INSTRUCTION MANUAL

EXTENDED
ARITHMETIC ELEMENT

KEOQOSA

PDP-9

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

DEC-09-12AA-D

INSTRUCTION MANUAL
KEOSA
EXTENDED ARITHMETIC ELEMENT

July 1968

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

Copyright 1968 by Digital Equipment Corporation

1.1
1.2
1.3
1.4
1.5
1.5.1
1.5.2

2.1
2,2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.8.1
3.8.2
3.8.3
3.8.4
3.9

CONTENTS

CHAPTER 1
INTRODUCTION
Purpose
Related Documents
Power Requirements
Engineering Drawings and References
Specifications
Functional Characteristics

Operating Characteristics

CHAPTER 2
INSTALLATION AND OPERATION
Installation
Manual Controls and Indicators

Programming Considerations

CHAPTER 3
PRINCIPLES OF OPERATION

Instruction Fetch and Op Code Decoding
EAE Command Decoding
Timing and Flow
Setup Instructions
Shift Instructions
Normalize Instructions
Multiply Instructions
Divide Instructions

DIV(S) Instructions

IDIV(S) Instruction

FRDIV(S) Instruction

Divide Overfiow
EAE Instruction Development

iii

Page

3-21
3-24
3-33
3-34
3-45
3-46
3-46
3-48

4.1
4.2
4.3

5.1
5.2

3-1
3-2
3-3
3-4

3-10
3-11
3-12
3-13

CONTENTS (Cont)

CHAPTER 4
MAINTENANCE
General Maintenance
Maintenance Program Tapes
Replaceable Parts
CHAPTER 5

ENGINEERING DRAWINGS

Signal Mnemonic Index

Drawing List
ILLUSTRATIONS

EAE Timing

LRS, LRSS Register Manipulation (One Position)
LLS, LLSS Register Manipulation (Two Positions)
ALS, ALSS Register Manipulation (Three Positions)

TABLES

Operating Controls and Indicators
EAE Instructions

EAE Operation Times

EAE SETUP Instruction Format
OSC Functions

OMQ Functions

CMQ Functions

LACS Functions

LACQ Functions

ABS Functions

CLQ Functions

LMQ Functions

GSM Functions

EAE Shift Instruction Format
LRSS Functions

LLSS Functions

Page

5-2

3-3

3-13
3-19
3-20

2-1
2-2
2-5
3-4
3-4
3-5
3-6
3-6
3-7
3-7
3-8
3-8
3-9
3-10
3-11
3-14

3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29

TABLES (Cont)

ALSS Functions

EAE NORM Instruction Format
EAE MUL Instruction Format
MULS Functions

MULS Arithmetic

MULS Functions

MULS Functions

MULS Functions

EAE D1V Instruction Format
DIVS Functions

DIVS Arithmetic

DIVS Functions

DIVS Functions

DIVS Functions

DIV OV Functions

EAE Microinstructions

EAE Module Complement

Page
3-16
3-21
3-24
3-26
3-31
3-32
3-32
3-33
3-34
3-36
3-43
3-44
3-44
3-45
3-47
3-48

. CHAPTER 1
INTRODUCTION

This manual contains operation and maintenance information for the KEO9A Extended Arithmetic
Element (EAE) of the Programmed Data Processor PDP-9, manufactured by Digital Equipment Corporation,
Maynard, Massachusetts. For a complete understanding of the option and its relation to the basic PDP=9

system, the user must be thoroughly familiar with the contents of the PDP=9 Maintenance Manual, F-97.

1.1 PURPOSE

The EAE option facilitates high=speed multiplication, division, shifting, normalizing, and
register manipulation. Installation of the EAE adds an 18=bit multiplier-quotient register (MQ) and a
6-bit step counter (SC) to the basic PDP=9 system. The option logic occupies space in the central proces-
sor wing of the basic PDP-9 system, as indicated in the CP UML drawing KC8. All logic module loca=
tions have been prewired into the system. The contents of the MQ can be selected by the REGISTER
DISPLAY switch on the PDP-9's operator console for display in the REGISTER indicator.

