
INSTRUCTION MANUAL 

EXTENDED 
ARITHMETIC ELEMENT 

KE08A 

DIGITAL EQUIPMENT CORPORATION. MAYNARD. MASSACHUSETTS 





Cvrf~ 

INSTRUCTION MANUAL 

KE09A 

DEC-b9-I2AA-D 

EXTENDED ARITHMETIC ELEMENT 

DIGITAL EQUIPMENT CORPORATION. MAYNARD. MASSACHUSETTS 



1 st Printing July 1968 
2nd Printing February 1969,...-... 

Copyright © 1968 by Digital Equipment Corporation 

1969 

Instruction times, operating speeds and the like are in­
cluded in this manual for reference only; they are not to 
be taken as specifications. 

The following are registered trademarks of Digital 
Equipment Corporation, Maynard, Massachusetts: 

DEC 
FLIP CHIP 
DIGITAL 

II 

PDP 
FOCAL 
COMPUTER LAB 

.. 



CONTENTS 

Page 

CHAPTER 1 
INTRODUCTION 

1.1 Purpose 1-1 

1.2 Related Documents 1-1 

1.3 Power Requirements 1-1 

1.4 Engineering Drawings and References 1-1 

1.5 Spec ifi cations 1-2 

1 .5. 1 Functional Characteristics 1-2 

1.5.2 Operating Characteristics 1-2 

CHAPTER 2 
INSTALLATION AND OPERATION 

2.1 Insta Ilation 2-1 

2.2 Manual Controls and Indicators 2-1 

2.3 Programming Considerations 2-1 

CHAPTER 3 
PRINCIPLES OF OPERATION 

3. 1 Instruction Fetch and Op Code Decoding 3-1 

3.2 EAE Command Decoding 3-1 

3.3 Timing and Flow 3-2 

3.4 Setup Instructions 3-2 

3.5 Shift Instructions 3-9 

3.6 Normalize Instructions 3-21 

3.7 Multiply Instructions 3-24 

3.8 Divide Instructions 3-33 

3.8. 1 DIV(S) Instructions 3-34 

3.8.2 IDIV(S) Instruction 3-45 

3.8.3 FRDlV(S) Instruction 3-46 

3.8.4 Divide Overflow 3-46 

3.9 EAE Instruction Development 3-48 

iii 



CONTENTS (Cont) 
"......., 

Page 

CHAPTER 4 
MAINTENANCE 

4. 1 General Maintenance 4-1 

4.2 Maintenance Program Tapes 4-1 

4.3 Replaceable Parts 4-1 

CHAPTER 5 
ENGINEERING DRAWINGS 

5. 1 Signal Mnemonic Index 5-1 

5.2 Drawing List 5-2 

ILLUSTRATIONS 

3-1 EAE Timing 3-3 

3-2 LRS, LRSS Register Manipulation (One Position) 3-13 

3-3 LLS, LLSS Register Manipulation (Two Positions) 3-19 

3-4 ALS, ALSS Register Manipulation (Three Positions) 3-20 

TABLES 

2-1 Operating Controls and Indicators 2-1 

2-2 EAE Instructions 2-2 

2-3 EAE Operation Times 2-5 

3-1 EAE SETUP Instruction Format 3-4 

3-2 OSC Functions 3-4 

3-3 OMQ Functions 3-5 

3-4 CMQ Functions 3-6 

3-5 LACS Functions 3-6 

3-6 LACQ Functions 3-7 

3-7 ABS Functions 3-7 

3-8 CLQ FtJnctions 3-8 

3-9 LMQ Functions 3-8 
" 

3-10 GSM Functions 3-9 

3-11 EAE Shift Instruction Format 3-10 

3-12 LRSS Functions 3-11 

3-13 LLSS Functions 3-14 

iv 



TABLES (Cont) 

Page 

3-14 ALSS Functions 3-16 

3-15 EAE NORM Instruction Format 3-21 

3-16 EAE MUL Instruction Format 3-24 

3-17 MULS Functions 3-26 

3-18 MULS Arithmetic 3-31 

3-19 MULS Functions 3-32 

3-20 MULS Functions 3-32 

3-21 MULS Functions 3-33 

3-22 EAE DIV Instruction Format 3-34 

3-23 DIVS Functions 3-36 

3-24 DIVS Arithmetic 3-43 

3-25 DIVS Functions 3-44 

3-26 DIVS Functions 3-44 

3-27 DIVS Functions 3-45 

3-28 DIV OV Functions 3-47 

3-29 EAE Microinstructions 3-48 

4-1 EAE Module Complement 4-1 

v 





CHAPTER 1 

INTRODUCTION 

This manual contains operation and maintenance information for the KE09A Extended Arithmetic 

Element (EAE) of the Programmed Data Processor PDP-9, manufactured by Digital Equipment Corporation, 

Maynard, Massachusetts. For a complete understanding of the option and its relation to the basic PDP-9 

system, the user must be thoroughly familiar with the contents of the PDP-9 Maintenance Manual, F-97. 

1.1 PURPOSE 

The EAE option facilitates high-speed multiplication, division, shifting, normalizing, and 

register manipulation. Installation of the EAE adds an lS-bit multiplier-quotient register (MQ) and a 

6-bit step counter (SC) to the basic PDP-9 system. The option logic occupies space in the central proces­

sor wing of the basic PDP-9 system, as indicated in the CP UML drawing KCS. All logic module loca­

tions have been prewired into the system. The contents of the MQ can be selected by the REGISTER 

DISPLAY switch on the PDP-9's operator console for display in the REGISTER indicator. 

The EAE operates asynchronously with the basic system, permitting computations to be per­

formed in the shortest possible time. Furthermore, instructions can be microcoded so that several non­

conflicting EAE operations can be performed by one instruction, thereby simplifying arithmetic program­

ming. Maximum multiplication and division time is 12 \JS. 

1.2 RELATED DOCUMENTS 

The PDP-9 library offers a complete package of single- and multiple-precision programming 

routines for use with the EAE. These and other related documents and tapes are listed in Chapter 1 of 

the PDP-9 Maintenance Manual. 

1.3 POWER REQUIREMENTS 

The EAE needs no source of primary or dc power other than that already furnished with the 

basic PDP-9 system. All necessary power is prewired to the module locations. 

1.4 ENGINEERING DRAWINGS AND REFERENCES 

Throughout this manual all references to EAE option drawings and basic PDP-9 system drawings 

are abbreviated as in the PDP-9 Maintenance Manual. Refer to Chapter 1 of the Maintenance Manual 

for abbreviation codes. As an aid to understanding the EAE, a simplified version of LINC Control 

drawins KC15 alons with a portion of EAE logic appears on an illustration at the end of this manual. 

1-1 



Chapter 5 of this option manual contains a complete set of EAE option drawings indexed by 

their full drawing number codes, along with all module circuit schematics. 

1.5 SPECIFICA TIONS 

1 .5.1 Functional Characteristics 

The EAE enables fast, flexible, hardware execution of the following signed or unsigned 

functions. 

a. Shifting the contents of the primary arithmetic registers (AC, MQ) right or left, requires 
4 to 18 ,",S. 

b. Normalizes the quantity in the primary arithmetic registers, i.e., shifts the contents 
left to remove leading binary Os for the purpose of preserving as many significant bits as possible. The 
time required is 4 to 18 ,",S. 

c. Multiplication is performed in 5 to 12 ,",S. 

d. Division including integer divide and fraction divide require 5 to 12 fJS. Divide over­
flow indication is furnished by the LINK when signed division produces a quotient exceeding ± 3777778 
in magnitude, or unsigned division produces a quotient exceeding 7777778 in magnitude. 

e. Basic setup instructions to manipulate the data in the registers preparatory to execution 
of the above instructions requires 2 ,",S. 

1.5.2 Operating Characteristics 

Heat Dissipation 

Power Dissipation 

108 BTU/hr 

0.032 kW 

1-2 



CHAPTER 2 

INSTALLATION AND OPERATION 

2.1 INSTALLATION 

Complete installation of the EAE option merely involves plugging the logic modules into their 

assigned locations in the central processor wing ,and ascertain ing that certain jumpers are removed. The 

following jumpers are in place to allow FORTRAN programming without the EAE. They must be removed 

for EAE operations (refer to drawing KC27). 

a. ACO - LINK from E04R to E04B. 

b. ADRL(B) from B03D to B03N. 

c. MQI(l )/EAE OR ARO from D22P to D23J. 

d. TEMP 1 (1) from B03C to B03T. 

e. SCO(1) from B31C to B31P. 

2.2 MANUAL CONTROLS AND INDICATORS 

The EAE option contains no manual controls and indicators other than those prewired into the 

PDP-9 operator's console. Table 2-1 lists and describes these controls and indicators. Refer to the 

PDP-9 Maintenance Manual for details. 

Table 2-1 
Operating Controls and Indicators 

Control/Indicator Function 

REGISTER DISPLAY switch MQ position displays contents of the MQ register in the REGIS-
and TER indicator when the computer is in a stop condition. 

REGISTER indicator 
EAE position is presently not used (not wired). 

2.3 PROGRAMMING CONSIDERATIONS 

The EAE option adds the instructions listed in Table 2-2 to the basic PDP-9 instruction reper­

toire. See Table 2-3 for execution times. 

2-1 



Octal 
Code 

640000 

640001 

640002 

640004 

641001 

641002 

644000 

650000 

652000 

664000 

6405XX 

6605XX 

Mnemonic 

EAE 

OSC 

OMQ 

CMQ 

LACS 

LACQ 

ABS 

CLQ 

LMQ 

GSM 

LRS 

LRSS 

Table 2-2 
EAE Instructions 

Operation 

Basic EAE instruction. Acts as a NOP instruction. 

Inclusive-OR the SC with the AC. The contents of the AC are in­
clusive-ORed with the contents of the 6-bit SC on a bit-for-bit basis, 
and the results are left in AC12 through 17. If corresponding SC and 
AC bits are 0, the result is O. If corresponding bits are 1 or differ, 
the result is 1. The previous contents of the AC are lost, the LINK 
and the SC remain unchanged. 

Inc lusive-OR the MQ with the AC. The contents of the AC are in­
clusive-ORed with the contents of the MQ on a bit-for-bit basis, 
and the results are left in the AC. If corresponding MQ and AC bits 
are 0, the result is O. If corresponding bits are 1 or differ, the result 
is 1. The previous contents of the AC are lost, the LINK and the 
MQ remain unchanged. 

Complement the MQ. The previous contents of the MQ are lost, the 
LINK and the AC remain unchanged. 

Load AC12 through 17 with the contents of the SC. The previous 
contents of AC 12 through 17 are lost, the LINK and the SC remain 
unchanged. 

Load the A.C with the contents of the MQ. The previous contents of 
the AC are lost, the LINK and the MQ remain unchanged. 

Get the absolute value of the AC. If the sign (ACOO) of the contents 
of the AC is negative, the contents are 1s complemented. The LINK 
remains unchanged. 

Clear the MQ. The previous contents of the MQ are lost, the LINK 
and the AC remain unchanged. 

Load the MQ with the contents of the AC. The previous contents of 
the MQ are lost, the LIN K and the A.C remain unchanged. 

Get the sign and magnitude of the AC. Places the sign (ACOO) of 
the AC contents in the LINK, and if negative, 1s complements the 
contents. 

Long Right Shift. Shifts the contents of the LINK, AC, and MQ 
right the number of positions indicated in bits XX. The LINK is 
usually initialized to 0 and shifted unchanged on each step. 

Long Right Shift, Signed. Shifts the contents of the LINK, AC and 
MQ ri9ht the number of positions indicated in bits XX. ACOO is 
initially stored in the LINK, then shifted unchanged on each step. 

2-2 



.. ~ 

Octal 
Code 

6406XX 

6606XX 

6407XX 

6607XX 

640444 

660444 

6531XX 

6571XX 

Mnemonic 

LLS 

LLSS 

ALS 

ALSS 

NORM 

NORMS 

MUL 

MULS 

Table 2-2 (cont) 
EAE Instructions 

Operation 

Long Left Shift. Shifts the contents of the LINK, AC and MQ left 
the number of positions indicated in bits XX. The LINK is usually 
initialized to 0 and shifted unchanged on each step. 

Long Left Shift, Signed. Shifts the contents of the LINK, AC and 
MQ left the number of positions indicated in bits XX. ACOO is in­
itially stored in the LINK, then shifted unchanged on each step. 

Accumulator Left Shift. Shifts the contents of the LINK and AC left 
the number of positions indicated in bits XX. The LINK is usually 
initialized to 0 and shifted unchanged on each step. 

Accumulator Left Shift, Signed. Shifts the contents of the LINK and 
AC left the number of positions indicated in bits XX. ACOO is ini­
tially stored in the LINK, then shifted unchanged on each step. 

Normalize. Shifts the contents of the LINK, AC and MQ left until 
ACOO and ACOl differ or until the maximum of 36 shifts (44g) occur. 
The LINK is usually initialized to 0 and shifted unchanged on each 
step. 

Normalize, Signed. Shifts the contents of the LINK, AC and MQ 
left until ACOO and ACOl differ or until the maximum of 36 shifts 
(44g) occur. ACOO is initially stored in the LINK and then shifted 
unchanged on each step. 

Multiply. Multiplies the number in the AC (multiplier) by the num­
ber in the next core memory location (multiplicand) to form a product 
in the AC and MQ. MUL transfers the multiplier to the MQ, clears 
the AC, and fetches the multiplicand from memory. Bits XX command 
the desired precision of the product (228 or 1810 steps for maximum 
36-bit precision). The LINK must be cleared previously and remains 
unchanged. 

Multiply, Signed. Multiplies the number in the AC (multiplier) by 
the number in the next core memory location (absolute value multi­
plicand) to form a signed product in the AC and MQ. ACOO and 
ACOl receive the product sign. A previous LAC/GSM/DAC CAND 
sequence places the multiplicand sign in the LINK and the absolute 
value in memory. MULS transfers the multiplier to the MQ, performs 
ls complements of the multiplier if its sign is negative, fetches the 
absolute value multiplicand from memory, and clears the LINK. Bits 
XX command the desired precision of the product (228 or 18 10 steps 
for maximum 36-bit precision). 

2-3 



Octal 
Code 

6403XX 

6443XX 

6533XX 

6573XX 

Mnemonic 

DIV 

DIVS 

IDIV 

IDIVS 

Table 2-2 (cont) 
EAE Instructions 

Operation 

Divide. Divides the number in the AC and MQ (dividend) by the 
number in the next core memory location (divisor) to form a quotient 
in the MQ and remainder in the AC. DIV fetches the divisor from 
memory. Bits XX command the desired precision of the quotient and 
remainder (238 or 1910 steps for maximum 36-bit precision). The 
LINK must be cleared previously and remains unchanged unless divide 
overflow occurs. Overflow occurs if the divisor is not numerically 
greater than the AC portion of the dividend. 

Divide, Signed. Divides the number in the AC and MQ (36-bit 
double-signed dividend) by the number in the next core memory lo­
cation (absolute value divisor) to form a signed quotient in the MQ 
and remainder in the AC. MQOO receives the sign of the quotient 
and ACOO receives the original sign of the dividend. A previous 
LAC/GSM/DAC sequence places the divisor sign in the LINK and 
the absolute value in the memory. DIVS fetches the absolute value 
divisor, 1s complements the MQ portion of the dividend if the divi­
dend sign is negative, and clears the LINK. Bits XX command the 
desired prec ision of the quotient and remainder (238 or 1910 steps for 
maximum 36-bit precision). The LINK remains cleared unless divide 
overflow occurs. Divide overflow occurs if the divisor is not numeri­
cally greater than the AC portion of the dividend. 

Integer Divide. Divides the number in the AC (integer dividend) by 
the number in the next core memory location (divisor) to form a quo­
tient in the MQ and remainder in the AC. IDIV fetches the divisor 
from memory, transfers the contents of the AC to the MQ, then clears 
the AC. Bits XX command the desired precision of the quotient and 
remainder (238 or 1910 steps for maximum 36-bit precision). The 
LINK must be previously cleared and remains unchanged unless divide 
overflow occurs. Overflow occurs only if the divisor is O. 

Integer Divide, Signed. Divides the number in the AC (signed integer 
dividend) by the number in the next core memory location (absolute value 
divisor) to form a signed quotient in the MQ and remainder in the AC. 
MQOO receives the sign of the quotient and ACOO receives the original 
sign of the dividend. A previous LAC/GSM/DAC sequence places the 
sign of the divisor in the LINK and the absolute value in memory. 
IDIVS fetches the absolute value divisor, transfers the contents of the 
AC to the MQ, 1 s complements them if the dividend sign is negative, 
and clears the AC and LIN K. Bits XX command the desired prec ision 
of the quotient and remainder (238 or 1910 steps for maximum 36-bit 
precision). The LINK remains cleared unless divide overflow occurs. 
Overflow occurs only if the divisor is O. 

2-4 



Octal 
Code 

6503XX 

6543XX 

Mnemonic 

FRDIV 

FRDIVS 

Number of Shifts* 

0 
1 
2,3,4 
5,6,7 
8,9,10 
11,12,13 
14,15,16 
17,18,19 
20,21,22 
23,24,25 
26,27,28 
29,30,31 
32,33,34 
35,36 

* In itia I step count. 

**SETUP Instructions. 

Table 2-2 (cont) 
EAE Instructions 

Operation 

Fraction Divide. Divides the number in the AC (fraction dividend) 
by the number in the next core memory location (divisor) to form a 
quotient in the MQ and remainder in the AC. The binary point is 
assumed to be at the left of ACOO. FRDIV fetches the divisor from 
memory and clears the MQ. Bits XX command the desired precision 
of the quotient and remainder (238 or 1910 steps for maximum 36-bit 
precision). The LINK must be previously cleared and remains un­
changed unless divide overflow occurs. Overflow occurs if the di­
visor is not numerically greater than the dividend. 

Fraction Divide, Signed. Divides the number in the AC (signed 
fraction dividend) by the number in the next core memory location 
(absolute value divisor) to form a signed quotient in the MQ and re­
mainder in the AC. The binary point is assumed at the left of AC01 • 
MQOO receives the sign of the quotient and ACOO receives the orig­
inal sign of the dividend. A previous LAC/GSM/DAC sequence 
places the sign of the divisor in the LINK and the absolute value in 
memory. FRDIVS fetches the absolute value divisor, clears the MQ 
and LINK, and 1s complements the contents of the AC if the dividend 
is negative. Bits XX command the desired prec ision of the quotient 
and remainder (238 or 1910 steps for maximum 36-bit prec ision). The 
LINK remains cleared unless divide overflow occurs. Overflowoc­
curs if the divisor is not numerically greater than the dividend. 

Table 2-3 
EAE Operation Times 

SETUP ,SHIFT, 
MUL, DIV Instructions 

NORM Instructions 

2** 5*** 
4 5 
5 

~ 
6 

6 7 
7 8 
8 10 

10 11 
11 12 
12 
13 
14 
16 
17 
18 

***DIV OV causes divide operation to stop here. MUL and DIV instructions containing initialized step 
count of 0 stop here with no arithmetic operations undertaken. 

2-5 



• 



CHAPTER 3 

PRINCIPLES OF OPERATION 

This chapter describes the EAE option in terms of its instruction repertoire and the logic that 

implements those instructions. The discussions include references to the logic drawings in Chapter 5 and 

to pertinent drawings of the basic PDP-9 system. 

3.1 INSTRUCTION FETCH AND OP CODE DECODING 

EAE instructions are fetched from core memory through the fetch cycle processes as are all 

PDP-9 instructions. The PDP-9 Maintenance Manual explains the fetch cycle processes in detail. 

