e s " “HEnaD

ADVANCED FOCAL

TECHNICAL SPECIFICATIONS

DEC-08-AJBB-DL

ADVANCED FOCAL
TECHNICAL SPECIFICATIONS

For additional copies order No. DEC-08-AJBB-DL from Program Library, Digital Equipment
Corporation, Maynard, Mass. Price: $5.00
DIGITAL EQUIPMENT CORPORATION o MAYNARD, MASSACHUSETTS

Ist Printing April 1969

Copyrighf@l?é? by Digital Equipment Corporation

The following are registered trademarks of Digital
Equipment Corporaticn, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

CONTENTS

Page
CHAPTER 1
INTRODUCTION

CHAPTER 2

COMMANDS
2.1 Type, Ask 2-1
2.1.1 Literals 2-1
2.1.2 ‘ Numerical Input Formats 2-1
2.1.3 Alphanumeric Input Formats 2-1
2.1.4 Special Characters 2-2
2.1.5 Print Positions 2-2
2.1.6 Symbol Table 2-2
2.1.7 Output Formats 2-3
2.1.8 Terminators 2-3
2.1.9 Off-Line Data Tapes (c.f., Section 4.5.3) 2-3
2.1.10 Corrections 2-3
2.1.11 Roundoff 2-3
2.2 DO 2-4
2.3 Editing and Text Manipulation Facilities 2-4
2.3.1 Command-Input 2-4
2.3.2 ERASE 2-5
2.3.3 MODIFY 2-5
2.4 FOR 2-6
2.5 IF 2-6
2.6 GOTO 2-7
2.7 RETURN 2-7
2.8 QUIT 2-7
2.9 COMMENT 2-7
2.10 CONTINUE 2-7
2.11 SET 2-7
2.12 High-Speed Reader 2-8
2.12.1 General 2-8
2.12.2 Other Rules 2-8

2.13 The Functions 2-10

2.13.1
2.13.2
2.13.3
.13.4
.13.5
.13.6
13.7
.13.8
.14

14,1
.14.2
.14.3
.15

NN NN

[V

NN

NN

CONTENTS (Cont)

General
Analog to Digital
Extended Functions
Random Numbers
Standard Functions
Using the Arctangent
Boolean Functions
FNEW - A User Functions
The Library Command
L-Command For Single User System

LIBRA Command Specifications for Multi=User Systems

DF32 FOCAL FILE STRUCTURE
Write ‘
CHAPTER 3
FOCAL USAGE
Requirements
Loading Procedure
Initial Dialogue
Operation
Restart Procedure
Keyboard Error Recovery
Parentheses
Trace Feature
Variables, Functions and Numbers
Error Diagnostics
Arithmetic Priorities
ASCII data
Indirect Commands
Saving Focal Programs
Paper Tape
LINC Tape
Disk Monitor System
Disk System and Extended Functions

Page
2-10
2-10
2-11
2-11
2-11
2-12
2-13
2-13
2-13
2-13
2-14
2-15
2-16

3.5.5
3.5.6
3.5.7

4.1

4.2
4.2.1
4.2.2
4.2.2.1
4.2.2.2
4.2.3
4.2.3.1
4.2.3.2
4.2.4
4.2.4.1
4.2.4.2
4.3

4.4
4.4.1
4.4.2
4.4.2.1
4.4.2.2
4.4.3
4.4.4
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4.5.7

CONTENTS (Cont)

Disk System and Extended Memory
For 4~user FOCAL SAVE command, see Section 4.6.6
EAE Patch for FOCAL, 1969
CHAPTER 4
PROGRAM SPECIFICATIONS
Machine Requirements
Design Specifications
Design Goals
Input
Input Format
Character Set
Output
Output Format
The Input/Output and Interrupt Processor
Organization
Arithmetic Package
Storage
Hardware Errors
Internal Environment
Adding a User's Function; FNEW(Z)
Internal Subroutine Conventions
Calling Sequences
Subroutine Organization
Character Sorting
Language
Notes
Core Utilization
Extended Functions
Error Printouts
No Interrupts
Operating HS Reader Without Interrupts
Non-Typing of Program Tapes During Loading
Explanation of NAGSW (Not All or Group Swirch)

Page

3-7
3-7

4-4
4-4
4-6
4-6
4-7
4-7
4-8
4-9
4-9
4-9
4-10
4-10
4-10
4-10
4-10

4.5.8
4.5.9
4.5.10
4.6
4.6.1
4.6.2
4.6.3
4.7
4.7.1
4.7.2
4.7.2.1
4.7.3
4.7.3.1
4.7.3.2
4.7.3.3
4.7.3.4
4.7.3.5
4.7 .4
4.8
4.8.1
4.8.2
4.9

5.1
5.1.1
5.1.2
5.2
5.2.1
5.2.2
5.2.2.1
5.2.2.2
5.2.3

CONTENTS (Cont)

Data Inaccuracies

Estimating the Lenght of User's Program
FOCAL Systems
FOCAL Systems Assembly
FOCAL Binary Paper Tapes
FOCAL Listings
FOCAL Segments
8K Single User Overlay = 8K
Extended Precision Overlay - 4Word
Double Precision Multiply in Four-Word FOCAL
Four User Overlay ~ QUAD
Four User Loading and Operating Procedure
Swapping
Workload and Timing
Special Controls
Dialogue
Graphics for Circles and Lines = CLIN
FOCAL Demonstrations
One-Line Function Plotting
How to Demonsirate FOCAL's Power Quickly
FOCAL Versus BASIC
CHAPTER 5
ADDITIONAL FOCAL APPLICATIONS
FOCAL for the LAB-8
Standard
Additions| (Possible) FOCAL Functions for AX-08
FNEW for Data Arrays
Storage Requirements
Usage
Loading
Calling Sequence

Recursive Calling

.
Vi

Page
4-11
4-11
4-11
4-12
4-14
4-15
4-15
4-15
4-15
4-15
4-16
4-16
4-16
4-17
4-17
4-17
4-17
4-18
4-22
4-22
4-23
4-23

5-1
5-1
5-1
5-3

5-3
5-3
5-4
5-4

CONTENTS (Cont)

Page
5.2.4 Restrictions 5-4
5.2.5 Description 5-4
5.3 Dynamic Interrupt Processing via FOCAL, 1969 5-5
5.4 Simultaneous Equations' Solutions 5-6
5.5 Fast Fourier Transforms Programs 5-6
5.6 Travel Voucher to Expense Voucher Conversion Program 5-8
5.7 Twins Demo 5-10
APPENDIX A
FOCAL COMMAND SUMMARY
APPENDIX B
ERROR DIAGNOSTICS
APPENDIX C
EXPLANATION OF NEW INSTRUCTIONS
APPENDIX D
FOCAL CORE LAYOUT
APPENDIX E
SYMBOL TABLE AND OTHER TABLES/LISTS
APPENDIX F
FOCAL SYNTAX
APPENDIX G
ILLUSTRATIONS
ILLUSTRATIONS
4-1 Figure 4-1 4-8
D-1 FOCAL Core Layout Dynamic Storage D-4
.G-1 (Sheet 1) Arithmetic Evaluation G-1
G-1 (Sheet 2) Arithmetic Evaluation G-2
G-1 (Sheet 3) Arithmetic Evaluation G-3
G-1 (Sheet 4) Arithmetic Evaluation (Analysis of Functions) G-4
G-2 Command/Input G-5
G-3 Main Control and Transfer G-6
G-4 DO Command G-7
G-5 (Sheet 1) Input/Output Commands G-8

G-5 (Sheet 2) Input/Output Commands G-9

vii

ILLUSTRATIONS (Cont)

G-6 Iteration Control
G-7 Conditional Branch Command
G-8 Character Editing

G-9 (Sheet 1) ERASE and Delete
G-9 (Sheet 2) ERASE and Delete
G- 10 (Sheet 1) Interrupt Handler
G~-10 (Sheet 2) Interrupt Handler

G-11 Variable Look-up and Enter
G-12 Character Unpacking
G-13 "FINDLN" Routine
TABLES
4-1 FOCAL Source Segments
4-2 Allowable FOCAL Systems
4-3 Variations for FOCAL Systems
B-1 Error Diagnostics of FOCAL, 1969
C-1 New Instructions
D-1 FOCAL Core Layout Usage
D-2 Detailed FOCAL Core Layout
F-1 Syntax in Backus Normal Form
F-2 FOCAL Commands in French

viii

Page

G-10
G-11
G-12
G-13
G-14
G-15
G-16
G-17
G-18
G-19

4-13
4-13
4-14

CHAPTER 1
INTRODUCTION

FOCAL7L is a service program for the PDP-8 family of computers, designed to help scientists,
engineers, and students solve numerical problems.

The FOCALT'M'Ianguagle is used as a tool in a conversational mode; that is, the user creates
his problem step by step, while sitting at the computer; when the steps of the problem have been
completed, they can be executed and the results checked. Steps can be quickly changed, added or
deleted.

One great advantage of a computer is that once a problem has been formulated, the machine
can be made to repeat the same steps in the calculation over and over again. Until now, the job of
generating the program was costly, time-consuming, and generally required the talents of a specialist
called a programmer. For many modest jobs of computation, a person unfamiliar with computers and
programming would use a desk calculator or slide rule to avoid the delays, expense, and bothersome
detail of setting up his problem so that the programmer could understand it.

FOCAL circumvents these difficulties by providing a set of simplified techniques that permit
the user to communicate directly with the computer. The user has the advantages of the computer put
at his disposal without the requirement that he master the intricacies of machine language programming,
since the FOCAL language consists of imperative English statements in standard mathematical notation.

FOCAL is flexible; commands may be abbreviated, and some may be concatenated within
the same line. Each input string or line containing one or more commands is terminated by a carriage
return.

A great deal of power has also been put into the editing properties of the command language .
Normally, deletions, replacements, and insertions are taken care of by the line number which indicates
the replacement or repositioning of lines. If single characters are fo be changed within a FOCAL com-
mand line, it is not necessary to retype the entire string. The changes may be executed by using the
MODIFY command. Thus, complex command strings may be modified quite easily.

In operation, the program indicates that it is ready to receive input by typing an asterisk .
On-line command/input may be either direct (to be executed immediately) or indirect (to be stored
and executed later) commands. An example of a direct command is

*TYPE 5%5*5,1 (User)
= 125.000* (PDP-8)

The final asterisk indicates that FOCAL is ready for its next command. All commands may be given in

immediate mode (see Appendix A).

fFormulating On-Line Calculations in Algebraic Language (or FORmula CALculator)

M- Trademark of the Digital Equipment Corporation, Maynard, Mass.

1-1

Text input requires that a numerical digit, in the form ab.cd and within a range of 1.01 to
31.99, follow the * . The number to the left of the period is called the group number. The nonzero
number to the right is called the specific line or step number. While keying in command,/input strings,
the rubout key and the left arrow may be used to delete single characters or to kill the entire line,
respectively.

Since the command decoder is table driven, FOCAL can be modified by a small binary tape
to understand foreign languages commands. (See Appendix F-2)

FOCAL is written especially for the educational and engineering markets and is intended to
be used as a problem solving tool. It gives quick and concise reinforcement, minimizes turnaround
time, and provides an unambiguous printed record .

FOCAL is also an extremely flexible, high accuracy, high resolution, general~purpose desk
calculator and demonstration program.

This document describes the language, operating procedures for Disk Monitor and FOCAL;
use of High Speed reader; addition of user function FNEW; and many other details of interest. Symbol
tables, lists, and flow-charts are included.

There are also descriptions of the 10-digit overlay, 4 user overlay, and the complete

graphics function.

CHAPTER 2
COMMANDS

2.1 TYPE, ASK

The TYPE and the ASK statements are used for output and input of literals, alphanumeric
calculations, and formats. The simplest form of the TYPE statement is a command (e.g., TYPE A*1.4),
This will cause the program to type =, evaluate the expression, and type out the result. Several
expressions of this kind may be typed from the same statement if the expressions are each ended by
commas .

The ASK statement is similar to the TYPE statement in form, but only single variable names

can be used instead of expressions, and the user types in the values.

2.1.1 Literals

For output of literals, the user may enclose characters in quotation marks. The carriage
return will automatically generate closing quotation marks. The bell may only be inserted during

initial input, not via the MODIFY command.

2.1.2 Numerical Input Formats

Keyboard responses to ASK inputs may

a. have leading spaces

b. be preceded by + or - sign if desired or required
c. be in any fixed point or floating point format

d. be ferminated by any terminating character, carriage return, or ALTMODE. It is
recommanded, however, that the space be adopted as the conventional and general purpose input
terminator. The ALTMODE is a special nonprinting terminator that may be used to synchronize the
program with external events. For example, to insert special paper in the teletype before executing
the program, type Ask A; GO and RETURN, then load the paper, and hit ALTMODE. The value of
the variable used remains unchanged.

2.1.3 Alphanumeric Input Formats

Input data that is in response to an ASK command may take any format, may be signed or
unsigned, and must be terminated by a legitimate terminating character (space, CR, comma, /, etc.).
This means that alphabetic input may also be accepted by an ASK input command (see 3.4.9). This is
done by a simple hash-coding technique so that the program can recognize keyboard responses by a

single comparison. See example under the IF command for an illustration of how to program the

recognition of the user reply "WAIT". This is possible because the leading zero causes a character
string to be interpreted as a number. (e.g.,

*TYPE OANSWER = 0.26130E+22%).
Any literal word containing the letter "E" twice ir one input will cause the ASK statement to be

terminated as the program interprets this letter as cn exponent.

2.1.4 Special Characters

The exclamation point (1), percent (%), dollar sign (§), and the number sign (*) may be
used next to quotation marks or by themselves. They cannot be used to terminate alphanumeric
expressions. They may be used in either TYPE or ASK commands.

The TYPE statement precedes its numerical typeouts with an equal sign (=) before beginning
the output conversation process. The ASK statement types a colon (:) when it is ready fo receive key-
board data.

To type an expression before its results, the user may enclose the expression in question
marks. This is a special use of the trace feature.

*TYPE ?A*5.27
A*5.2=+10.40
*

2.1.5 Print Positions

Carriage returns are not automatically supplied at the termination of a typeout. To supply
carriage returns within a TYPE or ASK statement, the exclamation mark (1) is used. This is similar to
the use of the slash in FORTRAN format statements.

Occasionally, it is desirable to return the carriage and type out again on the same line
without giving a line feed. A number sign (*) returns the print mechanism to the left hand margin but
does not feed the paper forward. This feature may be used to plot another variable along the same

coordinate.

2.1.6 Symbol Table

TYPE $ (dollar sign) causes the contents of the symbol table to be typed out with the current
values of all variables created. The symbol table is typed with subscripts and values in chronological
order. The routine then returns as though a carriage return had been encountered in the TYPE state-
ment, thereby terminating the TYPE command. Both the TYPE and the ASK statements may be followed

by a semicolon (;) and other commands, unless a § is in the string.

2-2

2.1.7 Output Formats

The output format may be changed within a TYPE statement by %X.YY, where X and YY are
positive integers less than 31. X is equal to the total number of digits to be output and YY is equal
to the number of digits to the right of the decimal point.

During output, leading zeroes are typed as spaces. If the number is larger than the field
width indicates, FOCAL will convert to E format. E format is also specified by % alone. (Floating-
point decimal: +0.XXXXXXXE+Y, where E means "10 to the Yth power".) The current output format
is retained until explicitly changed. If a number is too large for the current format, the E format is

used temporarily .

2.1.8 Terminators

In the ASK statement, arguments are scanned by the GETARG Recursive Routine and may
therefore be terminated by any legitimate terminating character (e.g., space, comma, *, etc.). In
the TYPE statement, arguments are scanned by the EVAL Recursive Routine and must therefore be ter-
minated by comma, semicolon, or carriage return. In either the TYPE or ASK statement, command

arguments may be preceded by format control characters # | ", Example:

*ASK?A B C ?
A :5, B :6C 7 *

All commands except WRITE, RETURN, MODIFY, QUIT and ERASE may be combined on the same line

if separated by a semicolon.

2.1.9 Off-Line Data Tapes (c.f., Section 4.5.3)

To prepare data tapes off-line, type the data word, the terminating space, and the "here=is"

key. Use backspace and rubout to remove characters off=line.

2.1.10 Corrections

For editing input to an ASK command before the input has been terminated, the left arrow

(+) is used.

2.1.11 Roundoff

Numbers to be typed out are rounded-off to the last significant digit to be printed (i.e.,

the rightmost digit of the requested format) or to the sixth significant digit, whichever is smaller.

2.2 DO

The DO command is used chiefly to form subroutines from single lines, groups of lines, or
from the entire text buffer. Thus, the instruction DO 3.3 makes a subroutine of line 3.3. For a single
line subroutine, control will be returned when the end of the line is encountered or when the line is
otherwise terminated (e.g., by a RETURN statement, or in the case of TYPE, with the $).

One of the most useful features of a command language of this type is the ability to form
subroutines out of entire groups. Thus, the statement DO 5 calls all of group 5 as a subroutine
beginning with the first group 5 line number. Control will then proceed through the group numbers
going from smaller to larger. A return or an exit is generated from this type of subroutine by using the
word RETURN, or by encountering the end of that group, or by transferring control out of the group via
a GOTO or IF command. Similarly, the entire text buffer may be used as a recursive subroutine by
simply using DO or DO ALL.

The DO statement may be concatenatecd with other legitimate commands by terminating it
with a semicolon. Thus, a single line may contain a number of subroutine calls. In this way, several
forms of complex subroutine groupings may be tested from the console.

The number of DO commands which may be nested linearly or recursively is limited only by

the amount of core storage remaining after inclusion of the text buffer and the variable storage.

NOTE

When a GOTO or IF statement is executed within a DO
subroutine, control is transferred immediately to the
object line of the GOTO command; that line will be
executed and return made to the DO processor. If the
next line number is within the group (if this is a group
subroutine), it will be executed. If, however, a line
number outside of that group is about to be executed,
then a return will be made from the DO subroutine and
if any of the DO command line remains, it will be
processed.

2.3 EDITING AND TEXT MANIPULATION FACILITIES

2.3.1 Command-Input

A line number which has already been used and is reused in a new input will cause the new
input to replace the line that previously had that number. Insertions are made at the appropriate point
in a numerically-ordered string of lines. For example, line number 1.01 (the smallest line number)

will be inserted in front of (or above) line number 1.1. The largest line number is 15.99.

2-4

2.3.2 ERASE

Removal of a single line may be made by using the ERASE command. For example, ERASE
2.2 will cause line 2.2 to be deleted. No error comment will be given if that line number does not
exist. The command ERASE 3 or 3.0 will cause all of group 3 to be erased. To delete all of the text,
one must type the words ERASE ALL.

ERASE, used alone, has the function of merely removing the variables. This may also be
thought of as initializing the values of the variables to zero.

To examine a single line, type WRITE followed by the line number. For example, WRITE
3.3 will cause line 3.3 to be typed out with its line number on the Teletype. WRITE 4.0 will cause all
of group four to be written on the Teletype. WRITE ALL will cause all of the text to be printed on the

Teletype, left justified, with title and line numbers in numerical order.

2.3.3 MODIFY

When only a few characters of a particular line must be replaced, the MODIFY command is
used to avoid replacing the entire line. For example, to change characters in line 5.41, type MODIFY
5.41. This command is terminated by a carriage return, and the program waits for the user to type that
character at which he wishes to make changes or additions. The program will then type out the con-
tents of that line until the search character is typed. (The search character is not echoed when it is
first keyed in by the user.) The program will now accept input.

At this point, the user has seven options:

a. type in new characters in addition to the ones that have already been typed out;

b. type a form-feed; this will cause the search to proceed to the next occurrence, if any,
of the search character;

c. ftype a bell which allows him to change the search character just as he did when first
beginning to use the MODIFY command;

d. use the rubout key to delete characters going to the left;

e. type a left arrow to delete the line over to the left margin;

f. type a carriage return to terminate the line at that point and move the text to the right;

g. type line-feed to save the remainder of the line.

The ERASE ALL and MODIFY commands are generally used only in immediate mode, as
these commands return to command mode upon completion. The reason for this is that internal pointers
may be changed by these commands.

During command/input, the left arrow will delete the line numbers as well as the text.
During the MODIFY command typing the left arrow will not delete the line number.

When the rubout key is struck, a backslash (\) is typed for each character that is deleted.

