INSTRUCTION MANUAL

EXTENDED
ARITHMETIC ELEMENT

KEOSA

PDP-9

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

CL)('/WL
DEC-09-12AA-D

INSTRUCTION MANUAL
KEQOSA
EXTENDED ARITHMETIC ELEMENT

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

Ist Printing July 1968
2nd Printing February 1969~

Copyright (C) 1968 by Digital Equipment Corporation
PY! Y P
1969

Instruction times, operating speeds and the like are in-
cluded in this manual for reference only; they are not to
be taken as specifications.

The following are registered trademarks of Digital
Equipment Corporation, Maynard, Massachusetts:.

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB —

CONTENTS

Page
CHAPTER 1 o
INTRODUCTION
1.1 Purpose 1-1
1.2 Related Documents 1-1
1.3 Power Requirements 1-1
1.4 Engineering Drawings and References 1-1
1.5 Specifications 1-2
1.5.1 Functional Characteristics 1-2
1.5.2 Operating Characteristics 1-2
CHAPTER 2
INSTALLATION AND OPERATION
2.1 Installation 2-1
2.2 Manual Controls and Indicators 2-1
2.3 Programming Considerations 2-1
CHAPTER 3
PRINCIPLES OF OPERATION
3.1 Instruction Fetch and Op Code Decoding 3-1
3.2 EAE Command Decoding 3-1
3.3 Timing and Flow 3-2
3.4 Setup Instructions 3-2
3.5 Shift Instructions 3-9
3.6 Normalize Instructions 3-21
3.7 Multiply Instructions 3-24
3.8 Divide Instructions 3-33
3.8.1 DIV(S) Instructions 3-34
3.8.2 IDIV(S) Instruction 3-45
3.8.3 FRDIV(S) Instruction 3-46
3.8.4 Divide Overflow 3-46

3.9 EAE Instruction Development 3-48

4.1
4.2
4.3

5.1

2-2
2-3

3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13

CONTENTS (Cont)

CHAPTER 4
MAINTENANCE
General Maintenance
Maintenance Program Tapes
Replaceable Parts
CHAPTER 5

ENGINEERING DRAWINGS

Signal Mnemonic Index

Drawing List
ILLUSTRATIONS

EAE Timing

LRS, LRSS Register Manipulation (One Position)
LLS, LLSS Register Manipulation (Two Positions)
ALS, ALSS Register Manipulation (Three Positions)

TABLES

Operating Controls and Indicators
EAE Instructions

EAE Operation Times

EAE SETUP Instruction Format
OSC Functions

OMQ Functions

CMQ Functions

LACS Functions

LACQ Functions

ABS Functions

CLQ Functions

LMQ Functions

GSM Functions

EAE Shift Instruction Format
LRSS Functions

LLSS Functions

Page

5-1
5-2

3-3

3-13
3-19
3-20

2-1
2-2
2-5
3-4
3-4
3-5
3-6
3-6
3-7
3-7
3-8
3-8
3-9
3-10
3-11
3-14 —~

3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29

TABLES (Cont)

ALSS Functions

EAE NORM Instruction Format
EAE MUL Instruction Format
MULS Functions

MULS Arithmetic

MULS Functions

MULS Functions

MULS Functions

EAE DIV Instruction Format
DIVS Functions

DIVS Arithmetic

DIVS Functions

DIVS Functions

DIVS Functions

DIV OV Functions

EAE Microinstructions

EAE Module Complement

Page
3-16
3-21
3-24
3-26
3-31
3-32
3-32
3-33
3-34
3-36
3-43
3-44
3-44
3-45
3-47
3-48

CHAPTER 1
INTRODUCTION

This manual contains operation and maintenance information for the KEO9A Extended Arithmetic
Element (EAE) of the Programmed Data Processor PDP-2, manufactured by Digital Equipment Corporation,
Maynard, Massachusetts. For a complete understanding of the option and its relation to the basic PDP-9

system, the user must be thoroughly familiar with the contents of the PDP-9 Maintenance Manual, F-97.

1.1 PURPOSE

The EAE option facilitates high-speed multiplication, division, shifting, normalizing, and
register manipulation. Installation of the EAE adds an 18-bit multiplier-quotient register (MQ) and a
6-bit step counter (SC) to the basic PDP-9 system. The option logic occupies space in the central proces-
sor wing of the basic PDP-9 system, as indicated in the CP UML drawing KC8. All logic module loca-
tions have been prewired into the system. The contents of the MQ can be selected by the REGISTER
DISPLAY switch on the PDP-9's operator console for display in the REGISTER indicator.

The EAE operates asynchronously with the basic system, permitting computations to be per-
formed in the shortest possible time. Furthermore, instructions can be microcoded so that several non-
conflicting EAE operations can be performed by one instruction, thereby simplifying arithmetic program-

ming. Maximum multiplication and division time is 12 ps.

1.2 RELATED DOCUMENTS

The PDP-9 library offers a complete package of single- and multiple-precision programming
routines for use with the EAE. These and other related documents and tapes are listed in Chapter 1 of

the PDP=9 Maintenance Manual.

1.3 POWER REQUIREMENTS

The EAE needs no source of primary or dc power other than that already furnished with the

basic PDP-9 system. All necessary power is prewired to the module locations.

1.4 ENGINEERING DRAWINGS AND REFERENCES

Throughout this manual all references to EAE option drawings and basic PDP-9 system drawings
are abbreviated as in the PDP=9 Maintenance Manual. Refer to Chapter 1 of the Maintenance Manual
for abbreviation codes. As an aid to understanding the EAE, a simplified version of LINC Control
drawing KC15 along with a portion of EAE logic appears on an illustration at the end of this manual.

1-1

Chapter 5 of this option manual contains a complete set of EAE option drawings indexed by

their full drawing number codes, along with all module circuit schematics.

1.5 SPECIFICATIONS

1.5.1 Functional Characteristics

The EAE enables fast, flexible, hardware execution of the following signed or unsigned
functions.

a. Shifting the contents of the primary arithmetic registers (AC, MQ) right or left, requires
4 to 18 ps.

b. Normalizes the quantity in the primary arithmetic registers, i.e., shifts the contents
left to remove leading binary Os for the purpose of preserving as many significant bits as possible. The
time required is 4 to 18 ps.

c. Multiplication is performed in 5 to 12 ps.

d. Division including integer divide and fraction divide require 5 to 12 ps. Divide over-
flow indication is furnished by the LINK when signed division produces a quotient exceeding + 377777g
in magnitude, or unsigned division produces a quotient exceeding 777777g in magnitude.

e. Basic setup instructions to manipulate the data in the registers preparatory to execution
of the above instructions requires 2 ps.

1.5.2 Operating Characteristics

Heat Dissipation 108 BTU/hr
Power Dissipation 0.032 kW

CHAPTER 2
INSTALLATION AND OPERATION

2.1 INSTALLATION

Complete installation of the EAE option merely involves plugging the logic modules into their
assigned locations in the central processor wing, and ascertaining that certain jumpers are removed. The
following jumpers are in place to allow FORTRAN programming without the EAE. They must be removed
for EAE operations (refer to drawing KC27).

a. ACO — LINK from EO4R to EO4B.

b. ADRL(B) from BO3D to BO3N.

c. MQI(1)/EAE OR ARO from D22P to D23J.

d. TEMP1(1) from BO3C to BO3T.

e. SCO(1) from B31C to B3IP.

2.2 MANUAL CONTROLS AND. INDICATORS

The EAE option contains no manual controls and indicators other than those prewired into the
PDP-9 operator's console. Table 2-1 lists and describes these controls and indicators. Refer to the

PDP-9 Maintenance Manual for details.

Table 2-1
Operating Controls and Indicators
Control/Indicator Function
REGISTER DISPLAY switch MQ position displays contents of the MQ register in the REGIS-
and TER indicator when the computer is in a stop condition.
REGISTER indicator EAE position is presently not used (not wired).

2.3 PROGRAMMING CONSIDERATIONS

The EAE option adds the instructions listed in Table 2-2 to the basic PDP-9 instruction reper-

toire. See Table 2-3 for execution times.

2-1

Table 2-2
EAE Instructions

Octal
Code

Mnemonic

Operation

640000

640001

640002

640004

641001

641002

644000

650000

652000

664000

6405XX

6605XX

EAE

OsC

oMQ

cMQ

LACS

LACQ

ABS

cLQ

LMQ

GSM

LRS

LRSS

Basic EAE instruction. Acts as a NOP instruction.

Inclusive=OR the SC with the AC. The contents of the AC are in-
clusive-ORed with the contents of the 6-bit SC on a bit-for-bit basis,
and the results are left in AC12 through 17. If corresponding SC and
AC bits are 0, the result is 0. If corresponding bits are 1 or differ,
the result is 1. The previous contents of the AC are lost, the LINK
and the SC remain unchanged.

Inclusive-OR the MQ with the AC. The contents of the AC are in-
clusive-ORed with the contents of the MQ on a bit-for-bit basis,
and the results are left in the AC. If corresponding MQ and AC bits
are 0, the result is 0. If corresponding bits are 1 or differ, the result
is 1. The previous contents of the AC are lost, the LINK and the
MQ remain unchanged.

Complement the MQ. The previous contents of the MQ are lost, the
LINK and the AC remain unchanged.

Load AC12 through 17 with the contents of the SC. The previous
contents of AC12 through 17 are lost, the LINK and the SC remain
unchanged.

Load the AC with the contents of the MQ. The previous contents of
the AC are lost, the LINK and the MQ remain unchanged.

Get the absolute value of the AC. 1If the sign (AC00) of the contents
of the AC is negative, the contents are 1s complemented. The LINK
remains unchanged.

Clear the MQ. The previous contents of the MQ are lost, the LINK
and the AC remain unchanged.

Load the MQ with the contents of the AC. The previous contents of
the MQ are lost, the LINK and the AC remain unchanged.

Get the sign and magnitude of the AC. Places the sign (ACO0) of
the AC contents in the LINK, and if negative, 1s complements the
contfents.

Long Right Shift. Shifts the contents of the LINK, AC, and MQ
right the number of positions indicated in bits XX. The LINK is
usually initialized to 0 and shifted unchanged on each step.

Long Right Shift, Signed. Shifts the contents of the LINK, AC and
MQ right the number of positions indicated in bits XX. ACO0 is
initially stored in the LINK, then shifted unchanged on each step.

2-2

Table 2-2 (cont)
EAE Instructions

Octal
Code

Mnemonic

Operation

6406XX
6606XX
6407XX
6607XX

640444

660444

6531XX

6571XX

LLS

LLSS

ALS

ALSS

NORM

NORMS

MUL

MULS

Long Left Shift. Shifts the contents of the LINK, AC and MQ left
the number of positions indicated in bits XX. The LINK is usually
initialized to 0 and shifted unchanged on each step.

Long Left Shift, Signed. Shifts the contents of the LINK, AC and
MQ left the number of positions indicated in bits XX. ACOO is in-
itially stored in the LINK, then shifted unchanged on each step.

Accumulator Left Shift. Shifts the contents of the LINK and AC left
the number of positions indicated in bits XX. The LINK is usually
initialized to 0 and shifted unchanged on each step.

Accumulator Left Shift, Signed. Shifts the contents of the LINK and
AC left the number of positions indicated in bits XX. ACOO is ini-
tially stored in the LINK, then shifted unchanged on each step.

Normalize. Shifts the contents of the LINK, AC and MQ left until
ACO00 and ACO1 differ or until the maximum of 36 shifts (44g) occur.
The LINK is usually initialized to 0 and shifted unchanged on each
step.

Normalize, Signed. Shifts the contents of the LINK, AC and MQ
left until ACOO and ACO1 differ or until the maximum of 36 shifts
(44g) occur. ACOO is initially stored in the LINK and then shifted
unchanged on each step.

Multiply. Multiplies the number in the AC (multiplier) by the num-
ber in the next core memory location (multiplicand) to form a product
in the AC and MQ. MUL transfers the multiplier to the MQ, clears
the AC, and fetches the multiplicand from memory. Bits XX command
the desired precision of the product (22g or 181 steps for maximum
36-bit precision). The LINK must be cleared previously and remains
unchanged.

Multiply, Signed. Multiplies the number in the AC (multiplier) by
the number in the next core memory location (absolute value multi-
plicand) to form a signed product in the AC and MQ. ACO00 and
ACO1 receive the product sign. A previous LAC/GSM/DAC CAND
sequence places the multiplicand sign in the LINK and the absolute
value in memory. MULS transfers the multiplier to the MQ, performs
Is complements of the multiplier if its sign is negative, fetches the
absolute value multiplicand from memory, and clears the LINK. Bits
XX command the desired precision of the product (22g or 18, steps
for maximum 36~-bit precision).

Table 2-2 (cont)
EAE Instructions

Octal

Code Mnemonic Operation

6403XX DIV Divide. Divides the number in the AC and MQ (dividend) by the
number in the next core memory location (divisor) to form a quotient
in the MQ and remainder in the AC. DIV fetches the divisor from
memory. Bits XX command the desired precision of the quotient and
remainder (23g or 191(steps for maximum 36-bit precision). The
LINK must be cleared previously and remains unchanged unless divide
overflow occurs. Overflow occurs if the divisor is not numerically
greater than the AC portion of the dividend.

6443XX DIVS Divide, Signed. Divides the number in the AC and MQ (36-bit
double-signed dividend) by the number in the next core memory lo-
cation (absolute value divisor) to form a signed quotient in the MQ
and remainder in the AC. MQOO receives the sign of the quotient
and ACOO receives the original sign of the dividend. A previous
LAC/GSM/DAC sequence places the divisor sign in the LINK and
the absolute value in the memory. DIVS fetches the absolute value
divisor, 1s complements the MQ portion of the dividend if the divi-
dend sign is negative, and clears the LINK. Bits XX command the
desired precision of the quotient and remainder (23g or 197 steps for
maximum 36-bit precision). The LINK remains cleared unless divide
overflow occurs. Divide overflow occurs if the divisor is not numeri-
cally greater than the AC portion of the dividend.

6533XX IDIV Integer Divide. Divides the number in the AC (integer dividend) by
the number in the next core memory location (divisor) to form a quo-
tient in the MQ and remainder in the AC. IDIV fetches the divisor
from memory, transfers the contents of the AC to the MQ, then clears
the AC. Bits XX command the desired precision of the quotient and
remainder (23g or 191 steps for maximum 36-bit precision). The
LINK must be previously cleared and remains unchanged unless divide
overflow occurs. Overflow occurs only if the divisor is 0.

6573XX IDIVS Integer Divide, Signed. Divides the number in the AC (signed integer
dividend) by the number in the next core memory location (absolute value
divisor) to form a signed quotient in the MQ and remainder in the AC.
MQOO receives the sign of the quotient and ACOO receives the original
sign of the dividend. A previous LAC/GSM/DAC sequence places the
sign of the divisor in the LINK and the absolute value in memory.
IDIVS fetches the absolute value divisor, transfers the contents of the
AC to the MQ, 1s complements them if the dividend sign is negative,
and clears the AC and LINK. Bits XX command the desired precision
of the quotient and remainder (23g or 191 steps for maximum 36-bit
precision). The LINK remains cleared unless divide overflow occurs.
Overflow occurs only if the divisor is 0.

Table 2-2 (cont)
EAE Instructions

Octal
Code

Mnemonic

Operation

6503XX

6543XX

FRDIV

FRDIVS

Fraction Divide. Divides the number in the AC (fraction dividend)
by the number in the next core memory location (divisor) to form a
quotient in the MQ and remainder in the AC. The binary point is
assumed to be at the left of ACOO. FRDIV fetches the divisor from
memory and clears the MQ. Bits XX command the desired precision
of the quotient and remainder (23g or 19} steps for maximum 36-bit
precision). The LINK must be previously cleared and remains un-
changed unless divide overflow occurs. Overflow occurs if the di-
visor is not numerically greater than the dividend.

Fraction Divide, Signed. Divides the number in the AC (signed
fraction dividend) by the number in the next core memory location
(absolute value divisor) to form a signed quotient in the MQ and re-
mainder in the AC. The binary point is assumed at the left of ACOT.
MQOO receives the sign of the quotient and ACOO receives the orig=-
inal sign of the dividend. A previous LAC/GSM/DAC sequence
places the sign of the divisor in the LINK and the absolute value in
memory. FRDIVS fetches the absolute value divisor, clears the MQ
and LINK, and 1s complements the contents of the AC if the dividend
is negative. Bits XX command the desired precision of the quotient
and remainder (23g or 191 steps for maximum 36-bit precision). The
LINK remains cleared unless divide overflow occurs. Overflow oc-
curs if the divisor is not numerically greater than the dividend.

Table 2-3
EAE Operation Times
Number of Shifts* N éi&;”;;j::i;; N MUL, DIV Instructions

O 2** 53\‘**
1 4 5
2,3,4 5 6
5,6,7 6 7
8,9,10 7 8
11,12,13 8 10
14,15,16 10 1
17,18,19 1" 12
20,21,22 12

23,24,25 13

26,27,28 14

29,30, 31 16

32,33, 34 17

35,36 18

*Initial step count.

**SETUP Instructions.
***DIV OV causes divide operation to stop here. MUL and DIV instructions containing initialized step
count of O stop here with no arithmetic operations undertaken.

2-5

CHAPTER 3
PRINCIPLES OF OPERATION

This chapter describes the EAE option in terms of its instruction repertoire and the logic that
implements those instructions. The discussions include references to the logic drawings in Chapter 5 and

to pertinent drawings of the basic PDP-9 system.

3.1 INSTRUCTION FETCH AND OP CODE DECODING

EAE instructions are fetched from core memory through the fetch cycle processes as are all
PDP-9 instructions. The PDP-9 Maintenance Manual explains the fetch cycle processes in detail.
Briefly, the BGN process word (10) which concludes a previous execute cycle transfers the current ad-
dress held in the PC to the MB and starts the next core memory and control memory read operations.