The EAE operates asynchronously with the basic system, permitting computations to be per-
formed in the shortest possible time. Furthermore, instructions can be microcoded so that several non-
conflicting EAE operations can be performed by one instruction, thereby simplifying arithmetic program-

ming. Maximum multiplication and division time is 12 ps.

1.2 RELATED DOCUMENTS

The PDP-9 library offers a complete package of single= and multiple-precision programming
routines for use with the EAE. These and other related documents and tapes are listed in Chapter 1 of

the PDP-9 Maintenance Manual.

1.3 POWER REQUIREMENTS

The EAE needs no source of primary or dc power other than that already furnished with the

basic PDP-9 system. All necessary power is prewired to the module locations.

1.4 ENGINEERING DRAWINGS AND REFERENCES

Throughout this manual all references to EAE option drawings and basic PDP=9 system drawings
are abbreviated as in the PDP=9 Maintenance Manual. Refer to Chapter 1 of the Maintenance Manual
for abbreviation codes. As an aid to understanding the EAE, a simplified version of LINC Control
drawing KC15 along with a portion of EAE logic appears on an illustration at the end of this manual.

1-1

Chapter 5 of this option manual contains a complete set of EAE option drawings indexed by

their full drawing number codes, along with all module circuit schematics.

1.5 SPECIFICATIONS

1.5.1 Functional Characteristics

The EAE enables fast, flexible, hardware execution of the following signed or unsigned
functions.

a. Shifting the contents of the primary arithmetic registers (AC, MQ) right or left, requires
4 to 18 ps.

b. Normalizes the quantity in the primary arithmetic registers, i.e., shifts the contents
left to remove leading binary Os for the purpose of preserving as many significant bits as possible. The
time required is 4 to 18 ps.

c. Muliiplication is performed in 5 to 12 ps.

d. Division including integer divide and fraction divide require 5 to 12 ps. Divide over=
flow indication is furnished by the LINK when signed division produces a quotient exceeding + 3777774
in magnitude, or unsigned division produces a quotient exceeding 777777g in magnitude.

e. Basic setup instructions to manipulate the data in the registers preparatory to execution
of the above instructions requires 2 ps.

1.5.2 Operating Characteristics

Heat Dissipation 108 BTU/hr
Power Dissipation 0.032 kW

CHAPTER 2
INSTALLATION AND OPERATION

2.1 INSTALLATION

Complete installation of the EAE option merely involves plugging the logic modules into their
assigned locations in the central processor wing, and ascertaining that certain jumpers are removed. The
following jumpers are in place to allow FORTRAN programming without the EAE. They must be removed
for EAE operations (refer to drawing KC27).

a. ACO — LINK from EO4R to EO4B.

ADRL(B) from BO3D to BO3N.

c. MQI(1)/EAE OR ARO from D22P to D23J.

d. TEMP1(1) from BO3C to BO3T.

e. SCO(1) from B31C to B31P.

2.2 MANUAL CONTROLS AND INDICATORS

The EAE option contains no manual controls and indicators other than those prewired into the
PDP-9 operator's console. Table 2-1 lists and describes these controls and indicators. Refer to the

PDP-9 Maintenance Manual for details.

Table 2-1
Operating Controls and Indicators
Control/Indicator Function
REGISTER DISPLAY switch MQ position displays confents of the MQ register in the REGIS-
and TER indicator when the computer is in a stop condition.
REGISTER indicator EAE position is presently not used (not wired).

2.3 PROGRAMMING CONSIDERATIONS

The EAE option adds the instructions listed in Table 2-2 to the basic PDP=9 instruction reper=-

toire. See Table 2-3 for execution times.,

2-1

Table 2-2
EAE Instructions

Octal
Code

Mnemonic

Operation

640000

640001

640002

640004

641001

641002

644000

650000
652000

664000

6405XX

6605XX

EAE

0osC

oMQ

cMQ

LACS

LACQ

ABS

cLQ

LMQ

GSM

LRS

LRSS

Basic EAE instruction. Acts as a NOP instruction.

Inclusive=OR the SC with the AC. The contents of the AC are in-
clusive-ORed with the contents of the 6-bit SC on a bit-for-bit basis,
and the results are left in AC12 through 17. If corresponding SC and
AC bits are 0, the result is 0. If corresponding bits are 1 or differ,
the result is 1. The previous contents of the AC are lost, the LINK
and the SC remain unchanged.

