RTS/8

User’s Manual
Order No, DEC-08-ORTMA-C-D

RTS/8

User’s Manual
Order No, DEC-08-ORTMA-C-D

Version 2B

digital equipment corporation - maynard, massachusetts

First Printing, June 1974
Revised: September 1975
February 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (C) 1974, 1975, 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10
DECCOMM DECsystem-20 TYPESET-11

RTS/8

CONTENTS

PREFACE
CHAPTER 1 INTRODUCTION
1.1 RTS/8 DESCRIPTION
1.2 REAL-TIME SYSTEM OPERATION
CHAPTER 2 USING TASKS UNDER RTS/8
2.1 THE STRUCTURE OF RTS/8 TASKS
2,2 CONCEPTS OF TASK COMMUNICATION
2,2.1 Task Synchronization Through the Use of
Event Flags
2.2.2 Intertask Messages
2.3 EXECUTIVE INTERNAL TASK TABLES
CHAPTER 3 RTS/8 EXECUTIVE REQUESTS
3.1 COMMUNICATION WITH THE RTS/8 EXECUTIVE
3.2 ERs USED TO COMMUNICATE BETWEEN TASKS
3.2.1 SEND - Send Message
3.2.2 WAITE - Wait on Event Flag
3.2.3 SENDW - Send and Wait
3.2.4 RECEIVE - Receive Message
3.2.5 POST - Post Event Flag
3.2.6 Example of ERs for Message and Event Flags
3.3 ERs USED TO SET AND CLEAR TASK FLAGS
3.3.1 BLKARG - Block Task for Specified Reason
3.3.2 UNBARG - Unblock Task for Specified Reason
3.3.3 SUSPND - Suspend a Task's Execution
3.3.4 RUN - Run a Task
3.4 USING INTERRUPTS IN RTS/8
3.5 EXECUTIVE REQUEST WAIT STATES
CHAPTER 4 RTS/8 SYSTEM TASKS

4.1 CLOCK HANDLER

4,1.1 Examples of Clock Handler Calls
4,2 TERMINAL HANDLER

4.2

.1 Additional Assembly Parameters Affecting
Terminal Handler Properties
4,2,2 Useful Equates in the Parameter File
4.2.3 Examples of Terminal Handler Messages
4.3 LINE PRINTER HANDLER
4.4 MASS STORAGE HANDLERS
4.4.,1 Floppy Disk Handler
4,4.2 LINCtape Handler
4.4.3 Example of Mass Storage Handler Call
4.5 POWER FAIL TASK
4.6 0S/8 SUPPORT TASK
4.6.1 Mapping of Fields with 0S/8 Support Task

iii

WWWWwwwWww
[T I R L L I L |

HWOOOWWOWAAULA_AWWWNHF

WWwwwwww

CONTENTS (Cont,)

0S/8 - RTS/8 COMMUNICATION (os8comM)
.1 Using the 0S8COM Task
2 Other Techniques
OS/S FILE SUPPORT TASK
UNIVERSAL DIGITAL CONTROLLER/INDUSTRIAL
CONTROLLER SUBSYSTEM (UDC/ICS) HANDLER

4.9.1 A0 Analog Qutput

4,9.2 ATl Analog Input

4,9,3 DO Digital Output

4,9.4 DI Digital Input

4.9.5 GC Generic Code

4.9.6 EC Enable Counter

4.9.7 RC Read Counter

4.9,.8 DC Disable Counter
4,9.9 ECT Enable Contacts
4.9.10 €S cChange of State
4,9,11 DCT Disable Contacts
4.9.12 UDC/ICS Assembly Parameters
4.9.13 UDC/ICS Error Conditions
4.10 CASSETTE HANDLER

4.10.1 Handler Function

4,10.2 Utility Function

4,11 CASSETTE FILE SUPPORT HANDLER

4.12 PDP-8A NULL TASK

4.13 KL8-A SUPPORT

4.13.1 Executive KL8-A Support

4,13.2 TTY Task KL8-A Support

4,13.3 KL8~A Support for the 0S/8 Support Task
4,13.4 KL8-A Support for a User Task

4,14 EXIT TASK

CHAPTER 5 MONITOR CONSOLE ROUTINE

MCR COMMAND ARGUMENTS
MCR COMMANDS
1 DAte [mm/dd/yyyy [,Time-of-day]]
2 TIme [Time-of~day]
3 NAme Task-ID,Newname
4 REquest Task-ID [, (@Time~of-day ! Interval)
[,Intervall]

5.2.5 STop Task-=ID
5.2.6 DIsable Task-ID
5.2.8 CAncel Task-ID
5.2.9 SYstat [Task-ID]
5.2,10 OPen Address [,Count)
5.2.11 EXamine Address [,Count]
5.2.12 DEposit Address,Word [,Word] [,Word]
5.2.13 POst Address
5.2.14 EXIT
5.3 MCR ERRORS
5.4 NONRESIDENT MCR
CHAPTER 6 ASSEMBLING AND LOADING TASKS FOR RTS/8

1 PARAMETER FILE STRUCTURE
1.1 Executive Specifications

iv

oo n
1t
bW

[}

N - and [N W W W W WE]

(=2 =)

CONTENTS (Cont.)

6.1.2 Task Definitions

6.1.3 System Task Specifications

6.1.4 System Wide Definitions

6.1.5 Task Setup

6.2 CREATING AN RTS/8 SYSTEM

6.3 USING THE 0S/8 BITMAP PROGRAM

6.4 SAMPLE RTS/8 TASK PROGRAM

6.5 USE OF CONTROL FILES UNDER RTS/8

6.6 RTS/8 SYSTEM TASK PARAMETERS

6.6.1 Clock Handler Parameters

6.6.2 Swapper Parameters

6.6.3 Terminal Handler Parameters

6.6.4 Monitor Console Routine Parameters

6.6.5 0S/8 Support Task Parameters

6.6.6 KL8~A Support Parameters

6.6.,7 Line Printer Handler Parameters

6.6.8 DECtape Handler Parameters

6.6.9 EXIT Task
CHAPTER 7 NONRESIDENT TASKS

7.1 OVERVIEW

7.1.1 Writeable Tasks

7.1.2 Checkpointable Tasks

7.1.3 Interaction Between Tasks

7.2 MEMORY PARTITIONS

7.2.1 FREE Command

763 NONRESIDENT TASK INITIALIZATION

7.3.1 Parameters for Nonresident Tasks

7.3.2 Assembling Nonresident Tasks

7.3.3 Creating the SAVE Image File

7.4 PARAMETER INITIALIZATION FOR PARTITIONS

7.4.1 General Information

7.5 NONRESIDENT TASK IMPLEMENTATION
CHAPTER 8 DEMONSTRATION PROGRAM

8.1 MODIFIED PARAMETER FILE (PARAM.PA)

8.2 NONRESIDENT TASK LISTINGS

8.2.1 Nonresident Task NR20

8.2.2 Nonresident Task NR22

8.3 ASSEMBLY AND LOAD PROCEDURE

8.4 NONRESIDENT TASK ASSIGNMENT AND EXECUTION
CHAPTER 9 ADVANCED RTS/8 PROGRAMMING TECHNIQUES

PERFORMING A RESCHEDULE
1 Writing Delicate Code
2 Inhibiting Task Switching
EXECUTIVE REQUESTS FOR ADVANCED APPLICATIONS
1 WAITM - Waiting for Multiple Event Flags
o2 WAITX - Wait for Exactly This Event Flag
.3 DERAIL - Derail a Task's Execution
.3.1 Dangers of DERAIL
«3.2 Restrictions Using DERAIL
STARTING PARTITIONS AT AN ARBITRARY BOUNDARY
DIRECT REFERENCES TO SYSTEM TABLES

W WWLWYWOWYWYWYYWOWY
© @ e o o o o o o o o
B WNNNODNDNNDNE -

v

g
o]
Q
o

HHOUdSUIdWLWWN

oy
HH OO

[e)W W We We We We e W) Wep ey Rep]

]
N

NN N NNNNNN NN
oN~NOAONUTUTEWWWWH

o

00 00 00 00 0 O

LI T I I 1
— = O 0 0+ [
= o

O
[I T U Y T A O BN O | 1
O NN Utd N [ond

O W WWWWWWYWWY YWY

CONTENTS (Cont.)

Page
APPENDIX A RTS/8 DISTRIBUTED SOURCE FILES A-1
APPENDIX B RTS/8 COMPONENT SIZES B-1
APPENDIX C RTS/8 FLOWCHARTS c-1
APPENDIX D RTS/8 ASSEMBLY ERROR MESSAGES D-1
APPENDIX E EXECUTIVE INTERNAL TASK TABLES E-1
GLOSSARY Glossary-1
INDEX Index-1
FIGURES
FIGURE 2-1 Message Format and Linking of Messages 2-4
7-1 Nonresident Task Implementation 7=-2
B-1 RTS/8 System Memory Map (Default Memory
Allocation) B-4
E-1 Executive Internal Task Table Structure E-5
TABLES
TABLE 1-1 RTS/8 System Tasks 1-2
2-1 Summary of Event Flag States 2-3
3-1 Summary of Executive Requests 3=-2
3~-2 Symbclic Names for Specifying WAITBITS 3=-7
3-3 Summary of Wait States Incurred by Executive
Requests 3-12

4-1 Summary of Terminal Handler Assembly Parameter
Default Vvalues 4-9
9~1 Summary of Task Switching Flag (TSWFLG) States 9-4
B-1 RTS/8 Component Sizes B-1
B-2 MCR Component Size B-5

vi

PREFACE

This manual describes the PDP-8 Real-Time Operating System (RTS/8) .
Knowledge of PDP-8 assembly language programming (PAL8) is essential
for a complete understanding of this manual. In addition, the |user
should be familiar with real-time systems in general and with the
operation and use of the development system for the PDP-8, 0s/8. The
information in Chapter 9, "Advanced RTS/8 Programming Techniques" is
for the experienced RTS/8 user. It should be read after the user has
gained familiarity with RTS/8.

This version of the manual has been enlarged and expanded to
incorporate several new RTS/8 features. The Major features include
KL8-A Support, PDP-8/A Null Task, the EXIT Task, and two new
Executive Requests. Other features are the nonresident implementation
of the MCR, UDC/ICS support, an OS8COM facility that allows the 0S/8
system to talk to an RTS/8 task, and control files that allow the user
to efficiently make multiple task copies. RTS/8 flowcharts have been

added to show system operation.

The following PDP-8 handbooks will be helpful for review and
reference:

INTRODUCTION TO PROGRAMMING (DEC-08-XINPA-A-D)

SMALL COMPUTER HANDBOOK (90P45)

0S/8 HANDBOOK (DEC-S8-OSHBA-A-D)

UDC8 UNIVERSAL DIGITAL CONTROL SUBSYSTEM MAINTENANCE MANUAL
(46H745)

PDP-8A MINICOMPUTER HANDBOOK (EB0621976)

1CS8 INDUSTRIAL CONTROL SUBSYSTEM MAINTENANCE MANUAL (EKOICS8MM)

vii

CHAPTER 1

INTRODUCTION

1.1 RTS/8 DESCRIPTION

RTS/8 is a compact real-time system designed for the PDP-8 family of
processors (except the PDP-8/8S). This system allows up to 63 tasks to
run concurrently and compete for resources on a fixed priority basis.
It can be used for a wide range of applications in which a number of
processes must be monitored and controlled. As with other real-time
systems, RTS/8 responds to physical or conceptual events to permit the
timely execution and. scheduling of tasks.

The RTS/8 Executive controls execution and interaction among all
tasks. The Executive decides which tasks should run (based on the
priorities of the runnable tasks), and services the tasks by means of
Executive Requests (ERs).

A task is the basic program unit within RTS/8. RTS/8 system tasks
(DEC-supplied) and their file names are listed in Table 1-1. The
system supports both resident and nonresident tasks. A resident task
resides permanently in memory; a nonresident task is one in which the
major portion of the task resides on a mass storage device and is
loaded into memory only when that task becomes executable. Using
nonresident tasks permits portions of several tasks to share the same
areas of memory, providing economical use of memory.

RTS/8 includes system tasks that control most standard DIGITAL I/0
devices. A full complement of peripherals is supported, including RK8
and RK8-E moving-head disks, DF32 and RF08 fixed-head disks, TCO8
DECtape, RX8 floppy disk, LINCtape, DEC cassette, and LE8 and LS8E
line printers (RTS/8 does not support TD8E DECtape). The Monitor
Console Routine (MCR) task provides an interface between the user at
the console terminal and the system. The MCR provides the user with a
series of commands to control, inspect, and, to some extent, debug the
system. The MCR commands are straightforward and easy to use. They
allow the user to schedule and execute tasks at specified intervals,
suspend task execution, and print system status reports.

A system task also is provided that allows a single copy of the 05/8
operating system to run in the background, creating a real-time
foreground-0S/8 background system. With 0S/8 in the background, the
user has the facilities for program assembly, debugging, and editing.
The minimum RTS/8 hardware configuration required for a foreground
only system 1is a PDP-8 family processor, 4K words of memory, and a
console terminal capable of papertape input. A system capable of
running a real-time foreground and 0S/8 in the background requires a
pPDP-8 family processor with KM8-A, KM8-E or TSS-8 Time Sharing
options, a mass storage device (such as an RK8E cartridge disk or RXS8
floppy disk), and two terminals (one must be dedicated to 0S/8 system
execution).

INTRODUCTION

RTS/8 tasks are created by editing the RTS/8 master parameter file to

produce

a parameter file that describes the user's particular system.

Task source files are then assembled with the edited parameter file

using the PAL8 assembler.

The assembler can run either under 0s/8, or

the 0S/8 support system under RTS/8. Then using ABSLDR under 0S/8,
all task binaries are joined into a complete RTS/8 system.

Table 1-1
RTS/8 System Tasks

Task Name File Name Task Function
- PARAM. PA System parameter file with
equates blank. Appropriate
values should be inserted to
create specific parameter files.
RTS8.PA RTS/8 Executive
MCR MCR. PA Monitor Console Routine
null task MCR.PA Null task '
0seg 0S8SUP.PA 0S/8 Support Task
OS8F 0S8SUP.PA 0S/8 File Support Task
PWRF PWRF.PA Power Fail Task
CLOCK CLOCK.PA Clock Handler Task
TTY TTY.PA Terminal Driver Task
LPT LPT.PA Line Printer Driver Task
DTA DTA.PA TC08 DECtape Driver Task
RKS8 RK8.PA RK8 Disk Driver Task
RKS8 RKSE.PA RK8E Disk Driver Task
RF08/DF32 RF08.PA RF08/DF32 Fixed-Head Disk Driver
Task
CsA CSA.PA Cassette Driver Task
CSAF CSAF.PA Cassette File Support Task
UDC/ICS UDCICS.PA Universal Digital Controller/Industrial
Controller Subsystem Handler Task
RX8A RXO1RT.PA Floppy Disk Handler (lst controller)
RX8B RX01RT.PA Floppy Disk Handler (2nd controller)
RX8C RXO01RT.PA Floppy Disk Handler (3rd controller)
RX8D RXO01RT.PA Floppy Disk Handler (4th controller)
LTA LTA.PA LINCtape Driver Task
SWAPPER SWAP.PA Nonresident Task swapper
NULLS8A NULL8A.PA Null Task for PDP-8A
EXIT EXIT.PA Exit Task

1.2 REAL-TIME SYSTEM OPERATION

A multiprogramming

system

a software framework that allows

available resources (such as memory, CPU time, and peripheral devices)

to be shared by several tasks.

machine

Basically, a task is a portion of
code that performs a specific function; a task is defined by

convention since it overlaps with the definitions of "program" and

"subroutine."

Multiprogramming allows many tasks to be in some state of execution
If a task cannot use available central processor time

simultaneously.
because it is waiting for
blocked by

some other

completion of an 1I/0O operation (or 1is
condition), the central processor can be

switched to another task to use the available time, thus increasing
system efficiency.

INTRODUCTION

Most real-time systems are required to serve a group of tasks that run
at varying times or frequencies and alternate between being compute
pound or I/O bound. If machine resources are to be efficiently wused,
these tasks cannot be run in series since the central processor will
be poorly utilized during the periods the tasks are I/0 bound. In
addition, most real-time tasks are essentially time-critical and
should not wait for a slow, less important I/O or compute bound task
to finish before being executed. Thus, multiprogramming and a
priority scheme for scheduling the central processor provide maximum
resource utilization.

Thus, a real-time system is a multiprogramming system that must, in
addition to the multiprogramming features, respond quickly to critical
internal or external events. The real-time system is required to
suspend the operation of a less important task and start the task that
deals with the critical event.

A priority scheme establishes the relative importance of various tasks
in the system. This allows a less important task to be interrupted to
permit execution of a critical real-time task. For RTS/8, a fixed
priority scheme was chosen because such a scheme 1is simple and
reliable, and requires low scheduling overhead.

CHAPTER 2

USING TASKS UNDER RTS/8

2.1 THE STRUCTURE OF RTS/8 TASKS

The RTS/8 Executive is the controlling program in an RTS/8 System.
The Executive decides which task should run based on the priorities of
the runnable tasks (those tasks not waiting for completion of any 1/0
or other events). It also provides services to the tasks by means of
Executive Reguests. Executive Requests are discussed in Chapter 3.

The user assigns unigue task numbers to each task in an RTS/8 System.
He can assign up to 63 (77 octal) task numbers, and must account for
system tasks within the total number of tasks. A task number, once
assigned, cannot change during the execution of the program, since
RTS/8 uses a fixed priority system. Task numbers serve the following
purposes:

1. The task number is used by the RTS/8 Executive as an index to
various system tables which contain information about each
task.

2. The task number is used by other tasks in the system to
reference a particular task when performing certain Executive
Requests (such as sending a message).

3. The task number determines the task's priority - the lower
the task number, the higher the priority of the task.

The Executive uses five internal tables to maintain information about
the tasks in the system. A brief description of these tables is given
in Section 2.3.

2.2 CONCEPTS OF TASK COMMUNICATION

RTS/8 is event driven, i.e., the highest priority runnable task
executes continuously until it is completed or some event or condition
in the system causes it to be suspended. Another change or condition
can reactivate the task. Tasks can be self-starting if assembled to
run at system startup, started by another task, or started by the user
at the terminal console using the MCR task. RTS/8 performs two main
types of task communication, as follows:

1. Task synchronization through the use of Event Flags

2. Intertask messages

USING TASKS UNDER RTS/8

2.2.1 Task Synchronization Through the Use of Event Flags

Whenever two processes occur independently, one process may need to
wait until the execution of the other is finished. This can be
illustrated by using the PDP-8 terminal interface as an example. The
PDP-8, when ready to generate the first character, alerts the terminal
by issuing a Load Teleprinter Sequence (TLS) instruction. The PDP-8
must now wait in a TSF; JMP.-1 loop if it wishes to do further I1/0
immediately. It cannot proceed with the next character until the
terminal raises its ready flag to signal that it is finished printing
the first character. When the flag is raised, the PDP-8 then exits
from the wait loop and proceeds to load the next character.

Similarly, RTS/8 provides Event Flags as a signalling mechanism to
synchronize tasks with each other. An Event Flag is a user-chosen
location that contains the status of an event. The events are either
1) physical processes such as a clock ticking or a valve closing, or
2) conceptual occurrences such as a certain string of characters typed
by the operator or scheduling a task for execution. Like device
flags, an Event Flag can signify either a busy or a completed state,
defined as PENDING (>0) and FINISHED (=0) , respectively. Thus, a task
can direct another task via a message to perform a specified action,
at which time it sets a mutually-agreed upon Event Flag to the PENDING
value. When the second task has completed the specified action it
sets the Event Flag to the FINISHED value; this is known as Posting
the Event Flag. As a simple example, if the first task has been
waiting for the Event Flag with the instructions:

TAD Event Flag /LOAD EVENT FLAG IN AC
SZA CLA /IF EVENT FINISHED, SKIP
JMP .-2 /KEEP TRYING

then the Posting of the Event Flag will cause the first task to exit
from its loop, continuing on with the knowledge that the second task
has completed its processing.

Since this loop ties up the PDP-8 processor, Event Flags under RTS/8
have an additional state, WAITING (<0). Using the example just cited,
the addition of the WAITING state now allows the first task to tell
the RTS/8 Executive that it wants to WAIT until the Event Flag
signifying the status of the second task is FINISHED. The monitor
saves the contents of the waiting task's PC and sets the Event Flag
Wait bit in its Task Flags Table Word. The Event Flag is set to the
WAITING state. The WAITING state for an Event Flag is octal 4000 plus
the waiting task's Task Number. When the Event Flag is POSTed via an
RTS/8 Executive Request call, the task WAITING for it is automatically
taken out of Event Flag Wait by RTS/8. (If no other blocking bits are
set, the waiting task is again runnable, and will resume execution
when higher priority tasks are blocked.) WAITE is the mnemonic for the
RTS/8 Executive Request that Waits for an Event Flag.

This code would look as follows:
CAL
WAITE
event flag

All Executive Requests are described fully in Chapter 3. A summary of
Event Flag states is shown in Table 2-1.

USING TASKS UNDER RTS/8

Table 2-1
Summary of Event Flag States
Event Flag State Value
FINISHED (posted) 0
PENDING >0
WAITING <0 (4000 + Task No.)

2.2.2 Intertask Messages

Just as Event Flags under RTS/8 are analogous to hardware device
flags, messages are analogous to data-sending hardware I/O
instructions (for example, TLS). That is, messages start a task,
providing the task is WAITING for a message, and at the same time,
they pass information to the task. Messages are transmitted by
Executive Requests.

An RTS/8 message consists of a three-word Message Header followed by
any number of contiguous words of information to be exchanged between
two tasks. The Message Header is used exclusively by RTS/8. The
first word of the Message Header is the Event Flag for the message.
When the message is sent, the RTS/8 Executive sets the Event Flag to
the PENDING state. This signifies that the message has been sent but
not yet completed. No action occurs to the Event Flag upon receipt of
the message by the receiving task; however, RTS/8 requires that the
receiver POSTs the Event Flag when it has performed the action
specified (or implied) by the message. This posting serves two
purposes:

1. It informs the task which sent the message (the "sender")
that the regquested action has been completed, and

2. It allows the message to be sent again (see Item 2 below).

If multiple messages are waiting to be received by a task, RTS/8 uses
the second and third words of the Message Header to link these
messages together (see Figure 2-1). The second word is a CDF (Change
Data Field) instruction to the field of the next message. The third
word is the address of the next message. A second word of 0 signifies
that this is the last message. If the receiving task is not actively
waiting for a message, the message is placed on the receiving task's
Input Message Queue. Messages are then queued in order of decreasing
priority of the sender (increasing task number). Messages sent from
the same task are queued in the order in which they were issued.

2-3

USING TASKS UNDER RTS/8

RTS/8 EXECUTIVE :
MSGTBL MESSAGE 1 MESSAGE 2 MESSAGE 3

CDF Event Flag Event Flag Event Flag
Message
PTR CDF CDF 0 Header
PTR PTR

S
Message
Content

o

Figure 2-1 Message Format and Linking of Messages

The rest of the message can contain any desired information. Sending
a message does not physically move the message information to the
receiving task, but provides the receiver with the field and address
of the first data word of the message.

It should be noted that the information in a message 1is not copied
into the receiver's area. This has the following implications:

l. Data in a message should not be modified by the sender while
the Event Flag for the message is PENDING.

2. The same message cannot be sent a second time before its
Event Flag is FINISHED the first time. RTS/8 enforces this
by checking the message Event Flag on a SEND operation and
putting the sender into Event Flag Wait if the message is
still PENDING.

3. It is legal for the receiving task to store information in
the body of the message. In this way, an "answer" to the
message can be returned without the complications of sending
a return message back to the sender. For example, when a
task sends a message to the disk driver task requesting 1I/0,
the driver places the error status of the completed operation
in a specific word in the message to indicate whether an
error occurred.

USING TASKS UNDER RTS/8

2.3 EXECUTIVE INTERNAL TASK TABLES

The Executive uses five internal tables to maintain information about
the tasks in the system. A brief description of these tables is as
follows:

Table Description

Task State Table (TSTABL) Contains information such as the
contents of the task's PC, Link and AC
at the time the task stopped running.

Task Flags Table (TFTABL) Contains information about why the task
is not running, i.e., it indicates for
what conditions (blocking or wait bits)
the task is waiting.

Task Input Message Queue Contains messages that have been sent
Header Table (MSGTBL) to this task. This table is referred to
simply as the Message Table.

Residency Table (RESTBL) Used for nonresident tasks, this table
specifies where the task is to reside in
memory, and where it resides on the swap
device.

Partition Table (PARTBL) Used for nonresident tasks, this table
contains information about each memory
partition, such as length and location
of the partition. Memory partitions are
shared by nonresident tasks.

The user does not need to know the format of these tables to use
RTS/8. However, a detailed explanation of these tables is given in
Appendix E.

CHAPTER 3

RTS/8 EXECUTIVE REQUESTS

3.1 COMMUNICATION WITH THE RTS/8 EXECUTIVE

RTS/8 tasks communicate with the RTS/8 Executive via Executive
Requests (ERs). RTS/8 uses locations 20-27 in every field as a
communication region for ERs to facilitate Executive Requests across
field boundaries. The Executive can be called in any field via a JMS
20 instruction (designated symbolically as CAL). The Data Field (DF)
does not have to be any specific value when the CAL is given, since
the code in location 20 sets the DF to the Instruction Field (IF),
sets the IF to 0 and jumps to the RTS/8 Executive.

A summary of Executive Requests is given in Table 3-1. Most of the
Executive Requests are explained in detail in this chapter. The
RESCHD, WAITX and DERAIL Executive Requests are described in Chapter
9.

The RTS/8 Executive will not honor any request to switch tasks arising
from an interrupt if the interrupted task's Program Counter (PC) was
less than 100(octal). This protects the RTS/8 Executive's entry point
(location 20 in each field) from being destroyed. User tasks must be
written so that instructions are never executed below 100 in any
field.

All ER's except DERAIL and SKPINS can relinquish processor control to
higher-priority tasks as a result of their action.

3.2 ERs USED TO COMMUNICATE BETWEEN TASKS

The five ERs associated with the Intertask Messages and the Event
Flags are SEND, WAITE, SENDW, RECEIVE and POST. An example of their
use is shown in Section 3.2.6. In addition, a sixth ER called WAITX

is described in Chapter 9, Advanced Programming Techniques (Section
9.2.2).

RTS/8 EXECUTIVE REQUESTS

Table 3-1
Summary of Executive Requests
Code| Symbolic Description Section Reference
Name

0 SEND Send a message to a task 3.2.1

1 RECEIVE Look for and/or receive a 3.2.4
message from a task

2 WAITE Wait for an Event Flag to be 3.2.2
posted

3 RUN Run a task 3.3.4

4 SUSPND Suspend execution of a task 3.3.3

5 POST Post an Event Flag 3.2.5

6 SKPINS Insert code into interrupt 3.4
skip chain

7 DERAIL Derail or force a task's 9.2.3
execution to a new address

10 BLKARG Block a task from running for 3.3.1
a specific reason

11 SENDW Send a message and wait for 3.2.3
it to be received

12 UNBARG Remove a reason that a task 3.3.2
is blocked from running

13 RESCHD Force the RTS/8 Scheduler to runl 9.1.2

14 WAITX Wait for a particular Event 9.2.2
Flag to be posted

3.2.1 SEND - Send Message

Format:

The SEND ER sends the message located at MESSAG in the field of the
CAL instruction to the task whose number is TSKNUM.

CAL
SEND
TSKNUM
MESSAG

task has a higher priority than the sender and
message, the
In this case,
message is s

PENDING (nonzero), meaning the
the sender will be put i
and only when the Event Flag be
Care should be taken that a messag
task as only the last request to send a busy m
the first task can go to sleep in Event Wait pe

SEND,

performed.

sender is temporarily suspended and the
the sender is not put into any WAIT state once the
ent. However, if the Event Flag in location MESSAG is
message is still busy from a previous
nto Event Flag Wait on location MESSAG,
comes FINISHED (zero) will this SEND be
e is sent from only one
essage is remembered;
rmanently.

is waiting for

If the receiving

receiver runs.

RTS/8 EXECUTIVE REQUESTS

3.2.2 WAITE - Wait on Event Flag

Format: CAL
WAITE
EFLG

The WAITE ER checks the status of location EFLG and if it is FINISHED,
returns control to the caller. If EFLG is PENDING, its state is
changed to WAITING and the calling task is put into Event Flag Wait.
When location EFLG is POSTed by another task or interrupt routine, the
calling task becomes runnable again. The Event Flag must be
initialized (set to 1) before use in most cases, particularly when a
task is initiating an event to be completed by another task. The
waiting task must reset the Event Flag before using it again in that
the Event Flag does not reset itself.

NOTE

In advanced applications, the user may
be waiting for multiple Event Flags (see
Section 9.2.1 for description of WAITM).
In this case the task will run whenever
any one of the Event Flags is posted,
and not necessarily the one specified in
the WAITE. To insure that a particular
Event Flag 1is posted, use the WAITX ER
described in Section 9.2.2.

3.2.3 SENDW - Send and Wait

Format: CAL
SENDW
TSKNUM
MESSAG

The SENDW ER is exactly equivalent to the sequence:

CAL

SEND /SEND THE MESSAGE

TSKNUM

MESSAG

CAL

WAITE /WAIT FOR RECEIVER TO ACKNOWLEDGE
MESSAG

3.2.4 RECEIVE - Receive Message

Format: TAD TSKNUM /ONLY TO RESTRICT TO ONE
CAL /SENDING TASK
RECEIVE
MADDR, 0 /MESSAGE ADDRESS STORED

/HERE; CDF TO MESSAGE
/FIELD IN AC ON RETURN

If the AC is zero when the RECEIVE ER is issued, the calling task's
Input Message Queue is examined. If there are messages in the calling
task's Input Message Queue, the first (i.e., highest-priority) message
is dequeued and the address of its first data word is placed in MADDR.
A CDF to the field of the message is stored in the AC.

3-3

RTS/8 EXECUTIVE REQUESTS

If there are no messages, the task is placed in Message Wait until
such time as a message is sent to this task. However, a task may
first examine its Input Message Queue Header in field 0 to determine
the state of the Input Message Queue.

If the AC is nonzero when the RECEIVE ER is issued, the calling task's
Input Message Queue is searched for a message whose sender's Task
Number matches the contents of bits 1-11 of the AC. 1If such a message
is found, it is removed from the queue as specified above; if a
message is not found, the issuing task is placed in Message Wait.
This allows a message from only one given task to be received.

NOTE

The following information is useful to
the advanced user. When a task is in
MSGWT, after just having done a RECEIVE,
its PC as stored in the TSTABL points
back to the location containing the CAL.
Thus, when a message comes in, the task
re-executes the RECEIVE ER and accepts
the message. This mechanism is normally
transparent to the user. One
implication is that no harm is caused by
taking a task out of MSGWT because once
the task starts up again, it will
re-execute the RECEIVE ER, and go back
into MSGWT.

Normally, if there are no messages in the Input Message Queue when a
task performs a RECEIVE, the task is put into Message Wait. However,
a 1l in bit 0 of the AC (i.e., the AC is negative) when the RECEIVE is
issued indicates that the task is not willing to wait. Thus, with no
messages in the Input Message Queue (or none sent by the task
specified in bits 1-11 of the AC), the task will then continue to run
(at CAL +3) with the AC equal to zero. The zero AC provides the means
for the RTS/8 Executive to inform the task that there were no messages
(of the desired type) pending.

3.2.5 POST - Post Event Flag

Format: TAD EFPTR /POINTER TO EVENT FLAG
CAL
POST
CDF EFFLD /FIELD OF EVENT FLAG

The Event Flag pointed to by the AC, in the field specified by the
CDF, 1is set to the FINISHED (zero) state. If its previous state was
WAITING, the task that was waiting for it is cleared of its Event Flag
Wait. This ER never sets the calling task in a WAIT state. If the
task waiting for the Event Flag is of a higher priority than the
calling task, the calling task 1is temporarily suspended while the
other is run.

RTS/8 EXECUTIVE REQUESTS

3.2.6 Example of ERs for Message and Event Flags

The following example illustrates the RTS/8 ERs dealing with Messages
and Event Flags. Since I/O and interrupts under RTS/8 have not been
discussed yet, this example is elementary. There is no advantage to
keeping the functions of the two tasks separate, and the entire
send/receive structure is being used here as an elaborate subroutine
call. A description of the execution sequence follows the example.