MA JAM transfers the current address from the MB to the MA, the core memory cycle starts, and the
fetch entry process word (21) is extracted from control memory. Process word 21 increments the address
in the MB and transfers it to the PC for the next following fetch cycle (MBO, +1, PCI).

The next CM process word(12) occurs while the core memory reads the addressed memory
word into the sense amplifiers. Processes evolved from process word 12 transfer this (instruction) word
from the sense amplifiers to the MB, and also gate the op code portion into the IR (SAO, MBI, IRI).

The contents of the AC are gated into the AR (ACO, ARI).

The next process word address held in the address portion (CMAOQO through 05) of process word 12
is 24. On drawing KC12, the op code detection circuits decode the op code bits IR00, IRO1, IRO3.
These bits, all in the 1 state for an EAE op code of 648, produce the REP signal. REP allows the IR bits
to modify the control memory address on drawing KC17, boosting this next CM address from 24 to 75.
This is the third and last process word extracted during the normal, 1-us fetch cycle. All EAE operations

start from this "EAE execute entry” process word.
Yy P

3.2 EAE COMMAND DECODING

The EAE option contains an instruction register (see drawing KE4) which accepts bits SA09
through 11 of the instruction word during process 12. These bits contain the code for a particular EAE
instruction class, and are fed directly from the register EIR09-11 into the Binary~to-Octal Decoder
S151-H02. The S151 module decodes the octal class code to supply an output command level denoting
one of the following seven EAE instruction classes.

0 SETUP instructions

8
1 MUL (Multiply) instructions

2 Not used

3 DIV (Divide) instructions

4 NORM (Normalize) instructions

5 LRS (Long Right Shift) instructions

6 LLS (Long Left Shift) instructions

7 ALS (Accumulator Left Shift) instructions

The pertinent command level remains on throughout the succeeding EAE execution processes
to determine the particular execute operation, starting with process word 75. The paragraphs that fol-

low discuss each instruction class in detail.

3.3 TIMING AND FLOW

Figure 3-1 is a composite timing diagram for all EAE instruction classes, showing machine
cycle time versus process word branching for the various classes. The diagram can be correlated with
the operation times listed in Table 2-3 and the flow diagrams KE5 and KE6. Examination of Figure 3-1
reveals the following general features on operating times.

a. All SETUP instructions require two machine cycles, progressing toward the BGN process
word (10) that starts the next instruction fetch cycle.

b. All SHIFT instructions, including NORM, branch to process word 50 and continue in ac-
cordance with the number of shifts (steps) programmed in bits 12 through 17 of the shift instruction word.

c. All MUL and DIV instructions branch to process word 51 and continue in accordance with
the number of shifts (steps) programmed in bits 12 through 17 of the instruction word.

Important features not apparent in Figure 3-1 are: for,all instructions other than MUL or DIV,
core memory is idle after the initial instruction fetch; for MUL and DIV instructions a core memory cycle
occurs during process word 51 in which a multiplicand or divisor is fetched. Thereafter, core memory is
not needed by the EAE during the execute cycles, and may be accessed by the DMA channel as a time-
saving feature. Ordinarily, the last process word in the fetch cycle contains an SM (start memory) bit
in order to read an operand from memory during the execute cycle. In process word 75 this SM bit is
absent (0), leaving the memory idle. In process word 51, the SM bit is present (1) to start a memory

cycle for MUL or DIV.

3.4 SETUP INSTRUCTIONS

Nine 2-cycle SETUP instructions manipulate the data in the prime arithmetic registers (AC,
MQ) in preparation for execution of the arithmetic operations commanded by succeeding MUL and DIV
instructions. Table 3=1 shows the instruction format. Table 3-2 through 3-10 list the logic functions

that implement the instructions, referencing the appropriate logic drawings.

a. "ADVP" Checks that the memory iocation following the rnu-hiply and/or divide
instruction is not modified by the execution of the instruction and that the program address counter is
properly incremented during the execution of the instruction.

b. "“NEAE" Set up check - Checks the set-up of all EAE signed, unsigned, integer
and fraction, multiply and divide instructions. These instructions are executed with a shift count of
zero. A

c. "SHCT" Shift Counter Test - Executes the Multiply instruction sequentially starting
at a shift count of 1 and incrementing it up to a shift count of 22.

d. “"STMUL" Sign multiply and divide test - Test all signed multiply and divide
instructions.

e. "MULTST" Multiply and Divide Test - This test using worsé-case number patterns
acts as both a EAE and Adder Test.

f. “MSPEED" Speed Multiply and Divide - This test is in three operations: (1) a
sequence of multiply instructions are executed back to back, (2) then a sequence of divide instructions

are executed, (3) followed by a sequence of MUL, DIV, MUL, and DIV executed back to back.

4.2.2 Section 2 Random Data Multiply and Divide Test - The Random Data Test verifies that the

EAE will multiply and divide random numbers at shift counts 1 through maximum (22 for multiply, 23 for
divide) and checks that the LINK is set on divide overflow.
The sequence of testing is as follows:
a. Test the Multiply
(1) Generate a random number
(2) Do a software multiply
(3) Do a hardware multiply
(4) Compare the results of both operations
(5) LOOP BACK TO 1 TILL DONE
b. Test the Divide
(1} Generate a random number
(2) Do a scftware divide
(3) Do a hardware divide
(4) Compare the results of both operations
(5) LOOP BACK TO 1 TILL DONE

/ I
0 1 2 3 45 6 7 8 9 0 1 2 3 4 5 6 7 8 9 O 1 ns (HUNDREDS)
|z|_.|qz————>‘75—-{43——|41—-|54 40 —|10 — e NEXT FETCH (SETUP)
50 ——42——[55—5@ SHIFT
51 MUL, DIV
55 53—c[5s—-|57—-‘4o 10 le— NEXT FETCH (1SHIFT)
51 —{s2 50——'42—-!55—-'53—455——57 40
SHIFT
50
40 10 NEXT FETCH (2,3,4 SHIFTS)
5o-442—o|55—-lss—-—55——|57—> of10 NEXT FETCH (5,6,7 SHIFTS)

a0
50—-|42—-|55——|

53—-|55——ﬁ<—

SHIFT

a0 » 10

50—+]42 —o{35 —e{53 —

56 ——|57

B Vo

IO——QF—

a2 ——|55 —l—

NEXT FETCH (8,9,10 SHIFTS)
NEXT FETCH (11,12,13 SHIFTS)

SHIFT

55—-!53—-'56—-{57 40 |
50—442—’{55—-'53—"56:1

1

10 NEXT FETCH (14,15,16 SHIFTS)
57 40 —»|
[&— SHIFT
50 —»
8 9 0 ns (HUNDREDS)

40 10 ole NEXT FETCH (17,18,19)
50—-‘42—.'55——{53—-—-55—457 40 1o NEXT FETCH (20,21,22)
50—-[42-—»'55—453—-[55—-9 SHIFT
56 ——{57 40 10 le NEXT FETCH (23,24,25)
:so—o|4z—- 55—-|53-|55—-|57 40 10 —————sle— NEXT FETCH (26,27,28)
50 42—-'55——4—- SHIFT
55——|53—>|56-—-{57 40 l10 le— NEXT FE.CH (29.30,31)
50—-[42——-|55—-|53—-|56:|57 40
SHIFT
50
40 l1o »le NEXT FETCH (32,33,34)
50—-‘42—-‘55—453456—0{57—-{40 ;1110 =|l NEXT FETCH (36 SHIFTS)

Figure 3-1

EAE Timing

Table 3-1
EAE SETUP Instruction Format

Opégode S%TUP Not Used
8 8

1 2|3 4 5|6 7 8|9 10 11|12 13 14|15 16 17

6 4 0 0 0 1 OsC

6 4 0 0 0 2 oMQ

6 4 0 0 0 4 CcMQ

6 4 1 0 0 1 LACS

6 4 1 0 0 2 LACQ

6 4 4 0 0 0 ABS

6 5 0 0 0 0 cLQ

6 5 2 0 0 0 LMQ

6 6 4 0 0 0 GSM

Table 3-2
OSC Functions
640001 Inclusive=OR the SC with the AC
Process Function Drawing No.
75 (ACO, ARI,EAE, LI, CONT,CMA43) KCi18
ACO(1) = AC00-17 — A BUS00-17 KC20
A BUS00-17 — ADROO-17 KC21
NOSH = ADR0O0-17 — O BUS00-17 KC20
ARI(1) = O BUS00-17 — AR00-17 KC20
LI(1) = ADRL = LINK — LAR KC15
LI(1) = ADRL = LINK — TEMP3 KE3
SAO09(0)ASATO(0)ASAT1(0) = SETUP KE4
EAE(1)AARI(1) = SUT(1) KE3
SUI(1) =0 — SCOV,SCOV2,FIRST,EAE RUN,EAE SIGN,MQ
SIGN KE2-3
SUT(1)AMBO5(0) = EAE OR MQO KE3
CM STROBEACONT(1) = GO TO 43 KC16
43 (ACI,EAE,CONT,CMAA4I) KC18

CM STROBEAEAE OR MQO = MQO(1) KC19
MQO(1) = MQO0-17 — A BUS00-17 KC20
A BUSO0-17 — ADRO0OO-17 KC21
NOSH = ADR00-17 — O BUS00-17 KC20
ACI(1) = O BUS00-17 — AC00-17 KC20
LI(0) = LAR — LINK KC15
CM STROBEACONT(1) = GO TO 41 KC1é6

3-4

AN

Table 3-2 (cont)
OSC Functions

640001 Inclusive-OR the SC with the AC
Process Function Drawing No.
41 (ACO,MQI,EAE,CONT,CMA54) KC18
ACO(1) = AC00-17 — A BUS00-17 KC20
A BUS00-17 — ADRO00-17 KC21
NOSH = ADR00-17 — O BUS00-17 KC20
MQI(1) = O BUS00-17 — MQO00-17 KC20
EAE(1)AMQI(1)ASETUP = SU3(1) KE3
SU3(1) = SCov(1) KE3
SU3(1) =SCOov2(1) KE3
MQI(1)AMBO8(0)AEAE(1) = EAE OR ARO KE3
CM STROBEACONT(1) = GO TO 54 KC16
54 (ACI,EAE-R,CONT,CMA40) KC18
CM STROBEAEAE OR ARO = ARO(1) KC19
EAE-R(1)AMB17(1)ASETUP = SCO KE2
ARO(1) = ARO0-17 — A BUS00-17 KC20
A BUS00-17 — ADRO0O-17 KC21
NOSH = ADR00-17 — O BUS00-17 KC20
SCO =SC12-17 = O BUS12-17 KC22
ACI(1) = O BUS00-17 — AC00-17 KC20
EAE-R(1) = O BUS L — TEMP2 KE3
CM STROBEACONT(1) = GO TO 40 KC16
40 (EAE,DONE,CMA10) KC18
CLK(B) + 670 ns A EAE(1)ADONE(1) = INPUT 1O RESTART KD3(3)
INPUT IO RESTART = IO RESTART KD3(3)
IO RESTART =GO TO 10 KC16
10 (PCO,SM,CMA21) KC18
BGN next fetch
Table 3-3
OMQ Functions
640002 Inclusive=OR the MQ with the AC
Process Function Drawing No.
75 Same as OSC
43 Same as OSC
41 Same as OSC plus
SU3(1)AMB16(1) = EAE OR MQO KE3
54 (ACI,EAE-R,CONT,CMA40) KCi18
CM STROBEAEAE OR ARO = ARO(1) KC19
CM STROBEAEAE OR MQO = MQO(1) KC19

Table 3-3 (cont)
OMQ Functions

640002 Inclusive-OR the MQ with the AC (cont)
Process Function Drawing No.
54 (cont) ARO(1) = AR00-17 —A BUS00-17 KC20
MQO(1)= MQ00-17— A BUS00-17 KC20
A BUS00-17 —+ADRO00-17 KC21
NOSH = ADR00-17—O BUS00-17 KC20
ACI(1) = O BUS00-17 —+AC00-17 KC20
EAE-R(1) = O BUS L—TEMP2 KE3
CM STROBEACONT(1) = GO TO 40 KC16
40 Same as OSC
10 Same as OSC
Table 3-4
CMQ Functions
640004 Complement the MQ
Process Functions Drawing No.
75 Same as OSC
43 Same as OSC
41 Same as OSC plus:
SU3(1)AMB15(1) = CMPL KE3
CMPL = ADR0OO-17 — O BUS00-17 KC20
54 Same as OSC except:
MBI17(0) = SCO
40 Same as OSC
10 Same as OSC
Table 3-5
LACS Functions
641001 Load the AC with the SC
Process Function Drawing No.
75 Same as OSC
43 Same as OSC
41 Same as OSC except:

MQI(1)AMBO8(1)AEAE(1) = EAE OR ARO

3-6

A~

Table 3-5 (cont)
LACS Functions

641001 Load the AC with the SC
Process Functions Drawing No.
54 Same as OSC except:
CM STROBEAEAE OR ARO = ARO(0)
40 Same as OSC
10 Same as OSC
Table 3-6
LACQ Functions
641002 Load the AC with the MQ
Process Function Drawing No.
75 Same as OSC
43 Same as OSC
41 Same as OSC plus:
MQI(1)AMBO8(1)AEAE(1) = EAE OR ARO KE3
54 SU3(1)AMB16(1) = EAE or MQO
(ACI, EAE-R, CONT, CMA40) KC18
CM STROBEAEAE OR MQO = MQO(1) KC19
MQO(1) = MQO00-17— A BUS00-17 KC20
A BUS00-17 = ADR00-17 KC21
NOSH = ADR00-17—O BUS00-17 KC20
ACI(1) = O BUS00-17 = AC00-17 KC20
EAE-R(1) = O BUS L= TEMP2 KE3
CONT(1)ACM STROBE =GO TO 40 KC16
40 Same as OSC
10 Same as OSC
Table 3-7
ABS Functions
644000 Get Absolute Value of AC
Process Function Drawing No.
75 Same as OSC plus:
If AC00 =1, then SUT(1)AMBO6(1)AMBO7(0)AACO00(1) = CMPL KE3
CMPL = ADRO0O-17 — O BUS00-17 KC20
43 Same as OSC
41 Same as OSC

Table 3-7 (cont)
ABS Functions

644000 Get Absolute Value of AC
Process Function Drawing No.
54 Same as OSC except:
MB17(0) = SCO
40 Same as OSC
10 Same as OSC
Table 3-8
CLQ Functions
650000 Clear the MQ
Process Function Drawing No.
75 Same as OSC except:
MBO05(1) = EAE OR- MQO
43 Same as OSC except:
CM STROBEAEAE OR MQO = MQO(0)
MQO(0) =0 — A BUS00-17
41 Same as OSC
54 Same as OSC except:
MB17(0) = SCO
40 Same as OSC
10 Same as OSC
Table 3-9
LMQ Functions
652000 Load the MQ with the AC
Process Function Drawing No.
75 Same as OSC except:
MBO05(1) = EAE OR MQO
MBO7(1) = EAE OR ARO KE3
43 (ACI, EAE, CONT, CMAA41) KCI18
CM STROBEAEAE OR ARO = ARO(1) KC19
ARO(1) = AR00-17 = A BUS00-17 KC20
A BUS00-17 — ADROO-17 KC21
NOSH = ADR00O-17 — O BUS00-17 KC20
ACI(1) = O BUS00-17 — AC00-17 KC20
LI(0) = LAR = LINK KC15
CM STROBEACONT(1) = GO TO 41 KC16

3-8

A~

Table 3-9 (cont)
LMQ Functions

652000 Load the MQ with the AC
Process Function Drawing No.
41 Same as OSC
54 Same as OSC except:
MB17(0) = SCO
40 Same as OSC
10 Same as OSC
Table 3-10
GSM Functions
664000 Get Sign and Magnitude of AC
Process Function Drawing No.
75 Same as OSC except:
If ACO0 =1, then
SUT(T)AMBO6(1)AMBO7(0)AACO00(1) = CMPL KE3
- CMPL = ADR0O0-17 — O BUS00-17 KC20
SUT(1)AMBO4(1)AACO00(1) = A BUS LINK KE3
A BUS LINK = ADRL KC15
SHIFT = ADRL = O BUS L KC15
LI(1) = O BUS L = LAR(1) KC15
43 Same as OSC
41 Same as OSC
54 Same as OSC except:
MB17(0) = SCO
40 Same as OSC
10 Same as OSC
3.5 SHIFT INSTRUCTIONS

Long left, long right, and accumulator-left shift instructions include a step count in bits 12

through 17 which commands the number of bit positions to be shifted. Preliminary operations governed

by the early shift entry process words transfer the 2s complement of the step count into the step counter

SC12 through 17 in the EAE logic, drawing KE2. The SC, then, becomes binary up-counter which steps

toward O with each shift process. When the SC reaches 0, it sets a pair of overflow flip-flops SCOV and

SCOV2, in turn, which shut off the shift processes and cause the computer to branch to the BGN next

fetch process word.

The data to be shifted may be signed or unsigned. For signed data shifts, an early process
word (43) transfers the sign (AC00) into the LINK, and the LINK is shifted thereafter unchanged. For
unsigned data shifts, the LINK is usually initialized to O and shifted thereafter unchanged. Table 3-11

shows the SHIFT instruction format. Bit 04 of the instruction commands the signed or unsigned operation.

Table 3-11
EAE Shift Instruction Format
Op Code Shift Commands Number
648 Code of Shifts
01 2|3 4 5|6 7 8|92 10 11|12 13 14|15 16 17
6 4 0* 5 X X LRS
6 6 0* 5 X X LRSS
6 4 o* 6 X X LLS
6 6 o* 6 X X LLSS
6 4 0* 7 X X ALS
6 6 0* 7 X X ALSS

*May be used for same functions as EAE SETUP.

Bits 12 through 17 can contain step codes of up to 448 for long register shifts of up to 36 bit
positions. For accumulator left shifts (ALS, ALSS) bits 12 through 17 can contain step codes of up to
224 for AC left shifts of up to 18 bit positions.