Briefly, the BGN process word (10) which concludes a previous execute cycle transfers the current ad­

dress held in the PC to the MB and starts the next core memory and control memory read operations. 

MA JAM transfers the current address from the MB to the MA, the core memory cycle starts, and the 

fetch entry process word (21) is extracted from control memory. Process word 21 increments the address 

in the MB and transfers it to the PC for the next following fetch cycle (MBO, + 1, PCI). 

The next CM process word(12) occurs while the core memory reads the addressed memory 

word into the sense amplifiers. Processes evolved from process word 12 transfer this (instruction) word 

from the sense amplifiers to the MB, and also gate the op code portion into the IR (SAO, MBI, IRI). 

The contents of the AC are gated into the AR (ACO, ARI). 

The next process word address held in the address portion (CMAOO through 05) of process word 12 

is 24. On drawing KCI2, the op code detection circuits decode the op code bits IROO, IROl, IR03. 

These bits, all in the 1 state for an EAE op code of 648 , produce the REP signal. REP allows the IR bits 

to modify the control memory address on drawing KCI7, boosting this next CM address from 24 to 75. 

This is the third and last process word extracted during the normal, I-fJs fetch cycle. All EAE operations 

start from this" EAE execute entry" process word. 

3.2 EAE COMMAND DECODING 

The EAE option contains an instruction register (see drawing KE4) which accepts bits SA09 

through 11 of the instruction word during process 12. These bits contain the code for a particular EAE 

instruction class, and are fed directly from the register EIR09-11 into the Binary-to-Octal Decoder 

S151-H02. The 5151 module decodes the octal class code to supply an output command level denoting 

one of the following seven EAE instruction classes. 

08 SETUP instructions 

1 MUL (Multiply) instructions 

3-1 



2 Not used 

3 DIY (Divide) instructions 

4 NORM (Normalize) instructions 

5 LRS (Long Right Shift) instructions 

6 LLS (Long Left Shift) instructions 

7 ALS (Accumulator Left Shift) instructions 

The pertinent command level remains on throughout the succeeding EAE execution processes 

to determine the particular execute operation, starting with process word 75. The paragraphs that fol­

low discuss each instruction class in detail. 

3.3 TIMING AND FLOW 

Figure 3-1 is a compasite timing diagram for all EAE instruction classes, showing machine 

cycle time versus process word branching for the various classes. The diagram can be correlated with 

the operation times listed in Table 2-3 and the flow diagrams KE5 and KE6. Examination of Figure 3-1 

reveals the following general features on operating times. 

a. All SETUP instructions require two machine cycles, progressing toward the BGN process 
word (10) that starts the next instruction fetch cycle. 

b. All SHIFT instructions, including NORM, branch to process word 50 and continue in ac­
cordance with the number of shifts (steps) programmed in bits 12 through 17 of the shift instruction word. 

c. All MUL and DIY instructions branch to process word 51 and continue in accordance with 
the number of sh ifts (steps) programmed in bits 12 through 17 of the instruction word. 

Important features not apparent in Figure 3-1 are: for/all instructions other than MUL or DIY, 

core memory is idle after the initial instruction fetch; for MUL and DIY instructions a core memory cycle 

occurs during process word 51 in which a multiplicand or divisor is fetched. Thereafter, core memory is 

not needed by the EAE during the execute cycles, and may be accessed by the DMA channel as a time­

saving feature. Ordinarily, the last process word in the fetch cycle contains an SM (start memory) bit 

in order to read an operand from memory during the execute cycle. In process word 75 this SM bit is 

absent (O), leaving the memory idle. In process word 51, the SM bit is present (1) to start a memory 

cycle for MUL or DIY. 

3.4 SETUP INSTRUCTIONS 

Nine 2-cycle SETUP instructions manipulate the data in the prime arithmetic registers (AC, 

MQ) in preparation for execution of the arithmetic operations commanded by succeeding MUL and DIY 

instructions. Table 3-1 shows the instruction format. Table 3-2 through 3-10 list the logic functions 

that implement the instructions, referencing the appropriate logic drawings. 

3-2 



• 

a. "ADVP" Checks that the memory location following the multiply and/or divide 

instruction is not modified by the execution of the instruction and that the program address counter is 

properly incremented during the execution of the instruction. 

b. liNEAE" Set up check - Checks the set-up of all EAE signed, unsigned, integ0r 

and fraction, multiply and divide instructions. These instructions are executed with a shift count of 

zero. 

c. "SHCT" Shift Counter Test - Executes the Multiply instruction sequentially starting 

at a shift count of 1 and incrementing it up to a shift count of 22. 

d. "STMUl" Sign multiply and divide test - Test all signed multiply and divide 

instructions. 

e. "MUlTST" Multiply and Divide Test - This test using worse-case number patterns 

acts as both a EAE and Adder Test. 

f. "MSPEED" Speed Multiply and Divide - This test is in three operations: (1) a 

sequence of multiply instructions are executed back to back, (2) then a sequence of divide instruc'ions 

~re executed, (3) followed by a sequence of MUl, DIY, MUl, and DIY executed back to back. 

4.2.2 Section 2 Random Data Multiply and Divide Test - The Random Data Test verifies that the 

EAE will multiply and divide random numbers at shift counts 1 through maximum (22 for multiply, 23 for 

divide) and checks that the liNK is set on divide averflow. 

The sequence of testing is as follows: 

a. Test the Multiply 

(1) Generate a random number 

(2) Do a software multiply 

(3) Do a hardware multiply 

(4) Compare the results of both operations 

(5) LOOP BACK TO 1 Till DONE 

b. Test the Divide 

(1) Generate a random number 

(2) Do a software divide 

(3) Do a hardware divide 

(4) Compare the results of both operations 

(5) lOOP BACK TO 1 TILL DONE 

7 





.. ..-..., 

2 

8 

to 

'P$ ~? 
o 234567890 234567890 ns (HUNDREDS) 

12t-+2---~-175-+3--14t--l54140--ltO =t NEXT FETCH (SETUP) 

50 --142--155 SHtFT 

5t MUL,Dtv 

NEXT FETCH (tSHIFT) 

SHIFT 

56-.157140 _ItO -I- NEXT FETCH (8,9,tO SHIFTS) 

50--l42--155--l53-156-157140--ltO~_- NEXT FETCH (tt,t2,t3 SHIFTS) 

50-142-155---1- SHIFT 

(t4,t5,t6 SHIFTS) 

o 234 5 6 7 8 9 0 234567890 ns (HUNDREDS) 

40 --ltO -I.. NEXT FETCH (t7,t8,t9) 

t2 50-142-155-153--156--157--140 --ltO --=1= NEXT FETCH (20,2t,22) 

150--l42-155--l53 --156 SHIFT 

(23,24,25) 

(26,27,28) 

(29,30,3tl 

40 --ItO _I.. NEXT FETCH (32,33,34) 

t8 50--142-155-153--156 -157 --1 40 -------1~ojtO -----0_*1 •• - NEXT FETCH (36 SHIFTS) 

Figure 3-1 EAE Timing 

3-3 



Table 3-1 
EAE SETUP Instruction Format 

Op Code SETUP 
Not Used 

648 08 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

6 4 0 0 0 1 OSC 

6 4 0 0 0 2 OMQ 

6 4 0 0 0 4 CMQ 

6 4 1 0 0 1 LACS 

6 4 1 0 0 2 LACQ 

6 4 4 0 0 0 ABS 

6 5 0 0 0 0 CLQ 

6 5 2 0 0 0 LMQ 

6 6 4 0 0 0 GSM 

Table 3-2 
OSC Functions 

640001 Inclusive-OR the SC with the AC 

Process Function Drawing No. 

75 (ACO ,ARI, EAE, LI,CONT ,CMA43) KC18 

ACO(I) = ACOO-17 - A BUSOO-17 KC20 
A BUSOO- 17 - ADROO-17 KC21 
NOSH = ADROO-17 - 0 BUSOO-17 KC20 
ARI(l) == 0 BUSOO-17 - AROO-17 KC20 
LI(l) == ADRL = LINK - LAR KC15 
LI(l) = ADRL = LINK - TEMP3 KE3 
SA09(0)ASA 1 O(O)ASA 11 (0) == SETUP KE4 
EAE(l)AARI(l) = SUI (1) KE3 
SUI (1) = 0 - SCOV ,SCOV2,FIRST ,EAE RUN, EAE SIGN,MQ 

SIGN KE2-3 
SUI (1)AMB05(0) = EAE OR MQO KE3 
CM STROBEACONT(1) = GO TO 43 KC16 

43 (ACI,EAE,CONT ,CMA41) KC18 

CM STROBEAEAE OR MQO == MQO(I) KC19 
MQO(l) = MQOO-17 - A BUSOO-17 KC20 
A BUSOO-17 - ADROO-17 KC21 
NOSH == ADROO-17 - 0 BUSOO-17 KC20 
ACI(1) = 0 BUSOO-17 - ACOO-17 KC20 
LI(O) = LAR - LINK KC15 
CM STROBEACONT(1) = GO TO 41 KC16 

3-4 



Table 3-2 (cont) 
OSC Functions 

640001 Inclusive-OR the SC with the AC 

Process Function Drawing No. 

41 (ACO ,MQI/EAE/CONT ,CMA54) KC18 

ACO(l) = ACOO-17 - A BUSOO-17 KC20 
A BUSOO-17 - ADROO-17 KC21 
NOSH = ADROO-17 - 0 BUSOO-17 KC20 
MQI(l) = 0 BUSOO-17 - MQOQ-17 KC20 
EAE(l)AMQI(l)ASETUP == SU3(1) KE3 
SU3(l) = SCOV(l) KE3 
SU3(l) = SCOV2(l) KE3 
MQI(l)AMB08(0)AEAE(1) == EAE OR ARO KE3 
CM STROBEACONT(l) = GO TO 54 KC16 

54 (ACI I EAE-R I CONT I CMA40) KC18 

CM STROBEAEAE OR ARO == ARO(l) KC19 
EAE-R(l)AMB17(l)ASETUP = SCO KE2 
ARO(l) == AROO-17 - A BUSOO-17 KC20 
A BUSOO-17 - ADROO-17 KC21 
NOSH = ADROO-17 - 0 BUSOO-17 KC20 
SCO = SC 12-17 - 0 BUS 12-17 KC22 
ACI(l) = 0 BUSOO-17 - ACOO-17 KC20 
EAE-R(l) == 0 BUS L - TEMP2 KE3 
CM STROBEACONT(l) = GO TO 40 KC16 

40 (EAE I DONE ,CMA 10) KC18 

CLK(B) + 670 ns A EAE(l)ADONE(l) = INPUT 10 RESTART KD3(3) 
INPUT 10 RESTART == 10 REST ART KD3(3) 
10 RESTART == GO TO 10 KC16 

10 (PCO / SM /CMA21) KC18 

BGN next fetch 

Table 3-3 
OMQ Functions 

640002 Inclusive-OR the MQ with the AC 

Process Function Drawing No. 

75 Same as OSC 

43 Same as OSC 

41 Same as OSC plus 
SU3(l)AMB16(l) == EAE OR MQO KE3 

54 (ACI I EAE-R I CONT I CMA40) KC18 

CM STROBEAEAE OR ARO = ARO(l) KC19 
CM STROBEAEAE OR MQO = MQO(l) KC19 

3-5 



640002 

Process 

54 (cont) 

40 

10 

640004 

Process 

75 

43 

41 

54 

40 

10 

641001 

Process 

75 

43 

41 

Table 3-3 (cont) 
aMQ Functions 

Inc lusive-OR the MQ with the AC (cont) 

Function 

ARO(l) = AROO-17-A BUSOO-17 
MQO(l)= MQOO-17-A BUSOO-17 
A BUSOO-17-ADROO-17 
NOSH = ADROO-17-0 BUSOO-17 
ACI(l) = 0 BUSOO-17-ACOO-17 
EAE-R( 1) = 0 BUS L - TEMP2 
CM STROBEACONT(l) = GO TO 40 

Same as asc 
Same as OSC 

Table ~-4 
CMQ Functions 

Complement the MQ 

Functions 

Same as asc 
Same as asc 
Same as OSC plus: 

SU3(l)AMB15(l) = CMPL 
CMPL = ADROO-17 - a BUSOO-17 

Same as OSC except: 

MB17(0) = sca 
Same as OSC 

Same as OSC 

Table 3-5 
LACS Functions 

Load the AC with the SC 

Function 

Same as OSC 

Same as OSC 

Same as OSC except: 

MQI(1 )J\MB08(l )AEAE(l) = EAE OR ARO 

3-6 

Drawing No. 

KC20 
KC20 
KC21 
KC20 
KC20 
KE3 
KC16 

Drawing No. 

KE3 
KC20 

Drawing No. 



641001 

Process 

54 

40 

10 

641002 

Process 

75 

43 

41 

54 

40 

10 

644000 

Process 

75 

43 

41 

Same as OSC except: 

Table 3-5 (cont) 
LACS Functions 

Load the AC wi th the SC 

Functions 

CM STROBEAEAE OR ARO = ARO(O) 

Same as OSC 

Same as OSC 

Table 3-6 
LACO Functions 

Load the A.C with the MO 

Function 

Same as OSC 

Same as OSC 

Same as OSC plus: 

MOI(l)AMB08(l)AEAE(1) = EAE OR ARO 
SU3(l)AMB 16(1) = EAE or MOO 

(ACI, EAE-R, CONT, CMA40) 

CM STROBEAEAE OR MQO = MQO(l) 
MOO(l) = MOOO-17-A BUSOO-17 
A BUSOO-17-ADROO-17 
NOSH = ADROO-17-0 BUSOO-17 
ACI(1) = 0 BUSOO-17-ACOO-17 
EAE-R(l) = 0 BUS L - TEMP2 
CONT(l)ACM STROBE = GO TO 40 

Same as OSC 

Same as OSC 

Same as OSC plus: 

Table 3-7 
ABS Functions 

Get Absolute Value of AC 

Function 

If ACOO ::; 1, then SU1 (1 )AMB06(1 )AMB07(0)AACOO(1) = CMPL 
CMPL = ADROO-17 - 0 BUSOO-17 

Same as OSC 

Same as OSC 

3-7 

Drawing No. 

Drawing No. 

KE3 

KC18 

KC19 
KC20 
KC21 
KC20 
KC20 
KE3 
KC16 

Drawing No. 

KE3 
KC20 



644000 

Process 

54 

40 

10 

650000 

Process 

75 

43 

41 

54 

40 

10 

652000 

Process 

75 

43 

Same as OSC except: 

MBI7(0) = SCO 

Same as OSC 

Same as OSC 

Same as OSC except: 

Table 3-7 (cont) 
ABS Functions 

Get Absolute Value of AC 

Function 

Table 3-8 
C LQ Functions 

Clear the MQ 

Function 

MB05(l) = EAE OR· MQO 

Same as OSC except: 

CM STROBEAEAE OR MQO = MQO(O) 
MQO(O) = 0 - A BUSOO-17 

Same as OSC 

Same as OSC except: 

MBI7(0) = SCO 

Same as OSC 

Same as OSC 

Table 3-9 
LMQ Functions 

Load the MQ with the AC 

Function 

Same as OSC except: 

MB05(1) = EAE OR MQO 
MB07(l) = EAE OR ARO 

(ACI, EAE, CONT, CMA4l) 

CM STROBEAEAE OR ARO ::; ARO(l) 
ARO(l) = AROO-17 - A BUSOO-17 
A BUSOO-17 - ADROO-17 
NOSH = ADROO-17 - 0 BUSOO- 17 
ACI (1) = 0 BUSOO-17 - ACOO-17 
LI(O) ::; LAR - LINK 
CM STROBEACONT(l) ::; GO TO 41 

3-8 

Drawing No. 

Drawing No. 

Drawing No. 

KE3 

KC18 

KC19 
KC20 
KC21 
KC20 
KC20 
KC15 
KC16 



652000 

Process 

41 

54 

40 

10 

664000 

Process 

75 

43 

41 

54 

40 

10 

Same as OSC 

Same as OSC except: 

MBI7(0) = SCO 

Same as OSC 

Same as OSC 

Table 3-9 (cont) 
lMQ Functions 

load the MQ with the AC 

Function 

Table 3-10 
GSM Functions 

Get Sign and Magnitude of AC 

Function 

Same as OSC except: 

If ACOO = 1, then 
SUI (l)I\MB06(l)I\MB07(O)I\ACOO(l) = CMPl 
CMPl = ADROO-17 - 0 BUSOO-17 
SUI (l)I\MB04(1)I\ACOO{l) = A BUS LINK 
A BUS LINK = ADRl 
SHIFT = ADRl - 0 BUS l 
LI(l) = 0 BUS l - LAR(l) 

Same as OSC 

Same as OSC 

Same as OSC except: 

MBI7(O) = SCO 

Same as OSC 

Same as OSC 

3.5 SHIFT INSTRUCTIONS 

Drawing No. 

Drawing No. 

KE3 
KC20 
KE3 
KC15 
KC15 
KC15 

long left, long right, and accumulator-left shift instructions include a step count in bits 12 

through 17 which commands the number of bit positions to be shifted. Preliminary operations governed 

by the early shift entry process words transfer the 2s complement of the step count into the step counter 

SC12 through 17 in the EAE logic, drawing KE2. The SC, then, becomes binary up-counter which steps 

toward 0 with each shift process. When the SC reaches 0, it sets a pair of overflow flip-flops SCOV and 

SCOV2, in turn, which shut off the shift processes and cause the computer to branch to the BGN next 

fetch process word. 

3-9 



The data to be shifted may be signed or unsigned. For signed data shifts, an early process 

word (43) transfers the sign (ACOO) into the LINK, and the LINK is shifted thereafter unchanged. For 

unsigned data shifts, the LINK is usually initialized to 0 and shifted thereafter unchanged. Table 3-11 

shows the SHIFT instruction format. Bit 04 of the instruction commands the signed or unsigned operation. 

Table 3-11 
EAE Shift Instruction Format 

Op Code Shift Commands Number 
648 Code of Shifts 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

6 4 0* 5 X X LRS 

6 6 0* 5 X X LRSS 

6 4 0* 6 X X LLS 

6 6 0* 6 X X LLSS 

6 4 0* 7 X X ALS 

6 6 0* 7 X X ALSS 

* May be used for same functions as EAE SETUP. 

Bits 12 through 17 can contain step codes of up to 448 for long register shifts of up to 36 bit 

positions. For accumulator left shifts (ALS, ALSS) bits 12 through 17 can contain step codes of up to 

228 for AC left shifts of up to 18 bit positions. 

Table 3-12 through 3-14 and Figures 3-2 through 3-4 illustrate the operations involved for 

LRSS, LLSS, and ALSS instructions caHing for one, two, and three shift steps, respectively. A comparison 

of the three reveals the pattern for shifting the data and terminating the instruction. 

While the NOSH level generated on drawing KC13 commands direct bit-for-bit transfers be­

tween registers, the shift operations make use of the SHLl and SHR1 levels on the same drawing to shift 

a bit one position left or right into the receiving register. Register input/output gating and data flow is 

as usual from output register to A bus to ADR to 0 bus to input register. These functions are abbreviated 

in the tables for conven ience. 

