
to the Pl and to transfer program control to an appropriate service routine
- for the device whose flag is requesting a program interrupt. Figure 33 shows

10S and Pl connections for three typical devices.

CONMECTED TO PROGRAM
INTERRUPT BUS 7

Figure 33. Multiple‘lnputs to 10S and P! Facilities

The following program example illustrates how the program interrupt routine
determines the device requesting- service: ,

Tag Address Instruction Remarks
1000 . /{MAIN PROGRAM
1001 . {MAIN PROGRAM CONTINUES
1002 . - /INTERRUPT REQUEST OCCURS
' INTERRUPT OCCURS - '
0000 [STORE PC (PC = 1003)

. 0001 JMP FLG CK /ENTER ROUTINE TO DETERMINE
/WHICH DEVICE CAUSED INTERRUPT
FLG CK 10T 6341 /SKIP IF DEVICE 34 IS REQUESTING
SKP /NO — TEST NEXT DEVICE ‘
JMP SR34 /ENTER SERVICE ROUTINE 34
IOT 6441 /SKIP IF DEVICE 44 IS REQUESTING
SKP /NO — TEST NEXT DEVICE :
- JMP SR44 [ENTER SERVICE ROUTINE 44
I0T 6541 /SKIP IF DEVICE 54 IS REQUESTING
SKP /NO — TEST NEXT DEVICE
JMP SR44 /ENTER SERVICE ROUTINE 54

241

Assume that the device that caused the interrupt is an input device (e.g.,
tape reader). The following example of a device service routine might apply:

Tag
.
SR

Instruction

DAC TEMP
10T XX

DAC | 10
ISZ COUNT
SKP

JMP END

TAD TEMP
ION
JMP 1 0O

Remarks -

/SAVE AC

/TRANSFER DATA FROM DEVICE
/BUFFER TO AC

/STORE IN MEMORY LIST

/CHECK FOR END

/NOT END

/END. JUMP TO ROUTINE TO HANDLE
/END OF LIST CCNDITION

/RESTORE L AND EPC IF REQUIRED
/RELOAD AC

/TURN ON INTERRUPT

/RETURN TO PROGRAM

If the device that caused the interrupt was essentially an output device
(receiving data from computer), the 10T — then — DAC | 10 sequence might
be replaced by a TAD | 10 — then — |0T sequence.

242

CHAPTER 10
DATA BREAK TRANSFERS

The data break facility allows 1/0O device to transfer information directly
with the PDP-8/I core memory on a cycle-stealing basis. Up to seven devices
can connect to the data break facility through the optional Data Multiplexer
Type DMO1. The data break is particularly well-suited for devices which
transfer large amounts-of information in block form.

Peripheral 1/O equipment operating at high speeds can transfer information
with the computer through the data break facility more efficiently than
through programmed means. The combined maximum transfer rate of the
data break facility is over 7.8 million bits per second. Information flow to
effect a data break transfer with an 1/0 device appears in Figure 34.

MEW EXTENDED DATA)
EXTENSION | ADDRESS (3 BITS) -~
CONTROL |

TYPE MC8/1
MEMORY DATA ADDRESS
ADDRESS ADDRESS (12 BITS)
REGISTER
© O (MA)
CORE
MEMORY DATA INFORMATION
{12 BITS IN)
DATA MEMORY
BUFFER DATA INFORMATION
REGISTER | (12 giTS oUT)
(M8}
ADDRESS CONNECTIONS TO
ACCEPTED N INPUT / QUTPUT
—» DEVICE
WORD COUNT
OVERFLOW N
.
BREAK STATE
DATA '
BREAK pREAK REQUEST
FACILITY TRANSFER
DIRECTION (IN)
CYCLE SELECT
-
+1—> CA INHIBIT
> ——
INCREMENT MB
[

Figure 34. Data Break Transfer Interface Block Diagram

In contrast to programmed operations, the data break facilities permit an
external device to control information transfers. Therefore, data-break device
interfaces require more control logic circuits, causing a higher cost than
programmed-transfer interfaces. :

Data breaks are of two basic types: single-cycle and three-cycle. In a single-
cycle data break, registers in the device (or device interface) specify the core
memory address of each transfer and count the number of transfers to deter-
mine the end of data blocks. In the three-cycle data break two computer
core memory locations perform these functions, SImpllfylng the device inter-
face by omitting two hardware registers.

In general terms, to initiate a data break transfer of information, the interface
control must do the following: _

243

a. Specify the affected address in core memory.

b. Provide the data word by establishing the proper logic levels at the
computer interface (assuming an input data transfer), or provide readin
gates and storage for the word (assuming an output data transfer).

c. Provide a logical signal to indicate direction of data word transfer.

d. Provide a logical signal to indicate single-cycle or three-cycle break
operation.

e. Request a data break by supplying a proper signal to the computer
data break facility.

Single-Cycle Data Breaks

Single-cycle breaks are used for input data transfers to the computer, output
data transfers from the computer, and memory increment data breaks. Memory
increment is a special output data break in which the content of a memory
address is read, incremented by 1, and rewritten at the same address. It is
useful for counting iterations or external events without disturbing the com-
puter program counter (PC) or AC registers.

Input Data Transfers

Figure 35 illustrates timing of an input transfer data break. The address to
be affected in core is normally provided in the device interface in the form
of a 12-bit flip-flop register (data break address register) which has been
preset by the interface control by programmed transfer from the computer.

External registers and control flip-flops supplying information and control
signals to the data break facility and other PDP-8/1 interface elements are
shown in Figure 36. The input buffer register (IB in Figure 36) holds the
12-bit data word to be written into the computer core memory location speci-
fied by the address contained in the address register (AR in Figure 36).
Appropriate output terminals of these registers are connected to the com-
puter to supply ground potential to designate binary 1's. Since most devices
that transfer data through the data break facility are designed to" use either
single-cycle or three-cycle breaks, but not both, the Cycle Select signal can
usually be supplied from a stable source (such as a ground connection or a
—3v clamped load resistor) rather than from a bistable device as shown in
Figure 36.

Other portions of the device interface, not shown in Figure 36, establish
the data word in the input buffer register, set the address into the address
register, set the direction flip-flop to indicate an input data transfer, and
control the break request flip-flop. These operations can be performed simul-
taneously or sequentially, but all transients should occur before the data
break request is made. Note that the device interface need supply only
static levels to the computer, minimizing the synchronizing logic circuits
necessary in the device interface.

244

11 24

P TP2 P8 TP4 ™ ™2 ™y R4 ™. TP2
COMPUTER TIME | | | | | | | | | |

PREVIOUS CYCLE —fd—————————— BAEAK CYCLE —————f— NEXT CYCLE

GND
’
B e S J \@— SAMPLED AT TP1 BY PROCESSOR l-— SIGNAL MUST GO TO -3V AT START OF ADDRESS ACCEPT PULSE I NEXT CYCLE IS NOT TO BE A BREAK
: -3 ' .
[T '
A YN R) _JA— SET AT TP SAMPLE AT TP4 — ln-— USED TO SELECT BAEAK CYCLE AT TP 4
. o '
3 CYCLE '
(SAMPLE 10 SR o -| 74— SAMPLED AT TR3, TYPICALLY MARDWIRED FOR A GIVEN DEVICE
Y CYCLE .
B-BREAK SIGNA e ; \
- K Si L
tourpus EREAK SIGNAL . ln— START OF BATEAK CYCLE END OF BREAK CYCLE —-J
DATA ADDRESS GND NEAD AT TP 4
INPUT LEVELS | o EROCESSoN EARLIST TivE £ T0 REMOVE IS AT START OF BREAK CYCLE
{INPUT TO PROCESSOR) 3w
GND
ADORESS ACCEPT PULSE
{OUTRUT TO 1/0 DEVICE)
-3v
AnsE OUT (GND)) -——-
S R RN 1 SAMPLED AT TP 2 BY PROCESSOR —4 M8 CAN CHANGE ANYTIME AFTER TP 2
N {-3V) L A
DATA SIGNAL INFUT To Mg - (ONO! I LATEST POSSIBLE TIME TO SPECIFY _ o) .
(INPUTTO PROCESSOR) o) INPUT DATA |5 500 NS SEFORE TP2 ~®} I"’ SAMPLED AT TP 2 §Y PROCESSOR

AVAIL (GND} .|
* -
OUTPUT DATA AVAILABLE INMB o
{OUTPUT.TO 1/0 DEVICE) x - AVAILASLE AT 7P 2 + TIE DURING WHICH DATA MUST BE STROBED 8Y 1/0 DEVICE
NOT AVAIL (- -

-~

*INCREMENT REQUEST | Lite (ONO)
{INPUT TO PROCESSOR) MUST RISE EARLIER THAN TP 4 —c-l
NG REQUEST (-3V)

GND -
87S3
{OUTPUT TO 1/0 DEVICE}
-3V .
GND
aTs) I | I I I
{OUTPUT TO 170 DEVICE) w

GND
WORD COUNT OVERFLOW . N PULSE OCCURS IF MEMOAY INCREMENT 1S REQUESTILD
{OUTPUT YO 1/0 DEVICE) AND THE WORD COUNT OVERFLOWS

AC T
,'”{"ﬁ;{" MUST OCCUR ONLY WHEN B BIREAK = | }.—mrm.t.svrn
trirerrhy

¥ SIGNAL NOT USED FOR INSUT TRANSFERS
SHOWN POR REFERANCE ONLY

Figure 35. Single-Cycle Data Break Input Transfer Timing Diagram

DATA BREAK INTERFACE
OF PDP-8/1

— é - ‘AR = ADDRESS REGISTER

' IB =INPUT BUFFER
i \ / D = TRANSFER DIRECTION FLIP-FLOP

BR = BREAK REQUEST FLIP-FLOP

S CS = CYCLE SELECT (USUALLY SUPPLIED
N BY FIXED WIRING TO —3VOLTS
RATHER THAN BY A FLIP-FLOP)

Figure 36. Device Interface Logic for Single-Cycle
Data Break Input Transfer

246

When the data break request arrives, the computer completes the current
instruction, generates an Address Accepted pulse (at TP4 time of the cycle
preceding the data break) to acknowledge receipt of the request, then enters
the Break state to effect the transfer (see Chapter 5 of this handbook for more
details on data break operations performed by the computer). The Address
Accepted pulse can be used in the device interface to clear the break request
flip-flop, increment the content of the address register, etc. If the Break Re-
quest signal is removed before TP1 time of the data break cycle, the computer
performs the transfer in one 1.5-usec cycle and returns to programmed opera-
tion.

Output Data Transfers

Timing of operations occurring in a single-cycle output data break is shown
in Figure 37. Basic logic circuits for the device interface used in this type of
transfer are shown in Figure 38. Address and control signal generators are
similar to those discussed previously for input data transfers, except that the
Transfer Direction signal must be at ground potential to specify the output
transfer of computer. information. An output data register (OB in Figure 38) is
usually required in the device interface to receive the computer information.
The device, and not the PDP-8/I, controls strobing of data into this register.
The device must supply strobe pulses for all data transfers out of the com-
puter (programmed or data hreak) since circuit configuration and timing char-
acteristics differ in each device. '

When the data break request arrives, the computer completes the current
instruction and generates an Address Accepted pulse as in input data break
transfers. At TP4 time the address supplied to the PDP-8/1 is loaded into the
MA, the Break state is entered, and the MB is cleared. Not more than 450 nsec
after TP4 (at TP2 time), the content of the device-specified core memory
address is read and available in the MB. (This word is automatically rewritten
at the same address during the last half of the Break cycle and is available
for programmed operations when the data break is finished.) Data Bit signals
are available as static levels of ground potential for binary 1's and —3v for
binary 0’s. The MB is cleared at TP2 time of each computer cycle, so the
data word is available in the MB for approximately 1.5 usec to be strobed by
the device interface.

Generation of the strobe pulse by the device interface can be synchronized
with computer timing through use of timing pulses BTS1 or BTS3, which
are avaliable at the computer interface. In addition to a timing pulse (delayed
or used directly from the computer), generation . of this strobe pulse should
be gated by condition signals that occur only during the Break cycle of an
output transfer. Figure 39 shows typical logic circuits to effect an output
data transfer. In this example the B Break signal and an inverted Transfer
Direction signal are combined in a diode NAND gate to condition a diode-
- capacitor-diode gate. A buffered BTS1 pulse triggers the DCD gate to produce
the strobe pulse. The BTS1 pulse determines the timing of the transfer in
this example, since the input of the output buffer register has DCD gates.
Conventional DCD gates require a minimum setup time of 400 nsec, which is
adequately provided between the time when data is available in the MB and
TS1 time.

247

8t¢

TP P2 TP3 RS TR ™2z TP3 T™e ™ ™2

COMPUTER TIME t | | | | | | | | | 7
PREVIOUS CYCLE —ovj- BREAK CYCLE “4pl— NEXT CYCLE “
GND - :
BREAK REQUEST SIGNAL SIGNAL MUST GO TO -3V AT START OF ADDRESS ACCEPT PULSE IF NEXT CYCLE IS NOT TO BE A BREAK
{INBUT TO PROCESSOR) w J :lt— SAMPLED AT TP1 Y PROCESSOR lﬂ-
1 n N
BREAK SYNC FLIP FLOP SET AT TP1 SAMPLE AT TP 4 —pot “— USED TO SELECT BREAK CYCLE AT TP 4
(INTERNAL) 1
[
3 CYCLE '
CYCLE SELECT iag— SAMPLED AT TR3, TYPICALLY HAKDWIRED FOR AGIVEN DEVICE
ISAMPLE TO PROCESSOR) B
1 CYCLE
GND
8-BREAK SIGNAL }Q—' STHRT OF BREAK CYCLE ENO OF BREAK CYCLE
{OUTPUT TO /0 DEVICE) v
~
DATA ADDRESS GND READ AT TP 4
INPUT LEVELS ’ I & PROCESSOR EARLIST TIME POSSIBLE TO REMOVE ADDRESS IS AT START OF BREAK CYCLE
(UNPUT TO PROCESSOR) v
. GND P
TP4 - TP l
ADDRESS ACCEPT PULSE -
OUTPUT TO §/0 DEVICE) w l 35- 4% USEC
QUT (GND) T
TRANSFER DIRECTION SAMPLED AT TP 2 BY PROCESSOR —# l<— CANCHANGE ANYTIME AFTERTP2 -
(INPUT TO PROCESSOR) i
iN (-3V) .
AVAIL.{GND) v
* DATA SIGNAL INPUT TO MB LATEST POSSIBLE TIME TQ SPECIFY AMPLED AT TP2 BY PROCESSOR
O PuT 16 PROCE SSORT A J INPUTDATA 1§ 300 NS BEFORE TP 2~ SAMPLE
NOT-AVAIL. (-3V

AVAIL (GND)
OUTPUT DATA AVAILABLE INMB N AVAL_ABLE AT TP 2 —+— TIME DURING WHICH DATA MUST BE STROBED B8Y .1/0 DEVICE —ol_
(OUTPUT TO 1/0 DEVICE)
NOT AVAIL (-3V) .
REQUEST (GND) T2

*INCREMENT REQUEST ; VLTME LD 6T OCCUR ONLY WHEN B BREAK = 1 MUST FALL BY TP 4
LSS MUST RISE EARLIER THAN TP 4 YREQUIRED 4

NO REQUEST (-3v} - ’ 7

GND |
oo USED FOR STROBING OUTPUT DATA
(QUTPUT TO 1/0 DEVICE) .
-3V
GND
arsi
{OUTPUT TO 170 DEVICE} w .

GND

PULSE OCCURS IF MEMORY INCREMENT IS REQUESTED

% WORD COUNT OVERFLOW \¢
(OUTPUT TO 1/0DEVICE} AND THE WORD COUNT OVERFLOWS

*SIGNAL NOT USED FOR QUTPUT TRANSFERS
SHOWN FOR REFERANCE ONLY

Figure 37. Single-Cycle Data Break Output Transfer Timing Diagram

0B =QUTPUT BUFFER

AR = ADDRESS REGISTER

D =DIRECTION FLIP-FLOP

BR :BREAK REQUEST FLIP-FLOP :

CS *CYCLE SELECT (USUALLY SUPPLIED
BY FIXED WIRING TO —3VOLTS
RATHER THAN BY A FLIP—FLOP)

Figure 38. Device Interface Logic
for Single-Cycle Data Break Output Transfer

249

N /< oW
'9 sl '

A~ SETI N
e L g ™~
stpf
pR >
D o

RS
g
DAL ON
% <

Figure 39. Device Intérface for Strobing Output Data

By careful design of the input and output gating, one register can serve as
both the input and the output buffer register. Most DEC options using the data
break facility have only one data buffer register with appropriate gating to
allow it to serve as an output buffer when the Transfer Direction signal is at
ground potential or as an input buffer when the Transfer Direction signal

is —3v._

Memory Increment

In this type of data break the content of core memory at a device-specified
address is read into the MB, is incremented by 1, and is rewritten at the
same address within one 1.5-usec cycle. This feature is particularly useful
in building a histogram of a series of measurements, such as in pulse-height
analysis applications. For example, in a compuiter-controlled experiment that
counts the number of times each value of a parameter is measured, a data
break can be requested for each measurement, and the measured value can
be used as the core memory address to be incremented (counted).

Signal interface for a memory increment data break is similar to an output
transfer data break except that the device interface generates an Increment
MB signal and does not generate a strobe pulse (no data transfer occurs be-
tween the PDP-8/I and the device). Timing of memory increment operations
appear in Figure 40, and an example of the logic circuits used by a device
interface appears in Figure 41.

250

TP P2 TP3 L) ™ P2 3 ™a TR P2
COMPUTER TIME. | | | l 1 I i | |

BREAK CYCLE —————————————i— NEXT CYCLE

PREVIOUS CYCLE —ivjas:

162

GND .
y)
Bﬁﬁﬁﬁf $3“§.§gc§'5°5'{,‘,; J \@— SAMPLED AT TP1 BY PROCESSOR }-— SIGNAL MUST GO TO -3V AT STAAT OF ADORESS ACCEPT PULSE W NEXT CYCLE IS NGT TO BE A BREAK
. -3v !
' . : .
BREAK s'"c.fNLr'EnFNLﬂP) '._ SET AT TPt . SAMPLE AT TP 4 —p l‘— USED TO SELECT SREAK CYCLE AT TP 4
0 L]
3 CYCLE ' .
(SAMPLE 70 PHE LT -I) i@ SAMPLED AT TR3, TYPICALLY HARDWIRED FOR A GIVEN DEVICE
t CYCLE t
GND
(ouTPug-'Poml:fg 55'37‘6‘5% {c— START OF BREAK CYCLE EMD OF BREAK CYCLE ——l
-3v
DATA ADDRESS T s GND READ AT TP @
INPUT LEVELS | &Y PROCESSOR EARLIST TIME POSSIBLE TO REMOVE AODRESS IS AT START OF BREAK CYCLE
{INPUT TO PROCESSOR) S3y
- GND
ADDRESS ACCEPT PULSE
{OUTPUT TO 1/0 DEVICE) .
-3V
TRANSFER OUT {GND)) ————
(.Npuviofpnf’!.zéggg’n",] SAMPLED AT'TP 2 BY PROCESSOR ~9 P— CAN CHANGE ANYTIME AFTER TP 2
IN -3V} ! 4
* DATA SIGNAL INPUT TO MB AVAILIGND) LATEST ;osswu: TI-ME TO SPECIFY) - |.
{INPUT TO PROCESSOR) NOT AvA m J INPUT DATA IS 500 NS BEFORE TP 2 —.‘: SAMPLED AT TP 2 BY PROCESSOR
WVAIL, (-3V

* AVAIL {GND)
QUTPUT DATA AVAILABLE INMB
{OUTPUT TO 170 DEVICE)

NOT AVAIL (-3V)

REQUEST (GND)
INCREMENT REQUEST

- {INPUT TO PROCESSOR}
N NO REQUEST {-3v)
GND

8TS 3

{OUTPUT T0 1/0 DEVICE)}
-3V
GND

BTS 1

{OUTPUT TO 1/0 DEVICE)
-3V
GND

WORD COUNT OVERFLOW
{QUTPUT TO I/Q DEVICE} w

o -

AVAILABLE AT TP 2 —+‘ TIME DURING WHICH DATA MUST BE STROBED BY 1/0 DEVICE *q_

- MUST RISE EARLIER THAN TP 4 —-.l

NED
ad

\19CT Y
/_'é g’mf 7 WIS OCCUR ONLY-WHEN 8 mmik_ MUST FALL BY TP 4

R

_

|

L]

L

*SIGNAL NOT USED

SHOWN FOR REFERANCE ONLY

[

PULSE OCCURS IF MEMORY INCREMENT IS REQUESTED
AND THE WORD COUNT OVERFLOWS

Figure 40. Memory Increment Data Break Timing Diagram

An interface for a device using memory increment data breaks must supply
twelve Data Address signals, a Transfer Direction signal, a Cycle Select
signal, and a Break Request signal to the computer data break facility as in
an output transfer data break. In addition, a ground potential increment MB
signal must be provided at least 250 nsec before TP2 time of the Break cycle.
This signal can be generated in the device interface by AND combining the
B Break computer output signal, the output transfer condition of the Trans-
- fer Direction signal, and the condition signal in the device that indicates that
an increment operation should take place. When the computer receives this
Increment MB signal, it forces the MB control element to generate a Count
MB pulse at TP2 time to increment the content of the MB.

The device interface logic shown in Figure 41, samples the word count over-
flow signal to determine if word count overflowed when the data word is
incremented. If overflow occurs this logic requests a program interrupt to
allow the program to take some appropriate action, such as incrementing a
core memory for numbers above 4096, stopping the test to compile the data
gathered to the current point in the operation, reinitializing the addressing,
etc. The logic in the figure uses the select code of programmed data transfer
operation to skip on the overflow condition to determine the cause of a
program interrupt, to clear the overflow flip-flop, and to clear the device
flag. Note that the devices that use data break transfers almost always use
programmed data transfers to start and stop operation of the device, to
initialize registers, etc., and do not relv on data hreak facilities alone to
control their operations.

252

T e _ INTERFACE o

I'Aquus PA

TRANSFER
DIRECTION

Figure 41. Device Interface Logic; for Memory Increment Data Break

253

Three-Cycle Data B(eaks

Timing of input or output 3-cycle data breaks is shown in Figure 42. The 3-
cycle break uses the block transfer control circuits of the computer. The
block transfer control provides an economical method of controlling the flow
of data at high speeds between PDP-8/1 core memory and fast peripheral de-
vices, e.g., drum, disc, magnetic tape and line printers, allowing transfer
rates in excess of 220 kc.

The three-cycle data break facility provides separate current address and
word count registers in core memory for the connected device, thus eliminat-
ing the necessity for flip-flop registers in the device control. When several
devices are connected to this facility, each is assigned a different set of core
locations for word count and current address, allowing interlaced operations
of all devices as long as their combined rate does not exceed 220 kc. The
device specifies the location of these registers in core memory, and thus the
software remains the same regardless of what other equipment is connected
to the machine. Since these registers are located in standard memory, they
may be loaded and unloaded directly without the use of 10T pulses. In a pro-
cedure where a device requests to transfer data to or from core memory, the
three-cycle data break facility performs the following sequence of operations:

a. An address is read from the device to indicate the location of the
word count register. This address is always the same for a given device;
thus it can be wired in and does not require a flip-flop register.

b. The content of the specified address is read from memory and 1 is
added to it before rewriting. If the content of this regrster becomes 0
as a result of the addition, a WC Overflow pulse will be transmitted to
the device. To transfer a block of N words, this register is loaded with
— N during programmed initialization of the device. After the block has
been fully transferred this pulse is generated to signify completion of
the operation.

c. The next sequential location is read from memory as the current
address register. Although the content of this register is normally in-
cremented before being rewritten, -an increment CA Inhjbit (+1- CA
Inhibit) signal from the device may inhibit incrementation. To transfer
a block of data beginning at location A, this register is program initial-
ized by loading with A-1.

d. The content of the previously read current address is transferred to
the MA to serve as the address for the data transfer. This transfer may
go in either direction in a manner identical to the single-cycle data
break system. _

The three-cycle data break facility uses many of the gates and transfer paths
of the single-cycle data break system, but does not preclude the use'of stand-
ard data break devices. Any combination of three-cycle and single-cycle data
break devices can be used in.one system, as long as a multiplexer channel is
available for each. Two additional control lines are provided with the three-
cycle data break. These are:

a. Word Count Overflow. A level change from GND to —3V, from TP2 to
TP2, is transmitted to the device when the word count becomes equal
to zero.

b. Increment CA |nhibit. When ground potential, this device-supplied
signal inhibits incrementation of the current address word.

254

In summary, -the three-cycle data break is entered similarly to the single-cycle
data break, with the exception of supplying a ground-level Cycle Select signal
to allow entry of the WC (Word Count) state to increment the fixed core mem-
ory location containing the word count. The device requesting the break sup-
plies this address as in the one-cycle data. break, except that this address is
fixed and can be supplied by wired ground and —3v signals, rather than from
a register. The sole restriction on this address is that it must be an even
number (bit 11 = 0). Following the WC state a CA (Current Address) state is
entered in which the core memory location following the WC address (bit 11 =
1 after PC - 1 = > PC) is read, incremented by one, restored to memory, '
and used as the transfer address (by MB = > MA). Then the normal B (Break)
state is entered to effect the transfer. '

255

Tt TPZ 1P3 TP M TPZ TP} ™S ™ TP2 TPY e TR T2 TP3 TP4 ™ TPZ TP3 P4

Lo I P { I ! (I I U
[WORD COUNT STATE ———4j- CURRENT ADORESS STATE ~—fat—— BREAK CYCLE ———f

BREAX REQUEST SIGNAL BAMPLED AT 181) s
(NPT TO PROCESSOR) . "* ;
t-1J
. T :
b M _}o— SET 4T TP 'to——l—-— SAMPLED AT TP 4
L]
ONPUT 10 eRoCE ST J u— SAMPLED AT TP3, TYPICALLY HARD WIRED FOR & GIVEN DEVICE
-3v
DATA ADDRESS {NPUT LEVELS had ALWAYS AMILABLE ¢
RPUT 10 PROCESeom) b— SAMFLED AT TP, IF FF REGISTER SUPPLIES THESE INPUTS TIMING IS IDENTICAL TO THAT SHOWN ON FIG
) -3v g
-
oND
ADDRESS ACCEPTED PULSE 34-.48
{OUTPUT TO 170 DEVICE} v USEC
OUT (GHD} :
O B J SAMPLED AT TPZ OF BREAK CYCLE —8»! I
IN -3V} :
AVAIL. (GND} v
TS paac Lo e J LATEST POSSISLE TME TO SPECIFY INPUT DATA IS 500 NS BEFORE TP2 —~4d —h— SANPLED AT TP2 BY PROCESSOR
NOT AVAIL. (-3V) H
a OUTPUT DATA AVAILABLE W MB AVHIL (aNol
TIME DURING WHICH DATA MUST
o (OUTPUTTO /O DEVICEY |\ : AVAILABLE AT T2 "i STROBED BY 170 DEVICE 1S |
[
LT OuEarLon TPz :L JQ— TPZ OCCURS ONLY DURING LAST TRANSFER OF A BLOCK TRANSFER
-3v
INHIBIT CA INCREMENT oo LATESY SIBLE TRIE TO SPECIFY lNH!.IT CA
M |
{OUTPUT TO PROCESSOR) " J Lot S R A STAL L AL —-u l-.— SAMPLED AT TPZ BY PROCESSOR

(outeut TRy nz'?/?ée") START OF BREAK CYCLE —-I F— END OF BREAK CYCLE
S .
BYS 3 USE FOR SAMPLING
(OUTPUT TO 1/0 DEVICE) - . OUTPUT DATA
GND
BTS ! ' | I | I I l l I
(QUTPUT TO 1/0 DEVICE) v -

Figure 42. Three-Cycle Data Brealk Timing Diagram

CHAPTER 11
DIGITAL LOGIC CIRCUITS

PDP-8/1 interfacing is constructed of Digital Flip Chip modules. The Digital
Logic Handbook describes more than 100 of these modules, all of their
component circuits, and the associated accessories; i.e., power supplies and
mounting panels. The user should study this catalog carefully before be-
ginning the design of a special interface.

The interface modules of the 8/Iare the M506 and M650. All interface signals
to the computer will use the M506. All interface signals from the comiputer
will orlgmate from the M650. :

M506 Negative Input Converter

The M506 converts DEC levels of —3V and ground on the PDP-8/1 I/O buss
to positive levels of +3V and ground. All signals from the external devices
to the computer are converted with this module. A —3V input will give a +3V
output. A ground input will glve a ground output. A 10MA clamped load is
connected to each buss input pin.

TTL OUTPUT LEVELS

P

E1 J2 u P2 st vz

A ‘p2 CFY K2 M1 R2
~ -

Figure 43. Logic Diagram (M506)

257

+5v

| !
! 1 1.5V % 1.5V
f———T—— GND

: L otwmep
T 1.5V CLAMP
470 N i

|
INPUT O—4 i
e —

-3V

4 cLame
1.5K 3K
__..“.__

~15V

ALL TRANSISTORS ARE DEC 30098 (EIA 2N3009)
ALL DIODES ARE DEC 664 (EIA IN3606)
ALL RESISTORS ARE 174 W,5%

Figure 44. Input Circuit Schematic (M506)

M650 Output Converter and Buss Driver

The M650 converts PDP-8/1 levels of +3V and.ground to DEC levels of —3V
and ground. All signals from the computer to the external devices originate
from this module. The M650 contains three level converting buss drivers for
driving heavy current loads to either ground or negative voltages. The buss
drivers operate at frequencies up to 500KC with typical rise and fall times
of 50 NSEC. The typical total transition times are 800 NSEC for output rise
and 700 NSEC for output fall. The output to the interface connector drives

20MA of external load at either ground or —3V.

DEC OUTPUT LEVELS
A
02 K2 s2

I

H2 N2 ve
hd
TTU INPUT LEVELS

Figure 45. Logic Diagram (M650)

258

T GND

DEC 30098B (EIA 2N3009}

OUTPUT

DEC 65348 (E1A MPS 6534)

—-15v

ALL DIODES ARE DEC D664 (EIA IN645)
ALL RESISTORS ARE 1/4W, 5%

Figure 46. Output Circuit Schematic (M650)

Module Selection for Interface
Circuits of Peripheral Equipment

Several Flip Chip modules are of particular interest in the design of equip-
ment to interface to the PDP-8/1. Complete details on these and other Flip
Chip modules can be found in the Digital Logic Handbook. Of particular in-
terest to the interface designer are the following:

W103 DEVICE SELECTOR

The W103 selects an input/output device according to the code in the instruc- -
tion word (being held in the memory buffer during the 10T cycle). Figure 47
shows the logic circuits of the W103 module.

259

1
AD 10P!

AK 10P2

4
ARO-OP4

1071 AF

PA] AE

b b T

PA AS

l AU AY .

DEVICE SELECTED

AR
Vv

8E MB3 {0)

oF MB3 (1) DI
e MB4 (0) D' !

o
ay MB4 (1)

8K M85 (0) D
8L MBS (1) D' !
Bm MB6 (0) DI |
BN MB6 (1) Dl
8P MB87 (0) El
B8R MB? (1) CI
8s MBS (0) Dl !
BT Mes (1) Dl
8U SPARE c|
BvY O———-Im >|-—J

@

— BD

NOTE:
CONNECTED AS SHOWN, OUTPUT
PULSES ARE 100 nsec, TO OBTAIN
400 nsec OUTPUT PULSES CONNECT
TERMINALS AH TO AJ, AN TO AP,
AND AU TO AV,

Figure 47. Device Selector W103 Logic Circuit

260

The twelve input diodes permit selection of any- arbitrary 6-bit code, and de-
code the number held in MB bits 3 through 8. When the proper enabling code
arrives at the diode gate, the three input gates driving the three pulse ampli-
fiers are enabled and permit passage of the programmed IOP pulses. To estab-
lish a code on the module, the six’ unnecessary diodes are disabled by snip-
ping one of their leads or removing them altogether. If MB bit 3 is a binary
1 to set up the correct code, the diode going to the binary O side of MB bit 3
is disabled. Two spare diodes are included for additional gating flexibility.
Three pulse amplifiers produce R-series 100-nsec positive-going output pulses.
Inverted pulse amplifier output pulses are provided for gates (such as the
Type R111 Diode Gate) which require negative or negative-going pulses.
" Jumper terminals on each pulse amplifier establish a pulse duration of 400-
nsec for the output pulse. It is recommended that the 400-nsec pulse dura-
tion be used when transmitting the pulse over long distances. The 400-nsec
pulse also clears R-series flip-flops whose carry gates are permanently en- .
abled. The positive pulse output of each pulse amplifier is rated 65 ma of
external load at ground; the negative output is rated 15 ma at ground (when
driving a load connected to —15v). These outputs are not designed to drive
loads when at —3v (loads connected to ground). To drive this type of load, a
clamped load resistor must be connected to the pulse amplifier output termi-
nal to supply the current. :

R111

The R111 Diode Gate contains three diode gates each connected to a tran-
sistor inverter. It is used, in devices interfaced to the PDP-8/1, for sampling
device flags via the skip facility. (See Figure 27).

The gate operates as a NAND for negative inputs and as a NOR for ground
inputs. Each gate has three input terminals: two are connected to diodes; a
third is connected directly to the node point of the diode gate. The third
terminal allows the number of input diodes to be increased by adding external
diode networks such as the R0O01 or RO02 modules. External diodes must be
connected in the same direction as the diodes in the R111. Typical output
total transition times are.60 nsec for rise and 50 nsec for fall.

Input signals to the diode terminals must be standard levels -of ground or
—3V, and must have a minimum duration of 100 nsec. Input load is 1 ma
shared among the inputs at ground. Input signals to the node terminals accept
only connections from Type ROO1 or R002 Diode Network modules, or their
equivalents. The maximum combined length of all leads attached to a node
terminal is 6 inches. Input signal load is similar to the diode input.