Table 3-12 through 3-14 and Figures 3-2 through 3-4 illustrate the operations involved for
LRSS, LLSS, and ALSS instructions catling for one, two, and three shift steps, respectively. A comparison
of the three reveals the pattern for shifting the data and terminating the instruction.

While the NOSH level generated on drawing KC13 commands direct bit-for-bit transfers be-
tween registers, the shift operations make use of the SHL1 and SHR1 levels on the same drawing to shift
a bit one position left or right into the receiving register. Register input/output gating and data flow is

as usual from output register to A bus to ADR to O bus to input register. These functions are abbreviated

in the tables for convenience.

3-10

6§ netes fpom oot

Table 3-12
LRSS Functions

660501 Long Right Shift Signed (One Position)
Process Function Drawing No.
75 (ACO, ARI, EAE, LI, CONT,CMA43) KC18
ACO(1)AARI(1)ANOSH = AC — AR KC20-21
SA02(1)ASATO(0)ASATI(1) = LRS KE4
EAE(1)AARI(1) = SU1(1) KE3
SU1(1) = 0 = SCOV,SCOV2,FIRST, EAE RUN,EAE SIGN, MQ SIGN| KE2-3
SUT(T1)ASETUP = SC CLR KE2
SCCLR=0—SC KE2
SUT(1)AMBO05(0) = EAE OR MQO KE3
If ACOO = 1, then SUT(1)AMBO04(1)AACO00(1) = A BUS LINK KE3
A BUS LINK — ADRL KC15
LI(1) = ADRL — LAR KC15
LI(1) = ADRL — TEMP3 KE3
CM STROBEACONT(1) = GO TO 43 KC16
43 (ACI,EAE,CONT,CMAA41) KC18
CM STROBEAEAE OR MQO = MQO(1) KC19
MQO(1)ANOSHAACI(1) = MQ — AC \ KC20-21
EAE(1)AACI(1)ASETUP = SU2(1) wedt d, O4 KE3
]:O%‘;:’“p SU2(1) = MBT12-=17 = 111110 — sC (one’s co“F b KE2
LI(0) = LAR — LINK KC15
J/ CM STROBEACONT(1) = GO TO 41 KC16
41 (ACO,MQI,EAE,CONT,CMA54) KC18
ACO(1)ANOSHAMQI(1) = AC = MQ KC20-21
mgu)AMQl(l)/\MB%(O) = EAE OR ARO KE3
CM STROBEACONT(1) = GO TO 54 KC16
54 (ACI,EAE-R,CONT,CMA40) KC18
A CM STROBEAEAE OR ARO = ARO(1) KC19
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
EAE-R(1)ASCOV (0) = R-PULSE KE2
2s Comp R-PULSE = 111111 = SC =SC FULL KE2
to SC EAE-R(1)ASCOV2(0) = ADDR 10 KE3
EAE-R(1) = O BUS L = LINK = TEMP2 (not used) KE3
CMA40AADDR 10 = CMAS50 KC17
v CM STROBEACONT(1) = GO TO 50 KC16
50 (MQO, ARI,EAE-P,CONT,CMA42) KC18
MQO(1)ANOSHAARI(1) = MQ — AR KC20-21
EAE-P(1)AEAE RUN(0) = FIRST(1) KE3
EAE-P(1)ASCOV2(0) = EAE RUN(T) KE3
EAE-P(1) = O BUS L = LINK — TEMP1 (not used) KE3
EAE-P(1) = TEMP2 = LINK — END BITO00 (not used) KC15
EAE-P(1) = TEMP3 = LINK — END BIT17 (not used) KC15
CM STROBEACONT(1) = GO TO 42 KC16

Table 3-12 (cont)
LRSS Functions

Process Function Drawing No.

AAZ (ACO,MQI,EAE-R,CONT,CMA55) KC18
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 000000 — SC KE2
EAE-R(1)ASC FULL = SCOV(1) KE2
EAE-R(1)ASCOV2(0)AEAE RUN(1)AEIRTO(0)AEIR11(1) = IN SHR1 KE4
IN SHR1 = SHR1 KC13

Shift 1 ACO(1)ASHRIAMQI(1) = ACnh — Mq-ﬁrl) KC20-21

SHRT = ADR17 = O BUS L KC15
EAE-R(1) = O BUS L = TEMP2 KE3
EAE-R(1) = ADRL — END BIT00 KC15
EAE-R(1) = TEMP1 = LINK — END BIT17 (not used) KCI15
MQI(1)ASHR1 = END BITO0 — MQO00 KC20

v CM STROBEACONT(1) = GO TO 55 KC16

55 (ARO,ACI,EAE-P,CONT,CMA53 KC18
EAE-P(1)AEAE RUN(1) = FIRST(0) KE3
FIRST(0)ASCOV2(0)AEAE RUN(T)AEIRTO(0)AEIRTT(1) = IN SHR1 KE4
IN SHR1 = SHR1 KC13
ARO(1)ASHRIAACI(1) = ARn — ACn+1 KC20-21
SHR1 = ADR17 = O BUS L KC15
EAE-P(1) = O BUS L = TEMP1 (not used) KE3
EAE-P(1) = TEMP2 — END BITO0 KC15
EAE-P(1) = TEMP3 — END BIT17 (not used) KC15
SHR1 = END BITOO0 — ACO00 KC20

v CM STROBEACONT(1) = GO TO 53 KC16

53 (MQO, ARI,EAE-R,CONT,CMA56) KC18
EAE-R(1)ASCOV(1) = SCOV2(1) KE2
SCOV2(1) = IN SHR1 KE4
SCOV(1) = R-PULSE KE2
MQO(T1)ANOSHAARI(T) = MQ — AR KC20-21
CM STROBEACONT(1) = GO TO 56

56 (ACO,MQI,EAE-P,CONT,CMAS57) KC18
ACO(1)ANOSHAMQI(1) = AC = MQ KC20-21
CM STROBEACONT(1) = GO TO 57 KC16

57 (ARO,ACI,EAE-R,CONT,CMA40) KC18
EAE-R(1)ASCOV2(1) = EAE RUN(0) KE3
EAE RUN(0)ASCOV2(1) = ADDR 10 KE3
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
CM STROBE CONT(1) = GO TO 40 KC16

40 (EAE,DONE,CMAT10) KC18

3. K03-Y
o , = INPUT IO RESTART KD3(3)

INPUT IO RESTART = 10O RESTART KD3(3)
IO RESTART = GO TO 10 KC16

10 (PCO,SM,CMA21) KCI18

BGN next fetch

3-12

NOTE

CML 42 Set SCOV, CML 53 Set SCOV2, and CML 57
reset EAE RUN which inhibited the generation of ADDR
10. If the shift process has not reset EAE RUN when
CML 40 is pointed to, it will go back through CML's
50, 42, 55, 53, 56, 57, and then to 40.

L INK | ac || ') | | ar |

TEMP 2

¢ | | acee-1z | [wmaee-1z | | acee-17 |
t |

sol o | [acee-17 | | wmaee-1z | [waee-7 |
|

| AD;L F»f enoairee |——
s2| o | [acee-1e[17] []acee-t6| | waee-17 |
| '

(]

—_————— — e ————

ik

54

~

END BIT @0

55 [aci7[mova-16] [L [aces-16] [wose-16 17]
{ | 9

|TEMP 1 I

LOST

{aci7 [mago-16| [L [acea-16] [|aces-16]

t 3

53

s6 [Acnluooo-ss] [Acnluon-ml l L lAcu-is]

57

[Jacoa-16] [aci7[mooa-16] [[acan-ie]
1 L

409 DONE

Figure 3-2 LRS, LRSS Register Manipulation (One Position)

3-13

Table 3-13
LLSS Functions

660602 Long Left Shift, Signed (Two Positions)
Process Function Drawing No.
75 Same as LRSS except:
SA09(1)ASAT0(1)ASATI(0) = LLS KE4
43 Same as LRSS except:
SU2(1)=111101—-SC
41 Same as LRSS
54 Same as LRSS except:
R-PULSE= 111110—SC
50 (MQO, ARI, EAE-P, CONT, CMA42) KC18
EAE-P(1)AEAE RUN(0) = FIRST(1) KE3
EAE-P(1)ASCOV2(0) = EAE RUN(1) KE3
EAE-P(1)ASCOV(0)AEIROZ(1)AEIRT1(0)= IN SHL1 KE4
IN SHLT = SHL1 KCI13
MQO (1)ASHL1AARI(1) = MQn —*ARn-1 KC20-21
Shift 1 SHL1= ADR0OO -O BUS L KC15
EAE-P(1) = O BUS L= TEMPI KE3
EAE-P(1) = TEMP2—END BIT00 KC15
EAE-P(1) = TEMP3—END BIT17 KC15
SHL1= END BIT17— AR17 KC20
CM STROBEACONT(1) = GO TO 42 KC16
42 (ACO, MQI, EAE-R, CONT, CMA55) KC18
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 111111—=SC = SC FULL _ KE2
EAE-R(1)A SCOV2(0)AEAE RUN(T)AEIRO9(1)ALRS = IN SHL1 KE4
IN SHL1= SHL1 KC13
ACO (1)ASHLIAMQI(1)= ACn =MQn-1 KC20-21
SHL1 = ADROO—O BUS L KC15
EAE-R(1)= O BUS L—TEMP2 (lost) KE3
EAE-R(1)= TEMP1—END BIT17 KC15
SHL1= END BIT17—=MQ17 KC20
CM STROBEACONT(1) = GO TO 55 KC16
55 (ARO,ACI,EAE-P, CONT,CMAS53) KC18
EAE-P(1)AEAE RUN(1) = FIRST(0) KE3
EAE-P(1)ASCOV(0)AEIRO9(1)AEIR11(0) = IN SHL1 KE4
IN SHL1= SHL1 KC13
ARO(1)ASHLIAACI(1)= ARn—ACn-1 KC20
Shift 2 SHL1= ADR0OO—O BUS L KC15
EAE-P(1)= O BUS L—TEMP1 KE3
EAE-P(1)= TEMP2 —END BITOO (lost) KCI15
EAE-P(1)= TEMP3—END BIT17 KC15
SHL1= END BIT17—AC17 KC20

CM STROBEACONT(1)= GO TO 53

3-14

Table 3-13 (cont)
LLSS Functions

660602 Long Left Shift, Signed (Two Positions)
Process Function Drawing No.
5}1\3 (MQO, ARI, EAE-R, CONT, CMA56) KC18
EAE-R(T) ASCOV(0) = R-PULSE KE2
R-PULSE = 000000 — SC KE2
R-PULSE ASC FULL =SCOV(1) L KE2
EAE-R(T) ASCOV2(0) AEAE RUN(T) AEIRO9(T) ALRS = IN SHL1 KE4
Shift 2 MQO(1) ASHLT AARI(T) = M@Qn — ARn-1 KC20
' SHL1 = ADROO — O BUS L KC15
EAE-R(1) = O BUS L — TEMP2 (lost) KE3
EAE-R(1) = TEMP1 — END BIT17 KC15
SHL1 = END BIT17 = AR17 KC20
v CM STROBE ACONT(1) = GO TO 56 KC16
56 (ACO,MQI,EAE-P,CONT,CMA57) KC18
SCOV(1) = IN SHLI KE4
ACO(1)ANOSHAMQI(1) = AC = MQ KC20-21
CM STROBEACONT(1) = GO TO 57 KC16
57 (ARO,ACI,EAE-R,CONT,CMA40) KC18
EAE-R(1)ASCOV(1) = SCOV2(1) KE2
SCOV(1) = R-PULSE KE2
SCOV2(1) = IN SHLI KE4
ARO(1)ANOSHAACI = AR = AC KC20-21
EAE-R(1)AEAE RUN(1) = ADDR 10 KE3
CMA40AADDR 10 = CMA50 KC17
CM STROBEACONT(1) = GO TO 50 KC16
50 (MQO, ARI,EAE-P,CONT,CMA42) KC18
SCOV(1) = IN SHLI KE4
MQO(1)ANOSHAARI(1) = MQ — AR KC20-21
CM STROBEACONT(1) = GO TO 42 KC16
42 (ACO,MQI,EAE-R,CONT,CMA55) KC18
EAE-R(1)ASCOV2(1) = EAE RUN(0) KE3
SCOV2(1) = IN SHLI KE4
ACO(1)ANOSHAMQI(1) = AC = MQ KC20-21
CM STROBEACONT(1) = GO TO 55 KC16
55 (ARO,ACI,EAE-P,CONT,CMA53) KC18.
SCOV(1) = IN SHLI KE4
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
CM STROBEACONT(1) = GO TO 53 KC16
53 (MQO, ARI,EAE-R,CONT,CMA56) KC18
SCOV2(1) = IN SHLI KE4
MQO(1)ANOSHAARI(1) = MQ — AR KC20-21
CM STROBEACONT(1) = GO TO 56 KC16

Table 3-13 (cont)
LLSS Functions

660602 Long Left Shift, Signed (Two Positions)
Process Function Drawing No.
56 (ACO,MQI,EAE-P,CONT,CMA57) KC18
SCOV(T) = IN SHLI1 KE4
ACO(T) ANOSHAMQI(1) = AC - MQ KC20-21
CM STROBEACONT(1) = GO TO 57 KC16
57 (ARO,ACI,EAE=R, CONT,CMA40) KC18
SCOV2(1) = IN SHLI KE4
ARO(T)ANOSHAACI(T) = AR = AC KC20-21
EAE RUN(0)ASCOV2(1) = ADDR 10 KE3
CM STROBEACONT(1) = GO TO 40 KC16
40 (EAE,DONE,CMA;&) (03D KC18
CLK(B)}+67Q nsAEAELDABONEH) = INPUT 1O RESTART KD3(3)
INPUT IO RESTART =IO RESTART KD3(3)
IO RESTART = GO TO 10 KC16
10 (PCO,SM,CMA21) KC18
BGN next fetch \
Table 3-14
ALSS Functions
660703 Accumulator Left Shift Signed (Three Positions)
Process Function Drawing No.
75 Same as LRSS except:
SAO2(1)ASATO(1)ASATI(1) = ALS KE4
43 Same as LRSS except:
SU2(1) = 111100 = SC KE2
41 Same as LRSS
54 Same as LRSS except:
R-PULSE = 111101 — SC KE2
50 Same as LRSS
42 (ACO,MQI,EAE-R,CONT,CMA55) KC18
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE= 111110 = SC - KE2
EAE-R(1)ASCOV2(0)AEAE RUN(T)AEIRO9(1)ALRS = IN SHLI KE4
IN SHL1 = SHLI KC13
ACO(1)ASHLIAMQI(1) = ACn = MQn-1 KC20-21
SHL1 = ADROO — O BUS L KC15

3-16

Table 3-14 (cont)
ALSS Functions

660703 Accumulator Left Shift, Signed (Three Positions)
Process Function Drawing No.
42(cont) EAE-R(1)= O BUS L—=TEMP2 KE3
EAE-R(1)= TEMP1—END BIT17 KC15
SHL1 = END BIT17 = MQ17 KC20
CM STROBEACONT(1) = GO TO 55 KC16
55 (ARO,ACI,EAE-P,CONT,CMA53) KC18
EAE-P(1)AEAE RUN(T) = FIRST(0) KE3
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
EIRTI(T) = IN SHL1 KE4
SHIFT = ADRL—- O BUS L KC15
EAE-P(1) = O BUS L — TEMPI KE3
EAE-P(1) = TEMP2 — END BITOO (lost) KC15
EAE-P(1) = TEMP3 — END BIT17 (not used) KC15
CM STROBEACONT(1) = GO TO 53 KC16
53 (MQO, ARI,EAE-R,CONT,CMAS56) KE18
A
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 111111 = SC = SC FULL . KE2
EAE-R(1)ASCOV2(0)AEAE RUN(T)AEIRO9(1)ALRS = IN SHLI KE4
IN SHL1 = SHLI KC13
Shift 2 MQO(1)ASHLIAARI(1) = MQn — ARn-1 KC20-21
' SHL1 = ADROO — O BUS L KC15
EAE-R(1) = O BUS L — TEMP2 KE3
EAE-R(1) = TEMP1 — END BIT17 KCI15
SHL1 = END BIT17 = AR17 KC20
v CM STROBEACONT(1) = GO TO 56 KC1é6
56 (ACO,MQI,EAE-P,CONT,CMA57) KC18
EIRT1(1) = IN SHLI1 KE4
ACO(1)ANOSHAMQI(1) = AC = MQ KC20-21
SHIFT = ADRL =+ O BUS L KC15
EAE-P(1) = O BUS L — TEMPI KE3
EAE-P(1) = TEMP2 — END BITO0O (lost) KC15
EAE-P(1) = TEMP3 — END BIT17 (not used) KC15
CM STROBEACONT(1) = GO TO 57 KC16
57 (ARO,ACI, EAE-R, CONT,CMA40) KC18
A EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 000000 — SC KE2
R-PULSEASC FULL = SCOV(1) . KE2
EAE-R(1)ASCOV2(0)AEAE RUN(T)AEIRO?(1)ALRS = IN SHLI KE4
IN SHL1 = SHL1 KC13
ARO(1)ASHLIAACI(1) = ARn — ACn-1 KC20-21
Shift 3 SHL1 = ADRO0O = O BUS L KC15
EAE-R(1) = O BUS L — TEMP2 (lost) KE3
EAE-R(1) = TEMP1 — END BIT17 KC15

Table 3-14 (cont)
ALSS Functions

660703 Accumulator Left Shift, Signed (Three Positions)
Process Function Drawing No.

57(cont) SHLT = END BIT17 = AC17 KC20
EAE-R(T) AEAE RUN(T) = ADDR 10 KE3
CMA40AADDR 10 = CMA50 KC17
CM STROBEACONT(1) = GO TO 50 KC16