3-10 



660501 

Process 

75 

43 

1 
15 Comp 
to SC 

i 
41 

54 

I 
25 Comp 

to SC 

1 
50 

Table 3-12 
lRSS Functions 

long Right Shift Signed (One Position) 

Function 

(ACO,ARI, EAE,LI,CONT ,CMA43) 

ACO(l)AARI(l)ANOSH = AC - AR 
SA09(l)ASA 1 O(O)ASA 11 (l) = lRS 
EAE(l)AARI(l) = SU1(l) 
SU1(1) = 0 - SCOV,SCOV2,FIRST,EAE RUN,EAE SIGN,MQ SIGN 
SU1(l)ASETUP = SC ClR 
SC ClR = 0 - SC 
SU1 (l)AMB05(0) = EAE OR MQO 
If ACOO = 1, then SU1 (l)AMB04(l)MCOO(l) = A BUS LINK 
A BUS LINK - ADRl 
LI(l) = ADRl - lAR 
LI(l) = ADRl - TEMP3 
CM STROBEACONT(l) = GO TO 43 

(ACI,EAE,CONT ,CMA4l) 

CM STROBEAEAE OR MQO = MQO(l) 
MQO(l)ANOSHAACI(l) = MQ - AC 
EAE(l)MCI(l)ASETUP = SU2(l) I ~~ -6 (;)i.9') 
SU2(1) = MB12-17= 111110 _ SC (ones ~r 
LI(O) = LAR - LINK 
CM STROBEACONT(l) = GO TO 41 

(ACO ,MQI, EAE,CONT ,CMA54) 

ACO(l)ANOSHAMQI(l) = AC - MQ 
eAt{t)AMQI(l)AMB08(0) = EAE OR ARO 

CM STROBEACONT(l) = GO TO 54 

(ACI, EAE-R,CONT ,CMA40) 

CM STROBEAEAE OR ARO = ARO(l) 
ARO(l)ANOSHAACI(l) = AR - AC 
EAE-R(l)ASCOV(O) = R-PUlSE 
R-PUlSE = 111111 - SC = SC FUll 
EAE-R(1)ASCOV2(0) = ADDR 10 
EAE-R(l) = 0 BUS L = LINK - TEMP2 (not used) 
CMA40AADDR 10 = CMA50 
CM STROBEACONT(l) = GO TO 50 

(MQO ,ARI, EAE-P ,CONT ,CMA42) 

MQO(l)ANOSHAARI(l) = MQ - AR 
EAE-P(l)AEAE RUN(O) = FIRST(l) 
EAE-P(l)ASCOV2(0) = EAE RUN(l) 
EAE-P(l) = 0 BUS l = LINK - TEMP1 (not used) 
EAE-P(l) = TEMP2 = LINK - END BITOO (not used) 
EAE-P(l) = TEMP3 = LINK - END BIT17 (not used) 
CM STROBEACONT(l) = GO TO 42 

3-11 

Drawing No. 

KC18 

KC20-21 
KE4 
KE3 
KE2-3 
KE2 
KE2 
KE3 
KE3 
KC15 
KC15 
KE3 
KC16 

KC18 

KC19 
KC20-21 
KE3 
KE2 
KC15 
KC16 

KC18 

KC20-21 
KE3 
KC16 

KC18 

KC19 
KC20-21 
KE2 
KE2 
KE3 
KE3 
KC17 
KC16 

KC18 

KC20-21 
KE3 
KE3 
KE3 
KC15 
KC15 
KC16 



Process 

42 
I' 

3h ift 1 

\ 

55 

\ 

53 

56 

57 

40 

10 

Table 3-12 (cont) 
LRSS Functions 

Function 

(ACO ,MQI, EAE-R,CONT ,CMA55) 

EAE-R(l)I\SCOV(O) = R-PULSE 
R-PULSE = 000000 - SC 
EAE-R(1)I\SC FULL = SCOV(1) 
EAE-R(1)I\SCOV2(0)I\EAE RUN(1)I\EIRl O(O)I\EIRll (1) = IN SHRl 
INSHR1=SHRl 
ACO(1)I\SHR 1I\MQI(1) = ACn - Mq,+l) 
SHRl = ADR17 - 0 BUS L 
EAE-R(1) = 0 BUS L - TEMP2 
EAE-R(1) = ADRL - END BITOO 
EAE-R(1) = TEMPl = LINK - END BIT17 (not used) 
MQI(1)I\SHRl = END BITOO - MQOO 
CM STROBEI\CONT(1) = GO TO 55 

(ARO ,ACI, EAE-P ,CONT ,CMA53 

EAE-P(1)I\EAE RUN(1) = FIRST(O) 
FIRST(0)I\SCOV2(0)I\EAE RUN(1)I\EIRl O(O)I\EIR 11 (1) = IN SHR 1 
IN SHRl = SHRl 
ARO(1)I\SHR1I\ACI(1) = ARn - ACn+l 
SHRl = ADR17 - 0 BUS L 
EAE-P(l) = 0 BUS L - TEMPl (not used) 
EAE-P(l) = TEMP2 - END BITOO 
EAE-P(1) = TEMP3 - END BIT17 (not used) 
SHRl = END BITOO - ACOO 
CM STROBEI\CONT(1) = GO TO 53 

(MQO,ARI,EAE-R,CONT ,CMA56) 

EAE-R(1)I\SCOV(1) = SCOV2(1) 
SCOV2(l) = IN SHRl 
SCOV(1) = R-PULSE 
MQO(1)I\NOSHI\ARI(1) = MQ - AR 
CM STROBEI\CONT(l) = GO TO 56 

(ACO ,MQ I, EAE-P ,CONT ,CMA57) 

ACO(l)I\NOSHI\MQI(1) = AC - MQ 
CM STROBEI\CONT(1) = GO TO 57 

(ARO ,ACI,EAE-R,CONT ,CMA40) 

EAE-R(1 )I\SCOV2(1) = EAE RUN(O) 
EAE RUN(0)I\SCOV2(l) = ADDR 10 
ARO(1)I\NOSHI\ACI(l) = AR - AC 
CM STROBE CONT(l) = GO TO 40 

(EAE,DONE,~MAI0) 
~ II.O:;·-} 

Cll~(8} IQ "sAeAE{1-)~DOt>Hi(H = INPUT 10 RESTART 
INPUT 10 RESTART = 10 RESTART 
10 RESTART = GO TO 10 

(PCO ,SM,CMA21) 

BGN next fetch 

3-12 

Drawing No. 

KC18 

KE2 
KE2 
KE2 
KE4 
KC13 
KC20-21 
KC15 
KE3 
KC15 
KC15 
KC20 
KC16 

KC18 

KE3 
KE4 
KC13 
KC20-21 
KC15 
KE3 
KC15 
KC15 
KC20 
KC16 

KC18 

KE2 
KE4 
KE2 
KC20-21 

KC18 

KC20-21 
KC16 

KC18 

KE3 
KE3 
KC20-21 
KC16 

KC18 

KD3(3) 
KD3(3) 
KC16 

KC18 



NOTE 

CML 42 Set SCOV, CML 53 Set SCOV2, and CML 57 
reset EAE RUN which inhibited the generation of ADDR 
10. If the shift process has not reset EAE RUN when 
CML 40 is pointed to, it will go back through CMLls 
50, 42, 55, 53, 56, 57, and then to 40. 

LINK AC MO AR 

6 ~4 L AC •• -17 MO •• -17 AC •• -17 

~ 

~ ~. L AC •• -17 MO •• - 17 MO •• -17 

f 

42 MOM - 17 

~~ I L I L lAC .. - 16 1 

LOST 

~31 L I ACI7 I Mo.,,- ,6 1 I L lAC •• - 16 1 

f f 

~61 L I Ac,17JMo •• - ,6 1 I ACI71 MO •• - ,6 1 

L.--,--I _----'-f_--'f 
I L lAC •• - I 61 

~71 L I L lAC." - I 6 I 
f f 

I A C I 7 I MO •• - I 6 I I L lAC •• - 16 1 

I I 
4. DONE 

Figure 3-2 LRS, LRSS Register Manipulation (One Position) 

3-13 



660602 

Process 

75 

43 

41 

54 

50 

Shift 1 

42 

55 

Shift 2 

Table 3-13 
LLSS Functions 

Long Left Shift, Signed (Two Positions) 

Function 

Same as LRSS except: 

SA09(l)ASA lO(1)ASA 11 (0) = LLS 

Same as LRSS except: 

SU2(1) = 111101- SC 

Same as LRSS 

Same as LRSS except: 

R-PULSE= 111110-SC 

(MQO ,ARI, EAE-P, CONT, CMA42) 

EAE-P(1 )AEAE RUN (0) = FIRST(l) 
EAE-P(1)ASCOV2(0) = EAE RUN(1) 
EAE-P(1)ASCOV(0)AEIR09(1)AEIR11(0)=" IN SHL 1 
IN SHL1 = SHL1 
MQO(1)ASHL1AARI(l) = MQn -ARn-1 
SHL1 = ADROO ... 0 BUS L 
EAE-P(1) = 0 BUS L -TEMP1 
EAE-P(1) = TEMP2-END BITOO 
EAE-P(1) = TEMP3-END BIT17 
SHL1 = END BIT17-AR17 
CM STROBEACONT(1) = GO TO 42 

(ACO, MQI, EAE-R, CO NT ,CMA55) 

EAE-R(1 )ASCO V(O) = R-PULSE 
R-PULSE = 111111- SC = SC FULL 
EAE-R(1y\SCOV2(0)AEAE RUN(1)AEIR09(1)ALRS = IN SHL 1 
IN SHL1= SHL1 
ACO(1)ASHL1AMQI(1)= ACn-MQn-1 
SHL1 = ADROO-O BUS L 
EAE-R(l)= 0 BUS L-TEMP2 (lost) 
EAE-R( 1) = TEMP 1-EN D BIT17 
SHL 1= END BIT17-MQ17 
CM STROBEACONT(l) = GO TO 55 

(ARO ,ACI, EAE-P, CONT ,CMA53) 

EAE-P(1)AEAE RUN(1) = FIRST(O) 
EAE-P(ly\SCOV(O)AEIR09(1)AEIR11(O) = IN SHL1 
IN SHL1 = SHL1 
ARO(1)ASHL1AACI(l)= ARn -ACn-l 
SHL 1 = ADROO-O BUS L 
EAE-P(1) = 0 BUS L -TEMPl 
EAE-P(l)= TEMP2-END BITOO (lost) 
EAE-P(l)= TEMP3-END BIT17 
SHL1 = END BIT17-AC17 
CM STROBf,.\CONT(l)= GO TO 53 

3-14 

Drawing No. 

KE4 

KC18 

KE3 
KE3 
KE4 
KC13 
KC20-21 
KC15 
KE3 
KC15 
KC15 
KC20 
KC16 

KC18 

KE2 
KE2 
KE4 
KC13 
KC20-2l 
KC15 
KE3 
KC15 
KC20 
KC16 

KC18 

KE3 
KE4 
KC13 
KC20 
KC15 
KE3 
KC15 
KC15 
KC20 



660602 

Process 

53 

I 
Shift 2 

1 
56 

57 

50 

42 

55 

53 

Table 3-13 (cont) 
LLSS Functions 

Long Left Shift, Signed (Two Positions) 

Function 

(MQO, ARI, EAE-R, CONT, CMA56) 

EAE-R(l) ASCOV(O) = R-PULSE 
R-PULSE = 000000 .... SC 
R-PULSE ASC FULL = SCOV(l) 
EAE-R(l) ASCOV2(0)AEAE RUN(l) AEIR09(l) ALRS = IN SHLl 
MQO(l) ASHLl AARI(l) = MQn .... ARn-l 
SHLl = ADROO .... 0 BUS L 
EAE-R(l) = 0 BUS L .... TEMP2 (lost) 
EAE-R(l) = TEMPl .... END BITl7 
SHLl = END BITl7 .... AR17 
CM STROBE ACONT(l) = GO TO 56 

(ACO, MQI, EAE-P ,CONT ,CMA57) 

SCOV(l) = IN SHLl 
ACO(l)ANOSHAMQI(l) = AC .... MQ 
CM STROBEACONT(l) = GO TO 57 

(ARO ,ACI, EAE-R,CONT ,CMA40) 

EAE-R(l)ASCOV(l) = SCOV2(l) 
SCOV(l) = R-PULSE 
SCOV2(l) = IN SHLl 
ARO(l )ANOSHAACI = AR .... AC 
EAE-R(l)AEAE RUN(l) = APDR 10 
CMA40MDDR 10 = CMA50 
CM STROBEACONT(l) = GO TO 50 

(MQO ,ARI,EAE-P ,CONT ,CMA42) 

SCOV(l) = IN SHLl 
MQO(l )ANOSHAARI(l) = MQ .... AR 
CM STROBEACONT(l) == GO TO 42 

(ACO ,MQI,EAE-R,CONT ,CMA55) 

EAE-R(l )ASCOV2(1) = EAE RUN(O) 
SCOV2(1) = IN SHLl 
ACO(l )ANOSHAMQI(l) = AC .... MQ 
CM STROBEACONT(l) = GO TO 55 

(ARO ,ACI,EAE-P ,CONT ,CMA53) 

SCOV(l) = IN SHLl 
ARO(l)ANOSHAACI(l) = AR .... AC 
CM STROBEACONT(l) = GO TO 53 

(MQO ,ARI,EAE-R,CONT ,CMA56) 

SCOV2(l) = IN SH L 1 
MQO(l)ANOSHAARI{l) = MQ .... AR 
CM STROBEACONT(l) = GO TO 56 

3-15 

Drawing No. 

KC18 

KE2 
KE2 
KE2 
KE4 
KC20 
KC15 
KE3 
KC15 
KC20 
KC16 

KC18 

KE4 
KC20-21 
KC16 

KC18 

KE2 
KE2 
KE4 
KC20-21 
KE3 
KC17 
KC16 

KC18 

KE4 
KC20-21 
KC16 

KC18 

KE3 
KE4 
KC20-21 
KC16 

KC18. 

KE4 
KC20-21 
KC16 

KC18 

KE4 
KC20-21 
KC16 



660602 

Process 

56 

57 

40 

10 

660703 

Process 

75 

43 

41 

54 

50 

42 

Table 3-13 (cant) 
LLSS Functions 

Long Left Shift, Signed (Two Positions) 

Function 

(ACO,MQI,EAE-P ,CONT,CMA57) 

SCOV(l) = IN SHLl 
ACO(l)ANOSHAMQI(l) = AC - MQ 
CM STROBEACONT(l) = GO TO 57 

(ARO,ACI,EAE-R,CONT ,CMA40) 

SCOV2(1) = IN SHL 1 
ARO(l)ANOSHMCI(l) = AR - AC 
EAE RUN(0)ASCOV2(l) = ADDR 10 
CM STROBEACONT(l) = GO TO 40 

(EAE,DONE,CMA 1~) . "l') e. tL-D, 
CU«B)+670 nsAEAf(1) N)O/lo~f1-) = INPUT 10 RESTART 
INPUT 10 RESTART = 10 RESTART 
10 RESTART = GO TO 10 

(PCO,SM,CMA21) 

BG N next fetch , 

Table 3-14 
ALSS Functions 

Accumulator Left Shift Signed (Three Positions) 

Function 

Same as LRSS except: 

SA09(l }ASA 1 O(1)ASA 11 (1) = ALS 

Same as LRSS except: 

SU2(l) = 1111 00 - SC 

Same as LRSS 

Same as LRSS except: 

R-PULSE = 111101 - SC 

Same as LRSS 

(ACO,MQI, EAE-R,CONT ,CMA55) 

EAE-R(1 )ASCOV(O) = R-PULSE 
R-PULSE = 111110 - SC 
EAE-R(1)ASCOV2(0)AEAE RUN (l)AEIR09(1 )ALRS = IN SH U 
IN SHU = SHLl 
ACO(l)ASHLlAMQI(1) = ACn - MQn-l 
SHLl = ADROO - 0 BUS L 

3-16 

Drawing No. 

KC18 

KE4 
KC20-21 
KC16 

KC18 

KE4 
KC20-21 
KE3 
KC16 

KC18 

KD3(3) 
KD3(3) 
KC16 

KC18 

Drawing No. 

KE4 

KE2 

KE2 

KC18 

KE2 
KE2 
KE4 
KC13 
KC20-21 
KC15 



660703 

Process 

42(cont) 

55 

53 

1 
Shift 2 

j 
56 

57 
q\ 

Shift 3 

I 

Table 3-14 (cont) 
ALSS Functions 

Accumulator Left Shift, Signed (Three Positions) 

Function 

EAE-R(1) = 0 BUS L-TEMP2 
EAE-R(1}= TEMP1-END BITl7 
SHLl = END BIT17 - MQ17 
CM STROBE"CONT(l) = GO TO 55 

(ARO,ACI,EAE-P ,CONT ,CMA53) 

EAE-P(1)"EAE RUN(l) = FIRST(O) 
ARO(l)"NOSHMCI(1) = AR - AC 
EIRll (1) = IN SHU 
SHIFT = ADRL - 0 BUS L 
EAE-P(I} = 0 BUS L - TEMPI 
EAE-P(1) = TEMP2 - END BITOO (lost) 
EAE-P(1} = TEMP3 - END BIT17 (not used) 
CM STROBE"CONT(1) = GO TO 53 

(MQO ,ARI, EAE-R,CONT ,CMA56) 

EAE-R(1 )"SCOV(O) = R-PULSE 
R-PULSE = 111111 - SC = SC FULL 
EAE-R(1 )"SCOV2(0)"EAE RUN(1)"EIR09(1 )"LRS = IN SH Ll 
IN SHLl = SHLl 
MQO(1)"SHLl"ARI(1) = MQn - ARn-1 
SHL1 = ADROO - 0 BUS L 
EAE-R(1) = 0 BUS L - TEMP2 
EAE-R(1) = TEMP1 - END BIT17 
SHLl = END BIT17 - AR17 
CM STROBE"CONT(1) = GO TO 56 

(ACO ,MQI,EAE-P ,CONT ,CMA5?) 

EIR11(1) = IN SHLl 
ACO(1)"NOSH"MQI(1) = AC - MQ 
SHIFT = ADRL - 0 BUS L 
EAE-P(1) = 0 BUS L - TEMP1 
EAE-P(1) = TEMP2 - END BITOO {lost} 
EAE-P(1) = TEMP3 - END BIT17 (not used) 
CM STROBE"CONT(1} = GO TO 57 

(ARO ,ACI, EAE-R,CONT ,CMA40) 

EAE-R(1 )"SCOV (0) = R-PULSE 
R-PULSE = 000000 - SC 
R-PULSE"SC FULL = SCOV(1) 
EAE-R(1)"SCOV2(O)"EAE RUN(1)"EIR09(1)"LRS = IN SHL1 
IN SHL1 = SHLl 
ARO(1)"SHL1"ACI(1) = ARn - ACn-l 
SHLI = ADROO - 0 BUS L 
EAE-R(1) = 0 BUS L - TEMP2 (lost) 
EAE-R(1) = TEMP1 - END BIT17 

3-17 

Drawing No. 