: v
: OUTPUTGH n
5 o_u._v_é] K o—Db— R o—Db——104
CLAMPED = =
LoRD DIODE mPu'rs{E = Lo——{hq = s o——¢
T S—— 7o

J P v NODE TERMINAL F O—rr—r—rd

Figure 48. R111 Diode Gate

R123 DIODE GATE

This module contains six 2-input NAND gates for negative levels and is use-
ful for transferring data into or out of the PDP-8/I accumulator. Standard DEC
negative levels or 0.4 microsecond negative pulses such as-those from the
W103 Device Selector can be used as input signals. Input load per gate is 1
ma shared among the inputs at ground.

261

ay:

1

NOTES: ‘
1. STROBE PULSE INPUT TO TERMINALS F, M, AND T WHICH ARE
CONNECTED IN COMMON WHEN USED AS A BUS GATE
2. DATA BIT INPUTS TO TERMINALS D, E, K, L, R, AND S
3. TWO MODULES ARE REQUIRED TO STROBE A 12-BIT WORD

Figure 49. Diode Gate R123 Logic Circuit

Two R123 modules provide sufficient gating to transfer one 12-bit word into
the accumulator. If more gates are needed to load the AC from several

sources, the output terminals can be OR connected by bussing together addi-
tional gate collectors.

R203

The R203 contains three identical flip-flops and is frequently used as a de-
vice buffer for output data transfer. (See Figures 30 and 31).

Each Flip-flop has a direct clear and a DCD gate for conditional readin.

E F L M
° " s T
QuTPUT T QUTPUT T T T T
0 | o] | [«] i
DIRECT
CLEAR FF FF FF
Do Ko Re -
H N U
PULSE
INPUT
LEVEL
J INPUT P)

v

Figure 50. R203 Triple Flip-Flop

262

R141

The R141 AND/NOR Gate performs two levels of gating. The module contains
a multiple-input diode gate with a transistor inverter for signal amplification.
This module is used for multiple inputs to the 10S facilities. (See Figure 33).
For negative input signals the R141 is seven 2- input AND gates which are
NORed together. For ground input, it is seven 2- input OR gates NANDed to-
gether. The back to back diode circuits are possible because of an internal
bias resistor connected to the input of each second stage diode..

S Juteut

%

INPUTS £

€ C <4 O3B 92 Rr X <« T™M

it

Figure 51. R141 AND/NOR Gate

263

CHAPTER 12 |
DESIGNING AND CONSTRUCTING INTERFACE
EQUIPMENT

This\section will provide the interface designer with additional information
on design procedures, module layout, wiring, and cable selection. Additional
help may be obtained from local DEC sales offices.

Physical:

The PDP-8/1 was designed to provide the user maximum ease and flexibility
in implementing special interfaces. External devices and interfaces are con-
structed and mounted outside of the basic machine, thereby, eliminating the
necessity for modifications to the basic processor. All signals to and from the
computer are carried on six coax cables. '

To implement several devices the six cables parallel connect each peripheral
in a serial type form. (See Figure 51).

DEVICE DEVICE :
t 2 *

PDP-B/1 X6 X6 X6

- - -
TO ADDITIONAL
PERIPHERALS

Figure 52. 1.0. Bus Configuration

Module Layout

In general module layout is donie based on the functionai eléments within a
system and is primarily a matter of common sense.

Digital has, however, layout conventions for 1/O cabling to extend devices.
The interface desugner may wish to use'these conventions as a guide. The gen-
eral rule is DO NOT DEAD END THE 1/0 BUS. This means that parallel con-
nections should always be made at each device to handle possible future
expansion.

CABLE LOCATION

P .- Al) . .
1 2 3 4 5 6 7 8 9 10 o 32
T T o’
e e DATA [
- aci v o, | DATA | ADOR | para
ACO | Yyop | MBOD | wBE | MO | A0 | ADDR !9 TO11 | DATA | DATA |
To | O YO O TO NT o ADDR | 8IT gt | ORIC
ACB | L17D | MBS | e e Ac 10 ACK l0ToB 97Ot | NE"[(L
PWR cir | 8 [BK.REQ
CLR | RUN TROD

SAME ASSIGNMENTS AS ABOVE

264

Module locations 1 through 6 (Io6king at wiring pin side) in an option mount-
ing panel are reserved for program interrupt cable connections in (or out).
Data Break information is assigned to locations 7 through 10, with location
11 available for data break use with extended memory. The lower mounting
of the option mounting panel also has slots 1 through 11 reserved, exactly as
mentioned above, for cable in (or out).

Cable Selection

" The cable recommended for 1/O interface connection is 9 conductor coax
cable. This cable protects systems from radiated noise and cross talk be-
tween individual lines. Coax cable used and sold by Digital has the following
nominal specs:

Zo =955 -

C = 13.75 PF/foot approx.
L = 124 Nhy/foot approx.
R = 0.21 ohm/foot nominal

V = 79% of velocity of light, approx.
‘Connector Selection ' : .

Of the many connectors available -in the module product line several have

particular application to 1/O connections. Price and ordering information is
available on these and other connectors in the Digital Logic Handbook. Of
particuiar interest are the following: ~

WO021 — This connector is the standard choice for PDP-8/I when filled with |

coax cable as shown below. '

Connector Description .
Single width module having 9 signal pins and 10 ground or shield pins.
Pin allocation: :

Signal Wires:

DEHKMPSTYV

Shield Wires
CFJLNRU : _ ' :

Figure 53.

265

_433“‘3;

WO11 — Is a shorter version of the WO21. It is used on the PDP-8/I or any-
where the cable has to bend sharply immediately after leaving the mounting

panel. . '

Figure 54,

W022 — The W022 is similar to the WO21 except that it comes ready-
mounted, 100-ohm, shunt termination resistors (14 watt).

This connector is especially suited for use in terminating coax cables carry-
ing pulses from B684 Bus Drivers. ’

Figure 55.

- W028 — In addition to all of the above features of the W021, the W028
provides the user with lugs on which to mount termination networks.

Figure 56.

This connector is well suited for 1-0 pulse or level transmission requiring
‘small, special terminations such as parallel RC, high frequency RLC filters,
non standard resistive terminations, etc.

266

A recommended cable configuration is coax cable with WO11 on the processor
end and WO28 on the device end. Since termination requirements vary
between installation, the WO28 can be used as a straight through connector
by connecting jumpers across the component terminals, in series with t_he
signal; or, if necessary, with the appropriate terminating components in- -
serted.

Wiring Hints:

These suggestions may help reduce mounting panel wiring time. They are
not intended to replace any special wiring instructions given on' individual
module data sheets or in application notes. For fastest and neatest wiring,
the following order is recommended.

(1) Al power wiring (pins A, B, and C) and any horizontally bussed signal
wiring. Use Horizontal Bussing Strips Type 932. ¢

(2) Vertical grounding wires interconnecting each chassis ground with pin
C grounds. Start these wires at the uppermost mounting panel and con-
tinue to the bottom panel. Space the wires 2 inches apart, so each of the
chassis-ground pins is in line with one of them. Each vertical wire makes
three connections at each mounting panel.

(3) All other ground wires. Always use the nearest pin C above the pin
to be grounded, unless a special grounding pin has been provided in the
module.

(4) All signal wires in any convenient order. Point-to-point wiring produces
the shortest wire lengths, goes in the fastest, is.easiest to trace and change,
and generally results in better appearance and performance than cabled
wiring. Point-to-point wiring is strongly urged. -

The recommended wire size for use with the H800 Mounting Blocks and
1943 mounting panel is #24 for wire wrap, and #22 for soldering. The rec-
ommended size for use with H803 block is #30 wire. Larger or smaller wire
may be used depending on the number of connections to be made to each

lug. Solid wire and a heat resistant spaghetti (Teflon) are easiest to use when
soldering.

ADEQUATE GROUNDING IS ESSENTIAL. IN ADDITION TO THE CONNEC-
TIONS -BETWEEN MOUNTING PANELS MENTIONED ABOVE, THERE MUST
BE CONTINUITY OF GROUNDS BETWEEN CABINETS AND BETWEEN THE
LOGIC ASSEMBLY AND ANY EQUIPMENT WITH WHICH THE LOGIC COM-
MUNICATES.

When soldering is done on a mounting panel containing modules, steps must
be taken to avoid voltage transients that can burn out transistors. A battery-
or air-operated tool is preferred, but the filter built into some line-operated
tools afford some protection. -

Even with completely isolated _tools, such as those .operated by batteries
-or compressed air, a static charge can often build up and burn out semi-
conductors. In order to prevent damage, the wire wrap tool should be grounded
except when all modules are.removed from the mounting panel during wire
wrapping.

267

Cooling

The low power consumption of R-series modules results in a total of only
about 25 watts dissipation in a typical 1943 Mounting Panel with 64
modules. This allows up to six panels of R-series modules to be mounted
together and cooled by convection alone, if air is allowed to circulate freely.
In higher-dissipation systems using modules in significant quantities from
the W, B, and A series, the number of mounting panels stacked together
must be reduced. For example, no more than three panels of B-series
modules may be mounted together without forced-air cooling. In general,
total dissipation from all modules in a convection-cooled system should be
150 watts or less (about 9-amp total current at —15v).

-The regulating transformers used in most DEC power supplies have nearly
constant heat dissipation for any loading within the ratings of the supply.
Power dissipated within each supply will be roughly equal to half its maximum
rated output power. If power supplies are mounted below any of the modules
in a convection-cooled system, this dissipation must be included when
checkmg against the 150 watt limit. '

268

OCTAIDS AND PANELAIDS_ FOR INTERFACING
TO THE PDP-8/1 |

Digital’'s new OCTAID and PANELAID kits are designed to provide the logic
user with an easy-to-assemble, time-saving group of components to achieve
common logic functions, such as up-down counting, decoding digital-to-analog
and analog-to-digital conversion, and computer interfaces. Standard FLIR-
CHIP modules and connectors are used in conjunction with special purpose
printed circuit interconnectors. Specification and prices can be readily ob-
tained from the Digital Logic Handbook.

Of particular interest to.the interface designer are the following octaids:

Kit D005 input Buffer Interface

Kit D006 Output Buffer Interface

Kit CO05 Bus Interface

Kit C006 Input/Output Buffer Register

The OCTAID series has up to eight standard FLIP-CHIP modules, and the
PANELAID series has up to 64 modules. Each kit includes the necessary
modules, connectors, and specially designed printed-circuit, back-panel wiring
eliminating the necessity for hand-wiring. Since hand-wiring and troubie
shooting are eliminated, a significant reduction in the amount of manufac-
turing time can be achieved. '

Input/Output Buffer kits are designed to interface between Digital's PDP-8
or PDP-8/S computers and other OCTAID kits or specially designed systems.
PANELAID kits, in general, can be interfaced directly to the PDP-8/I.

Figure 57.
269

IOT ALLOCATIONS

Below are listed the 64, IOT Device Codes and their allocations. In general,
the customer can use any device code which is not currently being used
by his particular computer. However, device numbers 30; to 37 have been
allocated specifically ‘for the customer's use. In general, when selecting
device codes the following procedure should be used.

1. Use device numbers 30, to 37, since these do not have options
assigned.

2. If more device locations are required, additional blocks should be
selected which service options the user will most probably never use;
such as, device numbers 40; to 47; which apply primarily to data com-
munications systems. :

This procedure should allow the designer sufficient device codes to imple-
ment his interface. For a basic machine, the designer can use all device
codes with the exception of 00,03, and 04 .

In general, the rule is don't use device codes allocated to options which
might be added to the equipment at a later date and you cannot use
device codes which service options currently installed such as the ASR 33
Teletype.

10T OPTION

*00 interrupt
01 High Speed Reader Type, PR8/I
02 High Speed Punch Type, PP8/1
*03 Teletype Keyboard/Reader
*04 Teletype Teleprinter/Punch
05 Display Type 30N and 338, VC8/1
06 Display Type 30N and 338, VC8/1
07 Display Type 30N and 338, YC8/I, Light Pen Type 370
10 Memory Parity Type MP8/I and Power Failure opt. KP8/1
11 Teletype System Type PTO8
12 Teletype System Type PTO8
13 Display Type 338
14 Display Type 338
15 Display Type 338
16 Display Type 338
17 Display Type 338 -
20 Memory Extension Type MC8/1
21 Memory Extension Type MC8/1
22 Memory Extension Type MC8/1
23 Memory Extension Type MC8/1
24 Memory Extension Type MC8/1
25 Memory Extension Type MC8/1
26 Memory Extension Type MC8/1
27 Memory Extension Type MC8/1

270

OPTION

Teletype System Type PTO8 and 680

Teletype System Type PTO8 and 680

Teletype System Type PT08 and 680

Teletype System Type PT0O8 and 680

Teletype System Type PTO8 and 680

Teletype System Type PTO8.

Teletype System Type PTO8

Teletype System Type PTO8

Incremental Plotter Type VP8/1

Incremental Plotter Type VP8/1

Incremental Plotter Type VP8/I '

General Purpose A/D Conv. and Multiplexer Type AFO1A, AF02A
AF03A and AF04A Scanning Digital Voltmeter.

General Purpose A/D Conv. and Multiplexer Type AFO1A, AFO2A,
AF03A and AF04A Scanning Digital Voltmeter

D/A Converter Type AAO1A

D/A Converter Type AAO1A .

D/A Converter Type AAO1A, ACO1A and AF04A Scanning Digital Volt-
meter.

Serial Magnetic Drum Type 251 and RM08 165B PDP 6 Interface
and DF32 Disc file.

Serial Magnetic Drum Type 251 and RM08 165B PDP 6 Interface
and DF32 Disc file.

Serial Magnetic Drum Type 251, RMO8 and DF32 D|sc file.

Card Reader Types CR8/1and 451

Automatic Line Printer Type 645
Automatic Line Printer Type 645
Card Reader Types CR8/I and 451
Automatic Mag. Tape Type TC58
Automatic Mag. Tape Type TC58
Automatic Mag. Tape Type TC58
Automatic Mag. Tape Type TC58
Automatic Mag. Tape Type TC58

DECtape Controls Type TCO1
DECtape Controls Type TCO1

* These device locations are not available for customer options.

271

CHAPTER 13
INTERFACING TECHNIQUES

Until now we have been discussing the transfer of data words in and out
of the machine and the use of Pl and I0S as aids in servicing devices.
Many applications do not necessitate the transfer of 12-bit data words as
such; however, it is frequently necessary to monitor and control both elec-
trical and mechanical signals from external devices. These signals could
come in the form of serial pulse inputs or contact closures and could require
serial output pulses or contact closures. The following discussion will give
the interface designer some insight into various techniques of handling in-
puts and outputs of this type and demonstrate the efficiency and flexibility of
the PDP-8/1 1/0 facility. All of the components discussed are standard off-the-
shelf products which are specified in the Digital Logic Handbook C105.

In addition, your local sales office has qualified applications engineers avail-
able to help you in implementing these components in the successful design
of your interface.

Counting Applications

Frequently data is available in the form of pulse trains or sequential
events. The program periodically want to know the number of times these
events have occurred during a specified period of time or to modify his
prégram after a certain number of events have occurred. One method, of
course, is to count these events in an’ external counter and periodically
read into the Accumulator the -contents of the counter. This would be a
straightforward Data Input Transfer as previously discussed. This technique
requires counting hardware and read in gates. For counts accumulated
over a long period or at a slow rate this method is expensive. The alternate
approach is to.count these events in memory and is easily accomplished
by using only the Program Interrupt and 10S facility.

Pl BUSS

EVENT RN
FLAG

[1 10T CiR.

EVENT INPUT

——=> 105 BUSS

107

Figure 58.

At each occurrence of an event, an event flag is set thereby causing a
program interrupt. After the program has recognized this event by testing
the flag with the 10S facility, it issues the appropriate 10T to clear the
flag, then adds “one” to the appropriate memory location. This technique
allows the use of inexpensive core storage as opposed to hardware counters.

Also counts of virtually any length can be accumulated by using several
memory locations.

272

"In deciding on whether to use the Pl and 10S facility for counting events

the designer must take into consideration the speed limitations of the
machine and its program. Obviously, we could not count events occurring
at a 1 megacycle rate since the time between events is only one micro-
second and the computer cycle time is considerably less than that. On
the other hand, events at rates of 50 cycles per second can easily be
handled by the Pl and 10S facility. For very high frequencies external hard-
ware counters are necessary, and for very low frequencies the Pl and 10S
facility can be used. Frequentiy trade offs can be made between both
methods. For example, if events are occurring at a frequency of between
500KC and 1MC are to be counted for a period of 15 seconds the total
count storage requirement is 2%. Since this is too fast for the Pl and
-10S facility, an external counter is required. However, if instead of building
a 24-bit counter, we could build a 12-bit counter. This counter would over-
flow after 22 counts and cause a Program Interrupt. Overflow counts would
be counted in memory since the maximum input frequency to the com-

0¢ . . _
~ puter would be l—éul—— or approximately 250 cycles/sec. At the end of the

15 sec. period, the 12-bit external counter would be read into the AC as a

Data Transfer. Thereby, accumulating the entire count in memory.

P1 BUSS

EVENT
FF
10T
108 BUSS
: ——
OVERFLOW
FLAG
—n— 12 BIT BINARY COUNTER
EVENT INPUT P WITH READIN GATES ¢

Figure 59.

CONTACT SENSING

Many interfacing applications require the sensing of contact closures. The
requirements can be to either periodically sense the condition of a contact
or to have the condition of the contact interrupt the computer, such as in
an alarm circuit. Let us take the first case where we periodically want to
test the conditions of a contact. : :

273

-15v +1ov

7 4 Vi AND/NOR GATE
‘ R0 108
N—o SWITCH
! FILTER g o . ’_L_g‘
107 I #
SWITCH - -
t— FILTER —0 » 1
10T I
_
SWITCH ~ -
“——\0‘— FILTER e b -
107 I
l
— o SWITCH - -
FILTER —0 ol i
, . 10T
SWITCH ~ e
’“\0— FILTER g e i
107 I
|
o SWITCH - -
FILTER 3 -~ bl il
EXTERNAL 107 I
CONTACTS l O
SWITCH FILTER
w700
-
w103
w103

Figure 60.

In Figure 60, we have contact closure inputs which are conditions by W700
switch filters. When a contact is closed the switch filter output is —3V.
This signal is sampled by a negative 10T pulse. If the contact is closed,
an 10S pulse will be generated.

From this sample, it can be seen that sensing contact closures is rela-
tively inexpensive except that here we require two W103 device selector
cards in order to generate 6 separate 10T pulses for each contact.

When large numbers of contacts are ‘used, a common technique is to
sample contacts in blocks of 12. This technique saves hardware by
greatly reducing the number of W103's required. (Refer to Figure 61.)

274

H

-15v +10V

o P T "I L R123
N SWITCH - _ '
FILTER :j_‘@

ACO

| acr
N SWITCH
FILTER ;]’—q:l
' I > Ac2
N SWITCH
) FILTER ;j”‘{p
] £ AC3

N SWITCH
FILTER ;—{-p

R SWITCH
— FILTER ;:j_@

I . D ACS
N SwiTcH :_-g
FILTER

T

SWITCH FILTER
w700

wio3 ——e

Figure 61.

It is obvious that this technique is essentially an Input Data Transfer using
R123's. The accumulator will contain a 12-bit word after a transfer repre-
senting the condition of 12 contacts. Separating individual contacts can
be accomplished by sequentially rotating each bit of the AC into the LINC
and then testing the LINC for a one or a zero.

The second requirement is for the contact to interrupt the computer as
in an alarm condition. In this situation, a W501 is used to condition the
contact closure. The output of the W501 would be used to set a FF., such
as we did when counting events (See Figure 58). These two techniques
are identical in terms of hardware required. In this case, however, we would
not count the event but would probably modify the program for this alarm
condition. .

275

SERIAL OUTPUTS

Serial outputs such as pulses required for stepping switches or stepper
motors are easily implemented.

I RELAY
DRIVER
STEPPER
R302 coiL
DELAY
-E
© wio3 10T
DEVICE 6341
SELECTOR
L 4.7} .
Figure 62.

By issuing the instruction 6341, a pulse is generated by the W103 device
selector. This pulse can be made wider with a R302 adjustable delay.
Current switching can be accomplished by selecting one of the W Series
indicators, relay or solenoid drives. Complete specifications for these modules
may be found in the Digital Logic Handbook.

BUFFERED RELAY OUTPUTS

Frequently applications require the control of external functions such as
relays, motors or solenoids. Turning these devices on and off can be accom-
plished two ways. The first, is used primarily when only a few devices
must be controlled: an example is shown below.

RELAY —
Dt DRIVER
] 1 [4]
R200
w03 10T 6341
DEVICE €
SELECTOR 10T 6342
#3q g
INSTRUCTIONS .
6341 /CLOSE RELAY CONTACT Xt
6342 JOPEN RELAY CONTACT X2
Figure 63. -

Programming is simplified since the programmer has one instruction for
closing contact K1 and one instruction for opening it. The R200 Flip-Flop,
of course, acts as a buffer and will remain in its previous state until changed
by an instruction.

276

It can be seen that implementing this particular interface wil become expen-
sive when large quantities of relay outputs are required, also this method
will use up device codes quickly since two 10T instructions are required
per contact. The alternate method, therefore, is frequently required when
large numbers of contact closures are required. This method uses 12-bit
accumulator words to control 12 relays at one time, For instance, if we
wish to control a bank of 12 relays with only two IOT instructions the system
would function as follows: ,

Each bit in the accumulator would represent the condition of one relay
contact. :

MO - - - - — - Act!
accmuaror 11 o 1]1]o]o]1 O|1 |10 1] I:cuoseoconmacr
> , : _ o
e T T T T T X
W]
® &
Figure 64.

By transferring this word into a 12-bit output buffer (standard data output
transfer) and buffering each bit in the buffer with the appropriate relay
driver, all 12 relay contacts may be modified at once using only one
W103 device selector and only two 10T pulses.

© RELAY® RELAY #12
’ -E . , -E
\
________________ W SERIES
RELAY DRIVERS
R203 R203
_ ore J oV
wio3 -
DEVICE
seecror | 1012 0 >
BACO BACH
Figure 65.

277

CHAPTER 14
INTERFACE CONN ECTIONS

‘All interface connections to the PDP-8/1 are made at assigned module re-
ceptacle connectors in the mounting frame. Capital letters designate hori-
sontal rows of modules within a mounting frame from top to bottom. Module
receptacles are numbered from left to right as viewed from the wiring side
(right to left from the module side). Terminals of a connector or module are
assigned capital letters from top to bottorn, omitting G, I, 0, and Q.

The module receptacles and assigned use for interface signal connections
are:

RECEPTACLE SIGNAL USE

JO5 AC 0-8 inputs

JO7 Data Address 0-8 inputs

Jo9 Data Bit 0-8 inputs :

JO6 AC 9-11, Skip, Clear AC inputs, Interrupt Request, and Run
output

Jog Data Address 9-11 inputs, Address Accepted, B Break outputs,
and Memory Increment

J10 Data Bit 9-11 inputs, WC overflow, cycle select, and CA incre-
ment

HO1 Address Extend 1, 2, 3 inputs and Data Field 0-2 outputs

Jo1 BAC 0-8 outputs

JO3 BMB 0-5 outputs

Jo2 BAC 9-11, 10Ts, BTS1, BTS3, and.B Power Clear outputs

Jo4 BMB 6-11 outputs

Terminals C, F, J, L, N, R, and U of these receptacles are grounded within
the computer and terminals D, E, H, K, M, P, S, T, and V carry signals. These
terminals mate with Type WO11 Signal Cable Connectors at each end of
93-ohm coaxial cable.

Interface connection to the PDP-8/1 can be established for all peripheral
equipment by making series cable connections between devices. In this
manner only one set of cables is connected to the computer and two sets
are connected to each device: one receiving the computer connection from
the computer itself or the previous device; and one passing the connection
to the next device. Where physical location of equipment does not make
series bus connections feasible, or when cable length becomes excessive,
additional interface connectors can be provided near the computer.

All logic signals passing between the PDP-8/1 and the input/output equip-
ment are standard DEC levels or standard DEC pulses. Logic signals have
mnemonic names that indicate the condition represented by assertion of
the signal. Standard levels are either ground potential (0.0 to —0.3v), desig-
nated by an open diamond (—<) or are —3v (—3.0 to —4.0v), designated
by a solid diamond (—e). Standard pulses in the positive direction are
designated by an open triangle (—&) and negative pulses are designated
by a solid triangle { -—»).

278

The following tables present cable connections and Jogic circuit identifica- -
tion information for PDP-8/1 interface signals. Computer input signals that
must drive the interface bus to ground (data inputs to the AC, Clear AC, Skip,
and Interrupt Request) must be connected to the collector of a grounded-
emitter transistor, and so can be considered tran5|stor-gated negative pulses

(—ucﬁb)or!evels(‘@0)

TABLE 5. PROGRAMMED DATA TRANSFER INPUT SIGNALS

Interface Module Module
Signal Symbol Connection Terminal Type
AC O b JosD2 JI3A1 M506
AC 1 + JO5E2 - J13D2 M506
AC 2 ' JO5H2 _ J13F1 M506.
AC 3 ' JO5K2 J13K2 M306
AC 4 JO5M2 J13M2 - M506
AC 5 JO5P2 J13R2 M506
AC 6 J05S2 J14A1 M506
AC 7 JO5T2 - J14D2 M506
AC 8 Josv2 - J14F1 M506
AC 9 Jo6eD2 J14K2 . M506
AC 10 ¥ JO6E2 - J14M1 M506
AC 11 b JO6H2 J14R1 M506
Clear AC S JoeP2 . J15F1 M506
Interrupt - 50 JO6M2 J15D2 M506
Request L :

—

Skip —e JO6K2 J15A1 M506

279

TABLE 6. PROGRAMMED DATA TRANSFER OUTPUT SIGNALS

. Interface Module Module

Signai Symboi Connection Terminai Type
BAC 0 (1) —_— JO1D2 HO7D2 M650
BAC 1 (1) - L JO1E2 HO7K2 M650
BAC 2 (1) JO1H2 HO07S2 M650
BAC 3 (1) JO1K2 HO8D2 M650
BAC 4 (1) JO1IM2 HO8K2 M650
BAC 5 (1) JO1P2 - H08S2 M650
BAC 6 (1) JO1S2 HOSD2 M650
BAC 7 (1) JO1T2 HO9K2 M650
BAC 8 (1) Jo1v2 H09S2 M650
BAC 9 (1) Jo2D2 H10D2 M650
BAC 10 (1)) JO2E2 H10K2 M6&50
BAC 11 (1) —_— JO2H2 H10S2 M650
BIOP 1 — JO2K2 H11D2 M650
BIOP 2 : — - JO2M2 H11K2 M650
BIOP 4 ' —> JO2P2 H11S2 M650
BMB 3 (0) — JO3K2 H14D2 M650
BMB 3 (1) 4 JO3M2 H14K2 M650
BMB 4 (0) JO3P2 H14S2 M650
BMB 4 (1) J03S2 H15D2 M650
BMB 5 (0) JO3T72 . - - H15K2 M650
BMB 5 (1) Jo3v2 H15S82 M650
BMB 6 (0) J04b2 H16D2 M650
BMB 6 (1) JO4E2 H16K2 M650
BMB 7 (0) JO4H2 H16S2 M650
BMB 7 (1) JO4K2 H17D2 M650
BMB 8 (0) ' - Jo4am2 H17K2 M650
BMB 8 (1) S JO4P2 H17S2 M650

280

TABLE 7. DATA BREAK TRANSFER' INPUT SIGNALS

. Interface Module Module

Signal Symbol Connection Terminal Type
Data Address O (1) —_— Jo7D2 J16A1 M506
Data Address 1 (1) 4 JO7E2 J16D2 M506
Data Address 2 (1) JO7H2 J16F1 M506
Data Address 3 (1) JO7K2 J16K2 M506
Data Address 4 (1) JO7M2 J16M1 M506
Data Address 5 (1) JOo7P2 J16R2 M506
Data Address 6 (1) J07S82 J17A1 M506
Data Address 7 (1) Jo7rr2 J17D2 M506
Data Address 8 (1) Jo7v2 J17F1 M506
Data Address 9 (1) JosD2 - J17K2 M506
Data Address 10 (1) : JO8E2 J17M1 M506
Data Address 11 (1) JO8H2 J17R2 M506
Data Bit 0 (1) Joebpz J18A1 M506
Data Bit 1 (1) ~ JOSE2 J18D2 M506
Data Bit 2 (1) JO9H2 J18F1 M506
Data Bit 3 (1) . JO9K2 J18K2 M506
Data Bit 4 (1) Joomz2 J18M1 M506
Data Bit 5 (1) JOSP2 J18R2 M506
Data Bit 6 (1) J09S2 J19A1 M506
Data Bit 7 (1) JogT2 J19D2 M506
Data Bit 8 (1) ; Josv2 J19F1 M506
Data Bit 9 (1) -~ Jiob2 J19K2* M506
Data Bit 10 (1) v . . JIOE2 Jigm1 M506
Data Bit 11 (1) —< W J10H2 - J19R2 M506
Break Request ' Jo8K2 J15M1 M506
Transfer Direction —ae* Jo8M2 J15R2 M506
Increment MB — JO8T2 J20A1 M506
Cycle Select — J10K2 - J20D2 M506
Increment CA —e J08M2 J20F1 M506

*Direction is into PDP-8/I when signal is —3v, out of PDP-8/I when ground
potential.
**The Increment MB input to the PDP-8/1 must be the output of a gating
circuit that enables generation of the ground level signal only when the B
Break signal is present.

281

TABLE 8. DATA BREAK TRANSFER OUTPUT SIGNALS

Interface Module - Module
Signal Symbol Connection Terminal _ Type
BMB 0 (1) — Jo3D2 H13D2 M650
BMB 1 (1) 4 JO3E2 H13K2 M650
BMB 2 (1) JO3H2 H13S2 M650
BMB 3 (1) ' JO3m2 H14K2 M650
BMB 4 (1) J03S2 H15D2 M650
BMB 5 (1) Jo3v2 H15S82 M650
BMB6 (1) JO4E2 H16K2 M650
BMB 7 (1) JO4K2 H17D2 M650
BMB 8 (1) JO4P2 H17S2 M650
BMB 9 (1) ‘ Jo4D2 H18D2 M650
BMB 10 (1)) JO4T2 H18K2 ~ Ms650
BMB 11 (1) — Jo4av2 H18S2 M650
B Break —e JogP2 H20D2 M650
Address Accepted —0 JO8Ss2 - H20K2 M650
WC Overflow — J10P2 H19S2 M650
TABLE 9. MISCELLANEOUS INF SIGNALS
i : Interface Module: Module
_ Signal Symbol Connection Terminal Type
ADDR Extension 1 — J11D2 ME8K, MC3K = S107, S151
ADDR Extension 2 —_— J11E2 ME8H, MC3E S107, S151
ADDR Extension 3 — J11H2 MESE, MC3J S107, S151
TABLE 10. MISCELLANEOUS OUTPUT SIGNALS
_ - Interface Module Module
Signal Symbol . Connection Terminal Type
B Run (1) —- JO6s2 H19D2 M650
TS3 (0) —> JO2sSp H12D2 M650
TS1 (0) — Jo2T12 : H12K2 M650

Initialize —> Joav2z H12S82 M650

282

MISCELLANEOUS INTERFACE SIGNALS

The following input and output signal connections are available for use
with DEC equipment options or for use in special interface equipment de-
signed by the customer.

ADDRESS EXTENSION INPUTS AND DATA FIELD OUTPUTS

When the Memory Extension Control Type MC-8/1 is in the computer system,
devices using the data break facility must supply a 12-bit data address and
a 3-bit address extension. Conversely, the programmed transfer of an address
to a register in a device that uses the data break occurs as a 12-bit word
from the accumulator and a 3-bit data field extension from the MC-8/1.

The Address Extension 1-3 signals must be ground potential to desugnate a
binary 1 and —3v to designate a bmary 0. _

B RUN OUTPUT SIGNAL

The binary 1 output of the RUN flip-flop flows to external equipment through
the interface circuits. This signal is at —3v when the computer is performing
instructions and is at ground potential when the program halts. Magnetic
tape and DECtape equipment use this signal to stop transport motion when
the PDP-8/1 halts, preventing the tape from running off the end of the reel.
The B Run-signal is routed to the interface connector through a Type M650
Bus Driver module which can drive a 20-ma load.

'BTS1 AND BTS3 OUTPUT PULSES

Two buffered timing pulse signals, designated BTS1 and BTS3, are supplled
to 1/O devices. These signals can synchronize operations in.external equip-
‘'ment with those in the computer. The BTS1 and BTS3 pulse signals are
derived from the TS1 and TS3.signals generated by the timing signal gen-
erator of the PDP-8/1. The Type M650 Level Converter standardizes the TS1
and TS3 pulses as negative pulses. The resulting (buffered) BTS1 and BTSB
pulses are supplied to the interface connections. _

INITIALIZE OUTPUT PULSES .
The Initialize pulses generated and used within the PDP-8/1 are made avail- -
- able at the interface connections. External equipment uses these pulses to
clear registers and control logic during the power turn-on period. Use of
Initialize pulses in this manner is valid only when the logic circuits cleared
by the pulses are energized before or at the same time the PDP-8/1 POWER
switch is turned on. Operatmg the KEY START switch also generates the
Initialize pulses. : ,

283

CHAPTER 15
INSTALLATION AND PLANNING

Space Requirements

Access space must be provided at the installation site to accommodate ‘the
- PDP-8/1 and peripheral equipment and to allow access to all doors and panels
_for maintenance.