NOTE

Any modifications to the text will cause the variables
to be deleted as if an ERASE command had been given.
This is caused by the organization of the data structure.
It is justified by the principle that a change of program
probably means a change of variables as well.

2.4 FOR

This command is used for convenience in setting up program loops and iterations. The

general format is:
FORA =8B, C, D;=—-.

The index A is initialized to the value B, then the command string following the semicolon is executed
at least once. When the carriage return is encountered, the value of A is incremented by C and com-
pared to the value of D. If A is less than or equal to D, then the command siring after the semicolon
is executed again. This process is repeated until A is greater than D.

Naturally, A must be a single variable; but B, C, and D may all be expressions, variables,
or numbers. The computations involved in the FOR statement are done in floating point arithmetic. If
comma and the value C are omitted, then it is assumed that the increment is one. For example:

SETB=3; FORI =0, 10; TYPEB t I, ! (power of 3)

2.5 IF

To provide transfer of control after a comparison, we have adopted the IF statement format
from FORTRAN. The normal form of the IF statement contains the word IF, followed by a space, a
parenthesized expression, and three line numbers separated from each other by commas. The program
will GOTO the first line number if the expression is less than zero, the second line number if the
statement has a value of zero, and the third line number if the value of the expression is greater than
zero.

Alternative forms of the IF command are obtained by replacing the comma between the line
numbers by a semicolon. In this case, if the condition is met which would normally cause the program
to transfer to a line number past that position, then the remainder of the line will be executed.
Example:

ASK REPLY
IF (REPLY - OWAIT) 6.4, 5.01; RETURN
IF (REPLY - OYES) 6.3, 5.0%; 6.3

2-6

NOTE

The IF command could occasionally fail to take the
= 0 branch due to internal computation and truncation
errors.

2.6 GOTO

This command causes conirol of the program to be transferred to the indicated line number.
A specific line number must be given as the argument of the GOTO command. If command is initially
handed fo the program by means of an immediately executed GO, control will proceed from low num-
bered lines to higher numbered lines as is usual in o computer program. Control will be returned to
command mode upon encountering a QUIT command, the end of the text, or a RETURN af the top level.

The operation of the GOTO is slightly more complicated when used in conjunction with a

FOR or a DO statement. Its operation is perfectly straightforward when used with any other statement.

2.7 RETURN

The RETURN command is used to exit from DO subroutines. It is implemented internally by
setting the current program counter to zero. When this situation is encountered by the DO statement

it exits. (Refer to the DO command, Section 3.2.).

2.8 QUIT

A QUIT causes the program to return immediately to command/input mode, type *, and

wait.

2.9 COMMENT

Beginning a command string with the letter C will cause the remainder of that line to be

ignored so that comments may be inserted into the program.

2.10 CONTINUE

This word is used to indicate dummy lines. For example, it might be used to replace a line

referenced elsewhere without changing those references to that line number.

2.11 SET

The SET command for arithmetic substitution is used for setting the value of a variable equal

to the result of an expression. The SET statement may contain function calls, variable names, and

numerical literals on the right hand side of the equal sign. All of the usual arithmetic operations plus
exponentiation, may be used with these operands. The priority of the operators is a standard system:
+-/*1. These, however, may be superseded by the use of parenthetical expressions. The SET state-
ment may be terminated by either a carriage return or a semicolon, in which case it may be followed

by additional commands. For example:

SET AA=B(5+<6+CONST>*ALPHA/ [5/BETA]); GOTO 3.2

2.12 HIGH-SPEED READER

2.12.1 General

The asterisk (*) is also used as a flip=flop control over the selection of the input device to
be used by a FOCAL program. (See the examples that follow.) An out-of-tape condition will return
to low=speed reader input and change the status of the * flip=flop. An error condition, however, does
not change that * flip-flop (see notes below).

For example, typing:

iy
will read in a program tape or a series of immediate commands.
*5ASK ABCDZ
will fill AB with data from tape. If tape is empty, control will return to command mode .

*1.1% FORI=1, 5; ASK AX(I)
*DO 1.1

If the tape contains fewer than 5 pieces of data, then remaining items are taken from keyboard. (See

c below.)

2.12.2 Other Rules

a. * as a command may be concatenated with other processes [JMP (PROC):
(e.g., 01.30*; ASK A, B;*)

b. If an out-of-tape condition is encountered while reading commands, then the input
device is switched to keyboard and all is returned to normal. (This occurs when the user has no reader.)
It is equivalent to receipt of a left arrow. [JMP (IBAR)].

c. If an out-of-tape condition occurs while executing an ASK command, then FOCAL
responds as if the end of the command line (carriage return) has been reached. [ISZ PDLXR; POPJ]

Thus,
*% ASK A,B,C,D

produces::: (out of tape on C): and the user is back to normal mode.

2-8

However,

*ERASE
Fx; for 1=1, 20; ASK A(1); TYPET, !,

: = 1.0000

: = 2,0000

: = 3.0000

: (out of tape for 1=4)

: (now accepting from keyboard) 123, = 5.0000
: 345, = 6.0000

: ?201.00 (Control~C typed)

*TYPE $

T@ (00) = 7.0000

A @ (07) = (data from tape)

)
A @ (02) = (data from tape)
A @ (03) = (data from tape)
A @ (04) = .0000
A @ (05) = 123.0000
* A @ (06) = 345.000

d. When an error occurs from the reader (illegal command, etc.), the code will be typed
out and input device control returned to the low-speed device. However, the device flip-flop (HSPSW)
will still indicate that the reader is active. Consequently, it will be necessary to give two asterisks
before the reader will be activated again.

* %
Fxkx912,.83 (Buffer full)
*%

Tk
(reader now active again).

e. It is necessary to have a fairly long timing loop to detect the out-of-tape condition
(slow readers, restart delays, etc.). As a result, the user of a PDP-8/S may encounter long delays if
there is no high speed reader or when the reader is out of tape. However, the initial dialogue makes
a correction for this when an 8/5 is being used.

f. Since the reader operates with the interrupt on, one may use Control-C to return at
once to keyboard input mode. A manual interrupt via Control-C (?01.00) or a console restart (?200.00)
gives the same effect.

g. All commands, including "*" may be executed in immediate mode from the high speed
reader. This has several beneficial results:

(1) Program tapes may be composed that are self-protecting and self-starting

ERASE ALL (protection)
01.10 ASK "Power of 2?"REPLY (input indirect program)
01.30 TYPE 2 REPLY, !,GOTO 1.1

(etc)
GOTO 1.1 (starting)
5,3,1 (doi'cr)

This particular program is an infinite loop and must be stopped by a Control-C
from the keyboard.

(2) Programs may chain themselves together.

ERASE ALL

3.4 TYPE "NUMBER 1"111; ASK A

3.5* (indirect command)

*; GO (device restored to low speed and program

started)
The printout from this tape will be:

i (START READER)
el NUMBER 1
(Three lines accepted)

(Erase processed)
: (waiting for keyboard input) » {(user)
(execution of 3.5 * at this point will reactivate the high speed reader).
(3) Immediate mode commands on the tape allow maximum storage for variables.

(4) 1If the interrupts are disabled by the patches shown in Section 4.5.3, then two
tapes may be merged from both high= and low=speed readers by a resident FOCAL
program.

2.13 THE FUNCTIONS

2.13.1 General

The functions are provided to give extended arithmetic capabilities and the potential for
expansion to additional input/output devices. There are basically three types of functions. The first
group contains integer parts, sign part, square roct, fractional, and absolute value functions. The
second group has the input/output for scope and analog/digital converter functions. The third group
has extended arithmetic computations of trigonometric and exponential functions.

A function call consists of no more than four letters beginning with the letter F and followed
by a parenthetical expression (e.g., FSGN (A-B *2)). This expression is evaluated before transferring

to the function process itself.

2.13.2 Andlog to Digital
a. Input

The function FADC(X) is used to take a reading from an analog-to-digital converter.
The value of the function is a 12-bit integer reading. The argument "X" is the channel member (AX08)
in decimal. Additional version of the ADC function could be designed to provide for synchronization
by a clock or other means. (c.f., Chapter 5)

*SET A=FADC () *5

2-10

b. Output

The scope function FDIS (expression, expression) is used to set and display an X-Y
coordinate on a Model 34 Scope and scope interface. The value returned for each of these functions
is the integer part of the second expression.

*SET Z =FDIS(X, X43/50)

2.13.3 Extended Functions
The extended arithmetic functions (FEXP, FLOG, FATN, FCOS, FSIN) are retained at the
option of the user. They consume approximately 800 characters of text storage area. These arithmetic

functions are adapted from the extended arithmetic functions of the three-word, floating point package.

2.13.4 Random Numbers
A simple random number generator is provided in the basic package as FRAN()! An expanded
version could incorporate the random number generator from the DECUS library .

Functions for other devices are provided as overlay tapes (see Appendix H).

2.13.5 Standard Functions
a. Trigonomefric Functions

All arguments are in radians
FSIN () - the sine functions
FCOS () = the cosine function
FATN () - the arctangent

From these functions, the user may compute all other trigonometric functions. (See FOCAL User's
Manual)

b. Logarithmic Functions
FLOG () - log to the base e or Naperian base
FEXP () - e tothe power

c. Arithmetic Functions
FSQT () - the square root
FSGN () - one (1) with the sign of the argument
FABS () - the absolute value
FITR () - the next smaller integer part maximum of 1024
LOG]0 (ARG) = LOGe (ARG) *LOG]O(e)

LOG]0 (e) = 0.434295
LOGe (10) = 2.30258

e =2,71828

where:
1 degree = .0174533 radians
1 radian = 57.2958 degrees

2.13.6 Using The Arctangent

An arctan function cycles between + m/2 and = n/2. Thus, to get a correct range for 0-2m

radians from the expression FATN(Y/X), we must use the signs of X and Y.

X Y FATN(X/Y)
+ + 0-P1/2
- + PI/2-PI

- - PI-3*1/2
+ = 3*P1/2 - PI*2

* GO

INDEX A Y FUNCTION COMPUTED
2 BeB3D= 100z Gelili= GoBRANNIC = Pe.arrigmnn
= 0e3B= @e96= Be30= (.3006G0 = G.30PAAR
= ebB= BeB3= Re57= .600000 = D bAAN
= Be90= (+62= @.768= 0.900000 = (.90 0000
= 1.20= 0.36= 0.93= 1.200000 = 120600
= 1.50= Q.0= 1.00= 1500020 = 15000006
= 1e8E== Pe23= (+97=- 1341600 = 18000100
= 2¢10== DeSl= PeB6=~ 1041600 = 2.1060000
2 2edfi== ReTd= (eb8B8== BeT741595 = 2.400000
= 2e70== Pe91= @ed3== De441595 = 2.700000
=2 3e00== 0e99= (Beld== Ps141595 = B QGO
= 3e30== 0e99=~ (el16= (158403 = 3« 3000706
= 3e60== Ne90=- Qoedb= (456402 = 3. 6Q0RGHA
= 3e90== DeT73== 0e69= 0758402 = J.920000¢
= 4e20== De49=- BDeBI= 1058400 = 4.200000
= 4e50== Ge21=- Pe9B= 1.358460 = 4S5O0
= 4e8BO= DeP9=- 1.00=- 1.483200 = 4.8002000
= Sel@= Pe38=- B.93=- 1.1E3200 = 5.160000
= Sedil= Qebd=- QeT77== PeBB3196 = 5. 4000006
= DeT70= DeB4== Ne55=- (583195 = S5.76G0000
= 6eli0= Ne96== G+28=- N.283198 = 6.000000
T 6e30= 1e0= Pe02= B.016802 = P.N16802
= 6e60= G+95= B.31= P.316803 = (P.316803
2 6e9P= De82= He58= 0616800 = De.616800
C-FOCAL » 8768
Q1.0 T 111" INDEX X Y FUNCTION COMPUTED
P1e¢10 FOR I=0»+35,73 TYPE !5%4.02,13D 2
0120 TYFE !!!13WRITE ALL
P1.30 QUIT
B2.10 SET Y=FSINCIY3 SET X=FCOS(IL)
0220 TYPE XoYsZBe06,FATNC(Y/<X+1E-10>)3 DO 133 TYPE " " TH3

1310 IF (X>13¢3,13:2513.3

13.20 SET X=1E-100

13.30 SET TH=FATN(FABS<Y/X>)

13¢40 SET PI=3.141596

13¢5 IF (Y) 13463 1IF (X) 13.73 RETURN
13460 IF (X) 13¢83SET TH=PI+PI-TH3 RETURN
13«70 SET TH=PI1-TH3 RETURN

1380 SET TH=PI+TH3 RETURN

*

2-12

2.13.7 Boolean Functions

TRUE is +1
FALSE is -1

*» 15

A B AND OR NOR XOR CARRY SUM
==1==1 =n1 -1 1= 1 =] =1
==1=1 ==1 1 1= -1 ==1=1
= T==1 ==1 1 1= -1 ==1= 1
= 1= 1 =1 1 -1= 1 = 1==1

XOR is A*B
NOR is FSGN(~A-B)
OR is FSGN(A+B)
AND is FSGN(A+B-1)
NOT(A) is -A

The result of adding A and B is

CARRY = FSGN(A+B-1)
SUM =-A*B

*

*WRITE 15

15.05 TYPE" A B AND OR NOR XOR CARRY SUM"!

15.10 FOR A=-1,2,1; FOR B=-1,2,1;TYPE A,B," "' DO 15.2

15.15 QUIT

15.20 TYPE FSGN(A+B-1),FSGN(A+B),FSGN(-A-B),A*B, " "FSGN(A+B-T),-A*B, !
*

2.13.8 FNEW ~ A User Function

This function name may be used fo call a machine language routine for any reason.

(See Section 4.4.1)

2.14 THE LIBRARY COMMAND

The form and usage of this mass storage command will vary with the computer and FOCAL

system used. (c.f., 4.6)

2.14.1 L-Command For Single User System

The command may be given in either direct or indirect mode. Execution of this command
first causes the octal typeout of the contents of four FOCAL pointers: CFRS, BUFR, LASTV, and
BOTTOM, respectively. The second action is to type out whatever characters follow the "L" to serve
as operating instructions for the user. The third action is to turn off the interrupts and transfer to the

Disk Monitor or 8-Library System by jumping to 7600.

The four octal numbers represent:

a. the start of text buffer,

b. the end of text buffer,

c. the end of the variable list,

d. the bottom of the push-down list.

These command features will permit optimum usage of available disk storage and be compat-
ible with the Disk Monitor.

After debugging a program, a typical user will execute ERASE and LIB. (This causes B and
C to be equal in the 4K system.) He will then save the program and restart or call another program.
(See Section 3.4.12)

Manual Chaining may also be done. For example, when a program reaches line 12.3, it
may need to call another routine (as in a series of teaching programs, demos, or math subroutines).
The user, however, must be given instructions on how to proceed:

12.30LIB .CALL LES2
For example, execution of 12.3 may produce:

3206

3345

3401

4407

.CALL LES2

.CALL LES2 [User types this]
.START

*

In the 8K Version, the text and variables are stored independently. For this reason, the 8K

version can have different programs operating on the same data. (See Section 3.4.14)

2.14.2 LIBRA Command Specifications for Multi-User Systems™*

Four modifiers of the LIBRARY command are implemented to allow automatic program
storage, retrieval, and management in multi-user FOCAL. This extension to the FOCAL system is
implemented under the segment name LIBRA and requires ot least an 8K PDP-8 with one DF32.

The LIBRARY command and its variations are:

a. To save a program on disk,

LIBRA SAVE name)

Where "name" is a 1 to 4 character identifier and) is described in the FOCAL language specifications.

*Not completed

2-14

Errors:
(1) A program with an identical name has been found in the directory list
(2) Name missing from command
(3) Disk I/O error (non-recoverable)
b. To call a program on disk,
LIBRA CALL name)
Errors:
(1) No such program on directory list
(2) Name missing from command
(3) Disk I/O error (non-recoverable)
c. To delete a program from disk,
LIBRA DELETE name)
Errors:
(1) No such program name in directory list
(2) Name missing from command
(38) Disk 1/O error
d. To list the directory
LIBRA LIST)
Errors:

(1) Disk 1/O error

NOTE

This command will destroy any program by an effective
"ERASE ALL".

The directory is printed ten across for as many lines as necessary .

2.14.3 DF32 FOCAL FILE STRUCTURE

Programs are stored in blocks 16008 words long. This allows 36 blocks of storage on one
DF32 and a directory of 512 words or 256 entries. This directory is sufficient for the maximum DF32
configuration allowable on a PDP-8.

1. Disk 36 blocks

2. Disk 72 blocks

3. Disk 110 blocks

4. Disk 146 blocks

The directory is a linear list with a maximum size of 512 words (with 2 words/entry). Word position in
the list corresponds to the block position on the disk. The blocks begin at location 10008 from the end
of the directory and extend in increments of]6008 to the end of the disk. The end of the list is an
entry of ones. Unused blocks are indicated by entries of all zeroes.

The LIBRARY functions swap users in the multiple user system. This diminishes the total
number of blocks by the maximum number of allowed users. A disk program is required to clear the

directory, and to set the maximum number of blocks available.

2.15 WRITE

The WRITE command is used to list the entire indirect program (WRITE ALL or W), specified
groups, or single lines. When all text is printed, a leader-identifier is given at the top of the listing.
This identifies which major version is being used for the particular indirect program. (FOCAL, 1969;
8K FOCAL @ 1969; 4-word @ 1969).

NOTE
The WRITE command disables the trace.

2-16

CHAPTER 3
FOCAL USAGE

3.1 REQUIREMENTS

Any 4K PDP-8 family computer with Teletype may be used with FOCAL: PDP-5, PDP-8,
PDP-8/S, PDP-8/1, PDP-8/L, LAB-8, LINC-8, TSS-8, PDP-12.

3.2 LOADING PROCEDURE

a. The RIM or Read~In-Mode Loader must be in memory. (See RIM Loader Manual for a
thorough discussion .)

b. The RIM Loader is used to load the Binary Loader. (See Binary Loader Manual for a
complete description.)

c. The Binary Loader is used to load FOCAL.
d. Upon halting, press the CONTINUE key, since the program is loaded in two sections.

e. Place 200, the starting address of FOCAL, into the Switch Register when the complete
tape has been loaded.

f. Press the LOAD ADDRESS key.
g. Press the START key.

h. The initial dialogue will begin.

3.3 INITIAL DIALOGUE

The program will identify the DEC 12-bit computer you are using and make appropriate
corrections to itself. If the user determines that extra space is required, the program will permit rejec-
tion of extended functions.

FOCAL is ready for commands when it types *.
3.4 OPERATION

3.4.1 Restart Procedure

There are two methods to restart the system.

Method 1 - Type the character control /C at any time; (FOCAL acknowledges this by typing
?01.00).

Method 2 = a. Put 200 into the Switch Register

. Press the STOP key

Press the LOAD ADDRESS key

Press the START key

The program will then type ?00.00 indicating a manual restart, and an
asterisk indicating it is ready to receive input.

o O 0 T

3-1

3.4.2 Keyboard Error Recovery

If an error is made while fyping commands to FOCAL, one of the following methods may be
used to recover:

a. Use the RUBOUT key on the teletype keyboard to erase the preceding character. The
RUBOUT key echoes \ for each character removed.

b. Use the MODIFY command, with the modify control characters, to search the command
string for any character in error and alter or delete that character.

c. Use Left Arrow to delete over to the left margin.

d. Use Left Arrow to delete input data.

3.4.3 Parentheses

The following parenthetical pairs may be used in any alphanumeric expression: parentheses,
angle brackets (< >), and square brackets ([1). The program checks to see whether the proper
matching terminator has been used at the correct level. Use of these terminators in different configura-

tions provides additional clarity in reading alphanumeric expressions.

3.4.4 Trace Feature

A trace feature may be used to detect errors, follow program control, and create special
formats. To implement the trace feature, insert a question mark into a command string af any point.
Each succeeding character will then be typed out as it is interpreted until another question mark is

encountered or until the program returns to command-input mode.

3.4.5 Variables, Functions and Numbers

A variable name consists of one or two alphanumeric characters, of which the first must be

'. Additional characters are ignored.

a letter. The second character may be A-Z, 0-9, ",
Function names are easily distinguished from variable names because they start with the

letter F. A number always begins with a digit 0-7.

3.4.6 Error Diagnostics

Programming errors are indicated by an error diagnostic. The printout is in the form
XX . XX @ GG.SS. The first number is a specific error number derived from the core address of the
error call. The GG.SS is the number of the line, if any, of the text which contains the error.