Inclusive=OR the MQ with the AC. The contents of the AC are in-
clusive-ORed with the contents of the MQ on a bit-for-bit basis,
and the results are left in the AC. If corresponding MQ and AC bits
are 0, the result is 0. If corresponding bits are 1 or differ, the result
is 1. The previous contents of the AC are lost, the LINK and the
MQ remain unchanged.

Complement the MQ. The previous contents of the MQ are lost, the
LINK and the AC remain unchanged.

Load AC12 through 17 with the contents of the SC. The previous
contents of AC12 through 17 are lost, the LINK and the SC remain
unchanged.

Load the AC with the contents of the MQ. The previous contents of
the AC are lost, the LIMN! and the MQ remain unchanged.

Get the absolute value of the AC. 1If the sign (AC00) of the contents
of the AC is negative, the contents are 1s complemented. The LINK
remains unchanged.

Clear the MQ. The previous contents of the MQ are lost, the LINK
and the AC remain unchanged.

Load the MQ with the contents of the AC. The previous contents of
the MQ are lost, the LINK and the AC remain unchanged.

Get the sign and magnitude of the AC. Places the sign (AC00) of
the AC contents in the LINK, and if negative, 1s complements the
contents.

Long Right Shift. Shifts the contents of the LINK, AC, and MQ
right the number of positions indicated in bits XX. The LINK is
usually initialized to 0 and shifted unchanged on each step.

Long Right Shift, Signed. Shifts the contents of the LINK, AC and
MQ right the number of positions indicated in bits XX. ACO00 is
initially stored in the LINK, then shifted unchanged on each step.

2-2

Table 2-2 (cont)
EAE Instructions

Octal
Code

Mnemonic

Operation

6406XX

6606XX

6407XX

6607XX

640444

660444

6531XX

6571XX

LLS

LLSS

ALS

ALSS

NORM

NORMS

MUL

MULS

Long Left Shift. Shifts the contents of the LINK, AC and MQ left
the number of positions indicated in bits XX. The LINK is u$ually
initialized to 0 and shifted unchanged on each step.

Long Left Shift, Signed. Shifts the contents of the LINK, AC and
MQ left the number of positions indicated in bits XX. ACO0 is in-
itially stored in the LINK, then shifted unchanged on each step.

Accumulator Left Shift. Shifts the contents of the LINK and AC left
the number of positions indicated in bits XX. The LINK is usually
initialized to 0 and shifted unchanged on each step.

Accumulator Left Shift, Signed. Shifts the contents of the LINK and
AC left the number of positions indicated in bits XX. ACO0 is ini-
tially stored in the LINK, then shifted unchanged on each step.

Normalize. Shifts the contents of the LINK, AC and MQ left until
AC00 and ACO1 differ or until the maximum of 36 shifts (44g) occur.
The LINK is usually initialized to 0 and shifted unchanged on each
step.

Normalize, Signed. Shifts the contents of the LINK, AC and MQ
left until ACOO and ACO1 differ or until the maximum of 36 shifts
(44g) occur. ACOO is initially stored in the LINK and then shifted
unchanged on each step.

Multiply. Multiplies the number in the AC (multiplier) by the num-
ber in the next core memory location (multiplicand) to form a product
in the AC and MQ. MUL transfers the multiplier to the MQ, clears
the AC, and fetches the multiplicand from memory. Bits XX command
the desired precision of the product (22g or 181 steps for maximum
36-bit precision). The LINK must be cleared previously and remains
unchanged.

Multiply, Signed. Multiplies the number in the AC (multiplier) by
the number in the next core memory location (absolute value multi-
plicand) to form a signed product in the AC and MQ. ACO00 and
ACO1 receive the product sign. A previous LAC/GSM/DAC CAND
sequence places the multiplicand sign in the LINK and the absolute
value in memory. MULS transfers the multiplier to the MQ, performs
1s complements of the multiplier if its sign is negative, fetches the
absolute value multiplicand from memory, and clears the LINK. Bits
XX command the desired precision of the product (22g or 18, steps
for maximum 36-bit precision).