Task A
Al ALOOP, CAL
SEND /SEND TASK B MESSAGE 1
B
MES1
A2 CAL
SEND /SEND TASK B MESSAGE 2
B
MES?2
A3 CAL
WAITE /WAIT FOR MESSAGE 1
MES1
A4 JMP ALOOP /LQOP
MES1, ZBLOCK 3 /MESSAGE 1
15 /RANDOM NUMBERS
37
23
MES2, ZBLOCK 3 /MESSAGE 2
-1 /RANDOM NUMBERS
4
Task B
Bl BLOOP, CAL
RECEIVE /GET A MESSAGE
MADDR, 0
B2 DCA EFCDF /SAVE MESSAGE CDF FOR POST
B3 TAD EFCDF
B4 DCA .+1 /PUT CDF INLINE
B5 HLT /CDF TO MESSAGE FIELD
B6 TAD I MADDR /GET 1ST DATA WORD OF
/MESSAGE (DO NOTHING WITH IT)
B7 CLA
B8 STA CLL RTL /=3 IN AC
B9 TAD MADDR /AC POINTS TO MESSAGE
/EVENT FLAG
B10 CAL
POST /DECLARE MESSAGE RECEIVED
EFCDF, HLT /CDF TO MESSAGE FIELD HERE
Bl1l JMP BLOOP /LOOP

The flow of execution in this example depends on which of the two
tasks has higher priority. Assuming that at some time both A and B
become runnable and task A has higher priority, the sequence of
execution is as follows:

Sequence Reason For Execution
Al Task A has higher priority than task B.
A2 Task A has higher priority than task B.
A3 Task A has higher priority than task B.
Bl Task A is now in Event Flag Wait since MES1

was PENDING; MES]1 is now in WAITING state.

3-5

RTS/8 EXECUTIVE REQUESTS

Sequence Reason For Execution

B2-B10 Task A is still waiting; the RECEIVE at Bl
received MESI1

A4 The POST at B10 posted MES1 and "woke up" A,
which has higher priority than B.

al A continues executing.

A2 A tries to send MES2 again; B has not yet
processed it; MES2 is PENDING.

B1l1 Therefore, A is put into Event Flag Wait and
B is resumed; MES2 is now WAITING.

B1-B10 B now RECEIVes and POSTs MES2.

A2 This brings A out of Event Flag Wait; the

RTS/8 Executive has modified task A's program
counter so that it will re-execute the
offending SEND.

A3 A3 now waits for MES1 to be POSTed.

If task B has higher priority, the sequence of execution is:

Seguence Reason For Execution
Bl Task B has higher priority than task A.
Al Task B is placed in Message Wait since there

are no messages in its input queue. Task A
then sends MES1 to Task B.

B2-B10 Task A's message brings task B out of Message
Wait; since B has higher priority, A is
stopped and B runs.

Bl1l The POST at B1l0 sets MES1 to FINISHED but has
no other effect.

Bl Now task B tries to get another message.

A2 There are no other messages, so task B is put
in Message Wait and A is run.

B2-B1l1l Task A sends MES2 which "wakes up" B; B
processes MES2 and

Bl returns for more,

A3 and is put in Message Wait. Since MES1 is
FINISHED

A4 the WAITE at A3 has no effect and task A

Al loops back to Al and sends MES] again.

3.3 ERs USED TO SET AND CLEAR TASK FLAGS

Several ERs allow a task to explicitly set and clear flags in the Task
Flags Table entry of another task, and to set flags in its own table
entry. These ERs are BLKARG, UNBARG, SUSPND and RUN.

3.3.1 BLKARG - Block Task for Specified Reason

Format: TAD TASKNUM /OR 0 IF SELF
CAL
BLKARG
WAITBITS

TASKNUM contains the number of the task to be blocked (that 1is, not
allowed to run). WAITBITS specifies one or more bits to be set in
that task's Task Flags word. Assuming WAITBITS is nonzero, this will
cause the specified task to become non-runnable. If TASKNUM contains
zero, the issuing task will be blocked on the specified wait bits.

3-6

RTS/8 EXECUTIVE REQUESTS

The TASKNUM=0 form of this ER is the only legal way to specify the
issuing task as the task to be blocked; if TASKNUM is equal to the
issuing task number, the action of this ER is undefined.

Example:
Task 14 is placed into User Wait by executing the following code.
TAD (14
CAL
BLKARG
USERWT

Symbolic names for specifying the condition for blocking or unblocking
a task in the WAITBITS word is given in Table 3-2.

Table 3-2
Symbolic Names for Specifying WAITBITS

Symbolic Name Value Meaning

NONRWT 4000 Nonresident Wait - This task cannot run
because it is not in memory.

EFWT 2000 Event Flag Wait - This task is waiting for an
Event Flag (which contains a WAITING value
corresponding to this task) to be POSTed.

RUNWT 1000 Run Wait - This task is waiting for a RUN ER
to be executed with its number in the AC, or
for the operator to type "REQUEST task" to the
Monitor Console Routine (see Chapter 5).

SWPWT 0400 Swap Wait - This task cannot run because it is
in the process of being brought into memory.

EORMWT 0200 Event or Message Wait - This task 1is waiting
for an Event Flag to be posted or a message to
arrive, whichever happens first.

USERWT 0100 User Wait - This bit is reserved for wuse by
user-written tasks. RTS/8 does not use this
bit.

ENABWT 0040 Enable Wait - This task is waiting to be

Enabled. Use of this bit is restricted to the
Monitor Console Routine for the "ENABLE task”
and "DISABLE task" commands (see Chapter 5).

MSGWT 0020 Message Wait - This task is waiting to be sent
a message.

DNEWT 0001 Task does not exist. This bit should never be
set or cleared by a user task.

RTS/8 EXECUTIVE REQUESTS

3.3.2 UNBARG - Unblock Task for Specified Reason

Format: TAD TASKNUM
CAL
UNBARG
WAITBITS

TASKNUM contains the number of the task to unblock, and WAITBITS
specifies one or more bits to be cleared in that task's Task Flags
word. If the Task Flags word becomes zero as a result of this
operation, the specified task becomes runnable; if the specified task
has higher priority than the issuing task and becomes runnable, the
issuing task is temporarily suspended while the higher-priority task
runs.

This ER is a no-op (no operation) if issued with TASKNUM equal to the
issuing task's number.

Example:
Task 14 is taken out of User Wait by executing the following code.

TAD (14
CAL
UNBARG
USERWT

3.3.3 SUSPND - Suspend a Task's Execution

Format: TAD TASKNUM /0 IF SELF
CAL
SUSPND

This SUSPND ER is identical in action to the following instructions:

TAD TASKNUM
CAL

BLKARG
RUNWT

3.3.4 RUN - Run a Task

Format: TAD TASKNUM
CAL
RUN

This RUN ER is identical in action to the following instructions:

TAD TASKNUM
CAL

UNBARG
RUNWT

The SUSPND and RUN ERs exist because their function is performed often
enough to warrant a shorthand version. An example that shows how they
can be used in a task follows.

A data collection task is to print a report every 1000 data points

without interrupting the data collection/reduction process. When
executed, the Report Generation Task comes up running, so that the

3-8

RTS/8 EXECUTIVE REQUESTS

first report occurs on the first data. In this simplified example,
the data operated on by the report program may have been already
updated for the next cycle before being reported. A full example
would require a scheme such as double buffering to protect the data.

Data Control Task

DLOOP, TAD (-1750 /1000 DECIMAL
DCA COUNT
DATALP, CAL
WAITE
DATAEF /WAIT FOR DATA READY
. /CODE TO STORE DATA
. /POINT IN BUFFER
. /GET A DATA POINT
ISZ COUNT /AND PROCESS IT
JMP DATALP /COUNT OFF 1000 POINTS
TAD (REPORT
CAL /RUN REPORT TASK
RUN
JMP DLOOP /KEEP COLLECTING
COUNT, 0

Report Generation Task

RLOOP, CAL /AC=0, SUSPEND
SUSPND /UNTIL NEEDED
JMS TITLE /HAS BEEN RUN

. /PRINT REPORT
. /WITH TITLE

JMP RLOOP /REPORT OVER-GO
/BACK AND WAIT

To eliminate interference with the data collection, REPORT should have
a lower priority than DATA.

3.4 USING INTERRUPTS IN RTS/8

The RTS/8 Executive contains code to receive and dismiss hardware
interrupts and to perform interrupt-initiated task switching, but it
does not provide room for an interrupt skip chain. Instead, the skip
chain is 1literally a chain and is built up dynamically at system
startup time via the SKPINS ER. A description of the SKPINS ER is as
follows.

Format: CAL
SKPINS
MODULE

MODULE is the address (in the current field) of an interrupt
processing module.

RTS/8 EXECUTIVE REQUESTS

An interrupt processing module has the following format:

MODULE, 0 /THIS WORD GETS A POINTER

/TO THE NEXT MODULE

0 /MODULE ENTERED HERE - CONTAINS
/CDF CIF TO NEXT MODULE FIELD

SKDR /SKIP ON DEVICE READY

(SKP) /(ONLY IF SKDR REALLY MEANS SKIP
/ON DEVICE NOT READY)

JMP I MODULE /NOT READY - GO TO NEXT MODULE IN
/CHAIN

CDF CIF CUR /THIS ONE IS MINE - SET DF AND IF
/CORRECTLY

. /INTERRUPT PROCESSING

CIF 0 /DISMISS THE INTERRUPT, MAYBE POST

POSTDS /AN EVENT FLAG DEPENDING UPON

/CONTENTS OF AC
See item 7 below for the definition of the POSTDS instruction.

Whenever a task executes a SKPINS ER, the interrupt chain is broken at
the very end and the user's interrupt module is inserted. This is
usually done by tasks at system start-up time only. The 1last
interrupt module points to the interrupt dismiss routine as its "next
module”. 1In this way, RTS/8 tries to avoid superfluous interrupts.
SKPINS always inserts at the end of the skip chain. This implies that
the skips in the skip chain are ordered roughly by priority of the
task which inserted them, since any SKPINS ERs in a task are usually
executed as once-only code at system start-up time.

Once an interrupt module receives control (i.e., 1its 1I/0 skip
succeeds), there are several restrictions on its execution:

1. The interrupt module must clear the interrupt reguest.

2. The Data Field and Instruction Field are those of the next
interrupt module; the user must correct this as described
above before any indirect addressing or jumps are performed.

3. An interrupt module may not issue any RTS/8 ERs.

4. An interrupt module should not compute excessively when
interrupts are off. Typical execution time should be under
75us. If considerably more computing than this is needed, a
task should be scheduled to perform it by POSTing an Event
Flag. A POSTDS instruction is used to wake up the task from
Event Wait.

5. Interrupt modules must not turn interrupts on because the
state of the interrupted task will be destroyed by a second
interrupt.

6. On entry to the interrupt module, the contents of the AC,
Link, and Data Field have already been saved, but not the
contents of the Multiplier OQuotient (MQ) . Therefore,
interrupt modules requiring the use of the MQ should save it,
and then restore it before dismissing the interrupt.

7. Interrupt modules must dismiss the interrupt by setting the
Instruction Field to 0 and issuing a POSTDS instruction.
POSTDS is defined as a JMP I 24 instruction. An Event Flag
may be POSTed when the interrupt is dismissed by setting the

3-10

RTS/8 EXECUTIVE REQUESTS

Data Field to the field of the Event Flag and placing the
location of the Event Flag in the AC prior to issuing the
POSTDS. For example:

CDF CUR /DF = THIS FIELD

TAD (EVFLG /EVFLG MAY NOT BE AT LOCATION O
CIF 0

POSTDS /DISMISS INTERRUPT AND POST EVFLG

If an Event Flag is not going to be posted by the interrupt
routine, the AC must be cleared prior to issuing the POSTDS
instruction.

For example, an RTS/8 Paper Tape Punch handler task might contain the
following sections of code:

In the initialization code (contained in a task that is runnable at
system start-up time):

START, CAL /LINK THE PUNCH SKIP
SKPINS /INTO THE SKIP CHAIN
PTPINT

GETREQ, CAL
RECEIVE /WAIT FOR MESSAGE

As a character punch subroutine used by the main body of the task:

PUNCH, 0 JENTER WITH CHAR IN AC
DCA TEMP /SAVE CHAR
CAL /WAIT UNTIL PUNCH READY
WAITE
PTPEF

/SET PUNCH EVENT FLAG

1SZ PTPEF /TO THE PENDING STATE
TAD TEMP
PLS /PUNCH CHAR
CLA
JMP I PUNCH /RETURN

Interrupt skip chain code:

PTPINT, ZBLOCK 2 /USED TO CHAIN SKIPS
PSF /CHECK PUNCH FLAG
JMP I PTPINT /NOT READY
CDF CIF CUR /SET CORRECT DF, IF
PCF /CLEAR PUNCH FLAG
TAD (PTPEF
POSTDS /DISMISS INTERRUPT,

/POSTING PTPEF

PTPEF,
TEMP,

/PUNCH INITIALLY READY

OO

RTS/8 does not provide a mechanism for removal of entries from the
interrupt skip chain.

3-11

RTS/8 EXECUTIVE REQUESTS

3.5 EXECUTIVE REQUEST WAIT STATES
A summary of wait states generated by Executive Requests is shown in
Table 3-3.
Table 3-3
Summary of Wait States Incurred by Executive Requests
ER Wait State Condition PC Suspended
At
SEND none EFWT for SEND if -
message busy at
'CAL'
RECEIVE MSGWT If no messages 'CAL!
(No wait in Input Queue
if AC=4000) and AC positive
WAITE EFWT If Event Flag 'CAL'+3
(No wait if not FINISHED
EF ‘'done')
RUN none - -
SUSPND RUNWT If task = self 'CAL'+2
POST none - -
SKPINS none - -
DERAIL none - -
BLKARG any (given by If task = self 'CAL'+3
argument)
SENDW EFWT If message free 'CAL'+3
but Event Flag
not FINISHED
EFWT If message busy 'CAL"
UNBARG none - -
RESCHD none - -
WAITX EORMWT If specified Event 'CAL'
Flag not FINISHED
WAITM any (given by - 'CAL'+3
argument)
NOTE: (a) 'CAL' denotes the address of the CAL instruction in the

(b)

Executive Request.

A message is said to be bus
been POSTED by its previous

user.

y if its Event Flag has not yet

3-12

The RTS/8
standard
provides
allows a
backgroun
however,
available

CHAPTER 4

RTS/8 SYSTEM TASKS

system includes system tasks that control most of the
Digital PDP-8 1I/0 devices. Also included is one task that
interactive system control from the console terminal and
single copy of the O0S/8 monitor system to run in the
d. Foreground tasks are protected from background tasks;
the reverse is not true. The complete list of system tasks
in the RTS/8 system is as follows:

Clock Handler - accepts requests in the form of RTS/8
messages to perform actions after a specified time has
elapsed.

Console and Non-console Terminal Handlers - handle a single
terminal in either line or character mode.

Line Printer Handler - supports an LS8, LS8E, LP8 or LV8 line
printer.

Mass Storage Handlers - Control the passing of information
from these devices to and from memory for the RK08 and RK8-E
moving-head disks, DF32 and RF08 fixed-head disks, and TCO08
DECtape unit. Data is read and written in the standard RTS/8
block format (400 octal contiguous words).

Floppy Disk Handler - provides support for the use of the RXS8
floppy disk.

LINCtape Handler - supports both 0Ss/8 and DIAL-format
LINCtapes.

0S/8 Files Support Task - allows the user to look up, create,
and delete files in 0S/8 directories from a foreground task.
This task, when used with the mass storage handlers, provides
the capability to read or write 0S/8 files on mass storage
devices.

0S/8 Support Task - supports the execution of an 0S/8
operating system in the background.

UDC/ICS Handler - enables the user to <control the wvarious
types of UDC/ICS modules.

Cassette Handler - allows the user to read or write data on a
tape cassette.

Cassette File Support Handler - allows the user to 1look up,
enter, and delete files from a DECcassette in CAPS-8 format.

RTS/8 SYSTEM TASKS

¢ Power Fail Task - when used with power fail hardware, it
provides for an orderly shutdown when AC power is lost.
Also, it allows a programmed restart when power returns.

° Exit Task - allows the user to perform special processing
before making an exit from RTS/8.

® PDP-8A Null Task - allows the user to count in decimal on the
LED display of the PDP-8A.

The sources of the system tasks are supplied with the RTS/8 system.
The tasks referred to as "handlers" are completely message-driven,
i.e., when idle they are in the Message Wait state. Other tasks send
these handlers 1I/0 request messages. When the handler completes the
I/0 operation, it POSTs the Event Flag associated with the request
message and issues another RECEIVE ER.

4.1 CLOCK HANDLER

The Clock Handler Task can be assembled to handle any one of four
hardware clocks. The wuser selects the clocks by setting the symbol
CLKTYP in the parameter file to 0 for KD8-EA/DK8-EC, to 1 for KW12, to
2 for PDP-8A, or to 3 for DK8-EP. The Clock Handler accepts RTS/8
messages and inserts the entries into an internal clock queue. As the
entries become due, they are removed from the queue, and the request
is decoded and executed. The user fixes the length of the queue at
assembly time by defining the symbol CLKQLN in the parameter file to
the minimum number of entry slots. The default value for CLKQLN is
20.

The format of a clock message is:

CLKMSG, ZBLOCK 3 /3 WORDS RESERVED FOR RTS/8
COMMAND+TASKNO /TASKNO=0 MEANS TASKNO=SENDING TASK
TIMEHI
TIMELO
EXTRA1
EXTRA2

The words TIMEHI and TIMELO specify a time interval from the present
time in terms of "system ticks". The user specifies the number of
system ticks in a second in the RTS/8 parameter file by defining the
parameter SHERTZ. The hardware tick rate (in ticks per second) is
specified by the parameter HERTZ. CLKTYP and HERTZ are determined
completely by the wuser's hardware configuration. SHERTZ equals the
reciprocal of the software system clock resolution. HERTZ must be an
exact multiple of SHERTZ. For example, the parameters for a
line-frequency clock might be:

DECIMAL
HERTZ= 120
SHERTZ= 10

indicating that there will be 10 "system ticks" per second based on a
60-cycle clock. Such parameters might be used if only 1/10 second
resolution is necessary in the Clock Handler. Note that the maximum
interval that can be expressed in TIMEHI and TIMELO is (2**24) /SHERTZ
seconds. This is approximately three days if SHERTZ=60.

Other RTS/8 system tasks use the symbol CLOCK when referring to the

Clock Handler. The wuser should define this symbol in the RTS/8
parameter file to be equal to the Clock Handler's task number. It

4-2

should
system.

COMMAND
Octal

0000

1000

2000

3000

7000

RTS/8 SYSTEM TASKS

be undefined if a Clock Handler is not to be included in the
(See Chapter 6 for a description of the parameter file.)

is the type of reguest and has the following meanings:

Symbolic

MARKTIME

SCHEDULE

TIMOUT

SCHEDULE PERIODICALLY

Description

POST the event flag CLKMSG after the
specified interval elapses. TASKNO,
EXTRAl, and EXTRA2 are ignored.

POST CLKMSG immediately. Execute a
RUN ER on the task specified by TASKNO
after the specified interval elapses.
EXTRA1l and EXTRA2 are ignored.

POST CLKMSG immediately. DERAIL the
task specified by TASKNO into a
subroutine whose address is specified
in EXTRAl after the specified interval
elapses. EXTRA2 is ignored.

POST CLKMSG immediately. Execute a
RUN ER on the task specified by TASKNO
after the specified interval elapses,
and re-queue this command with the
parameters EXTRAl and EXTRA2 in place
of TIMEHI and TIMELO. This has the
effect of running the specified task
periodically with a period specified
by EXTRAl and EXTRA2.

CANCEL Cancel all the clock requests for the
task specified by TASKNO. TIMEHI,
TIMELO, EXTRAL, and EXTRA2 are
ignored. POST CLKMSG immediately.
Note that the requests are not
actually deleted and that they still
occupy space in the queue until they
time out.

0 1 2 3 4 5 6 7 8 9|l 10| 1
;V——J - /
=~

Command: —I

0 MARKTIME

1 SCHEDULE

2 TIMOUT

3 SCHEDULE PERIODICALLY
7 CANCEL

Task number

Command Word Format - Clock Handler

RTS/8 SYSTEM TASKS

The Clock Handler also maintains the current time-of-day (in system
ticks until midnight), in symbolic locations TODH (high-order) and
TODL (low-order) in Page 0 of Field 0. When this time-of-day reaches
zero (i.e., at midnight), it is reset to the quantity - (SHERTZ*86400)
(24 hours until midnight) and an 0S/8-format date word in symbolic
location DATE in Page 0 of Field 0 is incremented by one day.

Note that in order for the quantity SHERTZ*86400 to be contained in 24

bits, SHERTZ must be less than 192. If SHERTZ is larger, an assembly
error will result while assembling the Clock Handler.

4.1.1 Examples of Clock Handler Calls

CAL /JWITH A 60HZ SYSTEM TICK RATE,
SENDW /THIS CAUSES THE CURRENT TASK
CLOCK /TO "GO TO SLEEP" FOR 2 SECONDS.
SLEEPM

SLEEPM, ZBLOCK 3 /MESSAGE HEADER
0 /SET EVENT FLAG AFTER INTERVAL
0;170 /INTERVAL IS 120 (DECIMAL) SYSTEM

/TICKS

If the wuser changes the value 170 to the assembler expression
2"SHERTZ, the preceding sequence becomes configuration-independent.

CAL /RUN THE TASK REPORT ONCE
SEND /EVERY HOUR, INDEFINITELY,
CLOCK /ASSUMING A 60HZ SYSTEM TICK RATE
RUNMSG
RUNMSG, ZBLOCK 3 /MESSAGE HEADER

SCHEDULE REPORT PERIODICALLY
/RUN REPORT AFTER SPECIFIED
/INTERVAL AND PERIODICALLY

/THEREAFTER,

0;1 /FIRST RUN IS ALMOST IMMEDIATELY
/(1/60 SECOND)

64;5654 /PERIOD BETWEEN RUNS IS 216000

/(DECIMAL) SYSTEM TICKS = 3600
/SECONDS = 1 HOUR.

4.2 TERMINAL HANDLER

The RTS/8 Terminal Handler handles a single terminal in either line or
character mode. Input in line mode is terminated by a carriage return
or an ALTMODE character and may be edited using the RUBOUT and “U
characters. The RUBOUT character deletes the last valid character
typed and prints a backslash; the "U character deletes the entire
line and returns the carriage. Character mode input is not echoed and
is terminated by overflow of a specified character count.

If multiple terminals are to be handled, multiple copies of this
Terminal Handler must be assembled. Assembly parameters in the body
of the handler specify which device codes the handler will use to
access 1its terminal. These parameters also specify whether the
handler is to be a "console" Terminal Handler, that is, the terminal

4-4

RTS/8 SYSTEM TASKS

on which the MCR program is going to be run. The console Terminal
Handler invokes the MCR whenever a “C 1s typed on the keyboard;
nonconsole terminal handlers treat “C as any other character. For the
console handler, ~C wakes up MCR by POSTing an Event Flag.

The parameters edited into the distributed version of the Terminal
Handler assemble the handler to handle the PDP-8 console terminal as a
"console" device. Thus, when the MCR function is required, both the
MCR task and the Terminal Handler task must be assembled and included
as part of the RTS/8 system. Modification of the Terminal Handler to
support a VTS50 terminal and other features are described in Section
4.2.1.

The format of messages to the Terminal Handler can be either of the
following:

ZBLOCK 3 ZBLOCK 3

command+length ASSGN+tsknum

INBUF

OUTTXT

Description: Description:

Types text specified by ASSGN=200

OUTTXT and command, then Assigns Terminal Handler to task specified
reads text into INBUF. Deassigns Terminal Handler if tsknum=0

Legal Commands, which can be combined, are as follows:

Octal Symbolic Action if specified Action if not specified

4000 NOPACK Output text is in Output text is in
unpacked ASCII, one packed 6-bit, two
character per word characters per word

terminated by a 0000. terminated by a 00.

2000 NOCRLF Do not type a CR/LF Type a CR/LF after

after the message. typing the message.

1000 IND OUTTXT points to the OUTTXT is the first
first word of the word of the output text.
output text.

0400 NOLINE Input is in character Input is in line mode;
mode; terminated terminated by a CR
after 'length' input or ALTMODE (ESC). The
characters read. length is still tested.

Length Is a seven-bit field which specifies the

maximum size of the input buffer if input is
in line mode, or the number of characters to
input if input is in character mode. If
input is in line mode and there are LENGTH-1
characters in the input buffer, characters
other than carriage return, ALTMODE, RUBOUT
and “U will not be accepted or echoed the
message Event Flag is Posted.

INBUF Is a pointer to the input buffer; if it is
zero, no input is taken. The input buffer is
filled with input characters packed one per
word with the parity bit (bit 4) forced on.
If input is in line mode, the last character
of the line is followed by a zero word (if a

4-5

OUTTXT

ASSGN =200

tsknum

Command (bits 0-4)

-—_

- 2o

-O

Bit 4 must be a 0

Packed ASCII
Unpacked ASCII

CR/LF at end of message }

No CR/LF at end of message

QUTTXT is the first word
OUTTXT points to first word

Input in line mode l

RTS/8 SYSTEM TASKS

carriage return terminated the line) or a
=1(7777) word (if an ALTMODE character
terminated the line).

Is either the first word of the output text
string (if 1IND=0) or a pointer to the first
word of the output string (if IND=1000) ir
the same field as the message.

"Assigns" the Terminal Handler to the
specified task. This will cause the terminal
handler to only accept messages from the
specified task. If another task tries to
SEND a message to the Terminal Handler while
it is assigned, the message will be placed in
the Terminal Handler's Message Input Queue
but will not be removed for processing by the
Terminal Handler until the assignment is
released. The task to which the Terminal
Handler is assigned can release the
assignment by sending a message assigning the
Terminal Handler to task number 0. No I/O
operation is performed by an assignment
message.

Is a 6-bit field used with the ASSGN command
to specify the task number of the task to
which the terminal is to be assigned. If
this field is zero, the terminal is
deassigned allowing the terminal task to
accept commands from any task.

}__

Input in character mode f

Length (bits 5-11)

If bit 3=1, no. of characters to input

If bit 3=0, maximum size of input bufferj

Command and Length Word Format - Terminal Handler I/0 Mode

RTS/8 SYSTEM TASKS

Unused

Bit 4 must be a 1

Unused

Task Number

Command Word Format - Terminal Handler ASSGN Mode

4,2,1 Additional Assembly Parameters Affecting Terminal Handler
Properties

Several assembly parameters are available to the user as an aid in
using the TTY task. This section describes these parameters. A
summary of their default values is shown in Table 3-4.

VT50 =0 Do not treat CTRL/S and CTRL/Q as special
characters.
=1 Support CTRL/S and CTRL/Q. If this feature

is enabled, typing CTRL/S while data is being
printed/displayed on the terminal will cause
data to stop until the next CTRL/Q is typed.
This can be used on fast CRT terminals to
temporarily "freeze" the screen. This
parameter must be set to 1 if the user's
terminal is a model VTS50 or VT52 since these
terminals will occasionally send
synchronization characters to the host
computer of their own volition.

WIDTH =n Where n is an octal number that sets the page
width to n characters. TTY width is
currently set to 120(octal) characters. For
example, setting the parameter

WIDTH = 60
changes the TTY page width to 80 (decimal)
characters. After n characters are printed
on the terminal, the handler will
automatically type out a carriage-return
line-feed. Sometimes it 1is desirable to

suppress this CR/LF (for example, when using
direct cursor addressing). In this case,
WIDTH should be set equal to 0.

SCOPE This option is used to determine treatment of
the RUBOUT key as follows:

SCOPE=0 provides the normal mode of RUBOUT
support (echo rubouts with a backslash).

4-7

TAB

FILL

CONSOL

OLDTTY

LSBOT

TTFLD

TTLOC

RTS/8 SYSTEM TASKS

SCOPE=1 causes RUBOUT to move the cursor left
one position, physically removing the
character from the screen. If the cursor is
in c¢column 1, RUBOUT still works, but has no
visible effect.

This option is used to simulate tabs by the
proper number of spaces. This is
accomplished via the assembly parameter TAB
as follows:

TAB=0 specifies that the hardware does not
support tabs. The software simulates tabs
with spaces.

TAB=1 specifies that the hardware does
support tabs.

Fill characters are supported via the
assembly parameter FILL as follows:

FILL=0 provides no fill characters.

FILL=n sends n fill characters (nulls) after
a line feed. The number n must be in the
range 1-5. FILL=4 is recommended for 2400
baud VTO05s.

CONSOL = 1 means the handler is being
assembled for the console terminal (default).

CONSOL = 0 means that this handler will not
wake up the MCR when a "C is typed.

OLDTTY = 1 specifies the use of the old
two-page handler which was supplied with
RTS/8 version 1. This handler has fewer
features than the new handler but it is a
page shorter. The parameters VT50, WIDTH,
SCOPE, TAB and FILL described herein have no
effect when using this handler.

OLDTTY = 0 specifies the use of the new
3-page terminal handler.

LSBOT = 1 specifies the listing of both the
0ld two-page and new three-page.

LSBOT = 0(default) causes only the handler
selected by the OLDTTY parameter to be
listed.

Specifies the field of the TTY Handler task:
for example, 20 designates field 2.

Specifies the starting location of the TTY

Handler task; for example, 3000 designates
the starting location at 3000.

4-8

RTS/8 SYSTEM TASKS

Table 4-1

Summary of Terminal Handler Assembly Parameter

Default Values

Parameter Default Value Meaning

VTS50 1 Support "S, "Q

WIDTH 120 Page width of 80 (decimal) characters

SCOPE 0 Rubouts echo as \

TAB 0 Simulate tabs

FILL 0 No fill characters

CONSOL 1 “C wakes up MCR

OLDTTY 0 Use 3-page TTY task

LSBOT 0 List only TTY task selected by OLDTTY

TTFLD 10 Not a default value, but given as an
example to show that the given number

TTLOC 5000 assignments for TTFLD and TTLOC load the
TTY Handler in field 1 starting at
location 5000

4.2.2 Useful Equates in the Parameter File

Several useful equates (described in Section 4.2) are available which
can be used when sending messages to TTY or LPT tasks. They are as

follows:
NOPACK = 4000
NOCRLF = 2000
IND = 1000

NOLINE = 400

ASSGN = 200

KLSALINE = 100

Used if output message is not 6-bit ASCII
format.

Used if output message should not be followed
by carriage return/line feed.

Used if OUTTXT points to the first word of
the output text.

Used if input is in character mode.

Used to assign the device handler for use
only by this task.

Used with KL8-A support (see Section 4.13.2).

4.2.3 Examples of Terminal Handler Messages

HIYA, ZBLOCK 3 /MESSAGE HEADER
0 /PACKED TEXT, END WITH CR/LF,
0 /NO INPUT
TEXT /HELLO/ /TEXT TO BE OUTPUT

Sending the above message to the Terminal Handler prints HELLO on the

terminal.

4-9

RTS/8 SYSTEM TASKS

QUEST, ZBLOCK 3 /MESSAGE HEADER
NOCRLF+60 /PACKED TEXT, NO CR/LF,
/48-CHARACTER INPUT LIMIT
ANSWER /POINTER TO INPUT BUFFER

TEXT /TYPE THE ANSWER: /

Sending the above message to the Terminal Handler prints TYPE THE
ANSWER: on the terminal and inputs a reply without first returning
the carriage. The answer obtained from the above message could be
printed on the terminal by sending the following message:

TYPANS, ZBLOCK 3 /MESSAGE HEADER
NOPACK+IND /UNPACKED TEXT, INDIRECT, WITH CR/LF
0 /NO INPUT
ANSWER /POINTER TO OUTPUT TEXT

4.3 LINE PRINTER HANDLER

The RTS/8 Line Printer Handler outputs to an LE8, LS8E, LP8 or LVS8
line printer. The format of messages to the Line Printer Handler is
identical to the format of messages to the terminal handler, but the
INBUF word and the LINE bit are ignored (the INBUF word must, however,
be present in the message).

Command (bits 0-4)

0: Packed ASCII
Unpacked ASCII

-

= e

CR/LF at end of message
No CR/LF at end of message

- O

OUTTXT is the first word
OUTTXT points to first word

Input in line mode
: Input in character mode

=@

Bit 4 must be a 0

Length (bits 5-11)

If bit 3=1, no. of characters to input
If bit 3=0, maximum size of input bufferf

Command and Length Word Format - Line Printer Handler I/O Mode

4-10

RTS/8 SYSTEM TASKS

. Unused

Bit 4 must be a 1

Unused

Task Number

Command Word Format - Line Printer Handler ASSGN Mode

4.4 MASS STORAGE HANDLERS

Handlers are available for TC08 DECtape, DF32 and RF08 fixed-head
disks, RK8 and RK8E moving-head disks, RX0l1 floppy disks and LINCtape.
All mass storage handlers accept the same message format to read or
write blocks on various mass storage devices. However, the Floppy
Disk Handler and the LINCtape Handler allow the wuse of additional
parameters other than the ones described herein. These parameters are
described in Sections 4.4.1 and 4.4.2.