The error diagnostic printouts are intended to be efficient yet informative and explicit.

Used in conjunction with the trace feature, these will pinpoint errors precisely. (See Appendix B).

3.4.7

3.4.8

3.4.9

Example:

*DO 2.357
SET A=5/C + ?28.72 (Divide by zero, C=0)
*

Arithmetic Priorities

+ N\L F —

Operations of equal priority are executed from left to right (e.g., T 21312=64 not 512).

ASCII data

ASCII input of A=Z has the values of 1-26 per digit per letter respectively, thus,

*ASK A; TYPE A
:2=26.00
AATA

:AZ =36.00

This is also true for internal numerical constants like ONO, OYES, etc.
(See the IF command for an example of this feature.)

The technique may also be used to create a kind of associative memory:
*ASK A; ASK GRADE (A))

:DICK : 95
*ASK A;TYPE GR(A)
:DICK =95

Indirect Commands

If a Teletype line is prefixed by a line number, that line is not executed immediately, but

is stored for later execution. Line numbers must be in the range 1.01 to 31.99. The numbers 0.0,

1.00, 2.00, 3, etc., are illegal line numbers and are used to indicate the entire group. The number

to the left of the point is called the group number; the number to the right is called the step number.

Execution of indirect commands is begun by an immediate GOTO of DO command. The GOTO com-

mand causes FOCAL to start the program by executing the command at a specified line number (e.g.,

GOTO 1.3). The GO command causes FOCAL to go to the lowest numbered line to begin executing

the program and continues until it runs out of program text. FOCAL can automatically cross group

boundaries.

3.5 SAVING FOCAL PROGRAMS

3.5.1 Paper Tape

To save a FOCAL symbolic text, type WRITE ALL, turn on the punch, type @ marks for
leader-trailer, and type carriage return. When all of the program has been typed out, type additional
@ marks for more leader=trailer, turn off the punch, and continue your conversation with the computer.

(To save a FOCAL binary program, see Appendix C.1.)

3.5.2 LINC Tape (see Section 2.14.1; TCO1 via 8-LIBRARY SYSTEM; PDP-12)

On LINC tape, load FOCAL program cs follows:
a. Load FOCAL binary tape, execute Initial dialog, and call UPDATE.

NAME: START
SA (OCTAL): 200
MEM LOCATIONS: <4600, 7577 >;

b. Call UPDATE again.

NAME: FOCAL
SA (OCTAL): (none)
MEM LOCATIONS: <0, 3377 >;

c. Calling Sequence:

FOCAL
START

*

d. Write the desired FOCAL routine.

e. Give an "L" command. Four octal numbers will be printed, and control will return to
the Library System.

UPDATE

NAME: (user's choice)
SA (OCTAL): (none)
MEM LOCATIONS: <0 ><(A), (B) >;
Where "(A)" and "(B)" mean the first and second octal numbers.

f. To call a program:

FOCAL
(user's choice)
START

*

3.5.3 Disk Monitor System (see Section 2.14.1)

a. Build the Disk System.

b. Load FOCAL into field zero.
(If the computer has 8K, use the binary loader in field 1.)
Alternate procedure: Use PIP to place the binary on disk. Then, use LOAD on the
disk file. (This procedure is faster for a teletype, but uses more disk space.)

c. Load Address 200, START, and complete the initial dialogue.
d. Load Address 7600 and START.
e. Initialize the disk as follows:

.SAVE START!4600-7577;200
.SAVE FOCAL!0-3377;

f. Run FOCAL.

.)FOCAL
.)START

(Create Program)

g. Save program; return to disk Monitor by giving an L command.
.SAVE (name);0, (A) - (B) [note saving page zero]

h. Run a program (after doing either step f or g).

.FOCAL)

.CALL (name))

.START) [linefeed will not occur]
*(FOCAL ready)

i Steps g and h may be repeated.

3.5.4 Disk System and Exterded Functions

To cope with configurations involving deletion of extended functions, proceed as follows:
a. Load FOCAL and start ot 7600;

.SAVE START4600-7577;200

.SAVE INIT:0,3200-4577; [note saving page zero]
.CALL INIT

START

[Dialogue, answer YES]

*|

.SAVE FOCAL10-3377;

b. To reinitialize a system without some extended functions, type

.FOCAL
.CALL INIT
.START

[Dialogue, answer NO, YES, i.e., keep sine and cosine]
*|
.SAVE 5TNY 15200~7577;200

c. To create a system without any exiended functions, type

.FOCAL
.CALL INIT
.START

[Dialogue, answer NO, NOJ
*L
.SAVE STNN15400-7577;200

d. Be sure to use the correct START command with each user program.

(1

[to use no exponential function version]

.FOCAL
.CALL NEXP
STNY

*

(2) or
[to use no cosine function version]

.FOCAL
.CALL NCOS
.STNN

*

3.5.5 Disk System and Extended Memory (see section 2.14.1)

Follow these operations to set up an 8K version of FOCAL on the disk:

[Build Disk System]

[Load FOCAL]

[Start at 200]

[Dialogue, answer questions.]

*L)
0100 (A)
0121 ()
3217 (©)
XXXX (D)

.SAVE ST8K! (D) =7577;200
.SAVE FCL8! 0 - 3177;
.SAVE NULS8: 10100; 10113

The SAVE command for a finished 8K FOCAL program is
.SAVE CODE:1(A) - 1(B); 10113
where (A) and (B) are the first and second four digit numbers typed out by the L-command. These are

the field one bounds of the program text. The value of (D) will depend on the functions retained.

3.5.6

3.5.7

The variables, however, are in field zero. To save a set of data, type:

.SAVE DAT8:0;3200-(C);

[note saving page zero, field zerol

To set up a null program with a particular data set, type:

.FCL8

.CALL DAT8
.CALL NUL8

.ST8K

For 4-user FOCAL SAVE command, see Section 4.6.6.

EAE Patch for FOCAL, 1969

7203
7204
7205
7206
7207
7210
7211
7212

3206
1256
7425
0
3253
7501
3255
227

DCA
TAD
MQL
0
DCA
MQA
DCA
SNP

3
MP2
MUY
MP5

MP3
15

3-7

CHAPTER 4
PROGRAM SPECIFICATIONS

4.1 MACHINE REQUIREMENTS

The minimum hardwere configuration necessary to run this program is a 4K PDP-8 family
computer with ASR-33.
Scope, an additional 4K memory, and high-speed reader and punch are available options.

Additional PTO8s are added for extra users.

4.2 DESIGN SPECIFICATIONS

4.2.1 Design Goals

FOCAL is a conversational language and operating system for a basic PDP-8. It is designed

to facilitate on-line editing and execution of symbolic programs. (For BNF description, see Appendix
F.)

4.2.2 Input

The keyboard, low=speed reader, or high-speed reader may be used for input of program

text and for commands to be executed immediately. Keyboard input is double buffered.

4.2.2.1 Input Format = See description of the commands in Chapter 2 for format information.

4.2.2.2 Character Set ~ Input and output characters are in ASCII teletype code. Interpretive opera-
tions are also done internally in expanded ASCII. The text buffer is packed two characters to a word
as follows.

number = represented as: prints as
300 = not packed = ignored: @
301 - 336 =01 - 36: A-Z
337 not packed - edit control, kill line: «.
240 - 276 =40 - 76: symbols
277 =37: ?.
340 - 376 =7740 - 7776 (extended codes): non-printing
377 =not packed - edit conirol, delete preceding character; if a character
is deleted, \ (backslash) is typed.
200 = not packed - ignored: leader-trailer
210 - 237 =7701 - 7737: control characters
000 = not packed = ignored: blank tape.

4-1

4.2.3 Output

4.2.3.1 Output Format - See the TYPE and WRITE statements for format of output. The output

character set is the same as that for input.

4.2.3.2 The Input/Output and Interrupt Processor — The purpose of the interrupt handler and the 1/0
buffers is to permit input and output to proceed asynchronously with calculations. This allows an
optimal use of the computer time. When the interrupt handler finds that the teletype output flag has
been raised, it clears that flag and looks to see whether there are any additional characters in the
teletype output buffer to be printed. If there are, it takes the next character from the buffer, prints
it, clears that location in the buffer, and moves the pointers. Separate pointers are maintained for
both the interrupt processor and for the program output subroutine (XOUTL). If the inferrupt handler
finds that there are no more characters to be output on the Teletype, it will clear the teletype in-
progress-switch (TELSW). If the interrupt handler does output another character, it sets TELSW to a
nonzero value.

When the program desires to place characters in the buffer for the interrupt processor to
print, it makes a call to XOUTL. This routine first checks to see if TELSW has been set. If TELSW is
zero, no further interrupts are expected by the interrupt processor, and the output routine immediately
types the character itself and sets TELSW to a nonzero value. Otherwise, if the interrupt processor is
in motion, then the output routine places the character into the buffer and increments the pointer. If
there is no room in the buffer for additional characters, the low-speed output routine waits until room
is available. The keyboard input processors are similar in organization to the output routines except
that no in-progress-switch is needed and the input is only double buffered.

Another advantage of the interrupt system is that it enables the user to stop program loops
from the keyboard by typing Control C. The recovery routine will then reset the 1/O pointers, type
out the message code ?01.00, and return to command mode. Manual restart via the console switches
also goes to the recovery routine, resets the pointers, and types out message code ?00.00. In fact,
all error diagnostics go to the recovery routine. Error printing is withheld until prior printing is com-
plete. Otherwise, on occasion, a full buffer could be dumped and the error message could be printed
as many as 16 characters before it should have otherwise occurred. This would be misleading when
using the trace mode to discover specific errors within a character string.

The recovery routine may also be called by the interrupt processor if it discovers that there
is no more room in the keyboard buffer. For example, this could occur if the user continues to type on
the keyboard while the program is making computations. Physical evidence of the error is indicated by

failure of the computer to echo characters as the user types.

4-2

NOTE

This error could also occur when reading a paper tape
program into the text buffer via the low-speed reader.

If the output hardware is slower than the input hard-
ware, more text is read in than is being read out of the
buffer, resulting in failure of the program to empty the
reader buffer as quickly as it is being filled up, since

the program synchronizes the reading of the characters
with sending them into the buffers. In other words, the
program synchronizes its side of the 1/O buffers, but the
interrupt side of the 1/0O buffers proceeds at a rate deter-
mined by the hardware. To prevent this type of error with
long input tapes, which were prepared off-line, carriage
returns may be followed by some blank tape which is ig-
nored by the input routines, thereby giving the output
routine time to catch up. This is essentially a hardware
problem since the program is unable to stop the low-speed
reader.

4.2.4 Organization

4.2.4.1 Arithmetic Package - The arithmetic is done in the floating point system. The three-word
floating point package allows six digits of accuracy plus the extended functions. The program will
eventually use four words as an option, The exponential range is approximately ten to the six hundredth.
Internal accuracy during computations is 6.924 decimal digits.

The four-word floating point system creates ten digits of accuracy, including roundoff. It

does, however, require more storage for variables and for push-down list data.

4.2.4.2 Storage - The major components of the program occupy locations 1-3200. The remaining
storage 3200 - 4600 is used for text storage, variable storage, and push-down storage, in that order.
The text occupies approximately two characters per register. The variables occupy either five or six
locations per variable depending on whether the three= or four-word option is utilized.

Remaining storage is allocated to the push-down list. Overflow will occur only when one
of these lists exceeds the remaining storage. This could happen in the case of complex programs which
have multiple levels or recursive subroutine calls. The push-down list contains three kinds of data.
One of these is a single location for push-jump and pop-jump operations. The content of the accumu-
lator is also pushed into the same list in a single register. The third type of push-down storage is

floating point storage (see Appendix D).

4-3

Thi's important storage allocation scheme permits flexibility in the trade off of text size,
number of variables, and complexity of the program, rather than restricting the user to a fixed number

of statements or characters, or to a fixed number of subroutine calls, or to a limited number of variables.

4.3 HARDWARE ERRORS

The 8/S will halt of location EXIT +6 if a parity error occurs.

4.4 INTERNAL ENVIRONMENT

4.4.1 Adding a User's Function;FNEW(Z) (c.f., Section 5.2)

The FOCAL system was designed to be easily interfaced for new hardware such as LAB-8,
multiplexed ADCs real-time clocks, or to software such as a nonlinear function.

The information given below, the symbcl table, the various lists, and a core layout are in-
tended to be sufficient for all required modifications and patches. This symbolic approach ensures
greater flexibility and compatibility with DEC modlifications to FOCAL, other user's routines, and
assembly via PAL III on a PDP-8.

Example: Suppose we had a scope routine to display characters at a given point on a scope.
We will call this routine from FOCAL as function by FNEW (X, Y, SHOW). Here X and Y are expres-
sions fo be used as display coordinates for the start of SHOW.

a. First, patch the function branch table.

*FNTABF + 15

XFNEW
b. When control arrives at XFNEW, the X has already been evaluated.
XFNEW, JMS I INTEGER /make 12 bit integer
in AC
DXL /set X - coor.
CLA
c. Now, test for the possibility of another argument.
TAD CHAR
TAD MCOMMA
SZA CLA
JMP I EFUNB3I /no more
d. Move past the separating comma.
GETC
SPNOR

e. Evaluate the second argument.

PUSHJ /this FNEW is
EVAL /not recursive
JMS I INTEGER
DYS;CLA /set Y and intensify
SPNOR
TAD CHAR
TAD MCOMMA
SZA CLA
JMP I EFUNS3I
f. Now, pick up the single letters for display until the end of the function is reached.
DCHR, GETC

TAD CHAR
TAD MRPAR
SNA CLA
JMP I EFUNBSI

Char. display routine called here; (for Tektronics Y002, it is simply PRINTC)
JMP DCHR

g. Definitions from the symbol table are available in Appendix E.

Summary:

a. User defined functions must leave their value, if any, in FLAC and return by a
JMP T EFUNZ3I.

b. The contents of FLAC is converted to an integer in FLAC and in the AC by a
JMS T INTEGER.

c. The floating point arithmetic interpreter is entered by JMS 1 7.
(FOCAL uses its own version of the floating point package .)
d. The address of the user's function is placed by him in the FNTABF list.

e. Location BOTTOM contains the address of the last location to be used for storage. If
BOTTOM is made to contain 4277, for example, then the user has from 4300 to 4577 for
storage of the function processor. The user should achieve his function implementations
using the information given here and in the symbol table without using the actual listing so
that changes made by different users may be compatible and so that they may also be
relocated easily should any changes be made by DEC. (see Section 4.5.1 for Core
Utilization List)

f. The argument following the function name is evaluated and left in FLAC before control
is transferred to the particular function handler. Since evaluation is terminated by either
a comma (,) or a right parenthesis, a special function could have more than one argument.

Only in the case of multiple arguments does a user need to worry about saving his
working machine language storage for a possible recursive use of his function. The contents

of the AC are saved by PUSHA and restored by POPA for this purpose. If there is another
argument, it may be evaluated by PUSHJ; EVAL. Doing a PUSHJ; EVAL-1 is equivalent to

GETC;PUSHJ;EVAL.

4.4.2 Internal Subroutine Conventions

4.4.2.1 Calling Sequences = The (AC)=0 unless it contains information for the subroutines. Upon
returns (AC)=0 unless it contains data.
There are six types of routines and subroutines used in the implementation of this program:

a. Normal subroutines called by an effective

JMS SUBR1
which contain zero at their entry point
SUBRT,0
and a refurn by a
JMP I SUBRI
b. New instructions called by
PRNTLN /(to print a line number)

and usually defined by

PRNTLN = JMS I.
XPRNT

where XPRNT is the entry point for a normal subroutine. These new instructions may have
multiple returns/multiple arguments:

SORTJ /call;
LIST6~1 /data list minus one;
INLIST-LIST 6 /increment to branch table

/return if CHAR is not in LIST6

These new instruction subroutines often have implied arguments, e.g., GETC, READC,
PACKC, TESTC, and SORTC dall use the variable CHAR as their argument. The new
instructions SORTJ and PRINTC use CHAR only if the AC is zero. If the AC is nonzero,
then that value is used. Still others use only the AC for their argument:

RTL6, TSTLPR, PUSHA, and TSTGRP, (see Appendix G).

c. Recursive routines called by

PUSHJ /call
EVAL /address
! /return

where the address contains the first instruction of the routine. The return address is kept in
the push-down list, and exit is made by use of

POPJ /exit subroutine.

Such routines may call each other or themselves in any sequence and/or recursively by
saving data on the push=down list. Others are EVAL, PROCESS, PROC, and GETVAR.

d. Command processor routines to handle specific command formats are called by

SORTJ /go to command
COMLST-1
COMGO-COMLST

ERROR 3 /illegal command

The individual command routines use only new instructions and recursive routines. They may
exit in one of three possible ways:

(1) POPJ - if C.R. is encountered or
(2) transfer to another command routine or
(3) transfer to START

e. Floating point groups of interpretive instructions similar to the following format:

FINT /enter floating interpreter (i.e., JAS 17)
FGET FLARG

FMPY T PTI

EPUT FLARG

FXIT /\eave floating interpreter

f. Main processor modules to handle text input and keyboard commands. This routine
could be "locked-out" by an instructor to protect and execute a stored or immediate
command program repeatedly .

IBAR, INPUT X

Similarly, selected commands are easily deleted by the instructor by placing zero in the
appropriate locations in COMLST.

Line number input and explicit replacements are “short circuited" by

GONE + 11, error 3

4.4.2.2 Subroutine Organization - Figure 4-1 illustrates the internal use of various subroutines.

(c.f., Flow Charts in Appendix G).

4.4.3 Character Sorting

If a program must contend with a number of different characters (or 11-bit items) each of
which can initiate different responses, simply look up the address of the action that corresponds to a
given symbol or bit pattern. If the symbols do not form a continuum, the programmer must find the
most efficient method for determining the corresponding address.

The method used in FOCAL is the table sort and branch. This method uses a subroutine to
match up an input character with one member of a list of characters. The call to the subroutine is

followed by

a. the address minus one of the list ard

b. the difference between that list and a second list. The latter list contains the corre-
sponding addresses. Thus, if a match is found in the first list, the difference is added to the address of
that match to compute the address in the second list which contains the name of the action to be
performed.

c. The next instruction to be executed if a match is not found.

In addition to being simple and concise, although more time consuming than other methods,
this technique has another advantage that is especially useful in a PDP-8: the tables may be placed
at page boundaries to take up the slack that often occurs at the end of a page. This results in a more

efficient use of available core storage.

d. COMMAND ROUTINES

COMMAND AND
INPUT PROCESSOR

TT—] 0o

GO TO

D TYPE
e.| aAsk
C__ &

.
L]
-
.
L]
NEW
b | INSTRUCTIONS WRITE
ov[NORMAL suaaourmesj c.[RECURSIVE SUBROUTINES

RECURSIVE SUBROUTINES

ILT il

Figure 4~-1

4.4 .4 Language

The program is written in PAL III with floating point commands, as well as program-defined
commands, implemented as subroutine calls. (see Appendix G) The program must be assembled using

PALTO.

4.5

NOTES

4.5.1 Core Utilization
NAMES PLACE SEGMENT
0-15, 17-166 FOCAL (4K)
167-175 8K
1762572 FOCAL (4K)
2573-2577 8K
2600-2724 (Interrupt Handler)
2725-3117 FOCAL (4K)
[IOBUF: 3120 (1/0O Buffer)
COMEIN: 3140 (Command Buffer)
FRST: 3206 (Text Buffer)
BEGIN: 44204577 (Initialization)
4430-4577 CLIN
FEXP: 4620-4776 (Extended Functions)
ARTN: 5000-5166 [11 freel
FCOS: 52005345 [32 freel
TGO: 5400~5577 [Ofreel
DECONYV: 5600-5773 [4 freel
FLOUTP: 6000-6157 (Output Conversion)
THISD: 61606176 8K
FLINTP: 6200-6317 (Input Conversion)
HREAD: 6320-6377 (High Speed Reader)
FPNT: 6400-7177 (floating interpreter)
MP4; 7200-~7377 [none freel
XSQRT: 7400-7502 [FSQT() and format buffer]
LIBRARY: 75037556 (Single user L command)
XRTD: 75577576 8K
Storage of text is 32004577 14 functions
32005177 11 functions
3200-5377 9 functions

4.5.2 Extended Functions

Extended Functions may be reinitialized by loading in the second part of main program tape .
Functions are normally deleted by answering the questions asked when FOCAL is initiated.
However, they may also be erased by changing location 0035 to 5377, and locations 401 through
0405 to 2725. Retaining the extended functions allows approximately 1200 characters of text or 170
variables (or any combination in the ratio of 7 characters to one variable). Deleting the extended

functions allows approximately 1800 characters or 250 variables.