Table 2-2 (cont)
EAE Instructions

Octal
Code

Mnemonic

Operation

6403XX

6443XX

6533XX

6573XX

DIV

DIVS

IDIV

IDIVS

Divide. Divides the number in the AC and MQ (dividend) by the
number in the next core memory location (divisor) to form a quotient
in the MQ and remainder in the AC. DIV fetches the divisor from
memory. Bits XX command the desired precision of the quotient and
remainder (23g or 197 steps for maximum 36-bit precision). The
LINK must be cleared previously and remains unchanged unless divide
overflow occurs. Overflow occurs if the divisor is not numerically
greater than the AC portion of the dividend.

Divide, Signed. Divides the number in the AC and MQ (36~bit
double-signed dividend) by the number in the next core memory lo-
cation (absolute value divisor) to form a signed quotient in the MQ
and remainder in the AC. MQOO receives the sign of the quotient
and ACOO receives the original sign of the dividend. A previous
LAC/GSM/DAC sequence places the divisor sign in the LINK and
the absolute value in the memory. DIVS fetches the absolute value
divisor, ls complements the MQ portion of the dividend if the divi-
dend sign is negative, and clears the LINK. Bits XX command the
desired precision of the quotient and remainder (23g or 191(steps for
maximum 36-bit precision). The LINK remains cleared unless divide
overflow occurs. Divide overflow occurs if the divisor is not numeri-
cally greater than the AC portion of the dividend.

Integer Divide. Divides the number in the AC (integer dividend) by
the number in the next core memory location (divisor) to form a quo-
tient in the MQ and remainder in the AC. IDIV fetches the divisor
from memory, transfers the contents of the AC to the MQ, then clears
the AC. Bits XX command the desired precision of the quotient and
remainder (23g or 191 steps for maximum 36-bit precision). The
LINK must be previously cleared and remains unchanged unless divide
overflow occurs. Overflow occurs only if the divisor is 0.

Integer Divide, Signed. Divides the number in the AC (signed integer
dividend) by the number in the next core memory location (absolute value
divisor) to form a signed quotient in the MQ and remainder in the AC.
MQOO receives the sign of the quotient and ACOO receives the original
sign of the dividend. A previous LAC/GSM/DAC sequence places the
sign of the divisor in the LINK and the absolute value in memory.
IDIVS fetches the absolute value divisor, transfers the contents of the
AC to the MQ, 1s complements them if the dividend sign is negative,
and clears the AC and LINK. Bits XX command the desired precision
of the quotient and remainder (23g or 191 steps for maximum 36-bit
precision). The LINK remains cleared unless divide overflow occurs.
Overflow occurs only if the divisor is 0.

2-4

Table 2-2 (cont)
EAE Instructions

Octal
Code

Mnemonic

Operation

6503XX

6543XX

FRDIV

FRDIVS

Fraction Divide. Divides the number in the AC (fraction dividend)
by the number in the next core memory location (divisor) to form a
quotient in the MQ and remainder in the AC. The binary point is
assumed fo be at the left of AC00. FRDIV fetches the divisor from
memory and clears the MQ. Bits XX command the desired precision
of the quotient and remainder (23g or 191(steps for maximum 36-bit
precision). The LINK must be previously cleared and remains un-
changed unless divide overflow occurs. Overflow occurs if the di-
visor is not numerically greater than the dividend.

Fraction Divide, Signed. Divides the number in the AC (signed
fraction dividend) by the number in the next core memory location
(absolute value divisor) to form a signed quotient in the MQ and re-
mainder in the AC. The binary point is assumed at the left of ACO1.
MQOO receives the sign of the quotient and ACOO receives the orig-
inal sign of the dividend. A previous LAC/GSM/DAC sequence
places the sign of the divisor in the LINK and the absolute value in
memory. FRDIVS fetches the absolute value divisor, clears the MQ
and LINK, and 1s complements the contents of the AC if the dividend
is negatfive. Bits XX command the desired precision of the quotient
and remainder (23g or 197(steps for maximum 36-bit precision). The
LINK remains cleared unless divide overflow occurs. Overflow oc-
curs if the divisor is not numerically greater than the dividend.