KE3 
KC15 
KC20 
KC16 

KC18 

KE3 
KC20-21 
KE4 
KC15 
KE3 
KC15 
KC15 
KC16 

KE18 

KE2 
KE2 
KE4 
KC13 
KC20-21 
KC15 
KE3 
KC15 
KC20 
KC16 

KC18 

KE4 
KC20-21 
KC15 
KE3 
KC15 
KC15 
KC16 

KC18 

KE2 
KE2 
KE2 
KE4 
KC13 
KC20-21 
KC15 
KE3 
KC15 



660703 

Process 

57(cont) 

1 
50 

42 

55 

53 

56 

57 

40 

10 

Table 3-14 (cont) 
ALSS Functions 

Accumulator Left Shift, Signed (Three Positions) 

Function 

SHL1 = END Bln7 - AC17 
EAE-R(1)/\EAE RUN(l) !:: ADDR 10 
CMA40/\ADDR 10 = CMA50 
CM STROBE/\CONT(l) = GO TO 50 

(MQO ,ARI, EAE-P ,CONT ,CMA42) 

SCOV(1) = IN SHL1 
MQO(l)/\NOSHMRI(l) = MQ - AR 
CM STROBE/\CONT(l) = GO TO 42 

(ACO ,MQI ,EAE-R,CONT ,CMA55) 

EAE-R(l )/\SCOV(l) = SCOV2(1) 
SCOV(l) = R-PULSE 
SCOV2(l) = IN SH L1 
ACO(l)/\NOSH/\MQI(l) = AC - MQ 
CM STROBE/\CONT(l) = GO TO 55 

(ARO,ACI,EAE-P ,CONT ,CMA53) 

SCOV(l) = IN SHLl 
ARO(l)/\NOSH/\ACI(l) = AR .... AC 
CM STROBE/\CONT(l) = GO TO 53 

(MQO ,ARI, EAE-R,CONT ,CMA56) 

EAE-R(l)/\SCOV2(1) = EAE RUN(O) 
SCOV2(l) = IN SH Ll 
MQO(l)/\NOSHMRI(l) = MQ .... AR 
CM STROBE/\CONT(1) = GO TO 56 

(ACO ,M91,EAE-P ,CONT ,CMA57) 

SCOV(l) = IN SHLl 
ACO(l)/\NOSH/\MQI(l) = AC .... MQ 
CM STROBE/\CONT(l) = GO TO 57 

(ARO ,ACI, EAE-R,CONT ,CMA40) 

SCOV2(1) = IN SHLl 
ARO(l)/\NOSH/\ACI(l) = AR - AC 
EAE RUN(0)/\SCOV2(l) = AD DR 10 
CM STROBE/\CONT(l) = GO TO 40 

(EAE,DONE,CMA10) ') 

~K~8)-k67D nsAEAffl)~) = INPUT 10 RESTART 
INPUT 10 RESTART = 10 RESTART 
10 RESTART = GO TO 10 

(PCO ,SM,CMA21) 

BGN next fetch 

3-18 

Drawing No. 

KC20 
KE3 
KC17 
KC16 

KC18 

KE4 
KC20-21 
KC16 

KC18 

KE2 
KE2 
KE4 
KC20-21 
KC16 

KC18 

KE4 
KC20-21 
KC16 

KC18 

KE3 
KE4 
KC20-21 
KC16 

KC18 

KE4 
KC20-21 
KC16 

KC18 

KE4 
KC20-21 
KE3 
KC16 

KC18 

KD3(3) 
KD3(3) 
KC16 

KC18 



LINK AC MO AR 

75 TEMP 3 
I 
I 
I 
I 
I 

5141 L AC •• -17 Ma.e -17 ARee -17 
f 

5el L AC •• -, 7 

421 L I Moel -17 1 L 1 

551 L lAC.' -, 7 1 MO •• I 

531 L 1 Moe2 -I 7 1 L 1 L 1 

LOST 

I "C.,2 -, 7 1 Moe. -." 1 

I ,.C.2- 17 1 Moee-e' 1 
f f 

IMoe2-'7I L IL 1 Ace2 -,71 MO.,.,-It 1 
I 

I Ace2 -,71 M08e -e,·1 1 M082 -'7 1 L 1 L 

I 
I ,.ce2 -17 1 Mo.,e-e, 1 

I I 
I Ace2 -,71 .. 08e -e, 1 

f f 
I .. 082 -'7 1 L 1 L 

l .. oe2 -,71 L 1 L 1 
f t t 

1 ,.ce2 -,71 .. 0.,e-e, 1 1 .. 082 -t7 1 L 1 L 1 
I ] 

[AC.,2-,71 M08e-e, I 
f f 

I MO.2 -t7 1 L 1 L I 
I I I 

I Moe2 -171 L 1 L I 
f f f 

I ~ce2 -,71 .. 088 -e, 1 

57 ... I_L_ ... I ,.C.2- 17 1 Moee-el I 
f f 

I AC.,2 -17 1 Moee-.II 
I I 

4. DONE 

Figure 3-3 LLS, LLSS Register Manipulation (Two Positions) 

3-19 



LINK AC MO AR 

54 I ACIZIIZI - 17 MOIZIIZI - 17 AC01Z1 - 17 

~ 

51Z1 ACIZIIZI - I 7 MOIZIIZI-17 MOlZl0 - 17 

f 

42 LI_--l 

55 MOIZIIZI-17 

f 
IACIZII- 17 I L M000 - I 7 

L---~TEMP 'J-------------------~~~~~~ 

531 L MOIZIIII - 17 

56 MaN -17 MQIlIII- 17 

'-___ 3 
1 ACIII2 - I 7 I L I L I 

57 .... 1_---' MOIlIII- 17 

5. L.i:J 1 AC.3 - 17 1 L 
1 

L 
1 

L I 1010,,-17 1010111. - I 7 

f 
421 L I AC.3 - 17 1 L 

1 
L 

1 
L I AC.3- 17 1 L 1 

L 
1 L 1 I 

101011. -17 

I " f 
551 L MOG. - 17 I AC.3 - 17 1 L I L I L I 101011. -17 

f 
53 1 

L MQeIll-17 1 AC.3 - 17 1 L I L L I I AC.3- 17 1 L 1 L I L I 
I f 

1 AC.3 - 171 1 L 1 I 56 1 L 1010" -17 MO" -17 L L , 

f 
571 L 1 AC.3- 17 1 L I L I L 1 

1010 .. -17 I AC.3 - t 71 L 
1 

L 
1 

L 

[ I 
4' DONE 

Figure 3-4 ALS, ALSS Register Manipulation {Three Positions} 

3-20 



3.6 NORMALIZE INSTRUCTIONS 

The NORM and NORMS instructions, Table 3-15, are commonly used within a subroutine to 

convert an integer into a fraction and exponent for use in floating-point arithmetic. The algorithm for 

normalize is to shift the contents of the AC and MQ left until ACOO differs with ACOI. For signed, 

normalized positive numbers this results in ACOO(O) and ACOI (1). For signed, normalized negative 

numbers the result is ACOO(I) and ACOI (0). For signed normalized numbers the sign (ACOO) is first 

duplicated in the LINK. For unsigned numbers the LINK is usually initialized to O. In both cases the 

content of MQOO enters AC 17, the content sh if ted out of ACOO is lost, and the content of the LIN K 

enters MQ17, on each shift. When shifting halts, the contents of the SC reflect the number of shifts 

executed to reach the normalized condition. The SC contents are available through the use of the EAE 

OSC or EAE LACS instruction. 

Table 3-15 
EAE NORM Instruction Format 

Op Code Not NORM Number of 
648 Used 48 Shifts 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

6 4 0 4 4 4 NORM 

6 6 0 4 4 4 NORMS 

For normalized numbers, the binary point is assumed to be between ACOO and AC01, the 

mantissa of the fraction extends from ACOI to MQ17, the sign is in ACOO, and the value of the exponent 

is in the SC. The number in the SC after normalize is actually the sum of the pre-established charac­

teristic and the exponent (n) in 2s complement form. The characteristic is a number equivalent to the 

total number of bit positions in the AC and MQ, 3610 or 448 , The NORM(S) instruction contains this 

number in bits 12 through 17 and loads it into the SC in 2s complement to establish the exponent in ex­

cess 44 code. This means that the exponential range of the fraction when normalized is 20 to 235 , or 

-448 + n. 

For example, if the integer +3 is stored in the MQ (MQ 16, MQ17 are Is) and it is desired to 

convert th is to a fraction and exponent, the following program sequence is required. 

NORM(S) 
DAC 
LACQ 
DAC 
LACS 
TAD (44 
DAC 

/NORMALIZE CONTENTS OF AC, MQ 
/DEPOSIT AC IN MEMORY 
/MOVE MQ TO AC 
/DEPOSIT MQ IN MEMORY 
/MOVE SC TO AC 
/SUBTRACT CHARACTERISTIC FROM STEP COUNT 
/DEPOSIT RESULT (EXPONENT) IN MEMORY 

3-21 



In the process of normalizing, a total of 33 shifts is required to shift MQ16(l) into AC01. 

This leaves the SC with a step count of: 

011100 
100001 
111101 

initialized step count 
plus 33 steps 
final step count 

Since the step count is in 2s complement, the TAD (448 instruction (2s complement add) in 

effect subtracts the characteristic from the final step count to arrive at the exponent: 

111101 
100100 
100001 

final step count 
TAD characteristic 
exponent 

The NORM(S) logic functions are very similar to the LLS(S) functions. Table 3-13 lists the 

functions for a two-position LLSS instruction. The functions for a NORMS instruction requiring only 

two shifts to normalize can be correlated with those of Table 3-13. 

In the NORMS case, any positive integer whose most-significant 1 bit is located in AC03 

requires two shifts to normalize. Likewise, any negative integer whose most-significant 0 bit is in AC03 

requires two shifts to normalize. Substituting the positive-integer NORMS case in the listings of 

Table 3-13, the following NORMS functions become apparent. 

75 

43 

41 

54 

50 

42 

55 

53 

SA09(1 )I\SA 1 O(O)I\SA 11 (0) = NORM KE4 

SU2(l) = 011011 - SC KE2 

Same 

R-PULSE = 011100 - SC KE2 

Same, first shift 

Same, first shift, plus: 

R-PULSE = 011101 - SC 
EAE STROBE DLYDI\EAE-R(1)I\NORMI\O BUSOOI\O BUSOl = SCOV(l) KE2 

Same, second sh i ft 

Same, second shift, plus: 

R-PULSE =011110 - SC KE2 
EAE STROBE DLYDI\EAE-R(l)I\NORMI\OBUSOOI\O BUSOl = SCOV(l) KE2 

56,57,50,42,55,53,56,57,40,10 Same 

Although the execution of a NORM(S) instruction cannot be interrupted by a program interrupt 

(PI) or an automatic priority interrupt (API) request, the central processor can grant such a request be­

fore the executed NORM(S) results can be extracted from the EAE registers and processed. Therefore, 

if interrupt-accessed subroutines are to make use of the EAE, the following instruction sequences are 

suggested to preserve the register contents during the interrupt and to restore them to the EAE upon com­

pletion of the interrupt service routine. 

3-22 

~, 



/SAVE EAE REGISTERS DURING INTERRUPT 

JMS SUBENTR 
SUBENTR, o 

DAC ACSAVE 
LACQ 
DAC MQSAVE 
LACS 

DAC SCSAVE 

LAC SCSAVE 
XOR (77 
TAD (640402 
AND (640477 
DAC.+1 
HLT* 
LAC MQSAVE 
LMQ 
LAC ACSAVE 
DBR 
JMP I SUBENTR 

/SAVE AC CONTENTS 
/MOVE MQ TO AC 
/SAVE MQ CONTENTS 

/MOVE SC TO AC 
/SAVE SC CONTENTS 

/COMPLEMENT STEP COUNT 
/DEVELOP PSEUDO NORM 
/DELETE POSSIBLE STEP COUNT OVERFLOW 
/PLACE NORM IN SEQUENCE 
/STEP COUNT TO SC 

/ 
/LOAD THE MQ 
/LOAD THE AC 
/RESTORE PC,LINK,ETC 

Restoration of the step count to the SC requires that the 2s complemented quantity, taken 

from the SC at the time of interrupt, be complemented, then combined with the pseudo NORM instruc­

tion. The step count following TAD,AND is one lless (ls complement) than the actual value produced 

by the previous normalization (2s complement). Execution of the pseudo NORM instruction, then, 2s 

complements this step count into the SC, and in shifting the AC and MQ left one bit position adds the 

necessary 1 to the SC to produce the correctly restored step count (the 6404XX present in the AC from 

TAD, AND shifts to become 501XXX). From the previous two-shift NORM(S} sample: 

011110 LAC ACSAVE 
111111 XOR (77 
100001 

64048 000010 TAD (640402 
100011 

64048 111111 AND (640477 
64048 100011 DEPOSIT IN HL T* == 640443 == NORM 

NORM 011100 1 s complement _ SC 
011101 2s complement - SC 
011110 shift once, step SC 

The DBR instruction preceding the JMP I subroutine termination primes the computer for resto­

ration of the interrupted program. This restoration occurs during JMP I. During this time, the PC and 

* Good programming practices dictate that instructions to be developed at "run" time be represented by 
HLT instructions in the source program. If the development does not occur, the HLT will facilitate de­
bugging the pro9ram. 

3-23 



LINK are restored to the contents existing at the time of interrupt. The memory protect and extended 

memory options, if in the system, are restored to their on or off status. Refer to the PDP-9 Maintenance 

Manual and option manuals for details. 

3.7 MULTIPLY INSTRUCTIONS 

The MUL{S} instruction, Table 3-16, multiplies the contents of the AC {multiplier} by the 

contents of the next sequential core memory location (multiplicand) to form a product in the AC and 

MQ. Bits 12 through 17 in the instruction are usually programmed for a step count of 228 (18 1O), repre­

senting the multiplication of one 18-bit quantity (sign bit and 17 magnitude bits for MULS) by another 

to produce a 36-bit product. When such prec ision is not required, the microprogrammed step count can 

be decreased by subtracting the appropriate number "n" from the instruction code. The product is al­

ways scaled 18-n from MQ17. If "n" is programmed in the instruction, the 18-n lower order bits in the 

long register are meaningless. 

Table 3-16 
EAE MUL Instruction Format 

Op Code MUL Commands Product 
648 18 Precision 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

6 5 3 1 X X MUL 

6 5 7 1 X X MULS 

For a MUL instruction the LINK must previously have been initialized to 0 and remains O. 

During the preparatory phase the multiplier is transferred from the AC to the MQ, the AC is cleared, 

and the SC is set to the 2s complement of the step count in bits 12 through 17 of the instruction. A core 

memory cycle takes place to read the multiplicand into the MB. The arithmetic phase, executed as 

multiplication of one unsigned quantity by another (binary point of no consequence), halts when the SC 

counts up to O. 

For a MULS instruction a previous LAC/GSM/DAC CAND sequence stores the absolute value 

of the multiplicand in memory and places the original sign of the multiplicand in the LINK. During the 

preparatory phase of MULS, a core memory cycle reads the absolute value multiplicand into the MB, 

transfers the LINK content to a TEMPorary storage flip-flop in the EAE, and resets the LINK. The mul­

tiplier is transferred to the MQ and is ls complemented if negative, the AC is cleared to 0, and the SC 

is initialized to the 2s complement of the step count in bits 12 through 17 of the instruction. The arith­

metic phase, executed as multiplication of one signed quantity by another {sign bit plus 17 magnitude 

3-24 

--



bits, binary point of no consequence), halts when the SC counts up to O. Bits ACOO and AC01 each 

receive the sign of the product; the remaining AC and MO bits represent the magnitude. 

From the above description of MULS, it can be seen that the arithmetic phase always starts 

with positive, like-signed quantities in the MQ (multiplier) and the MB (multiplicand). The TEMPorary 

storage flip-flop which receives the original sign of the multiplicand (TEMP3, drawing KE3) acts upon 

the MO SIGN and EAE SIGN flip-flops which perform certain complementary functions during the 

arithmetic phase to arrive at the correctly signed product. 

Thus, the complementary functions govern the four signed multiply situations as follows. 

+ x + = + (behaves as simple unsigned multiply, no complementing 
of the final product) 

+x-=-

-x+=-

-x-=+ 

(negative multiplier is first complemented in preparatory 
phase, final product complemented after arithmetic phase) 

(EAE GSM sets LINK, complements multiplicand; MULS 
complements final product after arithmetic phase) 

(EAE GSM sets LINK, complements multiplicand; MULS 
complements multiplier in preparatory phase; no comple-
menting of final product) 

The algorithm for multiplication using the EAE is sample, add, and shift right. Each bit of 

the"multiplier is sampled, starting with the least significant bit. If the sampled bit is a 1, the multi­

plicand is added to the partial product. The partial product and the multiplier are then shifted right 

one position for the next multiplier bit sampling. If the sampled bit is a 0, zeros are added to the 

partial product. With each shift the content of the least significant bit is lost. Multiplication ends 

when the SC, up-counted with each shift, reaches O. 

A sample program for signed multiplication of two positive numbers, 28 x 58 follows. The 

logic functions that perform the MULS operations are tabulated in Table 3-17. Table 3-18 is a listing 

of the arithmetic operations by process word functions.* The sample program and the microprogrammed 

bits 12 through 17 in the MULS instruction reflect an initial step count of 048 , resulting in a product 

precision of eight bits. The MULS instruction is used here to explain EAE SlGN operations; actually, 

the sample program can be modified for MUL by eliminating the GSM sequence if dealing with unsigned 

numbers. Tables 3-19,3-20, and 3-21 list the ramifications of Table 3-17 for different sign situations. 

/MUL TIPLY 28 x 58 

ST, 0200 
0201 

0202 
0203 

200100 
100500 

200101 

LAC CAND 
JMS MPY 

LAC PLIER 

/LOAD MULTIPLICAND INTO AC 
/STORE MAIN PROGRAM ADDRESS IN 0500 
/ AND JUMP TO MPY SUBROUTINE 
/LOAD MULTIPLIER INTO AC 
/MAIN PROGRAM RE-ENTRY 

*Table 3-18 utilizes 4-bit binary numbers for simplicity. The actual result obtained in multiplying 
28 x 58 is 0000008 in the AC and 5000008 in the MO. Fourteen more shifts to the right would align 
tl1e answer as 128 (MOOOOO128)' 

3-25 



MPY 0500 000202 PC /MAIN PROGRAM ADDRESS 
0501 664000 GSM /STORE CAND SIGN IN LINK AND 

/ ABSOLUTE VALUE IN AC 
0502 040505 DAC .+3 /DEPOSIT CAND IN 0505 
0503 420500 XCHl'MPY /LOAD MULTIPLIER INTO AC 
0504 657122 MULS /FETCH CAND AND MULTIPLY 

~~ 0505 000002 Jtl\Py 
0506 440500 ISZ ar /INCREMENT MAIN PROGRAM ADDRESS 
0507 620500 JMP~_fAP-( /JUMP TO MAIN PROGRAM 

CAllo 0100 000002 MULTIPLICAND 

PJ..l~' 
0101 000005 MULTIPLIER 

Table 3-17 0010 
MULS Functions x 0101 

657104 Multiply, Signed (Four Steps) 28 x 58 

Process Function Drawing No. 