The PDP-8/1 is available in either a table top configuration or a rack mounted
configuration. The rack mounted configuration and peripherals may be pur-
chased completely installed in DEC cabinets or may be purchased unmounted
for installation into the customer cabinet. in addition, detailed mounting
information has been inciuded for installation of the PDP-8/1 into standard
BUD and EMCOR racks.

Figure 66. Table Top Mounted PDP-8/1 Dimensions
| ' 284

Figure 67. Pedestal Mounted PDP-8/1 Dimensions

285

98¢

25 t/8"

13/4"

REF. '

23 5/16" REF

S :
O O

(
M)
30 7/8 POP-8/1
PROCESSOR
WING
i
FRONT VIEW SIDE VIEW

Figure 68. Rack Mounted PDP-8/1 Dimensions

VIEW SHOWN WITHOUT FRONT DOOR (SUPPLIED BY BUD IF DESIRED)
AND WITHOUT LOWER COVER PANEL (SUPPLIED BY DEC)

-« 24 1/8" REF. ——>

BUD RADIO INC. DOOR
PT #60-2344

«———— 25 1/2" REF. ————»

™ i 4 N\
TJ . _ 1
— ! l«—— 11/8" REF.
PDP-S/II 69 /8 O O ~—
‘CONTROL REF. m
PANEL L
E=—mmees 1
()
Bl
I e 23 5/16" REF. —»
POWER PDP-8/1
SUPPLY PROCESSOR
(APPROX) WING
.L |
i | T = T
: L]

Figure 69. Installation BUD Cabinet PDP-8/1

287

VIEW SHOWN WITHOUT FRONT DOOR {SUPPLIED BY EMCOR IF DESIRED)
AND WITHOUT LOWER COVER PANEL (SUPPLIED BY DEC)

«———— 23 9/16" REF —————»

—————— 25 1/2" REF. ————~

1" REF

-

]
T
q

—> —1 1/8 REF.

11—

\
mil
§

\

-———

PDP-8/1 O O L)
CONTROL M
PANEL 68 3/8 m_ o
ﬂ
J
L
«———— 23 5/16" REF. —————»
POWER PDP-8/1
SUPPLY PROCESSOR
(APPROX) WING
— |
— | =
= | b A1
;. v

B —
L—— 13/8" REF.

Figure 70. Installation Emcor Cabinet PDP-8/1

288

Minimum service clearance on all standard DEC computer cabinets is 83%
inches at the front and 1473 inches at the back.

The standard Teletype automatic send receive set requires floor space. ap-
proximately 22% inches.wide by 18Y; inches deep. Signal cable length' re-
stricts the location of the Teletype to within 18 inches of the side of the
computer. . . ,

Environmental Req'uirem'ents

Ambient temperature at the installation site can vary between 32 and 130 F
(between 0 and 55 C) with no adverse effect on computer operation. However,
to extend the life expectancy of the system, it is recommended that the am-
bient temperature at the installation site be maintained between 70 and 85 F
(between 21 and 30 C).

During shipping or storing gf the system, the ambient temperature may vary
between.32 and 130 F (between O and 55 C). Although all exposed surfaces
of all Digital-cabinets and hardware are treated to prevent corrosion, exposure
of systems to extreme humidity for long periods of time should be avoided.

Power Requirements

A source of 115v (*=17v), 60-hz (=0.5 hz), single-phase power capable of
supplying at least 15 amp must be provided to operate a standard PDP-8/1.
To allow connection to the power cable of the computer, this source should
be provided with a Hubbell 3-terminal, except for the basic table top
PDP-8/1 grounded-neutral flush receptacle (or its equivalent). A table-mounted
PDP-8/1 is provided with a 15-amp power plug; a rack-mounted PDP-8 has a
20-amp twist-lock plug; and systems that draw more than 20 amps use a
30-amp twist-lock plug.

Power dissipation of a standard PDP-8/1 is approximately 780w, and the heat
dissipation is approximately 2370 Btu/hr. Upon special request, a PDP-8/I
can be constructed to operate from a 220v (==33v), 60-hz (=0.5 cps), single-
phase power source or from a 100v (=15v), 50-hz (*+0.5-hz), single-phase
power source. ‘ BN

Cable Requirements

Niné-conductor coaxial cables with Type W011 Cable Connectors provide signal
connection between the computer and optional equipment in free-standing
cabinets. These cables are connected by plugging the WO11 connectors into
standard FLIP CHIP module receptacles. '

All free stapding cabinets require independent 115v receptacles. However,
these units may be turned on or off or controlled from the PDP-8/1 operator
console. _

Cables connect to cabinets through a drop panel in the bottom of cabinets.
Subflooring is not necessary because casters elevate the cabinets from the
floor to afford sufficient cable clearance.

Installation Proéedure.

During system check-out, customers are invited to visit the Maynard manufac-
turing facility to inspect and become familiar with their equipment. Computer
customers may also send personnel to instruction courses on computer opera-

289

tion, programming, and maintenance conducted regularly in Maynard, Massa-
chusetts.

DEC's engineers are available during installation and test for assistance or
consultation. Further technical assistance in the field is provided by home
office design engineers or branch office application engineers.

Table 9 gives installation data to be considered when installing a PDP-8/1.
Table 10 lists space requirements. Figure 37, a typical PDP-8 system con-
figuration, can be used as a guide for planning layout.

TABLE 11. INSTALLATION DATA

Service Heat Current

v‘fb'g't Dimensions Clearance Dissipation {amps) Dissipation

Height Width Depth Frort Rear Btu/hr Nom Surge (kw)
PDP-8/1
Table Top 250 32 21-1/2 21-1/4 —_ — 2660 75 — 0.78
PDP-8/1
Rack Mount 250 31-1/4 195/8 21.7/8 22 — - 75 — 0.78
Standard Cabinet
CABS8B (Empty) 225 69-1/8 22-1/4 27-1/16 22 15 - - - -
Teletype
ASR-33 40 45 23 19 - - (included in Standard PDP-8/1)
Serial Drum
251 500 69-1/8 22-1/4 27-1/16 9 15 1540 5 8 0.45
Card Reader
CR8/1 25 81/4 18 10 — —_ 270 0.57 1 '0.06
TU20 & TU20A 400 63-1/8 22-1/4 27-1/16 21 21 4000 6.8 8 0.8
DEQtape
;l'ﬂnsport TUSS 35 10-1/2 19-1/2 9-3/4 9 — 410 1 - 2 0.11
“Precision Disptay ' .
30N 350 49 53 39 — 15 3140 8 8 0.9
Display 338 700" 69-1/8 42 51 -~ 15 2700 10 10 0.8
Random Access Tk
Disc F%DHZ
R SIS 4 10-1/2..19:1/2 21-1/4 i AT00 B B DD e
Serial Drurg- , .
RMO8 500 69-1/8 22-1/4 27-1/16 9 15 1540 5 8? 0.45
Gen. Purpose '
A/D Converter
and Multiplexer
AFOlA ' 55 811/16 19 19-1/2 —_ -— 188 5 5 0.06
Guarded Scanning |
Digital Voltmeter .
AFO4A 300 ¥©9-1/8 24-1/4 27-1/16 22 15 2350 6.0 13.2 0.69

290

s,

TABLE 12. .SPACE REQUIREMENTS
. MOUNTING PANELS*
Option - Remarks
Logic Other
Memory Extension — —_ L
Control MC8/1 Mounts wnfhm standard PDP-8/1 package
Memory Module MM8/1 2 — Should be. mounted in expander
: cabinet next to PDP-8/1
S?:%’;‘aégaﬁu't'p'y' - - Mounts within standard PDP-8/1 package
Memory Parity MP8/1 —_ — Mounts within standard PDP-8/1 package
Automatic Restart KP8/I — — Mounts within standard PDP-8/1 package
Data Channel) - 2- '
Multipiexer DMO1 s
Perforated Tape Reader —_— 10% in. front panel
PR8/1 .
Perforated Tape Punch — 10% in. front panel
PP8/1
- - - The control logic for these 5 options mount
Oscilloscope Display VC8/1I — 10 in. front panel - yithin standard PDP-8/1 packapge
Incremental Plotter VP8/I — “ Table space needed
for plotter
Card Reader CR8/1 — Table space needed
for reader
Light Pen 370 — — Logic and power supply included in
. VC8/1 or 30N

DCS 680 — —

DL8/1 — —

685 2 —

682 2 —
Teletype System PT08 1 — Handles up to 2 Teletypes or

. 2 Data-Phones- ~
Magnetic Tape 4 — Controls up to 8 tape units (TU20 or
Control TC58 TU20A) industry-compatible (or IBM-
compatibie)

DECtape Control TCO1 3 —_ Controls up to 8 TUS5 DECtape

Transports

*Mounting Panels are standard DEC 5% in. high logic panels.

NOTE: Power supplies for option logic are normally mounted on rear door of DEC cabinets. Customers
using their own cabinets should allow additional space for power supplies.

*

291

SYSTEM CONFIGURATIONS

PDP-8/1 systems are mounted in standard DEC cabinets. The basic cabinet
contains the processor and power supply. There are three 10% inch spaces
above the PDP-8/1 Control Panei on the basic cabinet. These spaces are
numbered consecutively starting just above the control cabinet. Each space
has options assigned in a fixed priority. See following figure.

BASIC CABINET

PRIORITIES!

PTO8

DF32

. AFO1

. D/A CONVERTER

SPACE 3 <

BN~

PRIORITIES.
1. 34D SCOPE

PTO8

DF 32

AFO1

. D/A CONVERTER

SPACE 2 4

vawN

ALWAYS RESERVED FOR
SPACE 1 FOR PCOI

PDP-8/1
CONTROL PANEL

PDP-8/1 POP-8/1
o POWER
SUPPLY

Figure 71. Priority Assortment, Basic Cabinet

292

- kY
When systems reqwre additional cabinet space, an Option Cabinet must be

added. This cabinet is mounted to the left of the Basic Cabinet (front view)
with option priorities assigned per figure 72.

AFO1
D/A CONVERTER

DF-32

DS-32

MMO8
_ MEMORY EXTENSION

DMO1

@

Figure 72.

Certain PDP-8/1 options require séparate cabinets. These options are as
follows: '

1. DECtape Cabinet: Can contaih TCO1l, 3 TU55s, and DMO1.
Mounts to right of Basic Cabinet.

2. TC58 Cabinet: Can contain TC58 and DMO1 at bottom. Mounts
- to right of Basic Cabinet. .
-3. TU20 Cabinet: Contains TU20. Mounts to right of Basic Cabi-
net. '
4. Drum Cabinet: Contains RMO8 or 251. Mounts to right of
Basic Cabinet. v
5. Communication =~ Contains 680 and 637. Mounts to left of Basic
System Cabinet: Cabinet.
6. Basic Typesetting - Contains PDP-8/1, PAGOA R/P mterface PA-61A
Cabinet: R/P control, space for second PA-61A R/P con-
_ trol.
7. AFO4A Cabinet Contains Guarded Scanning Digital Voltmeter

System (AFO4A}

293

680 - TarE CE'B?YN'ET.
cOMMUNICATION] OPTION BASIC DECTAPE) CABINET ABINE

SYSTEM CABINET CABINET CABINET ToR’ oR
CABINET Tcse 251

1

LJ
Figure 73. Cabinet configurations for expanded system

SPARE FOR
ADDITIONAL .
. PA-61A

PA-61A
R/P CONTROL

PA-GOA
R/P INTERFACE

POP-8/1
CONTROL

PDP-8/1 POP-8/1
oo POWER
SUPPLY

Figure 74. Basic Typesetting Cabinet
294

APPENDIX 1
PROGRAM ABSTRACTS

Family-of-8 Programs

The PDP-8/1 is delivered to the user complete-with an extensive selection
" of system programs and routines making the full data processing capability
of the new computer immediately available to each user, eliminating many
~ commonly experienced initial programming delays.

The programs described in these abstracts come from two sources, past
programming efforts on the PDP-5, PDP-8, PDP-8/s and present and con-
tinuing programming effort on the PDP-8/I. Thus the programming system
‘takes advantage of the many man-years of program development and field-
testing by Digital computer users. There are over 1000 Family-of-8 systems
in the field already. -

Although in many cases PDP-8/1 programs originated as PDP-5, PDP-8 and
PDP-8/s programs, all utility and functional program documentation is issued
anew, recursive format introduced with the Family-of-Eight computers. Pro-
grams, written by users of the PDP-5, the PDP-8, the PDP-8/s or the PDP-8/1,
and submitted to the DECUS library (DECUS-Digital Equipment Corporation
User's Society) are immediately available to Family-of-Eight users. Conse-
" quently users of all Family-of-Eight computers can take advantage of
continuing program developments.

System Programs

DEC-08-ESAA-D
Symbolic Editor

The Symbolic Editor program is used to generate, edit, correct, and update
symbolic program tapes using the tape teleprinter. With the Editor in mem-
* ory, the user reads in portions of his symbolic tape, removes, changes, or adds_ -
instructions and operands, and gets back a new, complete, symbolic tape with
errors removed. He can work through the program instruction by instruction,
spot check it, or concentrate on new selections. The tape can contain either
symbolic machine language, FORTRAN source statement, data, or -text infor-
mation. This program is available for use with either the 33ASR reader/punch
or the high speed reader/punch.

DEC-08-AFAB-D -
FORTRAN 11 Manual

One-pass FORTRAN compiler and operating system compiles FORTRAN source
‘language statements into an object program tape. The operating system exe-
cutes the program. This system contains the interpreter, arithmetic function
subroutines, and input-output packages.

DEC-08-ASAA-D
PAL 111 (Program Assembler Language)

Symbolic machine language assembler. Converts programs code in symbolic
machine language to binary machine language. The basic process performed
by the Assembler is the substitution of numeric values for symbols, according
to associations defined in the symbol table. In addition, the user may request

295

that the Assembler itself assign values to the user's own symbols at assembly
time. These symbols are normally used to name memory locations, which
may then be referenced by name. An assembly listing may be produced.

Digital-8-4-S
DDT

Dynamic Debugging Tape provides a means for on-line program debugging at
the symbolic or mnemonic level. By typing commands on the console tele-
printer, memory locations can be examined and changed, program tapes can
be inserted, selected portions of the program can be run, and the updated
program can be punched.

Digital-8-5-S
Floating-Point System

A Basic System "

B Interpreter, 1/0, 1/0 Controller

C Interpreter, 1/0 Functions

D Interpreter, 1/0, 1/0 Controller, Functions

Inctudes Floating-Point Interpreter and 1/O subsystems. Allows the program-
mer to code his problem in floating-point machine language.

Floating-point operations automaticaily align the binary ‘points of operands,
retaining the maximum precision available by discarding leading zeros. In
addition to increasng accuracy, floating-point operations relieve the program-
mer of the scaling problems common in fixed-point operations. This system
includes elementary function subroutines programmed in floating-point. These
subroutines are sine, cosine, square root, logarithm, arctan, and exponential
functions. Data being processed in floating-point is maintained in three words
of memory (12-bit exponent, 24-bit mantissa). An accuracy of seven decimal
places is maintained. '

DEC-08-AFAZ-PB
FORTRAN Symbol Print

Loaded over the FORTRAN Compiler, this program lists the variabies used and
where they will be located in core. It also indicates the section of core not
used by the compiled program and data. '

DEC-08-SUAQ-D
DECtape Programming Manual

The DECtape Library System is loaded by a 17,, instruction bootstrap routine
that starts at 7600, This loader calls a larger program into the last memory
page, whose function is to preserve on tape the contents of memory from
6000,-7577,, and then to load the INDEX program and the directory into
those same locations. Since the information in this area of memory has been
preserved, it can be restored when operations have been completed. The
skeleton system tape contains the following programs:

INDEX—Typing this causes the names of all programs currently on file to be
typed out. ‘ : '

UPDATE—Allows the user to add a new program to the files. UPDATE queries

the operator about the program’s name, its starting address, and its location
in core memory.

GETSYS—Generates a skeleton library tape on a specified DECtape unit.
' 296

DELETE—Causes a named file to be deleted from the tape.

Starting the skeleton library tape, the user can build up a complete file of
his active programs and continuously update it. :

DEC-08-CMAA-D
MACRO-8

The MACRG-8 Symbolic Assembler -accepts source programs written in sym-
bolic language and translates them into binary form in two passes. MACRO-8
produces an object program tape (binary) a symbol table (for use with DDT)
an octal :ymuuh\. aaacuu.ny uauug, ana useful uiagnosuc messages. MACRO-8
is compatible with PAL IlI, and has the following additional features: user-
defined macros; double precision integers, floating-point constants, arithmetic

and Boolean operators, literals, text facilities, and automatic Link generation.

Digital-8-10-S
CALCULATOR

CALCULATOR is an equation evaluation routine. It differs from FORTRAN in
that the function to be evaluated is entered via keyboard and calculated imme-
diately upon termination of entry. Format control is prowded so that computer
results may be conveniently tabulated. Expressions causing the calling of
common function subroutines are included.

Digital-8-11-S
DATAK

The DATAK system permits a complex, program-contralled data acquisition
system to be adapted to a particular experimental environment through the
use of a sophisticated and concise pseudo code. In addition to data-acquisition
applications, DATAK furnishes the experimenter with a means of calibrating
transducers and is a powerful aid in troubleshooting a complex data-gathering
system. Paper tape output produced is acceptable as FORRAN input.

DEC-08-COAA- D(L)
ODT-1I

oDT-II (Octal Debugging Tape) acts in debugging a program by facilitating
communication with the program being run via the ASR 33 Teletypewriter.
ODT-Il features include register examinations and modification, control trans-
fer, word searching, octal dumping, and instruction traps.

Digital-8-13- S
One-Dimensional Display and Analysis

The one-dimensional pulse-height analysis program is used to read in and
analyze 1024-channel energy spectra data. The program receives and executes
commands from the keyboard. These commands start and stop data taking
and determine into which data region it goes, displays the data with markers,
allows area of interest on the display screen to be expanded, integrates be-
tween markers, writes out data, punches out data, and controls background
subtraction.

Digital-8-14-S
Multiparameter Display and Analysis

The two-dimensional pulse-height analysis program is used to read in and

297

analyze two-parameter energy and spectra data. The program receives and
executes commands from the keyboard. These commands start and stop data
taking, control the displays; and control wiring and punching of the data. The
displays available are: isometric, vertical and horizontal slicing, differential
and integrai contoiirs, and “twinkle box.” The program is flexible with respect

to the dimensions of the data matrix.

Digital-8-15-S
Oceanographic Analysis

This program represents the basic accepted physical oceanography method
for the reduction of data concerning depth, temperature, and salinity meas-
urements of the water column.

This program has been designed to allow the field oceanographer a rapid
means of immediately calculating Sigma-T, anomaly of specific volume, and
sound velocity following a Nansen cast whereby he may examine in detail the
results of his endeavor, to determine not only the structure of the environ-
ment he has just sampled but also to check the validity of his measurements.

In addition to the above, an interpolation routine is incorporated into the
program as well as a depth integration of the anomaly of specific volume.

Digital-8-16-S
Master Tape Duplicator/Verifier

The tape duplicator is a single-buffered read and punch program, utilizing

the program interrupt. It computes a character count and checksum for each
tape and compares with checks at the end of the tape.

Vi reas

Digital-8-35-S
A 680 5-Bit Character Assembly Subroutines
B 680 8-Bit Character Assembly Subroutines

These subroutines concentrate Teletype data by assembling serial-bit data into
5-bit (8-35-S-A) or 8-bit (8-35-S-B) characters and presenting the user with
line number and character data. They also add start and stop bits and trans-
mit characters serially. Full-duplex lines are assumed, but the subroutines
will work the half-duplex if the user handles the expected echo.
Elementary Function Routines

The following routines are described in the Program Library Math Routines
Manual (DEC-08-FFAA-D).

Square Root Subroutine-Single Precision

Forms the square root of a single-precision number. An attempt to take
the square root of a negative number will give O for a result.

Signed Multiply Subroutine-Single Precision

Forms a 22-bit signed product from 11-bit signed multiplier and multi-
plicand.

Signed Divide Subroutine-Single Precision
This routine divides a signed 11-bit divisor into a signed 23-bit dividend

298

giving a signed 11-bit quotient and a remainder of 11 bits with the sign of
the dividend.

Double-Precision Multiply Subroutine-Signed

This subroutine multiplies a 23-bit signed multiplicand by a 23-bit signed
multiplier and returns with a 46-bijt signed product.

Double-Precision Divide Subroutine-Signed _
This routine divides a 23-bit signed divisor into a 47-bit signed dividend
[2

i
and returns with a 23-bit signed quotient and a remainder of 23 hit

the sign of the dividend.

Sine Routine-Doulsle Precision

The Double-Precision sine subroutine evaluates the function Sin (X) for
.. —4<X<4 (X is in radians). The argument is a double-precision word, 2
bits representing the integer part and 21 bits representing the fractional
part. The result is a 23-bit signed fraction —1<Sin(X)<1.

.Cosine Routine-Double Preci_sion

This subroutine forms the cosine of a double-precision argumerit (ivn radi-
ans). The input range is —4<X<4. '

Four-Word Floating-Point Package

This is a basic floating-point package that carriés data as three words of
mantissa and one word of exponent. Common arithmetic operations are.
included as well as basic input/output control. No functions are included.
Logical Subroutines

Subroutines for performing the logical operations of inclusive and exclusive
OR are presented as a package.

Shift Right, Shift Left Subroutines (Single and Double Precision) ,
Four basic subroutines, shift right and shift left, each at both single and
double precision, are presented as a package.

Logical Shift Routines

Two basic subroutines, shift right at both single and double precision, are
presented as a package. The shifts are logical in nature.)

Digital-8-21-F
Signed Multiply (Uses EAE) Single Precision

This subroutine forms a 22-bit signed product from an 11-bit signed multi-
plier and multiplicand using the Extended Arithmetic Element. It occupies
less storage and takes less time to execute than its non-EAE counterpart, and

it has the same calling sequence.

Digital-8-22-F '
Signed Divide (Uses EAE) Single Precision

This subroutine divides a dodble-preciéion signed 22-bit dividend by a signed

11-bit divisor, producing a signed 11-bit quotient and a remainder of 11 bits
having the sign of the dividend.

299

It makes use of the Extended Arthmetic Element instruction set and occupies
less storage and takes less time to execute than its- non-EAE counterpart.
It has the same calling sequence except that the subroutine name is changed
from DIVIDE to SPDIV.

Digital-8-23-F
Signed Multiply (Uses EAE) Double Precision

This subroutine multiplies a 23-bit, signed 2's complement binary number by
a 23-bit signed 2's complement binary number, giving a 46-bit product with
two signs on the higher order end. It makes use of the Extended Arithmetic
Element instruction set and, because of this,’ occupies less storage and
takes less time to execute than its non-EAE counterpart. Its calling sequence
is comparable with the non-EAE version.

Digital-8-25-F
EAE Floating-Point Package

These packages perform the same tasks as the Floating- Pomt Packages
(Dlgltal 8-5-S A, B, C, D) except that certain routines have been speeded up
by the use of the Extended Arithmetic Element.

For a detailed description of floating-point arithmetic and the Interpretive
Floating-Point Packages, the reader is referred to Digital-8-5-S.

Utility Programs

D;g:tal 8-0

Format for Program Documentation

With the advent of the PDP-8, Digital Equipment Corporation introduced a
new, recursive format for program documentation. This format is used for
routines and subroutines, such as utlhty and functional, but not necessarily
for system programs.

This format and its use are described in this document.

Digital-8-1-U

Read-In-Mode Loader

The RIM Loader is a minimum-sized routine for reading and storing the infor-
mation in Read-In-Mode coded tapes via the ASR 33 Perforated Tape Reader.

Digital-8-2-U
Binary Loader (33ASR, PR-8/1, MC-8/I Memory Extension)

The Binary Loader is a short routine for reading and storing the information

in binary-coded tapes via the ASR 33 Perforated Tape Reader or by means of
the Type PR-8/1 High-Speed Perforated Tape Reader.

The Binary Loader will accept tapes prepared by the use of PAL (Program
Assembly Language; see DEC-08-ASAA-D) or MACRO-8 (see DEC-08-CMAA-D).
Diagnostic messages may be included on tapes produced when using either
PAL or MACRO. The Binary Loader will ignore all diagnostic messages.

Digital-8-3-U
DECtape Library System Loader

The use of the DECtape Library System Loader is discussed. Certain conven-
tions with respect to last page storage are established for this loader as well
as for the Read-In-Mode and Binary Loaders. ‘

300

DEC-08-PMPA-D

RiIM Punch

This program provides a means of punching out the information as selected
blocks of core memory as RIM-coded tape via the ASR 33 Perforated Tape
Reader.

Digital-8-5-U-SYM .
Binary Punch 33/PP-8/1

This program provides a means of .punching out the information in selected
blocks of core memory as binary-coded tape via the ASR 33 Perforated Tape
Punch or via the High-Speed Punch PP-8/I. .

Digital-8-6-U-SYM

Octal Memory Dump

This routine reads the console switches to obtain the upper and lower limits
of an area of memory, then types on the Teletype an absolute address plus
‘the octal contents of the first four words specified and repeats this until the
block is exhausted, at which time the user may repeat the operation.

Digital-8-10-U
Binary-Coded-Decimal to Bmary Conversion Subroutine

This basic subroutine converts unsigned binary-coded-decimal numbers to
their equivalent binary values.

Digital-8-11-U
Double Precision BCD-to-Binary by Radix Deflation

This subroutine converts a 6-digit BCD number to its equivalent binary value
contained in two computer words.

Digital-8-12-U

Incremental Plotter Subroutine

This subroutine moves the pen of an incremental plotter to a new position
along the best straight line. The pen may be raised or lowered dunng the
motion.

Digital-8-14-U
Binary to Binary-Coded-Decimal COnverswn

This subroutine provides the basic means of corverting binary data to blnary-
coded-decimal (BCD) data for typeout, magnetic tape recording, etc.

Digital-8-15-U-SYM e
Bmary-to Binary-Coded-Decimal Conversion (Four Digit)

This subroutine extends the method used in Digital-8-14-U so that binary in-
tegers from O to 4095 in a single computer word may be converted to four
binary-coded-decimal characters packed in two computer words.

Digital-8-17-U .

EAE Instruction Set Simulator

This routine permlts the automatic multlply -divide hardware option to be
simulated on a basic PDP-8/1.

Digital-18-U-SYM

Alphanumeric Message Typeout

This is a basic subroutine to type messages packed in computer words. Two
- 6-bit characters are packed internally in a single word. All ASR 33 codes from
301 to 337 and from 240 to 277 (excepting 243 and 245) can be typed. The

'301

typing of line feed (code 212) and carriage return (code 215) are made pos-
sible by arbitrarily assigning internal codes of 43 and 45, respectively, to rep-
resent these characters, thus preventing the output of ASCIl codes 243 (%)
and 245 (%). :

Digital-8-19-U-SYM

Teletype Output Subroutines

A group of subroutines useful in controlling ASR 33 output is presented as a
package. Provision is made for simulation of tabulation stops. The distance
. “tabbed” may be controlled by the user. Characters whose ASR 33 codes are
in the groups 241 through 277, inclusive, and 300 through 337, inclusive, are
legal. Space, carriage return then line feed, and tabulation are provided via
subroutines.

Digital-8-20-U-SYM
Character String Typeout Subroutine

This basic subroutine types messages stored internally as a “string” of coded
characters. All ASR 33 characters are legal.

Digital-8-21-U-SYM

Symbolic Tape Format Generator _

The Format generator allows the user to create PDP-8 symbolic tapes with
Formatting. It may be used to condense tapes with spaces by inserting tabs,
or merely to align tabs, instructions, and comments.

Digital-8-22-U-SYM

Unsigned Decimal Print

This subroutine permits the typeout o
- 4-digit, positive, decimal integer.

Digital-8-23-U-SYM

Signed Decimal Print, Single Precision \

This subroutine permits the typeout of the contents of a computer word as a
signed twos complement number. If bit O of the computer word is a."1"”, the
remaining bits represent a negative integer in twos complement form; if bit 0
equals “0”, the remaining bits represent a positive integer. If the number is
negative, a minus sign is printed; if positive, a space.

£ o20
I

the contents of a computer word as a

Digital-8-24-U-SYM

Unsigned Decimal Print, Double Precision

This subroutine permits the typeout of a double-precision integer stored in
the usual convention for double-precision numbers, (see DEC-08-FFAA-D).
The one exception is that all 24 bits are interpreted as magnitude bits (i.e.
the bit “0” of the high-order word is not a sign bit). The typeout is in the
form of a seven-digit, positive, decimal ‘integer.

~ Digital-8-25-U-SYM

Signed Decimal Print, Double Precision

Ths subroutine permits the typeout of the contents of two consecutive com-
puter words as one signed, double-precision, twos complement number. If
bit 0 of the high order word is a “1,” the remaining 23 bits represent a
negative integer in twos complement form; if bit 0 equals “0,” the remaining
bits represent a positive integer. If the number is negative, a minus sign is
printed; if positive, space.

302

DEC-08-SUAO-D

DECtape Programming Manual

Allows the programmer to read, write, or search DECtape using prewritten and .
tested subroutines. A series of subroutines which will read or write any num-
ber of DECtape blocks, read any number of 129-word blocks as 128 words (or
one memory page), or search for any block (used by read and write, or to
position the tape) These programs are assembled with the user program and
are called by a jump to subroutine instruction. The program interrupt detects
the setting of the DECtape (DT) flag, allowing the main program to proceed
while the DECtape operation is being completed. A program flag is set when
‘the operation is completed. The program thus effectively allows concurrent
operation of several mput/output devnces with the DECtape.

Digital-8-28-U-SYM
Single Precision DBC & Input (ASR 33)
Signed or Unsigned

This routine: accepts a string of up to four decnmai digits (single precision
for the PDP-8/1) from the Teletype keyboard and converts it to the corre-
sponding 2’s complement binary number.

The string may contain as legal characters a sign (+, —, or space) and the
digits from 0-9. If the first legal character is not a sign, the conversion is
~unsigned. A back arrow (<) at any point in the string erases the current
string and allows the operator to reenter the correct value. Any character
after the first, other than another digit or back arrow causes the conversion
to terminate and is found in location SISAVE within the subroutine.

Digital-8-29-U-SYM
Double Precision DBC & Input (ASR-33)
Signed or Unsigned

This routine accepts a string of up to elght decimal digits (double-precision
for the PDP-8/1) from the Teletype keyboard and converts it to the correspond-
ing 2's complement binary number.

The string may contain as legal characters a 5|gn {+, —, or space) and the
digits 0-9. If the first legal character is not a sign, the conversion is unsigned.
A “back-arrow” (<) at any point in the string erases the current string and
allows the operator to re-enter the value. Any character after the first, other
than another digit or “back-arrow”, causes the conversion to termlnate and
~is found in location “DIDSAV” within the subroutine.

Digital-8-31-U

TCO1 DECtape Subroutines- -

These subroutines provide the user with the ability to read, write and search
using the TCO1 tape system. The read and write subroutmes transfer 128y
(one memory page) of the specified block (or blocks) although the standard
block length is 129,, 12-bit words. Successive blocks are read (written) from

(into) successive 128 word blocks of core. Provision is made for transfers to
and from extended memories.

Digital-8-33-U

5/8 TOG (552) -

This program is designed to write timing tracks, mark tracks, and block
numbers onto a reel of DECtape provndmg the tape with the basic skeletal

format necessary for its inclusion in any programmed DECtape system. The
Formatter program also performs preliminary read-data and write-data checks

303

to assure the user that the tape produced can be reliably included in such
an environment. ‘

Digital-8-34-U
NECEY NECtane Exerciser

o N B SR B e SR g - S

This program provides complete certification of the DECiape format produced.
Maintenance Programs

Maindec-08-DO1A-D
Instruction Test Part 2A

This program is a test of memory reference instructions, operate instructions,
and interrupt mode. An attempt is made to detect and isolate errors to their
most basic faults and to the minimum number of togic cards.

‘Maindec-08-D02A-D
instruction Test Part 2B

This program is a test of TWOS ADD (TAD) and ROTATE logic (RAL, RTL, RAR,
RTR). Random numbers are used in the TWQOS ADD portion of the test and
sequential numbers are used in the ROTATE portion. Program control is de-
pendent upon operator manipulation of four switches in the SWITCH REGIS-
TER (bits 0, 1, 2, 3). Error information is normally printed out on the key-
board printer. _

Maindec-08-DO3A-D
Basic JMS and JMP Test

This is a diagnostic program for testing the JMP and JMS instructions of the
PDP-8/1. :

Maindec-08-D04A-D
Random JMP Test

This program tests the JMP instruction of the PDP-8/I. Most of memory is
used as a JUMP field with a random number generator selecting each “JUMP
FROM” and “JUMP TO"” location.

Maindec-08-D05A-D
Random JMP-JMS Test

This is a diagnostic program to test the JMS instruction of the PDP-8/I.
Random “FROM” and “TO” addresses are selected for each test. The JMP
instruction is tested in that each test requires a JMP to reach the JMS.

Maindec-08-DO7A-D

Random ISZ Test

This program is written to test the ISZ instruction of the PDP-8/1. An ISZ
instruction is placed in a FROM location, and a TO location contains the
OPERAND. Part 1 of the program selects FROM, TO, and OPERAND from a
random number generator, with the option of holding any or all constant.
Part 2 uses a fixed set of FROM, TO, and OPERAND numbers.

Maindec-08-DOAA-D
Instruction Test (EAE) Part 3A

This program is a test of the Extended Arithmetic Element Type KE8/I. The
following instructions are tested: MQL, MQA, SHL, LSR, ASR, NMI, SCA. An
attempt is made to detect and isolate errors to their most basic faults and to
the minimum number of logic cards. Multiply and divide are tested by Main-
dec 08-DOBA-D.

304

Maindec-08-DOBA-D

Instruction Test (EAE) Part 3B

Divide overflow detection hardware and divide and multiply hardware are
tested by using a pseudo random-number generator to produce the parameters
for each test. A software simulated divided and multlply are used to test the
results of the hardware divide and multiply.