4,5.3 Error Printouts

Errors ?01.00
200,00
and ?11.35

Because these errors are time dependent, they may be followed by nonexistant or false line number.

4.5.4 No Interrupts

To read data tapes without running the risk of Keyboard-Input-Buffer overflow (?11.35), it
is necessary to remove the interrupt. This action means that Control-C will not work.

To run FOCAL without interrupts, change:

Loc/From To
63/2676 1353
64/2666 2413

2732/6001 5336

2762/6046 7000

The high-speed punch will now run in parallel with the low-speed punch!
To run the high speed punch at fop speed change:
1356/6041 6021

4.5.5 Operating HS Reader Without Interrupts

To run the high-speed reader without interrupts, make the above patches plus two more:

6324/1037 6011
6325/7700 7410

4.5.6 Non-Typing of Program Tapes During Leading

The "echo" feature for the ASR-33 may be suppressed by changing location 2163 to 7000
(from 4551). This will cause only asterisks to be typed as the tape is read. There will not be line
feeds or carriage returns. (c.f., 4.7.3.4 for multi-user system)

Any output commands will be typed out in the usual manner, as will diagnostics, answers,

etc. Entries from the keyboard will not be typed.

4.5.7 Explanation of NAGSW (Not All or Group Switch)

Since LINENO may be modified, a record is needed of whether a specific line number was
given by XX.YY (where XX and YY are nonzero) or whether a group was indicated by XX or XX: or

XX .00 or whether "ALL" text was indicated by either zero, less than one, or a non—-numeric argument:

4-10

NAGSW =

For one line 4000
For a group 0000
For all text 0001
Error 4001
PDP-8 code for testing NAGSW:
skip if
Or One All Group
ONE SMA - SMA SZA
ALL - SPA SNA SNA
GROUP SMA SZA SPA SZA SZA
4.5.8 Data Inaccuracies

The logical conclusion from the inequality]08 < 227 is that the user can represent 8-digit
decimal floating=point numbers accurately by 27-bit floating=point numbers. However, 28 significant
bits are needed to represent some 8-digit numbers accurately. In general, we can show that if
10° < Zq-] , then q significant bits are always enough for p-digit decimal accuracy. Finally, we can
define a compact 27-bit floating-point representation that will give 28 significant bits, for numbers of

practical imporrance.] In FOCAL, 23 bits are used giving 6.9 digit accuracy.

4,5.9 Eliminating = and : in I/O Formats

Leading equal signs and colons in 1/O formats are omitted by making the following patch:

Loc/From To
1216/4551 7600 /-
6002/4551 7600 /=

4.5.10 Estimating the Length of User's Program

FOCAL requires five words for each identifier stored in the symbol table and one word for

each two characters of stored program. This may be calculated by

c
55 +2 . 1.01 = length of user's program
where s = Number of identifiers defined

c = Number of characters in indirect program
If the total program area or symbol table area becomes too large, FOCAL types an error message .
]Goldberg, B. "8-Digit Accuracy",

Communications of the ACM
Vol. 10, No. 2, February, 1967

4-11

FOCAL occupies core locations 1-3300, and 4600, 7576

8 8 8

700]0 locations for the user's program (indirect program, identifiers, and push-down list). The ex-

. This leaves approximately

tended functions occupy locations 4600-5377. If the user decides not to retain the extended functions
at load-time, there will be space left for approximately HOO]O characters for the user's program.

The L-command may be used to indicate how much core is available for the user.

4.6 FOCAL SYSTEMS

FOCAL systems are designed to take advantage of as many PDP~8 configurations as possible.
With this in mind, the system source language is divided into segments which, when loaded together,
fit the needs of a user and his particular configuration. Thus, when a user changes his configuration
or requirements, he does not need to secure an entirely new FOCAL tape but only to load a new seg-
ment corresponding to the change in his configuration. The scheme used also has the advantage of
simple maintenance, since changes are made to one source file for all possible systems and in some
cases re-assembly of other segments is not needed.

Two source segments create a FOCAL system for a 4K PDP-8. Others are used to create a
FOCAL system with (1) ten digit arithmetic, (2) €K memory, and (3) circular and linear graphics.

The segments of the FOCAL system ancl their functions are listed in Table 4-1. The ASCII
source segments FOCAL.ASC and FLOAT.ASC must be assembled with all configurations and the
resulting binary segment, FOCAL.BIN, when loaded makes a one user FOCAL system for a 4K PDP-8.

The segment INIT.ASC is assembled alone, but when INIT.BIN is loaded with FOCAL.BIN
into field zero it gives you the initial dialog. If the extended functions are to be retained, it is not
necessary fo load INIT at all. All corrections for machine type will be made anyway. After FOCAL
is started and/or the dialog is completed the user may proceed to load other binary segments.

If a user has an 8K PDP-8 and wants to create a large program with extended precision
arithmetic, he need only load FOCAL.BIN, start, and then load 4WORD.BIN, and 8K.BIN as
indicated in Table 4-2. If he wants to share his PDP-8 with three other people, he just loads FOCAL.
BIN and QUAD.BIN into field one and start.

Intra-references between segments is handled by small multiple assemblies, rather than a
large assembly with conditionals for each possible system. For example, to obtain a binary copy of
the segment QUAD .BIN, use PAL10 to assemble, QUAD.ASC, FOCAL.ASC, FLOAT.ASC. This
assembly produces only the listing and binary files for QUAD which end with the PSEUDO-op's
"XLIST" and "NOPUNCH". Tables 4-2 and 4-3 give the allowable combinations of the binary

segments to produce legal configurations of the FOCAL system.

Tdb'ee 4-1
FOCAL System Source Segments

ASCII Segment Name

Function

Description

FOCAL*
FLOAT*
4WORD
8K
QUAD

LBRA T

CLIN
PENT
INIT

The interpreter & TTY 1/O driver.

Modified Floating Point Package.

Extended precision overlay to FLOAT (give 10 digits).
Allows one user to take advantage of an 8K PDP-8.

Allows multiple users (up to 4) to use FOCAL or
8K PDP-8.

Allows multiple users (up to 7) to run and save
FOCAL programs on an 8K PDP-8 with disk.

The user may have a scope to interact with FOCAL.
A variation of QUAD allowing five (5) users.

The symbolic source for the initial dialog program.

(4.6.5)
(4.6.4)
(4.6.6)

(2.14.2)

(5.8)

*These two segments must be assembled and loaded together for all configurations. They are
separated for editing convenience.

TNol‘ yet implemented.

Table 4-2
Allowable FOCAL Systems

1 = Must be loaded into field one
0 - Must be loaded into field zero
Y - Command may be used if disk system is built

N - Command is illegal
* = Command different

Binary Segment

Allowed Combinations &
Subsets are indicated by

Minimum Hardware

entries in vertical columns Required
FOCAL 00001111 4K
INIT (optional) 0000
4WORD 00 1 1 4K
8K 00 8K
QUAD or PENT (non-8/5) 0000 8K/PT08s
LIBRA (non-8/S) 00 8K/PT08s/DF32
CLIN (optional) 01 1 Graphics Terminal
LIBRARY COMMAND YYYY NN?* * DF32
(for disk monitor)

FOCAL is always loaded first in the proper field.

4-13

4.6.1

Table 4-3
Variations for FOCAL Systems

Any combination of these three sets (2%2*4=16),

a. 8K overlay b. Disk Monitor c. No Dialogue
4K No Disk No ext. functions
SINe, COSine only
All ext. functions

or QUAD four-user system or PENT five-user system (PENT is obtained by a
modified assembly of QUAD; see listing) may be used with

CLIN graphics (4)
4WORD overlay
Neither

Both

These are formed from only six sections of binary tapes.
The CLIN graphics function can be used for numerical control.

4K FOCAL can be run on the following DEC computers: 5, 8, 8/S, 8/1, 8/1,
LINC-8, LAB-8, TSS-8, PDP-12,

a. Load FOCAL & INIT
b. do initial dialogue
load any or all of 4WORD, 8K, CLIN.

restart and use

O

o.

FOCAL Systems Assembly

a. Systems programs

.RUN T PALIO0
*FOCAL.BIN,FOCAL.LST+~FOCAL.ZZL,FLOAT.ZZL

*QUAD.BIN,QUAD.LST+QUAD.ZZL,FOCAL.ZZL ,FLOAT.ZZL
b. Initial dialogue
* 1C

.RUN T PALIO
*INIT.BIN, INIT.LST<INIT.ZZL

*

c. Overlay routines
.R PALTO
*4WORD.BIN,4WORD .LST+~4WORD.ZZL,FOCAL.ZZL ,FLOAT.ZZL
*8K .BIN,8K.LST+8K.ZZL,FOCAL.ZZL,FLOAT.ZZL
*CLIN.BIN,CLIN.LST+CLIN.ZZL,FOCAL.ZZL ,FLOAT.ZZL

*

4-14

4.6.2 FOCAL Binary Paper Tapes
.ASDSK D
DSK ASSIGNED

.AS PTP
PTP ASSIGNED

.R PIP
*PTP: «</ID:QUAD .BIN
*PTP: </1D:4WORD .BIN,8K .BIN ,CLIN .BIN

*PTP:+/ID:FOCAL .BIN, INIT.BIN
tC

4.6.3 FOCAL Listings

*LPT:«D:QUAD.LST ,4WORD.LST,8K.LST,CLIN.LST,INIT.LST,FOCAL.LST
*TTY:</L DTAa:
58: FREE BLOCKS LEFT

FOCAL .ZZL
FLOAT .ZZL
QUAD ZZL
4WORD .ZZL
8K ZZL
CLIN ZZL
INIT ZZL
PAL10 SAV
JR36

JR46

4.7 FOCAL SEGMENTS

4.7.1 8K Single User Overlay - 8K

To increase the size of program, the 8K overlay uses the upper 4K for storage of the user's
source text. The maximum number of variables does not change as they are still stored in the lower 8K.

Load the overlay ofter doing the initial dialogue with the 4K version.

4.7.2 Extended Precision Overlay = 4Word

This overlay provides FOCAL with 10~-digit accuracy when the 10th digit goes to enable.
The overlay increases the number of words needed to store a number from three words to four words.
The number of variables that may be stored is decreased accordingly .

Load the overlay after doing the initial dialogue with the 4K version.

4-15

4.7.2.1 Double Precision Multiply in Four-Word FOCAL

To multiply two numbers, the product of which is greater than ten digits and yet retain the
least significant figures, use a double precision operation.

For example, to multiply:

M = 20243974
by
N = 69732824

let MO = the st 4 digits of M and let M1 = the 2nd 4 digits of M. Similarly, NO and N1 are the left
and right halves of N,
Note the correction of an input error in the high order part of N.
*W
C-4WORD@1/69

14.10 ASK 1,MO,MT,"*"NO,N1,!
14.20 SET A=MO*NO

14.30 SET B=NO*M1 + MO*N1
14.40 SET C=M1*N1

14.50 SET Z=FITR(C *1E-4)

14.60 SET C=C-Z*1E4

14.70 SET B=B+Z

14.80 SET Z=FITR(B*1E-4)

14.90 SET B=B-Z *1E4

14.99 TYPE 1%8,A+Z ,%4,8,C,!
*GO

:2024 :3974 * :6928+6973 :2824
= 14116694= 7600= 2576

*

4.7.3 Four User Overlay - QUAD

QUAD allows an 8K PDP-8/1, -8/L with up to four teletypes to time-share FOCAL. In
effect, each user has the equivalent of a 4K PDP-8 or PDP=12 with FOCAL. The QUAD overlay is
located in the lower 4K, and the FOCAL interpreter is located in the upper 4K. Users are traded for
one of three other users in the lower 4K. Swapping of users is based upon 1/O waits and checkpoints

in the FOCAL interpreter.

4.7.3.1 Four User Loading and Operating Procedure

a. Load 1st binary part into field one. (FOCAL.BIN)
b. Load 2nd binary part into field one. (QUAD.BIN)

4-16

c¢. Load address

7600
and START

.SAVE F4UB10~-2177,3000,3600, 5400;200
.SAVE F4UA!10-13220, 14600-17577;

(Any errors made here may require reloading field zero.)
d. (Calling Sequence)

.FAUA
.F4UB

(If any problem occurs hit stop, record the PC and restart at 200 or reload.)

4.7.3.2 Swapping = At certain points in the FOCAL program it is a pure procedure. If swapping
occurs af these times, then only 1K of impure data needs o be saved instead of 4K. This factor of
four considerably improves system performance. Such a point is called a checkpoint.

Each time an operating program reaches a checkpoint the executive routine checks to see
whether another user should be swapped in at that time.

This check is also made if the operating program goes into a state of waiting for input-output,

except for output during use of trace.

4.7.3.3 Workload and Timing
a. Swapping is done on a demand (I/O wait) and a cooperative (checkpoint) basis.
Therefore, no clock is needed. Not having a clock reduces system overhead by about ten percent.

b. Fully asynchronous I/0 is backed up by large (over 16 characters) and uniform (easy to
process) character buffers. Serial to parallel conversion of the bit stream is done in external hardware
by PTO8 line controllers. This reduces system load by 18 to 30 percent.

c. If each of eight user programs takes less than 100-17 msec to generate one 8-digit
output string, then the system is barely output bound and no delay will be observed in response times.
The 17 msec is average access time to the disk, and one TTY character takes 100 msec to be typed.

4.7.3.4 Special Controls = A control-R character (TAPE) suppresses echo of input tapes except for
the line-feed. A control=T (NOT-TAPE) or Control=C restores the echo of input characters.
It is a good practice to punch a Control-R at the beginning of all off-line tapes. An

alternative is simply to type Control-R manually before setting the low speed reader to RUN.

4.7.3.5 Dialogue - There is no initial dialogue with QUAD.

4.7 .4 Graphics for Circles and Lines - CLIN

/CLIN = GRAPHICYS OVERLAY FOR FOCAL,.22K PALLD V133 14-MAR<69 16101
/CLIN « GRAPHICS OVERLAY FOR FOCAL,Z#K

/FINITE DIFFERENCE EQUATION OF A CIRCLE = FOR FQCAL
/16,2 5 pIX=XBi5 =Y-YBis R=FgpT(gr2+pt2)

/16,3 S Z3FNEW(6.3*%*R#C,P,Q,Xx2,YR,S/R)

/16,4 S X@sX;S yY¥=Y

/LINEAR DIFFERENCE EQUATIqy oF A LIyE

7474¢4 D 164515 2ZFNEW(R,P/R,Q/R,XB,Y8,7)1D 46,4

6957 0XS=26957
6053 DXL=6053
6067 DYS=6067
2935 #0TTOM
2035 4437 FeIN=1
3427 ®FNTABF+19
2437 4449 FCIN
4444 *44p0+%p
444 4453 FCIN, JUS 1 TINTEGER
444f 7040 CMA
4442 3342 DCA R /SAVE THE POINT COUNT
4443 1340 TAD XXP
4444 3010 DCA AXIN /START DATA POINTERS
4445 1117 TAD M5 /FOR 5 MORE ITEMS
4446 3316 DCA CT
4447 4537 GETA, PUSHJ /COMPUTE EACH ARG,
4450 1612 EVAL=1
4451 1044 TAD EXP JFOUR FIXED POINT RESULTS
4432 1341 TAD LP
4453 3044 DCA EXP
4454 4453 JMS 1 INTEGER
4455 7220 CLA
4456 1045 TAD P13 /SAVE UNNORMALIZED FORM
4457 341p DCA 1 AXIN
4460 1045 TAD HORD
4461 341p DCA 1 AXIN
4462 1046 TAD LORD
4463 3410 DCA 1 AXIN
4464 2316 1Sz CT /TEST FOR END OF DATA
4455 5247 JMP GETA
4466 1046 TAD LORD /TEST FOR CJRCLE OR LINE
4467 7640 gZA CLA
4470 5343 JMP XFCIR

4-18

/CLIN =~ SKAP4ICS QVERLAY FUR FOCAL 272K PAL12 V133 14=-MAR=69 16101 PAGE 2

4479 7190 XFLIN, LU /VECTOR PLOT ALGORITHM
7. - TAD X8
1478 1333 TAD P2t
4474 3331 DCA XB1
4475 7¢J4 RAL
4476 1332 TAD X@@
4477 1322 TAD PR
4519 5253 OXL /(6317)- FOR LAB=8
4511 3339 DCA X2
4572 711 cLL
4533 1334 TAD YD1
4554 1326 TAD 01
4575 3334 0CA Y1
4536 7304 RAL
4527 1333 TAD Y@@
4519 1325 TAD 0y
4511 6p67 DYS /(6387 - FOR LAB=8
4512 3383 DCA YOO
4513 2342 1$7 R
4514 5271 JMPOXFLIN
4515 5535 JMP 1 EFUNSI
17747
/TO DISPLAY A POINT X,Y: SET Z=FDIS(X,Y)
/TO DRAW LINE X@,Y2 TO X,Y: Do 17
/TU SET Xx@,Y#=X,Y: DO 6,4
/TO ERAST SCREEN i TYpE "(ERASE CODE)"
/TO RESET PRINT ORIGING TYPE "(RESET CODE)"

/TU DRAW A CIRCLE ABOUT Xg,Y? STARTING AT X,Y

/AND GOING COUNTERCLOCKWISE FOR FRACTION

/70F A CIRCLE ALPHA SET S=+_ ;SET C=ALPHA3ID016
/T0 GO CLOCKWISE: SET S=2=13D0 16

/GROUPS 16 AND 17 CREATE QR USE THE VARIABLES
/X Y2XBsYW,2,R,CaPrQsKsAND S,
/S MAY BE REPLACED BY A 1 IF DESIRED,

4-19

JCLIN - 3RAPAICS OVERLAY FOR FOCAL,ZZK PAL12 V133 14-MAR=69 16:01 PAGE 3

4516 4pra CT, 4}
4517 2900 7
4529 2@20)
4521 9070 PP 7
4522 3079 PO 7
4523 9820 P1: m
4524 g9ny QQ 2
4525 3929 0d, a
4526 72000 01 2
4527 2313 XX 13
4530 2224 X043, o
4531 2024 X391, o
4532 2313 Yy, 13
4533 220 Y24,)
4534 PYLQ Yol, o
4535 3320 KK 1)
4926 2020)
4537 3330 2
4547 4527 XXP, PP=1
4541 3414 LPs 14
4542 DA2W R, 2
/70 USE AN PLOTTER, CLIN IS NOT NEEDED; SIMPL,

/AUD THE FOEL&“ING LINES TO GROUPS 16 AND 17 1

/716,25 § K=S5/R

/16,30 F I=@,6.3%R#C;S P=p=Q#K;S Q=Q+P#K;S 2EFDIS(XD+P,YB+Q)
/17,18 D 1642iF 1=22,RiS X@=X@+P/R3S YPsYR+Q/R3S 2=FD1S(X2.Y0)
/17,2@ D 16,4

JTHE ITERATION PARAMETER “I" MAY BE TAKEN IN GREATER INCREMENTS IF THE
/SCALE FACTOR 1S ALSO CHANGED; I,E,
/17.15 FOR*1=§,4,RiS XpzXg+K*PIS Yp=Yp+Q*K}IS 2=FDIS(Xp, YD)

420

/CLIN =~

ShAP-ICS QVERLAY FOR FOCAL,2ZK PAL1Y

4543
4544
4545
4546
4547
4550
4551
4552
4553
4554
4555

4556
4557
4560
4561
4562
4563
4544
4555
45546
4567

4579
4571
4572

4427
2324
4335
6316
7321
2316
6321,
1327
202
4453
6057

4427
2321
4335
1324
6324
1332
YL
4453
6067
72209

2342
5343
5535

4629
2891

XFCIR,

NOPUNCH
PAGE
FIELD
XLLI§T

FINT
FGET
FMUL
FPUT
FGET
Fsus
FRUT
FADD
FXIT
JMS

DXs

Fl T
FobT
FMuUL
FADD
FRUT
FADD
FX1T
MS
DYS
CLA

152
JMP
JMP

00
KK
cT
PP
cT
PP
XX

I INTEGER

PP
KK
0Q
Qa
YY

I INTEGER

R
XFCIR
1 EFUNSI

4-21

V133 14~-MAR<69 16101 PAGE 4

/CIRCLE ALGOR]THM

/(6317) = FOR | AB«8
/CLEARS AC

/(6307) = FOR LABa8

4.8 FOCAL DEMONSTRATIONS

4.8.1 One-Line Function Plotting

This example demonstrates the use of FOCAL to present, in graphic form, some given function

over a range of values. In this example, the function used is

y =30 + 15(SIN(x))e - lx
with x ranging from O to 15 in increments of .5. This damped sine wave has many physical applications,
especially in electronics and mechanics (for example, in designing shock absorbers for automobiles).