75 (ACO ,ARI,EAE, LI,CONT ,CMA43) KC18 

ACO(l )ANOSHAARI{l) = AC - AR KC20-21 
SA09(O)ASA 1 O(O)ASA 11 (1) = MUL KE4 
EAE(l)AARI(l) = SUl (1) KE3 
SU1(1) = 0 - SCOV,SCOV2,FIRST,EAE RUN,EAE SIGN,MQ SIGN KE2-3 
SUl (l)ASETUP = SC CLR KE2 
SC CLR = 0 - SC KE2 
SUl (l)AMB07(1) = EAE OR ARO KE3 
LI(l) = ADRL - LAR(O) KC15 
LI(l) = ADRL - TEMP3(O) KE3 
EAE(l) = 0 - EN CMPL KE3 
TEMP3(O) = condition MQ SIGN MUL = condition MQ SIGN KE3 
CM STROBEACONT(1) = GO TO 43 KC16 

43 (ACI, EAE , CON T ,CMA41 ) KC18 

CM STROBEAEAE OR ARO = ARO(1) KC19 
ARO(l)ANOSHAACI(l) = AR- AC KC20-21 
EAE(1)AACI(l)ASETUP = SU2(1) KE3 
SU2{l) = MB12-17 - SC = 111011 KE2 
LI(O) = LAR(O) - LINK(O) KC15 
CM STROBEACONT(1) = GO TO 41 KC16 

41 (ACO,MQI,EAE,CONT ,CMA54) KC18 

ACO(l)ANOSHAMQI(1) = AC - MQ KC20-21 
CM STROBEACONT{l) = GO TO 54 KC16 

54 (ACI, EAE -R, C 0 NT , CMA40) KC18 

ACI(l) = 0 - AC KC20 
EAE-R(1)ASCOV(O) = R-PULSE KE2 
R-PULSE = 111100 - SC KE2 
EAE-R(1) = 0 BUS L = LINK - TEMP2(0) KE3 
EAE(0)ATEMP3(O) = MQ SIGN(1) KE3 

3-26 



~ 
\ 

657104 

Process 

54(cont) 

51 

52 

50 
I~ 

Sample 

1 
42 
II' 

ADD, 
Sh ift 1 

Table 3-17 (cont) 
MUlS Functions 

Multiply, Signed (Four Steps) 

Function I Drawing No. 

MQ SIGN(1) = condition EAE SIGN 
EAE-R(1)I\SCOV2(0) = ADDR 10 
EAE-R(1)I\EIR09(0)ASCOV2(0)I\EAE RUN(O) = ODD ADDR 
CM STROBEACONT(1)I\CMA401\ADDR 101\0DD ADDR = GO TO 51 

(PCO, SM, MBI, CMA52) 

PCO(1) /\NOS HI\MBI(1) = PC - MB (CAND ADDRESS) 
SM(1)I\ClK = FETCH CAND 
SM(1)I\CLK = CM STROBE 
CM STROBE = GO TO 52 

(MBO ,+1, PC I, L1,CMA50) 

+1 (1) = CIl7 
MBO(1)"NOSHI\CI17"PCI(1) = MB (CAND ADDRESS) +1 - PC 
+1 (1) = A BUS LINK - ADRL 
LI(1)= ADRL -LAR(O) LI(l) = ADRL - TEMP3(0) 
L1(1)I\CONT = EAE CLR RQ 
EAE CLR RQ = IN CLR, CLR 
INC LR = C LR I = 0 - PC I, M BO 
C LR = 0 - +1, 1 - SAO 
IN CLR = 1 - MBI 
SAO(1) = A BUS LINK - ADRL (Since +1 is cleared by CLR, 

SAO(1) inhibits erroneous setting 
of lAR) 

SAO(1)"NOSH"MBI(1) = SA(CAND) - MB 
MEM STROBE = GO TO 50 

(MQO ,ARI, EAE-P ,CONT ,CMA42) 

EAE-P(l )I\EAE RUN(O) = FIRST(1) 
EAE-P(l )I\SCOV2(0) = EAE RUN(l) 
FIRST(1)I\EAE RUN(1)I\MQ SIGN(l )=CMPL EAE SIGN=EAE SIGN(l) 
FIRST(1)"MUL = MQ SIGN (1) 
MQ SIGN(1) = condition EAE SIGN 
MQO(1 )1.\ NOS HI\AR 1(1) = MQ - AR 
EAE-P(1tAMUL"SCOV(O)I\O BUS17(1) = EAE OR MBO 
EAE-P(1) = 0 BUS L = LINK = ADRL - TEMP1 (not used) 
L1(0) = LAR(O) _ LINK(O) 
CM STROBEI\CONT(1) = GO TO 42 

(ACO,MQI, EAE-R,CONT ,CMA55) 

EAE-R(l)"SCOV(O) = R-PULSE 
R-PU LSE = 1111 01 - SC 
CM STROBE"EAE OR MBO = MBO(l) 
EAE-R(1)I\SCOV2(0)"EAE RUN(l)"EIRl O(O)I\EIRll (1) = IN SHR1 
IN SHR1 = SHR1 

(ACO(l)"SHR1I\MQI(1) = ACn - MQn+'i1 /V' (¥1i3 -_7'iIJ,n 
~BO(l)I\SHR1J\MQI(l) = MBn - MQn+Jj f'lvi r-...., 

3-27 

KE3 
KE3 
KE3 
KC16 

KC18 

KC20-21 
MC2 
KC16 
KC17 

KC18 

KC14 
KC20-21 
KC15 
KC15 
KE3 
KC16 
KC19 
KC19 
KC19 
KC15 

KC20-21 
KC16 

KC18 

KE3 
KE3 
KE3 
KE3 

KC20-21 
KE3 
KE3 
KC15 
KC16 

KC18 

KE2 
KE2 
KC19 
KE4 
KC13 
KC20-21 
KC20-21 



657104 

Process 

42 (cont) 

55 

r 
Shift 1, 
Sample 

1 
53 

r 
Shift 2, 

Add Zeros 

l 
56 

r 
Shift 2, 
Sample 

1 

Table 3-17 (cont) 
MULS Functions 

Multiply, Signed (Four Steps) 

Function 

EAE-R(l) = ADRL - END BITOO ~eM@ 8j 
SHR1 = END BITOO - MQOO 
SHRl = ADR17 - 0 BUS L 
EAE-R(l) = 0 BUS L - TEMP2 
EAE-R(l) = TEMP1 = LINK - END BITl7 (lost) 
CM STROBEACONT(l) = GO TO 55 

(ARO ,ACI, EAE-P ,CONT ,CMA53) 

EAE-P(1)AEAE RUN (1) = FIRST(O) 
EAE-P(l)AFIRST(O)ASCOV2(O)AEAE RUN (l)AEIR 1 O(O)AEIR 11 (1) 
= IN SHR1 
IN SHR1 = SHR1 
ARO(l)ASHR 1AACI(1) = ARn - ACn+1 
EAE-P(l)AMULASCOV(O)AO BUS17(O) = EAE OR MBO 
SHR1 = ADR17 - 0 BUS L 
EAE-P(l) = 0 BUS L - TEMP1 (lost) 
EAE-P(l) = TEMP2 - END BITOO 
SHR1 = END BITOO - ACOO 
CM STROBEACONT(l) = GO TO 53 

(MQO ,ARI,EAE-R,CONT ,CMA56) 

EAE-R(1)ASCOV(O) = R-PULSE 
R-PULSE = 111110 - SC 
EAE-R(l)ASCOV2(O)AEAE RUN(l)AEIR10(O)AEIR11 (1) = IN SHR1 
IN SHR1 = SHR1 
MQO(l)ASHR1AARI(l) = MQn - ARn+1 
EAE-R(1) = ADRL - END BITOO 
SHR1 = END BITOO - AROO 
SHR1 = ADR17 - 0 BUS L 
EAE-R(l) = 0 BUS L - TEMP2 
CM STROBEACONT(l) ~ GO TO 56 

(ACO ,MQI,EAE-P ,CONT ,CMA57) 

EAE-P(l )AFIRST(O)ASCOV2(O)AEAE RUN(l )AEIR 1 O(O)AEIR 11 (1) 
= IN SHR1 
IN SHR1 = SHR1 
ACO(1)ASHR1AMQI(l) = ACn - MQn+1 
EAE-P(1)AMULASCOV(O)AO BUS 17(1) = EAE OR MBO 
SHR1 = ADR17 - 0 BUS L 
EAE-P(l) 0= 0 BUS L - TEMP1 (lost) 
EAE-P(l) = TEMP2 - END BITOO 
SHR1 = END BITOO - MQOO 
CM STROBEACONT(l) = GO TO 57 

3-2B 

Drawing No. 

KC1B 
KC20 
KC15 
KE3 
KC15 
KC16 

KC1B 

KE3 

KE4 
KC13 
KC20-21 
KE3 
KC15 
KE3 
KC15 
KC20 
KC16 

KC1B 

KE2 
KE2 
KE4 
KC13 
KC20-21 
KC15 
KC20 
KC15 
KE3 
KC16 

KC1B 

KE4 
KC13 
KC2Q-21 
KE3 
KC15 
KE3 
KC15 
KC20 
KC16 



Table 3-17 (cont) 
MUlS Functions 

657104 Multiply, Signed (Four Steps) 

Process Function Drawing No. 

57 (ARO,ACI,EAE-R,CONT ,CMA40) KC18 

r 
EAE-R(l)ASCOV(O) = R-PUlSE KE2 
R-PUlSE = 111111 ..... SC = SC FUll KE2 
EAE-R(1)ASCOV2(0)AEAE RUN(l)AEIR 10(0)AEIR11 (1) = SHR1 KE4 
IN SHR1 = SHR1 KC13 
CM STROBEAEAE OR MBO = MBO(l} KC19 

Add, 
~q 

~RO(1)ASHR1AACI(1) = ARn ..... ACn-i-~ KC20-21 
Shift 3 MBO(1)ASHR1AACI(1) = MBn ..... ACn+1 KC20-21 

EAE-R(l) = ADRl ..... END BITOO ~ KC15 
SHR1 = END BITOO ..... ACOO KC20 
SHR1 = ADR17 ..... 0 BUS l KC15 
EAE-R(l) = 0 BUS l ..... TEMP2 KE3 
EAE-R(l) = TEMP1 ..... END BIT17 (lost) KC15 
EAE-R(1)ASCOV2(0) = ADDR10 KE3 ,. CM STROBEACONT(1)ACMA40AADDR 10 = GO TO 50 KC16 

50 (MQO ,ARI, EAE-P ,CONT ,CMA42) KC18 

r 
EAE-P(1)AFIRST(0)ASCOV2(0)AEAE RUN(1)AEIR 1 O(O)AEIR 11 (1) 
= IN SHRl KE4 
IN SHRI = SHRl KC13 
MQO(1)ASHR1AARI(1) = MQn ..... ARn+l KC20-21 

Shift 3, EAE-P(1)AMUlASCOV(O)AO BUS17(0) = EAE OR MBO KE3 
Sample SHRl = ADR17 ..... 0 BUS l KC15 

1 
EAE-P(1) = 0 BUS l ..... TEMPl (lost) KE3 
EAE-P(1) = TEMP2 ..... END BITOO KC15 
SHRl = END BITOO ..... AROO KC20 
CM STROBEACONT(1) = GO TO 42 KC16 

42 (ACO ,MQI,EAE-R,CONT ,CMA55) KC18 

4~ EAE-R(1)ASCOV(O) = R-PUlSE KE2 
R-PUlSE = 000000 ..... SC KE2 
EAE-R(1)ASC FUll = SCOVO) KE2 
EAE-R(1)ASCOV2(0)AEAE RUN(1)AEIR10(0)AEIRll(1) = IN SHRl KE4 
IN SHRl = SHRl KC13 

Shift 4, ACO(1)ASHR1AMQI(l) = ACn ..... MQn+l KC20-21 
Add Zeros EAE-R(l) = ADRl ..... END BITOO KC15 

1 
SHRl = END BITOO ..... MQOO KC20 
SHRl = ADR17 ..... 0 BUS l KC15 
EAE-R(1) = 0 BUS l ..... TEMP2 KC15 
EAE-R(l) = TEMPl ..... END BIT17 (lost) KC15 
CM STROBEACONT(1) = GO TO 55 KC16 

3-29 



657104 

Process 

55 

I 
Shift 4 
No Sample 

\ 

53 

56 

57 

40 

10 

Table 3-17 (cont) 
MULS Functions 

Multiply, Signed (Four Steps) 

Function 

(ARO ,ACI, EAE-P ,CONT ,CMA53) 

EAE-P(1 )AFIRST(0)ASCOV2(0)AEAE RUN (1 )AEIR 1 O(O)AEIR 11 (1) 
= IN SHR1 
IN SHR1 = SHR1 
ARO(l}ASHR1AACI(1) = ARn - ACn+1 
EAE-P(1)AMULASCOV(l) = EAE OR MBO 
SHR1 = ADR17 - 0 BUS L 
EAE-P(1) = 0 BUS L - TEMP1 (lost) 
EAE-P(1) = TEMP2 - END BITOO 
SHR1 = END BITOO - ACOO 
CM STROBEACONT(1) = GO TO 53 

(MOO ,ARI, EAE-R,CONT ,CMA56) 

EAE-R(l}ASCOV(l) = R-PULSE 
EAE-R(1)ASCOV(1) = SCOV2(l) 
SCOV2(1) = IN SHR1 
MOO(l}ANOSHAARI(l) = MO - AR 
CM STROBEACONT(l) = GO TO 56 

(ACO ,MOl, EAE-P ,CONT ,CMA57) 

SCOV2(l) = IN SHR1 
EAE-P(1)AACO(l)AMQI(1)AEIR09(0)ASCOV2(1) = EN CMPL(l) 
EN CMPL(1)AMULAMQ SIGN(1)=CMPL EAE SIGN = EAE SIGN(O) 
EAE SIGN(O) = CMPL 
ACO(l )ANOSHAMOI(1)ACMPL = AC - MQ 
CM STROBEACONT(l) = GO TO 57 

(ARO ,ACI, EAE-R,CONT ,CMA40) 

SCOV2(1) = IN SHR 1 tIW 
EAE-R(l)ASCOV2(l) = .. RUN(O) 
EAE-R(1)t\SCOV2(1)ARUN (0) - AD DR 10 
EN CMPLAEAE SIGN (0) = CMPL 
ARO(l)ANOSHAACI(1)ACMPL= AR - AC 
CM STROBEACONT(1)AADDR 10- GO TO 40 

(EAE, DONE, CMA 10) 

CLK(B) DL YDAEAE(l)ADONE(l) = INPUT 10 RESTART 
10 RESTART = GO TO 10 

(PCO,SM,CMA21) 

BG N next fetch 

3-30 

Drawing No. 

KC18 

KE4 
KC13 
KC20-21 
KE3 
KC15 
KE3 
KC15 
KC20 
KC16 

KC18 

KE2 
KE3 
KE4 
KC20-21 
KC16 

KC18 

KE4 
KE3 
KE3 
KE3 
KC20-21 
KC16 

KC18 

KE4 
KE3 
KE3 
KE3 
KC20-21 
KC16 

KC18 

KD3 
KC16 

KC18 



Table 3-18 
MULS Arithmetic 

28 x 58 

L AC MQ AR 
~sample 

50 a 0000 0101 PLIER > 0101 

42 a 0010 CAND 
CRY~0010 SHRl > 0001 0101 

I / ~ 
j ~Iost 

55 a 0010, 0001 r 0101 
SHRl --;. sample ., 

53 a 0010 0001 SHRl >0000 

plost I 
56 a 0010 SHRl > 1001 0000 

~sample 

57 a ~0011 1001 0010 CAND 

SHRl 
CRY~ 00l10, 

/ 
50 a 0001 1001 SHRl >0100 

. .-.." l;'lost 
sample 

• 42 a 0001 SHRl =- 0000 0100 

/ ~Iost 
55 a 1010~ 0000 ,0100 

SHR 1 

53 a 1010 0000 > 0000 

56 a 1010 :> 1010 0000 

57 a OOOO~ 1010 ,0000 

1< answer ~ 
128 

3-31 



Table 3-19 
MULS Functions 

657104 Multiply, Signed (Four Steps) 

Process Function 

75 TEMP3(O) = condition MQ SIGN 
MUL = condition MQ SIGN 
ACOO(l) = condition EAE SIGN 
EAE(l) == 0 - EN CMPL 

43 SU2(l)AMB06(l)AACOO(l) = EAE SIGN (1) 
SU2(1)AEIR09(O)AEAE SIGN(1)AEIR11(1) = CMPL 
CMPL = AR -AC 

41 AC-MQ 

54 EAE(O)ATEMP3(O) = MQ SIGN(l) 
MQ SIGN(l) = condition EAE SIGN 
0- AC 

51 CAND fetch 

52 MB+l - PC 

50 FIRST(1)AEAE RUN(l)f\MQ SIGN(l)AEAE SIGN (1) = EAE SIGN(O) 
FIRST(1)AMUL = MQ SIGN(l) 

42,55,53 same as MULS 28 x 58 

56 EAE-P(1)ASCOV2(l)AMQI(l)AEIR09(O)AACO(l) = EN CMPL(l) 
MULAEN CMPLAMQ SIGN(1)AEAE SIGN (0) = EAE SIGN(l) 
EN CMPL(1)AEAE SIGN(1) = CMPL 
CMPL =AC -MQ 

57 EN CMPLAEAE SIGN (1) = CMPL 
CMPL = AR -AC 

Table 3-20 
MULS Functions 

657104 Multiply, Signed (Four Steps) 

Process Function 

75 TEMP3(l) = no conditioning of MQ SIGN 
ACOO(O) = no conditioning of EAE SIGN 
MUL = condition MQ SIGN EAE(1) = 0 EN CMPL 

43 AR -AC 

41 AC- MQ 

54 o -AC 

51 CAND fetch 

52 MB+1 - PC 

50 FIRST(1)AMUL = MQ SIGN (1) 
FIRST(1)AEAE RUN(1) = no effect on EAE SIGN 

3-32 



Table 3-20 (cont) 
MULS Functions 

657104 Multiply, Signed (Four Steps) 

Process Function 

42,55,53 same as MULS 28 x 58 

56 EAE-P(l)ASCOV2(1)AMQI(l)AEIR09(0)AACO(1) = EN CMPL(l) 
EN CMPL(1)AMULAMQ SIGN(1)AEAE SIGN (0) = EAE SIGN (1) 
EN CMPL(l)AEAE SIGN (1) = CMPL 
CMPL =AL ..... MQ 

57 EN CMPLAEAE SIGN (1) = CMPL 
CMPL =AR ..... AC 

Table 3-21 
MULS Functions 

657104 Multiply, Signed (Four Steps) 

Process Function 

75 TEMP3(1) = no conditioning of MQ SIGN 
ACOO(l) = condition EAE SIGN 
MUL = condition MQ SIGN 
EAE(1} = 0 ..... EN CMPL 

43 SU2(1)AMB06(1)AACOO(1) = EAE SIGN (1) 
SU2(l)AEIR09(0)AEAE SIGN(l)AEIR 11 (1) = CMPL 
CMPL = AR ..... AC 

41 AC ..... MQ 

54 o ..... AC 

51 CAND fetch 

52 MB+1 ..... PC 

50 FIRST(1)AMUL = MQ SIGN(l) 
FIRST(l)AEAE RUN(l) = n~ effect on EAE SIGN 

42,55,53 same as MULS 28 x 58 

56 EAE-P(l)ASCOV2(1)AMQI(l)AEIR09(0)AAC0(1) = EN CMPL(1) 
EN CMPL(l)!\MULAMQ SIGN(l)AEAE SIGN (1) = EAE SIGN (0) 
EN CMPL(1)AEAE SIGN(O} = CMPL 
AC ..... MQ 

57 EN CMPL(1)AEAE SIGN(O} = CMPL 
AR ..... AC 

3.8 DIVIDE INSTRUCTIONS 

-2 x-5 8 8 

Six divide instructions including integer divide and fraction divide, Table 3-22, divide the 

contents of the AC and MQ (integer dividend, fraction dividend, long register dividend) by the contents 

3-33 



of the next sequential core memory location (divisor) to form a quotient in the MQ and remainder in the 

AC. Bits 12 through 17 in the instruction are usually programmed for a step count of 23a (1910), 

representing division of a 36-bit dividend (actual or implied) by an 18-bit divisor. When such precision 

is not required, the microprogrammed step count can be decreased by subtracting the appropriate number 

"n" from the instruction code. The quotient is always right-justified in the MQ and the remainder right­

justified in the AC. If "-n" is programmed in the instruction, the n high-order bits in the MQ and AC 

are meaningless. 