The format of messages to mass storage handlers is:

MSMESG, ZBLOCK 3
UNIT
RW + PAGES + FIELD
BUFADD ‘
BLOKNO
STATUS

where:

UNIT Is the number of the logical unit on which the operation

‘ is to be performed. DF32 and RF08 disks consist of only

one unit. TC08 DECtape has logical units 0-7

corresponding to its physical units 0-7. LINCtape has

logical units 0-7 corresponding to its physical units

0-7. RK8 disk has logical units 0-3 corresponding to

its physical units 0-3. RK8E disk has 1logical units

0-7. Units 0-3 correspond to the outer (lower track

number) half of physical wunits 0-3, and units 4-7

correspond to the inner (higher track number) half of

physical units 0-3, respectively. RX01l has units 0 or 1

which corresponds to the 1left and right drive,
respectively.

RW Is 0 for a read operation, 4000 for a write operation.
PAGES Specifies the number of (128-word) pages to transfer
(times 100 octal). For example, PAGES=2000 specifies

the transfer of 20(octal) pages or 2048 words; if
PAGES=0, 40(octal) pages or 4096 words are transferred.

4-11

FIELD

RTS/8 SYSTEM TASKS

Is the PDP-8 field in which the transfer takes place

(times 10 octal). For example, if FIELD=30, the
transfer takes place in field 3.

The RW+PAGES+FIELD word is sometimes called the function word of the

message.

Reserved for task use

Unit

0: Read operation
1: Write operation

No. of pages to transfer
0-7: Field of transfer

Reserved for task use

BUFADD

BLOKNO

STATUS

Unit Word Format - Mass Storage Handlers

Function Word Format - Mass Storage Handlers

Is the starting address of the buffer to be transferred.

Is the block number on the device from which the
transfer will begin. All devices are assumed to have
256~word blocks. On DECtape, the first 128 words of
each of an even/odd pair of 129-word DECtape records are
considered to be a block.

Is a word that the handler sets on completion of the
operation. It contains a =zero if the operation is
successful, otherwise it will contain a nonzero quantity
which is the contents of the device status register.
Tasks which use the mass storage handlers should test
this word after the 1I/0 operation has been completed
(that is, after the Event Flag has been POSTed) to
determine if any errors occurred during the transfer.
All RTS/8 mass storage handlers retry operations three
times if errors are encountered before setting the
STATUS word to a nonzero.

Note that the middle three words of a message to the RTS/8 mass
storage handlers are identical to the arguments to an 0S/8 handler
when the same operation is performed.

4-12

RTS/8 SYSTEM TASKS

4.4.1 Floppy Disk Handler

Each copy of the Floppy Handler can control one single or dual RXO0l
drive; for more than one RX01l, multiple copies of the haqdler are
required. The format of messages to the Floppy Disk Handler 1is:

ZBLOCK 3
CODE+DEL+MODE+UNIT
RW+PAGES+FIELD
BUFADD

BLOKNO

STATUS

where:

CCDE =0 Regular condition. BLOKNO is interpreted as an
0S/8 logical record number. Also, PAGES is
interpreted in the 0S/8 sense to mean the number
of pages of data to transfer. The DEL bit is
ignored.

4000 Special Physical Sector Condition. PAGES is
ignored. One sector 1is transferred. It |is
specified by BLOKNO which is to be interpreted as
TTTTTTTSSSSS. That is, the high order 7-bits of
BLOKNO represent the physical track number. This
number must be in the range 0-76 decimal (0-114
octal). The low order 5 bits of BLOKNO represent
the sector number on that track. This number must
be in the range 1-26 decimal (1-32 octal).

DEL =0 Deleted data marks should not be considered.

2000 Handle deleted data marks (if CODE=4000) as
follows: If writing a sector, write deleted data
indication. Do not note this fact in STATUS word.
If reading a sector, set bit 5 of STATUS word to a
1 if read deleted data indication. In such a
case, the STATUS word may be nonzero even though
no physical error has occurred. Other STATUS bits
are relevant and STATUS negative means hard error.

MODE =0 Specifies transfer in 12-bit mode.

100 Specifies transfer in 8-bit mode.

0S/8 format uses 12-bit mode. In 12-bit mode, the
64 12-bit words that comprise an 0S/8 floppy
sector are packed into the first 96 bytes of the
sector, while the last 32 bytes contain random bit
patterns. In 8-bit mode, an 8-bit byte on the
floppy disk corresponds to the low order 8-bits of
a 12-bit word in memory. Data in the high order 4
bits of a word in memory is not transferred to the
floppy disk.

In 12-bit mode, a sector contains 64 (decimal)
12-bit words of data. In 8-bit mode, a sector
contains 128 8-bit bytes of data.

UNIT = Specifies the drive unit number. It may be 0 or
1. The number 0 refers to the unit on the left of
a dual drive.

RTS/8 SYSTEM TASKS

0: Regular condition
Special physical sector condition

—_

—_

0: Do not handle deleted marks
Handle deleted marks

—_

0: Transfer in 12-bit mode
Transfer in 8-bit mode

. Left unit of dual drive
1: Right unit of dual drive

CODE = 4000 (bit O set to 1) transfers one sector specified by
BLOCKNO as follows:

Physical track no.
{0-114 octal)

Sector no. on track
(1-32 octal)

Unit Word Format - Floppy Disk Handler

Hard error

Deleted data

INIT done

Parity error

CRC error

Status Word Format - Floppy Disk Handler

The largest legal 0S/8 block number on a floppy disk is 755 octal. If
block 756 1is referenced, an error is generated. Use of larger block
numbers may produce unpredictable results. Specifying an illegal
track or sector may produce an error with STATUS = 4000.

4-15

RTS/8 SYSTEM TASKS

The standard 0S/8 Interleave Scheme is as follows:

0s/8 Logical Block (octal) Floppy Sectors (track/sector in decimal)

0 1/1, 1/3, 1/5, 1/7
1 1/9, 1/11, 1/13, 1/15
2 1/17, 1/19, 1721, 1/23
3 1/25, 1/2, 1/4, 1/6
4 1/8, 1/10, /12, 1/14
5 1/16, 1/18, 1/20, 1/22
6 1724, 1/26, 2/1, 2/3
7 2/5, 2/7, 2/9, 2/11
10 2/13, 2/15, 2/17, 2/19
11 2/21, 2/23, 2/25, 2/2
12 2/4, 2/6, 2/8, 2/10
13 2/12, 2/14, 2/16, 2/18
14 2/20, 2/22, 2/24, 2/26
15 3/1, 3/3, 3/5, 3/7

Track 0 is not used by 0S/8, and cannot be accessed in the 12-bit
mode.

4.4.2 LINCtape Handler

The LINCtape Handler supports both 0S/8 and DIAL format LINCtapes.
The format of messages to the LINCtape Handler is:

ZBLOCK 3

MODE+UNIT

RW+PAGES+FIELD

BUFADD

BLOKNO

STATUS

where:

UNIT= Specifies the LINCtape unit number in range 0 to
7.

MODE=0 Specifies 0S/8 Mode. A LINCtape is presumed to
contain 200 or 201 (octal) words per physical
block.

=4000

=4000

PAGES

FIELD

BUFADD

BLOKNO

STATUS

RTS/8 SYSTEM TASKS

Specifies DIAL Mode. A LINCtape is presumed to
contain 400 (octal) words per physical block.

Note: The LINCtape used is not checked to see if
it is properly formatted for the specified mode.
Use of a LINCtape with improper physical format
will produce unpredictable results.

Read data from LINCtape
Write data to LINCtape

Specifies the number of 128-word pages to transfer
(times 100 octal). For example, PAGES=2000
transfers 20 octal pages or 2048 words; if
pages=0, 40 octal pages or 4096 words are
transferred.

Specifies the PDP-8 field in which the transfer
takes place (times 10 octal). (For example,
FIELD=30, the transfer takes place in field 3).

Is the starting address of the buffer to be
transferred.

Is the block number on the device from which the
transfer will begin. All devices are assumed to
have 256-word blocks. On 0S/8 LINCtapes, two
consecutive physical blocks comprise one 0S/8
logical block. Only the first 128 words in each
physical block contain meaningful data.

When running in DIAL mode, BLOKNO represents a
physical LINCtape block number. In this case,
PAGES must be even because an even number of pages
is transferred. If PAGES is (incorrectly) odd,
the last page is not transferred, except if
PAGES=1 which will result in one block (2 pages)
being transferred.

is the ones complement of tape check (checksum).
The value 0 means no error. STATUS is always 0 on
a Write operation. Three software retries are
attempted on a checksum read error. Note that the
hardware performs infinite retries on most errors
(write-lock-out, tape not mounted, bad spot on
tape) and does not return control to RTS/8 until
successful.

CAUTION

In the 0S/8 mode, the word following the

of the buffer is temporarily

destroyed while a LINCtape operation is

progress. The 1location is then

restored upon completion of the
operation. However, since RTS/8 is a
real-time system, code may be executing
while the tape operation is in progress.
The user must make sure that this word
never referenced while the LINCtape
is being used. Under no circumstances
should the word following the end of the
buffer belong to another task.

4-17

RTS/8 SYSTEM TASKS

0: 0S/8 mode
1: DIAL mode

Unit number

Unit Word Format - LINCtape Handler

4.4.3 Example of Mass Storage Handler Call

CAL
SENDW
DTA /SEND A MESSAGE TO THE DECTAPE
/HANDLER
DTAMSG /AND WAIT FOR COMPLETION
TAD STATUS /CHECK THE STATUS OF THE OPERATION
SZA CLA
JMP ERR /BAD - GO TO ERROR ROUTINE
/OK - CONTINUE PROCESSING
DTAMSG, ZBLOCK 3 /MESSAGE HEADER
4 /DECTAPE UNIT 4
4210 /WRITE 256 WORDS FROM FIELD 1
BUFFER /ADDRESS OF BUFFER
55 /INTO BLOCK 55 (RECORDS 132 & 133)
STATUS, 0 /STATUS OF OPERATION STORED HERE

4.5 POWER FAIL TASK

The Power Fail Task provides the mechanism by which the system
recovers from power failure. If the power-fail/auto-restart hardware
option is present and if the system parameter PWRFAL was equated to a
nonzero . value, the SPL (Skip on Power Low) instruction is included in
the interrupt skip chain. If a power 1low condition occurs, the
processor state 1is saved and the processor is halted. When power
comes back, the processor state is restored and an Event Flag is
POSTed which wakes up the Power Fail Task. The Power Fail Task
restores the clock, console terminal, and 0S5/8 terminal if they are
present, and also performs an action for each task in the system based
on the contents of an internal table. Each task has a one-word entry
in this table, which contains:

0 If nothing should be done for this task (default value)
-1 If the EFWT (Event Flag Wait) bit should be cleared in

the Task Flags Table entry for this task (i.e., this
task should be taken out of Event Flag Wait)

4-18

RTS/8 SYSTEM TASKS

ADDR If the task should be DERAILed to location ADDR 1in Fhe
field in which it 1is executing as well as having its
EFWT bit cleared. ‘ :

Each task in the system may alter its entry in the Power Fail Task's
table by sending a message to the Power Fail Task. The format of the
message is:

PWRMSG, ZBLOCK.3
- WORD

where:

WORD is the new contents of the Power Fail Task's table entry
. for the sending task.

4.6 0S/8 SUPPORT TASK

The 0S/8 Support Task supports the execution of the 0S/8 operating
system as a task under RTS/8. 0S/8 is run in the top two or more
memory fields under .control of the KM8-E memory extension and
timeshare option (standard on PDP-8/E, 8/F, or 8/M with 8K or more of
core memory) or TSS-8 time sharing hardware option.

NOTE -

A jumper on the KM8-E module is used to
select the timeshare function. The
module is shipped with this Jjumper in
place (timeshare function disabled).
The PDP-8A utilizes the memory extension
and timeshare option provided by the
KM8-A extended option board. A switch
on the KM8-A module is used to enable
the timeshare function.

The 0S/8 Support Task is configured at system startup: time to
establish a correspondence between 0S/8 devices and RTS/8 handler
tasks. Terminal input and output from O0S/8 are ring-buffered by
several characters to minimize input loss due to the usurpation of the
CPU by tasks of higher priority. Because of the large number of
trapped CDF instructions in 0S/8 and its Commonly Used System Programs
(CUSPs), response time is slower than a stand-alone 0S5/8 system but
still gquite reasonable. The background 0S/8 task must have the same
system device that was used by the.0S/8 system to load RTS/8. The
0S/8 Support Task cannot run on a stand-alone PDP-8 without 0S/8.

Several parameters in the system parameter file control the assembly

of the 0S/8 Support Task. The parameters and their meanings are as
follows: ‘ .

- OSFLDS . Defined as the number of fields to be dedicated to
. . 0s/8. : :
Example: OSFLDS=2 specifies two fields or 8K of
memory for 0S/8. , _

OSKBDV: : Set equal to the keyboard IOT code of the 0S/8
terminal.
Example: OSKBDV=03 specifies the use of the
console terminal keyboard of 0S/8.
Note: 0S/8 requires its own dedicated terminal.

4-19

RTS/8 SYSTEM TASKS

OSTTDV Set equal to the teleprinter IOT code of the 0S/8
terminal.
Example: OSTTDV=04 specifies the use of the
console teleprinter for 0S/8.

OSFILL Specifies how many null characters must follow a
line-feed character on the 0S/8 terminal. This
allows high-speed VTO05 terminals to be used as
0S/8 terminals. For standard Teletypes! and
DECwriter terminals, this parameter should be
set to zero.

Example: OSFILL=4 allows the use of a 2400 baud
VvT05.

0SSYSD Specifies the 0S/8 system device driver task.
Example: OSSYSD=DTA specifies DTA0 as the 0s/8
system device.

NOTE

The user does not need to include a
terminal driver for the 0S/8 terminal
device (it is built into OS8SUP).

The 0S/8 system that runs under the 0S/8 Support Task runs all 0S/8
CUSPs except BUILD, BOOT, PIP10, INDUSTRIAL BASIC, and BASIC and
FORTRAN LAB runtime functions. All references to the keyboard and
teleprinter are diverted to the specified 0S/8 keyboard and
teleprinter. References in 0S/8 to the LES, LS8E, LP8 or LV8 line
printers are diverted to the RTS/8 line printer handler if the system
parameter LPT is defined; otherwise they are executed directly by the
Support Task. References to the following 0S/8 device names will be
diverted to the corresponding RTS/8 handler if one is defined:

DTAQO-DTA7
LTAO-LTA7
RKA(O-RKA3
RKBO-RKB3
RXA0-RXA7

If one is not defined, 0S/8 will perform the I/0 directly using the
standard 0S/8 handler.

In addition, the 0S/8 handlers SYS and DSK are diverted to the handler
specified by the parameter OSSYSD. Other references to I/0 under the
supported OS/8 system may cause the 0S/8 support task to hang in a
loop. References to a handler called RTS8 are diverted to 0OS8COM (see
Section 4.7).

4.6.1 Mapping of Fields with 0S/8 Support Task

The parameter HGHFLD in the parameter file must specify the highest
field available to the entire RTS/8-0S/8 system. This is usually the
highest field available in memory (e.g., 30 for a 16K machine). The
OS8SUP task maps 0S/8 fields into real fields as follows. The field
which 0S/8 uses as field 0 is actually HGHFLD. 0S/8 fields 1, 2, 3,
etc. are mapped into consecutive fields beginning with field

ITeletype is a registered trademark of the Teletype Corporation.

4-20

RTS/8 SYSTEM TASKS

HGHFLD-OSFLDS+1, proceeding upward. If an 0S/8 program references a
field greater than HGHFLD, unpredictable results will occur, as these
fields are mapped over the lower 0S/8 fields.. The software core size
is correctly set to OSFLDS and should be used by multi-field 0S/8
programs. :

4.7 0S/8 - RTS/8 COMMUNICATION (OS8COM)

The 0S/8 Support Task contains a mechanism by which 0S/8 can talk to
an RTS/8 task. To perform this communication, the 0S/8 system must be
configured with a handler called RTS8. This handler can be a dummy ;
it need not do anything. In fact, it can be some other handler to
which the name RTS8 has been assigned. The 0S/8 Support Task traps
all calls to this handler. The arguments that are passed to the RTS8
handler by an 0S/8 program will be passed to an RTS8 task called
0S8COM. The user is responsible for writing this OS8COM task.

The OS8COM task performs an RTS/8 RECEIVE ER. The task can then
receive a message any time an OS/8 program reads or writes to the RTS8
handler. This message looks like any other message to a mass storage
device. O0S8SUP does make one change to the arguments. Bits 6 through
8 of the function word originally contain the field of the buffer.
This is the field where 0S/8 expects the buffer to be. When 0S8COM
gets control, these bits identify the actual field that contains the
buffer. 0S8COM can return information to 0S/8 through these
arguments.

4.7.1 Using the OS8COM Task

An 0S/8 program that runs an RTS/8 task as specified by the 0S5/8 user
is shown in the following example.

Example:
USR=7700 /LOCATION OF 0S/8 USER SERVICE ROUTINE
JMS PRINT /PRINT MESSAGE "WHAT TASK WOULD YOU
/LIKE TO RUN?" ON THE 0S/8 TERMINAL
JMS READ /READS RESULT FROM 0S/8 KEYBOARD
/RETURNS TASK NUMBER IN RANGE 1-77
/ IN AC
DCA TASKNUM /STORE IT AWAY
CIF 10
JMS I (USR /CALL USR
1 /TO DO A FETCH
DEVICE RTS8 /OF DEVICE 'RTS8'
ENTRY, ADDR /DUMMY ADDRESS (HANDLER WILL ALREADY
/BE RESIDENT
HLT /ERROR (HANDLER NOT FOUND)

/NOTE THAT THIS CODE IS NOT REUSABLE AND THAT LOCATION
/'ENTRY' IS SET TO THE ENTRY POINT FOR THIS HANDLER

CIF 0
JMS I ENTRY /CALL HANDLER
0 /DUMMY READ
TASKNUM, 0 /TASK NUMBER
ZBLOCK 2 /DUMMY
JMP I (7605 /RETURN TO 0S/8

It should be noted that TASKNUM is being passed as the second argument
instead of the first because 0S8SUP automatically modifies bits 6-8 of

the first argument, presuming that a mapped field number 1is located

4-21

RTS/8 SYSTEM TASKS

there. 058COM expects three arguments after the handler call plus an
error return. These must be specified by the user.

Where the 0S/8 portion of the program has been written, the 0S8COM
task that handles the RTS/8 side of the communication must be written.
OS8COM is written like any other RTS/8 user task, and an example of
what it might look like is as follows:

TASK=0S8COM /0S8COM IS ASSIGNED A PRIORITY IN THE
/PARAMETER FILE

INIWT=0 /COMES UP RUNNING

CUR=40 /SPECIFY FIELD HERE

FIELD CUR%10

*200 /STARTING ADDRESS
START, CAL

RECEIVE /IMMEDIATELY GO INTO RECEIVE WAIT
MADDR, 0 /ADDRESS OF MESSAGE LEFT HERE

DCA MSGFLD /CDF TO MESSAGE FIELD LEFT IN AC
MSGFLD, HLT

: ISZ MADDR /POINT TO FUNCTION WORD
I1SZ MADDR /POINT TO BUFFER ADDRESS
- /(SECOND 0S/8 ARGUMENT)

TAD I MADDR /GET TASK NUMBER

CAL

RUN /RUN THIS TASK

/0S8COM WANTS TO BE HIGHER
/PRIORITY THAN TASK IT IS RUNNING

TAD MSGFLD
DCA EFCDF
TAD (-5
TAD MADDR /GET ADDRESS OF EVENT FLAG
/FOR MESSAGE
CAL
POST /POST MESSAGE
EFCDF, HLT
JMP START /GET ANOTHER MESSAGE

In this example, the task number was put in the second argument of the
0S/8 call. However, it became the third word of the RTS/S8 message
because OS8SUP always adds a word to the mass storage call argument
list, namely the unit number. For a description of the 0S/8 standard
handler call format, see Section 4.1 of the 0S/8 Software Support
Manual. For a description of the standard message format for mass
storage devices, see Section 4.4 of this manual.

4.7.2 Other Techniques
Other techniques which can be employed by the user are as follows:

1. 1If the RTS/8 handler STATUS word (word 5) of the message
posted by OS8COM is nonzero, then return is taken to 0S/8 at
the error return of the handler call.

2. Arguments may be passed back to 0S/8 through the argument
list.

3. If more than three words of data need to be passed to 0S8COM
from O0S/8, the wuser can pass a CDF and address of the area
where the data resides. If the CDF occurs as the first
argument to the handler call, it automatically will be
relocated before being passed to OS8COM.

4-22

RTS/8 SYSTEM TASKS

4.8 0S/8 FILE SUPPORT TASK

The 0S/8 File Support Task (OS8F) allows other tasks to look up,
create, and delete files in 0S/8 directories. This task is included
in the same source file as the 0S/8 Support Task, but the user can
assemble it independently of that task (depending on which tasks are
defined in the system parameter file). The format of messages to OS8F
is:

OSFMSG, ZBLOCK 3

DEVHND” 10+UNIT+FUNCT
FILPTR
STATUS
BLOKNO
LENGTH
where:

DEVHND Is the task number of the handler for the desired
device.

UNIT Is the unit number on which the operation is to be
performed.

FUNCT Represents the function to be performed. It can
have the following values:

0 Looks up the specified filename and returns
its starting block number in BLOKNO, and its
length in LENGTH (as a two's complement
number) .

2000 Enters the specified filename into the first
empty space (on the device) whose length is
equal to or exceeds the value in LENGTH.
Returns the starting block number of the new
file in BLOKNO. If a file of the same name
previously existed on the device it is
deleted. The value of LENGTH is unchanged.

4000 Deletes the specified filename.

FILPTR Is a pointer to a 4-word filename in the same
field as the message. The PAL8 pseudo-op FILENAME
can be used to generate these filenames.

STATUS Describes the final status of the operation as
follows: :

0 Operation successful.

1 File not found on Lookup or Delete.

2 No room for file on Enter.

>2 I/0 error occurred. The value is the
hardware error status of the device.

-1 Invalid directory on device.

RTS/8 SYSTEM TASKS

Function:
0 Lookup
1 Enter
2 Delete
3 Unused

Unused

Task number

Unit

OS8F Call Function Word

If both OS8F and the 0S/8 Support Task are present in a system, an
interlock is set up to prevent simultaneous updating of directory
blocks by both systems. Because 0S/8 tends to leave directory blocks
in memory for 1long periods of time, this interlock scheme causes
lengthy delays for the OS8F task. Before a Delete or Enter operation
is performed, OS8F waits until 0S/8 is in a state in which:

l. There 1is no active temporary file on the 0S/8 device
corresponding to DEVHND and UNIT.

2. 0S/8 has just loaded the Keyboard Monitor, Command Decoder,
or USR into core.

Look up operations are not interlocked since they do not modify the
directory.

4.9 UNIVERSAL DIGITAL CONTROLLER/INDUSTRIAL CONTROLLER SUBSYSTEM
(UDC/ICS) HANDLER

The UDC/ICS handler gives the user the capability to control the
various types of UDC/ICS functional devices. This handler performs
two types of action: immediate and associated. Immediate actions
include reading and sending analog and digital values to appropriate
UDC/ICS functional devices. Associated actions can be 1linked to
specified events within the UDC/ICS (counters overflowing, switches
being thrown). The associated actions can do the following:

1. Run a specified task when the event occurs
2. Set the' Event Flag when the event occurs
3. DERAIL a specified task when the event occurs

The number of associated requests that can be pending simultaneously
is determined by the size of the buffer, which is specified by the
assembly parameter RINGBUF.

RTS/8 SYSTEM TASKS

The UDC/ICS handler permits the following operations:

1. Analog Output - send a 10-bit value to an analog channel
2. Analog Input - accept input from analog subchannel

3. Digital Output - send a 12-bit value to a digital channel
4, Digital Input - read a digital channel

5. Get Generic Code - determine the generic code for a

specified channel

6. Enable Counter - permit interrupts from a counter channel

7. Read Counter - read current value of the counter
channel

8. Disable Counter - disable interrupts from a counter
channel

9. Enable Contacts - permit interrupts from a contact channel

10. Change Of State - find the current COS value for a contact
channel

11. Disable Contacts - ignore interrupts from a contact channel

Each operation is discussed in detail below, including the format of
the message for specifying the operation. The first three words are
required for use by the Executive. Word 4 specifies one of the 11
UDC/ICS operations which are as follows: AO0=0; DO=1; DI=2; GC=3;
EC=4; RC=5; DC=6; ECT=7; Cs=10; DCT=11; AI=12. Word 5
designates the channel being used for the indicated operation. Words
6 through 8 may be required to completely specify the operation, and
the number used is dependent upon the operation. The word that
follows the last word specifying the desired operation is used for the
value read or the value returned. Word 10 of all UDC/ICS messages
contains the error state.

The general format for a UDC/ICS message is:

ZBLOCK 3
OPERATION
CHANNEL
OPWORD1
OPWORD2
OPWORD3
VALUE
STATUS

4.9.1 AO Analog Output

Format: AO
channel number
subchannel & value

Channel number is the analog output channel. The subchannel and value
word is formed by the subchannel (0-3) in bits 0 and 1 and the 10-bit
value in bits 2-11. For example, a message for an analog output
operation:

RTS/8 SYSTEM TASKS

AQEX, ZBLOCK 3

AO /ANALOG OUTPUT
23 /CHANNEL 23
4614 /SUBCHANNEL 2, VALUE 614
ZBLOCK 3
AOER, 0 /ERROR INDICATOR
0 1 2 3 4 5 6 7 8 e} 10 1
\ A J

Subchannel _—,
Value

Subchannel and Value Word Format - UDC/1ICS Handlér

4.9.2 AI Analog Input

Format: AT
: channel
subchannel & gain
answer

where channel is the analog input channel. The subchannel and gain
word need only specify the gain in bits 1-3 and the subchannel in bits
9-11 for UDC, and 5-11 for ICS. The handler automatically sets bit 0
(enable conversion) and read control register (UDC bit 8; ICS bit 4).
The ICS analog converters must have addresses which are less than 20
(octal) since all converter modules must be located in the first 16
slots of the ICS unit. After conversion, ‘the digitized value is
placed in the answer word. .

Enable conversion

Gain

ICS read control register;
(for UDC, bit 8)

ICS subchannel;
{for UDC, bits 9-11)

Subchannel and Gain Word Format - UDC/ICS Handler

RTS/8 SYSTEM TASKS

An example of a message for an analog input operation is as follows:

AIEX, ZBLOCK 3

AI /ANALOG INPUT

17 /CHANNEL 17

3 /SUBCHANNEL 3, GAIN 1
AIANS, O : /RESULT HERE

ZBLOCK 2
AIERR, O /ERROR INDICATOR

The user should ensure that for each major channel there is sufficient
time (approximately 250 microseconds. for UDC; 5 milliseconds for ICS)
for each subchannel conversion to be completed before another is
indicated. 1In general, it may be helpful if all A/D conversions for a
major channel are initiated from the same task.

4.9.3 DO Digital Output
Format: DO
channel

value

Channel is a legal digital output channel and value is the number to
be output. For example:

DOEX, ZBLOCK 3
DO /DIGITAL OUTPUT
20 /CHANNEL 20.
7777 /VALUE = 7777
ZBLOCK 3. : ;

DOER, 0 /ERROR INDICATOR

4.9.4 DI Digital Input

Format: DI
channel
result

Channel is the appropriate digital input channel and result will
contain the value of the channel when read. For example:

DIEX, ZBLOCK 3
DI /DIGITAL INPUT
27 /CHANNEL 27
DIANS, O /VALUE OF CHANNEL 27 WILL BE PUT
/HERE
ZBLOCK 3
DIER, 0 /ERROR INDICATOR

4.9.5 GC Generic Code

Format: GC
channel
result

RTS/8 SYSTEM TASKS

The generic code of the specified channel is put in result. For

example:

GCEX,

GCANS,

GCER,

Generic codes
error; 2,3 - Contact Interrupt Modules; 4 - Counter Module; 7 - A/D

converter.

4.9.6 EC

Format

ZBLOCK 3

GC /DETERMINES GENERIC CODE
27 /CHANNEL 27

0 /GENERIC CODE PUT HERE
ZBLOCK 3

0 /ERROR INDICATOR

are

EC

as follows: 0 - No interrupt; 1 - Controller

Enable Counter

channel
initial value
reload value
event action
address

Channel is the counter channel to be enabled, initial wvalue 1is the

first wvalu

e

to

be loaded into that channel, and reload value is the

value with which to reload the channel after every event. If the
reload value is 0, the counter is not reloaded. The event action and
address words specify what happens when the counter interrupts. There

are three

mutually exclusive possibilities, indicated by setting the

appropriate bit in the event action word as follows:

Bit 0 =1 - Set Event Wait Flag of this job; continue
execution of this job when the event occurs.
Address word not used.

Bit 1 =1 - Run a task that sent the message; run task
specified by bits 4-11 of event action word.
Address word not used.

Bit 2 = 1 - DERAIL the task that sent the message; the
address word is only used by the DERAIL operation
and specifies the address of the DERAIL
subroutine. The subroutine must be in the same
field as the calling task.

Bit 3 =1 - Do action just once. If bit 3 = 0, specified
action 1is performed after each interrupt. Bit 3
indicates whether action is to occur once or
repeatedly.

Several enable counter examples follow: -

ECEX1, ZBLOCK 3

EC /ENABLE COUNTER
4 /CHANNEL 4
7700 /INITIAL VALUE OF 7700
7710 /RESET TO 7710 AFTER EACH EVENT
4000 /POST EVENT FLAG ON EVENT EVERY TIME
/IT OCCURS
0 /UNUSED
ECER1, 0 /ERROR INDICATOR

ECEX2,

ECER2,

ECEX3,

ECER3,

RTS/8 SYSTEM TASKS

ZBLOCK 3

EC /ENABLE COUNTER

4 /CHANNEL 4

1205 /INITIAL VALUE OF 1205

0 /DON'T RESET

2016 /RUN TASK 16 ON EVENT EVERY TIME IT
/OCCURS

0 /UNUSED

0 /ERROR INDICATOR

ZBLOCK 3

EC /ENABLE COUNTER

5 /CHANNEL 5

10 /INITIAL VALUE OF 10

7700 /RESET TO 7700

1015 /DERAIL TO TASK 15 EVERY TIME IT
/OCCURS

5620 /AT LOCATION 5620

0 /ERROR INDICATOR

4.9.7 RC Read Counter

Format:

where channel

RC
channel
result

is the counter channel whose current value 1is to

read. That value is placed in result. For example:

RCEX,

RCANS,

RCER,

ZBLOCK 3

RC /READ COUNTER

6 /CHANNEL 6

0 /VALUE OF CHANNEL 6 PUT HERE
ZBLOCK 3

0 /ERROR INDICATOR

4.9.8 DC Disable Counter

Format:
where channel
ignored. For

DCEX,

DCER,

4.9.9 ECT

Format:

DC
channel

is the counter channel from which interrupts are to
example:

ZBLOCK 3

DC /DISABLE COUNTER
6 /CHANNEL 6
ZBLOCK 4

0 /ERROR INDICATOR

Enab. Contacts

ECT

bit & channel
event action
address

be

be

RTS/8 SYSTEM TASKS

where the bit & channel word specifies the bit on the contact channel
from which to enable interrupts. Channel is specified in bits 4-11
and the contact bit is packed in bits 0-3 as a value from 0-13(octal).
Event action and address are specified in the same manner as in the
enable counter function. For example:

ECTEX1, 2ZBLOCK 3

ECT /ENABLE CONTACTS
5401 /FROM BIT 13(OCTAL) OF CHANNEL 1
2013 /RUN TASK 13 AFTER AN EVENT OCCURS
ZBLOCK 3
ECTEIR, 0 /ERROR INDICATOR
ECTEX2, ZBLOCK 3
ECT /ENABLE CONTACT
1001 /FROM BIT 2 OF CHANNEL 1
4000 : /ON 1ST OCCURRENCE OF EVENT, POST
/EVENT FLAG
ZBLOCK 3
ECTE2R, 0 /ERROR INDICATOR

Twelve messages are required to enable the entire channel.