In the actual coding of the example, the variables I and J were used in place of x and y,
respectively; any two variables could have been used. The single line 08.01 contains a set of nested
loops for I and J. The J loop types spaces horizontally for the y coordinate of the function; the I loop
prints the * symbol and the carriage return and line feeds for the x coordinate. The function itself is
used as the upper limit of the J loop showing the power of FOCAL commands.

The technique illustrated by this example can be used to plot any desired function. Although
the * symbol was used here, any legal FOCAL character is acceptable.

28.01 F 1=0,.5,15; T "*",1; F J=0,30+15*FSIN(I)*FEXP <=.1*I 5T " “

*

*DO 8.01

*

4-22

4.8.2 How To Demonstrate FOCAL's Power Quickly

a. Load the program and start at 200.

"~ b. Explain that the initial dialogue gives you options.
c. Try some other response like MAYBE) .
d. Now answer YES .

e. The preceeding has demonstrated the interactive capabilities of the language and the
compromises that it permits.

f. In a 4K machine (4096 words) FOCAL gives the user 15 functions and uses only 3K,
leaving enough room to solve up to 6th order simultaneous equations.

g. The asterisk (*) means that FOCAL can now respond to your commands.
h. The basic command is TYPE:

*TYPE 512 +FSQT (%))
i. Now compute 5 factorial:

*SET ALPHA=]
*FOR 1=1, 5; SET ALPHA=ALPH*I

i. The answer is ready when the next asterisk is typed out:
Then type
*TYPE ALPHA
for the answer.

k. Now if you are using a PDP-8 or =8/1, demonstrate a large number:

*SET A=1
*FOR 1=1, 300; SET A=A*I

some time later

*TYPE A
=0.395 615

. Now generate a plot via a stored program:

*1.1 FOR Y=0, .5, 15; TYPE! ; DO2

*1.2 QUIT

2.1 FOR X=O, 12+10*FSIN(Y) ; TYPE " "
2.2 TYPE " *

*GO

m. Now use the MODIFY Command to change 10* to FEXP (Y/6)* and try again.

4.9 FOCAL Versus BASIC

FOCAL is superior to BASIC, not only in terms of computing power and ease of use, but also

in maximum use of the memory space, which is so often limited in small computer systems.

423

FOCAL contains all the power of BASIC, and in addition provides the following capabilities:

a. Control of the output format (i .e., precise figure location on a page and graphical
representation);

b. An "immediate" mode, allowing the system to operate as a desk calculator and fo
execute simple problems without writing a program;

c. The capability of executing individual "stored program" statements in the immediate
mode for debugging and verification;

d. Built-in symbolic editor capable of searching program statements for specified characters
and inserting and deleting characters within a statement, thereby eliminating the retyping
of the entire program statement;

e. Multiple statements may be grouped on each line for more logical ordering of the pro-
gram;

f. True multiple level re-entrant subroutining capabilities;

g. A trace feature which types out selected segments of a program (as the program is
executed) to pin point exactly where a program error occurred;

h. Commands may be abbreviated o one letter; this eliminates wasted typing time when
writing a program and-increases the available storage space for use by additional program
statements;

i. Programs may be saved on disk and chained together;

i. Point plot displays, vector displays, X, Y plotters, and analog to digital converters
may be operated by FOCAL; this capability can be used in an on-line, real-time fashion;

k. FOCAL SYSTEMS allow use of several hardware configurations: 8K, 10 digit, display,
and multi-user.

4-24

CHAPTER 5
ADDITIONAL FOCAL APPLICATIONS

5.1 FOCAL FOR THE LAB-8

5.1.1 Standard

Two commands have been added to FOCAL to implement the A to D converter and the
oscilloscope display on the AXO08.
a. Ato D Command:
FADC(N) where N is the channel number in decimal .
The command:
SET Z = FADC(28)

gives the variable Z a value of octal channel 34 depending on the position of the upper
righthand potentiometer. The other 3 knobs are channels 29, 30 and 31. A subroutine
in FOCAL to read the A to D in volts is as follows:

15.1 ASK CHAN;C-0,1,2,3

15.2 SET X=FADC(28+CH)

15.3 IF (X-256)15.Y,15.4;SET X=X-4096
15.4 SET X=X/255

The input variable is CH for values of 0 to 3, and the output variable is X with values
t/volt.

b. Display Command:
The display command has been modified to use only one statement to define X and Y.
SET Z = FDIS(X,Y).

will display a point on the oscilloscope screen defined by points X and Y. X can range
between 0-511 and Y from =255 to +255. The variable Z is a dummy. (It is given the
value of the integer part of Y.). (c.f., Section 5.8 for circle and sector algorithms.)

CAUTION

Since the ADC of the AX08 hardware is an integral part
of the display logic, using both display and A and D,
may result in splatter of the Y direction of the oscillo-
scope screen.

5.1.2 Additional (Possible) FOCAL Functions for AX-08

FADC (n): Converts (decimal) channel n. Returns result of conversion.

FDIS (x,y): Loads display X and Y; intensifies point.

5-1

FTIM (n): Delays n RC clock pulses (n < 4096)
Returns # of 100 ps increments since last used.
Xtal clock interrupt is enabled.
Interrupt servicing for Xtal clock as
follows:

SKXK

JMP OTHERS
CLXK

ISF TIME +1
JMP .43

ISF TIME
NOP

ION
JMPTO

Clock flag servicing will tie up 20% of processor time.
When FTIM is called, do the following sequence:

TAD (1002) /enable Xtal clock, start RC clock
OTEN
get n
SNA
JMP XTIME
CMA IAC
DCA RCNTR
CLRK
SKRK
IJMP -1
1SZ RCNTR
RMP 4
XTIME, PUT TIME, TIME +1 in FLAC
DCA TIME
DCA TIME +1
return to FOCAL

FNEW (a, b, c)
a=0: Turn on relays indicated by b (b < 7)
Turn off relays indicated by ¢ (¢ < 7)
as follows: B

get b
RAL; RTL
AND (70
OTEN
get ¢
RTL; RAL
AND (70
CMA
ZTEN
CLA
return to FOCAL

a=1: "and" external register with mask
b: mask (octal)
c: ignored

Get characters of b
interpret as octal #
DCA XMASK
XRIN

AND MASK

XRCL

CMA JAC

TAD MASK

SNA CLA

IAC

store in FLAC
return to FOCAL

a=2: "or" external register with mask
b: mask (octal)
c: ignored

get characters of b
interpret as octal #
DCA XMASK
XRIN

AND MASK

XRCL

SZA CLA

IAC

store in FLAC
return to FOCAL

5.2 FNEW FOR DATA ARRAYS*

A new function for 8-K FOCAL is available which uses field one to store data arrays in
floating double precision, single precision, and signed integer format. This facility is added to
FOCAL via the function call FNEW. The function may be called recursively to any level, and all
of the features of FOCAL are retained. In addition an ERASE or ERASE ALL command will not wipe

out the array. Hence, variables may be stored for use in successive programs.

5.2.1 Storage Requirements

Fits into unused locations in floating point package
5.2.2 Usage
5.2.2.1 Loading - Load after FOCAL has been loaded into the machine (and the initial dialogue is

executed). Load the first part of the overlay using the Big Loader. If a single precision floating

array is desired press CONTINUE. A patch should now be read in to allow a 1980 element array in

*Originated by University of Georgia, program not supported by DEC.

5-3

single precision floating point. If an integer array (maximum number = 3047) is desired press
CONTINUE. A patch will now be read in to allow a 3965 element signed integer array.
Restart FOCAL at 200.

5.2.2.2 Calling Sequence - To store a variable Z as array element J:
* S X=FNEW (J,Z)
or
* 4.3 § X=FNEW (J,Z)
In addition, X will be set equal to Z.
To call the array element K and set Z equal to this element:
* S Z=FNEW(K)
i.e., if there is only one argument the instruction is interpreted as a "GET". If there are

two arguments it is interpreted as a "PUT".

5.2.3 Recursive Calling

The function FNEW may be called recursively at any level. viz.
* S Z=FNEW [J, FNEW(J+10)]
sets Z=FNEW(J+10) and stores FNEW(J+10) in array element J.
* 3,2 S Z=FDIS (J*1000) , FDIS(FNEW(J)*NORM)
the arguments may be any arithmetic expression. The following are valid:
* S Z=FNEW (J*10-3, FEXP(X2)*Y)
* S Z=FNEW (J,FNEW (K)*FEXP(FNEW(L)))

5.2.4 Restrictions

Double precision floating: 0<J <1320 (23 bits of significance)

Single precision floating: 0<J <1979 (11 bits of significance)

Integer Array: 0<J <3965 (11 bits of significance)
1Z1<2047

5.2.5 Description

The function FNEW protects the binary loader in upper core. The function checks to see if
J is too large, but does not check to see if Z is larger than 2047 in the integer array case (c.f., array
overlay).

The user, of course, may subdivide this array into any number of smaller arrays, keeping

track of his own indices.

5.3 DYNAMIC INTERRUPT PROCESSING VIA FOCAL, 1969

This simple patch allows real~time interrupts to initiate execution of a specific FOCAL
subroutine (e.g. Group 31) which gains control (i.e., D031) when an interrupt occurs from an external
device. The FOCAL subroutine could sample various channels of the A/D converter, set a few con-
stants, then turn off the interrupt, and return to the main FOCAL program. The main FOCAL program
will carry out the analysis or output of data during the time between these external device interrupts.
The external device could even be an animal and the time between interrupts will be asynchronous and
long (between 1 and 1000 seconds), or the external device will be a clock, in which case the time

between interrupts will probably not be less than 100 ms or greater than 1 sec.

/patch to interrupt processor
(tag assignments from symbol table)

EXIT /replaces H.S. Reader
I0T1 /skip if device
JMP .+3
NOP /"HINBUF" is cleared
*PC1 /checkpoint in main program
JMP 1175 / valid for 8K, also
*167
DIPCHK /Dynamic Interrupt Check
*HINBUF
1 /initialized to non-zero
*HREAD
DIPCHK , TAD HINBUF
SZA CLA
POPJ
TAD PC /save FOCAL register
PUSHA
TAD SPCLN /(your group #)
DCA LINENO
DCA NAGSW
ISZ HINBUF
PUSHJ
DO+1
POPA
DCA PC
POPJ
SPCLN, 7600 /(group 31)

The routine in group 31 returns control by "RETURN". This feature does not operate until

main program is started. It will operate during execution of a direct command.

5.4 SIMULTANEOUS EQUATIONS' SOLUTIONS

This program will work with a set of simultaneous linear equations (in 4K. FOCAL 6 equations
is the limit) and output the solutions. To do this the program requests a value "L", the number of equa-
tions and variables to be processed. The program then requests the coefficients and constants for each
equation, in a matrix like format. The solution values are typed out in a column with the names "X (0)"

through "X(L=1)". The program is available through DECUS.

5.5 FAST FOURIER TRANSFORMS PROGRAMS

The FAST FOURIER TRANSFORMS Program is designed to accept samples of a complex wave
pattern as input and, through a FOURIER analysis, describe its component sine and cosine waves in
terms of amplitudes and frequencies.

The user inputs a number "N", which must be a power of two, (in 4K. FOCAL, 14" is the
limit) and which describes the number of samples to be used in the analysis. Next the samples, which
are wave height measurements taken at regular intervals, are requested. Output is in the form of two
columns (side by side), the left of which describes the cosine wave components while right hand

column describes the sine wave components.
It should be noted that because the number of samples is always a power of two, the number

of complex multiplications is cut drastically. For this reason computation time is also greatly reduced.

NOTE

In order to use this program, the exira extended
function FX(A,B) must be loaded into memory
via the BIN loader.

FAST FOURIER TRANSFORMS

W
C-FOCAL.,1968

01.08 A "POWER OF 2 *,NU
01.10S N=2 tNU;S TP=2*3.14159/N

01.18 5 $=N/2:, L=1;S Q=5-1;5 H=1-NU

01.20 F 110,N-T;A L;A I,XR(1);S XI(1)=0 |

01.22' S SR=XR(QHS)+XR(Q);S XR(Q+S)=XR(Q)-XR(Q+S);S XR(Q)=SR
01.241 (Q) 1.26,1.26;S Q=Q-1;G 1.22

01.261 (L-NU) 1.28,1.54,1.28

01.28 S L=L+1;S $=5/2;S H=H+1;S P=N-1;S Z=1/(21(-H))
01.325 C=1

01.34 S U=FITR(P*Z);S K=FX(NU,U)*TP

01.36 S CO=FCOS(K);S SN=FSIN(K)

01.38 S GR=CO*XR(P)+SN*XI(P);S GI=CO*XI(P)-SN*XR(P)

5-6

01.40 S
01.42s
01.46 S
01.48 S
01.52s
01.54 F
*

*C-TRANSFORM OF INTERFERENCE PATTERN FORMED BY MIXING A SINE
*C-WAVE OF AMPLITUDE 1.0 AND A COSINE WAVE OF AMPLITUDE 1.5

*

*GO

Q=P-S5;S SR=GR+XR(Q);S SI=GI+XI(Q);S XR (Q)=XR(Q)-GR

XI(Q)=XI(Q)-GI;S XR(P)=SR:, XI(P)=SI

P=P-1; I (-FABS [C-S1) 1.48; I (P-S+1) 1.52,1.26,1.52

C=C+1;G 1.34
P=P-5;G 1.32

1=0,N-1;S K=FX(NU,I);T !,%3.2,2*XR(K)/N,"

POWER OF 2 :3

:1.5
:1.768
:1
:=.353
:=1.5
:=1.768
=1
:.353
++.00
=+1.50
=H).00
=+).00
=+0.00
=+).00
=+3.00
=+1.50

*

XFX,

.00
.00
.00
.00
.00
.00
.00
.00*

/FNEW(u,v) for FFT
*BOTTOM

4377
*FNTABF+1Y

XFX
*4400
JMS 1 INTEGER
Dca U
PUSHJ

EVAL-1
JMS T INTEGER
CIA
DCA T2
DCA LORD/low order

TAD U

CLL RAR

DCA U

TAD LORD
RAL

DCA LORD
ISZ T2

JMP 7
JMP T EFUNSI

", 2*X1(K)/N

5.6 TRAVEL VOUCHER TO EXPENSE VOUCHER CONVERSION PROGRAM

Though FOCAL is not a business oriented language the use of FOCAL in business applications
is not impossible. Such a use is seen in the TRAVEL VOUCHER TO EXPENSE VOUCHER CONVERSION
program with which the user may ease the task of reporting his expenses after a business frip.

Working from the input of the number of the days using the expense account and the categor-
ized input of the expenses encountered (all amounts must be entered in terms of cents rather than dollars)
during that period, the computer tallies and itemizes

a. the daily expenses and

b. the totals of the expenses over the entire period.

The data, thus summarized, are very easily transcribed onto an employee expense voucher.

TRAVEL VOUCHER TO EXPENSE VOUCHER
CONVERSION PROGRAM

C-FOCAL., 1969

01.01 T !l "EXPENSE ACCOUNTER (TYPE ALL AMOUNTS IN PENNIES)"
01.05 ERASE

01.10 ASK %6.02,!"HOW MANY DAYS ?" DAYS, !

01.20 IF (DAYS) 1.1,1.1; FOR I=1,DAYS; DO 5

01.40T !! " THE TRIP TOTALS ARE";F I=1,30;T " "

01.41T "GRAND"!

01.60 SETLO=LT; SET ME=ET

01.70 SETOJ=OT; SET MI=MT; DO 7

01.80 TYPE " $" 11111l

01.90G 1.05

05.10 ASK !'11"BRKFST " Bl

05.20 ASK !"LUNCH " B2

05.30 ASK !"DINNER " B3

05.40 ASK I"SNACKS " B4

05.50 ASK I"MILES TRAVELED ? "B5; SET B5=B5*9; TYPE " $ B5/100; DO 6
05.60 ASK !I"HOTEL " B6

05.70 ASK I"OTHER " B7

05.73 ASK I"TELE " B8

05.75 A I"TAXI "Ci

05.76A 1"PARKN "C2

05.77A !"TOLL "C3

05.85 ASK I"MISC. " BY

05.90 TYPE !"THE DAILY TOTALS ARE"!

05.91 SET LO=Bé; SET ME=B1+B2-+B3+B4

05.92 SET OJ=B5+C1; SET MI=B9+B8+B7+C2+C3
05.93 TYPE "DAY NO."; DO 7.1

05.94 TYPE 1%3,1," ";DO7.2; DO7.3
05.95 SET LT=LT+LO; SET ET=ET+ME

05.96 SET OT=OT+OJ; SET MT=MT+MI

N

5-8

06.10 ASK " MISC. TRAV. ? "B6; SET B5=B5+B6

oz.1oT " LODGING MEALS OTHER TRAV. MISC.
07.15T !

TOTAL

07.20T %8.02,LO/100," "ME/100," "OJ/100," "MIA00,"

07.30 T (LO+ME+OJ+MI)/100
*

*
*G

EXPENSE ACCOUNTER (TYPE ALL AMOUNTS IN PENNIES)
HOW MANY DAYS? :2

BRKFST :150
LUNCH :170
DINNER :645
SNACKS :35
MILES TRAVELED ? :36
$ =+ 3.24 MISC. TRAV. ?:0

HOTEL :1400
OTHER :0
TELE :40
TAXI :0
PARKN :250
TOLL 0
MISC. :0

THE DAILY TOTALS ARE
DAY NO. LODGING MEALS OTHER TRAV. MISC
=+ 1 =+ 14.00 =+ 10.00 =+ 3.24 =+ 2.9

BRKFST :98
LUNCH :192
DINNER :650
SNACKS :30
MILES TRAVELED ? :23
$ =+ 2,07 MISC. TRAV. ? :0

HOTEL :1400
OTHER :398
TELE :285
TAXI :0
PARKN :250
TOLL :0
MISC. :0

THE DAILY TOTALS ARE
DAY NO. LODGING MEALS OTHER TRAV. MISC

=+ 2 =+ 14.00 =t 9,70 =+ 2,07 =+ 9.33
THE TRIP TOTALS ARE

LODGING MEALS OTHER TRAV. MISC

=+ 28.00 =+ 19.70 =+ 5.31 =+ 12.23

5-9

TOTAL
=t 30.14

TOTAL
=t 35.10

GRAND
TOTAL
=+ 65.24 $%

5.7 TWINS DEMO

The TWINS DEMO Program is an interesting experiment in the applications of plotting with
a visual scope display unit. It must be noted that several functions must be loaded into memory before
this program will operate. This program is an integral part of curve fitting. The Twins Demo requires

V68/1 Control with Tektronix 611 Scope. (i.e., 340 control)

TWINS DEMO
W
C-FOCAL., 1969

01.055 A=FDIS () +FDXS () +FNEW(2) + FNEW (256)

01.105 A=.2;S SW=19

01.70F T1=0,.05,6.284;S T2=T+3.14159/4;D0 1.8;D0 15
01.75 G 2.1

01.80S R=4*FSIN(T) +4;S X=8+R*FCOS(T2);S Y=32+R*FSIN(T2)

02.10 F Y=28.5,A,32;5S K=((¥-30.5)/1.5) 12;S X=9-(K*K-K);DO 15
03.10 F X=7.4,A,10.5;5 Y=26.5-((X-9)12),/2;DO 15

04.10 S X=10.5;F Y=17,2*A,24.8;DO 15

05.10 F X=7 .2*A,8;S Y=22-7*(X-7); DO 15

06.10 F X=10.5,A,15;5 Y=26-FSOT(5*(X-10));DO 15

07.10 F X=11.5,A,14.5;D 8.5
07.20 F X=14.5,.2*A,15;D 8.5

08.10 F X=3,A,4.6;DO 8.4

08.20 F X=11,A,12;DO 8.4

08.30 G 9.1

08.40 S K=X-7;S Y=12+K*K)/4;DO 15

08.505 Y-21-FSQT(6.25-(X-12.5)12);D 15

08.605 Y=(X-7)12-1;D 15

08.705 X=-5+FSIN(3.14159*(Y-12)/7);D 15

09.10 F Y=0,2*A,16;S X=12-((Y-8)12)/64;DO 15

10.10 F X=2,A,4.5;S K=X-3;5 Y=K*(K*(.47*K~.5)+1.03)+26;DO 15

11,10 F X=2,(.2*A),2.85;D 8.6
11.20F X=4.7,.2*A,6;D 8.6

12.10F Y=4.5,2*A,12;D 8.7
12.20F Y=15,2*A,25;D 8.7
13.10F X=5.3,.3*A,6;S Y=-7*(X-6);DO 15

14.10F Y=12,2*A,24;S K=((Y-15.5)/11)12;S X=5.5+12.5*(K*K-K);DO 15
14.20F Y=4,2*A,12;S K=Y-8.5;5 X=8.1-FSQT(27-K*K);DO 15
14,30R

NOTE

Group 15 must be supplied to scale X, Y and call ap-
propriate display for the device. (c.f., Section 5.8)

£-10

APPENDIX A

FOCAL COMMAND SUMMARY

Command Abbr Example of Form
TYPE T TYPE FSQT (AL t 3+FSQT (B))
TYPE "TEXT STRING"!
WRITE W WRITE ALL
WRITE 1
WRITE 1.1
IF I IF (X) 1.2,1.3,1.4;

Explanation
Evaluates expression, types out =,
and result in current output format.