Table 3-22 
EAE DIV Instruction Format 

Op Code DIV Commands Precision of 
648 38 QUOT /Remainder 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

6 4 0 3 X X DIV 

6 4 4 3 X X DIVS 

6 5 3 3 X X IDIV 

6 5 7 3 X X IOIVS 

6 5 0 3 X X FRDIV 

6 5 4 3 X X FRDIVS 

Instructions may be programmed for division of signed or unsigned quantities. Divide over­

flow occurs if the quotient exceeds the capacity of the MQ (7777778 , unsigned; ±377777 8' signed). 

The LINK sets to indicate an overflow, divide execution ends in 5 computer cycles, and the register 

contents are meaningless. The computer goes on to the next instruction. 

3.8.1 DIV(S} Instruction 

The DIV(S} instruction divides the contents of the AC and MQ (long register dividend) by the 

contents of the next sequential core memory location to form a quotient in the MQ and remainder in 

the AC. 

For a DIV instruction the LINK must previously have been set to 0 and remains 0 unless divide 

overflow occurS (Section 3.8.4). During the preparatory phase, the SC is set to the 2s complement of 

the step count in bits 12 through 17 of the instruction. A core memory cyc Ie takes place to read the 

divisor into the MB. The arithmetic phase, executed as the division of one unsigned quantity by an­

other (binary point of no consequence), halts when the SC counts up to O. 

For a DIVS instruction, a previous LAC/GSM/DAC DIVR sequence stores the absolute value 

of the divisor in memory and places the original sign of the divisor in the LINK. During the preparatory 

phase of DIVS, a core memory cycle reads the absolute value divisor into the MB, transfers the LINK 

3-34 



content to the temporary storage register TEMP3 in the EAE, and resets the LINK. The SC is set to the 

2s complement of the step count in bits 12 through 17 of the instruction. The arithmetic phase, executed 

as the division of one signed quantity by another (binary point of no consequence), halts when the SC 

counts up to O. The dividend contains a double sign in bits ACOO and AC01. MQOO receives the sign 

of the quotient, and ACOO receives the original sign of the dividend. 

As with the execution of MULS, the arithmetic phase of DIVS starts with positive, like-signed 

quantities in the divisor and dividend. TEMP3, MQ SIGN, and EAE SIGN flip-flops act to ls comple­

ment the MQ portion of a negative dividend during the preparatory phase and to perform other comple-

mentary functions during the arithmetic phase to arrive at the correctly signed quotient as follows. 

+ ++ = + (behaves as simple unsigned divide, final quotient 
complemented after arithmetic phase) 

(EAE GSM sets LINK, complements divisor; final 
quotient not complemented) 

- + + = - (MQ portion of dividend complemented during pre­
paratory phase; quotient not complemented; remainder 
complemented after arithmetic phase) 

- + - = + (EAE GSM sets LINK, complements divisor; MQ por­
tion of dividend complemented during preparatory phase, 
quotient complemented after arithmetic phase). 

The algorithm for divide using the EAE is sample, add or subtract, and shift left. The divisor 

is first subtracted from the AC portion of the dividend, and the result is shifted left. The LINK and 

TEMP3 receive the most significant bit of the result for sampling. If the result is a negative number, the 

divisor is added to the quotient; if the result is a positive number, the divisor is subtracted from the quo­

tient. The result is then sh if ted left one position for the next sampling. If in the first subtraction the 

divisor is not greater than the AC portion of the dividend, divide overflow occurs, stopping divide oper­

ations (Section 3.8.4). The subtract operation takes the form of a 2s complement add. 

Following is a sample program for the signed division of two positive numbers, 128 + 58. The 

logic functions that perform the DIVS operations are listed in Table 3-23. Table 3-24 is a listing of the 

arithmetic operations by process word functions. The sample program and the microprogrammed bits 12 

through 17 in the DIVS instruction reflect an initial step count of 058 , resulting in a four-bit precision 

of the quotient and remainder. The DIVS instruction is used here for purposes of explanation of the 

EAE SIGN operations; actually, the sample program can be modified for DIV by eliminating the GSM 

sequence if dealing with unsigned numbers. Tables 3-25, 3-26, and 3-27 list the ramifications of 

Table 3-23 for different sign situations. 

/DIVIDE 128 + 58 

ST, 0500 
0501 

0502 

200100 
100200 

LAC DIVR 
JMS DIV 

3-35 

/LOAD DIVISOR INTO AC 
/STORE PROGRAM ADDRESS IN 0200 AND 
/ JUMP TO DIV SUBROUTINE 
/MAIN PROGRAM RE-ENTRY 



DIV 0200 000502 PC /PROGRAM ADDRESS 
0201 664000 GSM /STORE DIVR SIGN IN LINK AND ABSOLUTE 

!VALUE IN AC 
'0202 040207 DAC. +5 /DEPOSIT DIVR IN 0207 
0203 200101 LAC DIVDl /LOAD HALF DIVIDEND INTO AC 
0204 652000 LMQ /MOVE TO MQ 
0205 200102 LAC DIVD2 /LOAD HALF DIVIDEND INTO AC 
0206 644323 DIVS /FETCH DIVR AND DIVIDE 

DIVR 0207 000005 
0210 620200 JMP 1200 /RETURN TO MAIN PROGRAM 

0100 000005 DIVISOR 
0101 000012 DIVIDEND (LEAST SIGNIFICANT) 
0102 000000 DIVIDEND (MOST SIGNIFICANT) 

NOTE: The following discussion of a divide signed operation is usinga4bit divisor and 8bit dividend instead 
of 18and 36. References toa given register bit 17 are referring to the least significant bit of the applicable 
register. 

644305 

Process 

75 

43 

41 

Table 3-23 
DIVS Functions 

Divide, Signed (Five Steps) 

Function 

(ACO ,ARI, EAE , LI, CONT ,CMA43) 

ACO(l)ANOSHAARI(l) = AC ... AR 
SA09(0)ASA 10(1 )ASA 11 (1) = DIV 
EAE(1)AARI(1) = SUl (1) 

01 Ot} 0000 1 01 0 

128 + 58 

prawing No. 

KC18 

KC20-21 
KE4 
KE3 

SU1(1) = 0 ... SCOV,SCOV2,FIRST,EAE RUN,MQ SIGN,EAE SIGN KE2-3 
SUl (1)ASETUP = SC CLR KE2 
SC CLR = 0 ... SC KE2 
SUl (1)AM BOO (0) = EAE OR MQO KE3 
LI(1) = 0 BUS L = ADRL ... LAR(O) KC15 
LI(1) = ADRL = LINK ... TEMP3(0) KE3 
TEMP3(0) = condition MQ SIGN KE3 
EAE(1) = 0 ... EN CMP~ KE3 
ACOO(O) = no conditioning of EAE SIGN KE3 
CM STROBEACONT(1) = GO TO 43 KC16 

(ACI,EAE,CONT ,CMA41) KC18 

EAE(1)AACI(l)ASETUP = SlJ2(1) KE3 
SU2(1) = MB12-17 = 111010 ... SC KE2 
SU2(1)J\MB06(1)AACOO(0) = no effect on EAE SIGN (EAE SIGN 0) KE3 
CM STROBEAEAE OR MQO = MQO(1) KC19 
MQO(1)ANOSHAACI(l) = MQ ... AC KC20-21 
U(O) = LAR(O) ... LINK(O) KC15 
CM STROBEACONT(1) = GO TO 41 KC16 

(MQI,ACO, EAE,CONT ,CMA54) KC18 

ACO(1)ANOSHAMQI(1) = AC ... MQ KC20-21 
MQI(1)AMB08(O) = EAE OR ARO KE3 
CM STROBEt\CONT(l) = GO TO 54 KC16 

3-36 



644305 

Process 

54 

51 

52 

50 

Shift 1, 
Sample 

1 

Table 3-23 (cont) 
DIVS Functions 

Divide, Signed (Five Steps) 

Function 

(ACI, EAE-R,CONT ,CMA40) 

CM STROBE/\EAE OR ARO = ARO(l) 
ARO(l )/\NOSHMCI(l) = AR - AC 
EAE-R(l}/\SCOV(O) = R-PULSE 
R-PULSE = 111011 - SC 
EAE-R(l )/\SCOV2(0) = ADDR 10 
EAE-R(l )/\EIR09(0)/\SCOV2(0)/\EAE RUN(O) = ODD ADDR 
EAE(0)/\TEMP3(0) = MQ SIGN(l) 
MQ SIGN(l) = condition EAE SIGN 
EAE-R(l) = 0 BUS L = LINK - TEMP2(0) 

. 

CM STROBE/\CONT(1)/\CMA40MDDR 10/\ODD ADDR = GO TO 51 

(PCO ,SM,MBI,CMA52) 

PCO(1)/\NOSH/\MBI(1) = PC - MB (DIVR ADDRESS) 
SM(l)/\CLK = FETCH DIVR 
SM(1)/\CLK = CM STROBE 
CM STROBE = GO TO 52 

(MBO, + 1 ,PCI, LI, CMA50) 

+1 (1) = CIl7 
MBO(l)/\NOSH/\CIl7/\PCI(1) = MB (DIVR ADDRESS) +1 - PC 
+1 (1) = A BUS LINK - ADRL 
LI(l) = ADRL - LAR(O) 
LI(l)/\CONT(O) = EAE CLR RQ 
LI(l)AADRL = TEMP3(0) 
EAE CLR RQ = IN CLR, CLR 
IN CLR = CLR 1= 0 - PCI, MBO 
CLR=O-+l,l-SAO 
IN CLR = 1 - MBI 
SAO(1) - A BUS LINK - ApRL 
SAO(l)/\NOSH/\MBI(l) = SA (DIVR) - MB 
MEM STROBE = GO TO 50 

(MQO ,ARI, EAE-P ,CONT ,CMA42) 

EAE-P(l)/\SCOV2(0) = EAE RUN(l) 
EAE-P(l}/\EAE RUN(O) = FlkST(l) 
FIRST(l)/\EAE RUN(l)/\MQ SIGN(l)=CMPL EAE SIGN=EAE SIGN(l) 
EAE-P(l )/\SCOV2(0)/\DIV = IN SH Ll 
IN SHLl = SHLl 
MQO(1)/\SHL1/\ARI(1) = MQn - ARn-1 
SH Ll = ADROO = MQOO(l) - 0 BUS L 
EAE-P(l) = 0 BUS L - TEMP1 (l) 
EAE-P(l) = TEMP2(0) - END BITOO (lost) 
EAE-P(l} = TEMP3(0) - END BIT17 
SHLl = END BIT17 - AR17(0) 
LI(O) = LAR(O) - LINK(O) 

3-37 

Drawing No • 

KC18 

KC19 
KC20-21 
KE2 
KE2 
KE3 
KE3 
KE3 
KE3 
KE3 
KC16 

KC18 

KC20-21 
MC2 
KC16 
KC16 

KC18 

KC14 
KC20-21 
KC15 
KC15 
KE3 
KE3 
KC16 
KC19 
KC19 
KC19 
KC15 
KC20-21 
KC16 

KC18 

KE3 
KE3 
KE3 
KE4 
KC13 
KC20-21 
KC15 
KE3 
KC15 
KC15 
KC20 
KC15 



644305 

Process 

50 (cont) 

42 
j 

Sub, 
Sh ift 1 

~ 
55 
II' 

Shift 2, 
Sample 

II 

53 

1 
Add, 
Shift 2 

Table 3-23 (cont) 
DNS Functions 

Divide, Signed (Five Steps) 

Function 

EAE-P(l )I\SCOV(O)A TEMP3(0)AD N = EAE OR SUB 
EAE-P(l)ASCOV2(0)ADIV = EAE OR LI 
CM STROBEACONT(l) = GO TO 42 

(ACO,MQI, EAE-R,CONT ,CMA55) 

CM STROBEAEAE OR SUB = SUB(1) 
CM STROBEAEAE OR LI = LI(1) 
EAE-R(1 )ASCOV(O) = R-PULSE 
R-PULSE = 111100 - SC 
EAE-R(1)ASCOV(O)AEAE RUN(1)ADIV = IN SHU 
IN SHU = SHU 
EAE-R(l)ASUB(1) = CIl7 
SUB(1)ASHL1ACI17AMQI(1) = MB+l - MQn-l 
ACO(1)ASHUAMQI(1) = ACn - MQn-l 
SHL1 = ADROO(1) - 0 BUS L 
EAE-R(1) = 0 BUS L - TEMP2(1) 
U(l) = 0 BUS L - LAR(l) 
EAE-R(l) = TEMP1 (1) - END BIT17 
SHU = END BIT17-MQ17(1) 
LINK(O)ASUB(l)AEAE R(1) = A BUS LINK 
A BUS LINKA'COOO = ADRL 
LI(1) = ADRL - TEMP3(1) 
CM STROBEACONT(l) = GO TO 55 

(ARO ,ACI, EAE-P ,CONT ,CMA53) 

EAE-P(1)ASCOV2(0)ADIV = IN SHL1 
IN SHU = SHU 
EAE-P(1)AEAE RUN(1) = FIRST(O) 
ARO(1)ASHUAACI(1) = ARn - ACn-l 
SHLl = ADROO(O) - 0 BUS L 
EAE-P(1) = 0 BUS L - TEMPl (0) 
EAE-P(1) = TEMP2(1) - END BITOO (lost) 
EAE-P(l) = TEMP3(1) - END BIT17 
SHU = ENDBIT17 - AC17(1) 
EAE-P(1)ASCOV2(0)AEAE OR SUBJ\O BUS 17ADIV = EAE OR MBO 
LI(O) = LAR(1) - LINK(1) 
EAE-P(1 )ASCOV2(0)ADIV = EAE OR U 
CM STROBEACONT(1) = GO TO 53 

(MQO ,ARI,EAE-R,CONT ,CMA56) 

CM STROBEAEAE OR MBO = MBO(1) 
CM STROBEAEAE OR LI = LI(l) 
EAE-R(1)ASCOV(O) = R-PULSE 
R-PULSE = 111101 - SC 
EAE-R(l)ASCOV(O)AEAE RUN(1)ADIV = IN SHU 
IN SHU = SHL1 
MQO(1)I\SHLlI\ARI(l) = MQn -t ARn-l 

3-38 

Drawing No. 

KE3 
KE3 
KC16 

KC18 

KC19 
KC19 
KE2 
KE2 
KE4 
KC13 
KE3 
KC20-21 
KC20-21 
KC15 
KE3 
KC15 
KC15 
KC20 
KC15 
KC15 
KE3 
KC16 

KC18 

KE4 
KC13 
KE3 
KC20-21 
KC15 
KE3 
KC15 
KC15 
KC20 
KE3 
KC15 
KE3 
KC16 

KC18 

KC19 
KC19 
KE2 
KE2 
KE4 
KC13 
KC2Q-21 



644305 

Process 

53 (cont) 

I 

56 

1 
Shift 3, 
Sample 

I 

57 
I 

Add, 
Shift 3 

I 

Table 3-23 (cont) 
DIVS Functions 

Divide, Signed (Five Steps) 

Function 

MBO(l)ASHL1AARI(l) = MBn ..... ARn-l 
SHt 1 '="ADROO(l) ..... 0 BUS L 
EAE-R(l) = 0 BUS L ..... TEMP2(1) 
LI(l) = 0 BUS L ..... LAR(1) 
LI(l) = ADRL ..... TEMP3(1) 
EAE-R(l) = TEMPl (0) ..... END BIT17 
SHL1 = END BIT17 ..... AR17(0) 
LIN K(1 )ASUB = A BUS LIN K 
A BUS LINIQ\COOO = ADRL 
CM STROBEACONT(1) = GO TO 56 

(ACO,MQI,EAE-P ,CONT ,CMA57) 

EAE-P(1)ASCOV2(1)ADIV = IN SHU 
IN SHU = SHL1 
ACO(1)ASHUAMQI(l) = ACn ..... MQn-l 
SHU = ADROO(l) ..... 0 BUS L 
EAE-P(l) = 0 BUS L ..... TEMPl (1) 
EAE-P(1) = TEMP2(l) ..... END BITOO (lost) 
EAE-P(l) = TEMP3(1) ..... END BIT17 
SHU = END BIT17 ..... MQ17(l) 
EAE-P(1)ASCOV2(0)AEAE OR SUBAO BUS 17ADIV = EAE OR MBO 
LI(O) = LAR(l) ..... LINK(l) 
EAE-P(1)ASCOV2(O)ADIV = EAE OR LI 
CM STROBEACONT(1} = GO Tb 57 

(ARO ,ACI, EAE-R,CONT ,CMA40) 

CM STROBEAEAE OR MBO = MBO(l) 
CM STROBEAEAE OR LI = LI(1} 
EAE-R(1}ASCOV(O) = R-PULSE 
R-PULSE = 111110 ..... SC 
EAE-R(l)ASCOV(O)AEAE RUN(l}ADIV = IN SHU 
IN SHLl = SHU 
ARO(1)ASHLlAACI(l) = ARn ..... ACn-l 
MBO(l)ASHLlAACI(l) = MBn ..... ACn-l 
SHLl = ADROO(1} ..... 0 BUS L 
EAE-R(l} = 0 BUS L ..... TEMP2(1) 
EAE-R(l) = TEMPl (1) ..... END BIT17 
SHU = END BIT17 ..... AC17(l) 
LI(1) = 0 BUS L ..... LAR(l) 
LINK(1)ASUB = A BUS LINK 
A BUS LINKACOOO = ADRL 
LI(1) = ADRL ..... TEMP3(1) 
EAE-R(1)ASCOV2(0) = ADDR 10 
CM STROBEACONT(1)1\CMA4MADDR 10 = GO TO 50 

3-39 

Drawing No. 