4.9.10 Cs Change of State

Format: Cs
channel
result

where channel is the contact channel whose current change of state
value is to be placed in result. For example:

COSEX, ZBLOCK 3

cs /READ COS
1 /CHANNEL 1
COSANS, 0 /RESULT HERE
ZBLOCK 3
COSER, 0 /ERROR INDICATOR

4.9.11 DCT Disable Contacts

Format: DCT
bit & channel

where bit & channel is specified as in enable contact. That is, bits
0-3 specify the bit (0 - 13 octal) and bits 4-11 specify the channel
to be disabled. For example:

DCTEX, ZBLOCK 3

DCT /DISABLE CONTACTS
5401 /FROM CHANNEL 1, BIT
/13 (OCTAL)
ZBLOCK 4
DCTANS, 0 /ERROR INDICATOR

RTS/8 SYSTEM TASKS

4.9.12 UDC/ICS Assembly Parameters

The UDC/ICS handler has several assembly parameters that the user must
specify to indicate the UDC/ICS configuration. The number and address
is required only for those modules that perform interrupts. They are
as follows: : ‘

RINGBF Number of interrupts that can be stored in the

ring buffer.
NCNTR Number of counter modules.
NCNTC ‘ Number of contact modules.
NAD ‘Number of aﬁalog inéut converter modules.
FCTR Address of the first counter module. The modulés

must be at contiguous module addresses.

FCT Address of the first contact interrupt module.
Interrupt modules must be at contiguous module
addresses.

FAD Address of the first A/D converter module. Analog

input modules must be at contiguous module
addresses.
NMPLX Number of multiplexer modules per analog converter

(ICS only).

These parameters are used mainly to specify the sizes of several
tables in the UDC/ICS handler, allocated as 30(octal) words per
contact module, 3(octal) words/counter module, and 16(octal) words per
analog module. The UDC/ICS handler currently assumes that the handler
and all its tables are entirely within the same data field (although
the user could easily reprogram this). .

The user must keep in mind when establishing RINGBF size that if the
buffer is full, UDC/ICS interrupts are disabled until there is room in
the buffer. Also, each interrupt requires two entries in the buffer;
that is, the actual buffer size is 2 * RINGBF.

4.9.13 UDC/ICS Error Conditions

To indicate error conditions, the UDC/ICS handler places a value in
the tenth word of the task's message. The values and meanings are:

Value - Meaning
1 Illegal generic code for specified channel and
operation o o
2 Channel or subchannel value not valid
3 Illegal function code
5 UDC/ICS control not responding (power dff or

hardware error)

4-31

RTS/8 SYSTEM TASKS

The user should initialize and check the error word. A no error
condition puts a 0 in this location.

Only errors encountered at noninterrupt time are returned in this
manner, thus they may also indicate a faulty UDC/ICS hardware

functional device. Generic codes of 0 or 1 encountered at interrupt
time are ignored.

4.10 CASSETTE HANDLER

The Cassette Handler (CSA) allows the user to read and write
variable-length records on DEC cassettes, as well as to perform
various special functions (such as rewind and write end-file). One
copy of the Cassette Handler can operate eight units.

There are two general categories of cassette operation:
1. Handler functions - read and write

2. Utility functions - rewind, backspace file gap, write file
gap, backspace block gap, and skip to file gap

The user should call these functions in a meaningful sequence. The
first word of the message defines the cassette unit and either the
handler or utility call.

4.10.1 Handler Function

The format of a message to the Cassette Handler when using a handler
call is:

ZBLOCK 3

CALL + UNIT

RW + FIELD + NONSTORE
BUFADD

SIZE

STATUS

For a handler function, the words after the RTS/8 message header are
defined as follows:

Word 1 bit 0 =0 Utility call
bit 1 =20 Handler call
bits 9-11 Cassette unit
Word 2 bit 0 =0 Read
0 =1 Write
bits 6-8 Field of buffer
bit 11 Do not store data (applicable to read
only)
Word 3 Buffer address
Word 4 Record size in bits 4-11
Word 5 Status return

RTS/8 SYSTEM TASKS

0: Handler call
1: Utility call
Unit
Unit Word Format - Cassette Handler
0 1 2 3 4 5 6 7 8 9 10 11
[—)
0: Read
1: Write
Field
0: Read into memory}

1: Check data

Function Word Format - Handler Call

Cassette conventions specify a record size of 200 bytes, but the user
can use any size up to 377 (8 bits are transferred). The buffer
specified by the message cannot cross field boundaries. For a read
operation, the buffer 1is optional (although its word in the message
must be included), according to bit 11 of word 2. The nonstore
capability can be wused for advancing through a long file. Word 5
contains the contents of status register B, which is defined by the
bit setting as follows:

Bit Meaning

CRC /block error
Timing

EOT/BOT

EOF

Drive empty
Read/write

Write lockout
Ready

LI T [B [}

=10 000U

o

RTS/8 SYSTEM TASKS

CRC/block error

Timing

EOT/BOT

EOF

Drive empty

Read/write

Write lookout -

Ready

Status Return Word Format - Cassette Handler

At the end of each cassette operation, the user should examine Word 5
to check for errors encountered. '

An example of a cassette handler message to write 100 bytes from a
buffer starting at 21200 to cassette unit 3 is as follows:

MSG1, ZBLOCK 3
4003 : /HANDLER OPERATION ON UNIT 3
4020 o /WRITE FROM FIELD 2 THE
1200 : /BUFFER AT 1200 WHICH IS
0100 /100 BYTES LONG
0000 /STATUS RETURN

To read and not store 200 bytes from unit 2, the message is:

MSG2, ZBLOCK 3
4002 /HANDLER OPERATION ON UNIT 2
0001 /READ AND DON'T STORE
0000 /UNUSED
0200 /200 BYTES
0000 /STATUS RETURN

4.10.2 Utility Function

The format of a message to the Cassette Handler when using a utility
call is:

ZBLOCK 3

CALL+UNIT
FUNCTION

STATUS

RTS/8 SYSTEM TASKS

For a utility function, the words after the RTS/8 message header are
defined as follows:

Word 1 bit 0 = 0 Utility call
bit 0 = 1 Handler call
bits 9-11 Cassette unit

Word 2 (function in bits 6-8): 10 Rewind

30 = Backspace file gap
40 = Write file gap
50 = Backspace block gap
70 = Skip to file gap
Word 3 Status return
0 1 2 3 4 5 6 7 8 9 | 10| 1
| —
Function:
1 Rewind

3 Backspace file gap

4 Write file gap

5 Backspace block gap
7 Skip to file gap

Function Word Format - Utility Call

For example, to request a rewind on unit 1, the message is:

MSG3, ZBLOCK 3
0001 JUTILITY OPERATION ON UNIT 1
0010 /REWIND
0000 /STATUS RETURN

If an error is encountered, the operation is retried 3 times, except
when a write 1lock out 1is placed on a write operation or an error
occurs while reading CRC.

The CAPS-8 User's Manual (DEC-8E-OCASA-A-D) is suggested reading for
users who are unsure of cassette conventions.

4.11 CASSETTE FILE SUPPORT HANDLER

The Cassette File Support Handler (CSAF) supports the DEC standard
cassette format and allows the calling task to look up and enter files
on cassettes in that format. This handler requires the cassette
handler (CSA) to perform the actual I/O operations involved.

The cassette operations ENTER, LOOKUP and CLOSE are performed by the
Cassette File Support Handler (CSAF) which in turn calls the cassette
handler (CSA). ENTER and LOOKUP require the user to put’' appropriate
information 1in a record header area with which CSAF performs the file
operations. The header area must be at least 40(octal) words long and
cannot cross field boundaries.

RTS/8 SYSTEM TASKS

Word definitions for g CSAF message are as follows:

Word 1 bit
bit
bit
bits

- ENTER
LOOKUP
CLOSE
unit

OO
[
[}

!
=onon

b=
!

Word 2 Address of header for ENTER and LOOKUP;
status return for CLOSE

Word 3 Field of header for ENTER and LOOKUP (bits
6-8)

Word 4 Status return for ENTER and LOOKUP

In all cases, the status return is the contents of Status Register B

Function: “_I

1 Close
2 Lookup
4 Enter

Unit

Unit Word Format - Cassette File Support Handler

For ENTER and LOOKUP, the format of the header area must conform with
cassette standards (and therefore is compatible with CAPS-8). This
format is as follows:

Byte Use
0-5 Filename
6-10 Filename extension
11 File type
1 = ASCII
0 = undefined
12-13 File record length.
Currently word 12 must be
0
14-15 Unused
16-23 Date (ASCII) specified as
ddmmyy
24-35 Unused

Reference is to 8-bit bytes, one per word, right
justified

For an ENTER operation, if a file with the name specified in the
header area is found on the specified unit, it is deleted.

4-36

RTS/8 SYSTEM TASKS

For a LOOKUP operation, the record size of the specified file is
returned in location header+13 (byte 13). If the file is not found or
if an error occurs, this location contains 0.

The CLOSE operation is automatically followed by a REWIND.

Examples of messages follow.

MSG4, ZBLOCK 3
4000 /ENTER ON UNIT 0
6400 /INFORMATION IN HEADER STARTING AT
/6400
0010 /OF FIELD 1
0000 /STATUS RETURN
MSG5, ZBLOCK 3
1003 /CLOSE ON UNIT 3
0000 /STATUS RETURN

4.12 PDP-8A NULL TASK

The PDP-8A Null Task counts from 1 to 9999 in decimal 1in the AC
display. It also counts from 1 to 7777 in octal in the MQ display.
The source which is called NULL8A, takes up a page. The wuser can
configure the null task into an RTS/8 system by inclusion in the
parameter file of its task name and the statement

NULL8A = NTASKS+1

4.13 KL8-A SUPPORT

The KL8-A is a 4-serial line asynchronous multiplexer for the PDP-8/A
that has three lines with partial modem control and one line with full
modem control. KL8-A support is available to the RTS/8 Executive, the
TTY task, and the 0S/8 Support Task. To use KL8-A support, the user
should perform the procedures that are described 1in the following
sections.

4.13.1 Executive KL8-A Support

The symbol KL8A in the parameter file is set to a value equal to the
number of KL8-A units being employed by the user. If one KL8-A is
being used, then KL8A=1 is spr-ified.

If the symbol 'KL8A' is set to 0 or undefined in the parameter file,
no KL8-A support will be provided by RTS/8.

KL8-A support is provided by the RTS/8 Executive. The source file
KL8ASR.PA must be assembled as follows:

.PAL KL8ASR<PARAM,KL8ASR

RTS/8 SYSTEM TASKS

The parameters in the parameter file that relate to KL8-A service are
as follows:

KL8A

]
o

or undefined means that no KL8-A service is desired.

= n means support for n physical 1lines is
desired. Each physical KL8-A provides
four lines.

KL8ADV

Device code for the first KL8-A.
Default 1is 40. Each KL8-A uses two
consecutive device codes (e.g., 40 and
41). If multiple KL8-A's are used, they
should have consecutive device codes.

KL8ACT

Specifies page for start of KL8-A
connect routine. Default is 7400 (if
KL8A = 1). The KL8-A connect routine
must be located 1in field 0. It is
l-page long for one KL8-A and grows a
page for every three additional KL8-A's
used (or part thereof). The default
value of this parameter is such that the
KL8-A support routine gets jammed up
against the end of field 0, ending at
location 7577.

4.13.2 TTY Task KL8-A Support

KL8-A support in the TTY task is initiated by setting symbol KL8A in
the parameter file to nonzero. Then the KL8-A line to be used is
specified in place of the terminal IOT device code plus 100. For
example, if the TTY task is to control line 3 of a KL8-A,

TTDEV = KLBALINE+3

is specified in the parameter file. (The symbol KL8ALINE is defined
to have the value 100 in the parameter file.) If more than one KL8-A
interface is used, the lines are numbered consecutively beginning with
0 and continuing across interfaces. Thus, KL8-A logical line number 5
actually is physical line number 1 of the second KL8-A interface.
Physical lines are numbered from 0 to 3.

KL8-A support requires additional memory in field 0 for Executive
Support but does not increase the size of the TTY task. KL8-A support
is included in both the old (2-page) and new (3-page) TTY task.

4.13.3 KL8-A Support for the 0S/8 Support Task

KL8-A support for 0S/8 is similar to that described for the TTY task.
However, the following procedure is used. First, the symbol KL8A is
set to nonzero in the parameter file. Then, the particular KL8-A line
is specified by using a number of the form 100+line in place of the
device code, where "line" is the line number of the KL8-A that is 0s/8
being used. The symbol KL8ALINE is conveniently defined as being 100
in the parameter file. For 0S/8 support, the parameter

OSTTDV = KL8ALINE+2

RTS/8 SYSTEM TASKS

specifies that terminal output goes to line 2 of the KL8-A. When more
than one KL8-A is used, the lines should be numbered successively as
described for the TTY task support in Section 4.13.2.

4.13.4 KL8-A Support for a User Task

The KL8-A support in the Executive allows a user to program the KL8-A
in a manner similar to the KL8-J.

First, the user task must insert the KL8-A into the interrupt skip
chain and provide a keyboard and printer interrupt routine to service
the line he wishes to use. This is accomplished via the following
code:

CDF CUR

CIF O

IOF

TAD (LINE™4

JMS I (KLB8ACT

KEYBD INTERRUPT ROUTINE
PRINTER INTERRUPT ROUTINE

where LINE is the line number of the KL8-A desired. KL8-A 1line
numbers are consecutive, begin at 0, and may span across KL8-As. The
KL8-A line number is actually of the form 4a+b where a is the number
of the KL8-A (0,1,2...) and b 1is the physical line number of the
specific KL8-A (0-3).

Second, the user must define the instruction corresponding to the TLS
instruction that will be used when outputting to the KL8-A line.

For example, if the device code for the KL8-A is 40, then the user
will probably want an instruction such as

TLSX=6404
in his task.

Normally, a program would contain the following code to output a
character:

TAD char
TLS

When using a KL8-A, the task would first connect up the KL8-A support
by calling KL8ACT. Then, to output a character, the following code
would be used:

TAD line 7400
TAD char
TLSX

The AC is not cleared by the TLSX.

4.14 EXIT TASK

The EXIT Task is not required for RTS/8 operation. If this task is
included in a system, it is run by the MCR EXIT command. The EXIT
task performs the same functions as those performed by the MCR EXIT
command, that is, it waits for any pending operations to be completed,

4-39

RTS/8 SYSTEM TASKS

then turns off interrupts and returns to the 0S/8 operating system.
In addition, the EXIT Task allows a user task to request additional
special exit processing just prior to shutting down RTS/8. This 1is
done by having the user task send a message to the EXIT Task. This
message contains a single word. This word is the address of a routine
(in the same field as the message) that will be called (via a JMS) at
the time of the exit. When the MCR EXIT command is typed, these
routines will be called and executed in the order that they were sent
to the EXIT Task.

NOTE

Any message sent to the EXIT Task will
not get ©posted. Also, do not use the

MCR REquest command to run the EXIT
Task.

CHAPTER 5

MONITOR CONSOLE ROUTINE

The Monitor Console Routine (MCR) provides functions that the user can
request from the console terminal to control, inspect, and debug (to
some extent) his system.

The MCR indicates that it is active and ready to accept commands by
printing the prompting character > on the system console terminal. An
MCR command consists of a command word followed by arguments and
terminated by either a carriage return or an ALTMODE. Only the first
two characters of the command are significant except for the EXIT
command. Commands can be a maximum of 40 characters long. 1If a
carriage return terminates the command line, the MCR returns to the
terminal for another command when it finishes processing the current
command. If an ALTMODE terminates the command 1line, the MCR puts
itself in a wait state when it finishes processing the command. The
MCR is brought out of this wait state by typing “C (CTRL C) on the
console terminal.

When the MCR prompts with its > and is waiting for input, no other
RTS/8 task «can use the terminal. Therefore, if the terminal is used
for something other than an exclusive MCR terminal (for instance,
error logging), type "C, type the MCR command and terminate it with an
ALTMODE character. This procedure prevents the MCR from tying up the
terminal.

5.1 MCR COMMAND ARGUMENTS

Certain syntactic constructions are used as arguments to several MCR
commands. The definitions of these arguments follow.

A single comma or a single space may be used
interchangeably to separate arguments to MCR
commands.

Task-ID A Task-ID is either an octal number or a
name. If it is a number, it represents the
internal RTS/8 Task Number. This number also
designates the priority of a task. If it is
a name, the first 4 characters of the name
are looked up in the MCR's Task Name table to
produce a Task Number.

Time-of-day A time-of-day is of the form hh:mm, where hh
represents hours past midnight and mm
represents minutes past hh:00.

Address An Address is an octal number from 1 to 5
digits that represents a PDP-8 memory

5-1

MONITOR CONSOLE ROUTINE

address. If the address is less than five
digits long it 1is assumed the high order
digits are 0.

Word A Word is an octal number from 1 to 4 digits
long.

5.2 MCR COMMANDS

In the MCR command descriptions that follow, the significant portion
of the command word is capitalized. Optional arguments are enclosed
in square brackets ([1) and choices are embedded in parentheses,
separated by exclamation points (1). Commands preceded by asterisks
(*) are not present if the user did not define the symbol CLOCK in the
RTS/8 parameter file (indicating that a clock is not in the system) ,
or if the symbol MCRCLK is set to 0 (in order to shorten the MCR code
length).

5.2.1 * DAte [mm/dd/yyyy [,Time-of-day]]

The date mm/dd/yyyy, if specified, becomes the system date. For the
year portion of the date, only the last digit is significant; the
others are ignored since 197 assumed. The RTS/8 system date is
automatically incremented at midnight, but all months are treated as
being 31 days in length. The second argument, if specified, 1is set
equal to the systenm time-of-day. If no arguments are specified, the
current system date is printed on the console terminal in the form
mm/dd/7y.

>DATE 07/31/76
>DATE
07/31/76

5.2.2 * TIme [Time-of-day]

If a Time-of-day command is specified, it becomes the system
time-of-day. If no argument 1is specified the current system
time-of-day is printed out on the console terminal in the form hh:mm.

>TIME 14:00
>TIME
14:00

5.2.3 NAme Task-ID,Newname
The character string Newname becomes the new name of the task if
specified by this command. The o0ld name of that task (if any) is
lost. Newname can be any length, but only the first 4 characters are
stored. Newname should not be the name of any other task or an error
message results.
Examples:

>NAME 7 REPORT

Task number 7 is given the name REPO.

5-2

MONITOR CONSOLE ROUTINE

>NAME REPORT,FOO

Task number 7, which is known as REPO, is now known as FOO.

NOTE

The system initializes the MCR name
table at assembly time to contain the
names of any DEC-supplied tasks that are
listed in the parameter file (e.g., if
the symbol CLOCK 1is defined in the
parameter file as CLOCK=2, task number 2
gets the name CLCK). By editing the
file MCR.PA after the label NMTBL, user
task names can be permanently included
by modifying the MCR name table.

5.2.4 REquest Task-ID [, (@Time-of-day ! Interval) [,Interval]]

The REguest Task-ID command reguests a task to run immediately (if
only Task-ID is specified), at a given time-of-day, after a given
interval, or at a given interval.

Interval is of the form:

nH n hours

nM n minutes

nS n seconds

nT n system ticks

Requesting a task clears the RUNWT bit in the Task Flags Table entry
for that task. The interval, given in the third argument, specifies
the period at which the task is rerun. If the parameter CLOCK in the
RTS/8 parameter file is not defined, the second and third arguments of
this command are ignored and the given task runs immediately. 1In the
examples given below, three different formats are used for the REquest
command, but only the first two characters are significant except when
using the EXIT command.

Examples:
>REQUEST X

runs task X immediately.
>RE F00,@2:00

runs task FOO at 2:00 am (if it is after 2 am, FOO will run tomorrow
at 2 am).

>RE 5,10M,5M

runs task number 5 *en minutes from now and every five minutes
thereafter.

>REQ HIPR,1T,6T
On a machine with a 60 Hz clock, this command runs the task HIPR

immediately (that 1is, .016 seconds from now, and 10 times per second
thereafter).

MONITOR CONSOLE ROUTINE

NOTE

If, at the time the REquest command is
executed, (which may be several hours
after it is typed in) the task specified
by Task-ID does not have the RUNWT bit
set in its Task Flags Table entry, then
the REquest command is a no-op (no
operation), that is, the command has no
effect. Similarly, the task will not
run upon execution of the REquest
command if it had other bits set beside
RUNWT; the task will run only when the
other blocking bits are cleared.

5.2.5 STop Task-ID

The STop Task-ID command suspends execution of the task specified by
Task-ID by turning the RUNWT bit on in the Task Flags Table entry for
that task. A task that has been stopped can be restarted by using the
REquest MCR command (in this instance it is easier to think of it as
the REsume MCR command).

5.2.6 DIsable Task-ID

The DIsable Task-ID command disables future execution of the specified
task by setting the ENABWT bit on in the Task Flags Table entry for
that task.

5.2.7 ENable Task-ID

The ENable Task-ID command clears the ENABWT bit in the Task Flags
Table entry for the specified task, thus enabling it to run. If the
ENABWT bit was not set, the command is a no-op.

5.2.8 * CAncel Task-ID

The CAncel Task-ID command cancels any clock queue entries involving
the task specified by Task-ID. This includes lyany entries made by
the MCR (from previous timed Request commands), 2)entries involving
the specified task made by other tasks (e.g., a timed DERAIL) and
3)entries made by the specified task involving itself (e.g., a timed
POST) . In the case of the timed POST, the event flag is not POSTed
and the task may hang up forever waiting for it.

5.2.9 SY¥stat [Task-ID]

The SYstat command, depending on whether an argument is specified,
prints either a general system status report or a status report in
greater detail on a single task. If no argument is specified, the
SYstat command prints a system status report. Each line of the report
describes an existent task in the system. For each task the report
prints the task number/priority, task name (if it has one), and what
blocking bits are on in its Task Flags Table entry. Each blocking bit

5-4

MONITOR CONSOLE ROUTINE

is printed as a one-letter code, preceded by a space. The one letter
codes and their meanings are:

Waiting for event flag

Waiting for a message

Waiting for an event flag or a message
Waiting to be REquested or RUN

Waiting to be swapped in

Disabled

USERWT bit set

Nonresident wait

ZaoonwoXxm

In addition, an asterisk printed at the end of the line means the task
has messages waiting in its input queue.

A more detailed status report on a single task is obtained by
specifying the Task-ID of that task as an argument to the S¥stat
command. The detailed report contains all the information in the
general status report, followed by five octal words:

WORD 1 The location of the Task State Table
entry containing words 2-5; this
word is followed by a colon

WORD 2 Task Link in sign bit, IF in bits 6-8,
DF in bits 9-11 (PDP-8/E and 8/A Flags

Register)
WORD 3 Task PC
WORD 4 Task AC
WORD 5 Task MQ

Examples:

A general SYstat command might produce the following sample output
line:

13 CARD E *

This line means task number 13, named CARD, is in Event Flag Wait and
has input messages pending. The command:

>SYSTAT CARD
might produce the single line:
13 CARD E * 1320: 0022 1741 0000 2525

This line indicates that CARD is stopped at location 21741 with its AC
and Link zero and 2525 in its MQ.

The user can leave the SY¥Ystat facility out of the MCR assembly by

setting the system parameter MCRSYS to 0 in the RTS/8 parameter file.
Leaving it out saves one page of code.

5.2.10 OPen Address [,Count]

The OPen Address command displays the Count 1locations in octal
starting at Address on the console terminal in the form:

11111/ cccc

The range of locations displayed may cross a field boundary. If Count
is not specified, it is assumed to be 1.

5-5

CHAPTER 6

ASSEMBLING AND LOADING TASKS FOR RTS/8

The user assembles RTS/8 tasks with parameter files, wusing the 0S/8
PAL8 assembler. RTS/8 parameter files are all edited versions of a
master parameter file (PARAM.PA) that is included in the distributed
sources. Appendix A lists the RTS/8 source files. All definitions in
the master file which are to be supplied by the user are left blank in
the file. For example, a sample line in the file is:

PDP8E= /1 IF PDP 8/E OR PDP 8/A, ELSE O

If this parameter is set to 1, the specified machine is a PDP-8/E or a
PDP-8/A. If either machine is not used, this parameter is set to 0.

Thus, a unique parameter file is created for the particular RTS/8
environment, where environment 1is a combination of the available
hardware and the set of tasks being run.

The structure of the parameter file is discussed in the next section.
Other sections in this <chapter describe 1) the 0S/8 BITMAP program
which allows the user to construct a map showing the memory locations
used by given binary files, 2) a sample RTS/8 program 3) a general
procedure for creating an RTS/8 system, and 4) a listing of parameters
and their functions that affect the individual RTS/8 system tasks.

6.1 PARAMETER FILE STRUCTURE

The parameter file contains the parameters that the user must define
to specify a particular RTS/8 system configuration. A parameter file
that has been modified for the demonstration program is shown in
Section 8.1. This file also contains user-defined symbols for
DECNET/8. For further information on DECNET/8, see RTS/8 DECNET/S8
Programmer's Guide and Reference Manual (DEC-08-LDPRA-A-D).

The parameter file is divided into the following five sections. These
sections are labeled as follows:

1. Executive Specifications
2. Task Definitions

3. System Task Specifications
4, System Wide Definitions

5. Task Setup

ASSEMBLING AND LOADING TASKS FOR RTS/8

6.1.1 Executive Specifications

The parameters in the Executive Specification section control the
assembly of the Executive, and therefore are essential to the RTS/8
system. The parameters in this section and their meaning are as
follows:

Symbol Meaning

PDPS8E Set to 1 if PDP-8/E, PDP-8F, PDP-8M or PDP-8/A is
the machine being used; 1if not, this symbol must
be set to 0.

PDP12 Set to 1 if PDP12 is the machine being used; if 0
or undefined, the PDP-12 is not being used.

EAE Set to 1 if the system should save contents of the
MQ during an interrupt or task switching.

PWRFAL Set to 1 if power fail/restart is enabled in the
hardware.

KL8A Set to a nonzero if KL8-A support routines should
be loaded into system.

HGHFLD Set to a value designating the highest field used;
for example, HGHFLD = 30 specifies field 3 when
using a machine with 16K core memory.

NTASKS Set to an octal value that specifies the total
possible number of tasks in the system. It also
represents the highest number that can be assigned
to any task in the system. Not all possible task
numbers need be assigned to actual tasks; this
symbol merely sets the length of system tables.

CHECKP Set to 1 if any nonresident task is
checkpointable.

PARTNS Set to the number of memory partitions allocated
in the system. Set to zero if there are no memory
partitions defined in the systenm. For example,
PARTNS = 2 indicates that there are two memory
partitions defined, that is, partition number 0
and partition number 1.

6.1.2 Task Definitions

The Task Definitions section defines symbolic names for the various
system tasks. The names of all system tasks which are to be included
in the system are defined here. Any system task not included should
have the 1line which defines it deleted from this section. Perform
this deletion by inserting a slash (/) character at the beginning of
the line, which makes the entire line a comment. Symbolic definitions
of the user's own tasks can be added to this section. The user |is
reminded that the assignment of task numbers in octal indicates task
priority, that is, the lower the number, the higher the priority of
the task.

ASSEMBLING AND LOADING TASKS FOR RTS/8

The Task Definitions section, as it initially appears to the user, 1is
shown below.

/COMMON TASK NUMBERS - EDITED BY USER

/IT IS ADVISABLE TO DEFINE ALL TASKS HERE. NAMES GIVEN BELOW
/ARE USED BY SOME SYSTEM TASKS AND SHOULD REMAIN COMMENTED OUT
/IF THE CORRESPONDING TASK IS NOT INCLUDED IN THE SYSTEM

/PWRF= /POWER FAIL HANDLING TASK

/CLOCK= /CLOCK HANDLER - SHOULD BE HIGH PRIORITY
/SWAPPER= /NONRESIDENT TASK SWAPPER TASK

/TTY= /TELETYPE DRIVER TASK

/LPT= /LINE PRINTER DRIVER TASK

/MCR= /MONITOR CONSOLE ROUTINE

/DTA= /DECTAPE DRIVER TASK

/LTA= /LINCTAPE DRIVER TASK

/RK8= /RK8 OR RK8E DISK DRIVER TASK

/RF08 /RF08 DISK DRIVER TASK

/DF32 /DF32 DISK DRIVER TASK

/CSA= /CASSETTE DRIVER TASK

/CSAF= /CASSETTE FILE SUPPORT TASK

/UDC= /UNIVERSAL DIGITAL CONTROLLER TASK

/RX8A= /FIRST FLOPPY CONTROLLER

/RX8B= /SECOND FLOPPY CONTROLLER

/RX8C= /THIRD FLOPPY CONTROLLER

/RX8D= /FOURTH FLOPPY CONTROLLER

/0S8= NTASKS /0S/8 SUPPORT - NORMALLY LOWEST PRIORITY
/0S8F= /0S/8 FILE SUPPORT

/DDCMP= /DDCMP TASK FOR DECNET

/NSP= /NETWORK SERVICES PROTOCOL TASK

/NIP= /NETWORK INFORMATION PROGRAM

/TLK= /NETWORK TERMINAL COMMUNICATIONS TASK TRANSMITTER
/LSN= /NETWORK TERMINAL COMMUNICATIONS TASK RECEIVER
/NULL8A= /NULL JOB FOR PDP-8/A

/EXIT= /JEXIT TASK

/DKC8A= /AUXILIARY DKC8A HANDLER

This section of the parameter file is shown in Section 8.1 after it
has been modified for the demonstration program. It also shows the
addition of the two nonresident tasks used in the demonstration
program.

6.1.3 System Task Specifications

The parameters in the System Task Specifications section control the
assemblies of the various RTS/8 system tasks. The set of parameters
controlling a specific task are all grouped together and assembled
conditionally only if that task name is defined in the Task
Definitions section of the parameter file. The user edits the
parameters in this section. The parameters and their meanings are
listed in Section 6.4.

6.1.4 System Wide Definitions

The System Wide Definitions section includes the definitions of the
symbols that RTS/8 uses to describe Executive Requests and Task Status
Flag bits. It also contains useful definitions such as instruction
equivalences, monitor call values, UDC/ICS functional values and
system locations. The user should not alter this section.

6-3

ASSEMBLING AND LOADING TASKS FOR RTS/8

6.1.5 Task Setup

The Task Setup section uses five symbols that the user defines in the
body of this task to initialize the RTS/8 table entries needed to put
that task in the system. These five symbols and their definitions
are:

TASK Defines the task number of the task by a statement
of the form:

TASK=symbol

where "symbol" is the symbolic name for the task
that the user has defined in the RTS/8 parameter
file.

CUR Defines the field of the task's starting address
in bits 6-8 (e.g., CUR=10).

NOTE

The user must place the task's starting
code in the field specified by CUR. This
is done by wusing the PALS assembler
pseudo-op FIELD.

For example, FIELD CUR%10 places the
task's starting code in field 1.

START Defines the task's starting address (not
necessarily the lowest address in the task)

INIWT Defines the initial wait bits in the Task Flags
Table entry for this task. For example, INIWT = 0
means the task is runnable when the system starts
up; INIWT = RUNWT (1000 octal) specifies that
this task is not runnable initially and is in a
Run Wait condition. This task becomes runnable
when another task issues a RUN ER or when the
operator types a Regquest command to the MCR. If
INIWT is wundefined, the task starts up being
runnable.

VERS Defines the task's version number, this is an
optional parameter. By convention, the task's
version number becomes the task's initial MQ
value.

The wuser can define up to three tasks in one assembly. The
corresponding symbols for the other tasks are TASK2 and TASK3, CUR2
and CUR3, etc. The task setup section bPlaces its data into the RTS/8
tables by origining into them; no executable code is generated. If
desired, more than three tasks can be created in one assembly by
adding the code for any additional tasks at the end of the PARAM.PA
file. It should be noted that only one task is defined in the
demonstration program in Chapter 8.

ASSEMBLING AND LOADING TASKS FOR RTS/8

6.2 CREATING AN RTS/8 SYSTEM

An RTS/8 System can be created by using the general procedure that is
described in this section. It is assumed that the user has physically
mounted a copy of the distribution medium, and has bootstrapped the
development system. Although nonresident tasks are treated in this
procedure, greater detail on employing nonresident tasks is given in
Chapter 7.

The general procedure for creating an RTS/8 System is as follows:

1. Layout on paper the system and user tasks required for the
particular RTS/8 configuration to be employed. Utilize the
tables and memory map given in Appendix B that show the RTS/8
components, their sizes, and their default origins to
determine where the tasks are to be loaded into memory.

2. Assign task names and task priorities. If nonresident tasks
are used, assign the Swapper Task a higher priority than any
of the nonresident tasks. Remember that the lower the value
assigned to a task, the higher its priority.

3. When large programs are involved, a documentation file should
be created as a user convenience to maintain a directory of
the system configuration. This file can contain information
such as the tasks employed in the system, task names, task
priorities, and control files.

4. Obtain a listing of the master parameter file (PARAM.PA) .
Use the 0S/8 command

.LIST PARAM.PA

to get a listing from a line printer, or

.TYPE PARAM.PA
to get a listing from a terminal.

5. Use an editor (EDIT or TECO under O0S/8) to establish the
values of the parameters in the parameter file (PARAM.PA).
The structure of the parameter file is described in Section
6.1, and the parameters affecting the individual RTS/8 system
tasks are described in Section 6.6.