50 (MQO,ARI,EAE;P,CONT,CMA42) KC18
SCOV(1) = IN SHL1 KE4
MQO(1)ANOSHAARI(T) = MQ = AR KC20-21
CM STROBEACONT(1) = GO TO 42 KC16

42 (ACO,MQI,EAE-R,CONT,CMA55) KC18
EAE-R(1)ASCOV (1) = SCOV2(1) KE2
SCOV(1) = R-PULSE KE2
SCOV2(1) = IN SHLI KE4
ACO(1)ANOSHAMQI(1) = AC = MQ KC20-21
CM STROBEACONT(1) = GO TO 55 KC16

55 (ARO,ACI,EAE-P,CONT,CMA53) KC18
SCOV(1) = IN SHLI KE4
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
CM STROBEACONT(1) = GO TO 53 KC16

53 (MQO, ARI,EAE-R,CONT,CMA56) KC18
EAE-R(1)ASCOV2(1) = EAE RUN (0) KE3
SCOV2(1) = IN SHL1 KE4
MQO(1)ANOSHAARI(1) = MQ — AR KC20-21
CM STROBEACONT(1) = GO TO 56 KC16

56 (ACO, MQI,EAE-P,CONT,CMA57) KC18
SCOV(1) = IN SHLT KE4
ACO(1)ANOSHAMQI(1) = AC = MQ KC20-21
CM STROBEACONT(1) = GO TO 57 KC16

57 (ARO,ACI,EAE-R,CONT,CMA40) KC18
SCOV2(1) = IN SHL1 KE4
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
EAE RUN(0)ASCOV2(1) = ADDR 10 KE3
CM STROBEACONT(1) = GO TO 40 KC16

40 (EAE,DONE,CMA10)) KC18
G) = INPUT IO RESTART KD3(3)
INPUT 1O RESTART = 1O RESTART KD3(3)
IO RESTART =GO TO 10 KC16

10 (PCO,SM,CMA21) KC18
BGN next fetch

[oma] | ac | | M] []

5 L }—DITEMP s}

| i

'I | END BIT 17 I
I

]

5,4[o [aces-17 | [wmooe-17 | [aroo-17 |
t |

so]] | acee-ir | [waga [waai-17] [wmaor-i7 | o |

[TE"MEE ot 17 |
s2[] [acee [acer-i7] [acor-t7 Jwaoa] [wmoer-17 | ¢ |
*’
[reme 2 |- cost

v
ss| o | [waoz-17 [L] L] [acar-17 | woso | [Moor [maaz-17] ¢ |
t 1 L]

[[reme v }of enoeir 17 |

53[L] Lmooz-nl L l L] [Acm | acaz-17 [Moo lAcoz-n [MOOG] MomJ

TEMP 2

LOST

56[L] [~002-171L (L] lMOOZ-lTLLlL] [AC02-17 lMOﬂO*O']
L[[I

s7| o | [acez-17[mose-01| [meez-ir[L[| [acez-17]wmaee-e]

t f
se ¢ | [acez-17|mose-a1]| [wmaez-1z[L[] [weez-i7]| L]}
{ | S {

a2 L | [acez-17[maee-01| [acez-17[moee-e1]| [mosz-i7]| L | o |
L 1 ! f

ss[L J [uooz-nl L] L] IAcaz-n[uou-ou] [uooz—nl LIL]
Lt 7 l]

s L] [woe2-17 [L] L] [acez-17]mcee-01] [acez-17] woss-e: |
l I t ?

5sr LJ [MQGZ—!'IlLJ l.] LMOOZ-V’LLIL] lACOZ—!?lMOOO—.TI
L 1 r t 7

57[Lj [ACOZ-”]MQGO-G!] [MOOZ-!?FLT L_] FCDZ—!TIMQDO-.!]
l 1]

40 DONE

Figure 3-3 LLS, LLSS Register Manipulation (Two Positions)
3-19

[one] L AcC || Mo] [AR |
54[_T—l [ACOG)?—H | [meee-1z | Acﬂﬂl-l'l |

50' L] l ACO0Q -17] L MODO-”—I l MQ2Q -17]
L 1

42L L J racm [acor-17] IAcm-nI |
v | !
Ireup 2 l——» LosT
ss[v] [wmoee-17] [acor-17]] | wmoee-17 |
t |

53[L j LMOGO -17 J [ACO! FCOZ[-!?LL l lACOZ-l?] ; I L]

(e

56[Fj [waos -17 | Luooo-n | acez-17] ||
LL L1

|| eno 81T 171]
st v | faces-izf []c] | wmoes-r7 | [acez|aces-7]| L]]
t 1t ¢

I 1]

LOST
so| v | [aces-r[o[] [wmoee-i7 | | wmose-17 |
L 1

a2 o | [Acu[-an | L‘I c | IAC.;-!?IT[o] | wose-ir]

ss| o | [weee-17 | laces-r[L]l [L] [woes-17r |
t |

ssf v | [wose-17 | IACOI-WI cfo]] IAC.;-I'I[ol

se[o | [woee-7] [wmoss-i7 | aces-r[o]l
L 1

st o | [i.;-!?lL[Llﬂ [wose-17 | r‘“]‘”l"l"l"l

40 DONE

Figure 3-4 ALS, ALSS Register Manipulation (Three Positions)

3-20

3.6 NORMALIZE INSTRUCTIONS

The NORM and NORMS instructions, Table 3-15, are commonly used within a subroutine to
convert an integer into a fraction and exponent for use in floating=point arithmetic. The algorithm for
normalize is to shift the contents of the AC and MQ left until ACOO differs with ACO1. For signed,
normalized positive numbers this results in AC00(0) and ACO1(1). For signed, normalized negative

numbers the result is ACOO(1) and ACO1(0). For signed normalized numbers the sign (ACOO) is first
duplicated in the LINK. For unsigned numbers the LINK is usually initialized to 0. In both cases the
content of MQOO enters AC17, the content shifted out of ACO0 is lost, and the content of the LINK
enters MQ17, on each shift. When shifting halts, the contents of the SC reflect the number of shifts
executed to reach the normalized condition. The SC contents are available through the use of the EAE

OSC or EAE LACS instruction.

Table 3-15
EAE NORM Instruction Format
Op Code Not NORM Number of
648 Used 48 Shifts
0 1 2|3 4 516 7 819 10 1112 13 14|15 16 17
4 0 4 4 4 NORM
) 0 4 4 4 NORMS

For normalized numbers, the binary point is assumed to be between AC00 and ACO1, the
mantissa of the fraction extends from ACO1 to MQ17, the sign is in AC00, and the value of the exponent
is in the SC. The number in the SC after normalize is actually the sum of the pre-established charac-

teristic and the exponent (n) in 2s complement form. The characteristic is a number equivalent to the

10 448. The NORM(S) instruction contains this
number in bits 12 through 17 and loads it into the SC in 2s complement to establish the exponent in ex-

35

. 50
cess 44 code. This means that the exponential range of the fraction when normalized is 2" to 27, or

-448+n.

total number of bit positions in the AC and MQ, 36

For example, if the integer +3 is stored in the MQ (MQ16, MQ17 are 1s) and it is desired to

convert this to a fraction and exponent, the following program sequence is required.

NORM(S) /NORMALIZE CONTENTS OF AC, MQ

DAC /DEPOSIT AC IN MEMORY

LACQ /MOVE MQ TO AC

DAC /DEPOSIT MQ IN MEMORY

LACS /MOVE SC TO AC

TAD (44 /SUBTRACT CHARACTERISTIC FROM STEP COUNT
DAC /DEPOSIT RESULT (EXPONENT) IN MEMORY

3-21

In the process of normalizing, a total of 33 shifts is required to shift MQ16(1) into ACO1.
This leaves the SC with a step count of:
011100 initialized step count
100001 plus 33 steps
111101 final step count

Since the step count is in 2s complement, the TAD (448 instruction (2s complement add) in

effect subtracts the characteristic from the final step count to arrive at the exponent:

111101 final step count
100100 TAD characteristic
100001 exponent

The NORM(S) logic functions are very similar to the LLS(S) functions. Table 3-13 lists the
functions for a two-position LLSS instruction. The functions for a NORMS instruction requiring only
two shifts to normalize can be correlated with those of Table 3-13.

In the NORMS case, any positive integer whose most=significant 1 bit is located in AC03
requires two shifts to normalize. Likewise, any negative integer whose most=significant O bit is in AC03
requires two shifts to normalize. Substituting the posifive—i.nfeger NORMS case in the listings of

Table 3-13, the following NORMS functions become apparent.

75 SA09(1)ASAT0(0)ASAT1(0) = NORM KE4
43 SU2(1) = 011011 = SC KE2
41 Same

54 R-PULSE = 011100 — SC KE2
50 Same, first shift

42 Same, first shift, plus:

R-PULSE = 011101 = SC
EAE STROBE DLYDAEAE-R(1)ANORMAO BUSOOAO BUSO1=SCOV(T) KE2

55 Same, second shift

53 Same, second shift, plus:

R-PULSE = 011110 — SC KE2
EAE STROBE DLYDAEAE-R(1)ANORMAOBUSO0AO BUSOT = SCOV(1) KE2

56,57,50,42,55,53,56,57,40,10 Same

Although the execution of a NORM(S) instruction cannot be interrupted by a program interrupt
(PI) or an automatic priority interrupt (API) request, the central processor can grant such a request be-
fore the executed NORM(S) results can be extracted from the EAE registers and processed. Therefore,
if interrupt-accessed subroutines are to make use of the EAE, the following instruction sequences are
suggested to preserve the register contents during the interrupt and to restore them to the EAE upon com=

pletion of the interrupt service routine.

3-22

/SAVE EAE REGISTERS DURING INTERRUPT

JMS SUBENTR
SUBENTR, 0

DAC ACSAVE

LACQ

DAC MQSAVE

LACS

DAC SCSAVE

LAC SCSAVE
XOR (77

TAD (640402
AND (640477
DAC.+1

HLT*

LAC MQSAVE
LMQ

LAC ACSAVE
DBR

JMP I SUBENTR

/SAVE AC CONTENTS
/MOVE MQ TO AC
/SAVE MQ CONTENTS
/MOVE SC TO AC
/SAVE SC CONTENTS

/COMPLEMENT STEP COUNT

/DEVELOP PSEUDO NORM

/DELETE POSSIBLE STEP COUNT OVERFLOW
/PLACE NORM IN SEQUENCE

/STEP COUNT TO SC

/

/LOAD THE MQ

/LOAD THE AC

/RESTORE PC, LINK, ETC

Restoration of the step count to the SC requires that the 2s complemented quantity, taken

from the SC at the time of interrupt, be complemented, then combined with the pseudo NORM instruc-

tion. The step count following TAD,AND is one lless (1s complement) than the actual value produced

by the previous normalization (2s complement). Execution of the pseudo NORM instruction, then, 2s

complements this step count into the SC, and in shifting the AC and MQ left one bit position adds the

necessary 1 to the SC to produce the correctly restored step count (the 6404XX present in the AC from

TAD, AND shifts to become 501XXX). From the previous two-shift NORM(S) sample:

011110 LAC ACSAVE
111111 XOR (77
100001
64048 000010 TAD (640402
100011
64044 111111 AND (640477
64044 100011 DEPOSIT IN HLT* = 640443 = NORM
NORM = 011100 Is complement — SC
011101 2s complement — SC
011110 shift once, step SC

The DBR instruction preceding the JMP I subroutine termination primes the computer for resto-

ration of the interrupted program. This restoration occurs during JMP 1. During this time, the PC and

*Good programming practices dictate that instructions to be developed at "run" time be represented by
HLT instructions in the source program. If the development does not occur, the HLT will facilitate de-

bugging the program,

3-23

LINK are restored to the contents existing at the time of interrupt. The memory protect and extended
memory options, if in the system, are restored to their on or off status. Refer to the PDP-9 Maintenance

Manual and option manuals for details.

3.7 MULTIPLY INSTRUCTIONS

The MUL(S) instruction, Table 3-16, multiplies the contents of the AC (multiplier) by the
contents of the next sequential core memory location (multiplicand) to form a product in the AC and
MQ. Bits 12 through 17 in the instruction are usually programmed for a step count of 228 (1810), repre-
senting the multiplication of one 18-bit quantity (sign bit and 17 magnitude bits for MULS) by another
to produce a 36-bit product. When such precision is not required, the microprogrammed step count can

be decreased by subtracting the appropriate number "n" from the instruction code. The product is al-

ways scaled 18-n from MQ17. If "n" is programmed in the instruction, the 18-n lower order bits in the

long register are meaningless.

Table 3-16
EAE MUL Instruction Format
Op Code MUL Commands Product
648]8 Precision
01 2|3 4 516 7 819 10 11112 13 14|15 16 17
5 3 1 X X MUL
5 7 1 X X MULS

For a MUL instruction the LINK must previously have been initialized to 0 and remains 0.
During the preparatory phase the multiplier is transferred from the AC to the MQ, the AC is cleared,
and the SC is set to the 2s complement of the step count in bits 12 through 17 of the instruction. A core
memory cycle takes place to read the multiplicand into the MB. The arithmetic phase, executed as
multiplication of one unsigned quantity by another (binary point of no consequence}, halts when the SC
counts up to 0.

For a MULS instruction a previous LAC/GSM/DAC CAND sequence stores the absolute value
of the multiplicand in memory and places the original sign of the multiplicand in the LINK. During the
preparatory phase of MULS, a core memory cycle reads the absolute value multiplicand into the MB,
transfers the LINK content to a TEMPorary storage flip-flop in the EAE, and resets the LINK. The mul-
tiplier is transferred to the MQ and is 1s complemented if negative, the AC is cleared to O, and the SC
is initialized to the 2s complement of the step count in bits 12 through 17 of the instruction. The arith-

metic phase, executed as multiplication of one signed quantity by another (sign bit plus 17 magnitude

3-24

bits, binary point of no consequence), halts when the SC counts up to 0. Bits ACO0 and ACO1 each
receive the sign of the product; the remaining AC and MQ bits represent the magnitude.
From the above description of MULS, it can be seen that the arithmetic phase always starts

with positive, like-signed quantities in the MQ (multiplier) and the MB (multiplicand). The TEMPorary

storage flip-flop which receives the original sign of the multiplicand (TEMP3, drawing KE3) acts upon
the MQ SIGN and EAE SIGN flip-flops which perform certain complementary functions during the
arithmetic phase to arrive at the correctly signed product.

Thus, the complementary functions govern the four signed multiply situations as follows.

txt+t=+ (behaves as simple unsigned multiply, no complementing
of the final product)

tx=-=- (negative multiplier is first complemented in preparatory
phase, final product complemented after arithmetic phase)

-xt+=- (EAE GSM sets LINK, complements multiplicand; MULS
complements final product after arithmetic phase)

-x-=+ (EAE GSM sets LINK, complements multiplicand; MULS

complements multiplier in preparatory phase; no comple-
menting of final product)

The algorithm for multiplication using the EAE is sample, add, and shift right. Each bit of
the'multiplier is sampled, starting with the least significant bit. If the sampled bit is a 1, the multi-
plicand is added to the partial product. The partial product and the multiplier are then shifted right
one position for the next multiplier bit sampling. If the sampled bit is a 0, zeros are added to the
partial product. With each shift the content of the least significant bit is lost. Multiplication ends
when the SC, up-counted with each shift, reaches 0.

A sample program for signed multiplication of two positive numbers, 28 X 58 follows. The
logic functions that perform the MULS operations are tabulated in Table 3-17. Table 3-18 is a listing
of the arithmetic operations by process word functions.” The sample program and the microprogrammed
bits 12 through 17 in the MULS instruction reflect an initial step count of 048, resulting in a product
precision of eight bits. The MULS instruction is used here to explain EAE SIGN operations; actually,
the sample program can be modified for MUL by eliminating the GSM sequence if dealing with unsigned
numbers. Tables 3-19, 3-20, and 3-21 list the ramifications of Table 3-17 for different sign situations.

/MULTIPLY 28 x5

8
ST, 0200 200100 LAC CAND /LOAD MULTIPLICAND INTO AC
0201 100500 JMS MPY /STORE MAIN PROGRAM ADDRESS IN 0500
/AND JUMP TO MPY SUBROUTINE
0202 200101 LAC PLIER /LOAD MULTIPLIER INTO AC
0203 /MAIN PROGRAM RE-ENTRY

*Table 3-18 utilizes 4-bit binary numbers for simplicity. The actual result obtained in multiplying
2_x 5_ is 000000, in the AC and 5000008 in the MQ. Fourteen more shifts to the right would align
the answer as 12g~ (MQ000012g).