Maindec-08-D1AA-D
Memory Power On/Off Test

This program is a Memory Data Validity Test to be used after a simulated
power failure,

Maindec-08-D1BA-D ' .
Memory Checkboard Test High/Low

Tests memory for core failure on half-selected lines under the worst possible
conditions: for reading and writing. It is used primarily for testing the opera-
tion of memory at marginal voltages.

Maindec-08-D1CA-D
Extended Memory Control Part 1.

This program exercises and tests Extended Memory instructions CDF, CIF, -

- RDF, RIF, RMF, and RIB, for proper operation. Basically, this program tests
the control section of the memory. Datais tested by tests Maindec-08-D1BA-D
and Maindec-08-D1DA-D,

Maindec-08-D1DA-D _

Extended Memory Checkerboard Part 2

This program is a preliminary test for core memory failures on half-selected
lines under worst-case conditions of reading and writing. It is used to test
memory module X while running the program in memory module Y.

Maindec-08- 0201 D
CR8/I (NCR) Card Reader Test

The program tests the CR8/I Card Reader logic for alpha and binary opera-
tion using binary and alpha card decks. It also tests control interrupt and
timing.

Maindec-08-D2AA-D

Teletype Reader Test _
Tests performance of the Teletype Model 33 Perforated Tape Reader using

_ the reader to scan a closed-top test tape punched with alternating groups of
character codes 000 to 377.

Each character is test for bits dropped or gained while reading; each group
of characters is checked for characters missed entirely or read more than
once.

Maindec-08-D2BA-D
Exerciser for the Teletype Paper Tape Reader

This is an exerciser program for the Teletype Paper Tape Reader. Test tapes
are read in a random start-stop fashlon and errors reported on the Teletype
printer.

Maindec-08-D2CA-D
Teletype Punch Test

Punches a test tape in a predetermined pattern. The tape passes directly

305

13

from the Teletype punch to the Teletype reader, which checks the pattern
for accuracy. ' '

Maindec-08-D2DA-D

Tal H
Teleprinter Test

The Teleprinter Test tests performance of the Teletype 33 Keyboard Printer.
There are two parts to the test, selectable by the operator. The first part tests
keyboard input by immediately causing the character’typed to be printed for
comparison. The second part tests continuous operation of the teleprinter
by causing a line consisting of the ASCil character set to be repeatedly
printed. The latter also tests for correct functioning of the interrupt after a
character has been printed.

~
¥

Maindec-08-D2EA-D
High Speed Reader Test

This program tests performance of the Type 750 High Speed Perforated Tape
Reader and control by scanning a closed-loop test tape for transmission accu-
racy. The reader control is tested for correct operation with the PDP-8 inter-
rupt system. '

Maindec-08-D2FA-D
High Speed Reader Test (PR8/1)

This is a diagnostic program for the Digitronics 2500 and the PR8/I High
Speed Paper Tape Readers. The program is divided into three parts, the first
of which is a test tape generator that punches test tapes for parts two and
three on the high speed punch. Part two is a series of specific tests with
module isolation provided for error situations. Part three reads a preselected
tape pattern with the choice of random or fixed block lengths and stalls
between blocks.

Maindec-08-D2GA-D

High Speed Punch Test

This program consists of two separate tests. The first causes the High Speed
Punch Type PP-8/I to produce a tape containing a sequence of “pseudo-
random” character codes. This tape is checked for accuracy using either the
high-speed reader or the Teletype reader.

In the second test, the character code represented by the setting SR,y is
punched repeatedly. The switch setting may be changed while the test is
running.

Maindec-08-D2HA-D
Typesetting Paper Tape Reader

This is a diagnostic program for the Paper Tape Reader PR68A using the
PA60 Control logic. The program is divided into three parts, the first of which
is a test tape generator that punches tapes to be used in parts 2 and 3.
Part 2 is a series of specific tests with module isolation provided for error
situations. Part 3 reads a preselected tape pattern with the choice of random
or fixed block lengths and stalls.

Maindec-08-D2MA-D
Monroe Printer Test (MC 4000)

This is a test of the Monroe Printer and its associated control. Control failures
~are provided for by the use of error halts for operator notification. Data fail-
ures are detected by visual analysis of the printer output.

306

- Maindec-08-D3BB-D

TCO1 Basic Exerciser

The TCO1 Basic Exerciser is a series of test programs that may be used to gain
a high degree of confidence in the data handling ability of a TCO1 DECtape
Control and one to eight TU55 DECtape Transports. The Basic Exerciser con-
sists of several basic routines that may be individually selected; each routine
will operate on any configuration of one to eight drives. These routines in-
clude a Basic Motion Routine, Search Find All Blocks Test, Basic Search
Routine, Start/Stop/Turnabout Test, Basic Write/Read Data Test with eight
selectable patterns, and a Parity Generation and Checking Test. The opera-
tion of the Basic Motion Routine and the Basic Search Routine are controlled
by keyboard input. Aiso, a Write Data Scope Loop, Read Data Scope Loop,
and a Search Scope Loop are provided to keep the tape moving from end
zone to end zone. : :

Maindec-08-D3RA-D
DECTREX 1-TCO1 Random Exerciser

DECTREX 1 is a DECtape Random Exerciser for the TCO1 DECtape control
and any configuration of one to eight TU55 DECtape transports. Drive selec-
tion, tape direction, number of blocks, sequence of operation and patterns
generated are by random selection. The DECtape functions exercised are
search, read data and write data in normal and continuous modes, read all in
continuous mode, and move. .

Also included are a short series of processor tests that are executed while
waiting for interrupts and during data breaks while searching, reading, and
writing from DECtape.

Maindec-08-D5AA-D

RMO08 Drum Test and Maintenance Compiler

This is a test and maintenance program designed to exercise the Type RMO8
Drum. The test routines generated and executed by the compiler are speci-
-fied by a pseudo program. This may be kept as an integral part of the compiler
binary program tape, stored on a separate paper tape, or typed on-line for
investigation of an observed malfunction. The SWITCH REGISTER allows
testing of various size drums. Errors are indicated by printed ‘messages,
which may be suppressed if desired. _ '

Maindec-08-D60B-D

338 Visual Buffered Display \ .

This program tests modes 0-4 and 6 using selected number patterns. Visual
identification and program error printouts are used to analyze 338 Display
data mode problems. ~

Maindec-08-D6CA-D

Calcomp Plotter Test : -

This program tests the CALCOMP Plotter and its control. All control and
plotting functions are tested.

Maindec 08-D6EA-D

Type 338 Display POP Test

This program is a test of POP instruction. On the 338 Display analyses of the
Display Address Counter and Pushdown Pointer are printed upon error de-
tection. : '

307

Maindec 08-D6FA-D
Type 338 Display PJMP Test

This program is a test of the PJMP instruction. On the 338 dlsplay analyses of
the Pushdown Pomter, Display Address Counter, Status Push Jmp Destina-

tion and Return Addresses are pnmcu upon detection of an eiror in these
areas. Uses Slide or Random address pattern.

Maindec-08-D6IA-D
Little Pictures for an 8

This program contains 12 individual 338 buffered display routines. The
routines are selected to enable adjustment and validation of CRT Analog/Digi-
tal hardware.

Maindec-08-D8AA-D

196 Intercommunication.Buffer

Interface Type 196 is divided into 3 parts, 196A, 196B, and 196C. Each part
is designed for a different combination of computers, with which the 196 may
be connected. The 196A is connected with a PDP-8 and another PDP-8. The
196B is connected with a PDP-8 and a PDP-7. The 196C is connected to a
PDP-8 and a PDP-5. The Maindec for the 196 Communication interface is
also divided in parts A, B, and C. Each part contains two programs. The pro-
grams are labeled Processor A and Processor B. Processor A is always a
PDP-8.

Maindec-08-D8BA-D

338 Push Button Test

This program exercises the push-button box and logic on the Type 338
Ruffered Display. First, the 10Ts that read and set the buttons are checked;
then the display is lnltlallzed and the push-button related instructions are
executed and checked.

Maindec-08-D8CA-D

Data Test for 636B Communication Test

The Data Test checks accuracy of data transfers. A separate program tests
10Ts. Both programs may be in memory at the same time. -
Maindec-08-D8CJ-D

10T Test for 636B Communication Test _

The 10T test for Communication Interface Type 636B tests only input/output
instructions. A separate program (see DEC-08-D8CA-D) tests accuracy of data
transfers. Although the programs are separate, they may be in memory at the
same time.

Maindec-08-D8DA-D
338 Character Generator Test

This program exercises the Character Generator VC38 on the Display 338.
The test is visual and displays the following information:

THIS IS A TEST OF THE CHARACTER GENERATOR

308

DECUS LIBRARY PROGRAM ABSTRACTS

DECUS No. 5/8-1.1
BPAK — A Binary Input-Output Package

‘A revision of the binary package originally written by A. D. Hause of Bell
Telephone Laboratories. With BPAK the user can read in binary tapes via the
photoreader and punch them out via the Teletype punch. It may be used with
any in-out device, but is presently written for the photoreader and Teletype
punch. A simple modification converts BPAK so that it reads from the Tele-
type reader if the photoreader is disabled. In its present form it occupies Ioca-
tions 7600-7777.

DECUS No. 5-2.1
OPAK — An On-line Debugging Program for the PDP-5

A utility program which enables the user to load, examine, and modify com-
puter programs by means of the Teletype. This program is a revision of the
program written by A. D. Hause, Bell Telephone Laboratories. Extensive use:
of the program has suggested many refinements and revisions of the original
program, the most significant additions being the word search and the break
point. The standard version of OPAK is stored in 6200 to 7577 and also 00086.
An abbreviated version is available (7000 to 7577, 0006) which is identical
_to the other except that it has no provision for symbolic dump. Both programs
“are easily relocated. Control is via Teletype, with mnemonic codes, (e.g. “B”
for inserting breakpoint, “P” for proceed, etc.).

DECUS No. 5-3
BRL — A Binary Relocatable Loader with Transfer Vector Options for the
PDP-5 Computer.

A binary loader program occupying 46403 to 6177, reglsters also 160 to 177.
"It has two main functions:

1. It allows a PDP-5 operator to read a suitably prepared binary pro-
gram into any page location in memory except the registers occupied
by BRL.

2. It greatly simplifies the calling of programmed subroutines by allow-
_ing the programmer to use an arbitrary subroutine calling sequence
when writing his program, instead of having to remember the location
of the subroutines.

DECUS No.5-4 .
Octal Typeout of Memory Area with Format Option -

K (Write-up and Listing Only)

DECUS No. 5-5
Expanded Adding Machme

Expanded Adding Machine is a minimum- space version of Expensive Adding
Machine (DEC-5-43-D) using a table lookup method including an error space
facility.

This is a basic version to which additional control functions can easily be
added. Optional vertical or horizontal format, optiocnal storage of intermedi-
ate result without reentry, fixed-point output of results within reason, and
other features that can be had in little additional space under switch register
~ontrol, (Write-up and Listing Only)

-309

DECUS No. 5-6
BCD to Binary Conversion of 3-Digit Numbers

- This program js based on DEC-5-4 and is intended to illustrate the use of
alternative models in program construction.

While not the fastest possible, this program has one or two interesting fea-
tures. It converts any 3-digit BCD-coded decimal number, D,D,D; into binary
in the invariant time of 372 microseconds. Efficient use is made of BCD
positional logic to work the conversion formula (10D, + D,) 10 + D;) by right
shifts in the accumulator. In special situations, it could be profitable to insert
and initial test/exit on zero, adding 12 microseconds to the time for non-zero
numbers. &

(Write-up and Listing Only)

‘DECUS No. 5/8-7
Decimal to Binary Conversion by Radix Deflation on PDP-8

(Write-up and Listing Only)
DECUS No. 5-8

PDP-5 Floating Point Routines
Consists of the following routine:

1. Square Root — Binary Tape and Symbolic Listing
2. Sine-Cosine — Binary Tape only
3. Exponential — Binary Tape only

DECUS No. 5/8-9
Analysis of Variance PDP-5/8 -
An analysis of variance program for the standard PDP-5/8 configuration.

The output consists of:

A. Foreach sample:

sample number

sample size

sample mean

sample variance

sample standard deviation

ol

The grand mean

Analysis of Variance Table:

1. The grand mean. ‘
2. The weighted sum of squares of class means about the grand mean.
3. The degrees of freedom between samples.
4. The variance between samples.
5. The pooled sum of squares of individual values about the means of
their respective classes.
6. The degrees of freedom within samples.
7. The variance within samples.
8. The total sum of squares of deviations from the grand mean.
9. The degrees of freedom.
10. The total variance.
11. The ratio of the variance between samples to the variance with

samples.
This is the standard analysis of variance table that can be used with the F

310

test to determine the significance, if any, of the differences between sample
means. The output is also useful as a first description of the data.

All arithmetic calculations are carried out by the Floating Point Interpretive
. Package (Digital-8-5-S) ~)

DECUS No. 5-10
Paper Tape Reader Test

A test tape can be produced and will be continuously read as an endless tape.
Five kinds of errors will be detected and printed out. The Read routine is in
6033-6040. Specifications: Binary with Parity Format — Length: registers in
locations (octal): 10, 11, 4 through 67 (save 63, 64), and 6000-7777.

DECUS No. 5-11
PDP-5 Debug System

Purpose of this program is to provide a system capab_le of:

Octal dump 1 word per line.

Octal dump 10 words per line.

Modifying memory using the typewriter keyboard.
Clearing to zero parts of memory.

Setting to HALT codes part of memory.

Entering breakpoints into a program.

Initiating jumps to any part of memory.
Punching leader on tape. _

Punching memory on tape in RIM format.
Punching memory on tape in PARITY format.
Load memory from tape in PARITY format.

oo W

— =
O wo N

DECUS No. 5-12 S .
Pack-Punch Processor and Reader for the PDP-5 _

" The processor converts a standard binary-format tape into a more compressed
format, with two twelve-bit words contained on every three lines of tape.
Checksums are punched at frequent intervals, with each origin setting or at
~ least every 200 words. '

The reader, which occupies locations 7421 to 7577 in the memory will load
~ a program which is punched in the compressed format. A test for checksum
error is made for each’group of 200 or less and the program will halt on error
detection. Only the most recent group of words need be reloaded. Read-in
time is about ten per cent less than for conventional binary format, but the
principal advantage is that little time is lost when a checksum error is de-
tected, no matter how long the tape.- ' :

DECUS No. 5-13

PDP-5 Assembler for use in IBM 7094/7044 _

This program accepts IBM 7094/ 7044 symbolic programs punched on cards
- and assembles' them for the PDP-5. An assembly listing is produced, and a
magnetic tape is generated containing the program. This magnetic tape can
be converted to paper tape and then read into the PDP-5 or it can be read
directly into a PDP-5 with an 1BM compatible tape unit. Cards are available.

DECUS No. 5/8-14
DICE Game for the PDP-5/8

Enables a user to play the game, DICE, on either the PDP-5 or PDP-8.

311

DECUS No. 5-15
ATEPO (Auto Test in Elementary Programming and Operation of a PDP.5
Computer)

The program will type questions or instructions to be performed by the opera-
tor of a 4K PDP-5. The program will check to see if the operator has answered
the questions correctly. If this is the case, it will type the next question or
instruction.

. DECUS Nec. 5-16
Paper Tape Duplicator for PDP-5

The tape duplicator for the PDP-5 is a single buffered read and punch pro-
gram utilizing the program interrupt. It computes a character count and
checksum for each tape and compares with checks at the end of the tape.

Checks are also computed and compared during punching.

DECUS No. 5/8-17
Type 250 Drum Transfer Routine For Use dn PDP-5/8

Transfers data from drum to core (Read) or core to drum (Write) via ASR-33
Keyboard Control. '

DECUS No. 5/8-18a
Binary Tape Disassembly Program

Dissassembles a PDP-5 or 8 program, which is on tape in BIN format. It prints
the margin setting, address, octal contents, mnemonic interpretation (PAL) of
the octal contents. A normal program or a program which uses Floating Point
may be dissassembied

DECUS No. 8-19a '

DDT-UP Octal-Symbolic Debugging Program

DDT-UP is an octal-symbolic debugging program for the PDP-8 which occupies
locations 5600 through 7677. It is able to read a symbol' table punched by
PDPSYM and stores symbols, four locations per symbol, from 5577 down to-
wards 0000. The mnemonics for the eight basic instructions and standard
OPR and 10T group instructions are initially defined and the highest avail-
able location for the user is initially 5363. -

From the Teletype, the user can symbolically examine and modify the con-
tents of any memory location. DDT-UP allows the user to punch a corrected
program in CBL format. '

DDT-UP has a breakpoint facility to help the user run sections of his pro-
- gram. When this facility is used, the debugger also uses location 0005.

DECUS No. 5/8-20
Remote Operator FORTRAN System

Program modification and instructions to make the FORTRAN OTS version
dated-2/12/65 operate from remote stations. -

DECUS No. 5/821 -
Triple Precision Arithmetic Package for the PDP-5 and the PDP-8

An arithmetic package to operate on 36-bit signed integers. The operations
are add, subtract, multiply, divide, input conversion, and output conversion.
The largest integer which may be represented is 2% — 1 or 10 decimal digits.
The routines simulate a 36-bit (3 word) accumulator in core location 40,
41, and 42 and a 36-bit multiplier quotient register in core locations 43,
44, and 45. Aside from the few locations in page 0, the routines use less
core storage space than the equivalent double-precision routines,

312

DECUS No. 5-22
DECtape Duplicate \

A DECtape routine for the PDP-5 to transfer all of one reel (transport 1)
to another (transport 2). Occupies one page of memory beginning at 7400.
The last page of memory is not used during the operation of the program,
however; .the memory from 1 to 7436 is used to set the DECtape reels in
the proper starting attitude and is then destroyed during duplication. Dupli-
cation will commence after which both reels will rewind. Parity error will
cause the program to halt with 0040 in the accumulator.

DECUS No. 5/8-23
PDP-5/8 Oscilloscope Symbol Generator

The subroutine may be called to write a string of characters, a pair of
characters, or a single character on an oscilloscope. Seventy (octal) symbols
" in ASCIl Trimmed Code and four special “format” commands are acceptable
to this routine. The program is operated in a fashion similar to the DEC
Teletype Output Package. : '

DECUS No. 5-24
Vector Input/Edit

‘Accepts input to a PDP-5 and allows both time¥of-entry and post time-of-
entry corrections.

DECUS No. 5-25 g
A Pseudo Random Number Generator

Thé random number generator subroutine, when called repeatedly, will return
a sequence of 12-bit numbers which, though deterministic, appears to be
drawn from a random sequence uniform over the interval 0000, to 7777,.
Successive numbers will be found to be statistically uncorrelated. The
sequence will not repeat itself until it has been called over 4 billion times.

DECUS No. 8-26a
Compressed Binary Loader (CBL) _

The CBL (Compressed Binary Loader) format in contrast to BIN format utilizes
all eight information channels of the tape, thus achieving nearly 25% in
time savings.

Whereas BIN tapes include only one checksum at the end of the tape, CBL
tapes are divided into many independent blocks, each of which includes its
own checksum. Each block has an initial loading address for the block and
a word count of the number of words to be loaded. -

The CBL loader occupies locations 7700 through 7777.

DECUS No. 8-26b
CBC (BIN to CBL) and CONV (CBL to BIN) :

Two conversion programs which use the PDP-8 on-line Teletype to read a
binary tape in one format and punch a binary tape in the other format. The
conversion programs both ignore memory field characters so that the output
is a tape for memory field O. ’

DECUS No. 8-26¢
XCBL — Extended Memory CBL Loader

XCBL is used to load binary tapes punched in CBL format into a PDP-8
with more than standard 4K memory. This loader- occupies locations 7670
through 7777 of any memory field.

@

313

DECUS No. 8-26d
XCBL Punch Program

This program permits a user to prepare an XCBL tape of portions of a
PDP-8 extended memory through the control of the keyboard of the on-line
Teletype.)

The program is loaded by the XCBL Loader

There are two versions of the program so that any section of memory may
be punched:

LOW XCBL occupies 00000 - 00377 and its starting address is 00000
HIGH XCBL oocupies 17200 - 17577 and its starting address is 17200.
The orogram may be restarted at the starting address at any time.

One option is prowded according to the setting of bit 0 of the Switch
Register. If bit 0 is a ONE, the operation of XCBL PUNCH is similar to
that of DDT-UP (DECUS No. 8-19a)

DECUS No. 5/8-27 and 5/8-27a
Bootstrap Loader and Absolute Memory Clear

Bootstrap Loader inserts a bootstrap loading program in page 0 from a
minimum of toggled instructions.

Absolute Memory Clear leaves the machine in an absolutely clear state and,
therefore, cycling around memory obeying an AND instruction with location
zero. Should not be used unless one plans to re-insert the loader program.

DECUS No. 5/8-28a
PAL 111 Modifications-Phoenix Assembler

This modification of the PAL 11l Assembler speeds up assembly on the
ASR-33/35 ahd operates only with this 1/O device. Operation is essentially
the same as PAL |ll, except that an additional pass has been added, Pass O.
This pass, started in the usual manner but with the switches set to zero,
reads the symbolic tape into a core buffer -area. Subsequent passes then
read the tape image from storage instead of from the Teletype.

DECUS No. 5/8-29
BCD to Binary Conversion Subroutines

These two subroutines improve upon the DEC supplied conversion routine.
Comparison cannot be made to the DECUS-supplied fixed-time conversions.
DECUS No. 5-6, betause it is specified only for the PDP-5. One routine is
designed for minimal storage, the other for minimal time. Both are fixed-
time conversions; time specified is for a 1.5-usec machine.

Minimal time routine: 73.6 usec/32 locations
Minimal storage routine: 85 usec/29 locations
DEC Routine: 64-237 usec/37 locations

DECUS No. 5-30
GENPLOT—General Plotting Subroutine

This self-contained subroutine is for the PDP-5 with a 4K memory and a
CALCOMP. incremental plotter. The subroutine can move (with the pen in
the up position) to location (x,y), make an “x” at this location, draw a line
from this present position to location (x,y) and initialize the program location
counters

314

DECUS No. 5-31 ‘
FORLOT—FORTRAN Plottlng Program for PDP-5

FORPLOT is a general-purpose plotting program for the PDP-5 computér
in conjunctlon with the CALCOMP 560 Plotter. It is self-contained and
occupies memory locations 0000; to 4177,. FORPLOT accepts decimal data
inputted on paper tape in either fixed or floating point formats. Formats
can be mixed at will. PDP-5 FORTRAN output tapes are acceptable directly
and any comment on these are filtered out.

DECUS No. 5/8-32a) _

Program to Relocate and Pack Program in Binary Format

Provides a means to shuffle machine language programs around in memory
_to make the most efficient use of computer store. ‘

DECUS No. 5/8-33
Tape to Memory Comparator

Tape to Memory Comparator is a debugging program which allows comparison

of the computer memory with a binary tape. It is particularly useful for -

detecting reader problems, or during stages of debugging a new program.
Presently, uses high-speed reader, but may be modified for TTY reader.

DECUS No. 5-34
Memory Halt—A PDP-5 Program to Store Halt in Most of Memory

'With Memory Halt and Opak, (DECUS No. 5-2.1), in memory, it is possible
to store halt (7420) in the following memory locations:

0001 to 0005
0007 to 6177
7402 to 7403

DECUS No. 5/8-35
BCD to Binary Conversion Subroutine and Bmary to BCD Subroutine (Double
Precision)

This program consists of a pair of relatively simple and straightforward
double-precision conversions.

DECUS No. 5-36
Octal Memory Dump Revised

The Octal Memory Dump on Teletype is a DEC routine (DEC-58 U) which
dumps memory by reading the switch register twice; once for a lower limit
“and again for an upper limit. It then types an address, the contents of the
program and the next three locations, issues a CR/LF, then repeats the
process for the next four locations. This leaves the right two-thirds of the
Teletype page unused. The 78, instructions occupy two pages. .

- This revised routine uses the complete width of the Teletype page and
occupies only one memory page, using less paper and two less instructions.
Now an address and the contents of 15 locations are typed out before a
carriage return.

Octal Memory Dump Revised has proved its value as a subroutine and/or
a self-contained dump program when it is necessary to dump large sections

of DECtape, magnetlc tape (IBM compatlble) or a binary formatted paper -
tape.

DECUS No. 5-37
Transfer 11

For users who have more than one memory bank attached the PDP-5/8,
315 |

Transfer 11 may prove valuable in moving information from one field to
another. When debugging, Transfer Il enables a programmer to make a
few changes in a2 new program and test it without reading in the originai
program again. Transfer |l enables more extensive use of memory banks.

DECUS No. 5/8-38
FTYPE—Fractional Signed Decimal Type-In

Enables a user to type fractions of the form: .582. —.73, etc.; which will
be interpreted- as sign plus 11 bits (e.g., 0.5 = 2000;). Subroutine reads
into 300-3177 and is easily relocated, as it will work on any page without
modifications.

DECUS No. 5/8-39 :
DSDPRINT, DDTYPE—Double-Precision Signed Decimal Input-Output Package

DSDPRINT, when given a signed 24-bit integer, types a space or minus
sign, and then a 7-digit decimal number in the range —8388608 to
+8388607. DDTYPE enables user to type in a signed decimal number in
either single or double precision. These routines are already separately
-available, but the present subroutine package occupies only one memory
page and allows for more efficient memory allocation. Located in 3000-3177,
but will work on any page. _

DECUS No. 5-40
ICS DECtape Routines (One-Page)

The routines will read or write from the specified DECtape unit and delay
the program until all 1/0 is completed. The last block read will gverflow
-the specified region and destroy one core location. Only standard 129 word
DECtape blocks will be read or written. The routines will halt if an error

occurs with the status bits in the AC.

DECUS No. 5-41
Breakpoint

This debugging routine has been reduced to a minimum operation. It is
a mobile routine which can operate around any program that leaves an
extra 30 cells of memory space.

Its function is to insert break points in any given location of the program
being debugged, and to hold the contents of AC and Link. The programmer
may examine any locations desired and then continue to the next breakpoint.
It is presently located in 14041705, but may be easily relocated.

DECUS No. 5-42
Alphanumeric Input

With the Alphanumeric Input Package, any character may be read into the
PDP-5 through either the Teletype or the high-speed reader. The characters

are packed two/cell and stored in the address indicated in the switch
rekister.

DECUS No. 5/8-43]
Unsigned Octal-Decimal Fraction Conversion

This routine accepts a four-digit octal fraction in the accumulator and prints
it out as an N-digit decimal fraction where N = 12 unless otherwise speci-
fied. After N digits, the fraction is truncated. Programs are included for
- use on the PDP-5 with Type 153 Automatic Multiply-Divide and the PDP-8
with Type 182 Extended Arithmetic Element.

Storage requirements: 55 Octal locations for the PDP-5. 47 Octal locations
for the PDP-8.

316

DECUS No. 8-44 '
Modifications to the Fixed Point Output in the PDP-8 Floating Point Package
(Digital 8-5-S) * :
The Floating Point Package (Digital 8-5-S) includes an Output Controller
which allows output in fixed point as well as floating point format. This
Output Controller takes the form of a certain number of patches to the
“Floating Output E Format” routine, plus an additional page of coding.

Using the Calculator program (Digital 8-10-S), which includes the Floating
Point Package, certain deficiencies were noted in the fixed-point output
format, particularly the lack of any automatic rounding off. For example,
the riumber 9, if outputted as a single digit, appears as 8. Modification
attempts to provide automatic rounding off resulted in the Output Controller
being completely rewritten with minor changes in the format.

This new version of the Output Controller is also in the form of patches
to the Floating Output with an additional page of coding, thereby not in-
creasing the size of the Floating Point Package.

The following summarizes this new version:

1. The number output is automatically rounded off to the last digit
printed, or the sixth significant digit, whichever is reached first.
Floating point output is rounded off to six figures since the seventh
is usually meaningless. _

2. A number less than one is printed with a zero preceding the decimal
point (e.g., “4+0.5" instead of “4-.5").

3. A zero result, after rounding off, is printed’as “+0" instead of “4-".

4. The basic Floating Point Package includes the facility to specify a
carriage return/line feed after the number using location-55 as a
flag for this purpose. The patches for the Output Controller caused
this facility to be lost. This version restores this facility.

DECUS No. 5/8-45 .
PDP-5/8 Remote & Time-Shared System

A time-shared programming system which allows remote stations immediate
access to the computer and a wide selection of programs.

DECUS No. 5/8-46

PDP-5/8 Utility Programs -

Consists of four programs (listed below) each of which may be selected
via the teletypewriter. When the program is started, either by a self-starting
binary ioader or by manually starting the computer in address 200(), it
is in its executive mode. In this mode, it will respond only to five keys
and perform the following functions:

B—go to BIN to QK Converter Program

E—go to Editor Program
-L—type a section of leader and stay in executive
P—go to Page Format Program

Q—go to QK to BIN Converter Program

DECUS No. 8-47 :
ALBIN—A PDP-8 Loader for Relocatable Binary Programs

ALBIN is a simple method for constructing relocatable binary formatted
programs, using the PAL Il Assembler. Allocation of these programs can
be varied in units of one memory page (128,, registers.). When loading
an ALBIN program, the actual absolute addresses of indicated program

317

elements (e.g., the keypoint of subroutines) are noted down in fixed program-
specified location on page zero. In order to make a DEC symbolic program
suitable for translation into its relocatable binary equivalent, minor changes
are required, which, however, do not influence the length of the program.
Due to its similarity to- the standard DEC BIN loader, the ALBIN loader
is also able to read-in normal DEC binary tapes. ALBIN requires 122,
locations, RIM loader included. Piling-up in core memory of ALBIN programs
stored on conventional or DECtape can be achieved using the same method
with some modifications.

DECUS No. 5/8-48
Modified Binary Loader MKIV

The Mark IV Loader was developed to accomplish four objectives:

1. Incorporate the self-starting format described in DECUS 5/8-27,
ERC Boot.

Selected the reader in use, automatically, without switch register
settings.

2
3. Enables a newly-prepared binary tape to be checked prior to loading
4

by calculating the checksum.
Reduce the storage requirements for the loader so that a special
program would fit on the last page of memory with it.

DECUS No. 8-49
Relativistic Dynamics

Prints tables for relativistic particle collisions and decay in the same format

s (R

as the Oxford Kinematic Tat?'les. It can be used in two ways:

1. Two-particle Collisions—Given the masses of incident, target, and
emitted particles, the incident energy and centre-of-mass angles, the
program calculates angles and energies of the emitted particles in
the Lab frame. If the process is forbidden energetically, program
outputs “E” allowing the threshold energy to be found.

2. Single Particle Decays—By specifying M2 = 0 (target), the problem
will be treated as a decay, and similar tables to the above will be
printed. ’ T

DECUS No. 5/8-50 _
Additions to Symbolic Tape Format Generator (DEC-8-21-U)

Performs further useful functions by the addition of a few octal patches.
By making the appropriate octal patches via the toggles, the Format
Generator can also format FORTRAN tapes, shorten tape by converting space
to tabs, and convert the type of tape.

A short binary tape may‘be made and added on to the end of 8-21-U to “edit"
an original tape that was punched off-line.

The rubout character will cause successive deletion of the previous. charac-

ters until the last C. R. is reached but not removed. The use of “<" will

cause the current line to be restarted. Thus an input tape may be prepared
off-line without attention to format spacing, mistakes corrected as they

occur, and finally passed through the Format Generator to create a correctly

formatted, edited, and line-fed on either rolled or fanfold paper tape.

DECUS No. 5/8-51 _
Character Packing and Unpacking Routines

ASCIl characters may be packed two to a word and recovered. Control

318

characters are also packable'but are preceded by a 37 before'being packed
. into the buffer. The two programs total 63, words. '

DECUS No. 8-52

Tiny Tape Editor _
This Tiny Tape Character Editor fits in core at the same time as the PAL
Il or MACRO-8 assemblers. A tape may be duplicated at three speeds and
stopped at any character for insertion or deletion. The toggle switches
control the speed and the functions desired. ' : ‘

The program occupies 72 registers.

DECUS No. 5/8-53
COPCAT

COPCAT is a tape to tape copy routine for PDP-5 and PDP—&DECtape..

DECUS No. 5/8-54 .

Tic-tac-toe Learning Program—T3 _

This program plays Tic-tac-toe basing its moves on stored descriptions of
previously lost games. The main program is written in FORTRAN. There is
a short subroutine written in PAL Il used to print out the Tic-tac-toe board.
" The program comes already educated with about 32 lost games stored.
Requires FORTRAN Object Time System.

'DECUS No. 5/8-55 ' ‘

PALEX—An On-Line Debugging Program for pPDP-5 and PDP-8 ,
One problem with programs written in Program Assembly Language (PAL)
for operation on a PDP-5/8 computer is the danger of an untested program
being self-destructive, running wild, destroying other programs residing in
memory such as loading programs. PALEX prevents any of the above un-
wanted operations from occurring while it gives the operator-programmer
valuable debugging information and enables him to make changes in his
program and try out the modified program. Once running, PALEX cannot
be destroyed by any program or instruction in memory, the operator need |
not touch any manual console controls, and all required information is -
printed in easy-to-read format on the Teletype console.

DECUS No. 5/8-56

Fixed Point Trace No. 1

A minimum size monitor program which executes the users program onée
instruction at a time and reports the contents of the program counter, the
octal instruction, the contents of the accumulator and link and the contents
of the effective address by means of the ASR-33 Teletype. Storage Require-
ments: two pages.