PARAM.PA should be read in as an input file, edited, and then
renamed as an output file. This procedure maintains the
integrity of DIGITAL-supplied sources.

6. Create and edit any control files that are used (See Section
6.5).

7. Assemble the tasks with the parameter file after all the
required parameters are defined. This can be accomplished by
individually assembling each task with the parameter file as
follows:

.PALL RTS8<PARAM,RTS8
or

.PAL PARAM-NB, RTS8

10.

11.

ASSEMBLING AND LOADING TASKS FOR RTS/8

The CCL option -NB indicates that a binary file should not be
created. Shown is the assembly of the RTS/8 Executive. This
has to be done for every task that is included in the systenm.
Each control file used must also be assembled. Assemble the
control file with the parameter file, placing the control
file between the parameter file and the required module as
follows:

-PAL TTY1<PARAM,TTYCFl,TTY

An alternate and more efficient method that can be employed
is to wuse a Batch stream. The assembly, load and save
commands for the system are generated as a Batch job. The
0S/8 SUBMIT command is then used to run BATCH which will use
the Batch job commands as inputs and execute then. This
method can also be used for installing nonresident tasks into
the system.

The assembly of each task, preceded by the parameter file, is
required because there 1is no linking loader function with
RTS/8. The assembly process creates binary files from the
sources that are ready to be loaded and run. Each RTS/8
system task contains assembler code that assembles it for
loading into a specific area of core memory. The user can
assemble tasks to load into areas of memory not wused by
system tasks, or edit the system tasks for loading into
specific areas. Page 0 locations and autoindex registers
used by system tasks can also be redefined by editing the
affected tasks.

Obtain a bitmap of RTS/8 tasks to determine if two or more
tasks are erroneously loaded into the same memory area or use
the same page 0 locations (See section 6.3).
Load the system after all the required tasks are assembled.
All required system tasks, user tasks, and control files can
be loaded at one time as follows:

. LOAD RTSS,CLOCK,TTY,MCR,UTl,UT2

The RTS/8 Executive Task always must be loaded first. Also,
nonresident tasks are included in this step in order to load
their resident portions and executive table entries.

Save the system after it is loaded by using the following
command:

.SAVE SYS filename

If the system is saved, the user does not have to rebuild it
each time it is needed.

When using nonresident tasks, create a SAVE 1image file
(nonresident disk image) for each nonresident task from its
binary file as follows:

.LOAD TASKX

Then save the nonresident portion of the task on the swap
device:

.SAVE DSK TASKX N1-N2

where DSK is the swap device, N1 is the lowest address in the
partition, and N2 is the highest address in the partition.

6-6

ASSEMBLING AND LOADING TASKS FOR RTS/8

12. Start the system by using the following command:
.R filename

The following is applicable when using nonresident tasks.
When the system starts, it calls the 0S/8 command decoder,
which types an asterisk on the console terminal. At this
time, initialize the block address of each nonresident task
core image as follows:

*DSK:TASKX=N

In this command line, DSK is the swap device and TASKX is the
core image file containing the nonresident portion of task N.
Repeat this procedure for each nonresident task, one task per
line, and terminate the 1last 1line with an ALTMODE. This
procedure automatically initializes and starts the real time
system.

An RTS/8 system created with the procedure just described has
a starting address of 00200. If an RTS/8 system was not
specifically configured for a PDP-8/E or PDP-12, it halts
initially to allow the operator to clear any stray device
flags by operating nonstandard hardware switches or by
pressing START. Press START to resume operation on a PDP-8,
8/I or 8/L.

6.3 USING THE 0S/8 BITMAP PROGRAM

The 0S/8 BITMAP program can be extremely useful in determining that no
two RTS/8 tasks are loading into the same area or using the same Page
0 locations. 0S/8 BITMAP accepts a list of binary files as input and
produces as its output a map of core memory. Each location of core
memory is represented in this map by a single digit which has the
following meaning:

0 Nothing has been loaded into this location

1 Information has been loaded into this location

2 Information has been loaded into this location twice

3 iqformation has been loaded into this location three or more
imes

There are certain places in core memory where 2's are allowed to
appear in the bit map. These areas are the RTS/8 Executive Tables
(starting at location 01200), the MCR name table in the MCR, the power
fail action table, and nonresident task partitions (which may contain
2's and 3's). Appearance of a 3 or a 2 in an area other than these
three areas Jjust mentioned in the bit map indicates that two or more
tasks are being loading into the same location.

6.4 SAMPLE RTS/8 TASK PROGRAM

The task that is used as an example in this section was selected for
its simplicity, and to show the basic concepts of RTS/8 operation.
The purpose of the task is simply to print "HELLO". The user requires
an RTS/8 system configuration that includes a console Terminal Handler
(TTY) and the Monitor Console Routine (MCR). It is assumed that the

6-7

ASSEMBLING AND LOADING TASKS FOR RTS/8

task will be running on a PDP-8 E/F/M/A with 8K of core nemory and a
standard console terminal.

The program (SAMPLE.PA) listed below is complete, and when assembled
with the parameter file, will run as task 5 in a properly~confiqured
system. The task is initially in the Run Wait state. When requested
by the wuser through the Monitor Console Routine, the task prints
"HELLO" on the console terminal, and then suspends itself. If again
requested by the user, the same sequence will occur.

/SAMPLE RTS/8 PROGRAM

TASK=5 /GIVEN A PRIORITY OF 5
CUR=0 /IN FIELD 0
INIWT=RUNWT /SET TO RUN WAIT STATE
FIELD 0 /PLACED IN FIELD 0
*3000 /ANY AVAILABLE PAGE
START, CAL
SENDW /MUST BE DEFINED AS “"START"
TTY /SEND AND WAIT
MSG1 /THE TERMINAL
CAL /THE MESSAGE BLOCK
SUSPND /SUSPEND THE TASK
JMP START /RESUMES HERE IF REQUESTED
MSG1, ZBLOCK 3 /RTS/8 LINKAGE
0;0 /TERMINAL OPTIONS

TEXT /HELLO/ /TYPE HELLO
$

An edited version of PARAM.PA now is required for this configuration,
and it 1is named PARAMS.PA. To produce PARAMS.PA from PARAM.PA, the
following definitions are edited into the parameter file:

PDP8E=1
HGHFLD=10
NTASKS=10
TTY=4
MCR=3

NTASKS is the largest task number used with this system. It is
assigned any number greater than the values for MCR, TTY and the
sample task, and which is smaller than 100 octal. The task values for
SAMPLE, MCR and TTY were arbitrarily chosen in the range greater than
Zzero and less than NTASKS.

The program is then assembled as follows:
.R PALS
*SAMPLE .BN<PARAMS.PA,SAMPLE.PA

The system for the sample task requires the Executive Task RTS8 plus
the TTY and MCR Task to run. This can be accomplished by using the
following Batch stream:

$JOB

.PAL PARAMS-NB,RTSS8

.PAL PARAMS~-NB,MCR

.PAL PARAMS-NB,TTY

.PAL PARAMS-NB,SAMPLE
.LOAD RTS8,MCR,TTY,SAMPLE
+SAVE SYS:SAMP

SEND

ASSEMBLING AND LOADING TASKS FOR RTS/8

Assembly and loading of the tasks, including saving the program, is
now complete. The CCL option -NB indicates that PARAM is not to be
used as the name of the binary file being created.

The system now can be run as follows (user input is underlined):

.R_SAMP /0S/8 RUN COMMAND
>RE 5(9$) /REQUEST SAMPLE FROM MCR
HELLO /TASK EXECUTES AND SAYS 'HELLO'
°c /RETURNS CONTROL TO MCR
>SYSTAT /SYSTEM STATUS COMMAND
03 MCR /MCR TASK
04 TTY /TERMINAL TASK
05 R /TASK 5 WAITING TO BE RUN
>RE 5(8) /RUN TASK AGAIN
HELLO /TASK SAYS 'HELLO' AGAIN
°c /RETURN CONTROL TO MCR
>EXIT /RETURN TO 0S/8
. /0S/8 MONITOR

NOTE

($) is the ALTMODE character; all other
input lines are terminated by a Carriage
Return.

6.5 USE OF CONTROL FILES UNDER RTS/8

There are times when a user may want to assemble a given source module
in more than one way and use the results under RTS/8. For example,
suppose there are three terminals that a user wants to service under
RTS/8. Each terminal has its own characteristics, and each copy of
the TTY task needs to have its own set of parameters. The user must
load three copies of the TTY task into memory at different locations,
and possibly in different fields. This cannot be accomplished
efficiently when using a single parameter file. With a single
parameter file, three copies of the file TTY.PA must be made and each
one edited to produce three individual tailored copies of the TTY
task. This procedure is not convenient or modular.

A better way to do this is to use a control file that contains all the
equates necessary to define the parameters needed by a particular TTY
task. The control file then is assembled together with and placed
between the parameter file and the TTY module. For example,

.PAL TTY1l <PARAM,TTYCF1l,TTY

creates a binary file called TTYl from TTY.PA using a control file
called TTYCF1.

To facilitate using this procedure, a skeleton TTY control file is
supplied with the RTS/8 task sources. It contains all the parameters
that the user normally defines in the parameter file. Thus, a user
who wants to use multiple terminals, instead of editing the parameters
in the parameter file, can create a control file for each terminal
that is used, and then edit the control file to make multiple copies
as necessary.

An example of a TTY Control file after it has been edited by a user is
shown below.

ASSEMBLING AND LOADING TASKS FOR RTS/8

TASK=TTY1l
/DEFAULT IS 'TTY'
/ TTDEV= /PRINTER DEVICE CODE - DEFAULT IS 04
/ KBDEV= /KEYBOARD DEVICE CODE - DEFAULT IS TTDEV-1
CONSOL=1
/ VT50= /1 ENABLES CTRL/S AND CTRL/Q
SCOPE=1
/ FILL= /NUMBER OF FILL CHARACTERS, I.E. 4
/ WIDTH= /TTY LINE WIDTH (0 MEANS INFINITE) , DEFAULT
/120
/ TAB= /1 IF TTY HAS HARDWARE TABS
OLDTTY=0
/ LSBOT= /1 LISTS BOTH HANDLERS (DEFAULT 0)
TTFLD=20
TTLOC=3000

This example shows a TTY control file that has been edited for task
TTY1. This terminal handler task will be assembled for the console
terminal. Setting SCOPE=1 causes RUBOUT to move the cursor 1left one
position, physically removing the character from the screen. The new
three-page handler is specified. It is placed in field 2, starting at
location 3000.

A skeleton control file is also supplied for the RX01 floppy. Users
can easily generate and use control files for other purposes.

6.6 RTS/8 SYSTEM TASK PARAMETERS

This section provides a convenient grouping of those parameters which
affect the individual RTS/8 system tasks. Given for each system task
is the parameter, its function and where applicable, an example. The
section or chapter where a detailed description of the task appears in
the text of this manual is noted after the task subhead.

6.6.1 Clock Handler Parameters (Section 4.1)

PARAMETER MEANING
CLKTYP Specifies selection of hardware clocks as follows:
0 = DK8-EA/DK8-EC
1 = KWl2
2 = PDP-8/A
3 = DK8-EP
CLKQLN Specifies minimum number of entry slots in the

clock queue (default is 20).

HERTZ Specifies number of hardware ticks per second.
HERTZ and SHERTZ are decimal values in that they
are preceded in the parameter file by the
pseudo-operator DECIMAL,

SHERTZ Specifies the number of system ticks per second.
This parameter is followed by the pseudo-operator
OCTAL, which resets the radix to its original
octal base.

ASSEMBLING AND LOADING TASKS FOR RTS/8

6.6.2 Swapper Parameters (Section 7.4)

SYS

SUNIT

Specifies the swap driver task; for example,
SYS = RK8 specifies the RK8 driver task.

Specifies the swap device physical drive unit;
SUNIT = 0 selects RKAO.

6.6.3 Terminal Handler Parameters (Section 4.2)

PARAMETER

TTDEV

KBDEV

MEANING
Is set to the proper printer device code; default
value is 4.

Is set to the proper keyboard device code;
default value is TTDEV-1.

The following parameters are available to the user to facilitate the

use of the TTY task.

VT50

CONSOL

WIDTH

SCOPE

TAB

Is set to 1 (default) to enable CTRL/S and CTRL/Q
functions. When set to 0, CTRL/S and CTRL/Q are
not treated as special characters. Typing CTRL/S
while data 1is being printed/displayed on the
screen stops the data presentation until the next
CTRL/Q 1is typed. This parameter must be set to 1
if the user's terminal is a VT50 or VT52. Both
CTRL/S and CTRL/Q turn off the echo flag.

Is set to 1 to specify that the handler 1is being
assembled for the console TTY (default). Set to O
to specify that this handler should not wake up
the MCR when "C is tyved.

Is set to an octal number that specifies the TTY
page width. TTY width 1is currently set to 120
(octal), that is, a page width of 80 decimal
characters. WIDTH = 60 sets the TTY page width to
48 decimal characters.

This option is used to determine the treatment of
the RUBOUT key as follows:

SCOPE=0 (default) provides the normal mode of
RUBOUT support.

SCOPE=1 causes RUBOUT to move the cursor left one
position, physically removing the character from
the screen. If the cursor is in column 1, RUBOUT
still works, but has no visible effect.

This option simulates tabs by the proper number of
spaces. This 1is accomplished via the assembly
parameter TAB as follows:

TAB=0 (default) specifies that the hardware does
not support tabs. The software simulates tabs by
spaces.

TAB=1 specifies that the hardware does support
tabs.

6-11

ASSEMBLING AND LOADING TASKS FOR RTS/8

FILL

OLDTTY

LSBOT

TTFLD

TTLOC

Several eqguates are
sending messages to

NOPACK=4000

NOCRLF=2000

IND=1000

NOLINE=400

ASSGN=200

KL8ALINE=100

Fill characters are supported via the assembly
parameter FILL as follows:

FILL=0 (default) does not provide any fill
characters.

FILL=n sends n fill characters (nulls) after a
line feed; n must be in the range 1-5, FILL=4 is
recommended for 2400 baud VTS5's.

Is set to 1 to specify the use of the old 2-page
TTY handler. Set to 0 (default) to use the
standard 3-page handler. The o0ld handler has
fewer features, but it is a page shorter. The
barameters VT50, WIDTH, SCOPE, TAB and FILL have
no effect when using the old handler.

Is set to 1 to list both the old 2-page and new
3-page handler. Set to 0(default) when only the
handler selected by OLDTTY is to be listed.

Is set to specify the field of TTY Task; for
example, 20 specifies field 2.

Is set to specify the location of TTY Task; for
example, 3000 specifies a starting location of
3000.

listed in the parameter file. They are useful for
TTY or LPT Tasks. These equates follow:

Used if the output message is not 6-bit ASCII.

Used if the output message should not be followed
by carriage return/line feed.

Used if OUTTXT points to the first word of the
output text.

Used if the output is in character mode.

Used to assign the device handler for use by only
this task.

Used with KL8-A support (see Section 4.13.2).

6.6.4 Monitor Console Routine Parameters (Chapter 5)

PARAMETER

MCRSYS

MCRCLK

MCRFLD

MEANING

Is set to 1 if the SYSTAT facility is desired for
printing system status reports of existent system
tasks.

Is set to 0 if the clock functions are not wanted
by the user.

Is set to the field in which it is desired to
locate MCR. MCRFLD = 30 places the MCR in field
3.

ASSEMBLING AND LOADING TASKS FOR RTS/8

MCRPRT

MCRORG

MCRCDV

6.6.5 0S/8 Support

PARAMETER

OSFLDS

OSKBDV

OSTTDV

0SSYSD

OSFILL

Is set to the number of the partition into which
the nonresident portion of the MCR will be
swapped. This parameter makes the MCR
nonresident; however, the first page of the MCR
is always resident.

Is set to specify the starting location of the
MCR. Default causes the MCR to load against the
end of the field.

Set to task name of task which is to be the MCR
console device. Default is TTY.

Task Parameters (Section 4.6)

MEANING

Is set to the number of fields allocated for 0S/8.
OSFLDS = 2 specifies two fields or 8K of memory
for 0S/8.

Is set to the device code that selects desired
0S/8 keyboard terminal. OSKBDV = 03 specifies the
use of the console terminal keyboard for 05/8.
Note: O0S/8 requires its own dedicated terminal.

Is set to the device code which selects desired
0S/8 teleprinter. OSTTDV = 04 specifies the use
of the console teleprinter for 0S/8.

Is set to select the 0S/8 system device driver
task. 0SSYSD = DTA specifies DTAO as the 0S/8
system device.

Is set to the number of null characters that must
follow a line feed character on the 0S/8 terminal.
OSFILL = 4 is specified when wusing a 2400-baud
VT05 terminal. Set to 0 when using standard
hard-copy terminals.

Note: A terminal device handler does not have to
be included for the 0S/8 terminal device.

6.6.6 KL8-A Support Parameters (Section 4.13)

PARAMETER

KL8ADV

KL8ACT

MEANING

Specifies the device code for the first KL8-A.
Default is 40. If multiple KL8-A's are used, they
should have consecutive device codes.

Specifies the page for the KL8-A connect routine.
Default is 7400 (if KL8A=1l). The KL8-A connect
routine must be located in field 0.

ASSEMBLING AND LOADING TASKS FOR RTS/8

6.6.7 Line Printer Handler Parame
PARAMETER
LPTLOC Specifies the
Printer Handle
LPTFLD Specifies the
6.6.8 DECtape Handler Parameters
PARAMETER
DTALOC Specifies the
Handler Task.
DTAFLD Specifies the
6.6.9 EXIT Task (Section 4.14)
PARAMETER
EXITFLD Specifies the
EXITLOC Specifies the

ters (Section 4.3)
MEANING
of the

starting location

r Task.

field of the Line Printer Task.

(Section 4.4)
MEANING
of the

starting location

field of the DECtape Handler Task.

MEANING
field of the EXIT Task.

starting location of the EXIT Task.

Line

DECtape

CHAPTER 7

NONRESIDENT TASKS

7.1 OVERVIEW

A nonresident task is a task or a portion of a task that resides on a
mass storage device during the time the task is not runnable. The
mass storage device is called the swap device. It can be any mass
storage medium (e.g., an RK8 cartridge disk or an RX8 floppy disk).
When a nonresident task becomes executable, the Executive posts a
residency request. The Executive then runs a special task called the
Swapper to load the nonresident or portion of the nonresident task

into memory. The loading process is called a swap. The memory area
into which or out of which the nonresident task is swapped is called a
partition. A partition is a contiguous block of memory that is used

for task execution; it is readable in a single mass storage call.
The use of nonresident tasks permits several tasks to share the same
areas of memory, optimizing the use of available memory.

Tasks can be either totally or partially nonresident. Very few tasks
are totally nonresident; in most applications, the nonresident
portion includes all, or nearly all, of the active locations. Active
locations are those that contain executable instructions or data that
are never accessed by other tasks. The resident portion of a task
includes messages, event flags, buffers and similar passive registers
that may be needed by other tasks.

NONRESIDENT TASKS

PDP-8 MEMORY

SWAP DEVICE
OK (Disk, DECcassette, etc.)
REAL TIME PROGRAM AREA c)
ontains
Contains: nonr_esident
1. Resident tasks portion of a
2. Resident portions of task
non resident tasks
pK
PARTITION AREA
SWAPPER TASK
1. Contains non resident portion (SWAP.PA)
of nonresident task when that 1. Loads nonresident
task is being executed. p;artion of task into
2. Allows multiple tasks of same zmegv(‘),;y; out non-
relative size to run in the résidenftask onto
same memory area. Swap Device
. . . d
3. The characteristic of a partition §waﬁlsev:ﬁ2ai::en:nd
Is as follows: checkpointable tasks.
a) Has a starting address
b) Resides completely within a
single memory field
c} Length has to be an integral
number of pages
d) Cannot overlap another partition
nK

Figure 7-1 Nonresident Task Implementation

The process that swaps the nonresident portion of a task 1into memory
is similar to the overlay capability found in 0S/8 FORTRAN IV and
related programs. However, swappirg 1is much more powerful than
overlaying. Every nonresident task has two properties that establish
when and how it 1is swapped into or out of memory. These two
properties are "writeability" and "checkpointability".

A task is made "writeable" if its nonresident portion must be written
onto the swap device whenever it 1is swapped out to make room for
another task. A writeable task is any task that is
self-modifying -~ i.e., the task's code is changeable during task
execution, and any task that must initialize before it can start. The
writeability feature guarantees that the nonresident portion of a task
is always up to date by refreshing the swap device image of the
nonresident portion whenever the task is swapped out of memory.

A task is made "checkpointable" if it may be swapped out of memory
automatically, without its consent, to make room for a higher priority
task. A task that was checkpointed and swapped out of memory is
swapped back automatically as soon as all higher priority tasks have
relinquished the necessary memory space. Execution then continues at
the point where it was interrupted, and the task is not aware that it
was interrupted.

NONRESIDENT TASKS

Some nonresident tasks have both writeable and checkpointable
characteristics. Writeable tasks are utilized when a task must modify
itself (for example, it includes JMS instructions or temporary
locations). Tasks suitable for checkpointing are those that are
1) fairly long-running, and 2) are required only occasionally.

7.1.1 Writeable Tasks

A writeable task is one that includes code that is self-modifying, or
code that must be initialized before execution. Before execution
begins, all nonresident tasks must reside as core image files on the
swap device. The core images are created by loading each nciresident
task separately, and executing an 0S/8 monitor SAVE command; this can
be done under BATCH. When a task is executed, its nonresident portion
is read from this core image file by the swapper. If a task 1is
writeable, its nonresident portion will be written into the same file
when it is swapped from memory. It is likely that a task, writeable
at execution start-up, would flag itself not writeable at some later
time when all initialization is completed. The nonresident portion of
a task is writeable if it must be saved on a mass storage device (swap
device) before overwriting it in memory with another task.

7.1.2 Checkpointable Tasks

Checkpointing is ideally suited for long-running tasks. The system
can run short tasks in the same area, swap them out of memory, and
swap the long running task back again.

7.1.3 1Interaction Between Tasks

Resident tasks can interact with the resident portion of any
nonresident task. Two nonresident tasks that occupy overlapping
memory regions can interact with each other through their resident
partitions. For example, if a nonresident task is executing, it sends
a message and 1is then checkpointed. The message recipient can
acknowledge the sender's message even though the sender is not totally
resident. However, the message sent must be resident.

7.2 MEMORY PARTITIONS
The swappable portion of a nonresident task resides in a memory
partition. This partition is simply a contiguous block of memory
locations that is readable in one mass storage call. Every partition
has the following characteristics:
e It is wholly contained in one memory field.
e It has a starting address.
e It has a length (size) that must divide evenly by 200 (octal)
since 0S8/8 file structured devices read and write in one-half
block (one page) increments.

e It normally begins at an address which is a multiple of 400.

NONRESIDENT TASKS

The user can set the parameters for establishing the partition either
in the parameter file or the source of the Swapper Task. This
procedure is described in Section 7.4.

Partitions are mutually distinct, that is, one partition cannot
overlap another. Any number of partitions can be defined. The n
partitions are numbered in any order, from 0 to n-1, with partition
number 0 being the first partition. They need not be adjacent.

Only one task can occupy a partition at any given time. The occupying
task owns the partition until that task executes a "free" command
(described in the next section), or (if the task is checkpointable) as
long as higher priority tasks that share the partition remain
nonexecutable.

It is most convenient if every partition begins on the first location
of even-numbered pages, that is, the starting address is a multiple of
400 octal.

7.2.1 FREE Command

A free request can be appended to the function argument of some ER's
(for example, SEND, RECEIVE, etc.) as follows:

CAL /A CALL TO THE EXECUTIVE

CCMMAND+FREE /" COMMAND" IS ANY RTS/8 EXECUTIVE
/REQUEST. THE
/ISSUING TASK IS TO BE SWAPPED OUT OF
/MEMORY IF SOME OTHER TASK
/BECOMES EXECUTABLE AND REQUIRES THE
/PARTITION BEFORE THE FREEING TASK
/CANCELS THE FREE REQUEST.

A free request must be combined with some other executive request. If
the sequence:

CAL
FREE

is issued, it will be interpreted as:

CAL
SEND+FREE

Only nonresident tasks may issue free requests; other free requests
are 1ignored. A task may free 1its own partition, but never the
partition of another task.

A task normally frees its partition whenever it must wait for an
event. If any other task has a pending request for the partition, it
is swapped into the free partition immediately. If there is no
pending request for the partition, the freeing task continues to wait
in the free partition until some other occupant requests residency.
In either case, once the freeing task becomes executable again, it
must compete for the partition along with any other executable
occupants. The freeing task may become executable before any other
task requests residency in the partition. In this case, the free
command is cancelled, and the freeing task retains possession of the
partition. No read or write operation is necessary to effect this
swap in this case. By freeing the partition whenever the occupying
task (which may or may not be writeable) must wait for an event, the
programmer is assured that the partition contains a running (i.e.,

7-4

NONRESIDENT TASKS

nonwaiting) task whenever possible. If there are no writeable tasks
in the partition, no swap device I/0 1is involved in freeing the
partition.

7.3 NONRESIDENT TASK INITIALIZATION

The following procedure is recommended to implement any RTS/8 system
containing nonresident tasks.

1. Code and debug each nonresident task as a resident task.
During the debugging, load the task being debugged and only
the tasks required for execution of the task to be debugged.
Once the task executes correctly while resident, make it
nonresident. Making a task nonresident is described in the
sections that follow.

2. On a 1listing, mark the nonresident portion of each
nonresident task. Determine the size of each task's
nonresident portion. Then design the partitioning scheme and
allocate nonresident tasks to memory partitions by modifying
the parameter file as described in Section 7.4.

3. Re-origin each nonresident task so that its nonresident
portion lies within its partition. If necessary, ensure that
resident portions of nonresident tasks do not overlap into
another partition. BITMAP, an O0S/8 utility program, is
useful for this since it allows the user to determine if two
or more tasks are erroneously being loaded into the same
memory section. The use of BITMAP is described in Section
6.3. A detailed description of BITMAP is given in Chapter 2
of the 0S/8 Handbook. Execute the task as a resident task
once more to make sure it does not contain location dependent
code. Also, if any memory partition begins on an odd
numbered page, temporarily relocate each task that resides in
that partition. An example of starting a nonresident task at
an arbitrary boundary is given in Section 9.3.

7.3.1 Parameters for Nonresident Tasks

Several assembly parameters must be initialized when employing
nonresident tasks. Five of the parameters are located in the
parameter file (PARAM.PA) and three must be included in the
nonresident task itself.

The parameter file (PARAM.PA) contains five parameters (PARTNS,
CHECKP, SWAPPER, SYS and SUNIT) which must be initialized when
employing nonresident tasking. These parameters are defined as
follows:

PARTNS is set to the number of memory partitions defined.
PARTNS is set to zero in the parameter file to indicate
that no memory partitions are defined in the system.

CHECKP is set to 1 if any nonresident task is checkpointable.

SWAPPER is the nonresident task swapper task; it must be
assigned a task number that is of higher priority than
the task it swaps, that is, a number 1lower in value
than that of any nonresident task in the system.

NONRESIDENT TASKS

SYS is set to designate the swap device driver task; for
example, SYS = RK8 specifies the disk driver task.

SUNIT is set to specify the swap device physical drive unit;
for example, SUNIT = 0 specifies the disk cartridge
drive.

Every nonresident task source must include the following three
parameters:

PARTNO= n, where n is the task's partition number (starting at 0)
CPABLE= 0, if the task is not checkpointable

1, if the task is checkpointable
WRITE= 0, if the task is not writeable

1, if the task is writeable

Failure to initialize these parameters correctly causes the program to
execute unpredictably. The presence of parameter PARTNO identifies a
task as a nonresident task. Hence, the variable name PARTNO should
not be used except in nonresident tasks.

A nonresident task is not appreciably different from a resident task.
However, buffers should not be in nonresident portions of a task since
the buffers will be out of memory when that task is not being
executed. There are no special coding restrictions. The nonresident
portion is always present in memory while a nonresident task is
executing. It 1is generally safe to assume that the nonresident
portion is never present when the task is not executing. There is a
slight structural difference between resident and nonresident tasks;
nonresident tasks have clearly defined resident and nonresident
portions that cannot be intermixed.

7.3.2 Assembling Nonresident Tasks

Each nonresident task is assembled separately. The nonresident task
must include the parameter TASK, but never the parameters TASK2 and
TASK3 (see Section 6.1.5, Task Setup).

The swap device file that contains the nonresident portion of the
nonresident task requires special treatment. This file must contain
the first word of the nonresident portion in the first location of
relative block 1, the second word of the nonresident portion in the
second location, and so on. This file must be a core image; however,
the 0S/8 monitor requires that the first location of any core image
section load into a memory address that divides evenly by 400(octal).
If the 1lowest address in the partition also divides evenly by
400 (octal), this condition is met. There is no problem because every
task can be assembled in the partition directly.

Modify - the parameter file (PARAM.PA) to establish the desired

parameters. Then assemble the nonresident task and the parameter file
together.

7.3.3 Creating the SAVE Image File

Create a SAVE image file (nonresident disk image) from the binary
image file as follows:

.R ABSLDR

*TASKX.BNS
.SAVE DEV TASKX.SV N1-N2

7-6

NONRESIDENT TASKS

For each task, where DEV is the swap device, Nl is the lowest address
in the partition, and N2 is the highest address in the partition. The
resulting core images contain only the nonresident portions of each
task and meet all the requirements previously outlined. However, the
first block of the core image (relative block 0) is the core control
block, which is not used by the swapper. As stated previously, it is
strongly recommended that the partitions begin at a location that is a
multiple of 400(octal) since the 0S/8 SAVE command only saves areas
starting at 400(octal) boundaries.

NOTE

SAVE image files can be constructed
under 0S/8 BATCH. Also, the 0S/8 CCL
command LOAD may be used to create the
SAVE image.

7.4 PARAMETER INITIALIZATION FOR PARTITIONS

The user must initialize certain parameters to define the partitioning
scheme. They can be set in either PARAM.PA or SWAP.PA. The following
three variables are required for each of the partitions:

MFLDnn= MEMORY FIELD OF PARTITION N
ADDRnn= MEMORY ADDRESS OF PARTITION N
S1ZEnn= SIZE OF PARTITION N, SPECIFIED IN PAGES

The user can set up the parameter file to accept eight sets of
partition parameters. When more than eight partitions are defined,
the parameter table must be extended according to instructions
contained in source. Since adding extra partitions does not increase
system overhead, it is best to have as many partitions as possible.
This minimizes the number of tasks that must share a partition. Each
partition should have at least two occupants; otherwise, there is no
reason for making the task nonresident. The partitioning scheme can
also be defined by initializing the required parameters within the
swapper source.

7.4.1 General Information

The entire partition table appears on the swapper PAL or CREF output
listing. The user should check it carefully to ensure that all
partition parameters (MFLDnn, ADDRnn and SIZEnn for each partition)
were defined correctly. The parameter file generates the residency
table entry for each nonresident task and it appears on the PAL or
CREF output listing for that task. The user should examine word 1 of
this entry to verify that the nonresident task parameters PARTNO,
CPABLE, and WRITE were initialized correctly. Word 2 of the residency
table entry will be zero because the task's block address on the swap
device 1is unknown at assembly time. This location is initialized by
the 0S/8 command decoder shortly after program startup, and it can be
examined anytime thereafter. 1In the usual case, where the file is a
core image, this location should contain M+l, where M is the Dblock
address returned by the following command:

.DIR DEV:TASKX.SV/B

NONRESIDENT TASKS

TASKX.SV is the core image on the Sswap device containing the
nonresident portion of the task.

7.5 NONRESIDENT TASK IMPLEMENTATION
Perform the following procedure to implement nonresident tasks.

1. Assemble every task that will be included in the program as
described in Section 7.3.2. Obtain PAL or CREF listings and
bitmaps. Finally, obtain a bitmap of the entire system and
verify that memory is allocated correctly. On the bitmap, 3s
are legal only within partitions.

2. Create the SAVE image file as described in Section 7.3.3.

3. Load the binaries of the RTS/8 executive and each task,
including nonresident tasks. Always 1load the executive
first. Nonresident tasks are included in this operation 1in
order to load their resident portions and Executive table
entries. Either save the loaded program as a core image file
or start it from the keyboard.

4. Start the real-time program wusing the monitor R command.
This calls the 0S/8 command decoder, which types an asterisk
on the console terminal. At this time, initialize the block
address of each nonresident task core image as follows:

*DEV:TASKX.SV=N

In this command line, DEV is the swap device and TASKX.SV is
the core image file - containing the nonresident portion of
task N. Repeat this procedure for each nonresident task, one
task per line, and terminate the last line with an ALTMODE.
This procedure automatically initializes and starts the
real-time program.