Table 2-3
EAE Operation Times
Number of Shifts* Néiw)ﬁéff:ljz;ri;ns MUL, DIV Instructions

O 2** 5***
1 4 5
2,3,4 5 6
5,6,7 6 7
8,9,10 7 8
1,12,13 8 10
14,15,16 10 11
17,18,19 1 12
20,21,22 12

23,24,25 13

26,27,28 14

29,30,31 16

32,33,34 17

35,36 18

*Initial step count.

**SETUP Instructions.

***DIV OV causes divide operation to stop here. MUL and DIV instructions containing initialized step
count of O stop here with no arithmetic operations undertaken.

2-5

CHAPTER 3
PRINCIPLES OF OPERATION

This chapter describes the EAE option in terms of its instruction repertoire and the logic that
implements those instructions. The discussions include references to the logic drawings in Chapter 5 and

to pertinent drawings of the basic PDP=9 system.

3.1 INSTRUCTION FETCH AND OP CODE DECODING

EAE instructions are fetched from core memory through the fetch cycle processes as are all
PDP-9 instructions. The PDP-9 Maintenance Manual explains the fetch cycle processes in detail.
Briefly, the BGN process word (10) which concludes a previous execute cycle transfers the current ad-
dress held in the PC to the MB and starts the next core memory and control memory read operations.

MA JAM transfers the current address from the MB to the MA, the core memory cycle starts, and the
fetch entry process word (21) is extracted from control memory. Process word 21 increments the address
in the MB and transfers it to the \PC for the next following fetch cycle (MBO, +1, PCI).

The next CM process word(12) occurs while the core memory reads the addressed memory
word into the sense amplifiers. Processes evolved from process word 12 transfer this (instruction) word
from the sense amplifiers to the MB, and also gate the op code portion into the IR (SAO, MBI, IRI).

The contents of the AC are gated into the AR (ACO, ARI).

The next process word address held in the address portion (CMAQO through 05) of process word 12
is 24. On drawing KC12, the op code detection circuits decode the op code bits IRO0, IRO1, IRO3.
These bits, all in the 1 state for an EAE op code of 648, produce the REP signal. REP allows the IR bits
to modify the control memory address on drawing KC17, boosting this next CM address from 24 to 75.
This is the third and last process word extracted during the normal, 1-ps fetch cycle. All EAE operations

start from this "EAE execute entry” process word.

3.2 EAE COMMAND DECODING

The EAE option contains an instruction register (see drawing KE4) which accepts bits SA09
through 11 of the instruction word during process 12. These bits contain the code for a particular EAE
instruction class, and are fed directly from the register EIR09-11 into the Binary~-to~Octal Decoder
S151-HO02. The S151 module decodes the octal class code to supply an output command level denoting
one of the following seven EAE instruction classes.

0 SETUP instructions

8
1 MUL (Multiply) instructions

2 Not used

3 DIV (Divide) instructions

4 NORM (Normalize) instructions

5 LRS (Long Right Shift) instructions

6 LLS (Long Left Shift) instructions

7 ALS (Accumulator Left Shift) instructions

The pertinent command level remains on throughout the succeeding EAE execution processes
to determine the particular execute operation, starting with process word 75. The paragraphs that fol-

low discuss each instruction class in detail.

3.3 TIMING AND FLOW

Figure 3=1 is a composite timing diagram for all EAE instruction classes, showing machine
cycle time versus process word branching for the various classes. The diagram can be correlated with
the operation times listed in Table 2-3 and the flow diagrams KE5 and KE6. Examination of Figure 3-1
reveals the following general features on operating times.

a. All SETUP instructions require two machine cycles, progressing toward the BGN process
word (10) that starts the next instruction fetch cycle.

b. All SHIFT instructions, including NORM, branch to process word 50 and continue in ac-
cordance with the number of shifts (steps) programmed in bits 12 through 17 of the shift instruction word.

c. All MUL and DIV instructions branch to process word 51 and continue in accordance with
the number of shifts (steps) programmed in bits 12 through 17 of the instruction word.