KC20-21 
KC15 
KE3 
KC15 
KE3 
KC15 
KC20 
KC15 
KC15 
KC16 

KC18 

KE4 
KC13 
KC20-21 
KC15 
KE3 
KC15 
KC15 
KC20 
KE3 
KC15 
KE3 
KC16 

KC18 

KC19 
KC19 
KE2 
KE2 
KE4 
Kt13 
KC20-21 
KC20-21 
KC15 
KE3 
KC15 
KC20 
KC15 
KC15 
KC15 
KC15 
KE3 
KC16 



644305 

Process 

50 

1 
Shift 4, 
Sample 

42 
~ 

Add, 
Shift 4 

~ 

55 

1 
Shift 5, 
Sample 

\~ 

Table 3-23 (cant) 
DIVS Functions 

Divide, Signed (Five Steps) 

Function 

(MQO ,ARI, EAE-P ,CONT ,CMA42) 

EAE-P(l)/\SCOV2(0)/\DIV = IN SHLl 
IN SHLl = SHLl 
MQO(l)/\SHLlMRI(l) = MQn .... ARn-l 
SHLl = AD ROO(O) .... 0 BUS L 
EAE-P(l) = 0 BUS L .... TEMPl (0) 
EAE-P(l) = TEMP2(l) .... END BITOO (lost) 
EAE-P(l) = TEMP3(1) .... END BITl7 
SHLl = END BIT17 .... AR17(1) 
LI(O) = LAR(l) .... LINK(l) 
EAE-P(l )/\SCOV2(0)/\EAE OR S UB/\O BUS 17/\D N. = EAE OR MBO 
EAE-P(l)/\SCOV2(0)/\DN = EAE OR LI 
CM STROBE/\CONT(l) = GO TO 42 

(ACO, MQ I, EAE-R, CONT, CMA55) 

CM STROBE/\EAE OR MBO = MBO(l) 
CM STROBE/\EAE OR LI ;;; LI(l) 
EAE-R(l)/\SCOV(O) = R-PULSE 
R-PULSE = 111111 .... SC = SC FULL 
EAE-R(l)/\SCOV(O)/\EAE R UN(l )/\D N = S HLl 
IN SHLl = SHLl 
ACO(l)/\SHLl/\MQI(l) = ACn .... MQn-l 
MBO(l)/\SHLl/\MQI(l) = MBn .... MQn-l 
SHLl = AD ROO(O) .... 0 BUS L 
EAE-R(l) = 0 BUS L .... TEMP2(0) 
U(l) = 0 BUS L - LAR(O) 
EAE-R(l) = TEMPl (0) - END BIT17 
SHU = END BIT17 .... MQ17(0) 
LINK (1)/\S UB = A BUS LINK 
A BUS UNKACOOO = ,A.DRL 
LI(1) = ADRL .... TEMP3(0) 
CM STROBE/\CONT(l) = GO TO 55 

(ARO ,ACI, EAE-P ,CONT ,CMA53) 

EAE-P(l)/\SCOV2(0)/\DIV = IN SHU 
IN SHU = SHU 
ARO(l)/\SHU MCI(l) = ARn - ACn-I 
SH L 1 = ADROO(O) - 0 BUS L 
EAE-P(l) = 0 BUS L .... TEMPI (0) 
EAE-P{l) = TEMP2(0) .... END BITOO (lost) 
EAE-P(l) = TEMP3(0) .... END BIT17 
SHU = END BITl7 .... ACI7(0) 
EAE-P(1)/\SCOV2(0)/\DIV = EAE OR LI 
EAE-P(l)/\SCOV(O)/\ TEMP3(0)/\DIV = EAE OR SUB 
LI(O) = LAR(O) .... LINK(O) 
CM STROBEACONT(l) = GO TO 53 

3-40 

Drawing No. 

KC18 

KE4 
KC13 
KC20-21 
KC15 
KE3 
KC15 
KC15 
KC20 
KC15 
KE3 
KE3 
KC16 

KC18 

KCl9 
KCl9 
KE2 
KE2 
KE4 
KCl3 
KC20-21 
KC20-21 
KCl5 
KE3 
KC15 
KC15 
KC20 
KCl5 
KCl5 
KE3 
KC16 

KCI8 

KE4 
KCI3 
KC20-2I 
KCI5 
KE3 
KC15 
KC15 
KC20 
KE3 
KE3 
KCI5 
KC16 



Table 3-23 (cont) 
DIVS Functions 

644305 Divide, Signed (Five Steps) 

Process Function Drawing No~ 

53 (MQO ,ARI, EAE-R,CONT ,CMA56) KC18 

CM STROBEAEAE OR SUB = SUB(l) KC19 
CM STROBEAEAE OR LI = LI(l) KC19 
EAE-R(l) = R-PULSE KE2 
R-PULSE = 000000 - SC KE2 
R-PULSEASC FULL = SCOV(l) KE2 
SCOV(l) = IN SHL 1 KE4 

Sub SUB(l)AEAE-R(l) = CIl7 KE3 
SUB(l)ANOSHACIl7AARI91) = MB+1 - AR KC20-21 
MQO(l)ANOSHAARI(l) = MQ - AR KC20-21 
SUB(l)AEAE-R(l)ALINK(O) = A BUS LINK 
A BUS LINKACOOO = ADRL KC15 
SHIFT= ADRL - 0 BUS L KC15 
EAE-R(l) = 0 BUS L - TEMP2(l) KE3 
LI(l) = 0 BUS L - LAR(l) KC15 
LI(l) = ADRL - TEMP3(1) KE3 
CM STROBEACONT(l) = GO TO 56 KC16 

56 (ACO,MQI,EAE-P ,CONT ,CMA57) KC18 

EAE-P(1)ASCOV2(0)ADIV = IN SHU KE4 
IN SHU = SHU KC13 
ACO(l)ASHUAMQI(l) = ACn - MQn-l KC20-21 
SHU = ADROO(l) - 0 BUS L KC15 
EAE-P(1) = 0 BUS L - TEMPl (1) KE3 

Shift 5, EAE-P(l) = TEMP2(1) - END BITOO (lost) KC15 
Sample EAE-P(1) = TEMP3(l) - END BITl7 KC15 

SHU = END BITl7- MQ17(1) KC20 
EAE-P(l)ASCOV2(0)AEAE OR SUBAO BUS 17ADIV = EAE OR MBO KE3 
EAE-P(l)J\SCOV2(l)ADIV = EAE OR LI KE3 
LI(O) = LAR(l) - LINK(1) KC15 
CM STROBEACONT(l) = GO TO 57 KC16 

57 (ARO ,ACI, EAE-R,CONT ,CMA40) KC18 

CM STROBEAEAE OR MBO = MBO(l) KC19 
CM STROBEAEAE OR LI = LI(l) KC19 
EAE-R(l)ASCOV(l) = SCOV2(1) KE2 
SCOV(l) = IN SHLl KE4 
ARO(l )ANOSHAACI(l) = AR - AC KC20-21 

Add MBO(l)ANOSHAACI(l) = MB - AC KC20-21 
A BUS LINKACOoo = ADRL KC15 
SHIFT = ADRL - 0 BUS L KC15 
EAE-R(l) = 0 BUS L - TEMP2(0) KE3 
LI(1) = 0 BUS L - LAR(O) KC15 
LI(l) = ADRL - TEMP3(0) KE3 
EAE-R(l)ARUN(l) = ADDR 10 KE3 
CM STROBEACONT(1)ACMA4()'\ADDR 10 = GO TO 50 KC16 

3-41 



Table 3-23 (cont) 
D IVS Functions 

644305 Divide, Signed (Five Steps) 

Process Function Drawing No. 

50 (MQO ,ARI, EAE-P ,CONT,CMA42) KC18 

SCOV2(1) = IN SHL 1 KE4 
SCOV2(1} = EAE OR MBO, EAE OR SUB, EAE OR LI KE3 
MQO(1}ANOSHAARI(1} = MQ - AR KC20-21 
LI(O) = LAR(O) - LINK(O) KC15 
LlNK(O) = ADRL KC15 
SHIFT = ADRL - 0 BUS L KC15 
EAE-P(l) = 0 BUS L - TEMP1 (0) KE3 
EAE-P(1) = TEMP2(O) - END BITOO (lost) KC15 
EAE-P(1} = TEMP3(0) - END BIT 17 KC15 
CM STROBEACONT(l) - GO TO 42 KC16 

42 (ACO, MQ I, EAE-R, CO NT, CMA55) KC18 

EAE-R(1}ASCOV2(l) = EAE RUN(O) KE3 
ACO(1)ANOSHAMQI(l) = AC - MQ KC20-21 
CM STROBEACONT(1) = GO TO 55 KC16 

55 (ARO ,ACI, EAE-P ,CONT ,CMA53) KC18 

ARO(l )ANOSHAACI(l) = AR - AC KC20-21 
CM STROBEACONT(1) = GO TO 53 KC16 

53 (MQO ,ARI, EAE-R,CONT ,CMA56) KC18 

MQO(1)ANOSHAARI(l) = MQ - AR KC20-21 
CM STROBEACONT(l) = GO TO 56 KC16 

56 (ACO ,MQI, EAE-P ,CONT ,CMA57) KC18 

EAE-P(l)AMQI(l)AACO(l)AEIR09(0)ASCOV2(l) = EN CMPL(l) KE3 
EN CMPL(l)AEAE SIGN(l) = CMPL KE3 
ACO(l )ANOSHAMQI(l )ACMPL = AC - MQ KC20-21 
CM STROBEACONT(1} = GO TO 57 KC16 

57 (ARO ,ACI, EAE-R,CONT ,CMA40) KC18 

EAE-R(1)ADIV!\EN CMPLAMQ SIGN(1)AEAE SIGN(1) = EAE SIGN(O) KE3 
EAE SIGN(O) = CMPL KE3 
ARO(1)ANOSHAACI(l)ACMPL = AR - AC KC2o-21 
EAE-R(l)ASCOV2(l)ARUN(0) = ADDR 10 KE3 
CM STROBEACONT(l) = GO TO 40 KC16 

40 (EAE, DONE, CMA 10) KC18 

CLK(B) DL YDAEAE(1)ADONE(l) = INPUT 10 RESTART KD3 
10 RESTART = GO TO 10 KC16 

10 (PCO,SM,CMA21) KC18 

BGN next fetch 

3-42 



Table 3-24 
DIVS Arithmetic 

128 + 58 

L TEMP3 AC MQ AR 

50 0 
i 
0 0000 1010 SHLl 0100 

i>sample 

MB 1010~CIl7 , 
42 0 l~CRy-T6Tl SHLl :> 0111 0100 

~ 
55 1 

I r sample 
100 < 0111 

SHLlL 
0100 

MB 0101 
SH L 1 ---;.; 00* 53 1 1 E I 1001 I "ClrY-I100 

V t rsample 
56 1 1 1001-SHLl :>001 1000 

'JSHLl MB 0101 
57 1~ 1011 0011 1101 

CRY I 

if > sample 
>SHLl~Ollf 50 1 1011 0011 

MB 0101 ~ 
42 0E--CRY-1 OOOO-SHll :> 0000 0111 

~ 
I r+sample 

I t~SHLl 
55 0 0 11 1 0000 0111 

MB 101O-C1l7 
53 0 1~ 1110 CRY-lOll :> 1011 

'f f~sample 1 56 1 1110 -SHLl ~110 1011 

t L CRY- 1 
MB 0101 

57 0 0000 E 1101 0000 --, 
I 

50 t 0 0000 1101 11 01 

42 0 0 0000 :> 0000 1101 

55 0 0 1101 c: 0000 1101 

53 0 0 1 101 0000 >0000 

56 0 0 1101 CMPL :>0010 0000 

57 0 0 0000 E 0010 0000 

r answer 
=1 28 

3-43 



Process 

75 

43 

41 

54 

Table 3-25 
DIVS Functions 

Function 

TEMP3(1) = no conditioning of MQ SIGN 
ACOO(O) = no conditioning of EAE SIGN 
EAE(1) = 0 - EN CMPL 

MQ -AC 

AC-MQ 

EAE(O)A TEMP3(1) = no effect on MQ SIGN 

51 through last 53 same as DIVS 128 + 58 

56 EN CMPL(l)AEAE SIGN(O) = CMPL 
AC-MQ 

57 CMPL = AR - AC 

Process 

75 

43 

41 

54 

51,52 

50 

Table 3-26 
DIVS Functions 

Function 

TEMP3(0) = condition MQ SIGN 
ACOO(1) = condition EAE SIGN 
EAE(l) = 0 - EN CMPL 

MB06(1)J\SU2(1) = EAE SIGN(1) 
SU2(1)AEAE SIGN(l) = CMPL 
CMPL=MQ - AC 

AC-MQ 

EAE(0)ATEMP3(0) = MQ SIGN(l) 
MQ SIGN(1) = condition EAE SIGN 

same as DIVS 128 + 58 

FIRST(l)AEAE RUN(l)AMQ SIGN(1)AEAE SIGN(l) == EAE SIGN(O) 

42 through last 53 same as DIVS 128 + 58 

56 EN CMPL(1)AEAE SIGN(O) == CMPL 
AC-MQ 

57 EAE-R(l)A EN CMPL(l)AOIV AMQ SIGN(l)AEAE SIGN(O) == EAE SIGN(l) 
EAE SIG.t!i1)AEN CMPL(1) == CMPL 
CMPL==AR -AC 

3-44 



Process 

75 

43 

41 

54 

51 

56 

57 

3.8.2 

Table 3-27 
DIVS Functions 

Function 

TEMP3(l) = no conditioning of MQ SIGN 
ACOO(l) = condition EAE SIGN 
EAE(l) = 0 - EN CMPL 

MB06(1)J\SU2(1) = EAE SIGN (1) 
SU2(1)J\EAE SIGN(1) = CMPL 
CMPL = MQ - AC 

AC -MQ 

EAE(O)J\ TEMP3(1) = no effect on MQ SIGN 

through last 53 same as 128 + 58 

EN CMPL(1)J\EAE SIGN(1) = CMPL 
CMPL=AC - MQ 

EAE-R(1)J\EN CMPL(1)J\DIVJ\MQ SIGN(O) = no effect on EAE SIGN(1) 
EAE SIGN(I)J\EN CMPL(1) = CMPL 
AR .... AC 

IDIV (S) Instruction 

-12 +-5 
8 8 

The IDIV(S) instruction divides the contents of the AC (integer dividend) by the contents of 

the Relict sequential core memory location to form a quotient in the MQ and a remainder in the AC. 

The arithmetic phase of the instruction(s) is identical to that of DIV(S). The preparatory 

phase transfers the contents of the AC to the MQ and clears the AC. Thereafter the arithmetic phase 

in reality performs the division on the long register dividend just as for DIV. The exception here is that 
I 

the most significant portion of the dividend (AC) is at O. 

Therefore, the DIV(S) functions of Table 3-23 hold true for IDIV(S) with the following pre­

paratory exceptions. 

75) SUI (1)J\MB07(1) = EAE OR ARO 
AC .... AR (same) 

43) AR .... AC 

41) MB08(l) = EAE OR ARO 
AC .... MQ (same) 

54) ACI(1) = 0 .... AC 

The rule for divide overflow, Section 3.8.4 is the same. In the IDIV(S) case overflow occurs 

on Iy if the computer attempts to divide by 0, since this is the on Iy quantity not larger than the AC por­

tion of the dividend. 

The sample divide in Table 3-23, although performed by a DIVS instruction, could in fact be 

used as a sample IDIVS operation since the arithmetic phase also starts with a zero quantity in the AC. 

3-45 



3.8.3 FRDIV(S} Instruction 

Th.e FRDIV(S} instruction divides the contents of the AC (fraction dividend) by the contents 

of the next sequential core memory location to form a quotient in the MQ and a remainder in the AC. 

The arithmetic phase of the instruction (s) is identical to that of DIV(S}. The preparatory 

phase clears the MQ. The arithmetic phase thereafter is in reality a division of the long register with 

the MQ at O. For FRDIV the binary point is assumed at the left of ACOO. For FRDIVS the binary point 

is assumed between ACOO and ACOI. The divide overflow rule, Section 3.8.4, is the same. 

The DIV(S} functions of Table 3-23 hold true for FRDIV(S} therefore, with the following 

exceptions. 

3.8.4 Divide Overflow 

75} SUI (l)AMB05(1) = EAE OR MQO 
SUI (l)AMB07(0) = EAE OR ARO 
AC - AR (same) 

43} ACI(l) = 0 - AC 

41) AC - MQ (same) 

54) AR - AC (same) 

For all divide instructions the first subtract operation of the arithmetic phase checks for a 

divide overflow situation. Divide overflow exists when the computer attempts to divide a dividend by 

a divisor which is not numerically greater than the most significant portion (AC) of the dividend. If 

the divide operations were carried out, the result would exceed the capac ity of the 18-bit MQ register, 

and the MQ contents would be erroneous. For unsigned division, the capacity of the MQ is 218_1, or 

7777778 . For signed division the capacity is+217_1, or +3777778 • 

For all divide instructions process word 52 during the divisor fetch from memory blocks the 

recirculation of the LINK into the LARi process word 50 transfers the lAR content(O) into the LINK and 

starts the arithmetic phase of the instruction. The arithmetic phase therefore always starts with the 

LINK in the reset state. The LINK returns to the reset state at the end of all valid divide instructions. 

If, however, the EAE logic encounters the divide overflow situation, the LINK sets and the instruction 

execution is halted after five machine cycles as a time-saving feature. The computer will then go on 

to the next instruction, which is usually an instruction which tests the status of the LINK (OPR SZl, 

OPR SNl, etc.). 

Table 3-28 lists the functions that provide the overflow indication to the LINK and stop the 

divide operations. The listing starts with process word 50, at wh ich point the preparatory phase has 

been completed, the divisor is in the MB, and the dividend is correctly placed in the AC and MQ. The 

operation attempts to divide 3210 by 210 for a quotient of 16 using a 4-bit MQ register, resulting in 

overflow since the register capacity is 15 for unsigned divide. 

3-46 



Note from Table 2-3 that a valid five-step arithmetic divide operation requires seven machine 

cycles for completion, whereas divide overflow stops the operation after the first step and five cycles. 

For the overflow situation the step count in the SC does not matter since the DIV OV flip-flop controls 

the SCOV, SCOV2, and RUN functions. 

Table 3-28 
DIV OV Functions 

640305 Divide, Unsigned (Five Steps) 

Process Function Drawing No. 

50 (MQO ,ARI,EAE-P ,CONT ,CMA42) KC18 

EAE-P(l)AEAE RUN (0) = FIRST (1) KE3 
EAE-P(l)ASCOV2(0) = EAE RUN(l) KE3 
EAE-P(l) etc. = SHU KE4 
FIRST(l)J\EAE RUN(l)J\MQ SIGN(l)J\EAE SIGN(O) = EAE SIGN(l) KE3 
LI(O) = LAR(O) - LINK(l) KC15 
EAE-P(l)ASCOV(0)ATEMP3(O)ADIV = EAE OR SUB KE3 
EAE-P(1 )ASCOV2(0)ADIV = EAE OR LI KE3 
MQO(l)ASHLlAARI(l) = MQn - ARn-l KC20-21 
SHU = ADROO(O) - 0 BUS L KC15 
EAE-P(l) = 0 BUS L - TEMPl (0) KE3 
EAE-P(l) = TEMP2 - END BITOO (lost) KC15 
EAE-P(l) = TEMP3(0) - END BITl7 KC15 
SHL 1 = END BITl7- AR 17(0) KC20 
CM STROBEACONT(l) = GO TO 42 KC16 

42 (ACO ,MQI, EAE-R,CONT ,CMA55) KC18 

CM STROBEAEAE OR SUB = SUB(l) KC19 
EAE-R(l)ASUB(l) = CI17 KE3 
CM STROBE EAE OR LI = LI(l) KC19 
EAE-R(l), etc. = SHLl KE4 
ACO(l)ASHLlJ\MQI(l) = ACn - MQn-l KC20-21 
SUB(l)ASHUAMQI(l)ACI17 = MB+l - MQn-l KC20-21 
EAE-R(l)J\SUB(l)AUNK(O) = A BUS LINK KC15 
A BUS LINKJ\COOO = ADRL KC15 
ADRL = ADRL(B) KC15 
EAE-R(l)AFIRST(l)J\ADRL(B)ADIV = DN OV(l) KE3 
SH L 1 = ADROO(O) - 0 BUS L KC15 
EAE-R(l) = 0 BUS L - TEMP2(0) KE3 
EAE-R(l) = TEMPl (0) - END BIT1? KC15 
SHLl = END BITl7 - MQ17(0) KC20 
LI(l) = DIV OV(l) - LAR(l) KC15 
LI(l) = ADRL - TEMP3(0) KE3 
CM STROBEACONT(l) = GO TO 55 KC16 

55 (ARO ,ACI, EAE-P ,CONT ,CMA53) KC18 

EAE-P(l)ARUN(l) = FIRST(O) KE3 
EAE-P(l)ADIV OV(l) = DN NO GO KE2 
DIV NO GO = SCOV(1),SCOV2(1),EAE RUN(O) KE2-3 

3-47 



Table 3-28(cont) 
DIV OV Functions 

640305 Divide, Unsigned (Five Steps) 

Process Function Drawing No. 