This initialization procedure may be executed automatically
under 0S/8 BATCH control.

Example:

$JOB SYSTEM

/RUN "SYSTEM" AND INSTALL

/NONRESIDENT TASKS.

.RUN SYS SYSTEM

*TASK1=35 /TASK 35 IS "TASK1" SAVE IMAGE
*TASK2=36$ /TASK 36 IS "TASK2" SAVE IMAGE
SEND

Submitting SYSTEM.BI runs RTS/8 wuser system SYSTEM.SV,
installing its two nonresident tasks.

5. Debug the entire program. Accomplish this by selectively
placing HLT instructions (preceded by 1IOF, NOP, if
appropriate) and examining the memory once the HLT has been
executed. Use the MCR and/or the console switch register to
place and remove HLT instructions and to modify all
permanently resident areas. When using MCR, remember that
MCR output represents a snapshot of memory at some
undetermined point in time that is long past by the time the
MCR has output to the terminal.

CHAPTER 8

DEMONSTRATION PROGRAM

This chapter contains a demonstration of RTS/8 with nonresident tasks
executing in the foreground. 1Included is a listing of the modified
parameter file (PARAM.PA). In addition, there 1is an example of
nonresident tasks (Tasks NR20 and NR22) and the assembly and load
instructions required for implementing the demonstration program.

8.1 MODIFIED PARAMETER FILE (PARAM.PA)

/2.8 PARAMETERS FOR RTS/8 TASKS VeB+DECNET
LSTFLGaR JCHANGE © TU § TOD PREVENT LISTING PARAM
XLIST LSTFLG

COPYRIGHT (C) 1974,1975,1976 BY DIGITAL EQUIPMENT CORPORATION

NN NN NN TNN NN NNNNNNNNNN

/THE INFORMATIOM IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE
/AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENY
/CORPORATION, DIGITAL EQGUIPMENT CORPORATION ASSUMES NO RESPONSIBILITY
/FOR ANY ERRORS THAT MAY APPEAR IN THIS DOCUMENT,

/

/THE SOFTwARE DESCRIBED IN THIS DOCUMENT IS FURNISHED TO THE PURCHASER
/UNDER A LICENSE FOKR USE ON A SINGLE COMPUTER SYSTEM AND CAN BE COPIED
/(WITH INCLUSION OF DIGITAL’S COPYRIGHT NOTICE) ONLY FOR USE IN SUCH
/SYSTEM, EXCEPT AS MAY OTHERWISE BE PROVIDED IN WRITING BY DIGITAL.

/

/DIGITAL EQUIPMENY CORPORATION ASSUMES NO RESPONSIBILITY FOR THE USE
/0§G:$LEABILITY OF ITS SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED 8Y
/0 AL,

NNNNNNNNNSNNSN

DEMONSTRATION PROGRAM

/RTS8 V2 EXEC PARAMETERS = EDITED BY USER
PDPBEs]
PDP1280
EAE=D
PWRFAL=®Q
KL8ARD /NUMBER OF KL8A*S IN USE
/1.8, 1 IF ONE KLBA (UP TO 4 LINES)
HGHFLD=32
IFDEF CUR <
NTASKS 2;FNZRO HGKFLD=CURS 420D €CURBIG, (ERROR »> /FLAG WARNING IF UNDEFINED FIELD SEEN
KSs
CHECKPS®]
PARTNS =1
/LTHE N PARTITIONS ARE NUMBERED FROM 9 TO Ney)

/COMMON TASK NUMBERS = EDITED BY USER

/1T 18 ADVISABLE TO DEFINE ALL TASKS HERE, NAMES GIVEN BELOW
/ARE USEU BY SOME SYSTEM TASKS AND SHOULD REMAIN COMMENTED OUT
/IF THE CORRESPONUING TASK IS NOT INCLUDED IN THE SYSTEM

/PWRFs /POWER FAIL HANDLING TASK

CLOCK=Y

SWAPPER=®g

TTY®2

LPTs3

MCR=d

/DTAm /OECTAPE DRIVER TASK

/LTA® /LINCTAPE DRIVER TASK

RK8a7

/RFQ8s /RFQ8 DISK URIVER TASK

/DF32s /OF32 DISK DRIVER TASK

/CSAx /CASSETTE DRIVER TASK

/CSAFs /CASSETYE FILE SUPPORY TASK

/UDCn /UNIVERSAL DIGITAL CONTROLLER TASK
/RXBAE /FIRST FLOPPY CONYROLLER

/RX8B= /SECOND FLOPPY CONTROLLER

/RX8Cs /THIRD FLOPPY CONTROLLER

/RX80Ds /FOURTH FLOPPY COUNTROLLER
0S8wNTASKS

0S8F=15

NR20s20

NR22sm2e

/DDCMPs /ODCMP TASK FOR DECNET

/NSP= /NETWORK SERVICES PROTOCOL TASK
/NIP® /NETWORK INFORMATION PROGRAM

/TLK® /NETWORK TERMINAL COMMUNICATIONS TASK TRANSMITTER
/LSNs /NETWORK TERMINAL COMMUNICATIONS TASK RECEIVER
/NULL8AS /NULL JOB FOR PDP=8/A

/EXIT= /EXIT TASK

/DKC8A® /AUXILIARY DKC8A HANDLER

/SOF TWARE PARAMETERS = EDITED BY USER

XLIST 1

IFDEF 088 <

XLIST LSTFLG
OSFLDS®
08TTDV=3]
0SKBDv=3Q

/OEFAULT IS OSTTDV={
0SSYSDaNK8
OSFILLeQ
/(EG 4 FOR 2400 BAUD VT2S)

/0SBORGa /URIGIN (IN FIELD @)

XLIST 1>

IFDEF MCR <

XLIsT LSTFLG
/MCRCLKa /0 1F MCR TOD FACILITIES TO BE OMITTED (DEFAULT =)
MCRSYSs}

/1 IF DESIRED (DEFAULT)
/MCRFLD= /FIELD OF MCR
/MCRORGs /LOCATION OF MCR (DEFAULT IS END OF FIELD)
/MCRPRTs /PARTITION NUMBER OF MCR (IF NONeRESIDENT)
/MCRCDVs /CONSOLE TO BE USED BY MCR, E,G, TTY
/DEFAULT IS TTY
XLIST 1>

IFDEF CLOCK <
XLIST LSTFLG
CLKTYP=Q
CLKQLN®=20Q
/MAY BE CHANGED BY USER
DECIMAL
HERTZ=i000

DEMONSTRATION PROGRAM

SHERTZ®={
IFNZRO CLKTYP&{ <HERTZ®1750> /FORCE DKBEP,KWi{2 TO { KHZ
OCTAL
XLIST 1>
IFDEF LPT <
/LPTLOCSE
/LPTFLDs
>
IFDEF DTA <
/DTALOC»
/DTAFLD=
>
TBLLSTs @ /SET TO *LSTFLG’ 1F YOU DON’T DESIRE

/70 SEE TABLES WHEN PARAMETER FILE IS
/NOT LISTED.

/SYSTEM LOCATIONSS

MSGTBLE® 1200=2 /TASK MESSAGE TABLE

TSTABLS NTASKS+2"2+MSGTBL=4 /TASK STATE TABLE = HOLDS
/TASK LINK,UM,DF,1F,PC,AC,MQ

TFTABL® NTASKS+274+TSTABL=1 /TASK FLAGS TABLE <« MOLDS

/TASK STATUS FLAGS
XLIST 1
IFDEF SWAPPER <«
XLIST LSTFLG
SYS=RK8
SUNIT=Q
IFNDEF SUNIT <SUNITs 2> /DEFAULT SWAP UNIT IS @

FIELD @

/

/PARTITION TABLE (PARTBL) ENTRIES!

/MUST BE INITIALIZED BY USER AS EXPLAINED IN THE COMMENTS
/DON’T FORGET TO REMOVE LEADING "/" FROM LINES USED

/

RESTBL® TFTABL+NTASKS+2 /RESIDENCY TABLE
PARTBLE NTASKS=SWAPPER“2+RESTBL¢3&47774 /PARTITION TABLE

*PARTBL
XLIST 1
IFNZRO PARTNS <
XLIST TBLLST
MFLDQO=}
ADDROO=400
S1ZE00wy
S12EQQ"1Q+MFLDOR"10+4000
ADDORQ®O
ZBLOCK 2
XL187
IFNZRO PARTNS=} <
X 18T TBLLST
MFLDD1= /MEMORY FIELD OF PARTITION #}
ADDRQL= /LOWEST ADDRESS IN PARTITION #}
SIZEQL® /SI2E OF PARTITION #1 (CORE PAGES)
SIZEB1"10+MFLDO1"10+400Y
ADDRQ1
Z8L0CK 2
XLIST
IFNZRO PARTNS=2 <
X IS8T TBLLSY
MFLDQes /MEMORY FIELD QF PARTITION #2
ADOROE2s /LOWKEST ADDRESS IN PARTITION #2
SIZE02= /SIZE OF PARTITION =2
S1ZEQ2"10*MFLDO2"10+40200
ADDROR
ZBLOCK 2
XLIST
IFNZRO PARTNS=3 <
XLIST THLLST
MFLDO3® /PARTITION #3
ADDRO3s
SIZEQ3s
SI2EQ3~10+*MFLDO3"10+4000
ADDROG3
ZBLOCK 2
XLIST
IFNZRQ PARTNS=4 <
XLIST TOLLST
MFLDOUs /PARTITION #4
ADDRO4s
SIZEQd4s

SIZEG4™10*MFLDO4"10+4000
ADDRQ4

DEMONSTRATION PROGRAM

I6LOCK 2
XLIST
IFNZRO PARTNS=S <
XLIST TBLLST
MFLDRS= /PARTITION #5
ADDRBSE
SIZEQSs
SIZEQS™1Q+*MFLDOS™10+4000
ADDROS
ZBLOCK ¢
XLIS8T
IFNZRO PARTNS=g <
XLIST TBLLST
MFLDO6n /PARTITION »6
ADDROb®
SIZEQ¢6m
SIZEQ6"12+MFLDR6"10+4002
ADDRO®
ZBLOCK 2
XLIST
IFNZRO PARTNS=7 <
XLIST THLLSY
MFLLBT= /PARTITION 7
ADDROT=
SIZEQ7s
SIZEQT™10+MFLLOT"10+4000
ADDROY
ZBLOCK 2
XLIST 1>»>»3>35>
/
/ADDITIONAL PARTITIONS MAY BE DEFINED BY THE USER AS SHOWN ABQVE
/FURTHERMORE, THE PARTITION TABLE MAY RESIDE ANYWHERE IN FIELD ZERO
/

PRTEND=, /NOTE END OF PARTITION TABLE
XLIST 1>
IFDEF TTY <
XLIST LS8TFLG
/ TYDEVS /PRINTER DEVICE CODE = DEFAULT IS 4
/ KBDEVs /KEYBUARD DEVICE CODE = DEFAULT IS TYDEVel
/ CONSOL= /1 MEANS CONSOLE TTY (DEFAULT)
/ VTSes 71 ENABLES CTRL/S AND CTRL/Q
/ SCOPEs /1 MEANS TTY CAN 0O A BACKSPACE
/ FILL® /NUMBER OF FILL CMARACTERS, I,E, 4
/ WIDTH= /TTY LINE WIDTH (0 MEANS INFINITE), DEFAULT IS 120
/ TABs /1 1F TTY HAS HARDWARE TABS
/ OLDTTYs /1 TO USE OLD 2-PAGE TTY WANDLER
/ LSBOTs /1 LISTS BOTH HANDLERS (DEFAULT @)
/ TTFLD /FIELD OF TTY TASK (TIMES 1@)
/ TTLOCH /LOCATION OF TTY TASK
XLIST 1>
IFNZRO KLB8A <
XLIST LSTFLG
/KLBADYS /KLBA DEVICE CODE = DEFAULT IS 4@
/KLBACT= /KLBA CONNECT ROUTINE PAGE = DEFAULT IS 74g0
XLIST 1>
IFDEF EXIT «
XLIST LSTFLG
/EXITFLD® /FIELD OF EXIT TASK (TIMES 10)
/EXITLOCS /LOCATION OF EXIT TASK
XLIST 1>

i
XLI8T LSTFLG

IFNDEF PLPBE <PDPBEE}>
IFNDEF PULPI12 <PDP12mD>
IFNDEF EAE <EAERD>
IFNOEF PWRFAL <PWRFAL®Q>
IFNDEF KL8A <kLBASQ>

XLIST
IFDEF NSP <
XLIST LSTFLG
MAXCCBs /NUMBER OF LOGICAL CHANNELS (CCB’S) BEING USED
7E,6, 3 FOR 3 CHANNELS
/THESE ARE NUMBERED 1,2,3
MAXNODS= /NUMBER OF NODE NAMES IN NODE TABLE
NSPFLDs /FIELD OF NSP TASK AND MOST NETWORK TABLES (E,G. 32)
/TTABLES INCLUDE CCBTAB, LNKTAB, NODTAB AND NETTAB)
NSPLOCw 2600 /URIGIN OF NSP TASK, MuST BE ,LE, 3200
/THE DEFAULT 1S CURRENTLY 3200
NODNUMs /NODE NUMBER OF THIS NOOE

DEMONSTRATION PROGRAM

/IMPORTANT RELATIVE ORIGINS WITHIN NETWORKS TASKS

DRLXIT® N3PLOC#4400 /ADORESS OF AST DE=~GQUEUER

CCBTABs DRLXIT+200 /ADDRESS OF CCB TABLE

NODTABs CCBTAB+100 /ADDRESS OF NODE TABLE

NETTABs NODTAB+60 /ADORESS OF NETWORK ?INFORMATION’ TABLE

/THE DEFAULYT NETWURKS TASKS USt CORE AS FOLLOWS:

/DDCMP: PAGE 0, 0200=-3577 (1 LINE, @ PAGE NODE POOL)
/NSP: PAGE ©, 3200~7577

/NETWORK TASKS USE PAGE @ AS FOLLOWS:

/0DCFLD: 10=12, 30=77
/NSPFLO; 15=17, 77=177

/NCDE TABLE ENTRIES

/EACH ENTRY HAS THE FORM

/WORDS =3 NODE NAME (6=BIT, @=PADOED)
/WORD 4 LINE NUMBER

/WORD 5 BlT o=1 IF ADJACENT NODE

/ BITS 4»11 CONTAIN NODE NUMBER

IFDEF TASK < IFZERD TASK=NSP «
FIELD NSPFLOX1Q
*NODTAB

NGDTAB, TEXT /NAME/
[} /LINE NUMBER

[’ /NODE NUMBER

*NETTAB+4

NODNUM /0UKk NODE NUMBER

TEXT /NAME/ /0UR NODE NAME

FIELD @

»>

>

XLIST 1
IFDEF DODCMP <«
XLIST LSTFLG
MAXLINS /NUMBER OF PHYSICAL LINES BEING USED
/E.G, 3 FOR 3 LINES
/THESE ARE NUMBERED ©0,1,2
MAXPKTS 24 /8ET TO NUMBER OF NODE POOL PACKETS TO ALLOW
/THE NODE POOL EXISTS AT THE END OF DOCMP
/JUST BEFORE THE LCB TABLE (SIMILAR TO THE CLOCK QUEUE)
/EACH PACKET REGUIRES 14 WORDS OCTAL, (ABOUT 108, PER PAGE)
/UTHE DEFAULT REQUIRES 2 PAGES CORE)
/KG8E® /SET TO 10T SKELETON IF KG8E IS PRESENT (E,G, 6110)
ODCFLD= /FIELD OF DDCMP TASK,LCBTAB AND ’NODE POOL' (E,G, 20)
/THIS FIELD MUST BE DIFFERENT FROM NSPFLD
DDCLOC® 2200 /O0RIGIN OF DDCMP TASK
/THE ABOVE MUST BE BELOW 5000=SIZE OF NODE POCOL AND LCBTAB
/THE DEFAULT IS CURRENTLY 200

LCBSIZs 32 /GLOBAL DEFINITION OF LCB SIZE (DO NOT ALTER)
PKSIZE= 14 /6L0BAL DEFINITION OF PACKEY SIZE (DO NOT ALTER)

DDCFNCs DDCLOC /ADDRESS OF DOCMP "FUNCTION CALL’ ROUTINE
HEADPKs DUCLOC+3020 /ADORESS OF START OF PACKETY FREELIST
LCBTAB® MAXPKT"PKSIZE+HEADPK /ADDRESS OF LINE CONTROL BLOCK TABLE

/IMPORTANT NETWORKS PAGE @ GLOBALS

DDCEF= 4o /DDCMP 1/0 EVENT FLAG
FREHDs 47 /LOCATION OF I/0 PACKET FREELIST HEAD
DOCTL= 50 /POINTS TO TAIL OF DDCMP INPUT GUEUE
DDCHD= S1 /POINTS TO HEAD OF DDCMP INPUT QUEUE
ATNINPS Sé /PCINTS TO TRANSMIT COMPLETE RING BUFFER
OHORs 5% /LOCATION OF HEADER BUFFER FOR TRANSMITS
QCRCLs 63 /HEADER CRC FOR TRANSMITS
ODCRCL=® 65 /DATA CRC FOR TRANSMITS
QUTCOFs 67 /DATA DESCRIPTOR FOR TRANSMITS
DDCUSRS NSP /DEFAULT USER OF DDCMP TASK
XLIST 1>
XLIST 1
IFDEF NIP <
XLIST LSTFLG

/NIPFLDs /FIELD OF NIP (TIMES 1@)

/NIPLOCs= /LOCATION OF NIP

/NIPARTs /PARTITION FOR NIP

/SKIMPu /SET TO { TO GET SHORT NIP

8-5

DEMONSTRATION PROGRAM

/NIPLOGS /DEVICE NIP QUTPUTS TO
/DEFAULY IS LPT IF IT EXISTS (OTHERWISE TTY)
/NIPRESS /LOCATION FOR RESIDENT PORTION OF NIP
/REQUIRED ONLY IF NIPART DEFINED
/0EFAULT IS NIPLOC-200
XLIST 1 >
IFDEF TLK <
XLIST LSTFLG
/TLKFLOn /FIELD OF TLK TASK
/TLKLOCs /START OF TLK TASK
TLKCHNSE /CCB CHANNL TO ASSIGN TO TLK TASK
XLIST 1 >
IFDEF LSN <
XLIST LSTFLG
/LSNF| D= /FIELD OF LSN TASK (TIMES 10)
/LSNLDC= /STARY OF TLK TASK
LSNCHNs= /CCB CHANNL TO ASSIGN TO LSN TASK
XLIST 1 >
XLIST LSTFLG
/EQUIVALENCES:
ACT776= CLL STA RAL
ACT77S® CLL STA RTL
AC40Q0" CLA STL RAR
AC3777s CLL STA RAR
AC2000® CLA STL RTR
ACOR@2m CLA STL RTL

/MONITOR CALL VALUESS

CALs JMS ev /CALL THE EXECUTIVE
POSTDS® JMP I 24 /DISMISS AN INTERRUPT
WAITMs JMS I 25 /WALT FOR MULTIPLE EVENTS
/NOTE: "w«" MEANS CRITICAL VALUE MAY NOT
/BE CHANGED WITHOUT MODIFYING SYSTEM CODE!|

SEND® 0 /SEND MESSAGE
RECEIve | /RECEIVE MESSAGE
WAITEs ¢ /WAIT FOR EVENT FLAG
RUNS 3 /CONTINUE TASK EXECUTION
SUSPND= 4 /SUSPEND TASK EXECUTION
POST® 5 /POST AN EVENT FLAG
SKPINS® 6 /INSERT CODE INTO INTERRUPT SKIP CHAIN
DERAILs 7 /INITIATE ENU=ACTION
BLKARG= jip /BLOCK TASK FOR REASON SPECIFIED IN ARG
SENDWs 1} /SEND MESSAGE AND WAIY
UNBARGS 12 /UNBLOCK TASK FOR REASON SPECIFIED IN ARG
RESCHDs 13 /FORCE A RESCHEDULE
WAITXs 14 /WALIT FOR EXACTLY THIS EVENT FLAG
FREEs 4oQ0 /*«FREE PARTITION

XLIST 1

IFDEF UOC <

XLIST LSTFLG

AD®2)D0%17D1%2)GCa3JECR4JRCRS
DCs6JECTS7)CS31pj0CTui1ALn12
XLIST 1>

XLI8T LSTFLG

/TASK STATUS FLAGS:

NONRWTsS 4000 /*«NONRESIDENT TASK WAIT

EFWTs 2000 JEVENT FLAG WAIT
RUNWT= {p0@Q /8CHEOULE WAIT
SWPWTs 2420 /*«SWAPPER WAIT
EORMWTE 2200 /EVENT FLAG OR MESSAGE WAIT
USERWT= 2100 /USER SPECIFIED WAIT
ENABWT= 2040 JENABLE WAIT
MSGWTs Q0292 /MESSAGE WAIT .
NETWTs @102 /NETWORK WAIT (RESERVED FOR POSSIBLE FUTURE USE})
.ONEWT= @pet /*%DOES NOT EXIST WAIT

IFNZRO KLBA <IFNDEF KLBACT «

KLUDE® KLBA=1/3"200

KLBACTs 7480eKLUD>>
TSWFLG® 35 /TASK 8W INHIBIY FLAG IN FIELD @
TODL® 36 /LOW ORDER TIME OF DAY 1IN FIELD @
TOOHs 37 /HIGH ORDER TIME OF DAY IN FIELD @
DATE® 4p /ODATE IN 088 FORMAT IN FIELD @
MCREF= 4y /MCR START EVENT FLAG IN FIELD @

DEMONSTRATION PROGRAM

/SOME USEFUL EQUATES FOR TTY AND LPT MESSAGESS

NOPACKS®4QUQ /TEXT IS NOT PACKED IN 6=8IT
NOCRLF=20¥0 /OUTPUT SHOULD NOT BE FOLLOWED BY CR/LF
IND®10R0 /OUTTXT PTS TO FIRSY WORD OF TEXT

NOL INE=40QY /INPUT IS IN CHARACTER MODE

ASSGN=200 /ASSIGNS DEVICE

KL8ALINE=100 /USED TO SPECIFY A LINE OF A KL8A

XLIST 1

IFDEF CLOCK <

XLIST LSTFLG

SOME USEFUL EQGUATES FOR STANDARD CLOCK MESSAGES!

MARKTIMES® [} /POST EVENT FLAG AFTER SPECIFIED INTERVAL
SCHEOULES 1000 /RUN TASK AFTER SPECIFIED INTERVAL
TIMOUTS 2000 /DERAIL TASK AFTER SPECIFIED INTERVAL

PERIODICALLY= 200v /USED AS MODIFIER TO "SCHEDULE’
/RE*QUEVES RUN REGQUEST AFTER SPECIFIED INTERVAL

/E.Go *SCHEDULE FOO PERIODICALLY"
CANCELs 7006 /DELETE ALL REQUESTS FROM SPECIFIED TASK FROM QUEUE
XLIST 1>
XLIST 1 /FORCE LISTING CFF
IFDEF TASK <
XLIST

/TASK TABLE SETUP = "TASK", "CUR","INIWT", AND "START"
/MUST BE DEFINED BY TASK:

IFNDEF INIWT <INIWTEQ>
IFNDEF INIWT2 <INIWT2802>
IFNDEF INIWT3 <INIWT3s0>

*TASK*2+¢MSGTBL

BLOCK 2 /MESSAGE BUFFER IMITIALLY CLEAR
*TASK=4+TSTABL

CURX1@+CUR /INITIAL FLAGS
START

] /INITIAL AC @
XLIST) IFDEF VERS <

XLIST

VERS /INITIAL MQ
XLIST >

XLISY

*TASKeTFTABL

INIWT

XLIST

>

IFDEF TASK2 <

XL IS8T

*TASK2"2+M8GTBL

ZBLOCK 2 /MESSAGE BUFFER INITIALLY CLEAR
*TASK2"4+TSTABL

CUR2X10@+CUR2 /INITIAL FLAGSZ
STARTZ

] /INITIAL AC @
XLISY; 1FDEF VERS2 <«

XLIST

VERS2 /INITIAL M@
XLIST >

XLIST

#TASK2+TFTABL

INIWT2

XLIST

>

IFDEF TASK3 <

XLIST

*TASK3=2+MSGTBL

8LOCK 2 /MESSAGE BUFFER INITIALLY CLEAR
*TASK3I~4+TSTABL

CUR3X1@+CURS /INITIAL FLAGS3
START3

] /INITIAL AC 2
XLIST) IFDEF VERS3 <«

XLIST

VERS3 /INITIAL MG
XLIST >

X_LI8T

*TASK3+TFTABL

INIWT3

XLIST

>

8-7

DEMONSTRATION PROGRAM

IFDEF TASK <

IFOEF PARTND «

XLIST
/RESIDENCY TABLE (RESTBL) ENTRY:
/INITIALIZED FOR NONRESIDENT TASKS ONLY

*TASKeSWAPPER=1%2+RESTBL
PARTNO™4+PARTBL+CPABLE+CPABLE+WRITE

XLIST
IFNDEF SWAPPER <NOSWAP, ,ERROR_ > /SWAPPER MISSING
IFNZRO TASKeSWAPPERZ4DRQ <SWPRIO, _[ERROR, >/NON=RESIDENT TASK
/HAS PRIORITY HIGHER THAN SWAPPER
»
IFDEF PARTNDO «
IFNDEF TASK <NOTASK, ERROR_ > /PARTITION BUT NO TASK
IFNOEF SWAPPER <NOSWAP, ,ERROR_ > /PARTITION BUT NO SWAPPER
IFNDEF PARTNS <NOPART, [ERROR_» /MISSING PARTITIONS
IFZERO PARTNO=PARTNS&40Q00 <PRTERR, _ERROR_» /PARTNO,GE,PARTNS
>
XLIST [}

8.2 NONRESIDENT TASK LISTINGS

The following are listings of nonresident tasks (NR20 and NR22):

8.2.1 Nonresident Task NR20

TASK=20
2020 TYASKER20
2020 TASK=20
2400 START=400
"Ju] 3 WRITE=l
o0} CPABLE=1
2010 CUR=1D
Spe INIWTSRUNWT*NONRWT
22002 PARTNO=D
goal FIELD CURX1@
0400 *400

10400 4020 CAL

10401 4011 SENDW+FREE

10422 000t CLOCK

10403 06c0 SLPMSG

12404 4220 CAL

10405 4011 SENDW+FREE

10406 2003 LPT

10427 0606 LPTMSG

10410 5Sea0 JMP START
2600 »600

12602 Q0Q@ SLPMSG, ZBLOCK 3

10623 00O 2

10624 Q000 DISHERTZ

10605 000}

10606 QQQ% LPTMSG, ZBLOCK 3

10611 02200 2

{0612 0002 2

10615 2421 TEXT /TASK 22 RUNNING/

10614 2313

10615 4pe2

106016 6042

10617 2225

10620 1616

10621 {116

10622 @700

DEMONSTRATION PROGRAM

8.2.2 Nonresident Task NR22

TASKs22
0222 TASK=22
evze TASKsee
0400 START=400
eent WRITE=]
ool CPABLE=]
0010 CURS10
5000 INIWTESRUNWT+NONRWT
ooee PARTNOEQ
Q0e} FIELD CUR%10
2490 *x400

10400 4020 CAL

10401 4011 SENDW+FREE

10402 o001 CLOCK

10423 Q630 SLPMSG

10404 4020 CAL

10405 4011 SENDw+FREE

10406 2003 LPT

10407 0636 LPTMSG

{e412 5See0 JMP START
0630 630

10630 0Q©UP@ SLPMSG, ZBLOCK 3

10633 0000 0

12634 Q0209 @) SHERTZ

10635 @200l

10636 Q2000 LPTM3G, ZBLOCK 3

10641 0000 0

10642 02000 2

10643 4ol TEXT /TASK 22 RUNNING/

10644 2313

10645 4062

10646 6240

10647 2225

10652 1616

10651 1116

10652 @709

DEMONSTRATION PROGRAM

8.3 ASSEMBLY AND LOAD PROCEDURE

The assembly and load procedure for the demonstration program is as
follows:

FAL RTSBIPARAMIRTSHE
ERRORS DETECTEI: 0
LINKS GENERATEDS: ¢

+FAL CLOCK<FARAM» CLOCK
ERRORS DETECTEDI: ¢
LINKS GENERATED: ¢

+FAL MCREPARAMy MCR
ERRORS DETECTED: 0
LINKS GENERATED?! ¢

AL 058SUPFARAM OSBSURF
ERRORS DETECTEN: ¢
LINKS GENERATED! 0

JFAL TTYSFARAM TTY
ERRORS

CTED: o
LINKS Gl RATEDR? 0

fPAL LPTEPARAM LFT
ERRORS ECTED: 0
LINKS GENERATED: ¢

+FAL RKBECFARAMy RKBE
ERRORS DETECTEI: o
LINKS GENERATEI: ©

FAL NR2OCFARAMy NR20O
ERRORS NETECTED: 0
LINKS GENERATEI: 0

+FAL NR22FPARAM NRZ2
ERRORS DETECTED: 0
LINKS GENERATEI: O

+FAL SWAPCFARAMy SWAF
ERRORS DETECTED: 0O
LINKS GENERATEN: 0O

+R ABSLDR
AKNRZ20%
+S5A 8YS NR20 1040010577

+ROARSLIOR
ANRZ24
+5A 8YS NR22 1040010577

+R ARSLIR
KRTSByMCRYCLOCK RRBE s TTY » LFT» DS8SUP
XSWAF s NR2Gy NR224

+8A 8YS RTEBV2

This example shows the assembly of the parameter file and the source
task itself. The binaries of each nonresident task are then loaded
into memory, and their nonresident portions saved on the swap device.
All tasks are then loaded using the ABSLDR with the RTS/8 Executive
being loaded first. Finally, the core image of all the tasks in
memory is saved using the 0S/8 SAVE command.

8-10

DEMONSTRATION PROGRAM

8.4 NONRESIDENT TASK ASSIGNMENT AND EXECUTION

The following is the execution of RTS/8 showing the assignment of
tasks NR20 and NR22 to the system.

In the above example, the user terminates the installation of
nonresident tasks with an ALTMODE, and returns to the MCR. A SY¥Ystat
command is executed which prints a system status report (see Section
6.2.9). The REquest command is then used to run tasks NR20 and NR22.
Shown below is output from tasks NR20 and NR22 on the line printer.

TASK 20 RUNNING
TASK 2@ RUNNING
TASK 20 RUNNING
TASK 20 RUNNING
TASK 22 RUNNING
TASK 20 RUNNING
TASK 22 RUNNING
TASK 20 RUNNING

The EXIT command is typed to terminate RTS/8 execution and return to
the 0S/8 monitor.

CHAPTER 9

ADVANCED RTS/8 PROGRAMMING TECHNIQUES

9.1 PERFORMING A RESCHEDULE

9.1.1 Writing Delicate Code

Frequently, a task needs to manipulate data in another task or a
common area. Since tasks are running ‘simultaneously', problems will
arise if two tasks want to access the same data at the same time.
Consequently, delicate code wants to run with interrupts disabled
while accessing data in another task.

NOTE

Interrupts may be disabled temporarily
using either a IOF/ION pair or, on
machines with memory extension, a CIF
instruction which inhibits interrupts
until the execution of the next JMP or
JMS instruction.

For example, suppose Task A increments location COUNT occasionally and
Task B decrements location COUNT from time to time during program
execution. The code might look like the following:

/TASK A
LOOPA, .
X, ISZ COUNT
JMP LOOPA
COUNT, 0
/TASK B
LOOPB, .
STA
Y, TAD COUNT
zZ, DCA COUNT

ADVANCED RTS/8 PROGRAMMING TECHNIQUES

-

JMP LOOPB

If Task A increments COUNT the same number of times that Task B
decrements COUNT, it would be assumed that COUNT would be 0 at the end

of the program. However, this is not necessarily so since a race
condition can occur.

Suppose that Task A has a higher priority than Task B, and Task A is
waiting for an event to occur with COUNT currently containing a 6.
Task B is ready to decrement COUNT. However, an interrupt occurs
after location Y has been executed. The AC contains a 5 and Task B is
ready to store a 5 back into COUNT. The interrupt service routine,
noting that the event Task A was waiting for has just occurred, now
suspends Task B and resumes Task A. Task A now bumps COUNT from 6 to
7, and then goes back to sleep. Task B then resumes with the AC
containing a 5 and stores a 5 into COUNT which is incorrect for proper
program execution.

This situation is prevented from happening by disabling interrupts
around the delicate code. Either of the following two solutions can
be employed:

Solution 1 Solution 2
/JTASK B /TASK B
LOOPB, . LOOPB, .
STA CIF CUR
I0OF STA
Y, TAD COUNT Y, TAD COUNT
zZ, DCA COUNT zZ, DCA COUNT
ION
JMP LOOPB JMP LOOPR

Solution 2 (only usable on machines with memory extension) uses the
CIF instruction since it temporarily inhibits interrupts until the
next JMP or JMS instruction is executed.