3-25

MPY 0500 000202 PC /MAIN PROGRAM ADDRESS
0501 664000 GSM /STORE CAND SIGN IN LINK AND
/ABSOLUTE VALUE IN AC
0502 040505 DAC .+3 /DEPOSIT CAND IN 0505
0503 420500 XCTH*MPY /LOAD MULTIPLIER INTO AC
0504 657122 MULS /FETCH CAND AND MULTIPLY
=g 0505 000002 Mey
0506 440500 ISZ B /INCREMENT MAIN PROGRAM ADDRESS
0507 620500 JMP X0 l’\?(/JUMP TO MAIN PROGRAM
Chun 0100 000002 MULTIPLICAND
0101 000005 MULTIPLIER
W-'i{)‘
Table 3-17
0010
MULS Functions x 0101
657104 Multiply, Signed (Four Steps) 28 X 58
Process Function Drawing No.
75 (ACO,ARI,EAE,LI,CONT,CMA43) KC18
ACO(1)ANOSHAARI(1) = AC = AR KC20-21
SA09(0)ASATO(0)ASATI(1) = MUL KE4
EAE(1)AARI(1) = SUI1(1) KE3
SUI(1) =0 = SCOV,SCOV2,FIRST, EAE RUN, EAE SIGN,MQ SIGN| KE2-3
SUT(T)ASETUP = SC CLR KE2
SCCLR=0 —SC KE2
SUT(1)AMBO7(1) = EAE OR ARO KE3
LI(1) = ADRL = LAR(0) KC15
LI(1) = ADRL — TEMP3(0) KE3
EAE(1) =0 = EN CMPL KE3
TEMP3(0) = condition MQ SIGN MUL = condition MQ SIGN KE3
CM STROBEACONT(1) = GO TO 43 KC16
43 (ACI,EAE,CONT,CMAA41) KC18
CM STROBEAEAE OR ARO = ARO(1) KC19
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
EAE(1)AACI(1)ASETUP = SU2(1) KE3
SU2(1) = MB12-17 = SC = 111011 KE2
LI(0) = LAR(0) = LINK(O) KC15
CM STROBEACONT(1) = GO TO 41 KC16
41 (ACO,MQI,EAE,CONT,CMA54) KC18
ACO(1)ANOSHAMQI(1) = AC = MQ KC20-21
CM STROBEACONT(1) = GO TO 54 KC16
54 (ACI,EAE-R,CONT,CMA40) KC18
ACI(1) =0 = AC KC20
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 111100 — SC KE2
EAE-R(1) = O BUS L = LINK — TEMP2(0) KE3
EAE(O)ATEMP3(0) = MQ SIGN(1) KE3

3-26

Table 3-17 (cont)
MULS Functions

657104 Multiply, Signed (Four Steps) 28 X 58
Process Function I Drawing No.
54(cont) MQ SIGN(1) = condition EAE SIGN KE3
EAE-R(1)ASCOV2(0) = ADDR 10 KE3
EAE-R(1)AEIRO9(0)ASCOV2(0)AEAE RUN(0) = ODD ADDR KE3
CM STROBEACONT(1)ACMA40AADDR T0AODD ADDR = GO TO 51 KC16
51 (PCO,SM, MBI, CMA52) KCI18
PCO(1) ANOSHAMBI(1) = PC = MB (CAND ADDRESS) KC20-21
SM(1)ACLK = FETCH CAND MC2
SM(T)ACLK = CM STROBE KC16
CM STROBE = GO TO 52 KC17
52 (MBO,+1,PCI, LI,CMA50) KC18
+1(1) =CIl7 KCl14
MBO (1) ANOSHACIT7APCI(1) = MB (CAND ADDRESS) +1 — PC KC20-21
+1(1) = A BUS LINK — ADRL KC15
LI(1)=ADRL—LAR(0) LI(T) = ADRL — TEMP3(0) KC15
LI(])/\CESNT = EAE CLR RQ KE3
EAE CLR RQ = IN CLR, CLR KC16
IN CLR =CLR [=0— PCI, MBO KCI19
CLR=0—-+1, 1 = SAO KC19
IN CLR =1 — MBI KC19
SAO(1) = A BUS LINK — ADRL (Since +1 is cleared by CLR, KC15
SAO(1) inhibits erroneous setting
of LAR)
SAO(T)ANOSHAMBI(1) = SA(CAND) — MB KC20-21
MEM STROBE = GO TO 50 KC16
50 (MQO, ARI,EAE-P,CONT,CMA42) KC18
A
\ EAE-P(1)AEAE RUN (0) = FIRST(1) KE3
EAE-P(1)ASCOV2(0) = EAE RUN(T) KE3
FIRST(T)AEAE RUN(T)AMQ SIGN(1)=CMPL EAE SIGN=EAE SIGN(1)| KE3
FIRST(1)AMUL = MQ SIGN (1) KE3
MQ SIGN(1) = condition EAE SIGN
Sample MQO(1)ANOSHAARI(1) = MQ — AR KC20-21
EAE-P(])’)\MUL/\SCOV(O)/\O BUS17(1) = EAE OR MBO KE3
EAE-P(1) = O BUS L = LINK = ADRL — TEMP1 (not used) KE3
LI(0) = LAR(0) = LINK(0) KC15
W CM STROBEACONT(1) = GO TO 42 KC16
42 (ACO,MQI,EAE-R,CONT,CMA55) KC18
lr‘ EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 111101 = SC KE2
CM STROBEAEAE OR MBO = MBO(1) KC19
EAE-R(1)ASCOV2(0)AEAE RUN(T)AEIRT0(0)AEIR11(1) = IN SHR1 KE4
IN SHR1 = SHRI1 KC13
ACO(1)ASHRIAMQI(1) = ACnh — MQnt1 -7 KC20-21
sﬁ?r?i MBO(ASHRIAMGI(T) = Mn — MQn+1] AC+MB M4 KC20-21

3-27

Table 3-17 (cont)
MULS Functions

657104 Multiply, Signed (Four Steps) 25 x 5
Process Function Drawing No.
42 (cont) EAE-R(1) = ADRL — END BIT00 (C&00=0) KC18
SHR1 = END BIT00 — MQOO KC20
SHR1 = ADR17 = O BUS L KC15
EAE-R(1) = O BUS L — TEMP2 KE3
EAE-R(1) = TEMP1 = LINK — END BIT17 (lost) KC15
CM STROBEACONT(1) = GO TO 55 KC16
55 (ARO,ACI,EAE-P,CONT,CMA53) KC18
EAE-P(1)AEAE RUN(1) = FIRST(0) KE3
EAE-P(1)AFIRST(0)ASCOV2(0)AEAE RUN (1)AEIR10(0)AEIRT1(1)
= IN SHRI1 KE4
IN SHR1 = SHR1 KC13
Shift 1 ARO(1)ASHRTIAACI(1) = ARn = ACntl _ KC20-21
Sam Ie, EAE-P(1)AMULASCOV (0)AO BUS17(0) = EAE OR MBO KE3
P SHR1 = ADR17 = O BUS L KC15
EAE-P(1) = O BUS L — TEMP1 (lost) KE3
EAE-P(1) = TEMP2 — END BIT00 KC15
SHR1 = END BIT00 — ACO00 KC20
CM STROBEACONT(1) = GO TO 53 KC16
53 (MQO, ARI, EAE-R, CONT , CMA56) KC18
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE =111110 = SC KE2
EAE-R(1)ASCOV2(0)AEAE RUN(1)AEIRTO(0)AEIRT1(1) = IN SHR1 KE4
IN SHRT = SHR1 KC13
Shift 2 MQO(1)ASHRIAARI(1) = MQn — ARnt1 KC20-21
Add Zerc;s EAE-R(1) = ADRL = END BIT00 KC15
SHR1 = END BITOO = ARO00O KC20
SHR1 = ADR17 = O BUS L KC15
EAE-R(1) = O BUS L — TEMP2 KE3
CM STROBEACONT(1) = GO TO 56 KC16
56 (ACO,MQI,EAE-P,CONT,CMA57) KC18
A EAE-P(1)AFIRST(0)ASCOV2(0)AEAE RUN(1)AEIRTO(0)AEIRT1(1)
=[N SHR1 KE4
IN SHR1 = SHR1 KC13
ACO(1)ASHRIAMQI(1) = ACn = MQn+1 KC20-21
Shift 2, EAE-P(1)AMULASCOV (0)AO BUS17(1) = EAE OR MBO KE3
Sample SHR1 = ADR17 - O BUS L KC15
EAE-P(1) = O BUS L — TEMP1 (lost) KE3
EAE-P(1) = TEMP2 — END BIT00 KC15
SHR1 = END BITO0 — MQO00 KC20
v CM STROBEACONT(1) = GO TO 57 KC16

3-28

Table 3-17 (cont)
MULS Functions
2. x5

657104 Multiply, Signed (Four Steps) 8" 8
Process Function Drawing No.
57 (ARO,ACI,EAE-R,CONT,CMA40) KC18
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 111111 = SC = SC FULL KE2
EAE-R(1)ASCOV2(0)AEAE RUN(T)AEIRTO(0)AEIRTI(T) = SHR1 KE4
IN SHR1 = SHR1 KC13
CM STROBEAEAE OR MBO = MBO(T) KC19
Add, < RO(1)ASHRTIAACI(1) = ARn — ACn+] KC20-21
Shift 3 ® IMBO(1)ASHRIAACI(T) = MBn — ACn+1 KC20-21
EAE-R(1) = ADRL— END BITO00 {C200 8} KC15
SHR1 = END BITO0 — AC00 KC20
SHR1 = ADR17 = O BUS L KC15
EAE-R(1) = O BUS L — TEMP2 KE3
EAE-R(1) = TEMPT — END BIT17 (lost) KC15
EAE-R(1)ASCOV2(0) = ADDR10 KE3
v CM STROBEACONT(1)ACMA40AADDR 10 = GO TO 50 KC16
50 (MQO,ARI,EAE-P,CONT,CMA42) KC18
EAE-P(1)AFIRST(0)ASCOV2(0)AEAE RUN(1)AEIRTO(0)AEIRT1(1)
= IN SHR1 KE4
IN SHRI = SHR1 KC13
MQO(1)ASHRIAARI(1) = MQn — ARn+1 KC20-21
Shift 3, EAE-P(1)AMULASCOV (0)AO BUS17(0) = EAE OR MBO KE3
Sample SHR1 = ADRI17 = O BUS L KC15
EAE-P(1) = O BUS L = TEMP1 (lost) KE3
EAE-P(1) = TEMP2 — END BIT00 KC15
SHR1 = END BITOO — AROO KC20
CM STROBEACONT(1) = GO TO 42 KC16
42 (ACO,MQI,EAE=-R,CONT,CMA55) KC18
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 000000 — SC KE2
EAE-R(T)ASC FULL = SCOV(1) KE2
EAE-R(1)ASCOV2(0)AEAE RUN(1)AEIRTO(0O)AEIRT1(1) = IN SHRI1 KE4
IN SHR1 = SHRI KC13
Shift 4, ACO(1)ASHRTAMQI(1) = ACh = MQn+1 KC20-21
Add Zeros EAE-R(1) = ADRL = END BITOO KC15
SHR1 = END BIT0O0 = MQO00 KC20
SHR1 = ADR17 =+ O BUS L KC15
EAE-R(1) = O BUS L — TEMP2 KC15
EAE-R(1) = TEMP1 = END BIT17 (lost) KC15
CM STROBEACONT(1) = GO TO 55 KC16

3-29

Table 3-17 (cont)
MULS Functions

657104 Multiply, Signed (Four Steps) 2g x 5
Process Function Drawing No.
55 (ARO, ACI,EAE-P, CONT,CMA53) KC18
A EAE-P(1)AFIRST(0)ASCOV2(Q)AEAE RUN(1)AEIR10(0) AEIR11(1)
= IN SHR1 KE4
IN SHR1 = SHR1 KC13
Shift 4 ARO(1)ASHRIAACI(1) = ARn — ACn+1 KC20-21
No Sample EAE-P(1)AMULASCOV(1) = EAE OR MBO KE3
SHR1 = ADR17 — O BUS L KC15
EAE-P(1) = O BUS L — TEMPI1 (lost) KE3
EAE-P(1) = TEMP2 — END BIT00 KC15
SHR1 = END BITO0 — AC00 KC20
‘h CM STROBEACONT(1) = GO TO 53 KC16
53 (MQO, ARI, EAE-R, CONT,CMA56) KC18
EAE-R(1)ASCOV(1) = R=PULSE KE2
EAE-R(1)ASCOV(1) = SCOV2(1) KE3
scov2(1) = IN SHR1 KE4
MQO(1)ANOSHAARI(1) = MQ — AR KC20-21
CM STROBEACONT(1) = GO TO 56 KC16
56 (ACO,MQI,EAE-P,CONT,CMA57) KC18
SCOV2(1) = TN SHRI KE4
EAE-P(1)AACO(1)AMQI(1)AEIRO9(0)ASCOV2(1) = EN CMPL(1) KE3
EN CMPL(1)AMULAMQ SIGN(1)=CMPL EAE SIGN=EAE SIGN(0)] KE3
EAE SIGN(0) = CMPL KE3
ACO(1)ANOSHAMQI(1)ACMPL = AC = MQ KC20-21
CM STROBEACONT(1) = GO TO 57 KC16
57 (ARO,ACI, EAE-R,CONT, CMA40) KC18
SCOV2(1) = IN SHRT g KE4
EAE-R(1)ASCOV2(1) =RUN(0) KE3
EAE-R(1)ASCOV2(1)ARUN (0) =ADDR 10 KE3
EN CMPLAEAE SIGN (0) = CMPL KE3
ARO(1)ANOSHAACI(1)ATMPL= AR — AC KC20-21
CM STROBEACONT(1)AADDR 10= GO TO 40 KC16
40 (EAE,DONE,CMA10) KC18
CLK(B) DLYDAEAE(1)ADONE(1) = INPUT IO RESTART KD3
IO RESTART = GO TO 10 KC16
10 (PCO,SM,CMA21) KC18

BGN next fetch

3-30

Table 3-18
MULS Arithmetic

8 * °g
AC MQ AR
sample
50 0000 0101 PLIER —=0101
42 0010 CAND
CRY<-0010 SHR1——>0001 o101
L / A
/ r9|osf
55 0010 0001 0101
€] SHR1 I —> sample
4
53 0010 0001 SHR1 ———=0000
—>lost
56 0010 SHRT —=1001 0000
sample
57 0001 <, 1001 0010 CAND
A CRY <— 0010—
SHR1 f
50 0001 1001 SHRI1 >0100
I>{ost
sample
v
42 0001 SHR1 > 0000 0100
—> lost
55 1010 0000 0100
<—L SHR1 r
53 1010 0000 > 0000
56 1010 > 1010 0000
57 0000 <—L 1010 I—OOOO

IF—— answer ——_al

128

3-31

Table 3-19
MULS Functions

657104 Multiply, Signed (Four Steps) 2g -5g
Process Function
75 TEMP3(0) = condition MQ SIGN
MUL = condition MQ SIGN
ACO00(1) = condition EAE SIGN
EAE(1) = 0 — EN CMPL
43 SU2(T)AMBO6(T)AACO0(1) = EAE SIGN (1)
SU2(])A_[E_I_R_O9(O)AEAE SIGN(1)AEIR11(1) = CMPL
CMPL = AR - AC
4] AC = MQ
54 EAE(O)ATEMP3(0) = MQ SIGN(1)
MQ SIGN(1) = condition EAE SIGN
0 = AC
51 CAND fetch
52 MB+1 — PC
50 FIRST(1) AEAE RUN(T) AMQ SIGN(1)AEAE SIGN (1) = EAE SIGN(0)
FIRST(T) AMUL = MQ SIGN(1)
42,55,53 same as MULS 28 X 58
56 EAE-P(1)ASCOV2(T)AMQI(T)AERO2(0)AACO(1) = EN CMPL(1)
MULAEN CMPLAMQ SIGN(1)AEAE SIGN (0) = EAE SIGN(1)
EN CMPL(T)AEAE SIGN(1) = CMPL
CMPL = AC = MQ
57 EN CMPLAEAE SIGN (1) = CMPL
CMPL = AR = AC
Table 3-20
MULS Functions
657104 Multiply, Signed (Four Steps) 2 >
Process Function
75 TEMP3(1) = no conditioning of MQ SIGN
ACO00(0) = no conditioning of EAE SIGN
MUL = condition MQ SIGN EAE(1) =0 EN CMPL
43 AR — AC
41 AC = MQ
54 0 = AC
51 CAND fetch
52 MB+1 — PC
50 FIRST(1)AMUL = MQ SIGN (1)

FIRST(1)AEAE RUN(1) = no effect on EAE SIGN

3-32

Table 3-20 (cont)
MULS Functions
-2. x5

657104 Multiply, Signed (Four Steps) 8" 78
Process Function
42,55,53 | same as MULS 28 x 58
56 EAE-P(1)ASCOV2(1) AMQI(T)AEIROP(0)AACO(1) = EN CMPL(1)
EN CMPL(1)AMULAMQ SIGN(1)AEAE SIGN (0) = EAE SIGN (1)
EN CMPL(1)AEAE SIGN (1) = CMPL
CMPL =AC - MQ
57 EN CMPLAEAE SIGN (1) = CMPL
CMPL = AR = AC
Table 3-21
MULS Functions
657104 Multiply, Signed (Four Steps) _28 x =5g
Process Function
75 TEMP3(1) = no conditioning of MQ SIGN

ACO00(1) = condition EAE SIGN
MUL = condition MQ SIGN
EAE(1) = 0 — EN CMPL

43 SU2(1)AMBO6(1)AACO0(1) = EAE SIGN (1)
SU2(1)AEIRO9(0)AEAE SIGN(1)AERT1(1) = CMPL
CMPL = AR — AC

41 AC = MQ

54 0 — AC

51 CAND fetch

52 MB+1 — PC

50 FIRST(1)AMUL = MQ SIGN(1)

FIRST(1)AEAE RUN(1) = no effect on EAE SIGN

42,55,53 | same as MULS 28 X 58

56 EAE-P(1)ASCOV2(1)AMQI(1)AEIRO9(0)AACO(1) = EN CMPL(1)
EN CMPL(1) AMULAMQ SIGN(1)AEAE SIGN (1) = EAE SIGN (0)
EN CMPL(1)AEAE SIGN(0) = CMPL

AC = MQ
57 EN CMPL(T1)AEAE SIGN(0) = CMPL
AR = AC
3.8 DIVIDE INSTRUCTIONS

Six divide instructions including integer divide and fraction divide, Table 3-22, divide the

contents of the AC and MQ (integer dividend, fraction dividend, long register dividend) by the contents

3-33

of the next sequential core memory location (divisor) to form a quotient in the MQ and remainder in the
AC. Bits 12 through 17 in the instruction are usually programmed for a step count of 23g (1910),
representing division of a 36-bit dividend (actual or implied) by an 18-bit divisor. When such precision
is not required, the microprogrammed step count can be decreased by subtracting the appropriate number
"n" from the instruction code. The quotient is always right-justified in the MQ and the remainder right-
justified in the AC. If "-n" is programmed in the instruction, the n high-order bits in the MQ and AC

are meaningless.