Types text. Use | to generate
carriage return line feed.

FOCAL prints the entire indirect
program.

FOCAL types out all group 1 lines.
FOCAL prints line 1.1

Where X is identifier or expression.

Control is transferred to the first, second, or third line number if (X) is less than, equal to,

or greater than zero respectively. If the semicolon is encountered prematurely then the remainder of

the line is executed.

MODIFY

M MODIFY 1.15

Enables editing of characters on
line 1.15

The next character typed becomes the search character. FOCAL will position itself after

the search character; then the user may

QUIT
RETURN
SET
ASK

a
b.

[T o]
. .

[¢]

type new text, or

form-feed to go to the next occurrence, or
bell to change the search character, or
rubout to delete backwards, or

left arrow to kill backwards, or

carriage return to end the line, or

line-feed to save the rest of the line.

QUIT or * or control-C
RETURN

SET A =5/B * SCALE(3)
ASK ALPHA (I +2 *)J)

> v o= 0

Returns control to user.
Terminates DO subroutines
Substitution statement

FOCAL types a colon for each
variable; the user types a value to
define each variable.

Command

COMMENT

CONTINUE
DO

ERASE

FOR

GO

GOTO

Abbr

C

Example of Form

C - compute area

C - ignore temporarily
DO 4.14
DO 4

DO ALL

ERASE

ERASE 2

ERASE 2.1

ERASE ALL
FORI=x,y,z; TYPEI

Explanation

If a line begins with the letter C,
the remainder of the line will be
ignored.

Execute line 4.14; return

Execute all group 4 lines, return
when group is expanded or when a
RETURN is encountered.

Execute entire indirect text as a
subroutine.

Erases the symbol table.
Erases all group 2 lines.
Deletes line 2.1,
Deletes all user text.

The command string following the

semicolon is executed for each value;
X,Y,z are constants, variables, or
expressions. x=initial value of I,

y =value added to I until I is greater
than z. y is assumed =1 if omitied.

GO Starts indirect program at lowest
numbered line number.
GOTO 3.4 Starts indirect program at line 3.4

C - The Fourteen (14) Functions are

FSQT
FABS
FSGN
FITR
FRAN
FEXP
FSIN
FLOG
FDIS
FADC
FNEW
FX

(
(
(
(
(
(
(
(
(
(
(
(

) - Square Root
) - Absolute Value
) - Sign Part of the Expression
) - Integer Part of the Expression
) - A Noise Generator
) - Natural Base to the Power
Yand - FCOS (), FATN () - Trig Functions
) - Naperian Log
X,Y) = Scope Functions
) - Analog to Digital Input Function
) - User Function
)

- Extra User Function

APPENDIX B
ERROR DIAGNOSTICS *

Table B-1
Error Diagnostics of FOCAL, 1969
Location Code Meaning

200.00 Manual Start given from console.

?01.00 Interrupt from keyboard via control-C.
0250 ?01.40 Illegal step or line number used.
0316 ?01.78 Group number is too large.
0340 ?01.96 Double periods found in a line number.
0351 ?01.:5 Line number is too large.
0362 ?01.;4 Group zero is an illegal line number.
0440 ?02.32 Nonexistant Group referenced by 'DO".
0464 ?02.52 Nonexistant line referenced by 'DO".
0517 ?02.79 Storage was filled by push-down list.
0605 ?03.05 Nonexistant line used after 'GOTO" or 'IF'.
0634 ?03.28 Illegal command used.
1047 ?04.34 Left of "="in error in 'FOR" or 'SET"'.
1064 ?04.52 Excess right terminators encountered.
1074 ?04.60 Illegal terminator in 'FOR' command.
1147 ?04.:3 Missing argument in Display command.
1260 ?05.48 Bad argument to ‘"MODIFY".
1406 206 .06 Illegal use of function or number.
1466 ?06.54 Storage is filled by variables.
1626 207 .22 Operator missing in expression or double 'E'.
1646 ?07.38 No operator used before parenthesis.
1755 ?07.:9 No argument given after function call.
1764 ?07.;6 Illegal function name or double operators used.
2057 ?08.47 Parenthesis do not match.
2213 ?09.11 Bad argument in 'ERASE'.
2551 ?10.:5 Storage was filled by text.
2643 ?11.35 Input buffer has overflowed.
5042 ?20.34 Logarithm of zero requested.
5644 ?23.36 Literal number is foo large.
6543 ?26.99 t Power is too large or negative.
7111 ?28.73 Division by zero requested.
7405 ?30.05 Imaginary square roots required.

?231.<7 Illegal character, unavailable command, or unavailable

function used.

*The above diagnostics apply only to the version of FOCAL, 1969, issued on tape DEC-08-AJAE-B

B.1 OBTAINING ERROR CODES VIA ODT36

To obtain error codes via ODT36, proceed as follows:
a. Start ODT at 3600.

b. User types underlined letters:

(change, from, to)
4320/1357 1275 (line feed)
4321/4745 3067 (line feed) (LINENO)
4322/1675 4552 (line feed) (PRNTLN)
4323/4246 7000 (carriage return)

63/2676 1355 (C.R.) (OUTDEV, OUTL)

c. then.
M7777 7777 (lne feed)
4273/0001 4400 (C.R.)
4565W (ERROR 2)

Calling addresses and error codes will be printed here. The first two and last error codes

(00.00,01.00,31. <7) are always the same.

APPENDIX C

EXPLANATION OF NEW INSTRUCTIONS

C.1 NEW INSTRUCTIONS (see Table C-1)

C.1.1 Push Down List Instructions

The user's push down list begins at the start of the floating point package and grows u
P p P P

toward the last variable. The initial value of the push down list pointer is contained in location

"BOTTOM". The pointer is kept in an auto=index labeled "PDLXR". The instructions used to manage

the list are given below:

PUSHA
POPA
PUSHF

POPF

PUSHJ

POPJ

places the contents of the AC onto the list as the current entry

adds the current entry of the push down list to the AC,

saves a group of data, normally a floating point entry.
This instruction is followed by a pointer to a 3 word (or
4 word) group of data. These 3 or 4 words are placed
on the push down list as the current entry.

restores a 3 or 4 word group of data from the current
entry on the push down list according to the pointer
which follows the instruction. The location "MFLT"
contains either =3 or -4 and determines the number
of words affected by "PUSHF" and "POPF".

calls subroutine which is pointed to by the word follow-
ing the instruction. The return address is placed on the
push down list as the current entry.

the current entry is used as a return address from a sub-
routine.

C.1.2 Character Handling Instructions

These instructions are used to pick-up, save, and print characters for processing by FOCAL.

Characters are fetched from the user's storage area or from the ASR-33 input buffer. Character con-

version between 8 and 6 bits and the trace feature are handled by these routines.

PRINTC

READC

PACKC

is used to print a character. If the AC is zero upon
entry then the character in "CHAR" is printed. If the
AC is non-zero, then the contents of the AC is printed.

Reads a character from the user's input buffer (ASR-33
input) and echos all characters except line feeds and
rubouts. The character is placed into "CHAR".

places the 8-bit character in "CHAR" into the user's
storage area. If the character is a rubout the previous
character is deleted from the user's area and a back-
slash is echoed via "PRINTC". The character is

C-1

converted into 6-bit code. The aufo index
"AXIN" and the flip=flop "XCTIN" are pointers
to the user's storage area.

GETC this instruction fetches the next character from the
right or left side of the word pointed to by "AXOUT"
and "XCT" and places it into "CHAR". If a question
mark character is detected the dump switch "DMPSW"
is flipped. If the dump switch is on then the character
in "CHAR" is printed via "PRINTC".

SPNOR Blanks and leading zeroes are ignored by repeated
calls to "GETC".

C.1.3 Character Testing Routines

These guide the interpreter through the source text. They are testing routines used through-

out FOCAL in interpreting the program and in other instances.

SORTC the character in "CHAR" is classified according to
an ASCII list which is pointed to by the location follow-
ing the instruction. If the character is found in the list
an exit is made to the location following the list pointer.
If no character is found exit is made to the second location
following the list pointer. If the character was found in
the list then "SORTCN" contains the position relative to
zero in the list searched. The list is terminated by a negative
word.

SORTJ the character in "CHAR" or in the AC is classified accord-
ing to a list as per "SORTC". If the character is found in
the ASCII list, then a jump to an address is made from a
second list. The second list is pointed to by the 2nd
location following call. If the character is not found then
exit is made as per "SORTC". "SORTCN" is not changed,
however .

TESTC this instruction fetches the next non-space and classifies
it as a terminator, number, function, or letter. The instruc-
tion then skips zero, one, two or three cells accordingly.

TESTN "CHAR" is classified according to whether it is a period
(no skip), number (skip two), or other (skip one). If
"CHAR" is a number then its binary value is in "SORTCN".

TSTLPR This instruction skips the next instruction if the AC contains
a left parenthesis.

C.1.4 Line Number Handling Instructions

This group is used in manipulating line data and line numbers.

TSTGRP If the group of the line number in the AC is equal
to the group on the line in "LINENO" the next
instruction is skipped.

PRNTLN the coded line in "LINENO" is printed as a decimal
fraction with group number and the step number
separated by a decimal point.

GETLN "SPNOR" is called and a line number is built in
"LINENO" via calls to "GETC". "NAGSW" is set
to indicate whether the line number was a group, line,
or "ALL" designator.

FINDLN the line number coded in "LINENO" is searched for
in the user's text area. If the line is found, the auto-
index "AXOUT" and "XCT" are set to point to the
line's text and an instruction is skipped. If the line
is not found, the pointer "AXOUT" is set to point
to the next higher line and no instructions are skipped.
“THISLN" points fo the line found on the next larger
line and "LASTLN" points to the previous/less
line.

ENDLN "ENDLN" links the line in the user's storage area
to the rest of his text. It uses the result of the "FINDLN"
instruction to accomplish this. The new end of the user's
buffer is set-up in "AXIN". This command is used for
insertion of new text, reconnecting after a deletion,
and reconnection after Modify.

Table C-1
New Instructions

PUSHJ=JMS T . /RECURSIVE SUBROUTINE CALL
XPUSHJ

POPA =TAD I POLXR /RESTORE AC

POPJ =JMP 1 . /SUBROUTINE RETURN
XPUPJ

PUSHA =JMST . /SAVE AC
XPUSHA

PUSHF = JMST . /SAVE GROUP OF DATA
PD2

POPF=JMS T . /RESTORE GROUP
PD3

GETC =JMST . /UNPACK A CHARACTER
UTRA

PACKC=JMS . /PACK A CHARACTER
PACBUF

SORTJ=JMST . /SORT AND BRANCH ON AC OR CHAR
SORTB

/NUMERICAL LIST -1

/ADDRESS LIST - NUMERICAL LIST

Table C-1 (Cont)

New Instructions

SORTC=JMST .
XSORTC
PRINTC =JMS 1
out
READC = JMS 1
CHIN
PRNTLN =JMS T .
XPRNT
GETLN=JMS T .
XGETLN
FINDLN = JMS 1
XFIND
ENDLN =JMS T L
XENDLN
RTL6 = JMS I
XRTL6
SPNOR =JMS 1
XSPNOR
TESTN=JMS T .
XTESTN
TSTLPR = JMS 1
LPRTST
TSTGRP =JMS T .
GRPTST
TESTC = JMS 1
XTESTC

ERROR2 = JMS 1
ERROR3 = JMS 1
ERROR4 = JMS 1

ERR2

/SORT CHAR

/PRINT AC OR CHAR

/READ ASR-33 INTO CHAR AND PRINT IT
/PRINT C (LINENO)

/UNPACK AND FORM A LINENUMBER
/SEARCH FOR A GIVEN LINE

/INSERT LINE POINTERS

/ROTATE LEFT SIX

/IGNORE SPACE AND LEADING ZEROS
/PERIOD: OTHER: NUMBER

/SKIP IS 5 <SORTCN <11 (1. E. AN L-PAR)
/SKIP IF G(AC) = G (LINENO)

/TERM; NUMBER; FUNCTION; LETTER
/EXCESS SOMETHING ERROR

/MISCELLANEOUS ERROR
/FORMAT ERROR

C-4

APPENDIX D
FOCAL CORE LAYOUT

Table D-1
Focal Core Layout-Usage

Mnemonics What
ZERO
START FOCAL PROPER
BUFBEG BUFFER AREA
BEGIN INITIAL DIALOG UE
FEXP .
(BET 2+ 3)
ARTN EXTENDED
(FLAG 3 +1) FUNCTIONS
FCOS
EFLOA +11) }
TEMPO +1) OUTPUT
DECONV CONVERSION
(INFIX +5) 1 INPUT-
FLOUTP OUTPUT
(OUTOG+4) j ROUTINES
FLINTP
(P43+1)
FPNT 1 FLOATING-POINT

ACMINS INTERPRETER
(RART+1)

sy |
)

(BUFFER + 10)
BINARY
(RIM)

LOADERS

Table D-2
Detailed FOCAL Core Layout

Miscellaneous

Numbers
Floating-Point Working Area
Constants
New Instruction Pointers
Variables

START
Command/Input
Line Read Routine
'DO" Routine

Push-POP Routines

IGOTO!" and 'WRITE' and Misc.
'IF', "SET", 'FOR' and Misc.
'ASK', 'TYPE', '"MODIFY"'

"GETARG" - Recursive Routine
"SPNOR", "TESTN", "POPJ"
'RETRUN'

"EVAL" - Recursive Routine
OPNEXT - read operator
ARGNXT - read operand
ETERM - evaluate terminator
FLOP - floating operations called
ENUM - number processor
EFUN - function processor
ELPAR - left parens processor
EFUNS3 - function returns
"DELETE" - Recursive Routine
DOK - group delete

DONE - garbage collection
"FINDLN" - Normal Routine
Find exact match or next larger
'ERASE' command processor
"GETC" - unpack text and trace
"ENDLN", "PRNTLN"

1/O Subroutines

Interrupt Processor

ERROR Processor

"PACKC" - pack text

Rubout routine

D=2

*3120

Table D-2 (Cont)
1/0O Buffer

Command Buffer
Text Buffer Begins

Once-Only Code
SELF-START

CLEAR ALL FLAGS
TYPE MESSAGE

ODT-JR (for X-FUN)

ODT-JR (for dialogue)

Floating Point Routines
(c.f., Section 4.5.2)

Extended Functions

1/O Controller
Interpreter

Binary Loader

or 8-SYS LIB Bootstrap
or Disk Monitor Bootstrap
Rim loader

T
E
X *4400 -
I
/
\%
A
R
I
A
B
L
E
S
/.
Vs
P
U
S
H
D *3600
O
W #4600
N
L
I
S
T
*4600
*5400
*6400
*7600
*7756
End of Field Zero
Field One
Command
Buffer

Extended Text Storage

77

15

FOCAL CORE LAYOUT

0000
PAGE ZERO
FOCAL
3200
N
_ TEXT,
VARS,
FREE
PUSH A
PUSH J PDL
PUSH F
4600
EXTENDED FUNCTIONS
5400
FILOATING —POINT PACKAGE
LOADERS
7777
Figure D-1 FOCAL Core Layout

Dynamic Storage

D-4

E.1 SYMBOL TABLE
/FOCAL ,22M PALL™
A 2045
ABSOL 6751
ABSOL2 6153
ABSOL3 7375
ABSOLV 5571
AC1H 7241
AC1L 342
ACMINS 6673
ACTING 2701
ACTION 442¢
ACTIVE ©R37
ACTVP 1143
ADN tp61
AQNR 2042
ADONE 6673
AF 4677
ALFL 4769
ALF2 4763
ALFZ 4755
ALGN 657¢
ALTGN 6623
ALIST 1372
ALISTP 7072
ALPHA 1436
AMOUNT 6722
ARCALG 4732
ARCRTN 5224
ARGNXT 1723
ARTN 5900
ASHFT 6665
ASK 1202
ATE] 4465
ATES 4513
ATLIST 157@
ATSH 2056
AXIN 7010
AXOUT na17
] ngae6
RACK 5583
RASER 2616
RASES 1540
BASEX n617
ROUMP 2071
REGIN 43741
BELLX 2534
REND 4442
BET1 4771
RETZ2 4774
BETA 2010
BETZ 4766
RF 4702
RF X 4557

V515

APPENDIX E
SYMBOL TABLE AND OTHER TABLES/LISTS

LB=-APR=69

BF XX 4556
BMOVE 1255
BO0TTOM 2035
BUFBEG 3217
BUFFER 7470
BUFR 2060
BUFRS 1372
RUFRSP 3045
BUFST 5531
[no47
cire a006
149 2554
£144 6149
c280 2123
cazemM 865
260 7113
(o] 5346
c5 5342
c7 5336
9 5332
CCR 2077
COF 70049
COF1 6211
CEX1 6504
CEXP 6583
CF 4705
CFRS 7133
CFRSX 2137
CHAR 0066
CHARM nB26
CHIN 2155
CHKCNT 1953
CHKCON 1052
CHRT 6133
CIA 7041
ClF 6202
CIF1 6212
CLA 7200
CLCu 7427
CLF AR76
CLL 7100
CMA 7042
CML 7029
CNTR 2057
CNTRLC 2324
CNTRLX 0331
CNTRM PR24
CNTRTY no32
CODET 244
coL 1255
COMBOT @226
COMBUF 2132

E-1

19138

PAGE 121

COMEIN
COMENY
coMG0
COMLST
COMMEN
CON1
CONTIN
CONTN
CSTAR
CTABS
n
DATUM
DATUMA
DCONP
DCONT
pcoumT
DDTJR
DEBGSW
NECK
DECKP
DECON
DECONYV
DECP
DECR
DELETE
DF
DGRP
DGRP1
DIG
DIGIY
DIGITS
DIVl
ngve
NIVIDE
DLISTP
NMDONE
OMPSW
DMULT
DMUL T4
ONQORM
DNUMRR
N0

DOK
NONE
DOONE
DOUBLE
DPCVPTY
DPN
oPY
DSAVE
DTABLE
DTST

3140
3206
1163
2774
2614
5037
1147
re76
ne2s
2353
za4l
7102
7252
6303
7471
6143
2p04
2026
N4
n407
5627
5600
5533
5521
4565
4710
a425
n443
5543
5713
reee
5754
6757
7150
2100
7063
n100@
7004
7036
7335
5714
2420
2111
2127
7463
8127
6302
6325
6145
5640
2070
5647

DUBD1YV
DUBLAD
DUMLN2
DVv3

E
EBELL
ECALL
ECCR
ECHO
ECHOLS
EFOP
EFUN
EFUN2
EFUN3
EFUN3]
ELPAR
END
ENDF 1
ENDLN
ENDT
ENUM
EOUT
EPY
EPAR
EPAR2
ERS
ERASE
ERG
ERL
ERR2
ERRQOR2
ERRQORJ
ERROR4
ERRQRS
ERT
ERY
ERVX
ESCA
ETERM
ETERML
ETERM2
ETERMN
EVAL
EX1
EXASK
EXCHCK
EXCHE
EXCHEC
EXGO
EXGON
EXIT
EXITY