9.1.2 1Inhibiting Task Switching

Although the procedure in the previous section can be used, it at
times can be very inefficient. If it is desired to perform a lot of
manipulation on data which could be accessed by other tasks, it may be
inappropriate to turn off interrupts. Inhibiting interrupts for long
periods of time could affect other portions of the system where timed
events are very important. Also, an interrupt can be lost (for
example, clock interrupts) if interrupts are turned off for a
significant amount of time.

For this case, another solution is possible. A task can inform the
RTS/8 Executive that it wants to continue to run, and that while it is
executing a certain piece of code, no other task should run even if a
task of higher priority becomes runnable. This process is known as
inhibiting task switching.

ADVANCED RTS/8 PROGRAMMING TECHNIQUES

Task switching should be inhibited only under unusual circumstances
and performed with care. While task switching is inhibited,
interrupts may still occur and the interrupt service routine will get
control. However, 1if task switching is inhibited, the interrupt
service routine will always return control to the interrupted task
after the interrupt has been serviced even if higher priority tasks
are now runnable.

NOTE

If the user wishes to manipulate data
which 1is accessed by an interrupt-level
routine, interrupts must be inhibited
since inhibiting task switching alone
will not be sufficient in this case.

There are two methods of inhibiting task switching which are as
follows:

Method 1: Task switching is automatically inhibited whenever a task's
PC 1is less than 100. Thus, delicate code could be placed in the
bottom of page 0 of any field.

Method 2: A task may inhibit task switching by zeroing location 35 in
field O. This 1location is symbolically referred to as TSWFLG (task
switching flag) and is defined as such in the parameter file. In
either case, after the task is through with its delicate code, it may
not be sufficient for the task to reset TSWFLG to 1its original
value(1l). This is due to the fact that there may be some other
higher-priority task that is entitled to run but did not run because
task switching was inhibited. The user can find this out by
interrogating location TSWFLG. If another task became runnable while
task switching was inhibited, the RTS/8 executive sets the task
switching flag to -1. When a task is ready to allow task switching
again, it must examine this flag before resetting it to 1. 1If it was
-1, the task returns control to the RTS/8 scheduler. This is
performed by using the RESCHD ER as follows:

CAL
RESCHD

This ER causes RTS/8 to perform a reschedule that allows the runnable
task of highest priority to be executed. If a user does not perform a
RESCHD after re-enabling task switching, then a higher priority task
which is entitled to run might not run until the next interrupt
occurs. The interrupt may never occur, or if it does, it may be too
late for proper program execution.

The preferred code for inhibiting task switching for Task B which was
described previously is shown below:

/TASK B

LOOPB, .
CDF 0
DCA I (TSWFLG /INHIBIT TASK SWITCHING
STA

Y, TAD COUNT

Z, DCA COUNT

ISZ I (TSWFLG /ALLOW TASK SWITCHING

9-3

ADVANCED RTS/8 PROGRAMMING TECHNIQUES

JMP .+3 /SHOULD WE RESCHEDULE?
CAL /YES
RESCHD
CDF CUR /NO
JMP LOOPB
NOTE

Interrupt level routines should not look
at or set the TSWFLG.

A summary of TSWFLG states is shown in Table 9-1.

Table 9-1
Summary of Task Switching Flag (TSWFLG) States

TSWFLG State Value
Task switching allowed 1
Task switching inhibited 0

Task switching inhibited;
reschedule as soon as possible -1

9.2 EXECUTIVE REQUESTS FOR ADVANCED APPLICATIONS

9.2.1 WAITM - Waiting for Multiple Event Flags

Sometimes it is desirable to wait for a logical combination (AND or
OR) of Event Flags. Waiting for the logical AND of two Event Flags is
quite simple. The sequence:

CAL

WAITE

A /WAIT FOR EVENT FLAG A
CAL

WAITE

B /AND THEN WAIT FOR EVENT FLAG B

waits until both A and B have been POSTed.

Waiting for the logical OR of several event flags is more difficult
since there is a possible race condition between the various tests and
the interrupts (or task executions) which POST the Event Flags
involved. The key to waiting for an OR of several Event Flags
successfully is not to allow any interrupts to occur between the
testing of the first Event Flag and the placing of the task in a Wait
state if none of the flags were POSTed.

ADVANCED RTS/8 PROGRAMMING TECHNIQUES

This is accomplished by using a special sequence of instructions and a
special RTS/8 call named WAITM. WAITM is defined as JMS I 25. It
must be executed with interrupts off, the Instruction Field set to 0
and the Data Field set to the current field, and it must be followed
by a word containing the blocking bit(s) to be set in the Task Flags
Table. The action of WAITM is equivalent to the action of the RTS/8
BLKARG ER except that a fast path through the RTS/8 Executive is taken
and interrupts remain off until the blocking bits are on in the Task
Flags Table.

For an example of the use of WAITM, assume that a task "TASK" wants to
test two Event Flags A and B. If A is POSTed, control should go to
location ADONE; if B is POSTed control should go to location BDONE.
If neither is POSTed, the task must wait until one of them is POSTed.
The code to perform this function is:

TESTAB, IOF /INTERRUPTS OFF - DELICATE CODE

TAD A

SNA CLA

JMP ADONE /ADONE MUST TURN INTERRUPTS ON

TAD (4000+TASK /SET A TO "WAITING" STATE
/INDICATING

DCA A /THAT THIS TASK IS WAITING ON IT

TAD B

SNA CLA

JMP BDONE /BDONE MUST TURN INTERRUPTS ON

TAD (4000+TASK /SET B TO "WAITING" STATE
/INDICATING

DCA B /THAT THIS TASK IS WAITING ON IT

CIF 0

CDF CUR

WAITM

EFWT /BLOCK TASK ON EVENT FLAG WAIT

JMP TESTAB /WE'RE BACK - ONE OF THE TWO

/EVENT FLAGS HAS BEEN POSTED.
/GO BACK TO FIND OUT WHICH ONE

9.2.2 WAITX - Wait for Exactly This Event Flag

The WAITX ER is similar to the WAITE ER. The exception is that if the
Event Flag 1is not FINISHED, the task goes into EORMWT (instead of
EFWT), and the task's PC in the TSTBL points back to the location
containing the CAL of this ER. Thus, when the task resumes execution,
it will re-execute the WAITX. If the EORMWT bit was cleared for some
reason other than the Posting of the Event Flag in question, the task
will immediately go back into EORMWT.

Consequently, control will never flow past this ER unless the Event
Flag specified 1is actually posted (see discussion of DERAIL, Section
9,2.3). If a WAITE had been used and if the task was waiting on
multiple Event Flags (which can happen using WAITM), then control
conceivably could start up after the WAITE ER because some other Event
Flag, and one that 1is no longer cared about, was posted. This
situation can not occur with a WAITX.

9.2.3 DERAIL - Derail a Task's Execution

The DERAIL ER modifies the execution of a specified task and transfers
control to a special subroutine of the task to process some
exceptional condition. It does not cause any wait bits to get set or
cleared.

9-5

ADVANCED RTS/8 PROGRAMMING TECHNIQUES

Format: TAD TASKNUM
CAL
DERAIL
ADDR

This ER simulates a "JMS ADDR" for the task whose number is contained
in TASKNUM (the "derailegd" task). ADDR is assumed to be in the same
field in which the derailed task is executing. The derailed task's PC
(from its Task State Table entry) is stored in ADDR; the PC entry in
its Task State Table entry is then set to ADDR+1. Two important
points concerning the operation of the DERAIL ER are as follows:

1. The derailed task's AC, Link, and Data Field settings are not
saved by the DERAIL ER; therefore they must be saved and
restored by the derail subroutine. In this sense, a derail
subroutine is very much like an interrupt at the task level.

2. The contents of the derailed task's Task Flags word are not
affected by the DERAIL ER. If the derailed task is not
runnable, the derail subroutine will not be executed until
the task becomes runnable.

The DERAIL ER is generally used by a high priority task to signal an
emergency condition to lower priority tasks. An example would be a
process-control environment where it is sometimes necessary to abort
all operations if the room temperature exceeds some critical value.
This can be checked by a task which measures room temperature every 10
seconds. It is inefficient and unmodular to include shutdown code in
this "watchdog task" for all machinery being controlled. A Dbetter
solution is to provide a location to which each equipment-controlling
task can be DERAILED in order to shut down its own piece of equipment.
The RTS/8 Power-Fail task uses the DERAIL ER to provide a similar
facility on power-fail recovery (see Section 4.5), which can be used
to reinitialize a task.

Example:

An example of a DERAIL routine is as follows:

DENTRY, 0 /DERAIL ROUTINE ENTRY POINT
DCA SAVAC /SAVE AC
RAR
DCA SAVLNK /SAVE LINK
RDF
TAD (CDF
DCA DFRESET /SAVE DATA FIELD
CDF CUR
. /HANDLE EMERGENCY CONDITION
. /BRANCH TO 'RESUME' IF YOU WANT
. /TO RESUME WHERE YOU LEFT OFF
. /BRANCH TO 'NORESUME' IF NOT
RESUME, TAD SAVLNK /RESTORE LINK
CLL RAL
TAD SAVAC /RESTORE AC
DFRESET, HLT /RESTORE DF
JMP I DENTRY /RESUME (SAME FIELD)
NORESUME, CLA CLL
CDF CUR
JMP RESTART /RESTART TASK
SAVAC, 0
SAVLNK, 0

ADVANCED RTS/8 PROGRAMMING TECHNIQUES

9.2.3.1 Dangers of DERAIL - A task can get into serious trouble if
it is derailed while already in a derail routine. If this happens,
the original PC, AC, link, etc., will be lost. There 1is no simple
solution. Turning off interrupts in the derail routine may be too
late to prevent this - the second derail could have already occurred
before the derail routine was even entered the first time.

Consequently, a user doing a DERAIL should make sure that not more
than one DERAL is done at a time. Alternatively, before doing a
DERAIL, a task can check an interlock flag (which it must maintain) to
see whether the target task has been derailed or not. The test and
set of such a flag should be performed with interrupts inhibited.

9.2.3.2 Restrictions Using DERAIL - If a task 1is not runnable,
derailing it will not make it runnable. If the task is in Event Flag
Wait, it will remain in Event Flag Wait until the event occurs. When
the Event Flag 1is POSTed, the task will wake up and begin to run in
its derail routine rather than in the mainline routine. Thus,
derailing a task to get it to perform some important job immediately
may not always work. The task might be in one of the Wait states and
may not be able to run for some time. For example, if the task were
in Receive Wait at the time, the derail routine would not run until a
message came in for that task.

A partial solution around this restriction is to code the task to be
derailed so that it always waits on events using WAITX instead of
WAITE. Then, if the user wants to derail this task, the task is first
taken out of MSGWT or EORMWT and then derailed.

An example of the code for this situation is as follows:

TAD TASKNUM

CAL

UNBARG /UNBLOCK THE TASK

MSGWT ! EORMWT /FROM MESSAGE-RELATED WAITS
TAD TASKNUM

CAL

DERAIL

DENTRY

This will work because both the RECEIVE and the WAITX Executive
Requests bump the PC back to the CAL before going into a Wait state.
Thus, no harm is done if the task is taken out of that wait state for
an incorrect reason. When the task resumes running at that point, it
will re-execute the CAL (RECEIVE or WAITX) and go back into the Wait
state as necessary. This method will not work if the task was in EFWT
due to a WAITE ER because the task would resume running thinking the
Event Flag had been posted when in fact it had not. A way to
circumvent this (other than WAITX) is for the task to do WAITM instead
of a WAITE, and poll the Event Flag upon waking up.

9.3 STARTING PARTITIONS AT AN ARBITRARY BOUNDARY

The advanced user can start a partition at an arbitrary boundary by
using the following assembly and loading procedure. The example given
assumes that the partition in which the user writes the nonresident
portion of the task to run is three pages long (11200-11777). The
PAL8 pseudo-operators FIELD and RELOC are used, and described in
detail in the 0S/8 handbook.

ADVANCED RTS/8 PROGRAMMING TECHNIQUES

/TASKX
FIELD 1 /SET FIELD

*1000 /LOAD THIS CODE AT 11000-11577
RELOC 1200 /BUT ASSEMBLE IT TO RUN AT 11200-11777

<CODE>

PAGE

<CODE>

.

RELOC

The assembly, load and save procedures for the code are:

.R PALS

*TASKX<PARAM.PA,TASKX.PA (ASSEMBLY OF TASK)

.R ABSLDR

*TASKXS (LOADING OF TASK INTO 11000)
-SAVE DEV TASKX 11000-11577 (SAVING OF TASK-THREE PAGES OF

CODE)

The swapper, upon loading this task, places it into the partition at
11200, which is where it was assembled to run.

9.4 DIRECT REFERENCES TO SYSTEM TABLES

A task may directly interrogate locations in the RTS/8 Executive
tables to obtain information about itself or any other task, as long
as the following two restrictions are observed:

1. Due to the interrupt-driven nature of the system, these table
entries may change at any time; therefore, interrupts should
be inhibited between the time these entries are tested and
the time that processing which depends on the testing is
completed. For example, testing the Message Queue Header for
a task may show no messages, but an I/0 interrupt occurring
immediately after the test might allow a higher priority task
to run. This task might send a message, invalidating the
result of the test. To prevent this, interrupts should be
turned off during and after the test.

2. System table entries may be changed only through RTS/8
Executive Requests.

Symbols have been defined in the system parameter table that permit
symbolic references to be made into these tables symbolically. The
symbolic expressions which yield the address of the system table
entries for task N are:

N+TFTABL Task Flags Table entry for task
N; if zero, task N is runnable.

N~ 2+MSGTBL Input Message Queue Header for
task N; if zero, task N has no
messages in its queue.

ADVANCED RTS/8 PROGRAMMING TECHNIQUES
N" 4+TSTABL First word of Task State Table
Entry for task N.

N~ 2+RESTBL First word of Residency Table
entry for nonresident task N.

For example, for a task to determine whether it had messages 1in its
input qgueue without issuing a RECEIVE request, the code would be:

CDF 0 /EXEC TABLES IN FIELD 0
I10F /TURN INTERRUPTS OFF
TAD I (TASK™2+MSGTBL

SNA CLA /ANY MESSAGES?

JMP NONE /NO

ION /YES

The code at NONE must eventually turn interrupts back on.

APPENDIX A

RTS/8 DISTRIBUTED SOURCE FILES

The RTS/8 source files included on the distributed tape are:

File Name Task Name Task Function

PARAM.PA System parameter file with all equates blank.
Appropriate values should be inserted to create
specific parameter files.

RTS8.PA RTS/8 Executive

MCR.PA MCR Monitor Console Routine

MCR.PA null task Null task

0S8SUP. PA 0S8 0S/8 Support Task

0S8SUP.PA OS8F 0S/8 File Support Task

PWRF.PA PWRF Power Fail Task

CLOCK.PA CLOCK Clock Handler Task

TTY.PA TTY Terminal Driver Task

LPT.PA LPT Line Printer Driver Task

DTA.PA DTA TC08 DECtape Driver Task

RK8.PA RK8 RK8 Disk Driver Task

RKS8E.PA RK8 RK8E Disk Driver Task

RF08.PA RF08/DF32 RF08/DF32 Fixed-Head Disk Driver
Task

CSA.PA CSA Cassette Driver Task

CSAF.PA CSAF Cassette File Support Task

UDCICS.PA UDC/ICS Universal Digital Controller/
Industrial Controller Subsystem
Handler Task

RX01RT.PA RX8A Floppy Disk Handler (lst controller)

RX01RT.PA RX8B Floppy Disk Handler (2nd controller)

RXO01RT.PA RX8C Floppy Disk Handler (3rd controller)

RX01RT.PA RX8D Floppy Disk Handler (4th controller)

LTA.PA LTA LINCtape Driver Task

SWAP.PA SWAPPER Nonresident Task Swapper

NULLS8A.PA NULLS8A Null Task for PDP-8A

EXIT.PA EXIT Exit Task

The following table gives the approximate size and default origins
component

each

APPENDIX B

RTS/8 COMPONENT SIZES

of the

RTS/8

system.

default memory allocation is shown in Figure B-1.

placed

anywhere
CLOCK and SWAP.

in

indicated in the tables.

The following

of

An RTS/8 memory map showing

The modules may be

memory at the user's discretion except for RTS8,
Also, certain modules must be placed in field 0 where

parameters, which are used in Table B-1, are defined as
follows:
NTASKS = Number of tasks in system
CLKQLN = Number of entries in clock queue
MCRSYS = 1 if MCR SYSTAT function desired, else 0
MCRCLK = 1 if MCR CLOCK functions desired, else 0
KLINES = Number of physical KL8-A lines
Any fractions from divides should be dropped.
Table B-1
RTS/8 Component Sizes
Number of Pages
Software Default Required (1 page
Component Origin =128 words) Comments
RTS/8 00200 5+NTASKS/18 Must be in
Executive locations 00200~
01200. Uses page
0 locations 0-3
and 20-47 and
auto-index
register 17.
Clock Module 1st page 3+CLKQLN/22 Must be in field
after end of 0. Uses
RTS/8 Executive auto-index
(or SWAPPER) register 10.
New 03400 3
Terminal
Module, V2
014 03400 2
Terminal
Module, V1

(Continued on next page)

RTS

/8 COMPONENT SIZES

Table B-1 (Cont.)

RTS/8 Component Sizes

Number of Pages

Software Default Required (1 page
Component Origin =128 words) Comments
Line Printer 14400 1
Module
TC08 DECtape 14600 2
Module
RK8E Disk 04200 2
Module
DF32/RF08 04400 1
Module
LINCtape 15000 2
RK8 Disk 04200 1
Module
Power Fail 10200 1+NTASKS/32
Module
UDC Module 10600 7-11 depending Uses page 0
on table space locations 130-144
desired.
Cassette 13600 3
Module
Cassette Label | 13000 3 Requires cassette
Support Module handler.
0S/8 File 04600 if 0OS/8 6 Requires a mass
Support Module | support present, storage handler.
otherwise 06200! Must run in field
0.
0S/8 Support 06200* 6 Must run in field
Task 0 - requires 8K
for 0S/8 plus a
mass storage
handler. Uses
page 0 locations
164-177.
Monitor Console| 17600 minus 5+3xMCRCLK+ Requires "console"

Routine Task

length (152
with all
options and

no KL8A support)

00 MCRSYS +

(NTASKS+40) /64.

terminal handler
and page 0
locations 100-117.
See Table B-2 for
more details.

!Moves down by length of KL8A support code if KLS8A support present.

(Continued on next page)

RTS/8 COMPONENT SIZES

Table B-1 (Cont.)
RTS/8 Component Sizes

Number of Pages

Software Default Required (1 page

Component Origin =128 words) Comments

RX01 13200 2

SWAPPER 1st page after 2 Must be in
end of RTS/8 field 0
executive

EXIT 15000 1/2 May relocate

within a page

NULLS8A 13600 1

KL8A Support 17600 minus 1+KLINES+1 Must be
length 3 in field 0.

RTS/8 COMPONENT SIZES

RTS/B SYSTEM MEMORY MAP {Default Memory Allocation}

PAGES FIELD O FIELD 1
0
200 | o ~
(TPWRF
400 [~ B
RTSS
800 = (20 tasks) B T
1000
- = ubcics
2000
- [swap =
~ | cLock B
3000
CSAF
L = RXO1RT
-I-TTY,V2 ITTY.W Thutiea Tesa
4000 _I_
IRKg ILPT
- RK8E B
| IRFOB
IDTA
— IEXIT
L — CTA
B ossd T
6000 A
| | Large
MCR
- — Small
0S8suP MCR
7000
l\ iKLBASR i

KEY:

RTS/8 modules may vary in size and placement in memory depending upon the chosen system configuration.
The following symbology has been chosen to show component default allocation in memory.

Fixed Expandable Relocatable Relocatable
and Expandable

Figure B-1 RTS/8 System Memory Map (Default Memory Allocation)

RTS/8 COMPONENT SIZES

Table B-2
MCR Component Size
If less than 34(octal) tasks|If 34(octal) or more tasks

NO SYSTAT LENGTH: 5 pages LENGTH: 6 pages
NO CLOCK DEF ORIG: 6400 ORIG: 6200

IF NONRS: 6200 IF NONRS: 6200

PART: 6400-7377 PART: 6400-7577
SYSTAT LENGTH: 6 pages LENGTH: 7 pages
NO CLOCK ORIG: 6200 ORIG: 6000

IF NONRS: 6200 IF NONRS: 5600

PART: 6400-7577 PART: 6000-7377
CLOCK LENGTH: 10 pages LENGTH: 11 pages
NO SYSTAT ORIG: 5600 ORIG: 5400

IF NONRS: 5600 IF NONRS: 5200

PART: 6000-7577 PART: 5400-7377
SYSTAT LENGTH: 11 pages LENGTH: 12 pages
CLOCK ORIG: 5400 DEF ORIG: 5200

IF NONRS: 5200 IF NONRS: 5200

PART: 5400-7377 PART: 5400-7577

APPENDIX C

RTS/8 FLOWCHARTS

This appendix contains RTS/8 flowcharts that graphically show RTS/8
system operation.

RTS/8 FLOWCHARTS

Calling Sequence:

p-1 TAD VAL

p CAL
pt1 FUNCTION CODE
p+2 ARG1
p+3 AGR2 (or return)
SAVE AC IN pt4 RETURN
ACAR
CARG CAL = JMS 20
Thru Current Field:
20 0
21 CDF CUR
22 CIFO
23 CMP CALIOF (field 0)
24 DSPOST
TASK- - 25 XWAITM
SWITCHING TSWF:E '
ALLOWED - No
> Rescan
' 1 ASAP
Yes
INHIBIT TASK-
SWITCHING.
CLEAR RESCAN EXECUTE
FLAG DISPATCH JUMP
THRU COMMAND
TABLE. IGNORE
FREE BIT
ION Function
Code
JMP | +FUNC+1
0 XSEND . C-
SAVE CALLING Po. C-4
FIELD
1 XRECEIV Pg. C-11
2 XWAITE Pg. C-7
SAVE RETURN 3 XRUN Po. C-20
ADDRESS
4 XSUSPND Pg. C-20
] 5 XPOST Pg. C-14
GET FUNCTION 6 XSKPINS Pg. C-15
CODE
7 XDERAL Pg. C-16
10 XBLKARG Pg. C-13
SAVE 1 XSENDW Pg.C-4
COMMAND
12 XUNBARG Pg.C-12
sw 13 XTSTOP Pg. C-8
SW designates an operation that is performed
only when using nonresident operations. 14 XWAITX Pg. C.7

EAE designates an operation that is performed
only when the Extended Arithmetic Element
is used.

RTS/8 FLOWCHARTS

SET UP
RETURN FIELD

Cannot
Happen

Yes
TSWFLG=-1

TSWFLG=1

TASKSWITCHING
NEEDS RESCAN
?

KEEP TASK-

SWITCHING
INHIBITED

TSWFLG=0
No

ALLOW TASK-
SWITCHING
JMP | 20
RETURN TO
CALLING TASK

Pg. C-8

SEND
SENDW

RTS/8 FLOWCHARTS

Calling Sequence:

BACKUP RETURN
TO CAL
ADDRESS

MESSAGE

ALREADY IN QUEUE
(FIRST WORD OF MESSAGE

=0)

SET CLEAR o CAL
WAIT FLAG WAIT FLAG p+1 SEND (W)
p+2 TASK # (Sending to)
l I p+3 MSGADR
‘ P+4 RETURN
GET TASK
NUMBER TO
SEND MSG TO
Initial Values Becqmes
p MSGADR, 0000 Sending Task =
p+1 0000 CDF to next
msg, if any
GET MESSAGE
ADDRESS p+2 0000 Addr of next
msg (0 if none)

p+3

Start of Message

BUMP RETURN
TO
CAL+4

AC=
MESSAGE
ADDRESS

Pg. C-7

FIND RECEIV-
ING TASK ='s
ENTRY IN
MSGTBL

GET DATA
FIELD OF
MESSAGE

ADDTOQ

Pg. C-8

RTS/8 FLOWCHARTS

ADDTOQ

GET FIRST
QUEUE WORD
(CDF TO NEXT)

CDF INTO
NEXT
MESSAGE

1S

SENDING TASK

NUMBER LESS THAN TASK

NUMBER IN THIS

QUEUE MSG
?

Yes

PUT CDF TO
MSG AND PC OF
MSG INTO

QUEUE WORDS

/

GET TASK #
TO SEND
MESSAGE TO

‘ to page C-6)

FIND NEXT
MESSAGE IN
QUEUE

ADDTOQ

Pg. C-5

[oNw]

AZ T r IocCco- -0z

> -

w—-—TH

mooOoO

Link indicates whether
a new task should be
run or not.

The link status will be
checked later on in
POSTEX.

RTS/8 FLOWCHARTS

‘ from page C-5 ’

FREE MSG WAIT
AND/OR EVENT
WAIT BITS IN

STATUS TABLE

L=1IF RECEIV-
ING TASK IS
RUNNABLE & OF
HIGHER PRIORITY
THAN SENDER;
L=0IF NOT

STORE SENDING
TASK NUMBER
IN MSG HEADER

STORE CDF TO
NEXT MSG IN
MSGHDR

\

STORE PC OF
NEXT MSG IN
MSGHDR

CAL WAS
SENDW

Via call to FREEJ

This will be tested if
this CAL was a SEND and
not a SENDW.

=0 if none

=0 if none Message is now
linked into the

message queue.

Pg. C-12

RTS/8 FLOWCHARTS

WAITE
WAITX

Calling Sequence:
CLEAR SET ACARG
ACARG TO -1 p CAL
p+1 WAITE
p+2 EVENT FLAG ADDR
J p+3 RETURN
Enter Here From GET ADDRESS
SEND or SENDW OF EVENT
FLAG
WAITS
SAVE ADDRESS
ACARG # —1 OF EVENT FLAG
I0F
Yes Restart caller if
TASKSW allows
Pg. C-3
No
EVTFLG =
4000 + TASK NO Give it waiting status
PUSH PC BACK
TO POINT
L TO CAL
Store Event Flag Wait
AC=EFWT in Flag Table
AC=EORMWT
Jump with link clear
(tested at TSTOP)
Pg.C-8
TSWAIT Pg. C-8

RTS/8 FLOWCHARTS

Wait for message.
Enter here from RECEIVE.

BACKUP
CALLING PC
TO DO CALX
AGAIN

SET LINK

Message Wait Status
AC = MSGWT

?

SAVE AC
IN MASK

?

STORE IN
TASK #’s
FLAG TABLE
ENTRY
Interrupts were off here
ION if we came from XWAITE.
Yes
No

CLEAR TASK AC

SAVE AC IN
ACARG

GET TASK
NUMBER'S
ENTRY IN
STATUS TABLE

to page C-9

Cc-8

RTS/8 FLOWCHARTS

(from page C-8 '

i

SAVE RESTART
FLAGS, PC, AC

SAVE MQ

EAE

FREE PARTITION
IN FREE BIT
WAS SET IN
COMMAND

sw FINDJ RTS/8 Scheduler

Schedule next
runnable task TASK #=1
(start scan
from top)

ENABLE
TASKSWITCHING

SET ‘MACHINE
STATUS UNIM-
PORTANT’
FLAG

FINDJL

GET TASK #'s
ENTRY IN
FLAG TABLE

Interrupts temporarily
inhibited here.

FLAGS=0

(RUNNABLE) Pg. C-10
?

Note no end of table
check - there must be

a runnable task. {(Null
task is always runnable.}

BUMP TASK
NUMBER

RTS/8 FLOWCHARTS

Here from FINDJ (Scheduler)
Found a runnable task

ION

GET TASK #'s
ENTRY IN
STATUS TABLE

I0F

SAVE OLD
STATUS IN TEMP
LOCS OF INTER-
RUPT ROUTINE

Interrupt
Dismiss DISMIS

Code

This is tested on an
8/E or 8/A only

PENDING

INTERRUPTS Pg.C-17

SWEEP OLD
STATUS INTO
DF, IF, AC, PC,
ETC.

RESTORE MQ

EAE

ION

JMP 10O
RETURN FROM
INTERRUPT

RTS/8 FLOWCHARTS

GET ENTRY
IN MESSAGE
QUEUE

GET FIRST
WORD OF
QUEUE ENTRY

EMPTY

ADVANCE TO
NEXT MESSAGE
ON THE QUEUE

No

(NO MSGS)
?

No

p-1

Calling Sequence:

p CAL
p+1 RECEIV
p+2 MADDR,
p+3 RETURN

TAD ARG

0

Pg. C-8

SENDING
TASK OF MSG

UNLINK THIS
MESSAGE FROM
THE QUEUE

= ARG
?

Cc-11

STORE ADDR OF
MESSAGE IN
CAL+2

AC = CDF
TO MESSAGE

EXRET

Pg. C-3

RECEIV

UNBARG

RTS/8 FLOWCHARTS

XUNBARG

GET BIT MASK
FROM ARG.
LIST

CLEAR MASK
BITS IN FLAG
TABLE

ION

Call FREEJ

L=1if clearing mask
bits makes task
runnable and it is
higher priority; L=0
otherwise.

Pg. C-3

RTS/8 FLOWCHARTS

BLKARG

XBLKARG p—1 TAD TASK#
p CAL
p+1 BLKARG
p+2 WAITBITS
p+3 RETURN

GET WAIT BITS
FROM ARG.
LIST

BLOK

CALLING
TASK TO BE BLOCKED
(TASK #=0)

SET MASK BITS

IN FLAG TABLE
ENTRY OF SPEC-
IFIED TASK

Pg. C-3

POST

RTS/8 FLOWCHARTS

SAVE ORIGINAL
EVENT FLAG

CLEAR EVENT
FLAG

WAS
SOMEONE

WAITING FOR THISTO

HAPPEN (OLD FLAG
NEGATIVE)

GET WAITING
TASK'S # FROM
LOW ORDER BITS
OF THE OLD
FLAG

CLEAR BOTH
EVENT FLAG
WAIT AND
EVENT OR MSG
WAIT

Calling Sequence:

p—1
p

pt1
pt+2
p+3

Pg. C-12

TAD EFPTR

CAL

POST

ECDF, CDF EFFLD
RETURN

Pg. C-3

RTS/8 FLOWCHARTS

SKPINS

Calling Sequence:

p CAL

p+1 SKPINS

p+2 MODULE ADDR
p+3 RETURN

GET FIRST
MODULE WORD

ALREADY IN
THE SKIP
CHAIN!!!

No

PUT DISMIS
ROUTINE ADDR Pg.C3
IN 15t WORD

PUT CDF, CIF
OF DISMIS IN
2nd WORD

PUT MODULE
ADDRESS AND
CDF, CIF IN
LAST MODULE
OF INTERRUPT
SKIP CHAIN

Pg.C-3 L. L

DERAIL

RTS/8 FLOWCHARTS

GET TASK #s

STATUS TABLE p—1

POINTER p
p+1
p+2
p+3

STORE

RESTART PC

IN SUBR

STORE SUBR+1
IN RESTART
PC

Pg. C-3

Calling Sequence:

TAD TASK#
CAL

DERAIL
SUBROUTINE
RETURN

RTS/8 FLOWCHARTS

INTERRUPT
ROUTINE

TIME-

GO TO
SHARING 0S/8 If present
INTERRUPT SUPPORT
?

SAVE THE

MACHINE

STATUS
USERSK -

USER-INSERTED

SKIPS FOR ANY Pt

CRUCIAL DEVICES FAIL RESTART

GO TO

KL8A

HALT
APPROPRIATE AN
INTERRUPT |NTER7RUPT \
MODULE ’)

POWER-UP
RESTART

POWER
FAILURE

AC = POWER-UP
EVENT FLAG
ADDRESS

GO TO
CLOCK
HANDLER

Pg. C-18

If present

GO TO FIRST
USER INTER-
RUPT MODULE

POSTDS

Pg. C-10

Run the waiting task if
its flag word is now zero
and it is higher priority
than the current user.

RTS/8 FLOWCHARTS

No

SAVE THE OLD
EVENT FLAG
VALUE

ZERO EVENT
FLAG

WAS A

TASK WAITING
ON THIS FLAG? (OLD
VALUE NEGATIVE?)

Yes

CLEAR EVENT
FLAG AND EVENT
OR MESSAGE
WAIT BITS IN
TABLE ENTRY

OF WAIT TASK

RUN
WAITING
TASK

to page C-19

Come here from user
issuing POSTDS

p-3 CDF EFFLD
p—2 TAD EFPTR
p-1 CIFO

p POSTDS

Calt FREEJ

Pg. C-10

Pg. C-10

RTS/8 FLOWCHARTS

from page C-18

TASK SET RESCAN
SWITCHING FLAG
INHIBITED CTSWFLG = —1

1S

SAVE STATE

FLAG—1
?