Table 3-22
EAE DIV Instruction Format
Op Code DIV Commands Precision of
648 33 QUOT/Remainder
0 1 2{3 4 516 7 8(9 10 11|12 13 14|15 16 17
6 4 0 3 X X DIV
6 4 4 3 X X DIVS
6 5 3 3 X X IDIV
6 5 7 3 X X IDIVS
6 5 0 3 X X FRDIV
6 5 4 3 X X FRDIVS

Instructions may be programmed for division of signed or unsigned quantities. Divide over-
flow occurs if the quotient exceeds the capacity of the MQ (7777778, unsigned; i3777778, signed).
The LINK sets to indicate an overflow, divide execution ends in 5 computer cycles, and the register

contents are meaningless. The computer goes on to the next instruction.

3.8.1 DIV(S) Instruction

The DIV(S) instruction divides the contents of the AC and MQ (long register dividend) by the
contents of the next sequential core memory location to form a quotient in the MQ and remainder in
the AC.

For a DIV instruction the LINK must previously have been set to 0 and remains O unless divide
overflow occurs (Section 3.8.4). During the preparatory phase, the SC is set to the 2s complement of
the step count in bits 12 through 17 of the instruction. A core memory cycle takes place to read the
divisor into the MB. The arithmetic phase, executed as the division of one unsigned quantity by an-
other (binary point of no consequence), halts when the SC counts up to 0.

For a DIVS instruction, a previous LAC/GSM/DAC DIVR sequence stores the absolute value
of the divisor in memory and places the original sign of the divisor in the LINK. During the preparatory

phase of DIVS, a core memory cycle reads the absolute value divisor into the MB, transfers the LINK

3-34

content to the temporary storage register TEMP3 in the EAE, and resets the LINK. The SC is set to the
2s complement of the step count in bits 12 through 17 of the instruction. The arithmetic phase, executed
as the division of one signed quantity by another (binary point of no consequence), halts when the SC
counts up to 0. The dividend contains a double sign in bits ACO0 and ACO1. MQOO receives the sign
of the quotient, and ACOO receives the original sign of the dividend.

As with the execution of MULS, the arithmetic phase of DIVS starts with positive, like-signed
quantities in the divisor and dividend. TEMP3, MQ SIGN, and EAE SIGN flip-flops act to 1s comple-
ment the MQ portion of a negative dividend during the preparatory phase and to perform other comple-

mentary functions during the arithmetic phase to arrive at the correctly signed quotient as follows.

+F+ =4 (behaves as simple unsigned divide, final quotient
complemented after arithmetic phase)
+Fa=a (EAE GSM sets LINK, complements divisor; final

quotient not complemented)

-F+=- (MQ portion of dividend complemented during pre=-
paratory phase; quotient not complemented; remainder
complemented after arithmetic phase)

-F-=+ (EAE GSM sets LINK, complements divisor; MQ por-
tion of dividend complemented during preparatory phase,
quotient complemented after arithmetic phase).

The algorithm for divide using the EAE is sample, add or subtract, and shift left. The divisor
is first subtracted from the AC portion of the dividend, and the result is shifted left. The LINK and
TEMP3 receive the most significant bit of the result for sampling. If the result is a negative number, the
divisor is added to the quotient; if the result is a positive number, the divisor is subtracted from the quo-
tient. The result is then shifted left one position for the next sampling. If in the first subtraction the
divisor is not greater than the AC portion of the dividend, divide overflow occurs, stopping divide oper-
ations (Section 3.8.4). The subtract operation takes the form of a 2s complement add.

Following is a sample program for the signed division of two positive numbers, 128 * 58. The
logic functions that perform the DIVS operations are listed in Table 3-23. Table 3-24 is a listing of the
arithmetic operations by process word functions. The sample program and the microprogrammed bits 12
through 17 in the DIVS instruction reflect an initial step count of 058’ resulting in a four-bit precision
of the quotient and remainder. The DIVS instruction is used here for purposes of explanation of the
EAE SIGN operations; actually, the sample program can be modified for DIV by eliminating the GSM
sequence if dealing with unsigned numbers. Tables 3-25, 3-26, and 3-27 list the ramifications of

Table 3-23 for different sign situations.

/DIVIDE 124 *5¢
ST, 0500 200100 LAC DIVR /LOAD DIVISOR INTO AC
0501 100200 JMS DIV /STORE PROGRAM ADDRESS IN 0200 AND
/JUMP TO DIV SUBROUTINE
0502 /MAIN PROGRAM RE-ENTRY

3-35

DIV 0200 000502 PC /PROGRAM ADDRESS

0201 664000 GSM /STORE DIVR SIGN IN LINK AND ABSOLUTE
/VALUE IN AC

*0202 040207 DAC. +5 /DEPOSIT DIVR IN 0207

0203 200101 LAC DIVDI /LOAD HALF DIVIDEND INTO AC

0204 652000 LMQ /MOVE TO MQ

0205 200102 LAC DIVD2 /LOAD HALF DIVIDEND INTO AC

0206 644323 DIVS /FETCH DIVR AND DIVIDE

DIVR 0207 000005
0210 620200 JMP 1200 /RETURN TO MAIN PROGRAM

0100 000005 DIVISOR
0101 000012 DIVIDEND (LEAST SIGNIFICANT)
0102 000000 DIVIDEND (MOST SIGNIFICANT)

NOTE: The following discussion of a divide signed operation is usinga 4 bit divisor and 8 bit dividend instead
of 18and 36. Referencestoa givenregisterbit 17 arereferring to the least significant bit of the applicable

register.
Table 3-23
DIVS Functions 0101/0000 1010
644305 DiQide, Signed (Five Steps)]28 . 58
Process Function Drawing No.
75 (ACO,ARI,EAE,LI,CONT,CMA43) KCi18
ACO(1)ANOSHAARI(1) = AC = AR KC20-21
SAO09(0)ASAT0(1)ASAT1(1) = DIV KE4
EAE(1)AARI(1) = SU1(1) KE3
SU1(1) =0 = SCOV,SCOV2,FIRST,EAE RUN,MQ SIGN, EAE SIGN| KE2-3
SUT(1)ASETUP = SC CLR KE2
SCCLR=0-=5SC KE2
SUT(1)AMB05(0) = EAE OR MQO KE3
LI(1) = O BUS L = ADRL — LAR(0) KC15
LI(1) = ADRL = LINK — TEMP3(0) KE3
TEMP3(0) = condition MQ SIGN KE3
EAE(1) =0 = EN CMPL KE3
ACO00(0) = no conditioning of EAE SIGN KE3
CM STROBEACONT(1) = GO TO 43 KC16
43 (ACI,EAE,CONT,CMA41) KC18
EAE(1)AACI(1)ASETUP = SU2(1) KE3
SU2(1) = MB12-17 = 111010 = SC KE2
SU2(1) AMB06(1)AACO00(0) = no effect on EAE SIGN (EAE SIGN 0) KE3
CM STROBEAEAE OR MQO = MQO(1) KC19
MQO(1)ANOSHAACI(1) = MQ = AC KC20-21
LI(0) = LAR(0) — LINK(0) KC15
CM STROBEACONT(1) = GO TO 41 KC16
4] (MQI,ACO,EAE,CONT,CMA54) KC18
ACO(1)ANOSHAMQI(1) = AC = MQ KC20-21
MQI(1)AMBO08(0) = EAE OR ARO KE3
CM STROBEACONT(1) = GO TO 54 KC16

3-36

.

Table 3-23 (cont)
DIVS Functions

644305 Divide, Signed (Five Steps)]28 58
Process Function Drawing No.
54 (ACI,EAE-R, CONT, CMAA40) KC18
CM STROBEAEAE OR ARO = ARO(1) KC19
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 111011 = SC KE2
EAE-R(1)ASCOV2(0) = ADDR 10 KE3
EAE-R(1)AEIR0O9(0)ASCOV2(0)AEAE RUN(0) = ODD ADDR KE3
EAE(0)ATEMP3(0) = MQ SIGN(1) KE3
MQ SIGN(1) = condition EAE SIGN KE3
EAE-R(1) = O BUS L = LINK — TEMP2(0) KE3
CM STROBEACONT(1)ACMA40AADDR 10AODD ADDR = GO TO 51 KC16
51 (PCO, SM, MBI, CMA52) KC18
PCO(1)ANOSHAMBI(1) = PC — MB (DIVR ADDRESS) KC20-21
SM(1)ACLK = FETCH DIVR MC2
SM(1)ACLK = CM STROBE KC16
CM STROBE = GO TO 52 KC16
52 (MBO, +1,PCI, LI, CMA50) KC18
+1(1) = C17 KC14
MBO(1)ANOSHACI17ZAPCI(1) = MB (DIVR ADDRESS) +1 — PC KC20-21
+1(1) = A BUS LINK — ADRL KC15
LI(1) = ADRL — LAR(0) KC15
LI(1)ACONT(0) = EAE CLR RQ KE3
LI(1)AADRL = TEMP3(0) KE3
EAE CLR RQ = IN CLR, CLR KC16
IN CLR = CLR = 0 — PCI, MBO KC19
CLR=0—+1, 1 = SAO KC19
IN CLR = 1 — MBI KC19
SAO(1) ="A BUS LINK — ADRL KC15
SAO(1) ANOSHAMBI(1) = SA (DIVR) — MB KC20-21
MEM STROBE = GO TO 50 KC16
50 (MQO, ARI, EAE-P,CONT, CMA42) KC18
A EAE-P(1)ASCOV2(0) = EAE RUN(1) KE3
EAE-P(1)AEAE RUN(0) = FIRST(1) KE3
FIRST(1)AEAE RUN(1)AMQ SIGN(1)=CMPL EAE SIGN=EAE SIGN(1)| KE3
EAE-P(1)ASCOV2(0)ADIV = IN SHLI KE4
IN SHLI = SHLI KC13
MQO(1)ASHLIAARI(1) = MQn = ARn-1 KC20-21
Shift 1 SHL1 = ADR0OO = MQOO(1) = O BUS L KC15
Sample. EAE-P(1) = O BUS L — TEMPI(1) KE3
EAE-P(1) = TEMP2(0) — END BITOO (lost) KC15
EAE-P(1) = TEMP3(0) = END BIT17 KC15
SHL1 = END BITI7 — AR17(0) KC20
LI(0) = LAR(0) = LINK(0) KC15

3-37

Table 3-23 (cont)
DIVS Functions

644305 Divide, Signed (Five Steps)]28 28
Process Function Drawing No.
50 (cont) EAE-P(1)ASCOV(0O)ATEMP3(0)ADIV = EAE OR SUB KE3
EAE-P(1)ASCOV2(0)ADIV = EAE OR LI KE3
CM STROBEACONT(1) = GO TO 42 KC16
42 (ACO,MQI,EAE-R,CONT,CMA55) KC18
A CM STROBEAEAE OR SUB = SUB(1) KC19
CM STROBEAEAE OR LI = LI(1) KC19
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 111100 = SC KE2
EAE-R(T)ASCOV (0)AEAE RUN(T)ADIV = IN SHLI KE4
IN SHL1 = SHL1 ‘ KC13
EAE-R(1)ASUB(1) = CI17 KE3
Sub, SUB(1)ASHLIACITZAMQI(1) = MB+1 = MQn-1 KC20-21
Shiftl ACO(1)ASHLIAMQI(1) = ACnh = MQn-1 KC20-21
SHL1 = ADROO(1) = O BUS L KC15
EAE-R(1) = O BUS L — TEMP2(1) KE3
LI(1) = O BUS L = LAR(1) KC15
EAE-R(1) = TEMP1(1) = END BIT17 KC15
SHL1 = END BIT17 = MQ17(1) KC20
LINK(0O)ASUB(T)AEAE R(1) = A BUS LINK KC15
A BUS LINKACOO0 = ADRL KC15
LI(1) = ADRL — TEMP3(1) KE3
\ﬂ, CM STROBEACONT(1) = GO TO 55 KC16
55 (ARO,ACI,EAE-P,CONT,CMA53) KC18
A EAE-P(1)ASCOV2(0)ADIV = IN SHLI KE4
IN SHL1 = SHL1 KC13
EAE-P(T1)AEAE RUN(1) = FIRST(0) KE3
ARO(1)ASHLIAACI(1) = ARnh — ACn-1 KC20-21
SHL1 = ADROO(0) = O BUS L KC15
Shift 2 EAE-P(1) = O BUS L — TEMPI1(0) KE3
Sam |e’ EAE-P(1) = TEMP2(1) — END BITOO (lost) KC15
P EAE-P(1) = TEMP3(1) = END BIT17 KC15
SHL1 = END BIT17 = ACI17(1) KC20
EAE-P(1)ASCOV2(0)AEAE OR SUBAO BUS 17ADIV = EAE OR MBO KE3
LI(0) = LAR(1) = LINK(1) KC15
EAE-P(1)ASCOV2(0)ADIV = EAE OR LI KE3
W CM STROBEACONT(1) = GO TO 53 KC16
53 (MQO, ARI,EAE-R,CONT,CMA56) KC18
ﬁ CM STROBEAEAE OR MBO = MBO(1) KC19
CM STROBEAEAE OR LI = LI(1) KC19
EAE-R(1)ASCOV(0) = R-PULSE KE2
Add R-PULSE = 111101 = SC KE2
Shif; 2 EAE-R(1)ASCOV(0)AEAE RUN(1)ADIV = IN SHLI KE4
IN SHL1 = SHL1 KC13
MQO(1)ASHLIAARI(1) = MQn — ARn-1 KC20-21

3-38

Table 3-23 (cont)
DIVS Functions

12+ 5

644305 Divide, Signed (Five Steps) 8 8
Process Function Drawing No.
53 (cont) MBO(1)ASHLIAARI(1) = MBn — ARn-1 KC20-21
SHL1=ADR0O(1) = O BUS L KC15
EAE-R(1) = O BUS L — TEMP2(1) KE3
LI(1) = O BUS L— LAR(1) KC15
LI(1) = ADRL — TEMP3(1) KE3
EAE-R(1) = TEMP1(0) = END BIT17 KC15
SHL1 = END BIT17 — AR17(0) KC20
LINK(1)ASUB = A BUS LINK KC15
A BUS LINKATOO00 = ADRL KC15
v CM STROBEACONT(1) = GO TO 56 KC16
56 (ACO,MQI,EAE-P,CONT,CMA57) KC18
A EAE-P(1)ASCOV2(1)ADIV = IN SHLI KE4
IN SHL1T = SHLI KC13
ACO(1)ASHLIAMQI(1) = ACh = MQn-1 KC20-21
SHL1 = ADROO(1) = O BUS L KC15
EAE-P(1) = O BUS L — TEMPI1(1) KE3
Shift 3, EAE-P(1) = TEMP2(1) = END BITOO (lost) KC15
Sample EAE-P(1) = TEMP3(1) = END BIT17 KC15
SHL1 = END BIT17 = MQ17(1) KC20
EAE-P(1)ASCOV2(0)AEAE OR SUBAO BUS 17ADIV = EAE OR MBO| KE3
LI(0) = LAR(1) = LINK(1) KC15
EAE-P(1)ASCOV2(0)ADIV = EAE OR LI KE3
CM STROBEACONT(1) = GO TO 57 KC16
57 (ARO,ACI,EAE-R,CONT, CMA40) KC18
A CM STROBEAEAE OR MBO = MBO(1) KC19
CM STROBEAEAE OR LI = LI(1) KC19
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 111110 = SC KE2
EAE-R(1)ASCOV(0)AEAE RUN(T)ADIV = IN SHLI KE4
IN SHL1 = SHLI KC13
Add ARO(1)ASHLTAACI(1) = ARn = ACn-1 KC20-21
Shif 3 MBO(1)ASHLIAACI(1) = MBn = ACn-1 KC20-21
SHL1 = ADROO(1) = O BUS L KC15
EAE-R(1) = O BUS L — TEMP2(1) KE3
EAE-R(1) = TEMP1(1) = END BIT17 KC15
SHL1 = END BIT17 = AC17(1) KC20
LI(1) = O BUS L = LAR(1) KC15
LINK (1)ASUB = A BUS LINK KC15
A BUS LINKACOO00 = ADRL KC15
LI(1) = ADRL — TEMP3(1) KC15
EAE-R(1)ASCOV2(0) = ADDR 10 KE3
v CM STROBEACONT(1)ACMA40AADDR 10 = GO TO 50 KC16

3-39

Table 3-23 (cont)
DIVS Functions

644305 Divide, Signed (Five Steps)]28 58
Process Function Drawing No.
50 (MQO, ARI, EAE-P, CONT,CMA42) KC18
EAE-P(1)ASCOV2(0)ADIV = IN SHL1 KE4
IN SHLT = SHL1 KC13
MQO(1)ASHLTAARI(T) = MQn — ARn-~1 KC20-21
SHL1 = ADR0O(0) = O BUS L KC15
Shift 4 EAE-P(1) = O BUS L = TEMP1(0) KE3
Sample’ EAE-P(1) = TEMP2(1) = END BITO0O (lost) KC15
EAE-P(1) = TEMP3(1) — END BIT17 KC15
SHL1 = END BIT17 = AR17(1) KC20
LI(0) = LAR(T) — LINK(1) , KC15
EAE-P(1)ASCOV2(0)AEAE OR SUBAO BUS 17ADIV. = EAE OR MBO | KE3
EAE-P(1)ASCOV2(0)ADIV = EAE OR LI KE3
CM STROBEACONT(1) = GO TO 42 KC16
42 (ACO, MQI, EAE-R,CONT,CMAS55) KC18
A CM STROBEAEAE OR MBO = MBO(1) KC19
CM STROBEAEAE OR LI = LI(1) KC19
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 111111 — SC = SC FULL KE2
EAE-R(1)ASCOV(0)AEAE RUN(T)ADIV = SHL1 KE4
IN SHLT = SHLT KC13
ACO(T)ASHLTIAMQI(1) = ACn = MQn-1 KC20-21
Add, MBO(1)ASHLTAMQI(1) = MBn = MQn-1 KC20-21
Shift 4 SHL1 = ADR0OO(0) = O BUS L KC15
EAE-R(1) = O BUS L = TEMP2(0) KE3
LI(1) = O BUS L = LAR(0) KC15
EAE-R(1) = TEMP1(0) = END BIT17 KC15
SHL1 = END BIT17 = MQ17(0) KC20
LINK (1)ASUB = A BUS LINK KC15
A BUS LINKACOO00 = ADRL KC15
LI(1) = ADRL — TEMP3(0) KE3
v CM STROBEACONT(1) = GO TO 55 KC16
55 (ARG, ACI, EAE-P,CONT,CMA53) KC18
A EAE-P(1)ASCOV2(0)ADIV = IN SHLI KE4
IN SHL1 = SHLI1 KC13
ARO(1)ASHLIAACI(1) = ARn = ACn-1 KC20-21
SHL1 = ADR00O(0) = O BUS L KC15
Shift 5, EAE-P(1) = O BUS L — TEMP1(0) KE3
Sample EAE-P(1) = TEMP2(0) = END BITOO (lost) KC15
EAE-P(1) = TEMP3(0) — END BIT17 KC15
SHL1 = END BIT17 = AC17(0) KC20
EAE-P(1)ASCOV2(0)ADIV = EAE OR LI KE3
EAE-P(1)ASCOV (0)ATEMP3(0)ADIV = EAE OR SUB KE3
LI(0) = LAR(0) = LINK(0) KC15
CM STROBEACONT(1) = GO TO 53 KC16