7261
5733
2012
7267
po42
9542
1601
2630
2454
1624
9856
1743
1754
2047
@136
1763
9134
6243
4556
7135
1732
P44
pe%2
1710
1765
4555
2204
2225
2222
2726
4566
4566
4566
2725
2214
2217
2237
2332
1647
1627
1655
1644
1643
P42
2662
1037
1072
2615
1007
1215
2646
5034

/FOCAL ,£7M

EXIT2
FXIT3
EXITY
FxMon
EXP
FXPRIN
EXPRMN
FXPRNT
FXRD
FXREAD
FXREN
FXSWP
FXTR

F
FCONT
FCrs
FCOUmT
FENDZ
FEXP
FEXT
FGne2
FGOJ
FGO4
FGNS
FIGO1
FI1G04
FINCR
i,'l.‘.!DLN
FINDN
FINFIN
FINKP
FINPUT
FINT
FI1SW
FlX
FIXM
FLAC
FLAD
FLAGL
FLAG?
FLARG
FLARGP
FLNY
FLEX
FLGT
FLIMIT
FLINTP
FLISTL
FLIST2
FLMY
FLOG
FLOP

PALLY

5372
7363
2661
2657
7044
260¢€
106
1072
1214
2675
1254
1142
2313
7243
1171
5223
5535
2267
4629
282
6411
aR27
5234
4276
6£221
6261
1065
4555
2246
1137
1133
2131
44727
7952
6724
6753
npdq
65076
5162
4725
2030
7125
7107
6515
6467
1075
6229
577
2574
6563
504¢
1674

V515

10~APR=69

FLoUT 555¢
FLOUTP 400¢
FLPT 6465
FLSU 650¢
FLTOME 240%
FLTXR 7014
FLTXR2 @@1S§
FLTZER 2407
FM12 6142
FNEG 5163
FNOR 7020
FNPY 4554
FNTARF 2374
FNTARL 2165
FOR 1041
FOUTPU 13¢
FPACHY 7474
FPNT 6402
FPRNT 5465
FRST 3206
FRSTX 3215
FSIN 5235
FXIT (1]
GBL 4466
GECALL 1462
GEND 2334
GERR P34
GET1 233¢
GETJ 2345
GETARG 1403
GETC 4545
GETLM 4554
GETSGN 1845
GETVAR 1427
GEXIT 7352
GFND1 1525
GINC ?870
GLIST 1377
GO0 5021
GOCR 2453
GONE 7232
GOTO 2603
GRPTST @744
GS1 1437
682 1461
GS3 1441
GS4 1454
GSERCH 1426
GTEM naz2y
GZERR 0362
HINBUF 0837
HLT 7402

£-2

19138

PAGE 121-1

HOLO ro36
HOLOD! 1276
HoLOO 1277
HORD 7345
HREAN 6321
HREAN2 6324
HSGO 6364
HSP 2273
HSPSK 6375
HSPX 6361
MSR 7273
HSWITC 6343
HTSTY 6376
133 2414
1AC 7601
I1BAR 7212
18UF! 1106
1BUFN a105
TECALL 1037
1F 1013
1F1 1035
1F3 10825
1GNQR 2217
1GNORE 2447
1L1IST 2771
IN 5513
INRUF #e34
INDEV rgé64
INDRCT 6463
INF X 2471
INITL 39021
INITLSY 3p11
INLISTY 2578
INORM 63927
INPUT n756
INPUTX 9271
INSUR 7@36
INTEGE 2853
INTRPM 02201
INTRPT 2623
10RYF 3120
{OF 6902
{ON 6p21
107X ”110
1PARY 1040
{RETM 2227
1TABLE 6573
1TERL 7470
JUMP 6462
K5 5525
KEY 2321
KEYX 0447

KINT
KRB
KSF
KSF1
KSF2
KSF3
KSF4
L1

L2

L3

Lé

LBA
LBAX
LBAY
L8B
LASTLN
LASTOP
LASTV
LCON
LG2E
LIBRAR
LINENO
LISTS
LISTS
LIST?
LISTGO
LISTL
LISTP
L062
LOGS
L0G6
LOG?
L0G8
LOOKUP
LOOP21
LORD
LP7
LPRTSY
M10@
MiGPT
M1L
M12
M137
M14Q
M144
M2

M20
M20¢
M2OM
M240
M240M
M260

2625
6036
6031
6401
642}
6441
6461
5126
5131
5134
5137
4552
4553
4552
45981
2025
2055
ne31
7371
4713
75083
2067
2077
nB72
2074
1370
2023
1165
5157
5142
5145
5150
5153
4571
6431
2046
7556
2035
2101
6147
n121
2413
2357
25%6
6137
n111
2105
0264
2056
r114
3046
1526

/FOCAL,Z22ZM

M271
M4

M4Q

M4 M
M4M

M5

MéM
M77
MBREAK
MC2Q07
MCOM
MCR
MCRM
MD
MDECK
MEQ

MF
MELT
MIF
MINE
MINSK]
MINUS2
MINUSA
MINUSE
MINUS2Z
MLISTP
MOD
MODIFY
MOVELS
MQVE22
MP1
MP11
MPL77
MP2
MP3
MpP4
MPB
MP 6
MPER
MPLUS
MQ

MQA
MRO
MSPACE
MULDLYV
MULT
MULT10
MULT2
MULTY
MX
MZERO
NAGSW

PALL®

1527
6141
2356
257
2061
2129
1162
2103
2602
P44e
1136
72116
2063
5526
hB43
1135
n6pe2
2117
7260
5662
7051
7153
72112
6371
5663
77
5215
1256
1232
1243
7254
a57%
2445
7256
7255
7220
7253
7219
7115
5664
@35
7501
2444
5665
7101
6566
5667
5715
4752
2533
2067
AQ@65

V515

10=APR=&9

NEGP 4724
NEWUY 2042
NEXT® 1146
NEXTU 1145
NLL 7301
NG 2 7326
NL220o8 7332
NL3777 7380
N 4000 7330
NLS5777 7382
NL7775 7346
NL7776 7344
NOECHO D465
NOP 7020
NORF 6513
NORM 6567
NORMF 7147
NQUSRS 2073
NOX 6675
NOX1 6711
NOX2 6704
01 4379
02 4561
04 4412
05 4563
06 4564
0BUF fi04
0BUF ! 2123
OBUFO @102
OFFDEC 4422
0M12 5530
ONDECK 4421
ONE 4716
oouTY 4544
NP 3115
OPMINS 6565
OPNEXT 1622
OPTABL 1731
OPTRA 2663
OPTR! 2665
OPTRN 2664
OPUY 5532
OTHER p215
ourY 2465
OUTA 8536
QUTCR 2476
OUTDEV 0063
ouTDG 6154
ouTL 13%4
ouTX 2475
OVER1 2043
OVER?2 2047

E-3

19138

PAGE 121e2

] (41
P10@ 72083
81"} 2342
PinQe 7046
P13 2805
P14 7706
P149 2532
PL7 2127
PL77 2126
PLTM 0054
P2 4566
P29 2855
p2eon 2373
P27 6750
r277 2110
P2M 2707
P3 2034
P337 2275
P37 po62
P377 2553
P4 LY}
P47 2582
P4ggn p124
P43 6310
P6777 fg50
P7 4565
P70Q? po4a7
P7876 p764
P7607 2104
P77 122
P77¢0 2101
P774n 2372
P775¢ 7763
P7757 2951
P77M 245
PAL 2524
PACBUF 2522
PACKC 4546
PACKST 0027
PACX 2530
PALG 5261
PARITY 2302
PARTES 2047
PC ng22
PCL P614
PCHECK %5245
PCHK 7519
PCK1 2535
PCM p101
PD2 n534
PD3 25%4
PDLXR 2013

PDP
POP5
POPS5X
POP8]
PEQ
PER

Pl

PIe
PIOT
PLCE
PLS
PM200¢
PNTR
POPA
POPF
POPY
PPTEN
PRINTC
PRINTO
PRNT
PRNT?2
PRNTB
PRNT!
PRNTLN
PROC
PROCES
PSIN
PTY
PTCH
PTEN
PTEST
PUSHA
PUSHF
PUSHJ
R6

RAL
RANO
RAR
RARL
RAR2
ROIV
READC
RECOVR
RECOVX
REMAIN
REPT
RESOL
RESOL3
RESOLS
RESOLYV
RESTAR
RESTOR

4562
4579
4463
4567
6135
gle2
8342
5036
8316
5536
6026
1144
7031
1443
4544
5541
6144
4551
7550
2442
3114
7527
6132
45583
2611
7610
8165
2038
2126
6275
1487
4542
4543
4549
5444
7004
1530
7010
6571
6572
2152
4552
2740
27614
5712
6146
67%2
7376
6304
7173
poas
2304

/FOCAL . ZZM

RESTP
RESUME
RET
RETRN
RETURN
REVIT
RFC
AMF
RNN2
ROOTGO
ROT
RQUNN
RRR
RSF
RTL
RTL6
RTR
RURY
RURZ
RUR3
RYR4
RURS
RUBIT
SAC
SADR
SAVAC
SAVE
SAVLK
SBAR
SCHAR
SCONT
SCOUMT
SET
SETW
SETW!
SEX
SEXC
SFOUND
$607
SIGN
SIGNF
SILENT
SN
SING
SINGLE
SKP
SLK
SMA
SMIN
SMP
SMSP
SNA

PALL?

6377
2623
5452
1563
5536
7146
6014
4244
5527
7461
2557
6151
6012
6011
7206
4557
7812
3pra
Je42
323k
3237
3p41
2555
2933
6159
262¢
3751
2621
1302
1273
1274
5534
1041
ns527
70923
1349
P74¢
1306
1312
7124
2050
2343
2662
n471
2636
7419
nB34
75¢08
6136
6101
6134
7459

v515

10=APR=69

SNL 742¢
SQRTH 1314
SORTC 4559
SORTCN PY%54
SORTY 4547
SPa 751¢
SPECIA 6777
SPL 7000
SPLAT 3251
SPrOQP 4560
SQCon1 7467
SQEND 7465
SRFT* 7261
SRNLET 1363
START 7177
STARTL 5064
STARTY @g6¢
SURS 1517
SZA 7444
SEL 7432
T 2072
T1 032
T12 4426
T2 7871
T2U 2624
T3 PR33
TARLF 6464
TAGL 6723
TASK 12024
TASKS 1253
TCF 6d4¢
TCRLF 1251
TCRLF2 124¢
TOUMP 3eS¢
TELSW 7316
TELSW1 275
TELSWZ 2276
TELSW3S 2277
TELSW4E 230
TELSWS 1321
TEM 5156
TEMP 4726
TEMPM Bd25
TEMPTY ne27
TEMPX 2830
TEMN 6271,
TENPT 6152
TERMS 1770
TEST? 67306
TEST4 7366
TESTA n322
TESTC 4564

19138

PAGE 121=3

TEST 4561
TEX]T 72744
TEXTA 1610
TEXT” 7075
TEXTF 2917
TEXTFM 2874
TG0 54070
THIR 7257
THISLN 2223
THISNP Q@24
TINTR 1241
TLIST 1400
TLIST2 1404
TLISTI 2377
TLS 6246
TPr €044
TQuoT 1232
TRAD 6573
TRM1L 1163
TRC2 1164
T1SF 62341
TSF1 6411
TSF2 6431
TSF3 6431
TSF4 6471
TSTGRP 4563
TSTLPR 4562
TTY 7”322
TYYPE n347
Tw0 4721
TWOP1 5306
TYPE 12¢3
TYPE? 1226
UNRE"K 7633
UPAR 2866
USER™0 7pé41
USERTS 1210
uTe 2276
uTa 2375
JTRA 2274
uTx 2316
VAL 7032
WALL 7664
WORDS 7223
WRITE 2635
ATEST2 7653
WTESTG 7667
WX 7673
X 5322
X1 5335
X2 4675
XA 2656

XABS
XACTIO
XADC
XB
XBUF
XCOM
XCT
XCTIN
XDECK
XDELET
XDYS
XENDLN
XF
XFIND
XGETLN
X133
XIN
XINPUT
XINT
XKEY
XOUTL
XPOPJ
XPR
XPR2
XPRNT
XPRNT]
XPUSHA
XPUSHJ
XR10
XR11
XR12
XR13
XRAN
XRAR2
XRSTAR
XRT
XRY2
XRTL6
XSGN
XSORTC
XSPNOR
XSN2
XSQR
XSQRT
XT3
XTOUMP
XTESTC
XTESTN
XTTX
XTTY
XXTTY
XY2

2014
2643
1343
2655
7516
7622
2020
ng62
600
2062
1142
2369
4560
2242
72372
2666
6306
5666
1160
7412
2676
1565
1062
1064
2425
1213
n477
2521
2019
2011
7@12
7013
1553
7365
7312
nd11
212
#3413
2019
n721
1517
4676
5326
7400
n717
2535
2770
1533
nr27
7710
n742
2451

/FOCAL ,22M PAL1D V615 18-APR=69
2ERQ 6520

ERRORS DETECTED: @
RUN=TIMEL 32 SECONDS
6K CORE USED

E-5

19138

PAGE 121-4

E.2

OTHER TABLES AND LISTS

/LIST OF FUNCTION ADDRESSES,

9373 FNTABF=.
1373 2214
4374 2010
1375 1161
1376 4
1377 1853
M40 1344
1431 503230
3422 4620
1473 5440
1414 5295
247% 5279
1476 7490
2427 2725
3418 2725
1411 2725
1415 9020 XRTL6,
3413 7196
3414 7006
2415 70926
3416 5612
p775 COMLST=,

2775 2323
776 0326
2777 0311
10208 0304
1p21 0327
1022 @303
1623 03901
1024 0324
1672% 8314
Bwa7 2axn7
1o 05%5
1041 @321
1212 @322
1013 0212

XAHS /ABS -ABSOLUTE VALUF
XSGN /SGN -SIGN PART
XINT /1TR ~INTEGER PART
X0YS /018 ~DISPLAY AND INTENSIFY
XRAN /RAN -RANDOM NUMBER
XADC /ADC =~READ ANALOG To DIGITAL CONVERTER
ARTN /ATN -
FEXP /EXP ~EXPONENTIAL FUNCTIONS
FLOG /L0G -
FSIN /SIN =TRIG FUNCTIONS
FC S /Chs -
XSART /58? ~SQUARE ROOT
ERRORS /NEW -USER DEFINED FUNCTIONS
ERRORS /COM -
ERRQRS /X -
2 /ROTATE AC LEFT SIX = "RTLG"
CLL RTL
RTI,.
RTI,
JMP 1 XRTLG6
/ENGLJSH_FRENCH
/COMMAND DECODING LIST
323 /SET = ORG,NIZE
306 /FOR - QUAND
311 /1F - Sl
304 /D0 - FAlZ
3p7 /G0TO -~ VA
303 /cOMMENT= COMMENTE
301 /ASK = DEMANDE
324 /TYPE ~ TAPE
314 /L1BRARY~ ENTREPOSE
365 /ERASE = BIFFE
7 /WRITE = INSCRIS
§§5 /MODIFY = - MQDIFIE
321 /QUIT = ARRETE
322 /RETURN = RETOURNE
212 /(ASTERISK)=EXPANDABLE COMMAND

(NAMES ARE IN "FNTABL")

1164
1165
11606
1167
1179
1171
1172
1173
1174
1175
1176
1177
1280
1271
1202

2165
2160
2167
21749
2171
2172
2173
2174
2175
2176
2177
2220
2201

2202

2283

1164
1042
1r42
11114
#2417
P64
7615
1293
12924
7503
2204
2636
1257
8177
1563
6361

2165
2533
2650
2636
2565
2639
2517
2572
2624
2625
2654
2575
2702
2631
2567
2330

cOMg0=y /cOMMANG ROUTINE AppRESSES

FNTA‘BLz'

SET

FOR

IF

DO

GOTO
COMMENT
ASK
TYPE
LIBRARY
ERASE
WRITE
MODIFY
START
RETRN
HSPX

2533
2650
2636
2565
2630
2517
2572
2624
2625
2654
2575
2782
2631
2567
2339

/(REFERENCED)

yRETURN To COMMAND MODE VIA 'QUIT!

/ACTIVATE THE HIGH SPEED READER

/ABS
/SGN
/1TR
/D1S
/RAN
/ADC
/ATN
/EXP
/1,06
/SIN
/C0S
/SQT
/NEW
/COM
/X

E-7

/L1ST OF CODED FUNCTION NAMES

/QUAD = MULTI=JSER SYSTEM WITH FOCAL,#22K PAL14d v133 14~MAR~69 15149

/CONTROL TABLE

2334 ;451 1GNORE /LaT,
3355 CTABS=,
8355 2456 ECHO /tA=HOME
2356 2333 CNTRLX /1B
2357 18326 CNTRLC /C-END OF MESSAGE
0360 3333 CNTRLX /D
2361 2333 CNTRLX /E
2352 0333 CNTRLX /F
7363 0456 ECHO /G = BELL
2364 9333 CNTRLX /H
2355 0333 CNTRLX /1
2366 0467 NOECHO /J = LF,
8367 0333 CNTRLX /K
2370 9467 NOECHO /L =FF,
2371 2453 GOCR /M =C,R,
8372 0333 CNTRLX /N -
8373 2333 CNTRLX /9
8374 O CNTRLX /P
2375 0333 CNTRLX /0
8376 0345 SILENT /R=TAPE
3377 8333 CNTRLX /S~ (7808) = FOR DEBUGGING
2420 8351 TTYPE /T=NOT TAPE
2471 9333 CNTRLX /U
2422 0333 CNTRLX /N
2433 2333 CNTRLX /W =E,0,MED]A
8474 2456 ECHO /X=ERASE
8425 90 CNTRLX /Y
2428 0333 CNTRLX /2
0427 0451 1GNORE /0
2410 0451 1GNORE /\
P411 0451 1GNORE /1
2412 0456 ECHO JUPAR =
2413 0453 GOCR JLEPTAR3GORO

"4WORD (18 DIGIT)

2052

270
2116
3210
3211
3212
3213
5526
5527
5310
5314
5320

6143

6277

6422
6549
6736

7036
7125
7072

2024
2m12

2052
neeo

pe7e
paee
116
7774
321u
2355
6427
1722
Pqn
5526
7766
2a13

531¢
3755
5314
3755
5328
3755

6143
776%
6277

3146

6422
7410
6540
7920
6736
go43

7036
3275
7105
7080
7272
7000

OVERLAY FOR FOCAL,2ZK PAL1Y V133 14~MAR=69 153154

/4X0RD (4@ DIGIT) OVERLAY FOR FOQCAL,#2K

WOR{pS=4
DIGITS=12
#F 1w

1%}
+GINC

WORDS+2
*#MF LT

-WORDS
#FRHGT+2

TEXT @C~4w0RD@

#MU
~DIGITS /EXTENDED LENGTH OF OUTPUT FORMAT
DIGITS+1/RND2
¥THapl*2
3755 /CORRECT CONSTANTS
#»pl+2
3755
#ploT+2
3755
«DGOUNT
-DIGITS=~1
#PTEN+2
3146 /CONSTANT ONE
*FPNT*Z
SKP /00 NOT CLEAR OVERFLOW WCRDS
*ZERO+20
NOP
*TEST2
43
«DMULTS
OCA DATUM=5
*MULDIVe4
NOP
*#DMDONE*7
NOP

4WORD (12 UIGIT)

7260

7271
7272
7273
7274
7275
7276
7277
7370
73214
7392
7323
7324
7325
7326
7327
7310
7311
7312
7313
7314
7515
7316
7317
7328
7321

7260
7795

7271
1043
1047
3253
7004
1p42
1246
3256
7004
1045
1041
7427
5312
3445
125%
3047
1256
3346
7230
1254
7004
3254
128
7024
32720
1335