DECUS No. 5/8-57

Fixed Point Trace No. 2

Similar to Fixed Point No. 1 except that the symbolic tape provided has a
single origin setting instruction of (6000). Any four consecutive memory
pages can be used, with the exception of page zero, by changing this one
instruction. ' :

DECUS No. 8-58 :
One-Page DECtape Routine (522 Control)

A general-purpose program for reading, writing, and searching of magnetic
tape. This program was written for the Type 552 Control. It has many
advantages over both the standard DEC routines and also over the DECUS

319

No. 5-46. The routines are one-page long and can be operated with the
interrupt on or off. The DEC program delays the calling program while
waiting for the unit and movement delays to time-out. This routine returns
control to the calling program. This saves Vs second every time the tape
searches forward and half that time when it reverses. In addition, it will
read and write block 0,. This program is an_ advantage over the previous
one-page routines in that it allows interrupt operations, doesn’t overfiow
- by one location, interrupts the end zone correctly and not as an error, 'and
provides a calling sequence identical to the DEC program.

DECUS No. 8-59 '
PALDT—PAL Modified for DECtape (552 Control)

When assembling programs, PALDT requires that the symbolic tape be read
in only once. The program writes on the library tape itself after finding
the next available block from the directory. During pass 0 the tape is read
in using the entire user's symbol table. During passes 1, 2, 3, as mtich
of the symbol table is used as possible. This means the fewest tape passes
as possible. As an added advantage pass 0 ignores blank tape, leader-trailer,
line feeds, form feeds, and rub outs; saving space. The whole program
decreases the users symbof table by only three pages: one for the DECtape
program above, one for pass 0, and one for the minimal length read in
buffer.

DECUS No. 8-60

Square Root Function by Subtraction Reduction

A single precision sguare routine using EAE. This routine is usually faster
than the DEC routine and can easily be modified for double precision
calculation at only twice the computation time.

DECUS No. 8-61 .
Improvement to Digital 8-9-F Square Root

An improved version of the DEC Single Precision Square Root Routine (with-
out EAE). Saves a few words of storage and execution is speeded up 12
per cent. _

DECUS No. 8-62
High-Speed Reader Option for FORTRAN Compiler

Program modification that allows the PDP-8 FORTRAN Compiler to read
source tapes through the high-speed reader, and punch on the ASR-33.
The program is loaded in over the compiler. It can be punched on an
extension of the compiler tape so that by depressing the CONTINUE key,
it can be read in immediately following the compiler.

DECUS No. 5-63

SBUG-4

SBUG-4 allows the PDP-5 to execute one instruction of any given program
at a time, returning to SBUG-4 following each instruction and printing out
the contents of various registers. This permits following the path of a
program which has gone astray or examining some defective operation.

DECUS No. 5/8-64
DECtape Programming System

This program provides rapid access to DEC software and utilizes routines
through the use of DECtape. Programs may be stored, edited, assembled,
listed, or executed without reliance upon paper tape.

May be used with both TCO1 and 552 DECtape Controls.

320

'DECUS No. 8-65
A Programmed Associative Multichannel Analyser

The program describes the use of a small computer as an assoc:ate analyser
with special reference to the PDP-8. The advantages and limitations of the
method are discussed in the write- up, and general program algorithms are
- presented. : '

DECUS No. 8-66 '

Editor Modified for DECtape

This program consists of modifications to the Digital 8-1-S Symbolic Editor
' to enable reading and writing on DECtape This results in considerable time
savings in assembling PAL' programs since PAL has also been modified to
accept the symbolic program directly from DECtape. The DECtape com-
patibility is also useful for storing text for later use and for regaining Editor
memory space lost due to delete and change commands.

In addition, the overflow detection routlne is now foolproof and results in
a HALT.

Storage: Editor <0, 1461>

Modifications: <1462, 1502> <6376, 7177>
DECtape Routines: <7200, 7577> -
Equipment: PDP-8 with EAE, ASR-33, DECtape

DECUS No. 8-67
PAL Modified for DECtape Input

This program consists of modifications to the Digital 8-3L-S PAL Assembly
Program to enable it to obtain the symbolic program to be assembled from
DECtape (in addition to paper tape), outputting the assembled program
in the usual manner. (The symbolic program is written onto DECtape by
use of the “Editor Modified for DECtape” Program.) The modification also
makes it possible to assemble sections of programs in any order, and to
intersperse sections or commands from the keyboard with those from DEC-
tape. The resulting assembly is limited in speed mainly by the punching of
the assembled program during Pass 2, and Pass 1 is speeded considerably.
The modifications also include a tabulator mterpreter, so that Pass 3 listings
are produced in tabulated format.

Storage: PAL llI <0, 3561> plus symbol table
Modifications: <6555, 7177>
. DECtape Routines: <7200, 7577>
Equipment: PDP-8 with EAE, ASR-33, DECtape

DECUS No. 8-68
ALP Program

The ALP Program punches labels for paper tapes. When a key is stuck on
the on-line Teletype keyboard, no echo is performed, but the PDP-8 outputs
a few characters to the Teletype punch which form ‘the outline of the
character associated with the key.

The character outlines have a fnxed' width or 5 lines of tape, followed by
3 blank lines for separation between characters; all 8 columns of the paper
tape are used to provide the maximum height of character outlines.

321

* DECUS No. 5/8-69

2 = m

LESQ2Z9 and LES@QI

The purpose of the prpgram is to fit the best sequences of parabolas to a
given 400 point data curve in order to remove extraneous noise; rather than
rely on a single 400 point parabola least squares fit to approximate a given
data curve. Approximately 400 individual parabolas are computed as follows.

LESQ29

Data values 1 through 29 are subjected to a second order Least Squares fit.
The median point of the resulting parabola (point #15) is then substituted
for the original data value #15.* »

A second parabola is then computed using data values 2 through 30. The
median point of this parabola (point #16) is then substituted for point #16
of the original data curve.

This procedure is repeated until all data values have been replaced (except
for the first and last 14 points which are excluded by the mechanics of the
operation).

. LESQ11

Process identical to LESQ29 except that an 11 rather than a 29 point smooth
interval is used.. First point replaced is point #6, and only the flrst and last
5 points are excluded from smoothing. _

LESQI11 will preserve higher frequency data than LESQ29 for a given data
curve with constant time between data points.

Minimum Hardware: 4K Memory PDP-5 or PDP-8, Teletypewnter (p!otter DEC-
tape optlonal)

Other Programs Needed: Floating Point Package and appropriate data han-
dling routines.

Storage Requirements: (LESQ11: 400-564; 700-716)
(LESQ29: 400-564; 700-751)

Execution Time: (PDP-5) LESQ11: 1 minute.
LESQ29: 2.5 minutes.

Restrictions: Positive integer data <3777 time between data points con-
stant.

*See B. J. Power, R. N. Hagen, S. O. Johnson, “SPORT, A System for Process-
ing Reactor Transient Data on the IBM-7040 Computer,” pp. 4-8, AEC Re-
search and Development Report (ID0O-17078), Available from: The Clearing-
house for Federal Scientific and Technical Information, National Bureau of
Standards, U. S. Department of Commerce, Springfield, Virginia.

DECUS No. 8-70
EAE Routines for FORTRAN Operating System (DEC-08-CFA3)

These are two binary patches to the FORTRAN Operating System which uti-
lizes the Type 182 EAE hardware for single precision multiplication and
normalization, replacing the software routines in FOSSIL (the operating
system). The binary tape is loaded by the BIN Loader after FOSSIL has been
loaded. Execution time of a Gauss-Jordan matrix inversion is reduced by
approximately 30%.

322

Minimum Hardware: PDP-8 with Type 182 EAE

Other Programs Needed: FORT RAN Operating System (DEC-08-CFA3-PB)
dated March 2, 1967.

DECUS No. 8-71
Perpetual Calendar °

The program is designed as a computer demonstration. When a valid date

" is fed into the computer, the corresponding day of the week is typed out.
If an invalid date is given, “YOU GOOFED, TRY AGAIN” is typed out. The
program is based on the Gregorian Caiendar and is, therefore, limited to years
between 1500 and 4095. The upper limit being due to the computer's
capacity.

Minimum Hardware: 4K storage, ASR-33 Teletype
‘Storage: 20-1333

DECUS No. 8-72
Matrix Inversion — Real Numbers

The program inverts a matrix, up to size 12 x 12, of real numbers. The algo-
rithm used is the Gauss-Jordan method. A unit vector of appropriate size is
generated internally at each stage. Following the Gauss sweep-out, the matrix
"is shifted in storage, another unit vector is generated, and the calculation
proceeds. - }

Other Programs Needed: FORTRAN Compiler and FORTRAN Operating System.

Storage: This program uses essentially all core not used by the FORTRAN
Operating System.

Execution Time: Actual computation takes less than 10 seconds. Data read-in
and read-out may take up to five minutes.

DECUS No. 8-73
Matrix Inversion — Complex Numbers ' :

The program inverts a matrix, up to size 6 x 6, of complex numbers. The algo-
rithm used is the Gauss-Jordan method, programmed to carry out complex
number calculations. A unit vector of appropriate size is generated internally.
Following the Gauss sweep-out, the matrix is shifted, another unit vector
is generated, and the calculation proceeds. The print-out of the matrices
uses the symbol J to designate the imaginary part, e.g. A=a-jb.

Other Programs Needed: FORTRAN Compiler and FORTRAN Operating System.

Storage: This program uses essentially all core not used by the FORTRAN Op-
erating System.

Execution Time: Actual computation takes less than 10 seconds. Data read--
in and read-out may take up to five minutes.

DECUS No. 8-74
Solution of System of Linear Equations: AX = B, by Matrix Inversion and
Vector Multiplication

This program solves the set of linear algebraic equations AX = B by invert-
ing matrix A using a Gauss-Jordan method. When the inverse matrix has
been calculated, it is printed out. At that point, the program requests the
B-vector entries. After read-in of the B-vector, the product is computed and
printed- out. The- program--then--loops back to request another B-vector,
allowing the system to solve many sets of B-vectors without the need to

323.

invert matrix A again. Maximum size is 8 x 8.

Other Programs Needed: FORTRAN Compiler and FORTRAN Operating
System.

Storage: This program uses essentially all core not used by the FORTRAN
Operating System.. .

Execution’ Time: Actual computation is less than 10 seconds, Data read-in
and read-out may take up to five minutes. ’

DECUS No. 8-75 .
Matrix Multiplication—-lncluding Conforming Rectangular Matrices

This program multiplies two matrices, not necessarily square but which
conform for multiplication.

Other Programs Needed: FORTRAN Compiler and FORTRAN Operating
System.

Storage: This program uses essentially all core not used by the FORTRAN
Operating System.

Execution Time: Actual computation takes less than 10 seconds, Data read-in
and read-out may take up to five minutes.

Author's comments regarding the four matrix routines: DECUS Nos. 8-72,
-73, -74, -75.

“Each program has been written in FORTRAN for use on the basic PDP-8,
The printed output of each program has been organized to efficiently and
effectively use the Teletype, yet maintain a readable and meaningful output
format. This has been done at the. expense of optimizing storage require-
ments. Thus, each program may be changed to handle slightly larger
cases by cutting down on the print-out information. Since the source
programs are in FORTRAN, a user may readily change the program to suit
his own requirements.

“Another common feature of each program is a print-out of the input data
from core. This has been found desirable for checking that data was read
in properly, and for purposes of having an accurate record of a given
calculation. Also, since each program requires a large amount of data input,
it is suggested that a data tape be made prior to running the program.

“The matrix inversion scheme used is straightforward and gives good results
on run-of-the-mill matrices. However, error build-up is quite rapid on an
ill-conditioned matrix. This is partly due to errors in the fifth and sixth
decimal place caused by the floating point conversion at read-in time, and
also to the limited mantissa carried in the PDP-8 floating point word.”

DECUS No. 8/8S-76

PDP NAVIG 2/2

This program utilizes the output of the U. S. Navy’'s AN/SRN-9 satellite
navigation receiver to obtain fixes on a PDP-8 or PDP-8/S. This program,
except for some details of input and output, follows very closely NAVIG2
written for the IBM 1620 which in turn is derived from the TRIDON program
written at the Applied Physics Laboratory of Johns Hopkins University for
the IBM 7090.

PDP NAVIG 2/2 is written in PAL 11| for a 4096 -core machine using the
ASR-33.\ Floating point numbers using two 12-bit words as mantissa and

324

N

one 12-bit word as exponent are employed. The accuracy is slightly less
than that using 7 decimal digits per word.

DECUS No. 8/8S-77

PDP-8 Dual Process System

The purpose of this system is to expedite the programming of multiprocess-
ing problems on the PDP-8 and PDP-8/S. It maximizes both the input
speed and the portion of real time actually used for calculations by allow-
_ing the program to run during the intervals between issuing /O commands
and the raising of the device flag to signal completion of the command.
The technique also allows queuing of input data or commands so that
"the user need not wait while his last line is being processed, and so that
each line of input may be processed as fast as possible regardless of its
length. The system uses the interrupt facilities and has less than a 3%
overhead on the PDP-8/S (about .1% on the PDP-8).

This method is especially useful for a slower ‘machine where the problem
may easily be calculation limited but.would, without such a system, become
1/0 bound.- o

. The program may also be easily extended to handle input from an A/D
converter. Here, the input would be buffered by groups of readings termi-
nated either arbitrarily in groups of N or by zero crossings.

The system requires. 600; registers for. two TTY’s plus buffer space. Several
device configurations are possible. _

This program can increase the /O to computation efficiency of some
programs by 100%. It can do this even for a single Teletype. Each user
will probably want to tailor the program to his individual needs.

DECUS No. 8-78 ' :
Diagnose: A Versatile Trace Routine for the PDP-8 Computer with EAE
This trace routine will track down logical errors in a program (the “sick”
program). Starting at any convenient location in the “sick” program, in-
structions are executed, one at a time, and a record of all operations is
printed out via the Teletype. To avoid tracing proven subroutines, an option
is provided to omit subroutine tracing. The present routine is significantly
more versatile than two other trace routines in the DECUS library (DECUS
~ Nos. 8-56 and 8-57 — Biavati) for the PDP-8 in that it is able to trace
“sick” programs containing floating-point, extended arithmetical, and a
variety of input-output instructions. Diagnose is, however, at a disadvantage
compared with Biavati’s first routine (DECUS No. 8-56) in requiring more
memory space (five pages as opposed to two); and compared with his
second routine (DECUS No. 8-57) in not possessing the trace-suppression
features of the latter. The mode of operation of Diagnose is quite different .
from that of the trace routines of Biavati.

Minimum Hardware: PDP-8 with EAE

Other Programs Needed: Floating Point Package needed for floating point
tracing. :

Storage: 5(4) pages of memory.

Miscellaneous: Program is relocatable.

325

DECUS No. 8-79

TIC-TAC-TOE (Trinity College Version)

This TIC-TAC-TOE game is programmed, using internal logic, so that the
computer will either win or stalemate, but not lose a game, Either the
player or the computer may choose to go first. At the termination of a
game, the program restarts for the next game by typing anew the grid
code to be followed.

DECUS No. 8-80
Determination of Rea] Eigenvalues of 2 Real Matrix

This is a two-part program for determining the real eigenvalues of a
real-valued matrix. The matrix does not have to be symmetric. Part | uses
the power method of iterating on an eigenvector to determine the largest
eigenvalue of the matrix. Part Il then deflates the matrix using the results
of Part | so as to produce a matrix of order one less than that solved for
in Part |. Part | can then be reloaded, and the next eigenvalue in line
may be calculated. In this, all the real eigenvalues may be computed in
order. - '

DECUS No. 8-81
A BIN or RIM Format Data or Program Tape Generator

This program enables a PDP-8 operator to generate tapes under Teletype
control in RIM or PAL BIN format without formal assembly, assuming the
operator knows the octal codes corresponding to each instruction. This is
particularly useful when one is dealing with small programs for testing
interface equipment or when making small modifications to large programs
when one does not wish to spend time reassembling the whole program.
Often during program debugging, changes are repeatedly toggled into core
manually, which leaves no permanent record of the changes made and is
prone to error. Tapes generated using this program can be appended to
existing. BIN or RIM tapes and can then be loaded with the original tape
into core with the appropriate loader. Another use of this program is in
the preparation of data tapes in RIM or BIN format so that data can be
loaded straight into PDP-8 core via the usual leaders. The program also
generates leader/trailer code and a checksum under program control.

Storage: Program occupies locations 6000-6077.

DECUS No. 8-82 .
Library System for 580 Magnetic Tape (Preliminary Version)

The system provides for storing program files (or other filesj on the 580
Magnetic Tape with PDP-8, and recalling them at will without altering the
state of the rest of the computer. In general principle, it is similar to
the DECtape Library System, and the only effective storage requirement is
the last page of memory.

At present, the sj/stem consists of three programs known as BOOTSTRAP
1, BOOTSTRAP 2, and the LIBRARY Routines.

Bootstrap 1 is a minimal loader program which resides in the last page
of memory. Its function is to rewind the tape and load Bootstrap into the
last page, automatically transferring control to it. Bootstrap saves the area
of core to be used by the system as a record on the magnetic tape, loads
the Library Routines into core, and transfers control to them.

The Library Routines comprise a Directory of the files on tape, an lnpﬁt-
Output package, enabling communication with the Teletype, and four

326

system programs: |

List: Types out the namés of files in the Directory

CAll: Transfers a file into core and exits

DUmp: Writes a file on tape, rewrites the Directory, and exits

. EXit: Restores the cbmputer_to its original state, with Bootstrap 1 and BIN
on the last page.

subroutines and some control functions are mr~|nr|nr~|

otir +fono
LuP ATV rd A AL W

Tha
1Mic |||asl et

in Bootstrap 2. Each entry in the directory consists of three words: the
name of the file, its first location in core, and the number of words it
occupies. The capacity of the directory is 22, entries.

DECUS No. 8/8S-83A and B _
Octal Debugging Package (With and Without Floating Point)

This program is an on-line debugger which will communicate with the
operator through the ASR-33 Teletype. It allows register examination and
modification, octal dumping, binary punchmg, multiple and simultaneous
breakpoints, starting a program, and running ‘at a particular location with
preset AC and link. ODP is completely relocatable at the beginning of all
pages except page zero, and is compatible with the PDP-5, the PDP-8, and
the PDP-8/S.

Requirements: The hngh version of ODP requires locations 7000-7577. The
low version requires locations 0200-0777. All versions will require three
pages. Also, location 0002 is used for a breakpoint pointer to ODP.

Equipment: The standard PDP-8 with ASR-33 Teletype is requwed A hlgh-
speed punch is optional.

DECUS No. 8-84
One-Pass PAL IlI

This is a modification to Digital 8-3L-S. It is for'use on an 8K PDP-8 with
ASR 33. The principle of the modification is to store the incoming charac-
ters during Pass | into the memory exterdsion and to take them from
‘there during Pass 2 and 3. Source programs must be limited to 4095
characters. This -modification can save about 40% of assembly time.

Operation of the program is the same as for PAL Il except that the reading
of the source program for Pass 2 and 3 need not be repeated. For these
passes, one simply pressses CONTINUE after settmg the correct switches.

Restriction: The program does not work with high-speed reader and punch.

DECUS No. 5/8-85 .

Set Memory Equal to Anything

This program will preset all locations to any desired settings. Thus, com-
bining a memory clear, set memory equal to HALT, etc. into a single
program. The program is loaded via the switch registers into core.

DECUS No. 8-86
High-Speed Reader Option for PDP- 8 FORTRAN Compiler for use with
DECtape-Stored Compiler
This program is for DECtape installations and utilizes the High-Speed Reader
Routine in the DECtape Binary Loader. It is a modification to DECUS 8-82,
High-Speed Reader Option. DECUS 8-82 is not usable by installations

327

equipped with DECtape because it utilizes part of the last page reserved
for the DECtape loader.

T b fam o s ~d l« PR O
Higts] sitiary LCI|J Ul iUl

a is
piler, then the entlre lo d put onto DECtape

DECUS No. 6/8-12
PDP-8 Assembhler for PDP-6

Assembles PDP-8 programs written in PAL on a PDP-6 using any 1/O devices.

328

APPENDIX 2
TABLES OF INSTRUCTIONS

PDP-8/I MEMORY REFERENCE INS.TRUCTIONS

Direct Addr.

Indirect Addr.

-States
En-
tered

Execu-
tion
Time
(usec)

States
En-
tered

Execu-
tion
Time:
(usec)

Operation

AND Y

TAD Y

ISZ Y

0 FE

3.0

30

3.0

F,DE

F,D,E

F,D,E

329

4.5

Logical- AND. The AND
operation is performed
between the content of
memory location Y and
the content of the -AC.
The result is left in the
AC, the original content
of the AC is lost, and
the content of Y is re-
stored. Corresponding
bits of the AC and Y

. are operated upon inde-

4.5

4.5

pendently.

ACj A Yj = > ACj ‘
Two’s complement add. ~.
The content of memory
location Y is added to
the content of the AC
in two's complement
arithmetic. The result of
this addition is held in
the AC, the original
content of the AC is
lost, and the content of
Y is restored. If there
is a carry from ACO, the
link is complemented.
AC+Y=>AC

Increment and skip if
zero. The content of
memory location Y is in-
cremented by one. |If
the resultant content of
Y equals zero, the .con-
tent of the PC is incre-
mented and the next
instruction is skipped.
If the resultant content
of Y does not equal
zero, the . program
proceeds to the next

PDP-8/1 MEMORY REFERENCE INSTRUCTIONS (continued)

Direct Addr. Indirect Addr.

Mne- Opera-

monic tion | States Ezc(%c;‘u- States E);gcnu— 0 .

peration

Symbol Code En- | En- | 5

tered| ,''M€ | tered | ''ME
(usec) {usec)
instruction. The incre-
mented content of Y is
- restored to memory. |If
resultantY = 0,
PC+1=>PC.

DCA Y 3 F.E 3.0 F,D,E 4.5 Deposit and clear AC.
The content of the AC
is deposited in core
memory at address Y
and the AC is cleared.
The previous content of
memory location Y s
lost.

AC=>Y
0=>AC

JMS Y 4 F,E 3.0 F,D,E 45 Jump to subroutine.

: The content of the PC

is deposited in core
memory location Y and
the next instruction is
taken from core mem-
ory location Y + 1.
PC+1=>Y
Y+1=>PC

IMP Y 5 F 1.5 F,D 3.0 Jump to Y. Address Y

is set into the PC so
that the next instruc-
tion is taken from core
memory address Y. The
original content of the
PC is lost.

Y=>PC

330

PDP-8/I GROUP 1 OPERATE MICROINSTRUCTIONS

Mnemonic Octal

Symbol Code Operation

NOP 7000 No operation. Causes a 1.5 usec program de-
lay.

IAC 7001 Increment AC. The content of the AC is incre-
mented by one in two’s complement arith-
metic.

RAL 7004 4 Rotate AC and L Ieft The content of the AC

' and the L are rotated left one place.
RTL 7006 4 = Rotate two places.to the left. Equivalent to
’ two. successive RAL operations.
RAR 7010 4 Rotate AC and L right. The content of the AC
: and L are rotated right one place.
RTR 7012 4 Rotate two places to the right. Equwalent to -
. ' two successive. RAR operations.

CML 7020 2 Complement L.

CMA 7040 2 Complement AC. The content of the AC is set
to the one’s complement of its current con-
tent.

CIA 7041 Complement and . increment accumulator.
Used to form two’s complement.

CLL 7100 Clear L.

CLL RAL 7104 Shift positive number one left.

CLL RTL 7106 Clear link, rotate two left.

CLL RAR 7110 Shift positive number one right.

CLL RTR 7112 Clear link, rotate two right.

STL 7120 Set link. The L is set to contain a binary 1.

CLA - 7200 Clear AC. To be used alone or |n OPR 1 com-
bmatnons

CLA IAC 7201 Set AC = 1.

GLK 7204 Get link. Transfer L into AC 11.

CLA CLL 7300 Clear AC and L.

STA . 7240 Set AC = —]1. Each bit of the AC is ‘set to
containa 1.

331

PDP-8/I GROUP 2 OPERATE MICROINSTRUCTIONS

- s o s 3 oy

‘wmcmumb

Octal

Symbol Code Sequence Operation

HLT 7402 3 Halt. Stops the program after completion of
the cycle in process. If this instruction is
combined with others in the OPR 2 group the
other operations are completed before the
end of the cycle.

OSR 7404 3 OR with switch register. The OR function is
performed between the content of the SR
and the content of the AC with the result
left in the AC.

SKP 7410 1 Skip, unconditional. The next instruction is
skipped.

SNL 7420 1 Skip if L #+ 0.

SZL 7430 1 Skip if L = 0.

SZA 7440 1 Skip if AC = 0.

SNA 7450 1 Skip if AC = 0.

SZA SNL 7460 1 Skip if AC = 0, or L = 1, or both.

SNA SZL 7470 1 Skipif AC #+ Oand L = 0.

SMA 7500 1 Skip on minus AC. If the content of the AC is
a negative number, the next instruction is
skipped.

SPA 7510 1 Skip on positive AC. If the content of the AC
is a positive number, the:next instruction is

’ ' skipped.

SMA SNL 7520 1 Skip if AC < 0, or L = 1, or both.

SPA SZL 7530 1 Skipif AC>0andif L = 0.

SMA SZA 7540 1 Skip if AC < 0.

SPA SNA 7550 1 Skip if AC > 0.

CLA 7600 2 Clear AC. To be used alone or in OPR 2 com-
binations.

LAS 7604 1,3 Load AC with SR.

SZA CLA 7640 1,2 Skip if AC = 0, then clear AC.

SNA CLA 7650 1,2 Skip if AC # 0, then clear AC.

SMA CLA 7700 1,2 Skip if AC < 0, then clear AC.

SPA CLA 7710 1,2 Skip if AC > 0, then clear AC.

332

PDP-8/1 EXTENDED ARITHMETIC ELEMENT
MICROINSTRUCTIONS

Mnemonic Octal

Symbol .

Code

- Sequence

Operation

. MUY

Dvi

NMI

SHL

7405

7407

7411

7413

3

Multiply. The number held in the MQ is mul-
tiplied by the number held in core memory
location PC + 1 (or the next successive core
memory_location after the MUY Command).

~ At the conclusion of this command the most

significant 12 bits of the product are con-
tained in the AC and the least significant 12
bits of the product are contained in the MQ.
Y x MQ = > AC, MQ.

Divide. The 24-bit dividend held in the AC
(most significant 12 bits) and the MQ (least
significant 12 bits) is divided by the number
held in core memory location PC + 1 (or the
next successive core memory location follow-
ing the DVI command). At the conclusion of
this command the quotient is held in the
MQ, the remainder is in the AC, and the L

-contains a 0. If the L contains a 1, divide

overflow occurred so the operation was con-
cluded after the first cycle of the division.
AC, MQ = Y = > MQ.

Normalize. This instruction is used as part
of the conversion of a binary number to a
fraction and an exponent for use in floating-
point arithmetic. The combined content of the
AC and the MQ is shifted left by this one
command until the content of ACO is not
equal to the content of AC1, to form the frac-
tion. Zeros are shifted into vacated MQll
positions for each shift. At the conclusion of
this operation, the step counter contains a-
number equal to the number of shifts per-
formed. The content of L is lost.
ACj=>ACj—1

ACO=>1L

MQO = > AC11

MQj = > MQj— 1

0 = > MQ11 until ACO # AC1

Shift arithmetic left. This instruction shifts
the combined content of the AC and MQ to
the left one position more than the number
of positions indicated by the content of core
memory at address PC + 1 (or the next suc-
cessive core memory location following the
SHL command). During the shifting, zeros
are shifted into vacated MQ1l1 positions.
Shift Y + 1 positions as follows:

ACj= >ACj—1

ACO=>1L

333

PDP-8/1 EXTENDED ARITHMETIC ELEMENT

MICROINSTRUCTIONS
(continued)
Mnemonic Octal :

Symbol Code Sequence Operation
MQO = > AC11
MQRj = >MQj—1
0=>MQil

ASR 7415 3 Arithmetic shift right. The combined content
of the AC and the MQ is shifted right one
position more than the number contained in
memory location PC + 1 (or the next suc-
cessive core memory location following the
_ASR command). The sign bit, contained in
ACO, enters vacated positions, the sign bit
is preserved, information shifted out of MQ11
is lost, and the L is undisturbed during this
operation. Shift Y' 4+ 1 positions as follows:
ACO = > ACO
ACj=>ACj+ 1
ACl1l = > MQO

LSR 7417 3 Logical shift right. The combined content of
the AC and MQ is shifted ‘left one position
more than the number contained in memory
location PC + 1 (or the next successive core
memory location following the LSR command).
This command is similar to the ASR com-
mand except that zeros enter vacated posi-

+ tions instead of the sign bit entering these

locations. Information shifted out of MQ11
is lost and the L is undisturbed during this
operation. '
Shift Y + 1 positions as follows:
0 =>AC0
ACj=>ACj+ 1
ACl11 = > MQO
MQj = >MQj + 1

MQL 7421 2 Load multiplier quotient. This command
clears the MQ, loads the content of the AC
into the MQ, then clears the AC. :
0=>MQ
AC = > MQ

) 0=>AC

SCA 7441 2 Step counter load into accumulator. The con-
tent of the step counter is transferred into
the AC. The AC should be cleared prior to
issuing this command or the CLA command
can be combined with the SCA to clear the
AC, then effect the transfer.
SCVAC=>AC -

SCL 7403 3 Step counter load from memory. Loads com-

plement of bits 7 through 11 of the word in

334

PDP-8/1 EXTENDED ARITHMETIC ELEMENT

MICROINSTRUCTIONS
(continued)
Msn;nr:lggllc (():giaael Sequence Operation
memory Tfoiiowing the instruction ‘into the-
steE counter.
MB,..; = > SC
PC+2=>PC
MQA 7501 2 Multiplier quotient load into accumulator.
: The content of the MQ is transferred into the
AC. This command is given to load the 12
least significant bits of the product into the
- AC following a multiplication or to load the
quotient into the AC following a division. The
AC should be cleared prior to issuing this
command or the CLA command can be com-
bined with the MQA to clear the AC then
effect the transfer.
MQVAC =.> AC
CLA 7601 1 Clear accumulator. The AC is cleared during
sequence 1, allowing this command to be
combined with the other EAE commands that
load the AC during sequence 2 (such as
SCA and MQA). :
- 0=>AC
CAM 7621 1,2 Clear accumulator and multlpller quotient.

CAM = CLA LMQ.

335

BASIC 10T MICROINSTRUCTIONS

Mnemonic

Octal

Operation

Program Interrupt

{ON

IOF

6001

6002

Turn interrupt on and enable the computer to re-
spond to an interrupt request. When this instruction
is given, the computer executes the next instruction,
then enables the interrupt. The additional instruc-
tion allows exit from the interrupt subroutine before
allowing another interrupt to occur.

Turn interrupt off i.e. disable the interrupt.

High Speed Perforated Tapé Reader and Control

RSF
RRB

RFC

6011
6012

6014

Skip if reader flag isa 1.

Read. the content of the reader buffer and clear the
reader flag. (This instruction does not clear the AC.)
RBVAC4-11 = > AC4-11

Clear reader flag and reader buffer, fetch one char-
acter from tape and load it into the reader buffer,
and set the reader flag when done.

High Speed Perforated Tape Punch and Control

PSF
PCF
PPC

PLS

6021
6022
6024

6026

Skip if punch flag is a 1.

Clear punch flag and punch buffer.

Load the punch buffer from bits 4 through 11 of the
AC and punch the character. (This instruction does
not clear the punch flag or punch buffer.)
AC4-11VPB=>PB

Clear the punch flag, clear the punch buffer, load
the punch buffer from the cantent of bits 4 through
11 of the accumulator, punch the character, and set

" the punch flag to 1 when done.

Teletype Keyboard/Reader

KSF
KCC
KRS

KRB

6031
6032
6034

6036

Skip if keyboard flag is a 1.

Clear AC and clear keyboard flag.

Read keyboard buffer static. (This is a static com-
mand in that neither the AC nor the keyboard flag is
cleared.)

TTIVAC4-11 = > AC4-11

Clear AC, clear keyboard flag, and read the content
of the keyboard buffer into the content of AC 4-11.

Teletype Teleprinter/Punch

TSF
TCF
TPC

TLS

6041
6042
6044

6046

Skip if teleprinter flagisa 1.

Clear teleprinter flag.

Load the TTO from the content of AC 4-11 and
print and/or punch the character.

Load the TTO from the content of AC 4-11, clear
the teleprinter flag, and print and/or punch the

_character.

336

BASIC I0T MICROINSTRUCTIONS
(continued)

Mnemonic Octal Operation

Oscilloscope Display Type VC8/I and Precision CRT Display Type 30N

DCX 6051 Clear X coordinate buffer.
DXL 6053 Clear and load X coordmate buffer.
AC2-11=>YB
DIX 6054 Intensify the point defined by the content of the X
and Y coordinate buffers.
DXS 6057 Executes the combined functions of DXL followed
by DIX.
DCY . 6061 Clear Y coordinate buffer.
DYL 6063 Clear and load Y coordinate buffer. :
_ "AC2-11 = >YB
DIY 6064 Intensify the point defined by the content of the X
. and Y coordinate buffers.
DYS 6067 Executes the combined functions of DYL followed
by DIY.
4
Oscilloscope Dlsplay Type VC8/1
DSB 6075 Set minimum brightness.
DSB 6076 Set medium brightness.
bsB - 6077 Set maximum brightness.
- DSB 6074 Zero brightness.
Precision CRT Display Type 30N
DLB 6074 Load brightness register (BR) from bits 9 through
11 of the AC.
o AC 9-11 = > BR
Light Pen Type 370 '
DSF 6071 Skip if display flag isa 1.
DCF - 6072 Clear the display flag.
_Memory Parity Type MP8/1
SMP 6101 Skip if memory parity error flag = O.
CMP . 6104 Clear memory parity error flag.
Automatic Restart Type KP8/1
SPL 6102 Skip if power is low.
Memory Extension Control Type MC8/1
CDF 62N1 Change to data field N. The data field register is

loaded with the selected field number (0 to 7). All
‘subsequent memory requests for opérands are auto-
matically switched to that data field until the data
_ field number is changed by a new CDF command.
CIF 62N2 Prepare to change to instruction field N. The in-
struction buffer register is loaded with the selected
field number (O to 7). The next JMP or JMS in-
struction causes the new field to be entered.
RDF - 6214 Read data field into AC 6-8. Bits 0-5 and 9-11 of
the AC are not affected.