55 (cont) U(O) = LAR(l) - LINK(l) KC15 
SCOV2(l) = IN SH L 1 KE4 
ARO(l )ANOSHAACI(l) = AR - AC KC20-21 
CM STROBEACONT(l) = GO TO 53 KC16 

53 (MQO,ARI, EAE-R,CONT ,CMA56) KC18 

MQO(l)ANOSHAARI(l) = MQ - AR KC20-21 
CM STROBEACONT(l) = GO TO 56 KC16 

56 (ACO ,MQI, EAE-P ,CONT ,CMA57) KC18 

ACO(l)ANOSHAMQI(l)ACMPL = AC - MA KC20-21 
CM STROBEACONT(l) = GO TO 57 KC16 

57 (ARO ,ACI,EAE-R,CONT ,CMA40) KC18 

ARO(l )ANOSHAACI(l) = AR - AC KC20-21 
EAE-R(l)ASCOV2(l)AEAE RUN(O) - AD DR 10 KE3 
CM STROBEACONT(1)ACMA40AADDR 10 - GO TO 40 KC16 

40 (EAE, DONE ,CMA 10) KC18 

CLK(B) DL YD EAE(l) DONE(l) = INPUT 10 RESTART KD3 
10 RESTART = GO TO 10 KC16 

10 (PCO ,SM,CMA21) KC1S 

BG N next fet ch 

3.9 EAE INSTRUCTION DEVELOPMENT 

The addition of nS bits to the basic EAE op code 64S converts the basic instruction to a micro­

coded instruction to accomplish a setup, shift, or arithmetic operation not already in the instruction 

repertoire. Refer to Table 3-29 for descriptions of the functional use of the individual bits. The sole 

restriction for development of "n" is that the microcoded operations must not occur during the same 

process word if they logically conflict. 

Table 3-29 
EAE Microinstructions 

Bit 
Binary 

Function 
Code 

4 1 Enters ACOO into the LIN K for signed operations. 

5 1 Clears the MQ. 

3-48 

--



Bit 
Binary 
Code 

6 1 

6,7 10 

7 1 

8 1 

9,10,11 000 

9,10,11 001 

9,10,11 010 

9,10,11 011 

9,10,11 101 

9,10,11 110 

9,10,11 100 

9,10,11 III 

12-17 

15 1 

16 1 

17 1 

Table 3-29 (cont) 
EAE Microinstructions 

Function 

Reads ACOO into the EAE SIGN register prior to a signed multiply 
or divide operation. 

Takes the absolute value of the AC after the ACOO bit is read 
into the EAE SI GN register. 

Inclusive-ORs the AC with the MQ and places the result in the 
MQ. 

Clears the AC. 

SETUP instruction code. Accompanies code in bits 15, 16, 17. 

MUL instruction code. 

Unused instruction code. 

DIY instruction code. 

LONG RIGHT SHIFT instruction code. 

LON G LEFT SHIFT instructions code. 

NORMALIZE instruction code. 

ACCUMULATOR LEFT SHIFT instruction code. 

Specifies the step count for all EAE codes (9-11) except SETUP. 

For SETUP instruction code on Iy, complements the MQ contents. 

For SETUP instruction code only, inclusive-ORs the MQ with the 
AC and places the result in the AC. 

For SETUP instruction code on Iy, inc lusive-ORs the AC with the 
SC and places the result in the AC. 

3-49 





4.1 GENERAL MAINTENANCE 

CHAPTER 4 

MAINTENANCE 

The general maintenance practices described in the PDP-9 Maintenance Manual also apply 

to the EAE option. 

4.2 MAINTENANCE PROGRAM TAPES 

Chapter 1 of the PDP-9 Maintenance Manual lists the diagnostic tapes and documents for 

use with the EAE. 

4.3 REPLACEABLE PARTS 

Table 4-1 lists a" logic modules used in the EAE option by DEC type and quantity. The CP 

UML drawing KC8 shows the module locations in the central p'rocessor wing of the PDP-9 frame. DEC 

has available a spare modules kit, SP09A, for use with the basic PDP-9 system and including spares for 

the E:AE option. If the kit is not on hand, it is recommended that one spare module of each logic type 

be stocked to reduce equipment down-time while repairing faulty modules. 

Table 4-1 
EAE Module Complement 

DEC Type Module Type Quantity 

t/B105" Inverter 1 

v"B 133" Inverter 1 

A213 J Flip-Flop 15 

vROO2 Diode Network 8 

t() tAll 1 NAND/NOR Gate 11 

~151 .I Binary-to-Octal Decoder 1 

",. S 181 DC Carry Chain 1 

.,.S206 v Flip-Flop 6 

'/wOO5 Clamped Load 1 

4-1 



-



CHAPTER 5 

ENGINEERING DRAWINGS 

This chapter contains a complete set of engineering drawings pertaining to the EAE option 

along with circuit schematics of all logic modules. DEC engineering drawings are encoded as to type, 

major assembly, and series. Drawing number codes and signal conventions are explained in Chapter 5 

of the PDP-9 Maintenance Manual. 

5.1 SIGNAL MNEMONIC IND1:X 

All signals originating on the EAE logic drawings are listed below in alphanumeric order. 

The Origin column locates the source of the signals to the specific logic drawing, using the abbreviated 

drawing number system. 

Signal Origin Description 

A BUS LINK KE3 Enter ACOO into LINK 

ACO - LINK KE3 Recirculate LINK via LAR 

ADDR 10 KE3 Add 10 to next Control Memory address 

ALS KE4 Accumulator Left Shift command 

CMPL KE3 Complement the register contents in transfer 

CI17 KE3 Initiate a carry into the Adder 

DIV KE4 Divide command 

DIV NO GO KE2 Stop divide operations 

DIV OV KE3 Divide Overflow 

EAE CLR RQ KE3 Clear CM gating bits for argument fetch 

EAE OR ARO KE3 Set ARO bit on next CM STROBE 

EAE OR LI KE3 Set LI bit on next CM STROBE 

EAE OR MBO KE3 Set MBO bit on next CM STROBE 

EAE OR MQO KE3 Set MQO bit on next CM STROBE 

EAE OR SUB KE3 Set SUB bit on next CM STROBE 

EAE PWR CLR KE3 Clear flip-flops on power turn-on 

EAE RUN KE3 Start EAE instruction execution 

EAE SIGN KE3 Store ACOO 

EIR09-11 KE4 EAE instruction register 

EN CMPL KE3 Enable complement function 

FIRST KE3 Start first arithmetic operation 

5-1 



Signal Origin Description 

IN SHU KE4 Enable Sh i ft left Functi on 

IN SHR1 KE4 Enable Sh ift Right function 

llS KE4 long left Shift command 

lRS KE4 long Right Shift command 

MQ SIGN KE3 Store divisor or multiplicand sign 

MUl KE4 Multiply command 

NORM KE4 Normalize command 

ODD ADDR KE3 Add 1 to next CM address 

o BUS17(B) KE3 END Bit shifted into next register 

R-PUlSE Kf2 Up-date the Step Count 

SC12-17 KE2 Step Counter register 

SC ClR KE2 Clear the Step Counter 

SC FUll KE2 Step Counter up-dated to 778 

SCO KE2 Step Counter output gate 

SCOV KE2 Step Counter up-dated to 008 

SCOV(l) KE2 Set SCOV on normalize condition 

SCOV2 KE2 Step Counter up-dated to 008 

SETUP KE4 Setup command 

SUl-3 KE3 Setup or preparatory instruction phase 

TEMPl-3 KE3 Te"!porary LINK and END Bit storage 

5.2 DRAWING LIST 

Below is a list of all drawings included in this chapter. Other related EAE logic is included 

in the Chapter 5 drawings of the PDP-9 Maintenance Manual as part of the prewired, basic system. 

Drawing Number Title Revision Page 

B-CS-B105-0-1 Inverter B1 05, Circuit Schematic E 5-4 

B-CS-B133-0-1 Inverter B133, Circuit Schematic B 5-4 

B-CS-B213-0-1 Flip-Flop B213, Circuit Schematic F 5-5 

B-CS-ROO2-0-1 Diode Network R002, Circuit Schematic A 5-5 

B-CS-R 111-0-1 NAND/NOR Gate R111, Circuit Schematic F 5-6 

B-CS-S 151-0-1 Binary-to-Octal Decoder S151, Circuit C 5-6 
Schematic 

B-CS-S181-0-1 DC Carry Chain S 181, Circuit Schematic A 5-7 

B-CS-5206-0-1 Flip-Flop 5206, Circuit Schematic B 5-7 

5-2 

~, 



Drawing Number Title Revision Page 
,--. 

B-CS-WOO5-0-1 Clamped Load WOOS, Circuit Schematic A 5-8 

D-BS-KE09-A-2 EAE Step Counter and Control, Block Schematic E 5-9 

D-BS-KE09-A-3 EAE Operand Fetch Gating, Block Schematic K 5-11 

D-BS-KE09-A-4 EAE Execution Gating, Block Schematic B 5-13 

D-BS-KE09-A-5 EAE Data Flow, Flow Diagram A 5-15 

D-BS-KE09-A-6 EAE Flow, Flow Diagram (Sheet1) B 5-17 

D-BS-KE09-A-6 EAE Flow, Flow Diagram(Sheet2) B 5-19 

Link Control for EAE Instructions 5-21 

5-3 



RI2 
100 
10'110 

CI .. 

r:T~~~E-l 
r-----------~----------_1~----------._----------_.------------~,~I~~,~~~O.-15V 

I RII I 

N 

119 
1,500 

v 

C6 
.01 
MFO 

C5 
.11 

MFO 

: l,soo : 
.. 5Y' : 

09 : 
662, 

ce 
.(II 

MFO 

r---------------------._---------------------.--------------------~~----~~~~~~--+,~~~C eND 
C' .. C4 .. 

04 

____ ...J 

C7 .. 
00-.... "",.,. .... -+1 

UNLESS OTtERWISE INDICATEO' 
RESISTORS lIE 1/4Wi "' 
CAMCllORS ME 111"'0 
TRANSISTORS ARE DEC 2894 .. 11 

B-CS-Bl05-0-1 Inverter Bl05, Circuit Schematic 

r-------------------~------------------~~------------------~----_o~) 
r-------------.-------~------------_1~------~------------~--------+_------------~------~~----_O •. -.v 

01 

RI 
7,500 

0-"1. & 011 

R7 
7.500 

011 OM e-ea 0-_ 

~--------------------~~._----------------~----~------~~--~~_o'c 8MD 

UllLDI ~ _"Tallo 
...... AU ...... 5% 
~1 __ "4111 __ 0-... 

USE THE ETCH lOARO 0' THE 8115 

1------------------1 .. , .. , ........ , .... ; .. , , 

B-CS-B133-0-1 Inverter 8133, Circuit Schematic 

1 
I -IV I 
I STRATE I L _____ ", 

C • 
.GI -

.. 

-



" 

• 
• S M OND F H + lOY 

GN 

C' CIO -.V 
D' A ~DID ~ A OMS DU Hf-< •• . " .04 

, 013 ." ••• 
01 ~ A 

D3 1,000 1,000 A "D.(v liFO ~ (p' 
01. 1,000 1,600 A ~B ~:O, 

'0 .. 

"'0. 030 .2 

• 

QT\t! 012 ~ ~Q14 ,,~2 • 862 

O. •• •• 010 .. RI' .20 02. .2' 

~2 100 6,s00 6,100 100 ~ ~. 100 6,800 6,800 100 
IO~. 10% IO~. 10% 02. 

~~ 
CI 

J~' 
N E 

~ 
CT C9,fV 013 10 10 

~~ liFO IIMFD 

P' ,v DT A~ I~~D. DItA I ~~ 020 

I ell;; 
y~ ~J eMii 'O~O ~ ole 

~ , 
'0:w. ~ 012 

047 ' U 
OEC • • DEC 

r \ '-.. ..... .01 .01 '-.. ..... 
V 

RI 02 R' 
1,500 TOO 7,500 

UNLESS OTHERWISE INDICATED; 
R[SISTORS ARE 1/4Wi 5"'-
DIODE S ARE 0664-
TRANSISTORS ARE DEC 3009B 

C2 MFD MFO 

~~ o. 0" R22 
4TO L 470 
10-'. 10OV. 2T 100 1 ~~ 

"'MFO 10". MMFO 

~. ~, R7 DEC 
I,~ 36398 

:: 
HJ: 

~: 
'0 

RO 

:: 

AI2 ~ 
7,500 

T 01' 0,. .,0 R" R21 DEC 
I.~O 1,500 750 7,500 ~.500 ..... 

I ::::::::~:::::::::I 

B-CS-B213-0-1 Flip-Flop B213, 
Circuit Schematic 

010 

~ 
D664 

O. 

~ 
0664 

09 

~ 
0664 

D. 

~I 
0664 

D. 

~ 
D664 

D, 

~ 
066. 

DT 

~I 
0664 

02 

~I 
0664 

D. 

~ 
0664 

01 

~ 
D664 

1 ::::::::::::;:::::1 

B-CS-ROO2-0-1 Diode Network ROO2, 
Circuit Schematic 

5-5 

OF 

O. 

ON 

Os 

Ov 

R2T 

10,". 100 1 
R26 ~ 
7,500 

J 

"g~ 6 
02 

r-< 
a 

-3.5\1 

-2.ZV 

-.~ 

-
R2. R2. 
1.500 TOO 

,02 O. 
T 
62 

,02 
DO 

o 
02 

,02 
0 • 862 

R.O 
TOO 

-15\1 



r---------------------------.---------------------------~--------------------------~A.,~I 
,..- ,----, r----------------t-----1~------------------~r_--~t_------_.--_+r--~-~-------~l~,c GND 

"2 I -, I 
1 

" I 
D4 1 
0 .... : , 
01 I 
~-, DZ , 

0664, I 
Do--tM-;.... 1 

01 I : 
DIS4 I 5 I 

I , , 
, L 
: •• 4 .-l 
I 11.000 7. BOO I 
, ft ' 
! 2 I 

: EXAMPLE DGL2 : '-_____________ .J 

DS 
11-4184 

OS 
D-MI 

L 0--111-..... -0. 

QI 
DEC 3139 

DID 
~"4 

DII D-_ 
"0--tM-.... 

DOl D-_ 
o-............. +-oT 

'" 1Il,000 

Q' DEC 3U9 

v 

... 
7,­s .. 

CI 
.DO 
.~D 

, 
I 

01. I 
~-, 

1 

D. 1 
D ... a: 

1 
Dl7 1 
0-.. 1 : , 
0. ' 
0-88. 1 

-~8DO ... 
-3V 

STRATE L _____ _ 

UNLESS OTHERWISE INDICATED: 

09 
18,000 

"ESISTORS ARE 114.; 511. 
PRINTED CIRCUIT REV. FOR 
OIL IOMD IS SIB 

1------------------1 ... Y' t'". ,. t •• ~ , .. 

8-CS-R1l1-0-1 NAND/NOR Gate R1ll, 
Circuit Schematic 

r---------~--------~~--------~--------_.--------~~------~~--------~------------------~A.IOV~J 
01 
IDO,DOC 

i(': 
~D 
0---

~~Z5 

~o 

1 RID 
033 ..,000 
0-662 

02 
100,000 

1P A .. 

034 1Spoe 
0-662 

03 
100,000 

1 AI2 
035 "POD 
0-662 

R4 
100,000 

, OIS 
031 11,000 
0-862 

USE THE ETCH BOARD OF THE RI~I 

AS 
100POO 

01 
100,000 

B-CS-S151-o-1 Binary-to-OctaI Decoder S151, 
Circuit Schematic 

5-6 

R' 100,000 

UNLESS OTHERWISE INDICATED: 
RESISTORS ARE 114W, 511-
TRANSISTORS ARE DEC 363'. 
DIODES ARE 0-814 



I 

r 

r-----------.-----------~----------~----------_.----------~----------_.---------------------oA+IOV 

RI RZ R3 R4 RB R6 R7 

r-----r---~.-----;_--=1~----;_--~~----_r--~=t----;_----~----_r----~------~--_.---oCGND 

CI 

+-----+-_1~~----_r_1~~----_r_,~~----_t--~~~--_r----~_1~_t----~~~--~-------oa-IBV 

~~~¥~~ 

~DII3 ~D54 

~L R4 
03 'os 100,000 

CI 

~ 
.. J.5 

r 

~ Da 
Deez 

I 0 

1 04 07 • E iii. 

01 010 Oil 
R' RZ ~~ ;,~ Re 
7,SOD 7,500 1,500 

UNLESS OTHERWISE INDt(:AT£D: 
RElllTO.S ME 114.; a .. 
CANeITO"1 ALU .... '0 
OIOOEI ARE Dee4 
TRAN_TORS ARE ... 4313 

'---------------------0 D 

8-CS-S181-0-1 DC Carry Chain S181, 
Circuit Schematic 

D". D07 DB' 
N 

.. >-OK >-OIl. RI • RiO 
100POO 1 OZI DZ4 1 017 030 100,000 100POO 

C3 C4 

~ 
D~ az 82 0.. .. 
~ r 

~l" .;. * 
038 

eez os .. DMZ 

'~~e. 1 052 037 
De.. 1 DMI 

... I 0 .. 

I Dza Di P R 038 

0" 025 034 ~S -
R7 RIO ~,':OO ~::oo RI4 RIS "17 ~~ RII 
7,soo 7,l100 7,SOD 7,500 l,soo 7,500 

;,~ RII I 7,Il00 Oil 01. Da 

"" "" C2 
,!!S .. on 

H II 

"!' 
"" 

D~ 

DH 

*055 tON I 

t DIO 

8-CS-S206-o-1 Flip-Flop S206, 
Circuit Schematic 

5-7 

DIll 

~T 
'040 '04& 

C6 
8Z 

~o:. 

~ 051 
DAI 

C7 
.01 

DSO "'"' Dee. 

D,!J 
04. r Dee. 

RU R24 
7,SOD 7,Il00 

;,~ ml RIS 
7,500 t,SOO 

D~" D~ -
CS 
81 D4S 

V 

*0 .. 

ca 
.01 
".0 

A+IOV 

C IND 



.... 01 or._ . ..aIeATED: 

.IIITOIII AIlE 114", ... _'_O-.u 

v 

IS 
>POD 

I ::::::;::::;::::;: I 

B-CS-W005-0-1 Clamped Load W005, 
Circuit Schematic 

5-8 

.. " >POO 

C2 
.0' 

M 
Mrn 

c. 
.(II 
Mrn 

-!V 

r------, 
B·ISV 

I' 0" 
I ',000 
I 
I • 

C eND 

c:a 
.01 
M'O 

I , .... , ',Il00 , 
" : -3V 
I STRATE , 
L.. _____ .J 

-



UI 
I 

I>.) .... 

) 
.. 

) ) 

CML 

~c:,.:.~CO" 

-..J:> ~ A IllS LINK , , 0 

SUIIIl 

MBe4111 

UIII 

Acelill 

LIlli 

• • E,:D BIT e 

TEMP211l~'" 

AXSlel EAE-PI1l~ EAE-PIII 

iNSHRt ---.I,,,,,,,,, 

iNsiiIT~ 
DIV DVm 

TEMP311l TEMPI III 

EAE-RI1l EI.E-Rlel 

link Control for EAE Instructions 







DIGITAL EQUIPMENT CORPORATION 0 MAYNARD. MASSACHUSETTS 

Printed in U.S.A. 