3-40

Table 3-23 (cont)
DIVS Functions

12, + 5

644305 Divide, Signed (Five Steps) 8 78
Process Function Drawing No.
53 (MQO, ARI,EAE-R, CONT,CMA56) KCI18
CM STROBEAEAE OR SUB = SUB(1) KC19
CM STROBEAEAE OR LI = LI(1) KC19
EAE-R(1) = R=PULSE KE2
R-PULSE = 000000 — SC KE2
R-PULSEASC FULL = SCOV(1) KE2
SCOV(1) = IN SHL1 KE4
Sub SUB(1)AEAE-R(T) =CI17 KE3
SUB(1) ANOSHACIT7AARI®T) = MB+1 — AR KC20-21
MQO (1) ANOSHA ARI(T) = MQ — AR KC20-21
SUB(T)AEAE-R(T)ALINK(0) = A BUS LINK
A BUS LINKACOO00 = ADRL KC15
SHIFT= ADRL = O BUS L KC15
EAE-R(T) = O BUS L — TEMP2(1) KE3
LI(T) = O BUS L = LAR(1) KC15
LI(1) = ADRL — TEMP3(T) KE3
CM STROBEACONT(1) = GO TO 56 KC16
56 (ACO,MQI,EAE-P,CONT,CMA57) KC18
EAE-P(1)ASCOV2(0)ADIV = IN SHLI1 KE4
IN SHL1 = SHL1 KC13
ACO(1)ASHLIAMQI(1) = ACn — MQn-1 KC20-21
SHLT = ADROO(1) = O BUS L KC15
EAE-P(1) = O BUS L = TEMPI(1) KE3
Shift 5, EAE-P(1) = TEMP2(1) — END BITOO (lost) KC15
Sample EAE-P(1) = TEMP3(1) — END BIT17 KC15
SHLI = END BIT17 = MQ17(1) KC20
EAE-P(1)ASCOV2(0)AEAE OR SUBAO BUS 17ADIV = EAE OR MBO| KE3
EAE-P(1)ASCOV2(1)ADIV = EAE OR LI KE3
LI(0) = LAR(1) = LINK(1) KC15
CM STROBEACONT(1) = GO TO 57 KC16
57 (ARO,ACI, EAE-R,CONT,CMAA40) KCI18
CM STROBEAEAE OR MBO = MBO(1) KC19
CM STROBEAEAE OR LI = LI(1) KC19
EAE-R(1)ASCOV(1) = SCOV2(1) KE2
SCOV(1) = IN SHLI KE4
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
Add MBO(1)ANOSHAACI(1) = MB = AC KC20-21
A BUS LINKACOOO = ADRL KC15
SHIFT = ADRL = O BUS L KC15
EAE-R(1) = O BUS L — TEMP2(0) KE3
LI(1) = O BUS L — LAR(0) KC15
LI(T) = ADRL — TEMP3(0) KE3
EAE-R(T)ARUN(T) = ADDR 10 KE3
CM STROBEACONT(1)ACMA40AADDR 10 = GO TO 50 KC16

3-41

Table 3-23 (cont)
DIVS Functions

644305 Divide, Signed (Five Steps)]28 * 58
Process Function Drawing No.
50 (MQO, ARI, EAE-P, CONT, CMA42) KC18
SCOV2(1) = IN SHL1 KE4
SCOV2(1) = EAE OR MBO,EAE OR SUB, EAE OR LI KE3
MQO(1)ANOSHAARI(T) = MQ — AR KC20-21
LI(0) = LAR(0) — LINK(0) KC15
LINK(0) = ADRL KC15
SHIFT = ADRL— O BUS L KC15
EAE-P(1) = O BUS L — TEMP1(0) KE3
EAE-P(1) = TEMP2(0) = END BITO0 (lost) KC15
EAE-P(1) = TEMP3(0) — END BIT 17 KC15
CM STROBEACONT(1) = GO TO 42 KC16
42 (ACO, MQI,EAE-R,CONT,CMA55) KC18
EAE-R(T)ASCOV2(1) = EAE RUN(0) KE3
ACO(DANOSHAMQI(1) = AC = MQ KC20-21
CM STROBEACONT(1) = GO TO 55 KC16
55 (ARO,ACI,EAE-P,CONT,CMA53) KC18
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
CM STROBEACONT(1) = GO TO 53 KC16
53 (MQO, ARI,EAE-R,CONT,CMA56) KCi18
MQO(1)ANOSHAARI(1) = MQ — AR KC20-21
CM STROBEACONT(1) = GO TO 56 KC16
56 (ACO,MQI,EAE-P,CONT,CMA57) KC18
EAE-P(1)AMQI(1)AACO(1)AEIRO2(0)ASCOV2(1) = EN CMPL(1) KE3
EN CMPL(T1)AEAE SIGN(1) = CMPL__ KE3
ACO(1)ANOSHAMQI(1)ACMPL = AC = MQ KC20-21
CM STROBEACONT(1) = GO TO 57 KC16
57 (ARO,ACI,EAE-R,CONT,CMA40) KC18
EAE-R(T)ADIVAEN CMPLAMQ SIGN(1) AEAE SIGN(1) = EAE SIGN(0) KE3
EAE SIGN(0) = CMPL KE3
ARO(1)ANOSHAACI(1)ACMPL = AR — AC KC20-21
EAE-R(1)ASCOV2(1)ARUN(0) = ADDR 10 KE3
CM STROBEACONT(1) = GO TO 40 KC16
40 (EAE,DONE,CMAI10) KC18
CLK(B) DLYDAEAE(1)ADONE(1) = INPUT IO RESTART KD3
IO RESTART = GO TO 10 KC16
10 (PCO,SM,CMA21) KC18

BGN next fetch

3-42

50

42

55
53
56

57

50

42

55
53
56

57

50
42
55
53
56

57

Table 3-24
DIVS Arithmetic

12 * 5
L TEMP3 AC MQ AR
> sample
0 0 0000 1010 SHLI 0100
MB 1010<CI17
0 1<—CRY—1011 SHLI >0111 0100
J/ sample SHLI1
11 100f «e— 1 0111 o100
MB 0101 ‘_X
1 le— 1001 | CRY —1100 SHL1—3100
V ¥ >sample
17 1001 —SHLI >001] 1000
L SHLI MB 0101
1oey IOH<—r 0011 L= o
TRY .
Vo Y%sample
11 1011 001 l——>SHL1—>011
MB 0101 —5
1 0<€—CRY-1 0000 —SHLI > 0000 0111
| sample
— {) SHLI
0 0 be—d 0000 L om
MB 1010-CI17
3 1< 10 CRY —1011 | —>1011
y>sample
11 1110 —SHLI >110] 1011
v MB 0101
10 0000 €— ot L—cry= 0000 —
|
¥ o 0000 1101 1101
0 0 0000 > 0000 1101
0 0 1101 < [o000 L 1101
0 0 1101 0000 >0000
0 0 1101 ———CMPL——3>0010 0000
0 o0 0000 << 1 0010 1 0000
|

Ie__

answer

2

8

3-43

l

Table 3-25
DIVS Functions

]28 - -58
Process Function

75 TEMP3(1) = no conditioning of MQ SIGN

ACO00(0) = no conditioning of EAE SIGN

EAE(1) =0 — EN CMPL
43 MQ — AC
41 AC = MQ
54 EAE(OATEMP3(1) = no effect on MQ SIGN
51 through last 53 same as DIVS 128 +58
56 EN CMPL(1)AEAE SIGN(0) = CMPL

AC = MQ
57 CMPL = AR = AC

Table 3-26
DIVS Functions]
-]28 45
Process Function

75 TEMP3(0) = condition MQ SIGN

ACO00(1) = condition EAE SIGN

EAE(1) = 0 — EN CMPL
43 MBO6(1)ASU2(1) = EAE SIGN(1)

SU2(1)AEAE SIGN(1) = CMPL

CMPL = MQ — AC
4] AC = MQ
54 EAE(O)ATEMP3(0) = MQ SIGN(1)

MQ SIGN(1) = condition EAE SIGN
51,52 same as DIVS]28 * 58
50 FIRST(1)AEAE RUN(T)AMQ SIGN(T)AEAE SIGN(1) = EAE SIGN(0)

56

57

42 through last 53 same as DIVS 128 +58

EN CMPL(1)AEAE SIGN(0) = CMPL
AC = MQ

EAE-R(T)AEN CMPL(1)ADIVAMQ SIGN(T)AEAE SIGN(0) = EAE SIGN(1)

EAE SIGN(1)AEN CMPL(1) = CMPL
CMPL =AR — AC

Table 3-27
DIVS Functions
=12, ¥ -5

Process Function

75 TEMP3(1) = no conditioning of MQ SIGN
ACO00(1) = condition EAE SIGN
EAE(1) =0 — EN CMPL

43 MBO6(1)ASU2(1) = EAE SIGN(1)
SU2(1)AEAE SIGN(1) = CMPL
CMPL = MQ = AC

41 AC = MQ

54 EAE(O)ATEMP3(1) = no effect on MQ SIGN

51 through last 53 same as 128 * 58

56 EN CMPL_(_]_)/\EAE SIGN(1) = CMPL
CMPL = AC = MQ

57 EAE-R(1)DAEN CMPL(1)ADIVAMQ SIGN(0) = no effect on EAE SIGN(1)
EAE SIGN(T)AEN CMPL(1) = CMPL
AR = AC

3.8.2 IDIV(S) Instruction

The IDIV(S) instruction divides the contents of the AC (integer dividend) by the contents of
the mext sequential core memory location to form a quotient in the MQ and a remainder in the AC.

The arithmetic phase of the instruction(s) is identical to that of DIV(S). The preparatory
phase transfers the contents of the AC to the MQ and clears the AC. Thereafter the arithmetic phase
in reality performs the division on the long register dividend just as for DIV. The exception here is that
the most significant portion of the dividend (AC) is at 0/

Therefore, the DIV(S) functions of Table 3-23 hold true for IDIV(S) with the following pre-
paratory exceptions.

75) SU1(1)AMBO7(1) = EAE OR ARO
AC — AR (same)

43) AR = AC

41) MBO08(1) = EAE OR ARO
AC — MQ (same)

54) ACI(1) =0 — AC
The rule for divide overflow, Section 3.8.4 is the same. In the IDIV(S) case overflow occurs
only if the computer attempts to divide by 0, since this is the only quantity not larger than the AC por-
tion of the dividend.
The sample divide in Table 3-23, although performed by a DIVS instruction, could in fact be

used as a sample IDIVS operation since the arithmetic phase also starts with a zero quantity in the AC.

3-45

3.8.3 FRDIV(S) Instruction

The FRDIV(S) instruction divides the contents of the AC (fraction dividend) by the contents
of the next sequential core memory location to form a quotient in the MQ and a remainder in the AC.

The arithmetic phase of the instruction(s) is identical to that of DIV(S). The preparatory
phase clears the MQ. The arithmetic phase thereafter is in reality a division of the long register with
the MQ at 0. For FRDIV the binary point is assumed at the left of ACO0. For FRDIVS the binary point
is assumed between ACO0 and ACO1. The divide overflow rule, Section 3.8.4, is the same.

The DIV(S) functions of Table 3-23 hold true for FRDIV(S) therefore, with the following

exceptions.

75) SUT(1)AMBO5(1) = EAE OR MQO
SUT(1)AMBO07(0) = EAE OR ARO
AC — AR (same)

43) ACI(1) =0 = AC
41) AC — MQ (same)
54) AR — AC (same)

3.8.4 Divide Overflow

For all divide instructions the first subtract operation of the arithmetic phase checks for a
divide overflow situation. Divide overflow exists when the computer attempts to divide a dividend by
a divisor which is not numerically greater than the most significant portion (AC) of the dividend. If
the divide operations were carried out, the result would exceed the capacity of the 18-bit MQ register,
and the MQ contents would be erroneous. For unsigned division, the capacity of the MQ is 2]8-1 , or
7777778. For signed division the capacity is +2]7-I , or +3777778.

For all divide instructions process word 52 during the divisor fetch from memory blocks the
recirculation of the LINK into the LAR; process word 50 transfers the LAR content(0) into the LINK and
starts the arithmetic phase of the instruction. The arithmetic phase therefore always starts with the
LINK in the reset state. The LINK returns to the reset state at the end of all valid divide instructions.
If, however, the EAE logic encounters the divide overflow situation, the LINK sets and the instruction
execution is halted after five machine cycles as a time=saving feature. The computer will then go on
to the next instruction, which is usually an instruction which tests the status of the LINK (OPR SZL,
OPR SNL, etc.).

Table 3-28 lists the functions that provide the overflow indication to the LINK and stop the
divide operations. The listing starts with process word 50, at which point the preparatory phase has
been completed, the divisor is in the MB, and the dividend is correctly placed in the AC and MQ. The
operation attempts to divide 32]0 by 2]0 for a quotient of 16 using a 4-bit MQ register, resulting in

overflow since the register capacity is 15 for unsigned divide.

3-46

Note from Table 2-3 that a valid five-step arithmetic divide operation requires seven machine
cycles for completion, whereas divide overflow stops the operation after the first step and five cycles.
For the overflow situation the step count in the SC does not matter since the DIV OV flip-flop controls
the SCOV, SCOV2, and RUN functions.

Table 3-28
DIV OV Functions .
640305 Divide, Unsigned (Five Steps) 32]0 2]0
Process Function Drawing No.
50 (MQO, ARI,EAE-P,CONT,CMA42) KC18
EAE-P(1)AEAE RUN(0) = FIRST(1) KE3
EAE-P(1)ASCOV2(0) = EAE RUN(1) KE3
EAE-P(1) etc. = SHLI1 KE4
FIRST(1)AEAE RUN(1)AMQ SIGN(1)AEAE SIGN(0) = EAE SIGN(1) KE3
LI(0) = LAR(Q) — LINK(1) KC15
EAE-P(1)ASCOV (0)ATEMP3(Q)ADIV = EAE OR SUB KE3
EAE-P(1)ASCOV2(0)ADIV = EAE OR LI KE3
MQO(T1)ASHLTAARI(1) = MQn = ARn-1 KC20-21
SHL1 = ADROO(0) = O BUS L KC15
EAE-P(1) = O BUS L — TEMP1(0) KE3
EAE-P(1) = TEMP2 — END BIT0O (lost) KC15
EAE-P(1) = TEMP3(0) — END BIT17 KC15
SHLT = END BIT17 — AR 17(0) KC20
CM STROBEACONT(1) = GO TO 42 KC16
42 (ACO,MQI,EAE-R,CONT,CMA55) KCi18
CM STROBEAEAE OR SUB = SUB(1) KC19
EAE-R(1)ASUB(1) = CI17 KE3
CM STROBE EAE OR LI = LI(1) KC19
EAE-R(1), etc. = SHLI KE4
ACO(1)ASHLIAMQI(1) = ACh = MQn-1 KC20-21
SUB(1)ASHLIAMQI(1)ACI17 = MB+1 — MQn-1 KC20-21
EAE-R(1)ASUB(1)ALINK(0) = A BUS LINK KC15
A BUS LINKACOOO = ADRL KC15
ADRL = ADRL(B) KCl15
EAE-R(1)AFIRST(1)AADRL(B)ADIV = DIV OV(1) KE3
SHL1 = ADROO(0) = O BUS L KC15
EAE-R(1) = O BUS L — TEMP2(0) KE3
EAE-R(1) = TEMP1(0) = END BIT17 KC15
SHL1 = END BIT17 = MQ17(0) KC20
LI(1) = DIV OV(1) = LAR(1) KC15
LI(1) =ADRL — TEMP3(0) KE3
CM STROBEACONT(1) = GO TO 55 KC16
55 (ARO,ACI,EAE-P,CONT,CMA53) KCi8
EAE-P(1)ARUN(1) = FIRST(0) KE3
EAE-P(1)ADIV OV(1) = DIV NO GO KE2
DIV NO GO =SCOV(1),SCOV2(1),EAE RUN(0) KE2-3

3-47

Table 3-28(cont)
DIV OV Functions

640305 Divide, Unsigned (Five Steps) 3210 210
Process Function Drawing No.

55 (cont) LI(0) = LAR(1) = LINK(1) KC15
scov2(1) = IN SHLI KE4
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
CM STROBEACONT(1) = GO TO 53 KC16

53 L (MQO, ARI, EAE-R, CONT,CMA56) KC18
MQO(1)ANOSHAARI(1) = MQ — AR KC20-21
CM STROBEACONT(1) = GO TO 56 KC16

56 (ACO,MQI,EAE-P,CONT,CMA57) KC18
ACO(1)ANOSHAMQI(1)ACMPL = AC — MA KC20-21
CM STROBEACONT(1) = GO TO 57 KC16

57 (ARO, ACI,EAE-R,CONT,CMA40) KC18
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
EAE-R(1)ASCOV2(1)AEAE RUN(0) =ADDR 10 KE3
CM STROBEACONT(1)ACMA40AADDR 10 = GO TO 40 KC16

40 (EAE,DONE,CMAT10) KC18
CLK(B) DLYD EAE(1) DONE(1) = INPUT IO RESTART KD3
IO RESTART = GO TO 10 KC16

10 (PCO,SM,CMA21) KC18
BGN next fetch

3.9 EAE INSTRUCTION DEVELOPMENT

The addition of ng bits to the basic EAE op code 648 converts the basic instruction to a micro-
coded instruction to accomplish a setup, shift, or arithmetic operation not already in the instruction
repertoire. Refer to Table 3-29 for descriptions of the functional use of the individual bits. The sole
restriction for development of "n" is that the microcoded operations must not occur during the same

process word if they logically conflict.