337

BASIC 10T MICROINSTRUCTIONS

(continued)
Mnemonic Octal Operation
RIF 6224 Same as RDF except reads the instruction field.
RIB 6234 Read interrupt buffer. The instruction field and data
field stored during an interrupt are read into AC
6-8 and 9-11 respectively.
RMF 6244 Restore memory field. Used to exit from a program

interrupt.

. Data Communications Systems Type 680

TTINCR
TTI

TTO

TICL
TTSL

TTRL

TTSKP
TTXON

TTXOF

6401
6402

6404

6411
6412

6414

6421
6424

6422

The content of the line select register is incre-
mented by one.

The line status word is read and sampled. If the
line is active for the fourth time, the line bit is
shifted into the character assembly word. If the line
is active for a number of times less than four, the
count is incremented. If the line is not active, the
active/inactive status of the line is recorded.

The character in the AC is shifted right one posi-
tion, zeros are shifted into vacated positions, and
the ongmal content of AC11 is transferred out of
the computer on the Teletype line.

The iine seiect register is cleared.

The line select register is loaded by an OR transfer
from the content of AC5-11, then the AC is cleared.
The content of the line select reglster is read mto
AC5-11 by an OR transfer.

Skip if clock 1 flag is a 1.

Clock 1 is enabled to request a program interrupt
and clock 1 flag is cleared.

Clock 1 is disabled from causing a program inter-
rupt and clock 1 flag is cleared.

Incremental Plotter and Control Type VP8/I

PLSF
PLCF
PLPU
PLPR
PLDU
PLDD
PLPL
PLUD
PLPD

6501
6502 -
6504
6511
6512
6514
6521
6522
6524

Skip if plotter flag isa 1.

Clear plotter flag.

Plotter pen up. Raise pen off of paper.

Plotter pen right.

Plotter drum (paper) upward.

Plotter drum (paper) downward.

Plotter pen left.

Plotter drum (paper) upward. (Same as 6512.)
Plotter pen down. Lower pen on to paper.

Serial Magnetic Drum System Type 251

DRCR

6603

Load the drum core location counter with the core
memory location information in the accumulator.
Prepare to read one sector of information from the
drum into the specified core location. Then clear
the AC.

338

BASIC 10T MICROINSTRUCTIONS

(continued)

Mnemonic

Octal

Operation

DRCW

DRCF
DREF

DRTS

DRSE
DRSC
DRCN

6605

6611
6612

6615

6621

6624

Load the drum core location counter with the core
memory location information in the accumulator.
Prepare to write one sector of information into the
drum from the specified core location. Then clear
the AC. _

Clear completion flag and error flag. .. o

Clear the AC then load the condition of the parity
error and data timing error flip-flops of the drum
control into accumulator bits 0 and 1 respectively
to allow programmed evaluation of an error flag.

Load the drum address register with the track and -
sector address held in the accumulator. Clear the
completion and error flags, and begin a transfer
(reading or writing). Then clear the AC.-

Skip next instruction if the error flag is a 0 (no
error). '

Skip next instruction if the completion flag is a 1
(sector transfer is complete). ’

Clear error flag and completion flag, then initiate
transfer of next sector. :

Serial Mégnetic Drum System Type RM08

DRCR

DRCW

DRCF
DRES

DRTS

DRSE
DRSC

6603

6605

6611
6612 .

6615

6621
6622

Load the drum core location counter with the core
memory location information in the accumulator.
Prepare to read one sector of information from the
drum into the specified core location. Then clear
the AC. ,

Load the drum core location counter with the core
memory location information in the accumulator.
Prepare to write one sector of information into the
drum from the specified core location. Then clear
the AC.

Clear completion flag and error flag.

~ Clear the AC then load the condition of the parity

error and data timing error flip-flops of the .drum
control into accumulator bits 0 and 1 respectively
to allow programmed evaluation of an error flag.
The contents of the drum sector counter are trans-
ferred into bits AC 6-11.

Load the drum address register with the track and
sector address held in the accumulator. Clear the
completion and error flags, and begin a transfer
(reading or writing). Then clear the AC.

Skip next instruction if the error flag is a 0 (no
error).

Skip next instruction if the completion flag is a 1
(sector transfer is complete), '

339

BASIC 10T MICROINSTRUCTIONS

(continued)

Mnemonic

Octal

Operation

DRFS

6624 .

Loads the drum field register with the contents of
the accumulator bits 10 and 11. Loads the sector
number register with the contents of the accumu-
lator bits 0-5, to specify the number of sectors to
be transferred. Loads the three most significant bits
of the drum core location register (DCL,-,) with the
contents of the AC bits 6, 7, 8 to specify the’ core
memory block to be used during the drum transfer.

Random Access Disc File (Type DF32) :

DCMA

DMAR

DMAW

DCEA
DSAC
DEAL

DEAC

DFSE

DFSC
DMAC

6601

6603

6605

6611
6612
6615

6616
6621

6622
6626

Clears memory address register, parity error and
completion flags. This instruction clears the disc
memory request flag and interrupt flags.

The contents of the AC are loaded into the disc
memory address register and the AC is cleared.
Begin to read information from the disc into the
specified core location. Clears parity error and
completion flags. Clears interrupt flags.

The contents of the AC are loaded into the disc
memory address register and the AC is cleared, Be-
gin to write information into the disc from the
specified core location. Clears parity error and
completion flags.

Clears the disc extended address and memory ad-
dress extension register.

Skips next instruction if address confirmed flag is
a 1. (AC is cleared.)

The disc extended address extension registers are
cleared and loaded with the track data held in the
AC.

Clear the AC then loads the contents of the disc
extended address register into the AC to allow pro-
gram evaluation. Skip next instruction if address
confirmed flag is a 1.

Skips next instruction if parity error, data request
late, or write lock switch flag is a zero. Indicates
no errors.

Skip next instruction if the completion flag is a 1.
Indates data transfer is complete.

Clear the AC then loads contents of disc memory
address register into the AC to allow program evalu-
ation.

Automatic Line Printer and Control Type 645

LSE
LCB
LLB

LSD -

6651
6652
6654

6661

Skip if line printer error flag isal.

Clear both sections of the printing buffer. .

Load printing buffer from the content of AC 6-11
and clear the AC.

Skip if the printer done flag isal.

340

BASIC I0T MICROINSTRUCTIONS -

(continued)

Mnemonic . Octal Operation
LCF 6662 Clear line printer done and error flags.
LPR 6664 Clear the format register, load the format register

from the content of AC 9-11, print the line contained
in the section of the printer buffer loaded last, clear
the AC, and advance the paper in accerdance with
the se|ected channel of the format tape if the con-
tent of AC 8 = 1. If the content of AC 8 = O, the
line is printed and paper advance is inhibited.

BECtape Transport Type TU55 and DECtape COntroI Type TCO1

DTRA

DTCA
DTXA

DTSF
DTRB

DTLB

6761

6762
6764

6771
6772

6774

The content of status register A is read into ACO- 9
by an OR transfer. The bit assignments are:
ACO-2 = Transport unit select number

AC3-4 = Motion
ACS5. = Mode
AC6-8 = Function

AC9 = Enable/disable DECtape control flag

Clear status register A. All flags undisturbed.

Status register A is loaded by an exclusive OR trans-
fer from the content of the AC, and AC10 and AC11
are sampled. If AC10 = 0, the error flags are
cleared. ' If AC11 = 0, the DECtape control flag is
Cleared.

Skip if error flag is a 1 or if DECtape control flag
isal.

The content of status register B is read into-the AC
by an OR transfer. The bit assignments are: '

ACO = Error flag
AC1 = Mark track error
AC2 - = End of tape
AC3 = Select error
AC4 = Parity error
AC5 = Timing error
AC6-8 = Memory field -

. AC9-10 = Unused

AC11 = DECtape flag :
The memory field portion. of status register B is
loaded from the content of AC6-8.

Card Reader and Control Type CR8/1

RCSF
RCRA

RCRB-
RCSP
RCSE

RCRD

6631
6632

6634
6671
6672

6674

Skip if card reader data ready flag isal.

The alphanumeric code for the column is read into
AC6-11, and the data ready flag is cleared.

The binary data in a card column is transferred into
ACO0-11, and the data ready flag is cleared.

Skip if card reader card done flag is a 1.

Clear the card done flag, select the card reader and
start card motion towards the read station, and skip
if the reader-not-ready flag is a 1.

Clear card done flag.

341

BASIC 10T MICROINSTRUCTIONS

(continued)

Mnemonic

Octal

Operation

Automatic Magnetic Tape Control Type TC58

MTSF

MTCR
MTTR
" MTAF
MTCM
MTLC

MTRS

MTGO

6701

6711

6721

6712

6724
6714

6716
6704
6706
6722
6702

Skip on error flag or magnetic tape flag. The status
of the error flag (EF) and the magnetic tape flag
(MTF) are sampled. If either or both are set to 1,
the content of the PC is incremented by one to skip
the next sequential instruction.

Skip on tape control ready (TCR). If the tape con- -
trol is ready to receive a command, the PC is incre-
mented by one to skip the next sequential instruc-
tion. '

Skip on tape transport ready (TTR). The next se-
quential instruction is skipped if the tape trans-
port is ready.

Clear the status and command registers, and the
EF and MTF if tape control ready. If tape control
not ready, clears MTF and EF flags only.

Inclusively OR the contents of the command regis-
ter into bits 0-11 of the AC. ‘
Inclusively OR the contents of AC bits 0-5, 9-11
into the command register; JAM transfer bits 6, 7,
8 (command function).

Load the contents of AC bits 0-11 into the com-
mand register.

Inclusively OR the contents of the status register
into bits 0-11 of the AC.

Read the contents of the status register into bits .
0-11 of the AC.

Set “go” bit to execute command in the command
register if command is legal.. '

Clear the accumulator,

General Purpose Converter and
Multipiexer Control Type AFO1A

ADSF
ADVC’

ADRB

ADCC
ADSC

ADIC

6531
6532

6534

6541
6542

6544

Skip if A/D converter flagis a 1.

Clear A/D converter flag and convert input voltage
to a digital number, flag will set to 1 at end of con-
version. Number of bits in converted number deter-
mined by switch setting, 11 bits maximum.

Read A/D converter buffer into AC, left justified,
and clear flag.

Clear multiplexer channel address register.

Set up multiplexer channel as per AC 6-11.
Maximum of 64 single ended or 32 differential in-
put channels.

Index multiplexer channel address (present address
+ 1). Upon reaching address limit, increment will
cause channel 00 to be selected.

342

BASIC 10T MICROINSTRUCTIONS (continued)

Mnemonic

Octal

Operation

Guarded Scanning Digital Voltmeter Type AFO4A

VSEL

VCNV .

" VINX

VSDR

VRD

VBA

VSCC

6542

6541

6544

6531 -

6532

6534

6571

The contents of the accumulator are transferred to
the AFO4A control register. ‘

The contents of the accumulator are transferred
to the AFO4A channel address register. Analog sig-
nal on selected channel is automatically digitized.

The "last channel address is incremented by one
and the analog signal on the selected channel is
automatically digitized.

Skip if data ready flag is a 1.

Selected byte of voltmeter is transferred to the
accumulator and the data ready flag is cleared.

BYTE ADVANCE command requests next twelve
bits, data ready flag is set. ' '

SAMPLE CURRENT CHANNEL when required to
digitize analog signal on current channel repeatedly.

343

- APPENDIX 3
TABLES OF CODES

MODEL 33 ASR/KSR TELETYPE CODE (ASCII)
IN OCTAL FORM

8-Bit Code 8-Bit Code
Character (in octal) _ Character (in octal)
A 301 ! 241
B 302 » “ 242
C 303 4 , 243
D 304 $ 244
E 305 % 245
F, 306 & 246 '
G ' 307 ‘ 247
H 310 (250
! 311) 251 -
o 312 * 252
K 313 + 253
L 314 ' 254
M 315 - 255
N 316 . 256
o] 317 / 257
P 320 : 272
Q 321 : ' 273
R 322 < 274
S 323 = 275
T 324 > 276
u 325 ? 277
Vv 326 @ 300
w 327 [333
X 330 \ 334
\a 331] 335
z 332 N 336
< 337
0 260
1 261 Leader/Trailer 200
2 262 Line-Feed 212
3 263 Carriage-Return 215
4 264 Space 240
5 . 265 . Rub-out 377
6 266 - Blank 000
7 267 act-mode 375
8 270 escape 233
9 271 '

344

MODEL 33 ASR/KSR TELETYPE CODE (ASCII) IN BINARY FORM

1 = HOLE PUNCHED = MARK

0 = NO HOLE PUNCHED = SPACE

(L

MOST SIGNIFICANT BIT
EAST SIGNIFICANT BIT

.

345

876548321
@ SPACE| [NULL/IDLE olof [o]oJo
A ! START OF MESSAGE olof lolo]1
B " END OF ADDRESS olo| [o]1]o
c 4 END OF MESSAGE olo| |of1]1
D $ END OF TRANSMISSION o{o| [1}ofo
E % WHO ARE YOU ojo| [1]of1
F & ARE YOU * olo 1{1{0
G ' BELL ofo| f1]1]1
H (FORMAT EFFECTOR o{1]| [o]|o]o
|) HORIZONTAL TAB o[1].]o]o]1
J * LINE FEED of1] |oj1]o
K + VERTICAL TAB o[1] |o|1]1
L , FORM FEED oj1] |1{o]o
M — CARRIAGE RETURN, oj1{ |1]o|1
N SHIFT OUT ol1] |1]1]o0
o / "SHIFT IN ojtf| [1]1]1
P 0 DCO 1{o| |o]o]o
Q 1 READER ON 1{o] |ojo|1
R 2 TAPE (AUX ON) 1{o] |of1]0
S 3 READER OFF 1lof |of1]1
T 4 (AUX OFF) 1lo{ |1]o]o
u 5 ERROR A 1o [t]of1
v 6 SYNCHRONOUS IDLE 1]0{ |1]1|o0
W 7 LOGICAL END OF MEDIA 1o |1]|1]1
X 8 SO, 11| |o]afo
Y 9 s1 f1f1] jofo|1
z s2 1{1] {of1]o
[; S3 1{1 ol1]1
~ < s4 1|1]| |1]o]o0
1 - S5 1{1] |1]o]1
_ A > S6 ’ 111] [1]1]o
RUB OUT - ? S7 1{1] [1{1]1
) N,
N

' 1/q]o SAME

> 1/0]1 SAME

»1[1{o0 .SAME

P 1[1{1 SAME

CARD READER CODE

Card Code Card Code
’ Internal Internal
Zone Num. Code Character || Zone Num. Code Character
- = 01 0000 Blank 11 0 10 1010 4
12 83~ 11 1011 . 11 1 10 0001 J
12 84 111100) 11 2 100010 K
12 85 111101] 11 3 100011 L
12 86 111110 < 11 4 100100 M
12 87 111111 - - 11 5 100101 N
12 — 11 0000 + 11 6 100110 0
11 83 10 1011 $ 11 7 100111 P
11 8.4 101100 * 11 8 10 1000 Q
11 85 101101 [11 9 101001 R
11 - 86 101110 > 0 82 01 1010 ;
11 8.7 101111 & 0 2 01 0010 S
11 — 10 0000 — 0 3 01 0011 T
0 1 01 0001 / 0 4 01 0100 U
0 8-3 01 1011 , 0 5 010101 \'
0 84 011100 { 0 6 010110 W
0 8.5 011101 ! 0 7 010111 X
0 86 011110 ¢ 0 8 01 1000 Y
0 87 011111 % Q 9 01 1001 Z
— 8-3 00 1011 = — 0 00 1010 0
— . 84 001100 @ — 1 00 0001 1
— 85 00 1101 4 — 2 00 0010 2
— 8-6 001110 ' — 3 000011 3
—_ 8.7 001111 ~ — 4 00 0100 4
12 0 11 1010 ? —_ 5 000101 5
12 1 11 0001 A — 6 000110 6
12 2 11 0010 B — 7 000111 7
12 3 11 0011 C — 8 00 1000 8
12 4 11 0100 D — 9 00 1001 9
12 5 110101 E All other codes | 00 0000 -
12 6 110110 F
12 7 110111 G
12 8 11 1000 H
12 9 11 1001 |

346

AUVTOMATIC LINE 'PRINTER CODE

- -Character 6-Bit Code Character 6-Bit Code
(ASCIl) (in octal) (ASCIly (in octal)
@ 0 O 40
A 1 ! 41
B 2 " 42
C 3 p - 43
D 4 $: 44
E 5 % 45
F 6 & 46
G 7 ' 47
H 10 (50
I 11) 51
J 12 * 52
K 13 + 53
L 14 ’ 54
M 15 — 55
N 16 . 56
O 17 / 57
P 20 ¢ 60
Q 221 1 61
R 22 2 62
S 23 3 - 63
T 24 4 64

U 25 5 65 -
\J 26 6 66
w 27 7 67
X 30 8 70
Y 31 9 71
Z 32 : 72
[33 3 73
N 34 y < 74
| 35 = 75
A - 36 > 76
< 37 ? 77

347

APPENDIX 4

PERFORATED-TAPE LOADER SEQUENCES
READIN MODE LOADER

The readin mode (RIM) loader is a minimum iength, basic, perforated-tape
reader program for the 33 ASR. It is initially stored in memory by manual use
of the operator console keys and switches. The loader is permanently stored
in 18 locations of pdge 37. '

A perforated tape to be read by the RIM loader must be in RIM format:

Tape Channel

876545321 Format
10000.000 Leader-trailer code
01 Al . A2 Absolute address to
00 A3 . A4 "~ contain next 4 digits
00 X1 . X2 Content of previous
00 X3 . X4 4-digit address
01 Al . A2 |
00 A3 . A4 : Address
00 X1 . X2 .
00 X3 . X4 Content

(Etc.) (Etc.)
10000.000 Leader-trailer code

The RIM loader can only be used in conjunction with the 33 ASR reader (not
the high-speed perforated-tape reader). Because a tape in RIM format is, in
effect, twice as long as it need be, it is suggested that the RIM loader be used
only to read the binary loader when using the 33 ASR. (Note that PDP-8 diag-
nostic program tapes are in RIM format.)

The complete PDP-8/I RIM loader (SA = 7756) is as follows:
Absolute Octal

Address Content Tag Instruction | Z Comments
7756, 6032 BEG, - KCC /CLEAR AC AND FLAG
7757, 6031 KSF JSKIP IF FLAG = 1
7760, 5357 JMP .—1 /LOOKING FOR CHARACTER
7761, 6036 KRB /READ BUFFER
7762, 7106 ~ CLLRTL .

7763, 7006 RTL : /CHANNEL 8 IN ACO
7764, 7510 SPA ~ /CHECKING FOR LEADER
7765, 5357 JMP BEG+1 /FOUND LEADER

7766, 7006 RTL /OK, CHANNEL 7 IN LINK
7767, 6031 KSF -

348

Absolute Octal

Address Content Tag Instruction | Z Comments
7770, 5367 JMP .—1
7771, 6034 ' KRS /READ, DO NOT CLEAR
7772, 7420 SNL ‘ / CHECKING FOR ADDRESS
7773, 3776 DCAITEMP /STORE CONTENT
7774, 3376 DCA TEMP /STORE ADDRESS
7775, 5356 JMP BEG /NEXT WORD
7776, 0 TEMP, 0 / TEMP-STORAGE
7777, BXXX JMP X /JMP START OF BIN LOADER

Placing the RIM loader in core memory by way of the operator console keys
and switches is accomplished as follows:

Set the starting address 7756 in the switch register (SR).

Press LOAD ADDRESS key.

Set the first instruction (6032) in the SR.

Press the DEPOSIT key.

Set the next instruction (6031) in the SR.

Press DEPOSIT key.

Repeat steps 5-and 6 until all 16 instructions have been deposited.

N~

To load a tape in RIM format, place the tape in the reader, set the SR to the
starting address .7756 of the RIM loader (not of the program being read),
press the LOAD ADDRESS key, press the START key, and start the Teletype
reader. ‘ »

Refer to Digital Program Library document Digital-8-1-U for additional infor-
mation on the Readin Mode Loader program.

BINARY LOADER

The binary loader (BIN) is used to read machine language tapes (in binary

format) produced by the program assembly language (PAL). A tape in binary

format is about one half the length of the comparable RIM format tape. It

can, therefore, be read about twice as fast as a RIM tape and is, for this rea-

_ son, the more desirable format to use with the 10 cps 33 ASR reader or the
Type PR8/I High Speed Perforated Tape Reader.

| The format of a binary tape is as follows:
LEADER: about 2 feet of leader-trailer cbdes.

BODY: characters representing the absolute, machine language program
in easy-to-read binary (or octal) form. The section of tape may contain
characters representing instructions (channels 8 and 7 not punched) or
origin resettings (channel 8 not punched, channel 7 punched) and is
concluded by 2 characters (channels 8 and 7 not punched) that repre-
sent a checksum for the entire section. '

TRAILER: same as leader.

349

Example of the format of a binary tape:

Tape Channel Memory

8765458321 Location Content Comments
10000.000 leader-trailer code
01000.010
00000.000 0200
00111.010
00000.000 0200 CLA _ origin setting
00001.010 _
00111.111 0201 TAD 277
00011.010 '
00111.110 0202 DCA 276
00111.100
00000.010 0203 HLT

+01000.010 '
00111.111 0277 origin setting
00000.000

- 00101.011 0277 0053
00001.000
00000.111 1007 sum check
10000.000 ieader-traiier code

After a BIN tape has been read in, one of the two following conditions exists:
a. No checksum error: halt with'AC =0

b. Checksum error: halt with AC = (computed checksum) — (tape check-
sum)

Operation of the BIN loader in no way depends upon or uses the RIM loader.
To load a tape in BIN format place the tape in the reader, set the SR to 7777
(the starting address of the BIN loader), press the LOAD ADDRESS key, set SR
switch O up for loading via the Teletype unit or down for loading via the high
speed reader, then press the START key, and start the tape reader.

Refer to Digital Program LibF’ary document Digital-8-2-U-RIM for additional in-
formation on the Binary Loader program. -

350

APPENDIX 5 -

SCALES OF NOTATION
2* IN DECIMAL

X 2 X 2t X 2"
0.001 1.00069 33874 62581 0.01 00695 55500 56719 0.1 1.07177 34625 36293
0.002 1.00138 72557 11335 0.02 1.01395 94797 90029 0.2 1.14869 83549 97035
0.003 1.00208 50 79633 0.03 1.02101 21257 07193 0.3 1.23114 44133 44916
0.004 100277 64359 01078 0.04 1.02811 38266 56067 0.4 1.31950 79107 72894
0.005 1.00347 17485 09503 0.05 1.03526 49238 41377 05 1.41421 35623 73095
0.006 1.00416 75432 38973 , 0.06 1.04246 57608 41121 0.6 1.51571 65665 10398
0.007 1.00486 38204 23785 0.07 1.04971 66836 23067 0.7 1.62450 47927 12471
0.008 1.00556 05803 98468 0.08 1.05701 80405 61380 0.8 1.74110 11265 92248
0.009 1.00625 78234 97782 0.09 1.06437 01824 53360 0.9 1.86606 59830 73615
+n
10=" IN OCTAL ‘
10 n 10— 10 n 10™
1 0 1.000 000 000 000 000 000 00 112 402 762 000 10 0.000 000 000 006 676 337 66
12 1 0.063 146 314 631 463 14§ 31 1 351 035 564 000 11_ 0.000 000 000 000 537 657 77
i44 2 0.005 075 341 217 270 243°66 16 432 451 210 000 12 0.000 000 0DQ 000 043 136 32
1750 3 0.000 406 111 564 570 65F 77 - 221 411 634 520 000 13 0.000 000 000 000 003 411 35
23 420 4 0.000 032 155 613 530 704 15 2 657 142 036 440 000 14 0.000 000 000 000 00O 264 11
303 240 5 0.000 002 476 132 610 706 64 . 34 327 724 461 500 000 15 0.000 000 000 000 000 022 Ol
3 641 100 6 0.000 000 206 157 364 055 37 434 157 115 760 200 000 16 0.000 000 000 000 000 001 63
46 113 200 7 0.000 000 015 327 745 152 75 5 432 127 413 542 400 000 17 0.000 000 000 000 000 000 14
§75 360 400 8 0.000 000 001 257 143 561 06 67 405 553 164 731 000 000 18 0.000 000 0CO 000 000 000 O1
7 346 545 GO0 9 0.000 000 000 104 560 276 41 -
n log,, 2, n log, 10 IN DECIMAL
n nlog;o 2 n log, 10 n nlogie 2 n logz 10
1 0.30102 99957 3.32192 80949 6 1.80617 99740 - 19.93156 85693
2 0.60205 99913 64385 61898 7 2.10720 99696 23.25349 66642
3 0.90308 99870 9.96578 42847 8 2.40823 99653 26.57542 47591
4 1.20411 99827 13.28771 23795 9 2.70926 99610 29.89735 28540
5 1.50514 99783 16.60964 04744 10 3.01029 99566 33.21928 09489
Addition Multiplication
Binary Scale
04+0= 0 0xX0=0
04+1=140=.1 0X1=1X0=0
1+1=10 1X1=1
Octal Scale
ojor 0203 04 05 06 07 1{02 03 04 05 06 07
1|02 03 04 05 06 07 10 2|04 06 10 12 14 16
2|03 04 05 06 07 10 11 3|06 11 14 17 22 25
3/04 05 06 07 10 11 12 4({10 14 20 24 30 34
4|05 06 07 10 11 12 13 512 17 24 31 36 43
5|06 07 ‘10 11 12 13 14 614 22 30 36 44 52
6|07 10 11 12 13 14 15 7|16 25 34 43 52 61
\- 7110 11 12 13 14 15 16
m = 3.11037 552421, e = 255760 521305: v = 0.44742 147707,
n-! = 0.24276 301556, e-l = 0.27426 530661: Iny = — 0.43127 233602,
vw = 1.61337 611067, Ve = 151411 230704, logzy = — 0.62573 030645,
InT = 1.11206 404435, logioe = 0.33626 754251, V2= 1.32404 746320,
log: # = 151544 163223, logze = 1.34252 166245, In2 = 0.54271 027760,
V10 = 3.12305 407267, log: 10 = 3.24464 = 2.23273 067355,

351

741136, In10

BN e

& e

18
36
73
147
295
590
180
361
722

140
281
562
125
251
503
007
014
028
057
115
230
460
921
843
686
arz
744
488
76
952
205
816
620
241
482

179
358
717
434

67
134
268
536
073
147
294
589
179
359
719
438
877
idh
511
023
046
093
186
372
744
488
976
953
906
813
627
254
509
018
037
075
151
303
606
213
427
854
709
a19
838
676
352
705
a1
822

048
097
194
388
777
554
108
217
435
870
741
483
967
934
869
738
476
953
906
833
627
255
511
022
044
088
177
355
710
421
842
685
370
740
481
963
927
855
711
423
B46
693
387
775
551
103
206
412
825
651
303
606

869 645 213

216
432

728
456
912
824
648

592
184

736
472
944
776
552
104
208
416
832
664
328
656
312
624
248
496
992
984

LEL)
872
744
488
976
952
204
808
616
232
464
928
856
712
424
848
696

CENOUBEWN=O T

O
VI3l bswn=0

25

27
28

30
31
32
33
34
35
36
37
g
39
40
41
a2
43
44
45

47
48
49

51
52
53
54
55
56
57

59

61
62
63

65
66
67

63
7

71
72

1.0

0.5

0.2%
0125
0.062
0.031
0015
0.007
0.003
0.001
0.000
0.000
0000
0.000
0.000
0.000
0.000
0.000
0.000
0 000
0 000
0.000
0000
0000
0.000

0.000
0000
0.000
0000
0.000
G 000
0.000
0.000

0.000
0.000
0.000
G 000
[PRVVY)
0 000
0000
0.000
0.000
0000
0 000
0 000
0 000
0000

0 000

0 000

0.000
0 000
0000
6000
0000
0 000
0000
0000

0 000
0000
0.000
0000

0000
0000
0000
0000
0.000
0.000
0 000

25

625
Bi2
906
953
976
488
244
122
061
030
015
007
003
001
000
000
000
000
000
000
000
000
000
000
000

000

" APPENDIX 6

POWERS OF TWO

5
25
125
562
281
140
070
035
517
258
629
814
907
953
476
238
119
059
029
014
007
003
001
000
000
000
000
000
000
000

G

25
625
312
156
578
789
394
697
us
674
837
418
209
604
802
901
450
725
862
831
465
232
116
058
029
018
007
003
[EeN
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

000
000

000
000
000
000
000
000
000
000
000
000
000

5

25
125

062 5
531 25
265 625
632 812
316 406
158 203
579 101
289 55Q
644 775
322 387
161 193
580 596
290 298
645 149
322 574
861 287
B30 643
415 321
207 660
103 830
551 915
275 ‘957
637:978
3.8 385
909 494
454 747
227 373
113 686
056 843
028 421
014 210
007 108
003 552
001 776
000 888
000 344
000 222
000 111
000 055
000 027
000 013
000 006
000 003
000 001
000 000
000 000
000 000
000 000
000 000
00C 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

25

125
562
781
390
695
847
923
461
230
615
307
653
B26
913
456
228
614
BO7

<03 5

701
350
€75
837
4318
709

427
713
356
178
089
044
022
511
755
877
938
469
734
867
433
216
108
054
027
013
006
003
00l
000
000
000

302
151
575
787
893
446
723
361
680
840
420
210
105
552
776
388
694
847
423
211

925
462
231
615
807
903
951
475
737
868
434
217
108
054
527
263
131
065
032
516
758

352

25

125
562
281
640
320
660

915
957
478
739
869
434
717
858
929

232
616
308
654
827
913
456
278
614
807
403
201
100
550
275
137
[s12:3
033
017
508
254
627
813

25

3z
156
o078
039
519
759
379
689
844
422
71
355
677
338
169

042
o021
510
755
377
188
094
547
773
886
443
221
610
BOS
402
201
600
300
150
575

25
062
531
765
882
941
970
485
242
621
810
905
452
726
363
181
590
295
647
823
411
205
602
801
400
700
850
425
712
356
678
339
189
o084

25

625
812
406
703
351
675
337
668
334
667
333
166
583
791
395
€97

924
962
981
490
745
372
186
093
546
273
136
068
534
767

25

125
562
781
890
945
472
236
618
809
404
702
851
925
962
481
240
120
560
280
640
320
160

290
645
322
161
080

25

625
312
656
328
164
082
541
270
13%
567
783
391
£95
347
173

043
021
010
005
002
001
500
250
625

5

125
062
031
015
Su7
253
626
813
906
953
976
988
994
4957
748
874
437
718
359
679
339
169

5
25
625
812
906
953
476
738
369
684
342
171
085
542
271
138
567
283
641
820
910

5
25
125
562
281
140
570
285
142
571
785
392
696
848
924
962
981
490

25

625
a2
156
578
289
644
822
411
205
102
051
025
512

5

25

12%

062 5

531 2%

265 625

132 812 5

566 406 25

783 203 125
391 601 562 5
695 800 781 25
847 900 390 625

APPENDIX 7

OCTAL-DECIMAL CONVERSION

OCTAL-DECIMAL INTEGER CONVERSION TABLE.