2001

#MIF

*QV3+2

-43

TAD
TAD
pDea
RAL
TAD
TAD
DCA
RAL
TAD
TAD
SNL.
JMP
DCA
TAD
DCA
TAD
DCA
CLA
TAD
RAL
NCA
TAD
RAL
DCA
TAD

OVERLAY FQOR FQCAL,Z2K PALLD

OVER1
OVER?Z2
MP5

AC1L
L.ORD
MP2

HORD
AC1H

)
HORD
MPS
OVER?Z2
MP2
LORD

MP1
MP1
mp4

MP 4
DNORM

NOPUNCH
FIELD 1
XLIST

V133 14~-MAR=69 15154

/COMBINE ONE POSITION AND
/SAVE RESULT

/ADD QVERFLOW

/SKIP IF OVERFLOW

/UPDATE FLAC

/CLEAR ACCUMULATOR
/SAVE OVERFLOW BITS CIRCULARLY

78K

OVERLAY FOR FOCAL,ZZK

2922
2231
2050
7131
2132
2134

2166
2147
2170
2171
2172
3173
2174

6291
2@1@
2039

A28

2120
2022
2020
pa31
3226
2069
2126
2131
2012
2132
2120
2134
2126
0166
2565
6160
6173
7557
7564
2572
2120

/8K

PALLLD

V133 14=-MAR=69

OVERLAY FOR FOCAL,ZZK

15157

PAGE 1

/TEXT 1S IN FIELD 1, VARIABLES AND POL ARE IN FIELD @

/ S,VE ST8K1I()=7577;2088
/VSAVE FCLB1A=3377;

/2 SAVE NULB:1P102;10113
/SAVE NAMB:12102-(B8)310113

CHF=6201
Tﬂlﬂ
Pz
FleLn o
LINER=100
#pC

2
*ASTYV

COMED
*BUf

L. INE1
*COMBUF

1@
#CFRS

LINE®
*ENDT

LINEY
#1664
opC, ROT+5
DTHIS, THISD
DPT4, PT1D
DXRT, XRTD
DAXN, AXIND
DAX UT» AXAUT
DLIBo nDLIBs

uT

D

/PC
/THISLN
/(TAD I XRT)
/(DCA 1 AXIN)
/(TAD 1 Ax, ym)
/LINK FOR

K L=COMMAND

/8K

OVERLAY FOR FOCAL,ZZK PALLD

2420
2021
222
2023
4024
3925
2026
2227

2120
2121
21722
2123
2124
7125
2126
4127
a11e
7111
2112

2113
4114
2115
2116
a147
2120
2121
3122
3123
2124
2125

2020

1901

[S

3
=T

2000
A220
2000
020
5051
2060
2126

glog
Ip2e
0g
2355
7213
4006
1703
2114
4720
6171
6671
7715

6221
1607
3426
6222
5525
6¢22
1406
3007
6203
5525
7629
2126

vode
2009
vpoP

V133 14-MAR=-69 15157

L1101 0770700770707 77077777777727777727¢07777

FIELD 1
*po00
?
a
5]
2
1§
5451
BUFR
LINEL
]

/2ER0 PC

/TDUMP DATA

1Y)
TEXT ®C~-8K FOCAL @

6171
6671
7715
STBK, COF P ,START 8K USER FILE AT TH]IS ADDRESS
TAD 7
DCA 1 6
CIF P
JMP 1 RLIB
DLIB8, 10F
TAD I 6
DCA 7
CIF CDF P
JMP 1, +1
RLIB, 7600 /RETURN To DISK MONITOR,
LINE1='
FIELD @
LY 141
2
NOPUNCH
XL 18T

APPENDIX F
FOCAL SYNTAX

Table F-1
Syntax in Backus Normal Form

<immediate command > : : = <program statement > C.R.
<indirect command >: : =<line # > <program statement >C.R.

<line #>: : = <group no. > * <line no. >

<group no. >: : = 1-31

<lineno.>::=01-99 | 1-9

<program statement > : : = <command >|
<command > <space > <arguments > | <command string > |
<program statement >; <program statement >

<command >: : =WRITE | DO | ERASE | GO| GOTO

<arguments >: : = ALL I <line # > | <group no. >

<command string >: : = <type statement > | <Library statement > |

<Ask statement > | <If statement >
<Modify statement > | <Set statement >
<For statement > | QUIT| RETURN | COMMENT | CONTINUE

<Set statement >: : = SET <space > <variable >= <expression >
<For statement >: : = FOR <space > <variable > = <expression >,
<expression >, <expression >; <program statement > |

FOR <space > <variable > = <expression >, <expression >;
<program statement >

<If statement >: : = IF <space > <subscript ><line # >; |
IF <space > <subscript ><line # >, <line #>; |
IF <space > <subscript > <line # >, <line # >, <line #>
<Ask statement >: : = ASK <space > <Ask arguments >
<Ask arguments > : : = <operand >, <Ask arguments >|
I <Ask arguments >| # <Ask arguments > I% <format code >, <Ask arguments >
" <character string > " <Ask arguments > | <null >|
<operand > <space > | $
<format code >: : = <line #> | <null > | <group no. >
<Library statement >: : =
LIBRARY <space > <Library Command >
<space > <file NAME >
'<Library Command>: : = CALL| SAVE| DELETE| LIST

F-1

<character string > : : = <null > | <character > <character string >
<character >: : =a=z | <digit >| <special symbols >
<digit>::=1-9| 0

<terminafor >: : =<space>| , | ; |C.R.

<not space >: : = <null > | <character >

<special symbols >: : = &| ' |:| @
<leader-trailer >: : =@ | [2001 | <null >

<File name >: : = <character string >

<data list >: : = <variable > | <variakle >, <data list >

<Type statement >: : = TYPE <space > <Type arguments >

<Type Arguments >: : = <Ask arguments > | <expression >|
<Type arguments >, <Type arguments >

<Modify statement >: : = MODIFY <space > <line #>

This command is then followed by keyboard input
characters defined as <search character >

plus

<null > | <character string >| <control character >|
<character string > <control characters >

<control charcter >: : = [bell] <search character >|
[form] | [line-feed | C.R. |

(M1 | « | [rub-out]

<Variable >: : = <letter >| <letter > <character >|
<Variable > <subscript >
<Subscript >: : = <left paren > <expression > <right paren >

<operand >: : =<variable > | <constant >| <subscript > | <function >

<left paren >: : = <| (|t
<right paren>: :=>) | 1
<expression >: : = <unary > <operand > | <operand >l

<expression > <operctor > <expression >

<unary >:: =+ -
<operator>::= t|* | /] + | -
<Function >: : = F <function code > <subscript >

<function code >: : =SIN .| COS | LOG | ATN | EXP
SQT | ADC | DIS |ITR |
ABS | SGN | RAN | NEW |

NOTE

Spaces are ignored except when required.

Commandments Francais Pour Le Calculateur Electronique "IGOR"

Table F-2
FOCAL Commands In French

English French Letter
1. SET ORGANIZE @)
2. FOR QUAND Q
3. IF SI S
4. DO FAIS F
5. GOTO VA \
6. COMMENT COMMENTE C
7. ASK DEMANDE D
8. TYPE TAPE T
9. LIBRARY ENTREPOSE E
10. ERASE BIFFE B
11. WRITE INSCRIS I
12. MODIFY MODIFIE M
13. QUIT ARRETE A
14. RETURN RETOURNE R

CE N'EST PAS PARFAIT
MALIS "IGOR" EST INTELLIGENT
IL COMPRENDRA

NOTE
"ITGOR" refers o PDP-8/1

F-3

APPENDIX G
ILLUSTRATIONS

C EVAL B
LASTOP
=0

o "
v

—— v
OP|

NEXT-2)
PUSH J
GETVAR
(PT1) => VAR

e D
C _ﬂ NEXT]

TEST

FOR
TERMINATOR
NO YES

(Cerrora) (C Eemermn)

Figure G=1 (Sheet 1) Arithmetic Evaluation

{ FLARG = ZERO
___ETERMI ’| PT2) = FLARG

THIS
RPAR

ELPAR
ETERMN N

THIS
LPAR
?

NO

(ETERM } e
THISOP =
SORTCN

HIS
T

ERROR 4

RPAR

3
“
?
HISOP =
9
THIS
<
LAST
?
LOAD LAST
OPERATOR
L

‘ ETERM2 -

N

YES
3

EXECUTE LAST
OPERATION
RETURN
LAST = ES
POPA NO \
THIS =0 POPJ

LASTOP ?

ETERM2

Figure G-1 (Sheet 2) Arithmetic Evaluation

G-2

SET (PT1)
ENUM =
FLARG

SET INSUB
TO USE
GETC

LASTOP

CFINPUT

(OPNEXT)

LASTOP
TH |=SOP
Crt D
GETC
J (
-

TEST 1st CHAR ERROR4
OF ARG.

—n

ELPAR a1t (

N

(ENUM Je—e
F

(EFUN]»4-—
v

(OPNEXT-2)n»—i

DUMP EXTRA
ARG

EFUN3

Analysis of Operands Analysis of Sub-Expressions and Constants

Figure G=1 (Sheet 3) Arithmetic Evaluation

- ASSEMBLE l
C:FUN CODE NAME]
— FNTABF

FNTABL
(EFUN2]
SORTCN NO
LPAR ERROR4
?
s AR
ARG => FLARG
(PT1) = FLARG ADDRESSES
ECAILL CHAR = RPAR,
COMMA OR C. R.
TYPICAL FUNCTION
COMPUTE
THE
POPA FUNCTION
GET BACK AND
BRANCH ON
UNCTION CODE TEAVE
ARGUMENT
IN FLAG
 va
EFUN3I EFUN3
ERRORY NORMALIZEE
ILLEGAL AND SAVI
NAME IN FLARG
ARTEST]

< OPNEXT >

Figure G-1 (Sheet 4) Arithmetic Evaluation (Analysis of Functions)

G-4

FUNCTION
RETURN

200

(IBAR >

OR START
INITIAL DIALOG

PRINT

200.00
INIT PC=0 PRINT
START ORKING POINTERSH ONPSW =1 "y
PREPARE
WAIT FOR

COMMAND BUFFER

(IGNOR >

INPUT

‘ IGNOR+4 >

INPUTX

PC=(PC)
LOAD PC+1

4

IN LIST

SRETN

Figure G-2 Command/Input

ON LINE
COMMAND

TESTN

YES

DELETE OLD
LINE AND SET
POINTERS

-]

SAVE
THE TEXT OF
THE LINE

START

—— MANUAL RESTART VIA LOC 200
GRS S G

RECOVR-+1

RESET ALL
POINTERS

(ERROR2 y—

P 00.00

PC=
__ THISLN

START
PROCESS —
PROC

D

-
D

TGNORE
SPACE “,"
oL . BRANCH OR
. COMMAND
l CHARACTER

PUSHA 60 TO COMGO
COMMAND NEXT
CHARACTER TERMINATOR
SORTY COMLST
(cerrOR2_) l ’

Figure G=3 Main Control and Transfer

G-6

SAVE NEXT
CHARACTER

PUSHF CONTINUE
DATA IS
TEXTP SAVED
ONE YES) ewe——— _/]
ug:s/\ » ONE)} vwl
NO NOT
THERE
FINDLN ERROR2
DGRP] OK
L_ .
INIT TEXT ‘
POINTERS PUSHJ
j PROCESS

SAVE NAGSW
DCHAR

{ < LINEP LINEND

PUSHJ
PROCESS
-2

DCONT

Figure G-4 DO Command

G-7

TYPE —>9

Coe Dt

DISABLE
THE TRACE

GETC

»
-

SORTJ

PRINTC

/AN LN

ATSW =-1
FOR "ASK"

ATLIST
TINTR

TQUOT

TCRLF

TCRLF2

TOUMP

TASK4

TASK4

PROCESS

REMEMBER
WHICH COMMAND
THIS IS
ATSW =0
FOR"TYPE" l
ALIST
%
ENABLE
THE TRACE "
YES !
SORTJ
#
$
sp
s
C.R.

R

LIST2 TLIST3
" C: TASK4)
C.R. PC1

Figure G=5 (Sheet 1)

(TCRLF

‘ TCRLF2

G-8

PC1

TYPE
CR+LF

TYPE
ONLY

Input/Output Commands

TASK4

ASK NO

PUSHJ
GETARG

T

INSUB 1
TO INDICATE USE
OF READC

)

SAVE THE
LAST
CHARACTER

‘

PRINT

w,on

‘

POINT TO
INCOMING
CHARACTER

]

KFINPUT

Ny

RESTORE
THE LAST
CHARACTER

—1

Figure G~5 (Sheet 2)

TYPE 2

TINTR)

READ AND
SAVE FORMAT
TA

TA sx_«t_;)
erc
‘L_\
=T

PUSHJ
EVAL

(TYPE)

Input/Output Commands

0L-9

PUSHJ
GETARG

READ TO
"="SIGN

PUSHJ
EVAL-1

INITIALIZE

THE
VARIABLE

oy

J /AN

m
x
X
c
x
EY

FLIST1

FINCR
PROCESS

PC1

SORTJ —~———————————j

TLIST

Figure G-6

SAVE

READ
THE LIMIT

ADDRESS

PUSHJ
EVAL-1

)

A
(ERROR4)

FLIMIT

SAVE THE
INCREMENT

PUSHJ
EVAL—?

1

{

'

FLIST2

FLIMIT

FINFIN

ERRORS

FINFIN

(kL

‘ FCONT }

Iteration Control

SAVE LIMIT SET THE
AND INCREMENT
TEXT POINTERS TO +1
PUSHJ
PROCESS
UPDATE
THE
VARIABLE
POPJ

TLIST

I
=D

@
N

</
T (GG

l ENABLE .
_— C’p + <ﬂ
o
YES

RIGHT

< > O
NO o

Q)RTJ i

N
4 Y TUIST ILIST
pd

\ IF
<ETC

\ PROCESS
CR

[y

Figure G-7 Conditional Branch Command

G-11

-9

MODIFY
GETLN

RESTART
LINE NUMBER POINTERS

SRNLST
SBAR

L2

SCONT

‘ SFOUND >
aoc [==—o{asr 33 |
FINDLN ’
NO i
ERROR2 SoRTY
< YES LISTe
‘ SGOT 4
SET ALL
POINTERS
FOR INPUT
BACKC FORM-FEED
I BELL
{ SFOUND)
LINE-FEED

READ KEYBOARD

SCONT+1

-

SAVE SEARCH
CHARACTER

GETC

PRINTC

<}

=
U
U
=.

SORTJ

LIST3 LISTGO
215 SRETN

SGOT

Figure G=8 Character Editing

CARRIAGE - RETURN

SEARCH CHARACTER

SCONT+1

SRETN

(LLGE

SGOT

(ERASE }——

ERRORS

RESET TEXT
POINTS

RESET
VARIABLE
LIST

POPJ >

SET UP

— A
‘ DONE BASE FOR
THE BIG NOR

NOR ALL
TEXT LINES

GARBAGE COLLECTION

DELETE

Figure G=9 (Sheet 1) ERASE and Delete

G-13

DELETE ENTRY ERL__)

GETLN
FINDLN }—»

SET UP

ANN FOR
EXIT 'DELETE’

FORCE A
RETURN TO
'START'

ERG Sm—

DELETE
ONE LINE

CHAR:=C.R.
P

YES ADD ONE

JUST ONE
?

MEASURE LENGTH
OF THE LINE

'

REMOVE THE
POINTERS

I

SEARCH STRING

AND
CORRECT POINTERS

DONE D

Figure G-9 (Sheet 2) ERASE and Delete

G-14

SAVE
STATUS

P -

Es
YES RscovE_D————

MANUAL
INTERRUPT
VIA RC.
RESET ALL

1A
P~
NO S
ERROR2 ’
SAVE
ERROR NUMBER POINTERS

TURN ON TELSW

ANY\
SR>
J
P~
TLS

Yves

INTRPT]

RNTLR

NO BLANK
P

SAVE

INPUT DATA
YES - IGNORE
‘ TINT }
Y
~,

N

T
»
YES
CLEAR FLAGS
ANY MORE NO EXIT ’
?/
TYPE AND
NOR THE
POINTERS
CONTINUE

(EXIT)—
RESET EXECUTE
MACH INE HIGH SPEED
READER T

CONDITIONS

Figure G~10 (Sheet 1) Interrupt Handler

G-15

() SAVE DATA
XOUTL > ENTRY >
10N

< ANY ROOM
P

TYPE CHARACTER
EXIT XOUTL NOR <IN PROGRESS AND » EXIT XOUTL
POINTERS P START PROGRESS
X133 ENTRY -————»-<C_ ANY INPUT
P
SAVE INPUT
CLEAN
AC= INPUT
EXIT XI33
ERRORX)
ERRX)
MASK CALLING
ADDRESS
J
WAIT FOR
PREPARE ERROR - oUTPUT
TO FINISH

(RECOVR Ja—————

Figure G-10 (Sheet 2) Interrupt Handler

G-16

L1-9

GETARG

TESTC ERROR4
LEGAL

GETVAR 4

4

SAVE TWO
LETTERS

y

IGNORE
THE REST

:V
GSEARCH

SAVE NAME

AN

RESTORE NAME

RTEST]

4

y

SAVE THE
SUBSCRIPT AND
START SEARCH

y
GS3

GS1

Figure G-11

END OF LIST
P

NO

)

LOOK AT NEXT

ADD THE

INITIALIZE

VARIABLE NAME
AND SUBSCRIPT

+1=0
NAGSW

YES

SET PT1
TO DATA

—t

[POPJ)

GEXIT

GROUP

Varidble Look=up and Enter

EXIT

TO ZERO

CHECK FOR fgyL,

81-9

UTRA

UTRA+1

)

uTt2

200 | -276
)

ENTRY

SET CHAR

GET1

RANGE
?

GET1

300!-376

SET CHAR

uTQ

CHAR="P"

PRINT

EXIT UTRA

Figure G=12 Character Unpacking

y

READ
RIGHT HALF

READ NEXT
AND GET
LEFT HALF

77=EXTEND
?

AC=CHAR-40

EXIT GET1

GET1

READ ANOTHER
HALF AND
INVERT

FLIP D7PSW

UTRA+1

CHAR =277

"FINDLN"

(XFIND)
e

(FINDN Jo— NO

Figure G~13

FIND A ENTRY
PARTICULAR |
LINE FOR A
GIVEN
LINENUMBER
OR GROUP LASTLN=CFRS

'

CHANGE
DATA FIELD

:

AC=CFRS

THISLN = AC

A

XRT2 = THISLN

SIZE OK
P

FouND IT S YES
-3

YES

"FINDLN™

ROUTINE
¢ FINDN
y

ERROR2

MOVE POINTERS INCR EXIT
)
WAS YES SET UP
IT LAST > OUTPUT
P POINTERS
EXIT

G-19

"FINDLN" Routine

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes, software
problems, and documentation corrections are published monthly by Software Informa-
tion Service in the following newsletters,

Digital Software News for the PDP-8 Family
Digital Software News for the PDP-9 Family

These newsletters contain information applicable to software available from Digital’s
Program Library (see title page for address). Software products and documents are
usually shipped only after the Program Library receives a specific request from a user.

Digital Equipment Computer Users Society (DECUS) maintains a user library and pub-
lishes a catalog of programs as well as the DECUSCOPE magazine for its members and
non-members who request it.

Please complete the card below to receive information on DECUS membership or to place
your name on the newsletter mailing list,

Please send

(O DECUS membership information,
or add my name to the

O DECUSCOPE non-membership list.

And, send me the Digital Software News for the
O pPDP-8 O pppP9o

NAME
COMPANY
ADDRESS

CITY STATE Z1P

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by: mnannanl

DECUS

Digital Equipment Corporation
146 Main Street

Maynard, Mass, 01754

ADVANCED FOCAL
TECHNICAL SPECIFICATIONS
DEC-08-AJBB-DL

READER’S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its
publications. To do this effectively we need user feedback - - your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability, and readability.

Did you find errors in this manual? Please explain, giving page numbers.

How can this manual be improved?

DEC also strives to keep its customers informed on current DEC software and publications. Thus, the
following periodically distributed publications are available upon request. Please check the publication(s)
desired.

(O Digital Software News for (JPDP-8/1 Software Manual (O PDP-8/1 User’s Bookshelf,
the PDP-8 Family, contains Update, contains addenda/ contains a bibliography of
current information on sofi- errata sheets for updating current and forthcoming
ware problems, programming software manuals. software manuals.

notes, new and revised soft-
ware and manuals.

Please describe your position.

Name Organization

Street Department

City State Zip or Country

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by: mngnlall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

‘II

i

Distal Equipment Corporaion dlilg Ll

printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	G-20
	replyA
	replyB
	replyC
	replyD
	xBack