Pg. C-10

SAVE CURRENT
TASK'S PC, AC
IN ITSSTATUS
TABLE ENTRY

SAVE
TASK'S MQ

EAE

ION

PREPARE TO
START NEW
TASK

Start Swapper

Pg.C-9

STARTJ

RUN

RTS/8 FLOWCHARTS

SUSPND

AC = RUNWT
Run Wait
Pg. C-12
Go and set
the flag bits

AC = RUNWT

‘ Pg. C-13

Calling Sequence:

p~1
p

p+1
p+2

TAD TASK=
CAL

RUN
RETURN

Calling Sequence:

p-1
p

p+1
p+2

TAD TASK=
CAL
SUSPND
RETURN

RTS/8 FLOWCHARTS

XWAITM

SAVE AC

IN 'COMMAND’

SW

CLEAR AC, L

FAKE A CAL

DISABLE
TASK
SWITCHING

PUT WAIT
BITS IN AC

TSWAIT

Pg.C-8

WAITM

RTS/8 FLOWCHARTS

RTS/8 SCHEDULER
FINDJ FIND A TASK TO RUN

/

ENABLE
TASK
SWITCHING

GETSET TO
EXAMINE
FIRST TASK

ZERO SAVE
STATE FLAG

ION

BUMP TO
NEXT TASK

10F

GET
TASK FLAGS

ANY
BLOCKING
BITS OTHER THAN
NRWT
?

CONTINUE
NEXT PAGE

RTS/8 FLOWCHARTS

FROM
PREVIOUS PAGE

IS
TASK
RESIDENT

STARTS

Start task

PUT TASK
INTO SWPWT

Sw

TAKE SWAPPER
OUT OF RUNWT

SW

FINDJ

APPENDIX D

RTS/8 ASSEMBLY ERROR MESSAGES

Certain user errors are caught at assembly time. They produce
standard PALS8 error diagnostics on the terminal of the form

IC
US tag
IC

where the tag specified indicates the type of error as described
below.

Tag Module Possible Error

MCRBLK MCR.PA MCR was declared nonresident (MCRPRT
defined) and MCR origin was incorrectly
a multiple of 400. Nonresident portion
of MCR 1is second page which must start
on a block boundary.

Fix: Redefine MCRORG.

SYSERR several System error; should not occur unless
user modified RTS/8 sources.

Fix: See comments on source line
which generated the error.

TBLERR RTS8.PA Internal Executive tables were generated
incorrectly. See source.

CURBIG PARAM.PA User task specified a value for CUR
which was larger than HGHFLD.

Fix: Redefine CUR.
RATERR CLOCK. PA HERTZ is not a multiple of SHERTZ.

Fix: Redefine HERTZ or SHERTZ in
parameter file.

TODERR CLOCK. PA SHERTZ is too large. SHERTZ must be
less than 192 (decimal).

Fix: Redefine SHERTZ in
parameter file.

Tag

NOKL8A

KLOERR.

HITMON.

NOSWAP

SWPRIO

FLDERR

CURERR

RTS/8 ASSEMBLY ERROR MESSAGES

Module

KL8ASR.PA

KL8ASR.PA

KL8ASR.PA

PARAM.PA

PARAM.PA

PARAM. PA

PARAM. PA

Possible Error

The symbol KL8A was not defined in the
parameter file.

Fix: Set symbol KL8A in parameter file
equal to number of physical
KL8-A's present.

The symbol KL8A was set equal to 0 yet
the file KLBASR.PA was assembled.

Fix: Do not assemble KL8ASR.PA if KL8-A
support is not desired or redefine
KL8A in the parameter file.

The KL8-A service overlaid location 7600
in field 0. 1Ignore this error if you do
not want to preserve 0S/8 resident code.

Fix: Redefine KL8ACT in parameter file.

A nonresident task was assembled in a
system with no swapper.

Fix: Define SWAPPER in parameter file
or undefine PARTNO in user task.

A nonresident task was given higher
priority than the swapper.

Fix: Change priority of swapper or user
task.

Some parameter representing a field
number times 10 was not in the correct
form (e.g. HGHFLD, MCRFLD, etc.)

Fix: Correct value of parameter in
parameter file.

One of the symbols CUR, CUR2, or CUR3
was not of the proper form.

Fix: Correct value in user task to 10
times field of task.

APPENDIX E

EXECUTIVE INTERNAL TASK TABLES

The Executive uses five internal tables to maintain information about
the tasks in the system. Each task's task number is used as an index
into the first four tables to retrieve and update information for that
task. The internal tables are as follows:

1. The Task State Table (TSTABL) - contains 4-word entries
holding the most recent contents of CPU registers for each
task as follows:

Word 1 - contains the link (bit 0)
the Greater Than Flag (bit 1) -if flag
exists on machine being used
the User Mode Flag (bit 5) =-if flag
exists on machine being used
the Instruction Field (bits 6-8)
the Data Field (bits 9-11)

Word 2 - contains the contents of the Program Counter
(PC)

Word 3 -~ contains the contents of the Accumulator (AC)

Word 4 - contains the contents of the Multiplier

Quotient (MQ) register if the system has been
assembled to save the MQ.

Whenever the system executes a task, it loads the contents of
the task's Task State Table entries into the corresponding
CPU registers. Whenever a task stops executing, its Task
State Table entries are set to the new contents of these
registers. The Task State Table is located after the Message
Table, that is, at location NTASKS+2 2+MSGTBL-4 in field 0.

Example:
Consider the following TSTABL entries for a task.

4012
3376
1234
0211

The task is interrupted just as it is about to execute the
instruction at 1location 3376 (entry 2) of field 1 (bits 6-8
of entry 1). At this point, the contents of the CPU
registers for this task are entered in the TSTABL. The AC is
1234 (entry 3), and the MQ is 0211 (entry 4). The 1link 1is

set (bit 0 of entry 1), and the data field is 2 (bits 9-11 of
entry 1).

Octa

4000

2000

1000

0400

0200

0100

0040

0020

0010

0001

0000

EXECUTIVE INTERNAL TASK TABLES

The Task Flags Table (TFTABL) - contains l-word entries
holding wvarious flags (bits) for each task to determine
whether the task is runnable. A task is runnable only if its
Task Flags Table entry contains zero. Each flag (bit) which
is set in a nonzero word indicates a reason why the task
cannot run. The currently defined flags, if set, and their
meanings are as follows:

1 Symbolic Meaning

NONRWT Nonresident Wait - This task cannot run
because it is not in memory.

EFWT Event Flag Wait - This task is waiting for an
Event Flag (which contains a WAITING value
corresponding to this task) to be POSTed.

RUNWT Run Wait - This task is waiting for a RUN ER
to be executed with its number in the AC, or
for the operator to type "REquest task" to
the Monitor Console Routine (see Chapter 6).

SWPWT Swap Wait - This task cannot run because it
is in the ©process of being brought into
memory.

EORMWT Event or Message Wait -~ This task is waiting

for an Event Flag to be set or a message to
arrive, whichever happens first. ,

USERWT User Wait - This bit is reserved for wuse by
user-written tasks. RTS/8 does not use this
bit.

ENABWT Enable Wait - This task 1is waiting to be

Enabled. Use of this bit is restricted to
the Monitor Console Routine for the "ENable

task" and "DIsable task" commands. (See
Chapter 6).

MSGWT Message Wait - This task is waiting to be
sent a message.

NETWT Reserved for future use.

DNEWT Does Not Exist Wait - This task cannot run

because it is nonexistent.
- Task is runnable.

The Task Flags Table is located after the Task State Table,
that is, at location NTASKS+2"4+TSTABL-1 in field O.

Examples:
1. If the TFTABL entry for a task is
1000

the task is waiting to run.

EXECUTIVE INTERNAL TASK TABLES

2. If the TFTABL entry for a task is
0440

the task was disabled from running by the operator at the
MCR terminal while the nonresident portion of the task
was waiting to be swapped in.

3. If the TFTABL for a task is
0000

the task is runnable. However, this task may not run if
a task of higher priority has precedence.

The Task Input Message Queue Header Table (MSGTBL) - contains
2-word entries that represent the "head" (start) of the input
message queue for each task:

Word 1 - if zero, there are no messages in the queue;
if non-zero, the word is a CDF to the field of
the first message in the queue.

Word 2 - if word 1 was not zero, this word is a pointer
to the address of the first message in the
queue.

The Message Table 1is located at the end of the RTS/8
Executive in field 0.

Example:
Consider the following MSGTBL entries for a task.

6211
2044

Since the first entry is a nonzero, there are messages in the
input queue waiting for this task to receive them. The first
entry is a CDF instruction to field 1. The second entry is a
pointer indicating that the first message begins at location
2044 in field 1.

The Residency Table (RESTBL) - contains 2-word entries for
each nonresident task.

Word 1 - contains a pointer to the task's Partition
Table entry in bits 0 through 9. Bit 10 is set
if a task is checkpointable, and bit 11 is set
if a task 1is writeable. Checkpointable and
writeable tasks are defined in Section 5.1.

Word 2 - contains the absolute block address (plus 1 to
allow for the core control block) of the task's
core image on the swap device.

The Residency Table is located after the Task Flags Table,
that is, at location TFTABL+NTASKS+2 in field 0.

EXECUTIVE INTERNAL TASK TABLES

Example:

Consider the following RESTBL entries for a task.

1611
0124

This task has a nonresident portion. The 4-word partition
table entry used by this task begins at location 1610. The
task is not checkpointable (bit 10 of entry 1 is a 0), but it
is writeable (bit 11 of entry 1 is a 1).

The disk-resident portion of this task begins at block 124 on
the swap device. (The save image begins at block 123.)

5. The Partition Table (PARTBL) - contains a 4-word entry for
each partition. It is indexed into via a partition number.

Word 1 - contains the length (size) in bits 1-5 and
field (bits 6-8) argument of the mass storage
device driver call that reads an occupant into
the partition with the "WRITE" bit set. Bit 11
of this word is the partition busy flag.

Word 2

contains the memory address of the partition.

Word 3

contains a pointer to word 1 of the occupant's
RESTBL entry.

Word 4 - unused

The Partition Table must begin at an address that is a
multiple of four. It is located after the Residency Table,
i.e., at location NTASKS-SWAPPER™ 2+RESTBL+3&7774 in field 0.

Example:

Consider the following PARTBL entries for a particular
partition.

5421
1400
1553
0000

This partition is currently in use (bit 11 of entry 1 is a 1)
by a task whose 2-word RESTBL entry begins at location 1553
(entry 3). The partition begins at location 1400 (entry 2)
of field 2 (bits 6-8 of entry 1). The partition is 14
(octal) pages long (bits 1-5 of entry 1).

Figure E-1 summarizes the internal task table structure of the
Executive. The Residency Table and Partition Table are optional in
that they are used only when nonresident tasks are employed. The
exact location of these tables in memory depends on the number of
tasks and other parameters in the parameter file. They can be found
for a particular assembly under the "System Locations:" heading at the
end of the parameter file assembly listing.

Word 1

Word 2

Word 3

Word 4

TASK STATE
TABLE (TSTABL)

TASK FLAGS
TABLE (TFTABL)

TASK INPUT MESSAGE
QUEUE HEADER (MSGTBL)

RESIDENCY
TABLE (RESTBL)

PARTITION
TABLE (PARTBL)

Instruction Data
Field Field

Link GT UM (IF) (DF)
0 1 5 68 911

Bits determine if task is
runnable

If zero, no messages in queue, if
nonzero, word is CDF to the field
of first message

Contains pointer to task PARTBL
entry in bits 0-9; bit 10 check-
pointable; bit 11 - writeable

Contains the Length (size) and
Field argument (bits 1-8) of the
mass storage device driver call
that reads occupant into partition
with ‘write’ bit set {bit 0).

Contents of Program
Counter (PC)

Contents of Accumulator
(AC)

Contents of Multiplier
Quotient (MQ)

e Upon task execution, TSTABL
loaded into corresponding CPU
registers

e Upon task interruption, TSTABL

entry set to new contents of CPU
registers

® Task runnable if entry
contains zero

Figure E-1

If nonzero, this word is pointer
to the first message in the queue

Block address plus 1 of the task’s
core image on swap device

Contains starting address of
the partition

e Represents the “head’’ of the
input message queue for each
task

e Bit 10 of word 1 is set if task
checkpointable

® Bit 11 of word 1 is set if task
writable

Executive Internal Task Table Structure

Contains pointer to word 1 of
the occupant’s RESTBL entry

Unused

® Bit 0 is always set (write)

e Bit 11 of word 1 is the
partition memory flag

SITAVL MSVIL TYNIILNI JAILNDIXH

Accumulator

Analog

Analog Channel

Argument

Assembler

Auto-index register

Auto-restart

Baud

Bit

Bit Map

Block

Block Gap

Blocking Bits

Byte

Cassette

GLOSSARY

The register in which the arithmetic
operations are performed (abbreviated AC).

Representation of information by continuous
variables.

An UDC/ICS functional device.

A variable or constant which is given in the
call of a subroutine as information to it; a
variable upon whose value the value of a
function depends; the known reference factor
necessary to find an item in a table or array
(i.e. the index).

A program which translates symbolic op-codes
into machine 1language and assigns memory
locations for variables and constants.

Whenever one of the absolute 1locations from
0010 through 0017 in any memory field is
addressed indirectly, the contents of that
location 1is incremented by one, rewritten in
the same location, and used as the effective
address of the current instruction.

The ability to start the CPU automatically on
power-up.

A unit of measure of data flow (one bit per
second) .

A binary digit (each PDP-8 word 1is composed
of 12 bits).

A method of keeping track of used and unused
entities by assigning one bit in a table to
each entity.

A set of consecutive machine words,
characters or digits handled as a unit,
particularly with reference to 1input and
output; an 0s/8 block is 400 octal
contiguous words; also to inhibit a process
from continuing.

The blank space between blocks on a recording
medium.

Bits in an RTS/8 Monitor Table which specify
why a given task is blocked.

2 group of binary digits usually operated
upon as a unit.

A magnetic tape device used for ©program and
data storage.

Glossary-1l

Central Processing Unit

Checkpointable Task

Clear

Clock

Communication Region

Compute Bound

Configuration

Contact Channel

Contiguous

Controller

Core Image File

Core Storage

Counter Channel

CPU Registers

Data

Data Field

Debug

The unit of a computing system that includes
the circuits controlling the interpretation
and execution of instructions (abbreviated
CpU) .

A task is checkpointable if it may be swapped
out of memory automatically, without its
consent, to make room for higher priority
tasks.

To erase the contents of a storage location
by replacing the contents, normally with
Zeros.

A time keeping or measuring device within the
computer system; provides periodic
interrupts.

Locations 20-27 of every field, used to
simplify passing executive request across
field boundaries.

Requiring extensive (or total) use of the CPU
relative to other hardware elements (such as
I/0 devices).

The number and types of hardware present on a
system.

A UDC/ICS functional device.

Code which resides in memory immediately
adjacent to other sections of code.

The circuitry that controls a device.

A file in core image format (i.e., a
'picture' of core); also known as SAVE file.

The main high-speed storage of a computer in
which binary data is represented by the
switching polarity of magnetic cores.

A UDC/ICS functional device.

High-speed circuitry used to store
information affecting the operation of the
CPU (e.g., PC, IF, DF).

A general term used to denote any or all
facts, numbers, letters and symbols. It
connotes basic elements of information which
can be processed or produced by computer.

A 3-bit register which determines the memory
field from which operands are taken in
indirectly addressed instructions
(abbreviated DF).

To detect, locate and correct mistakes in a
program.

Glossary-2

Deferred Actions

Deferred Requests

Derail

Device Codes

Device Status Register

Digital

Digital Channel
Driver

Dynamic

Entry Point

Event Flag

Executive

Executive Requests

Field

File Gap

Functional Devices

Gain

Generic Codes

Handler

I/0 Bound

Actions which are considered low-priority and
are not performed until higher-priority
actions are serviced.

Requests which are considered 1low-priority
and are serviced after high-priority
requests.

To transfer control or execution of a
specified task to a subroutine.

Numbers assigned to each device in the
system.

A register which contains the current status
of a device.

Representation of information by discrete
units.

A UDC/ICS functional device.
See Handler.

Pertaining to a gquantity that is affected by
some condition (such as time) and is
therefore relative to the condition; also
refers to features at system run-time.

The location in a routine to which control
can be transferred and execution begun.

The location which contains the status of an
event (event being either a result of some
operation, or a physical occurrence).

The program which controls the execution of
other programs or routines.

Means of communication between tasks and the
RTS/8 Executive.

A division of memory on a PDP-8 computer
referring to a 4K section of memory.

A fixed length of blank tape separating files
on a recording medium; generally several
times the size of a block gap.

The devices available for use under the
UDC/ICS handler.

An increase in signal power.
Codes used to identify which type of UDC/ICS
functional device caused an interrupt and to

direct program control to service routines.

A routine which is designed to control the
operation of a device.

A condition in which a process is performing
much I/0 but using very little CPU time.

Glossary-3

Indirect Address

Initialization Code

Input Buffer

Instruction Field

Interactive

Interface

Interlock Scheme

Interrupt

An address in a computer instruction which
indicates a location where the address of the
referenced operand is to be found.

Code which sets counters, switches, and
addresses to zero or other starting values at
the beginning of or at prescribed points in a
computer routine.

A section of memory used for storage of input
data.

A register which holds the contents
determining from which field the operand of a
directly addressed instruction should be
taken (abbreviated IF).

Highly responsive to real-world inputs.

The common hardware and/or software boundary
between two devices or systems.

Arranging the control of devices so that
their operation is interdependent.

A break in execution caused by some external
event; execution is usually resumed at a
later time.

Interrupt Processing Module

Interval Queue

Line-frequency Clock

Link

Logical OR

Loop

Mass Storage Device

Master Parameter File

Memory Address

A routine which acts upon the external event
which caused an interrupt.

A list of actions to perform, each
accompanied by the interval of time which is
to elapse from the previous action to the
current one.

A clock whose ticking occurs at a multiple of
the power line frequency.

A one-bit register in the PDP-8; an address
pointer generated automatically by the PALS
assembler to indirectly address an off-page
symbol.

A logical function of two or more inputs
which is true whenever either input is true.

A sequence of instructions that 1is executed
repeatedly until a terminal condition
prevails.

A device such as disk or DECtape which stores
large amounts of data readily accessible to
the central processing unit.

A file included in the distributed sources of
RTS/8 which the wuser can edit to indicate
parameters specific to his system
configuration.

A register which holds the address specified
by a memory reference instruction.

Glossary-4

Message

Message~driven

Mnemonic

Module

Monitor Console Routine

Multiplier Quotient

Multi-programming

Nonresident Task

No-op

Null Characters

Overflow

Pack

Page

Parameter file

Parity Bit

Pointer

Post

Posted

A contiguous area of memory which contains
information about execution of tasks.

An RTS/8 task is called message-driven if it
only executes in response to messages
received from other tasks.

Alphabetic representation of a function ot
octal machine instruction.

A routine which handles a particular
function.

The Monitor routine which provides the user
with functions which allow him to control,
inspect, and debug his systenm.

A 12-bit register used in conjunction with
the accumulator to perform mathematical
operations (abbreviated MQ).

Two or more programs (tasks) in memory at the
same time which execute alternately depending
on the current state of the system.

A nonresident task is a task or a portion of
a task that 1is swapped into memory when it
becomes executable.

No operation occurs; control proceeds to the
next instruction in sequence.

/
/

Charécters with ASCII code 000.

A condition that occurs when a mathematical
operation yields a result whose magnitude is
greater than the data presentation is capable
of storing.

To conserve memory by combining information.

A 128-word (decimal) section of PDP-8 core
memory beginning at an address which is a
multiple of 200(octal).

A file used to record arguments which may be
assigned different values.

A bit which indicates whether the total
number of binary one digits in a word is even
or odd.

A word containing the address of another word
in memory.

To post an Event Flag means to set it to a
FINISHED state via an RTS/8 Executive
Request.

One of the states of an event flag,

indicating that the event is complete; same
as "FINISHED".

Glossary-5

Power-fail

Priority Scheme

Program Counter

Prompting Character

Queue

Ready Flag

Real-time System

Receiver

Record

Record Header Area

Ring-buffer

Scheduling

Sender

Sign Bit

Simulate

Skip Chain

State

Status

An interruption of power to the computer.

A scheme by which certain operations or the
execution of a set of instructions is given
preference over other operations.

A register which contains the address of the
next instruction to be executed (abbreviated
PC).

A character which prints on the console
terminal and cues the user to perform some
action.

A waiting list (e.g., a queue of programs
waiting for processing time).

A bit which a device controller sets when it
is ready to accept commands from the CPU.

A system in which computation is performed
while a related physical process is occurring
so that the results of the computation can be
used in gquiding or measuring the physical
process.

The task which has received a message from
another task (sender).

A collection of related items of data treated
as a unit.

An area of at least 40(octal) words in length
which contains information necessary to
perform cassette operations.

A storage area for data accessed on a
first-in, first-out basis. Similar to Queue,
but usually involves storage of character
codes.

The operation of sharing resources among
computing tasks.

The task which has sent a message to another
task (receiver).

The bit which contains the sign of a number.

To represent the function of a device, system
or program with another device, system or
program.

An instruction sequence which determines the
source - of an interrupt request on a PDP-8;
contains one or more tests for each possible
(hardware) interrupt condition.

A complete description of the condition of a
piece of hardware or of a task.

That portion of the state which other devices
or tasks might be interested in.

Glossary—G

Subchannel

Suspend

Symbols

Synchronization

System Ticks

Task

Task Flags Table

Task Input Message Queue
Header Table

Task Number

Task State Table

Task Switching

Terminal

Utilities

Word

One of the 4 channels of a UDC/ICS analog
functional device.

To temporarily halt execution of a task while
another task of higher priority runs.

Names which can be assigned values or which
can be used to indicate specific locations in
a program.

A means of coordinating tasks (through event
flags) so that one task executes while others
wait.

An RTS/8 convention designed to obviate the
tasks in the system from knowing the
frequency of the clock.

A task is a routine which performs a specific
function. A task may be "resident" or
"nonresident". A resident task is
permanently located in memory. A nonresident
task is loaded into memory as it is needed
and can be overlaid after its completion.

A table of 1-word entries in the RTS/8
Executive whose contents determine whether or
not a task is runnable.

A table of 2-word entries which represent the
head of the input message gqueue for each
task.

A unique number between 1 and 63 (decimal)
assigned to each task in an RTS/8 system.

A table of 4-word entries which contains the
ost recent contents of CPU registers for
.ach task.

The act of stopping execution of one task and
ontinuing execution of another from the
point that it was last stopped.

A peripheral device in a system through which
data can enter or leave the computer.

Routines to perform non-Monitor related
functions.

In the PDP-8, a 12-bit unit of data which may
be stored in one addressable location.

Glossary-7

INDEX

ALTMODE, 4-4, 5-1

Analog input UDC/ICS operation,
4-26

Analog output UDC/ICS operation,
4-25

Arbitrary boundaries, 9-7

Assembling nonresident tasks,
7-6

Assembling tasks, 6-5, 8-11

Assembly,

nonresident tasks, 7-8

Assembly error messages, D-1

Assembly parameters, UDC/ICS,
4-31

Batch control,
nonresident tasks, 7-8

Batch stream, 6-6, 6-8

BLKARG ER, 3-6

Buffers, 7-6

CAIL instruction, 3-1

CAncel command, 5-4

Cassette file support handler,
4-35

Cassette file support system
tasks, 4-35 :

Cassette handler, 4-32

Change of state UDC/ICS opera-
tion, 4-30

Character mode, 4-4

Checkpointable tasks, 7-3

Clock handler, 4-2

Clock handler system parameters,
6-10

CTRL/C, 4-5, 5-1

Communication region, 3-1

Component sizes, B-1

Control files,

use of, 6-9

Core image, 7-6, 7-7

Creating an RTS/8 system, 6-5

Creating SAVE image file, 6-6,
7-6

DAte command, 5-2
Debugging,
nonresident task, 7-8

DECtape handler system parameters,
6-14

Demonstration program, 8-1

DEposit command, 5-6

DERAIL ER, 9-5

Digital input UDC/ICS operation,
4-27

Digital output UDC/ICS operation,
DIsaéii7command, 5-4

Disable contacts UDC/ICS operation,
Disaéziocounter UDC/ICS operation,
Distiziited source files, A-1

Editing parameter file, 6-5, 6-8
ENable command, 5-4
Enable contacts UDC/ICS operation,
4-29
Enable counter UDC/ICS operation,
4-28
Error conditions,
UyDpCc/ICs, 4-31
Event flag states summary, 2-3
Event flags, 2-2
EXamine command, 5-6
Executive internal task tables,
2-5, E-1
Executive KL8-A support, 4-37
Executive request wait states,
3-12
Executive requests,
BLKARG, 3-6
DERAIL, 9-5
POST, 3-4
RECEIVE, 3-3
RUN, 3-8
SEND, 3-2
SENDW, 3-3
SKPINS, 3-9
SUSPND, 3-8
UNBARG, 3-8
WAITE, 3-3
WAITX, 9-5
EXIT command, 5-6
EXIT task, 4-39
EXIT task system parameters, 6-14

Field mapping, 4-20

FINISHED state, 2-2

Floppy disk control file, 6-10
Floppy disk handler, 4-13
Flowcharts, C-1

FREE command, 7-4

Generic code UDC/ICS operation,
4-27

Inhibiting task switching, 9-2
Instructions,

CAL, 3~1

POSTDS, 3-10

Index-1

INDEX (CONT.)

Instructions (cont.),

WAITM, 9-4
Interrupt module restrictions,
3-10

Interrupt skip chain, 3-9
Intertask messages, 2-3

KL8~A support system parameters,
6-13
0S/8 support task, 4-38
TTY task, 4-38
User task, 4-39

LINCtape handler, 4-16
Line mode, 4-4 .
Line printer handler, 4-10
Line printer system parameters,
6-14

Loading,

nonresident tasks, 7-8
Loading tasks, 6-6, 8-11

Mass storage handlers, 4-11
MCR command arguments,
address, 5-1
comma, 5-1
single space, 5-1
task-ID, 5-1
time-of-day, 5-1
word, 5-1
MCR commands,
CAncel, 5-4
DAte, 5-2
DEposit address, 5-6
DIsable, 5-4
ENable, 5-4
EXamine address, 5-6
EXIT, 5-6
NAme, 5-2
OPen address, 5-5
POst address, 5-6
REquest, 5-3
STop, 5-4
S¥stat, 5-4
TIme, 5-2
MCR component size, B-5
MCR error messages, 5-6
MCR system parameters, 6-12
Memory partitions, 7-3
Message header, 2-3
Message table, E-3

NAme command, 5-2

Nonresident MCR, 5-6

Nonresident task debugging, 7-8

Nonresident task implementation,
7-8

Nonresident task initialization,
7-5

Index-2

Nonresident task parameters, 7-5
Nonresident tasks, 7-1
Nonresident tasks,

assembly, 7-8

batch control, 7-8

loading, 7-8

SAVE image file, 7-8

starting, 7-8

Obtaining listings, 6-5

OPen command, 5-5

0S/8 file support task, 4-23

0S/8 operating system, 4-19

05/8 support task, 4-19

0S/8 support task system param-
eters, 6-~13

0S/8~RTS/8 communication, 4-21

Parameter file,

task definitions, €-2

task setup, 6-4

task specifications, 6-3
Parameter file structure, 6-1
Partition parameter initializa-

tion, 7-7

Partition takle, E-4
PDP-8A null task, 4-37
PENDING state, 2-2
Performing a reschedule, 9-1
POst address command, 5-6
POST ER, 3-4
POSTDS instruction, 3-10
Power fail task, 4-18

Read counter UDC/ICS operation,
4-29

Real~-time system operation, 1-2

RECEIVE ER, 3-3

REquest command, 5-3

Residency table, E-~3

RTS/8 description, 1-1

RTS/8 task structure, 2-1

RUBOUT, 4-4

RUN ER, 3-8

Sample task program, 6-7
SAVE image file,
creating, 6-6, 7-6
nonresident tasks, 7-8
Saving the system, 6-6, 8-11
SEND ER, 3-2
SENDW ER, 3-3
SKPINS ER, 3-9
Starting,
nonresident tasks, 7-8
STop command, 5-4
SUSPND ER, 3-8
Swap device, 7-1, 7-6

INDEX (CONT.)

Swapper system parameters, 6-11

Syntactic constructions, 5-1
SYstat command, 5-4
System parameters,
clock handler, 6-10
DECtape handler, 6-14
EXIT task, 6-14
KL8-A support, 6-13
line printer, 6-14
MCR, 6-12
0S/8 support task, 6-13
swapper, 6-11
terminal handler, 6-11
System status report code, 5-5

System tables direct references,

9-8
System task summary, 4-1
System tasks,
cassette file support, 4-35
cassette handler, 4-32
clock handler, 4-2
EXIT, 4-39
floppy disk handler, 4-13
LINCtape handler, 4-16
Line printer handler, 4-10
mass storage handler, 4-11
0s/8 file support, 4-23
0S/8 support, 4-18
PDP-8A null, 4-37
power fail, 4-18
terminal handler, 4-2
UDC/ICS handler, 4-24

Task communication, 2-1
Task flags table, E-2
Task number, 2-1

Task state table, E-1
Task status report, 5-5
Task synchronization, 2-2

Index-3

Terminal handler, 4-~4

Terminal handler system param-
eters, 6-11

Terminal parameter default values,
4-9

TIme command, 5-2

Timeshare function disabled, 4-19

TTY control file, 6-9

TTY task KL8-A support, 4-38

UDC/ICS assembly parameters, 4-31
UDC/ICS error conditions, 4-31
UDC/ICS handler, 4-24
UDC/ICS handler system tasks, 4-24
UDC/ICS operation,

analog input, 4-26

analog output, 4-25

change of state, 4-30

digital input, 4-27

digital output, 4-27

disable contacts, 4-30

disable counter, 4-29

enakle contacts, 4-29

enable counter, 4-28

generic code, 4-27

read counter, 4-29
UNBARG ER, 3-8
Use of control files, 6-9
User task KL8-A support, 4-39
Using BITMAP program, 6-7, 7-5
Using interrupts, 3-9

WAITBITS symbolic names, 3-7
WAITE ER, 3-3

WAITING state, 2-2

WAITM instruction, 9-4

WAITX ER, 9-5

Writeable tasks, 7-3

Writing delicate code, 9-1

his line,

Please cut along t

RTS/8 User's Manual
DEC-08-=0ORTMA-C=D

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

[Assembly language programmer

E] Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

Non-programmer interested in computer concepts and capabilities

0000

Name Date

Organization

Street

City State Zip Code
or
Country

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltiall

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

RW

PAGES

FIELD

BUFADD

BLOKNO

STATUS

RTS/8 SYSTEM TASKS

0 Read data from floppy disk.

4000 Write data to floppy disk.

Specifies the number of pages to transfer (times
100 octal). Pages = 0 transfers 40 pages (a full

field). This value takes the range 0-37 in

bits

1-5 of this word. PAGES 1is ignored if CODE =
4000. In that case, either 100 (octal) 12-bit
words or 200 8-bit bytes (from 200 words) are

transferred depending on MODE.

Specifies the field of buffer (times 10 octal).

Bits 6-8 of this word have the range 0-7.

Specifies the address of the first word of
buffer containing data. Field of buffer
determined by FIELD. Length of buffer depends

PAGES if CODE = 0 or on MODE if CODE = 4000.

the
is
on

Represents first logical 0S/8 block to transfer if
CODE = 0. Each 0S/8 block consists of 4 sectors.
Track 0 is ignored and a 2-to-1l interleave scheme
is ‘employed. If CODE = 4000, this word contains
physical track and sector numbers in the format

TTTTTTTSSSSS.

Receives the status of the operation
completion. If negative, a hard error
occurred. If 0, no error has occurred. This
may be positive nonzero only if DEL = 2000.

The meaning of the STATUS bits is as follows:

Bit Meaning if 1

0 Hard error

1-3 Not used by controller

4 Not used by RTS/8

5 Deleted data indication

6-7 Not used by controller

8 Reserved for future use by
controller

9 INIT done (can occur after

temporary power failure to
controller)

10 Parity error
11 CRC error
NOTE

On power fail restart, the INIT error
might occur. When this error occurs,
the calling task should send the 1I/0
message again.

upon
has
word

	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	5-01
	5-02
	5-03
	5-04
	5-05
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	Glossary-01
	Glossary-02
	Glossary-03
	Glossary-04
	Glossary-05
	Glossary-06
	Glossary-07
	Index-01
	Index-02
	Index-03
	replyA
	replyB
	Untitled43