0

1

2,

3

0

2

3

4

0000
to .
0777

0000
to
0511

{Octal) | (Decimai)

Octal Decimal
10000 - 4096 -~
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

1000

to
1777
(Octal)

0512

to
1023
(Decimal)

0000
0010
0020
0030
0040
0050
0060
0070

0100
0110

0130
0140
0150
0160
0170

0200
0210
0220
0230
0240
0250
0260
0270

0300
0310
0320
10330

0340
0350
0360
0370

0120 |

0000
0008
00t6
10024
10032
10040
10048
0056

0064
0072
0080
0088
0096
0104
0112
0120

0128
0136
0144
0152
0160
0168
0176
0184

0192
0200
0208
0216
0224
0232
0240
0248

0001
0009
0017
0025
0033
0041
0049
Q057

0065
0073
0081
0089
0097
0105
0113
0121

0129
0137
0145
0153
0161
0169
0177
0185

0193
0201
0209
0217
0225
0233
0241

0249

0002
0010
0018
0026
0034
0042
0050
0058

0066
0074
0082
0090
0098
0106
0114
0122

0130
0138
0146
0154
0162
0170
0178
0186

0194
0202
0210
0218
0226
0234
0242
0250

0003
0011
0019
0027
0035
0043
0051
0059
0067
0075
0083
0091
0099
0107
0115
0123

0131
0139
0147
0153
0163
0171
0179
0187

0195
0203
0211
0219
0227

023,

0243
0251

0004
0012
0020
0028
0036
0044
0052
0060

0068
0076
0084
0092
0100
0108
0116
0124

0132
0140
0148
0156
0164
0172
0180
0188

0196

0204
0212
0220
0228
0236
0244
0252

0005
0013
0021
0029
0037
0045
0053
0061

0069
0077
0085
0093
0101
0109
0117
0125

0133
0141
0149
0157
0165
0173
0181
0189

0197
0205
0213
0221
0229
0237
0245
0253

0006
0014
0022
0030
0038
0046
0054
0062

0070
0078
0086
0094
0102
0110
0118
0126

0134
0142
0150
0158
0166
0174
0182
0180

0198
0206
0214
0222
0230
0238
0246
0254

0007
0015
0023
003t
0039

0047 |
0055 |
0063

0071
0079
0087
0095
0103
0111
0119
0127

0135
0143
1133
0158
0167
0175
0183
0191

0199
0207
0215
0223
0231
0239
0247
0255

0400
0410
0420
0430
0440
0450
0460
0470

0500
0510
0520
10530
. 0540
i 0550
+ 0560
10570

0600
1 0610
10620
0630
0640

0256
10264
lo272
0280
0288
0296
0304
0312

0320
0328
0336
0344
0352
0360
0368
0376

0384
0392
10400
0408
0416

0424
0432
10440

0650
0660
0670

0700 ' 0448
{0710 ! 0456
0720 0464
0730 ' 0472
0740 | 0480
0750 | 0488
0760 ; 0496
0770{ 0504

0257
0265
0273
0281
0289
0297
0305
0313

0321
0329
0337
0345
0353
0361
0369
0377

0385
0393
0401
0409
0417
0425
0433
0441

0449
0457
0465
0473
0481
0489
0497
0305

0258 0259
0266 0267

0274
0282
0290
0298
0306
0314

0322
0330

.0338

0346
0354
0362
0370
0378

0386
0334
0402
0410
0418
0426
0434
0442

0450
0458
0466
0474
0482
0490
0498

0506_0507

0275
0283
0291
0299
0307
0315

0323
0331
0339
0347
0355
0363
0371
0379

0387
0395
0403
0411
0419
0427
0435
0443

0451
0459
0467
0475
0483
0491
0499

0260
0268
0276
0284
0232
0300
0308
0316

0324
0332
0340
0348
0356
0364
0372
0380

0388
0396
0404
0412
0420
0428
0436
0444

0452
0460
0468
0476
0484
0492
0500

0508 ¢

0295

0511

0263
0271
0279
0287

0303
0311
0319

0327
0335
0343
0351
0359
0367
0375
0383

0391
0399 |
0407
0415
0423
0431
0439
0447

0455
0463
0471
0379
0487
0493
0503

.0

2

3

4

7

1000
1010
1020
1030
1040
1050
1060
1070

1100
1110
1120
1130
1140
1150
1160
1170

1200
1210
1220
1230
1240
1250
1260
1270

1300
1310
1320
1330
1340
1350
1360

1370

0512
0520
0528
0536
0544
0552
0560
0568

0576
0584
0592
0600
0608
0616
0624
0632

0640
0648
0656
0664
0672
0680
0688
0696

0704
0712
0720
0728
0736
0744
0752

0760

0513
0521
0529
0537
0545
0553
0561
0569

0577
0585
0593
0601
0609
0617
0625
0633

0641
0649
0657

0665

0673
0681
0689
0697

0705
0713
0721
0729
0737
0745
0753
0761

0514
0522
0530
0538
0546
0554
0562
0570

0578
0586
0594
0602
0610
0618
0626
0634

0642
0650
0658
0666
0674
0682
0690
0698

0706
0714
0722
0730
0738
0746

‘0754

0762

0515
0523
0531
0539
0547
0555
0563
0571

0579
087
0595
0603
0611
0619
0627
0635

0643
0651
0659
0667
0675
0683
0691
0699

0707
0715
0723
0731
0739
0747
0755

0516
0524
0532
0540
0548
0556
0564
0572

0580
0588
0596
0604
0612
0620
0628
0636

0644
0652
0660
0668
0676
0684
0692
0700

0708
0716
0724
0732
0740
0748
0756
0764

0517
0525
0533
0541
0549
0557
0565
0573

0581
0589
0597
0605
0613
0621
0629
0637

0645
0653
0661
0669
0677
0685
0693
0701

0709
o7

0725
0733
0741
0749
0757
0765

0518
0526
0534
0542
0550
0558
0566

0574

0582
0590
0598
0606
0614
0622
0630
0638

0646
0654
0662
0670
0678
0686
0694
0702

0710
0718
0726
0734
0742
0750
0758

0519
0527
0535
0543
0551
0559
0567
0575

0583
0591
0599
0607
0615
0623
0631
0639

0647
0655
0663
0671
0679
0687
0695
0703

0711
0719
0727
0735
0743
0751
0759
0767

| 1400 0768
14100776
14200784
14300792
1440|0800
1450 | 0808
1460 ;0816
1470 0824

{
1500 0832

1510
1520
1530
1540
1550
1560
1570

1600
1610
1620
1630
1640
1650
1660
1670

1700
1710
1720
1730
1740
1750
1760
1770

0840
0848
0856
0864
0872
0880
0888

0896
0304
0912
0920
0928
{0936
10944
0952

0960
0968
0976
0984
0992
1000
1008
1016

0769
0777
0785
0793
0801
0809
0817
0825

0833
0841
0849
0857
0865
0873
0881
0889

0837
0905
0913
0921
0929
0937
0945
0953

0961
0969
0977
0985
0993
1001
1009
1017

0770
0778
0786
0794
0802
0810
0818
0826

0834
0842
0850
0858

0866 .

0874
0882
0850

0898
0906
0914
0922
0930
0938
0946
0954

0962
0970
0978
0986
0994
1002
1010
1018

0711

779
0787
0795
0803
0811
0819
0827

0835
0843
0851
0859
0867
0875
0883
0891

0899
0907
0915
0923
0931
0939
0947
0955

0963
0971
0979
0987
0895
1003
1011
1019

0772
0780
0788
0796
0804
0812
0820
0828

0836

0844
0852
0860
0868
0876
0884
0892

0900
0908
0916
0924
0932
0940
0948
0956

0964
0972
0980
0988
0996
1004
1012
1020

1013 1014
1021 1022

- 0863

, 0935

07175
0783
0791
0799
0807
0815
0823,
0831

0839
0847
0855

0871
0879
0887
0895

0903
0911
0919
0927

0843
0951
0959

0967
0975
0983
0991
0999
1007
1015
1023

0763

0766

353

2000

to
2777
(Octal)

OCTAL-DECIMAL INTEGER CONVERSION TABLE (continued)

1024

to
1535
(Decimal)

2

6

7

0 1

2

3

4

5

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

2000
2010
2020
2030
2040
2050
2060
2070

2100
2110
2120
2130
2140
2150
2160
2170

2200
200
2220
230
2240
2250
2260
2270

2300
o
2320
2330
2340
2350
2360
2370

1024
1032
1040
1048
1056
1064
1072
1080

1088
1096
1104
1112
1120
1128
1136
1144

1382
1160
1168
1176
1184
1192
1200
1208

1216
1224
1232
1240
1248
1256°
1264
1272

1025
1033
1041
1049
1057
1065
1073
1081
1089
1097
1105
113
121
1129
1137
1145

1153
1161
1169
1177
1185
1193
1201
1209

1217
1225
1233
1241
1249
1257
1265

1026
1034
1042
1050
1058
1066
1074
1082

1090
1098
1106
1114
1122
1130
1138
1146

1154
1162
1170
1178
1186
1194
1202
1210

1218
1226
1234
1242
1250
1258
1266

1273 1274

1027
1035
1043
1052
1059
1067
1075
1083

1091
1098
1107
1115
1:23
1131
139
1147

1155
1163
umn
1179
1187
1195
1203
1211

1219
1227
1235
1243
1251
1259
1267
1275

1028
1036
1044
1052
1060
1068
1076
1084

1092
1100
1108
1116
1124
1132
1140
1148

1156
1164
1172
1180
1188
1196
1204
1212

1220
1228
1236
1244
1252
1260
1268
1276

1029
1037
1045
1053
1061
1069
1077
1085

1093
1101
1109
17
1125
1133
1141
1149

1157
1165
1173
1181
1189
1197
1205
1213

1221
1229
1237
1245
1253
1261
1269
12717

1030
1038
1046
1054
1062
1070
1078
1086

1054
1102
1110
1118
1126
1134
1142
1150

1158
1166
1174
1182
1190
1198
1206
1214

1222
1230
1238
1246
1254
1262
1270
1278

1031
1039
1047
1055
1063
1071
1079
1087

1085
1163
1
1119
1127
1135
1143
1151

1159
1167
1175
1183
1191
1199
1207
1215

1223
1231
1239
1247
1255
1263
127

1279

2400
2410
2420
2420
2440
2450
2460
2470

2500
251¢
2520
2830
2540
2550
2560
2570

2600
2610
2620
2630
2640
2650
2660
2670

2700
210
2720
2730
2740
2750
2760

1280 1281
1288 1289
1296 1297
1304 1305
1312 1313

2770

1320
1328
1336

1344
1352
1360
1368
1376
1384
1392
1400

1408
1416
1424
1432
1440
1448
1456
1464

1472

1480

1488
1496
1504
1512
1520
1528

1321
1329
1337

1345
1333
1361
1369
1377
1385
1393
1401

1409
1417
1425
1433
1441
1449
1457
1465

1473
1481
1489
1497
1505
1513
1521
1529

1282
1290
1298
1306
1314
1322
1330
1338

1346
1354
1362
1370
1378
1386
1394
1402

1410
1418
1426
1434
1442
1450
1458
1466

1474
1482
1490
1498
1506
1514
1522
1530

1283
1291
1299
1307
1315
1323
1331
1339

1347
1355
1363
1371
1379
1387
1395
1403

1411
1419
1427
1435
1443
1451
1459
1467

1475
1483
1491
1499
1507
1515
1523
159

1264

11292

1300
1308
1316
1324
1332
1340

1348
1356
1364
1372
1380
1388
1396
1404

1412
1420
1428
1436
1444
1452
1460
1468

1476
1484
1492
1500
1508
1518
1524
1532

1285
1293
1301
1309
1317
1325
1333
1341

1349
1357
1365
1373
1381
1389
1397
1405

1413
1421
1429
1437
1445
1453
1461
1469

1477
1485
1493
1501
1509
1517
1525
1533

120
i&0l

1294
1302
1310
1318
1326
1334
1342

1350
1358
1366
1374
1382
1330
1398
1406

1414
1422
1430
1438
1446
1454
1462
1470

1478
1486
1494
1502
1510
1518
1526
1534

1287

1295
1303
131
1319
1327
1335
1343

1351
1359
1367
1375
1382
1391
1399
1407

1415
1423
1431
1439
1447
1455
1463
1471

1479
1487
1493
1503
1511
1519
1527
1535

3000
to
3777

1536
to
2047

{Octal) | (Decimal)

0

2

3

3010
3020
3030

3050
3070

3100
3110
3120
33
340
3150
3160
a1

3200
210
3220
3230
3240
3250
3260
3270

3300
3310
20
31330
1340
3350

last0

3000 |

1544
1552
1580
1568
1578
1584
1592

1600
1608
1616
1824
1632
1640

1656

1664
1672
1680
1688
1698
1704
172
1720

1728
1738
1744
1752
1760
1768
1776
1784

1536

1648

1537
1545
1553
1561
1569
1577
1585
1593

1601
1609
1617
1625
1633
1641
1649
1657

1665
1673
1681
1689
1697
1705
1713
1721

1729
1737
1745
1753
1761
1769
1777
1788

1538
1546
1554
1562
1510
1578
1586
1594

1602
1610
1618
1626
1634
1642
1650
1658

1666
1674
1682
1690
1698
1706
1714
17122

1730
1738
1746
1754
1762
1770
1778
1786

1539
1547
1555
1563
1571
1579
1587
1595

1603
1611
1619
1627
1635
1643
1651
1659

1667
1675
1683
1691
1699
1707
1715
1723

1731
17139
1747
1755
1763
1171
1773
1787

1540
1548
1556
1564
1572
1580
1588
1596

1604
1612
1620
1628
1636
1644
1652
1660

1668
1676
1684
1692
1700
1708
1716
1724

1732
1740
1748
1756
1764
112
1780
1788

1541
1543
1557
1565
1573
1581
1589
1597

1605
1613
1621
1629
1637
1645
1653
1661

1669
1677
1685
1693
1701
1709
1717
1725

1733
1741
1749
1757
1765
1773
1781
1789

1542
1550
1558
1566
1574
1582
1590
1598

1606
1614
1622
1630
1638
1646
1624
1662

1670
1678
1686
1694
1702
1710
1118
1126

1734
1742
1750
1758
1766
1774
1782
1790

1543
1551
1559
1567
1575
1583
1591
1599

1607
1615
1623
1631
1639
1647

- 1655
1663

1671
1679
1687
1695
1703
1111
Ine
1727

1735
1743
1751
1758
1767
177%
1783
1791

3400
34¥%0
3420
3430
3440
3450
3460
3470

3500
3510
3520
3530
3540
3550
3560
3570

3610
3620
3630
3640
3650
3660
3670

3700
3110
3720
3730
3740
3750
3760
3770

3600’

1792
1800
1808
1816
1824
1832
1840
1848

1856
1864
1872
1880
1888
1896
1904
1912

1920
1928
1936
1944
1952
1960
1968
1976

1984
1992
2000
2008
2016
2024
2032
2040

1733
1801
1809
1817
1825
1833
1841
1849

1857
1865
1873
1881
1889
1897
1905
1913

1921
1929
1937
1945
1953
1961
1969
19717

1985
1993
2001

2017
2025
2033
2041

1794
1802
1810
1818
1826
1834
1842
1850

1858
1866
1874
1882
1890
1898
1906
1914

1922
1930
1938
1946
1954
1962
1970
1978

1986
1994
2002
2010
2018
2026
2034
2042

1795
1803
1811
1819
1827
1835
1843
1851

1859
1867
1875
1883
1891
1899
1907
1815

1923
1931
1939
1947
19,5
1963
1971
1979

1987
1985
2003
2011
2019
20217
2035
2043

1796
1804
1812
1820
1828
1836
1844
1852

1860
1868
1876
1884
1892
1900
1908
1916

1924
1932
1940
1948
1956
1964
1972
1980

1988
1996
2004
2012
2020
2028
2036
2044

1797
1805
1813
1821
1829
1837
1845
1853

1861
1869
1877
1885
1893
1901
1909
1917

1925
1933
1941
1949
1957
1965
1973
1981

1989
1997
2005
2013
2021
2029
2037
2045

1798
1806
1814
1822
1830
1838
1846
1854

1862.

1870
1878
1886
1894
1902
1810
1918

1926
1934
1942
1950
1958
1966
1974
1982

1990
1998
2006
2014
2022
2030
2028
2046

1799
1807
1815
1823
183t
1839
1847
1855

1883
1871
1873
1887
1895
1903
1911
1919

1927
1935
1943
1951
1959
1967
1975
1983

1991
1999
2007
2015
2023
2031
2039
2047

354

4000
to
4777

(Octal) | (Decima)

OCTAL-DECIMAL INTEGER CONVERSION TABLE (continued)

2048
to
2559

Octal Decimal
10000 . 4096

1]

2

3 4)

6

7

0

2

3

4

-]

]

ki

20000 - 8192
30000 - 12288
40000 - 16384

60000 . 24576

70000 - 28672

5000
to
5777

{Octal) | (Decimal)

2560
to
3071

4000
4010
4020
4030
4040
4050
4060
4070

4100
4110
4120
4130
4140
4150
4160
4170

4200
4210
4220
4230
4240
4250
4260
4270

4200
4310
4320
4330
4340
4350
4360

4370

2048
2056
2064
2072
2080
2088
2096
2104

2112
2120
2128
2136
2144
2152
2160
2168

2176
2184
2192
2200
2208
2216
2224
2232

2240
2248
2256
2264
2272
2280
2288
2236

2049
2057
2065
2073
2081
2089
2097
2105

2113
2121
2129
2137
2145
2153
2161
2169

2177
2185
2193
2201
2209
2217
2225
2233

2241
2249
2257
2265
2273
2281
2289
2297

2050
2058
2066
2074
2082
2090
2098
2106

2114
2122
2130
2138
2146
2154
2162
2170

2178
2186
2194
2202
2210
2218
2226
2234

2242
2250
2258
2266
2274
2282
2290
2298

2051 2052 2053
2059 2060 2061
2067 2068 2069
2075 2076 2077
2083 2084 2085
2091 2092 2093
2099 2100 2101
2107 2108 2109

2115 2116 2117
2123 2124 2125
2131 2132 2133
2139 2140 2141
2147 2148 2149
2155 2156 2157
2165 2164 2165

2171 2172 2173,

2179 2180° 2181
2187 2188 2189
2195 2196 2197
2203 2204 2205
2211 2212 2213
2218 2220 2221
2227 2228 2229
2235 2236 2237

2243 2244 2245
2251 2252 2253
2259 2260 2261
2267 2268 2269
2275 2276 22717
2283 2284 2285
2291 2292 2293
2299 2300 2301

2054
2062
2070
2078
2086
2094
2102
2110

2118
2126
2134
2142
2150
2158
2166
2174

2182
2180
2198
2206
2214
2222
2230
2238

2246 .

2254
2262
2270
2278
2286
2294
2302

2055
2063
207
2079
2087
2095
2103
2111

2119
2127
2135
2143
2151
2159
2167
2175

2182
2191
2199
2207
2215
2223
2231
2238

247
2255
2263
2271
2279
2287
2295

4400
4410
4420

4440
4450
4460
4470

4430

2304
2312
2320
2328
12336
2344
2352
2360

45002368
4510/ 2376

4520/ 2284

4540 2400
4550 2408

45602416
4570/ 2424
4500!2432
4610|2440
462012448
4630 | 2456
4640 2464
46502472
4660 2480

4670 | 2488

4700 ; 2496
4710|2504
4720. 2512
4730 2520

2303

4740
4750
4760

2528
2536

2534

4770/ 2552

2305
2313
2321
2329
2337
2345
2353
2361

2369
2377
2285
2393
2401
2409
2417
2425

2433
2441
2449
2457
2465
2473
2481
2489

2497
2505
2513
2521
2529
2537
2545
2553

2306
2314
2322
2330
2338
2346
2354
2362

2370
2378

2385

2394
2402
2410
2418
2426

2434
2442
2450
2458
2466
2474
2482
2490

2498
2506
2514
2522
2530
2538
2546
2554

2307
2315
2323
2331
2339
2347
2355
2363

231
2379

27
2387

2395
2403
2411
2419
2427

2438

2443
2451
2459
2467
2475
2483
2491

2499
2507
2515
2523
2531
2539
2547
2555

2308
2316

2324

2332
2340
2348
2356

2364

2372
2380

ann
2338

2396
2404
2412
2420
2428

2436
2444
2452
2460
2468
2476
2484
2492

2500
2508
2516
2524
2532
2540
2548
2556

2309
2317
2325
2333
2341
2349
2357
2365

2373
2381
2385
2397
2405
2413
2421
2429

2437
2445
2453
2461
2469
2477
2485
2493

2501
2509
2517
2525
2533
2541
2549
2557

2310

2318.

2326
2334
2342
2350
2358
2366

2374
2382
2350
2398
2406
2414
2422
2430

2438
2446
2454
2462
2470
2478
2486
2494

2502
2510
2518
2526
2534
2542
2550
2558

31

2319

2327
2335
2343
2351
2359
2367

2375
2383
2391
2399
2407
2415
2423
2431

2438
2447
2455
2463
2471
2479
2487
2495

2503
2511
2519
2527
2535
2543
2551
2559

0

1.
-

2

3 4)

6

0

1

2

v

6

7

5000
5010
5020
5030
5040
5050
5060
5070

5100
5110
5120
5130
S14G
5150
5160
5170
5200
5210
5220
5230
5240
5250
5260
S2170

5300
5310
5320
5330
5340
5350

5360

5370

2560
2568
2576
2584
2592

2608
2616

2624
2632
2640
2648
2656
2664
2672
2680

2688
2696
2704
2712
2720
2728
2736
2744

2752
2760
2768
21176
2784
2792
2800

2808

2561
2569
2577
2585
2593
2601
2609
2617

2625
2633
2641
2649
2657
2665
2673
2681

2689
2697
2705
2713
2721
2729
2731
2745

753
2761
2769
2717
2785
2793
2801
2809

2562
2570
2578
2586
2594
2602
2610
2618

2626
2634
2642
2650
2658
2666
2674
2682

2630
2698
2706
2714
2722

730
2738
2746

2754
2762
2770
2718
2786
2794
2802
2810

2563 2564 2565
2571 2572 2573
2579 2580 2581
2587 2588 258y
2595 2596 2597
2603 2604 2605
2611 2612 2613
2619 2620 2621

2627 2628 2629
2635 2636 2637
2643 2644 2645
2651 2652 2653
2659 2660 2661
2667 2668 2669
2675 2676 2677
2683 2684 2685

2691 2692 2693
2699 2700 2701
2707 2708 2709
2715 2716 2717
2723 2724. 2725
2731 2732 2733
2739 2740 2741
2747 2748 2749

2755 2756 2757
2763 2764 2765
2771 2772 27113
2779 2780 2781
2787 2788 2789
2795 2796 2797
2803 2804 2805
2811 2812 2813

2566
2574
2582
2590
2598
2606
2614
2622

2630
2638
2646
2654
2662
2670
2678
2686

2694
2702
2710
2718
2726
2734
2742
2750

2758
2766
2774
2782
2790
2798
2806
2814

2567,
2375
2583
2591
2599
2607
2615
2623

2631
2639
2647
2655
2663
2671
2679
2687

2695
2703
2711
27119
2127
2735
2743
2751

2759
2767
2715
2783
2791
2799
2807

2815

5400

5410
5420
5430
5440
5450
5460
5470

5500

5510

5520
5530
5540
5550
5560
5570

5600
3610
5620
5630
5640
5650
5660
5670

5700
$710
5720
5730
5740
5750
5760

5770

2816
2824

2840
2848
2856
2864
2872

2880
2888
2896
2904
2912
2920
2928
2936

2944
2952
2960
2968
2976
2534
2992
3000

3008
3016
3024
3032
3040
3048
3056

2832,

2817
2825
2333
2841
2849
2857
2865
2873

2881
2889
2897
2905
2013
2921
2929
2937

2945
2953
2961
2969
2977
2985
2993
3001

3009
T
3025
3033
3041
3049
3057
3085

2818
2826
2834
2842
2850
2858
2866
2874

2882
2890
2898
2906
2914
2922
2930
2938

2946
2954
2962
2970
2978
2986
2994
3002

3010
3018
3026
3034
3042
3050
3058
3066

2819
2827
2835
2843
2851
2859
2867

2875

2883
2891
2893
2907
2915
2923
2931
2939

2947
2955
2963
2971
2979
2987
2995
3003

3011
3019
3027
3035
3043
3051
3059
3067

2820
2828
2836
2844
2852
2860
2868
2876

2884
2892
2900
2908
2916
2924
2932
2940

2948
2956
2964
2972
2980
2988
2996
3004

3012
3020
3028
3036
3044
3052
3060
3068

2821
2829
2837
2845
2853
2861
2869
2877

2885
2893
2901
2909
2917
2925
2933
2941

2949
2957
2965
2973
2981
2989
2997
3005

3013
3021
3029
3037
3045
3053
3061
3069

2822
2830
2838
2846
2854
2862
2870
2878

2886
2894
2902
2910
2918
2926
2934
2942

2950
2958
2966
2974
2982
2990
2998
3008

3014
3022
3030
3038
3046
3054
3062
3070

2823
2831
2039
2847
2858
2863
287
2879

2887
2895
2903
2911
2919
2927
2935
2943

2951
2959
2967
2975
2983
2991
2999
3007

3015
3023
3031
3039
3047
3055

3071

355

OCTAL-DECIMAL

6000 3072
to to
6777 3583
(Octal) | (Decimal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

7000 3584
to to
7777 | 4095
(Octa!) | (Decimal)

INTEGER

CONVERSION TABLE (continued)

P

|

0

1

2

3

7

0

5

T

T
6000 :

s010]
6020 |
6030 !
6040
8050 .
6060
6070
6100
6110
6120
6130
6140
6150
6160
6170;

]
6200 |
6210

8220 1
6230 !

6250 |

|

8300
6310

16320

6330
6340
8350
6360
6370

6240 |

8260
{6270

3072
3080
Jo08s
3096
3104
3112
3120
3128

3136
3144

3152
. 3160

3168
3176
3184
3192

3200

3208

3216
3224
3232
3240
3248
3256

‘1264
3272

3280
3288
3296
3304
32
3320

3073 3074 -

3081
3089

3097

310%
KIRE]
3121
3129

137
3145
3153
3161
3169
3177
3185
3193

3201
3209
3er7
3225
3233
3241
3249
3257

3265
3273
3281
3289
3297
3305
3313
3321

3082
3090
3098
3106
3114
3122
3130

3138
3148
3154
3162
3170
3178
3186
3194

3202
3210
3218
3226
3234
3242
3250
3258

3266
3274
3282
3290
3298
3306
3314
3322

3075
3083
3091
3099
3107
s
3123
3131

3139
3147
3155
3163
3171
3179
3187
3195

3203
3211
3219
3227
3235
3243
3251
3259

3267
3275
3283
3291
3299
3307
3315
3323

3076
3084
3092
3100
3108
3116
3124
332

3140
3148
3156
3164
3172
3180
3188
3196

3204
3212
3220
3228
3236
3244
3252
3260

3268
3276
3284
3292
3300
3308
3318
3324

3077
3085
3093
3101
3109
3117
3125
3133

3141
3149
3157
3165
3173
3181
3189
3197

3205
3213
3221
3229
3237
3245
3253
3261

3269
3277
3285
3293
3301
3309
37
3325

3078
3086
3094
3102
3tto
ns
3126
3134

3142
3150
3158
3166
3174
3182
3190
3198

3206
3214
3222
3230
3238
3246
3254
3262

3270
3278
3286
3294
3302
3310
s
3326

3079
3087
3095
3103
3
3119
nz1
3135
3143
3151
3159
3167
3175
3183
3191
3199

3207‘

(6400

6410
6420°
6430
6440

6450°

6460
6470

GSOOI

6510

6520
16530
.6540

6550
6560
6570

3328
3336
3344
3352
3360
3368
| 3376
3384

3392
1 3400
£ 3408
13416

3424
. 3432
3440
3448

i

16600

3456

3215, 16610 3464

3223
3231
3239
3247
3255
3263

3271

ts620
16630

6640
6650
6660
6670

3472
' 3480
3488

3496

: 3504

3512

16700

3520

3279, 16710, 3528
3287, {6720; 3536

3295
3303

6730
6740

3544
13552

3311, 6750 3560
3319, 16760 3568

3327J (67703576

3329
3337
3345
3353
3361
3369
3377
3385

3393
3401
3409
3417
3425
3433
344!
3449

3457
3465
3473
3481
3489
3437
3505
3513

3521
3529
3537
3545
3553
3561
3569
3577

3330
3338
3346
3354
3362
3370
3378
3386

3394
3402
3410
3418

3426

3434
J442
3450

3458
3466
3474
3482
3490
3498
3506
3514

3522
3530
3538
3546
3554
3562
3570
3578

31
3339
3347
3355
3363
33
3379
3387

3393
3403
3411
3419
3427
3435
3443
3451

3459
3467
3475
3483
3491
3499
3507
3515

3523
3531
3539
3547
3555
3563
3571
3579

3332
3340
3348
3356
3364
3372
3380
3388

3396
3404
3412
3420
3428
3426
3444
3452

3460
3468
3476
3484
3492
3500
3508
3516

3524
3532
3540
3548
3556
3564
3572
3580

3333
3341

334¢
3357
3365
3373
3381

3389

3397
3405-
3413
3421
3429
3437
3445
3453

3461
3469
3477
3485
3493
3501
3509
3517

3525
3533
3541
3549
3557
3565
3573
3581

3334
3342
3350
3358
3366
3374
3382
3390

3398
3406
3414
3422
3430
3438
3446
3454

3462
3470
3478
3486
3494
3502
3510
3518

3526
3534
3542
3550
3558
3566
3574
3582

3335
3343
3351
3359
3367
3375
3383
3391

3399
3407
3415
3423
3431
3439
3447
3455

3463
3471
3475
3487
3495
3503
3511
3519

3527
3535
3543
3551
3559
3567
3575
3583

T

0

1

2

3

4

7

Lo

i

2

3

4

5

17010

7000
1020,
1030
7040,
7050!
1060

7070

1110

7180

7340
7353
7360

7370

7100,

7120
7130
7140
7150,

7170

7200
7210/
7220
7230!
1240
7250/
7260}
7270;

]
73001
7310 3784
7320
7330 2800

3584
3592
3500
3608
3816
3624
3632
3640

3648
3656
3664
3672
3680
3688
3696
3704

3712
3720
3728
3738
T4
3152
1760
3768

3776
3792

3808

fauxe

3824
R

3585
3593
3601
3609
617
3625
3633
3641

3649
3657
3665
3673
3681
3689
3897
3705

nasz
an
929
3737
3745
3753
3761
3759

17
3785
3793
3801
3829
3817
3825
3833

3586
3594
3602
s
3618
3626
3624
3642

3650
3658
3666
3674
3662
3690
3658
3706

3714
722
3730
3738
746
3754
3re2
3170

3178
3786
3794
2802

3587
3595
3603
3611
3619
3627
3635
3643

3651
3659
3667
3675
3683
3691
3699
3707

3715
3723
3731
3739
3747
3755
3783
ann

3179
3787
3195
3803

3588
3596
3604
612
3620
3628
3636
3644

3652
3660
3668
3676
3684
3692
3700
3108

ane
3724
32
3740
3748
3758
3764
3772

3180
3788
3796
3804

3810 3811 38)12

3818

3819

3820

3826 3827 3p28

3834

3835

3838

3589
3597
3605
3613
3621
3629
3637
3645

3653
36861
3669
3677
3685
3693
3701
3709

37
3725
3733
Il
1749
3757

3765

3773

st
3789
3797
3805
13
3r21
3829
3837

3590
3598
3606
3614
3622
3630
3638
3646

3654
3662
3670
3678
3686
3694
3702
3o

mnsg
3726
37134
3742
3750
3758
3768
3174

3782
3790
3798
3808
3814
3822
3830
3838

3591 | 7400 ! 3840
3599 17410 3848
3607: 174201 3856
361517430 3864

3623,
3631
3639,
3647]

3655;
3663!
3671
3879
3687
3695
3703
3ni

3719
3727
3735
3743
31751
31759
3767
3775

3783
3791
3799
3807
3815
3823
3831
3839

7440
7450
7460
7470

7500
7510
7520
7530

7540 |

7550

7560 |

7570

7600
7610
7620

7630

7640
7650
7660
7670

7700
7710
7720
7730
1740
7750
7760
1110

. 3872
3880
: 3888
! 3896

13904
{3912
{3920
{3928
3936
[3944
3952
3960

3968
£3976
13984
3992
4000
4008
4016

4040
4048
4056
4064
4072
4080
4088

4024
4032"

3841
3849
3857
3865
3873
3881
3889
3897

3905
3913
3921
3929
3937
3945
3953
3961

3969
3877
3985
3993
4001
4009
4017
4025

4033
4041
4049
4057
4065
4073
4081
4089

3842
3850
3858
3866
3874
asa2
3890
3898

3906
3914
3922
3930
3938
3946
3954
3962

3970
3978
3986
3994
4002
4010
4018
4026

4034
4042
4050
4058
4066
4074
4082
4090

3843
3851
3859
3867
3875
3883
3891
3899

3907
3915
3923
3931
39339
3947
3955
3963

3IM
3373
3987
3995
4002
4011
4019
4027

4035
4042
1051
4059
4067
4075
4083
4091

3844
3852
3860
3868
3876
3884
3892
3900

3908
3916
3924
3932
3940
3948
3956
3364

3972
3980
3988
3936
4004
4012
4020
4028

4036
4044
4052
4060
4088
4076
4084
4092

3845
3853
3861
3869
3877
3885
3893
3901

3909
3917
3925
3833
3941
3949
3957
3965

3973
3981
3989
3997
4005
4013
4021
4029

1007
4045
4053
4061
4069
40M
4085
4093

3846
3854
3862
3870
38178
3886
3894
3902

3910
1918
3926
3934
3942
3950
3958
3966

3974
3982
3990
3938
4006
4014
1022
4030

4038
4046
4054
4062
4070
4078
4086
4094

3847,
3855
3863
8N
3879
3887
3895
3903

91
3919
3927
3835
3943
3951
3959
1967

3978
3983
3991
1999
4007
4015
4023
4031

4039
4047
4055
4083
4071
4079
4087
4095

356

OCTAL-DECIMAL FRACTION

!