Table 3-29
EAE Microinstructions
. Binary .
Bit Code Function
4 1 Enters ACOO info the LINK for signed operations.
1 Clears the MQ.

3-48

AN

Table 3-29 (cont)
EAE Microinstructions

Bit Bé;:;y Function

6 1 Reads ACOO into the EAE SIGN register prior to a signed multiply
or divide operation.

6,7 10 Takes the absolute value of the AC after the ACOO bit is read
into the EAE SIGN register.

7 1 Inclusive=ORs the AC with the MQ and places the result in the
MQ.

8 1 Clears the AC.

9,10,11 000 SETUP instruction code. Accompanies code in bits 15, 16, 17.

9,10,11 001 MUL instruction code.

9,10,11 010 Unused instruction code.

92,10,11 011 DIV instruction code.

9,10,11 101 LONG RIGHT SHIFT instruction code.

9,10,11 110 LONG LEFT SHIFT instructions code.

9,10,11 100 NORMALIZE instruction code.

9,10,11 111 ACCUMULATOR LEFT SHIFT instruction code.

12-17 Specifies the step count for all EAE codes (9-11) except SETUP.

15 1 For SETUP instruction code only, complements the MQ contents.

16 1 For SETUP instruction code only, inclusive-ORs the MQ with the
AC and places the result in the AC.

17 1 For SETUP instruction code only, inclusive-ORs the AC with the

SC and places the result in the AC.

3-49

CHAPTER 4
MAINTENANCE

4.1 GENERAL MAINTENANCE

The general maintenance practices described in the PDP-9 Maintenance Manual also apply

to the EAE option.

4.2 MAINTENANCE PROGRAM TAPES

Chapter 1 of the PDP-9 Maintenance Manual lists the diagnostic tapes and documents for
use with the EAE.

4.3 REPLACEABLE PARTS

Table 4-1 lists all logic modules used in the EAE option by DEC type and quantity. The CP
UML drawing KC8 shows the module locations in the central processor wing of the PDP-9 frame. DEC
has available a spare modules kit, SPO9A, for use with the basic PDP-9 system and including spares for
the EAE option. If the kit is not on hand, it is recommended that one spare module of each logic type

be stocked to reduce equipment down=time while repairing faulty modules.

Table 4-1
EAE Module Complement

DEC Type Module Type Quantity

vB105Y Inverter 1

vB133* Inverter 1

vﬁzlsf Flip-Flop 15

WR002 Diode Network 8
() AR NAND/NOR Gate 1

5151 //, Binary-to-Octal Decoder 1

~51817 DC Carry Chain 1

vS5206 v Flip-Flop 6

/W005 Clamped Load 1

CHAPTER §
ENGINEERING DRAWINGS

This chapter contains a complete set of engineering drawings pertaining to the EAE option
along with circuit schematics of all logic modules. DEC engineering drawings are encoded as to type,
major assembly, and series. Drawing number codes and signal conventions are explained in Chapter 5

of the PDP-9 Maintenance Manual.

5.1 SIGNAL MNEMONIC INDEX

All signals originating on the EAE logic drawings are listed below in alphanumeric order.
The Origin column locates the source of the signals to the specific logic drawing, using the abbreviated

drawing number system.

Signal Origin Description
A BUS LINK KE3 Enter ACOO into LINK
ACO — LINK KE3 Recirculate LINK via LAR
ADDR 10 KE3 Add 10 to next Control Memory address
ALS KE4 Accumulator Left Shift command
CMPL KE3 Complement the register contents in transfer
cnz KE3 Initiate a carry into the Adder
DIV KE4 Divide command
DIV NO GO KE2 Stop divide operations
DIV OV KE3 Divide Overflow
EAE CLR RQ KE3 Clear CM gating bits for argument fetch
EAE OR ARO KE3 Set ARO bit on next CM STROBE
EAE OR LI KE3 Set LI bit on next CM STROBE
EAE OR MBO KE3 Set MBO bit on next CM STROBE
EAE OR MQO KE3 Set MQO bit on next CM STROBE
EAE OR SUB KE3 Set SUB bit on next CM STROBE
EAE PWR CLR KE3 Clear flip-flops on power turn=-on
EAE RUN KE3 Start EAE instruction execution
EAE SIGN KE3 Store ACO0
EIR09-11 KE4 EAE instruction register
EN CMPL KE3 Enable complement function
FIRST KE3 Start first arithmetic operation

5-1

IN SHL1
IN SHR1
LLS

LRS

MQ SIGN
MUL
NORM
ODD ADDR
O BUS17(B)
R-PULSE
SC12-17
SC CLR

SC FULL
SCO
SCOV
SCOV(1)
SCOV2
SETUP
SU1-3
TEMP1-3

5.2 DRAWING LIST

Origin
KE4
KE4
KE4
KE4
KE3
KE4
KE4
KE3
KE3
KE2
KE2
KE2
KE2
KE2
KE2
KE2
KE2
KE4
KE3
KE3

DescriErion
Enable Shift Left Function

Enable Shift Right function

Long Left Shift command

Long Right Shift command

Store divisor or multiplicand sign
Multiply command

Normalize command

Add 1 to next CM address

END Bit shifted into next register
Up-date the Step Count

Step Counter register

Clear the Step Counter

Step Counter up-dated to 778
Step Counter output gate

Step Counter up-dated to 008

Set SCOV on normalize condition
Step Counter up-dated to 008
Setup command

Setup or preparatory instruction phase

Temporary LINK and END Bit storage

Below is a list of all drawings included in this chapter. Other related EAE logic is included

in the Chapter 5 drawings of the PDP-9 Maintenance Manual as part of the prewired, basic system.

Drawing Number

B-CS-B105-0-1
B-CS-B133-0-1
B-CS=-B213-0-1
B-CS~-R002-0-1
B-CS-R111=0-1
B-CS-S151-0-1

B-CS-S181-0-1
B-CS=-5206-0-1

Revision Page
Inverter B105, Circuit Schematic E 5-4
Inverter B133, Circuit Schematic B 5-4
Flip-Flop B213, Circuit Schematic F 5=5
Diode Network R002, Circuit Schematic A 5-5
NAND/NOR Gate R111, Circuit Schematic F 5-6
Binary-to-Octal Decoder S151, Circuit C 5=6
Schematic
DC Carry Chain S181, Circuit Schematic A 5-7

Flip-Flop 5206, Circuit Schematic B 5-7

PN

Drawing Number

B-CS-W005-0-1
D-BS-KE09-A-2
D-BS~-KE09-A-3
D-BS-KE09-A-4
D-BS-KE09-A-5
D-BS-KE09-A=-6
D-BS=KE09-A=6

Title
Clamped Load WO005, Circuit Schematic
EAE Step Counter and Control, Block Schematic
EAE Operand Fetch Gating, Block Schematic
EAE Execution Gating, Block Schematic
EAE Data Flow, Flow Diagram
EAE Flow, Flow Diagram (Sheet1)
EAE Flow, Flow Diagram(Sheet2)
Link Control for EAE Instructions

Revision

A

E
K
B
A
B
B

5-11
5-13
5-15
5-17
5-19
5-21

:STRAYE :
— L 0B-18V
1 QR
1 g1s00 |
_sv! i
HD PR
1]
109 | 100
P 5ses ST300 ¥oiseaditoo Woleeadnooo Wo-e643n00 576431500 %ig: :]Eo-uz: w2
| %-D8 |
1es :Ko-uz: L
Tﬁ?o ' & ez Turo
F X u s v 1 qro-ee2]
os |
Eiio—uz:
1
'I 2 L -OC GND
e J
cl cz c3 ce c7
se 56 56 s se
Az ek st Re e nes—t oS
0% R al | 200 Q2 8% s a3 R e o nio s
o HO—-AAA~4 L P T
3 3 v
UNLESS OTHERWISE INDICATED:
RESISTORS ARE 1/4W; 5%
CAPACITORS ARE MMFD
TRANSISTORS ARE DEC 2894-18
B-CS-B105-0-1 Inverter B105, Circuit Schematic
O AHOMA)

8
y Vo E N
¥

00—}

S

UNLESS OTHERWISE INDICATED:
RESISTORS ARE 1MW; 5%
TRANSISTORS ARE 2N4250

DIODES ARE D-864 USE_THE ETCH BOARD OF THE BIII

B-CS-B133-0-1 Inverter B133, Circuit Schematic

5-4

~Oa

v 0—4

> RS
Q 03 31,000

b o Sew00 $6.00
02 0% b
02 c

= 3

D6
QRIS
% oI5 31,000

Lnzs
41,000

ﬁ_‘ RIS ::ﬁaza R24
00 26,800 36,800 3100

Die 10%

c7

10%

D T
y DI9¥

¥DZO

13

-3.5v

D24

2.V

o3 *06
v 05

4

SRI S R2 SR3

Siso0 $750 $7.500

MFD

=8

Sis00 $750 7,500

o T

RIE SRI7

Qi2

8858

S R29
> 750

}

GND

8%

D29

D28
D662

D27
D662

D26
0662

o028

UNLESS OTHERWISE INDICATED;
RESISTORS ARE 1/4W; 5%
DIODES ARE D664.
TRANSISTORS ARE DEC 30098

B-CS-B213-0-1
Circuit Schematic

Flip=Flop B213,

IO
0o i
0664 _OF
08
€£0— 4
D664
09
HO- >
D664 ok
D4
JO— 2
0664
os
Lo- P
0664 on
D3
NO-
D664
07
PO
D664 os
02
RO-
D664
06
TO- i
0664 ov
oI
vo- i
0664

B-CS-R002-0-1

5-5

Diode Network R002,
Circuit Schematic

O
-1sv

—O A+ I0VA)
b i F~—===-= hl
T 1 : L-oc ewno
[N 1. RS 2 1
1 $100,000; by 1
| ! Q ol |
1 | al D-662 |
b 6 DEC3639 '
! Lol |
1 ' ¥ o-es2
1 H i
1 H [H
| 4 ci ! o
[a2 T.o | ¥ o-ee2;
]
o2 | 12 ov uFo! ,
D664, -664 H h
0o—dt—9¢ " [| ¥ 0% !
o1 ! oIl H |
D664 | ¢ 08 0-se4 18 , I
Eo_”.._ D-664 s p—or 0-864 \ |
) 1 o]
! p
P, i T) 1 dmo !
D 1 S18000 $7.800 ! Q1800
S ' > % 198w 1
[1 9 ' v i
i + T +—O8- 1Y
H EXAMPLE DGL2 | | -3v \
e isTRATE |
| A J
UNLESS OTHERWISE INDICATED:
RESISTORS ARE 1/4W; 5%
PRINTED CIRCUIT REV. FOR
DGLBOARD IS SiB
B-CS-R111-0-1 NAND/NOR Gate R111,
. . .
Circuit Schematic
Py [Oa«iovia)
SR1 SR 2 S R3 SR 4 SRS SR %n SR8
100,000 3100,000 S 100,000 3100,000 100,000 100,000 100,000 3100,0 00
I s o0 OC GND
'\ Q2 Q3 a4 Qs Q6 o7 s o4
N [
a2
- o ——o! —o02 3 o4 o5 b—06 o7 Yoo
™ N b R s T v v o
A<.01
a K 3 a 043 [wro
| D2s D26 p27 D28 29 lpso 031 32
Smi7 Sri8 SRi9 R20 SR21 SR22 SR23 SR24 D44
53,000 33,000 3,000 3500 33,000 3 3 D-66
\
SRe2s
45 46 Poar Yoss Yoao 50 Yos Yos2 4
D- oe2] !’Dissz !o.saz b-s62 - 662 I0-662] Io-662 i"w"
.[—0B-15v
R9 S i RO S v s RI2 RI3 :‘ - RIS y RIS S
woooS ¥ o socoS ¥ s000d ¥ sp00 26 BP0 Y ;15000 15,000 1o 15000 {0‘0
b es2 D-662 D662 D-662 p-662 “e62 D-662 b-662
*a 1%2 1%3 K4 §5 6 11%7 %a 9 Po Pu]Lz]IEB *m 5 l&s *n e “Pro JIgzo %a 1%22*23 24
L10—
Ll o 1 1]
flo UNLESS OTHERWISE INDICATED:
2 RESISTORS ARE 1/4W;5%
3 og TRANSISTORS ARE DEC 36398
Hi " R
2 USE THE ETCH BOARD OF THE RISI DIODES ARE D-664

JOO

B-CS-S151-0-1

Binary=-to=Octal Decoder S151,

Circuit Schematic

—0 A +10V
> > p. e
S R1 S r2 S k3 SRa Srs $Re SR7
> > > > > >
9 -O C GND
___@on ,_@oz _@;3 P"@“ __@M | s ._@07 b8
v S R N P T Y
: 5 09 1,
oo T
Re ¢ R9 S Ri0$ o n2d nmt ried y oir
S To > oz > |os > [oa > os > |os S Tor 3
Y os3 Yoz Yois Yo Yois Yoi? :Ems
, — 0B -8V
Yo ‘:me Yos S RI? 020y ::ms Dzvﬁ SRS D22 ;nzu!nu :Enzz
r X% %%% %%% 533 x tz: £33
D28 26027 D28 029 [030 [031 [032[D33[034 035 036 [037 [038 Da4|045 Jos6 Joa7 [048 Joas [osofost fos2)
hy —0€
O K
—OF
OH
oM
o0
B-CS-S181-0-1 DC Carry Chain S181,
. . N
Circuit Schematic
][ms*oso Aose &os7 Rose Zos!
TS
O A +10V
- S R4 4 ox ° Srie SR20 o
Yos Yoe 2100000 2100000 Wo2i ¥014 Y027 Yo3o $100,000 100,000 !o«ﬁou
ct Py Ca ng < O C oND
& | os 2 ez or | 82 82 | o2» 33 o4 os | 88 . .
IL JL IL al Adh. JL 052 ::.o'
n . LAY N Ll \ Tv LAY 682 MED
09 Di4 o3} 038
22 oee2! 62 p20 28 De62 oes2 D44 ~
L+ o8 I3 L > D32 037 ¢ osI
i Des2 ¥ oeez Des2 oes2 Dev2
| r—ﬁ*— ‘l og . I -4 2l o‘., ' __Co'l'
| o4 | O7 o2 028 | o3 o3e T 030
F O PO ¥ oee2
o1 D0 DIt) D28 D3¢ D38 D43
dad il 2l 1d Bl 049
L [™ [L] { L e { Des2
ORI Sr2 3 SRS SRe SR7 RIO SRI2 mis QR4 SRIs SRI7 8 SRI9 SR22 JR24
375007 5008780031800 21800 $7500 ;:uow:?.aoo $7,300$7,800$7,500 $1,800 3500 37500 076003 7,500
—OB-18Y
SRY ORIl
37,80037,800
o o | oz
UNLESS OTHERWISE INDICATED: ¢
et ok ke P
DIODES ARE D864 oI | e | 022

TRANSISTORS ARE 2N4313 H i¢ "
08s (]

B-CS-5206-0-1 Flip-Flop $206,
Circuit Schematic

OB -18V

RIS
3000

~8

8

H

A
-4

N
| L
»
L
£

§.

H

pz Qm2 joe QOre Jos Qme jps 2Omrs oo
y g 0o Sy %s.ooo

<O~
RO—— =\ g
rO

AL

o0
~nO
O

-OC @ND

N |4

O
o
O~
oc

At

<

)
N D3 R3 08 RS LA 9 R DIt i o3 s
$3,000 $3,000 <3000 <3000 $3,000 <3000 3000
(, (’ (, (’ () ‘, <
< < < <

P
<

-3V
UNLESS OTHERWISE INDICATED: STRATE
RESISTORS ARE /4W, 5% [TRRpRp— -
DICDES ARE D-684

1
i
1
1R
1
i
|

B-CS-W005-0-1 Clamped Load WO005,
Circuit Schematic

5-8

12-s

INSHRT —ef; 7~

INSALT —ef:

cML
co oe
A BUS LINK
<
- J@— suB (1) suB (0) _ Su1(n
LA
Jo— EAE-RIN) MBO4(1)
+1(0) —@f*
B
SAO (9)B —@ - ACOQ(1)
B3
ACO — LINK (Y
suNn
LI
MBD4(1)
b
3 LI EAE-P (1) EAE-R(1)
0 BUS LINK END BIT @
TEMP2(1)
SHL1 =
Ajrv
ADRO® —@i | v: EAE-P(Q)
SHR1 —‘T “ Y P
ADR17 4 |
%:
END BIT 17
DIV OV(N T -
TEMP3(1) TEMP1 (1) —A
VL v
EAE-R(N) — ¢ EAE-R(0) —O

Link Control for EAE Instructions

dlilgliltlall

DIGITAL EQUIPMENT CORPORATION o MAYNARD, MASSACHUSETTS

Printed in U.S.A.