Important features not apparent in Figure 3-1 are: for,all instructions other than MUL or DIV,
core memory is idle after the initial instruction fetch; for MUL and DIV instructions a core memory cycle
occurs during process word 51 in which a multiplicand or divisor is fetched. Thereafter, core memory is
not needed by the EAE during the execute cycles, and may be accessed by the DMA channel as a time~
saving feature. Ordinarily, the last process yord in the fetch cycle contains an SM (start memory) bit
in order to read an operand from memory during the execute cycle. In process word 75 this SM bit is
absent (0), leaving the memory idle. In process word 51, the SM bit is present (1) to start a memory

cycle for MUL or DIV,

3.4 SETUP INSTRUCTIONS

Nine 2-cycle SETUP instructions manipulate the data in the prime arithmetic registers (AC,
MQ) in preparation for execution of the arithmetic operations commanded by succeeding MUL and DIV
instructions. Table 3-1 shows the instruction format. Table 3-2 through 3-10 list the logic functions

that implement the instructions, referencing the appropriate logic drawings.

3-2

o f 2 3 4 5 6 7 B8 9 0 ¢+ 2 3 4 5 6 7 8 9 O | ns (HUNDREDS)

IZ'—’|12_—_’|75—-|43_.!M—.|54 40 10 ——————»fw— NEXT FETCH (SETUP)

50 4Z—D|55——><— SHIFT
51 MUL, DIV

55 53-—.‘56~—>{57 - 40 ||O l‘ NEXT FETCH (1 SHIFT)
51 52 50—-|42-——-—|55—>|53—ﬁi56—157 40
+— SHIFT
50

| NEXT FETCH (2,3,4 SHIFTS)

40 10

|
50 —-{42-—-{55—-{53—;156—-!57—-40 »10 NEXT FETCH (5,6,7 SHIFTS)
50——"42——"55—#‘53——-'56——ﬂ<— SHIFT

56—-’57 40 »| 10 NEXT FETCH (8,9,10 SHIFTS)

50—"42——.‘55 —.'53—0-56—457 40 {0 —————»e— NEXT FETCH (11,12,43 SHIFTS)
50 42—’!55—><— SHIFT

55—.153—.!56——.'57 40 ||0 NEXT FETCH (14,15,16 SHIFTS)
50—442—’{55—453——{56—157 40 —o|
SHIFT

50

0Ot 2 3 4 5 6 7 8 9 O { 2 3 4 5 6 7 8 9 0 1t ns (HUNDREDS)

s NEXT FETCH (17,18,19)

40 10
50—‘[42——"55—.‘53—’ 56—.{57 4Q 10 NEXT FETCH (20,21,22)
50——|4z——>{55—- 53—.‘56—-—--— SHIFT '

56 —>|57 40 | NEXT FETCH (23,24,25)

10
50~—|42—> 55 ——’53-156—-'57 40 —# 10 —————»1e— NEXT FETCH (26,27,28)

50 —m» 42-—-'55—-04—— SHIFT

55——'53—.lss———{57—->

10 e— NEXT FE.CH (29,30,31)

40
50—1‘42——{55—0‘53—456—.57 40 —»!

50—

le— SHIFT

\

40 ||O —‘I' NEXT FETCH (32,33,34)
50—0{42—-{55—"53—156.——'57——440———-—————-IN)-————-*Q— NEXT FETCH (36 SHIFTS)

Figure 3=1 EAE Timing

3-3

Table 3-1
EAE SETUP Instruction Format

Op Code SETUP Not Used
648 08
1 213 4 5|6 7 892 10 11|12 13 14|15 16 17
6 4 0 0 0 1 0oscC
6 4 0 0 0 2 oMQ
é 4 0 0 0 4 CcMQ
6 4 1 0 0 1 LACS
6 4 1 0 0 2 LACQ
6 4 4 0 0 0 ABS
6 5 0 0 0 0 cLQ
6 5 2 0 0 0 mMQ
6 6 4 0 0 0 GSM
Table 3-2