CONVERSION TABLE

177

.373046

Octal Decimal Octal Decimal Octal Decimal Octal Decimal
. 000 . 000000 100 . 125000 . 200 . 250000 .300 . 375000
.001 001953 .101 . 126953 .201 .251953 .301 376953
.002 . 003906 . 102 . 128906 .202 . 253906 .302 .37890%
.003 . 005859 .103 . 130859 .203 . 255859 .303 . 380859
. 004 .007812 .104 . 132812 . 204 .257812 . 304 . 382812
. 005 . 009765 . 105 . 134765 . 205 . 259765 .305 .384765
. 006 011718 . 106 . 136718 . 206 261718 .306 . 386718
. 007 013671 . 107 . 138671 .207 .263671 .307 . 388671
. .010 . 015625 .110 . 140625 .210 . 265625 .310 .390625
.011 . 017578 L1 . 142578 1211 . 26757R a1 .302578
012 .019531 .12 . 144531 .212 . 269531 .312 .394531
013 . 021484 .113 . 146484 .213 271484 .313 .396484
.014 . 023437 .114 . 148437 .24 - .273437 314 .398437
.015 . 025390 .15 . 150390 .215 . 275390 .315 . 400390
016 . 027343 .116 .152343 .216 . 277343 .316 .402343
.017 . 029296 .17 . 154296 .217 . 279296 .317 404296
. 020 .031250 .120 . 156250 220 . 281250 .320 . 406250
.021 . 033203 .121 . 158203 .221 * 283203 .321 . 408203
.022 . 035156 .122 . 160156 .222 . 285156 .322 .410156

.023 , 037109 .123 . 162109 223 . 287109 - .323 . 412109 -
. 024 . 039062 . 124 . 164062 224 . 289062 .324 . 414062
.025 .041015 .125 . 166015 .225 . 291015 .325 .416015
. 026 . 042968 .126 . 167968 .226 . 292968 .326 .417968
. 027 . 044921 L127 . 169921 .227- . 294921 .3217 419921
.030 . 046875 .130 .171875 .230 . 296875 .330 .421875
. 031 . 048828 . 131 .173828 .231 .298828 .331 .423828
. 032 . 050781 132 .175781 .232 . 300781 .332 . 426781
.033 . 052734 .133 L 137734 .233 .302734 .333 427734
.034 . 054687 .134 . 179687 .234 . 304687 .334 . 429687
.035 . 056640 L135 . 181640 235 . 306640 .335 .431640
. 036 . 058593 . 136 . 183593 .236 .308593 .336 . 433593
. 037 L 060546 L1317 . 185546 237 .310546 .337 . 435546
. 040 . 062500 . 140 . 187500 . 240 . 312500 . 340 .437500
041 . 064453 141 . 189453 . 241 .314453 341 439453
..042 . 066406 142 . 191406 .242 . 316406 .342 . 441406
. 043 . 068359 .143 . 193359 .243 . 318359 .343 . 443359
044 070312 . 144 . 195312 .244 . 320312 . 344 L 445312
. 045 . 072265 145 . 197265 .245 . 322265 .345 .447265
. 046 .074218 . 146 . 199218 .246 . 324218 .346 . 449218
. 047 .076171 . 147 . 201171 . 247 . 326171 .347 . 451171
.050 . 078125 . 150 . 203125 . 250 ".328125 . 350 .453125
. 051 . 080078 .151 . 205078 .251 . 330078 .351 . 455078
.052 7,082031 .152 . 207031 .252 .332031 .352 .457031
.053 . 083984 .153 . 208984 .253 . 333984 .353 . 458984
. 054 . 085937 . 154 . 210937 . 254 .335937 354 . 460937
. 055 . 087890 .155 . 212890 .255 . 337890 .355 .462890
. 056 . 089843 .156 . 214843 .256 . 339843 .356 464843
. 057 . 091796 .157 .216796 \ .257 . 341796 .357 466796
. 060 . 093750 . 160 . 218750 .260 . 343750 .360 . 468750
. 061 . 095703 . 161 . 220703 .261 .345703 .361 . 470703
. 062 . 097656 . 162 . 222656 .262 . 347656 .362 472656
. 063 . 099609 . 163 . 224609 .263 . 349609 .363 474609
. 064 . 101562 . 164 . 226562 . 264 . 351562 . 364 .476562
065 . 103515 . 165 . 228515 .265 .353515 . 365 ,478515
. 066 . 105468 . 166 . 230463 . 266 . 355468 .366 480468
067 . 107421 . 167 . 232421 . 267 . 357421 .367 .482421
070 .109375° J170 .234375 .270 .359375 .370 . 484375
071 . 111328 L1713 .236328 - .271 .361328 .371 .486328
L0712 . 113281 L172 . 238281 .272 .363281 .372 488281
073 . 115234 L113 . 240234 .273 .365234 .373 .490234
.074 L117187 .174 . 242187 .274 . 367187 374 . 492187
.075 .119140 .175 . 244140 .275 . 369140 .375 494140
.076 . 121093 .176 . 246093 .276 .371093 .376 496093
. 077 . 123046 . 248046 .21 L3717 .498046

357

OCTAL-DECIMAL FRACTION CONVERSION TABLE (continued)

Decimal l

Octal Decimal Octal Decimal Octal Octal Decimal
.000000 .000000 L000100 . . 000244 .000200 000488 ,000300 .000732
.000001 000003 .000101 .000247 .000201 000492 ,000301 .000736
.000002 000007 .000102 .000251 .000202 . 000495 .000302 .000740
.000003 000011 .000103 000255 .000203 000499 .000303 000743
.000004 . 000015 .000104 000259 .000204 000503 .000304 000747
.000005 000019 .000105 ,000263 .000205 000507 ,000305 000751
,000006 000022 .000106 000267 .000206 000511 ,000306 000755
.000007 000026 .000107 ~ .000270 .000207 . 000514 .000307 000759
,000010 000030 ,000110 .000274 .000210 .000518 .000310 000762
L000011 .000034 L000111 .000278 .000211 000522 ,000311 000766
.000012 ,000038 .000112 . 000282 ,000212 000526 ,000512 000770
.000013 000041 .000113 . 000286 .000213 000530 ,000313 .000774
.000014 000045 - .000114 ,000289 ,000214 . 000534 .000314 000778
.000015 000049 .000115 . 000293 ,000215 000537 ,000315 000782
.000016 . 000053 .000116 000297 .000216 000541 .000316 000785
.000017 . 000057 .000117 000301 .000217 . 000545 .000317 000789
.000020 . 000061 .000120 000305 .000220 000549 ,000320 000793
.000021 .000064 ,000121 000308 .000221 000553 LU00321 000797
.000022 000068 .000122 000312 .000222 .000556 ,000322 000801
.000023 000072 ,000123 000316 .000223 . 000560 ,000323 000805
.000024 000076 .000124 000320 .000224 000564 .000324 000808
.000025 000080 .000125 000324 ,000225- 000568 .000325 000812
.000026 000083 .000126 000328 .000226 .000572 ',000326 000816
.000027 000087 .000127 ,000331 .000227 .000576 .000327 000820
.000030 . 000091 .000130 000335 .000230 .000579 ,000330 000823
.000031 000095 .000131 000339 ,000231 000583 .000331 000827
.000032 .000099 .000132 000343 .000232 000587 000332, 000831
,000033 000102 .000133 000347 .000233 000591 .000333 000835
.000034 000106 .000134 000350 .000234 .000595 000334 000839
.000035 .000110 .000135 .000354 .000235 000598 ,000335 000843
.000036 .000114 .000136 .000358 .000236 . 000602 .000336 ,000846
.000037 000118 .000137 ,000362 .000237 . 000606 000337 000850
.000040 . 000122 .000140 000366 .000240 000610 ,000340 000854
.000041 000125 .000141 000370 .000241 .000614 ,000341 000858
.000042 . 000129 .000142 000373 .000242 000617 ,000342 000862
.000043 000133 .000143 . 000377 .000243 .000621 ,000343 ,000865
.000044 000137 .000144 000381 .000244 000625 ,000344 000863
.000045 000141 .000145 .000385 .000245 .000629 .000345 000873
000046 000144 .000146 . 000389 ,000246 000633 00034, 000877
L000047 . 000148 .000147 .000392 .000247 .000637 .000347 000881
.000050 000152 .000150 .000396 .000250 000640 .000350 000885
.000051 000156 ,000151 000400 .000251 . 000644 .000351 000888
.000052 . 000160 .000152 . 000404 .000252 000648 .000352 000892
L000053 . 000164 ,000153 000408 .000253 000652 .000353 000896
,00005¢ 000167 ,000154 000411 .000254 .000656 .000354 000900
.000055 . 000171 L000155 . 000415 .000255 000659 ,000355 000904
.000056 000175 .000156 000419 ,000256 000663 .000356 000907
.000057 000179 000157 000423 .000257 000667 ,000357 000911
,000060 ,000183 .000160 000427 .000260 000671 .00C360 000915
.000061 ,000186 L000161 .000431 .000261 000675 ,000351 000919
.000062 ,000190 .000162 000434 .000262 . 000679 ,000362 000923
.000063 . 000194 .000163 .000438 .000263 ,000682 000363 000926
.000064 000198 .000164 .000442 .000264 000686 .000364 000930
.000065 000202 .000165 000446 000265 000690 .000365 000934
.000066 000205 .000166 .000450 .000266 .000694 .000366 000938
.000067 000209 .000167 000453 .000267 000698 .000367 ,000942
,000070 .000213 .000170 . 000457 .000270 000761 .000370 000946
.000071 .000217 ,000171 .000461 ,000271 . 000705 .000371 .000949
.000072 000221 ,000172 .000465 ,000272 . 000709 .000372 . 000953
.000073 000225 .000173 .000469 .000273 .000713 .000373 000957
.000074 .000228 .000174 .000473 ,000274 000717 .000374 000961
..000075 000232 .000175 .000476 .000275 .000720 ,000375 .000965
.000076 .000236 ,000176 .000480 .000276 ,000724 .000376 000968
.000077 000240 L000177 000484 ,000277 .000728 .000377 000972

358

OCTAL-DECIMAL FRACTION CON‘VERSION TABLE (continued)

Octal Decimal Octal Decimal Octal Decimal Octal Decimal
.000400 .000976 .000500 001220 .000600 001464 .000700 001708
.000401 000980 .000501 001224 .000601 .001468 .000701 001712
.000402 .000984 .000502 :001228 .000602 .001472 .000702 .001716
.000403 000988 .000503 001232 .000603 .001476 000703 .001720
.000404 000991 .00050¢ 001235 .000604 001480 .000704 001724
.000405 000995 .000505 001239 .000605 .001483 .000705 001728
.000406 000999 : .000506 .001243 .000606 .001487 .000706 001731
.000407 001003 .000507 001247 .000607 001491 .000707 001735
.000410 . 001007 .000510 001251 .000610 .001485 .000710 001739
.086411 . 00101C .000511 001255 .000611 001499 .000711 001743
.000412 © .001014 .000312 .001258 000612 001502 .000712 001747
.000413 001018 .000513 001262 .000613 001506 .000713 001750
.000414 .001022 .000514 001266 .000614 .001510 000714 001754
.0004:5 001026 .000515 001270 .000615 .001514 .000715 .001758
.000416 .001029 © .000516 .001274 - .000616 001518 .000716 001762
.000417 001033 .000517 .001277. .000617 .001522 .000717 001766
.000420 001037 .000520 001281 .000620 .001525 .000720 001770
000421 .001041 - .000521 .001285 ‘ .000621 001529 2000721 001773
.000422 001045 .000522 ©.001289 ".000622 001533 .000722 .001777
.000423 001049 .000523 .001293 .000623 .001537 .000723 . 001781
.00042¢4 .001052 .00052¢ .001296 T .000624 .001541 .00072¢ 001785
.000425 .001056 .000525 001300 000625 001544 .000725 001789
.000426 001060 000526 .001304 - .000626 . 001548 .000726 001792
.000427 .001064 .000527 .001308 .000627 001552, .000727 .001796
.000430 001068 .000530 001312 .000630 001556 .000730 001800
.000431 001071 .000531 .001316 .000631 001560 000731 001804
.000432 .001075 .000532 .001319 .000632 . 001564 .000732 001808
.000433 .001079 .000533 001323 .000633 .001567 .000733 .001811
.000434 .001083 ° .000534 001327 .000634 .001571 .000734 . . .001815
.000435 .001087 .600535 .001331 .000635 .001575 .000735 001819
.000436 .001091 .000536 .901335 .000636 .001579 .000736 001823
.000437 001094 .000537. .001338 .000637 .001583 .000737 001827
.000440 001098 .000540 . 001342 .000640 .001586 .000740 001831
.000441 001102 - 000541 .001346 .000641 001590 000741 001834
.000442 001106 000542 001350 .000642 001594 .000742 001838
.000443 001110 .000543 .001354 .000643 .001598 .000743 001842
.000444 001113 .000544 001358 .000643 001602 000744 .001846
.000445 001117 .000545 .001361 .000645 .001605 .000745 .001850
.000446 001121 .000546 001365 .000646 001609 .000746 001853
.000447 001125 .000547 001369 .000647 .001613 000747 001857
.000450 001129 .000550 001373 .000650 .001617 .000750 001861
.000451 001132 1000551 001377 : .000651 001621 000751 001865
.000452 001136 .000552 001380 .000652 .001625 .000752 001869
-.000453 001140 .000553 .001384 . .000853 001628 .000753 001873 .
.000454 . 001144 000554 .001388 .000654 .001632 .000754 .001876
.000455 001148 .000555 . .001392 .000655 .001636 .000755 .001880
.000456 .001152 .000556 .0013%6 .000656 .001640 .000756 .001884
.000457 001155 ..000557 001399 - ©.000857 .001644 000757 ,001888
.000460 001159 .000560 .001403 .000660 .001547 . .000760 001892
.000461 001163 .000561 . ,001407 .000661 001651 .000761 001895
.000462 001167 .000562 001411 .000662 .001655 .000762 001899
.000463 001171 .000563 ,001415 .000663 001659 .000763 .001303
.000464 001174 .000564 001419 000664 001663 .000764 001907
.000465 001178 1000565 .001422 .000665 - .001667 .000765 001911
.000466 001182 .000566 .001426 000666 001670 .000766 001914
.000467 001186 .000567 .001430 000667 .001674 . .000767 ,001918
.000470 001190 - ,000570 ,001434 .500670 . 001678 000770 .001922
.000471 001194 .000571 001438 .000671 .001882 .000771 001926
.000472 .001197 - .000572 . .001441 .000672 .001686 .000772 001930
.000473 001201 .000573 001445 .000673 .001689 .000773 001934
.000474 001205 .000574 001449 .000674 .001693 000774 001937
.000475 001209 .000575 .001453 .000675 .001697 .000775 001941
000476 001213 ' .000576 001457 .000676 .001701 .000776 001945
.000477 001216 000577 .001461 .000677 .001705 000777 001949

359

360

PART IV: PRODUCT CATALOG - l

361

362

PDP COMPUTERS

PDP general-purpose digital computers are used for a wide variety of data pro-
cessing and control functions. PDP's are constructed of highly reliable
FLIP-CHIP digital circuit modules, and include built-in provisions for marginal
checking. The resulting overall reliability has earned PDP's a reputation for
trouble-free performance. An exceptionally varied line of input-output devices
are available, and versatile facilities are provided in the computers to handle
these and other devices. ' ‘

A complete, well-documented package of programming aids accompanies each
PDP computer. The package includes a FORTRAN, compiler, a symbolic as-
sembler, on-line debugging routines, an editor, and utility, arithmetic, and
maintenance routines. Editing and on-line debugging programs use the same
symbolic language as the assembly systems. This means that debugging is car-
ried out in the same language as the program being debugged, eliminating the
creation and reassembly of new symbolic tapes each time an error is found.

The arithmetic subroutines include a floating point package. Input-output sub-
routines are prepared for most of Digital's standard optional devices. Extensive
maintenance routines are provided. Supporting these programming aids are
free training courses at Digital and membership in DECUS, the Digital Equip-
ment Computer Users Society. DECUS provides a means for users to exchange
ideas and programs through regularly scheduled symposia. A library of fully
documented programs is maintained. :

363

PDP-8/1 -

The PDP-8/1 is the newest member in Digital's Family-of-Eight computers. .
These include the PDP-8, PDP-8/S, DISPLAY-8, TYPESETTING-8, MULTI-
ANALYZER-8, and the LINC-8

The PDP-8/1 offers the power, speed, and expandability of the highly success-
ful PDP-8, but at a significantly lower price. It provides a new ease of inter-
facing with a wide range of DEC peripherals, including the new random access
disk file. It offers a programming system field-proven in nearly 2000 Family-
of-Eight installations.

The basic PDP-8/1 system features a 1.5 microsecond random access core
memory and includes 4096 words of 12-bit ferrite core memory, with a plug-in
capability of 8192 words in the basic machine; keyboard printer and tape
reader punch. Pre-wiring is also included for a high speed paper tape reader
and punch, a 100 card-per-minute card reader, an incremental plotter and
a scope display as well.

In addition to Digital's new DECdisk, the PDP-8/1 operates with a number of
other optional devices such as DECtape, high speed perforated tape readers
and punches, card equipment, a line printer, analog-to-digital converters,
cathode ray tube displays and magnetic drum systems.

SPECIFICATIONS:

Word Length: 12 bits

Memory: 4096 to 32,768 words; cycle time 1.5 microseconds

Add Time: 3.0 microseconds

In-Out Transfer Rates: 7,992,000 bits per second

Standard 1/0 Devices: Printer-keyboard with paper tape punch and reader

364

PDP-8

The PDP-8 is a general-purpose, stored-program computer, featuring a 1.5
_microsecond random access core memory, a fast arithmetic processor, and a
buffered input-output control. These features combine to make the PDP-8 one
of the most popular on-line computers for phySICS and biomedical analysis and
process control. The PDP-8 is also used in large systems as a control element
and as a training computer.

The PDP-8 is easy to install, maintain, and use, with comprehensive software,
customer-tested in over 1000 installations. The basic system includes 4096
words of 12-bit ferrite core memory, keyboard-printer and tape reader-punch,
eight auto-index registers, wired-in analog-to-digital converter, program in- -
terrupt, data interrupt, and indirect addressing.

A partial list of central processor options includes the Extended Arithmetic
Element for high speed, double precision arithmetic; Memory Modules and
Control for increasing memory size in increments of 4096 words to 32,768
words; a Data Channel Multiplexer providing direct memory access for seven
external devices; a Serial Drum for storage of 65,536 to 262,144 words and
a 32,768 word random access memory disc.

The applications success of the PDP-8 has led Digital to develop a series of
computers based on the PDP-8 to meet a number of special needs, resulting in
a unique family of small computer products. These include the DISPLAY 8, the
LINC-8, the TYPESETTING-8, the MULTIANALYZER-8, the PDP-8/S, and the
new PDP-8/1.

SPECIFICATIONS:

Word Length: 12 bits

Memory: 4096 to 32,768 words; cycle tlme 1.5 mlcroseconds

Add Time: 3.0 mlcroseconds

In-Out Transfer Rates: 7,992,000 bits per second

Standard 1/0 Devices: Printer-keyboard with paper tape punch and reader
Instructions: 49 with standard equipment, expandable to over 100 as optional
equipment is added.

366

PDP-8/8

The PDP-8/S is the first full-scale, general-purpose, core-memory digital com-
puter selling for under $10,000; it is designed for data handling and for con-
trolling complex process system.

The PDP-8/3S has the same size memory, the same input/output capabilities,
the same extensive set of standard options as the PDP-8. Both use the same
software. The difference between the two machines is in speed and physical
size. The PDP-8/S adds in 36 microseconds compared with an add time of 3.0
microseconds for the PDP-8. The basic 12-bit-word PDP-8/S features an 8-
microsecond, 4096-word, expandable core memory; a comprehensive software
package, including FORTRAN; and an ASR-33 Teletype. Although the PDP-8/S
combines a fully parallel core memory and input/output facility with a serial
arithmetic unit, the machine appears to be fully parallel to the user. Flexible, -
high capacity, input/output capabilities of the computer operate a variely of
peripheral equipment. In addition to the standard teletype and perforated tape
equipment, the systemn can operate in conjunction with most of the optional
devices offered in the PDP-8 family line. Equipment of special design is easily
adapted for connection into the PDP-8/S system. The computer need not be
modified to add peripheral devices. :

SPECIFICATIONS:

Word length: 12 bits ' :

Memory: 4096 to 32,768: cycle time 8.0 microseconds

Add Time: 36 microseconds

In-Out Transfer Rate: 1,500,000 bits per second

Standard 1/0 Devices: Printer-keyboard with paper tape punch and reader.

368

LINC-8

The LINC-8 is a computer-based system designed to control experiments and
collect and analyze data in the laboratory. The system combines the features of
the PDP-8 and the LINC computers, and allows the researcher to choose be-
tween the two programming systems available. The researcher simply uses one
of the two consoles in the system. Typical biomedical applications for the new
system are: arterial shock wave measurements in-phase triggering of stimuli
from EEG alpha waves, processing of single-unit data from the nervous system.
EKG processing, and operative conditioning applications.

Other applications for the LINC-8 include research in physics, chemistry,
meteorology, oceanography, psychology, radiation, seismology, and acoustics.

* The original LINC hardware and software were developed for on-line, real-time
laboratory research under grants from the National Institutes of Health and the
National Aeronautics and Space Administration. Development began at Massa-
chusetts Institute of Technology and continued at Washington University in
St. Louis. -

The LINC-8 system includes: a built-in multiplexed analog to digital input
facility, a relay register, dual digital LINCtape transports, an alphanumeric
oscilloscope display and an ASR-33 teletypewriter. The LINC-8 takes advantage
of the PDP-8's input/output bus for additionai convenience in interfacing
other laboratory instrumentation to the LINC-8 system.

With the LINC-8, the researcher has the option of using the LINC software
which has been designed to allow the researcher to write his own programs
after minimum instruction or he may use the more advanced PDP-8 program-
ming system which includes FORTRAN. The LINC-8 system “talks” with re-
searchers by displaying instructions and results on the oscilloscope display.
Displays combine English language with data displays. To familiarize custom-
ers with the new system, Digital offers four courses in programming and
maintenance of the LINC-8. These are included in the basic system purchase
price.

370

DISPLAY-8

The DISPLAY-8 (Type 338 Programmed Buffered Display) is an integrated
cathode-ray-tube system containing its own general-purpose computer. It is
capable of precisely displaying points, lines, and characters, and of performing
extensive computation using the computer order code and a complete software -
package. '

The computer is a PDP-8. It is fast enough to perform 2,000,000 additions per
second while displaying 300,000 points, 600 inches of vector, or 700 charac-
ters flicker free at the same time. The highly flexible character generator pro-
duces alphabetical characters or special symbols, similar to those used on
electronic circuit schematic, with equal ease. .

The 338 can be used as a self-contained display system or as a buffered display
station in a large computer system. The 338 can control interfaces to external
data sources, such as the central computer in a large.system, and can handle
real time requests, such as data phone interrupts. The 338 can be programmed
to view selected small areas of a large stored drawing: 10 by 10 inch window
can be moved randomly about a 6 by 6 foot drawing for detailed examination
and modification.

The system contains the following features for general purpose computations:
An extensive software package that includes FORTRAN, symbolic assembler,
debugging programs, floating point arithmetic, and display maintenance pro-
grams; 4096 words of core memory; program interrupt; and keyboard-printer
and 10-hertz paper-reader punch. The 338 may be expanded using any stan-
dard PDP-8 plug-in units.

372

PDP-9

The PDP-9 is a stored-program, general-purpose digital computer, designed to
handle a variety of on-line and real-time scientific applications calling for more
computation power than offered by the PDP-8. The basic PDP-9 features a
2-microsecond add time; 8,192 words of 18 bit (plus optional parity bit) core
memory; a real-time clock; a 300-character-per-second paper tape reader; a
50-character-per-second tape punch; and input-output, teleprinter (Teletype
Model KSR-33), Input/Qutput can be via programmed transfers, data channel
transfers, or direct memory access. The maximum 1/0O transfer rate is
18,000,000 bits-per-second.

Single address instructions are used, with auto-indexing and one level of in-
direct addressing permitted. A single memory reference instruction can directly
address any location in a block of 8,192 words of memory. PDP-9 has a Direct
Memory Access channel plus four built-in Data Channels.’

The memory can be expanded in 8,192-word increments to a total of 32,768
words. Mass storage devices, such as DECtape, IBM compatible magnetic tape,
disks and drums are available as options for the PDP-9, as are a wide variety of
other input-output devices and central-processor additions.

A comprehensive software package including FORTRAN IV, a MACRO Symbolic
Assembler, a monitor system, and diagnostic routines is provided with the basic
machine. With the modular software package, PDP-9 users can program in a
device-independent environment to take full advantage of configurations with-
mass storage devices and central processor options.

Applications for the PDP-9 include its use in biomedicine, process control,
chemical instrumentation, display processing, hybrid systems and data com-
munications. A special configuration, the PDP-9 MULTIANALYZER, has been
designed for physics applications.

SPECIFICATIONS:

Word length: 18 bits ‘

Memory: 8,192 to 32,768 words in 8,192 word increments

Cycle time: 1.0 microseconds '

Add Time: 2 microseconds

In-Out Transfer Rate: Up to 18,000,000 Bits per second ,

- Standard 1/0 Devices: A 300 character-per-second paper tape reader, a 50
character-per-second paper tape punch and a 10 character-per-second KSR-33
teletype. ..

Options: DEC Tape, IBM Compatible magnetic tape, drums, CTRS, A/D con-
verters, line printers, card readers, plotters, etc.

374

375

PDP-10

PDP-10 is an expandable, 36-bit computer system available in five configura-
tions (PDP-10/10, 10/20, 10/30, 10/40, and 10/50) and offering optimum
power and versatility in the medium price range.

The PDP-10 includes an extremely powerful processor with 15 index registers,
16 accumulators, and 8,192 words of 36-bit core memory, a 300-character-per-
second paper tape reader, a 50-character-per-second paper tape punch, a con-
sole teleprinter, and a two-level priority interrupt subsystem. PDP-10/20 adds
two DEC tapes. PDP-10/30 includes 16,384 words of memory and additional
I/ O devices. PDP-10/ 40 adds an extended order code and a memory protection
and relocation feature. And PDP-10/50 permits swapping between 32,768
words or more of memory and fast access desk file via the multiplexer/selector
channel, and includes multiprogramming time-sharing software.

The PDP-10 is designed for on-line and real-time applications such as physics
and biomedical research, process control, as a departmental computation fa-
cility, in simulation and aerospace, chemical instrumentation, display process-
ing and as a science teaching aid.

The software package includes real-time FORTRAN IV, a control monitor, a
macro assembler, a context editor, a symbolic debugging program, an /O con-
troller, a peripheral interchange program, a desk calculator and library pro-
grams. All software systems assure upward compatibility from the standard
8,192 words of memory through the multiprogramming and swapping systems
at both the symbolic and relocatable binary level.

PDP-10 features a 1-microsecond cycle time, a 2.1-microsecond add time, 1/0
transfer rates up to 7,200,000 bits per second and a modular, proven software
package that expands to make full use of all hardware configurations. Memory
can be expanded in 8,192 word increments to the maximum directly address-
able 262,144 words. :

376

377

GENERAL PURPOSE ANALOG-DIGITAL
CONVERTER/MULTIPLEXERS

Digital offers a wide range of analog-digital and digital-analog converters
from a 10-bit single-buffered D/A Converter contained on one double-width
FLIP-CHIP™ Module card to a multiplexed integrating digital voltmeter with
guarded reed relay scanner providing 140db of common mode rejection and
expandable to 2,000 input channels.

Digital's analog-digital converter/multiplexer systém is a combined unit with
interface for the PDP-8, PDP-8/S and PDP-S9 computers. The converter and
multiplexer are available either as separate units or as a combined unit without
computer interfacing. Optional equipment includes input amplifiers and
sample and Rold circuitry. The converter offers seven front panel selections
of speed and word length. Maximum speed: 6 bits, 1.6% accuracy, 9 micro-
seconds. Maximum accuracy: 12 bits, 0.025% accuracy, 35 microseconds.
The multiplexer includes from one to-16 multiplexer switch modules, depend-
ing on the number of channels required. Any multiple of four channels may
be selected to a maximum of 64. The time required to switch from one
channel to another is 10 microseconds to within 1 millivolt of the final volt-
age. The multiplexer/converter combination is conveniently packaged in a
single chassis 19 inches wide by 8-11/16 inches high by 19-1/2 inches deep.

DIGITAL also offers a new analog-digital converter for use with the PDP-8 or
PDP-8/S computers to convert an analog input signal to a ten-bit binary
number. The A/D Converter is a general purpose successive-approximation
type with an accuracy of 0.1% of full scale =1/2 LSB and a conversion time
of 10 usec. The converter includes cables for connection to the PDP-8 or
“PDP-8/S 1/0 Bus and a complete software package with 10T's and diagnostics.

378

379

INPUT-OUTPUT OPTIONS

MAGNETIC TAPE EQUIPMENT

DECtape, a unique fixed address magnetic tape system, allows on-line program
debugging or high speed loading and readout. Density is 375 = 60 bpi; tape
speed is 80 ips with a 15 kc character rate. Reads and writes in both direc-
tions: redundant tracks allow less than one transient error in 10 characters.
Total storage,.the equivalent of 4000 feet of perforated tape, is.three million

bits per reel. '

Other magnetic tape systems include automatic and programmed controls and
high or low density transports. Formats are IBM compatible at recording densi-
ties of 200, 556, and 800 bpi. Transfer rates range from 15 to 90 thousand
characters per second. Transports include an electro-pneumatic design of high
performance and low tape stress and wear.

RANDOM ACCESS DISC

A new DECdisc random access memory storage device significantly expands
the memory capacity of the PDP-8/1, PDP-8, and PDP-8/S computers. The
DF 32 has a capacity of 32,768 thirteen bit words (12 bits plus parity) with
capability of expansion to 131,072 words. It is a fixed disc with one head per
track. Transfer rate is 66 microseconds per 12 bit word. Average access time
is 16.67 milliseconds. '

MAGNETIC DRUM SYSTEMS

Drums provide auxiliary mass storage with direct access to memory. Sizes
range from a 32,768 word drum to 262,144 words.

DISPLAY AND PLOTTING EQUIPMENT

Precision and incremental cathode ray tube displays convert digital data into
graphic and tabular form. Light Pen detects plotted points to initiate com:-
puter action; Symbol Generator plots alphanumeric or special symbols in four
sizes _lanssfope face. Incremental Plotters give hard-copy graphs and histograms.
PRINTE

Automatic line printers produce hard-copy output data from 300 to 1000 lines
per minute with 120 or 132 column lines and any of 64 characters per column.
Teleprinters permit on line inputs and outputs from the computer console or
remote stations at 10 characters per second. Character sets are ACSII.
ANALOG-DIGITAL CONVERTERS

General purpose analog to digital converters offer seven front-panel selections
of speed and word length. Maximum speed: 6 bits 1.6%. 9 microseconds. Maxi-
mum accuracy: 12 bits 0.025% 35 microseconds. Digital-to-analog equipment
has maximum conversion time to an accuracy of one least significant bit of
2 psec. Speeds may be limited by the repetition rate of the associated
equipment. _

PERFORATED TAPE AND CARD EQUIPMENT

Paper tape punches operate at 10 to 63 characters per second; readers at

10,300, and 400. Card punch controis permit operation at 100 or 300 cards
per minute; card readers at 100, 200, or 800.

. 380

- 381

MODULE LINE

DIGITAL is one.of the world’'s largest suppliers of digital circuit modules.
These modules have been used in computers, interfaces, and special-purpose
systems since 1958. The series includes basic logic: modules and interface
modules (DC to 10Mhz). DIGITAL also manufactures analog interface modules,
a comprehensive line of high-speed TTL system modules (DC to 10 MHZ), and
a line of low-speed modules with high noise immunity for use in industrial
environment.

The M Series line of high-speed, monolithic integrated circuit logic modules
feature TTL (transistor-transistor logic) integrated circuits for high speed,
high fan-out and large capacitance drive capabilities coupled with excellent
noise margins and a superior power-speed characteristic. M Series includes a
full "digital system complement of basic modules, designed with sufficient
margins for reliable system operation at frequencies up to 6 MHz.

DIGITAL's new K series of Industrial Control modules are designed for process
control or data acquisition applications where noise-immune logic is essential.
The modules are deliberately- slowed to an upper frequency range of 100 KHz
with provision for reduction to 5 KMz for maximum noise immunity. K Series
modules incorporate all-silicon diodes, transistors and integrated circuits.

DIGITAL's OCTAID and PANELAID kits are designed to provide the logic user
with an easy-to-assemble, time-saving group of components to achieve common
logic functions, such as up-down counting, decoding, digital-to-analog and
analog-to-digital conversion, /and computer interfaces. Standard FLIP-CHIP
modules and connectors are used in conjunction with special purpose printed
circuit interconnectors. Specific modules may be operated at frequencies up
to 10 MHz.

382

383

NOTES

384

CUT ALONG DOTTED LINE ==w=m = oo c oo e e e e e dmmcmmccmm e

FOR MORE PRODUCT INFORMATION
INFORMATION REQUEST

D’Please, add my ndme to your mailing list to receive future technical bulletins and
application notes as they are issued.

O Please forward any available information of the following applicétion(s):

O Please have a Digital engineer contact me for an appointment.

O | would like to discuss the following applicationls):

O Please send technical literature on the following Digital products: \

O PDP-8/I 0 PDP-9 O PDP-8 o PDP-8/S O LINC-8
O CRT Displays: O Modules -
O Other

Name Position

Company

Dept. or Div.

Business

Street

City ' ' State

<

ZIP Code No. Telephone _

385

FIRST CLASS
_PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MATL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES —

Postage will be paid by:

I
EQUIPMEN T S
‘ CORPORATION

]
TECHNICAL PUBLICATIONS DEPT. sy
146 MAIN STREET —
MAYNARD, MASS. 01754]

386

DEC also has available a 400 page Digital Logic Handbook.
a comprehensive reference manual fou; both the logic
designer and the student. Over half the book is
devoted to applications information and technical data.
‘Special interest sections cover subjects such as
analog-digital and digital-analog conversion techniques
and . logic training-breadboarding equipment. There
are also detailed design specifications for more than
150 FLIP-CHIP Modules and accessories—the
~ industry’s most complete line of logic circuits.

Perhaps you have a friend who would like to receive a free copy of the Digital Logic
Handbook or the Digital Small Computer Handbook, If so, please fill out the card below.

DIGITAL EQUIPMENT CORPORATION
Technical Publications Dept.

146 Main Street

Maynard, Mass. 01754

GENTLEMEN:

0O Please send a free copy of The Digital 'Smal.l Computer Handbook to:

O Please send a free copy of The Digital Logic Handbook to:

Name

Position

Company

Business

Street

Telephone
City
State ____ Zip Code No.

387

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MATIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES . —

Postage will b-e paid by: 4 —
AEQUY ! PMEN T m—

CORPORATION
I

TECHNICAL PUBLICATIONS DEPT. gy
146 MAIN STREET) :
MAYNARD, MASS. 01754 | I

388

This new edition of DIGITAL’S Small Computer Handbook contains an
expanded basic computer primer with four step-by-step examples of
the use of small computers in scientific research and in process con-
trol. The book also contains three detailed User Handbooks, one for
each of the Family-of-Eight general purpose computers — PDP-8,
LINC-8, and the new PDP-8/S.

PRINTED IN U.S.A. 1750-3/67

	000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	xBack