OSC Functions

640001 Inclusive=OR the SC with the AC
Process o Function Drawing No.

75 (ACO,ARI,EAE, LI, CONT,CMA43) KCi18
ACO(1) = AC00-17 —» A BUS00-17 KC20
A BUS00-17 — ADR00-17 KC21
NOSH = ADR00-17 — O BUS00-17 KC20
ARI(1) = O BUS00-17 —» AROO-17 KC20
LI(T) = ADRL = LINK = LAR KCI15
LI(1) = ADRL = LINK — TEMP3 KE3
SA09(0)ASA10(0)ASA11(0) = SETUP KE4
EAE(1)AARI(1) = SU1(1) KE3
SUI(1) = 0 — SCOV,SCOV2,FIRST,EAE RUN,EAE SIGN,MQ

SIGN : KE2-3

SU1(1)AMBO5(0) = EAE OR MQO KE3
CM STROBEACONT(1) = GO TO 43 KC16

43 (ACI,EAE,CONT,CMAA41) KCi18
CM STROBEAEAE OR MQO = MQO(1) KC19
MQO(1) = MQO00-17 —» A BUS00-17 KC20
A BUS00-17 — ADROO-17 KC21
NOSH = ADR00-17 — O BUS00-17 KC20
ACI(1) = O BUS00-17 — AC00-17 KC20
LI(0) = LAR = LINK KC15
CM STROBEACONT(1) = GO TO 41 KC16

3-4

Table 3-2 (cont)
OSC Functions

640001 Inclusive-OR the SC with the AC
Process Function Drawing No.
41 (ACO,MQI,EAE,CONT,CMA54) KC18
ACO(1) = AC00-17 — A BUS00-17 KC20
A BUS00-17 — ADRO0-17 KC21
NOSH = ADR0O0-17 — O BUSQ00-17 KC20
MQI(1) = O BUS00-17 = MQO00-17 KC20
EAE(1)AMQI(1)ASETUP = SU3(1) KE3
SU3(1) = SCOV(1) KE3
SU3(1) = SCOV2(1) KE3
MQI(1)AMBO8(0)AEAE(1) = EAE OR ARO KE3
CM STROBEACONT(1) = GO TO 54 KC16
54 (ACI,EAE-R,CONT,CMA40) KCi18
CM STROBEAEAE OR ARO = ARO(1) KC19
EAE-R(1)AMBI7(1)ASETUP = SCO KE2
ARO(1) = AR0O0-17 — A BUS00-17 KC20
A BUSO0-17 — ADROO-17 KC21
NOSH = ADR00-17 — O BUS00-17 KC20
SCO =SC12-17 = O BUS12-17 KC22
ACI(1) = O BUS00-17 — AC00-17 KC20
EAE-R(1) = O BUS L — TEMP2 KE3
CM STROBEACONT(1) = GO TO 40 KC16
40 (EAE,DONE,CMAT10) KC18
CLK(B) + 670 ns A EAE(1)ADONE(1) = INPUT 1O RESTART KD3(3)
INPUT IO RESTART = IO RESTART KD3(3)
IO RESTART =GO TO 10 KC16
10 (PCO,SM,CMA21) KC18
BGN next fetch
Table 3-3
OMQ Functions
640002 Inclusive-OR the MQ with the AC
Process Function Drawing No.
75 Same as OSC
43 Same as OSC
41 Same as OSC plus
SU3(1)AMB16(1) = EAE OR MQO KE3
54 (ACI,EAE-R,CONT,CMA40) KC18
CM STROBEAEAE OR ARO = ARO(1) KC1¢9
CM STROBEAEAE OR MQO = MQO(1) KC1¢9

Table 3-3 (cont)
OMQ Functions

640002 Inclusive-OR the MQ with the AC (cont)
Process Function Drawing No.
54 (cont) ARO(1) = AR00-17—A BUS00-17 KC20
MQO(1)= MQ00-17—A BUS00-17 KC20
A BUS00-17 —+ADR00-17 KC21
NOSH = ADR00-17—O BUS00-17 KC20
ACI(1) = O BUS00-17—AC00-17 KC20
EAE-R(1) = O BUS L—TEMP2 KE3
CM STROBEACONT(1) = GO TO 40 KC16
40 Same as OSC
10 Same as OSC
Table 3-4
CMQ Functions
640004 Complement the MQ
Process Functions Drawing No.
75 Same as OSC
43 Same as OSC
41 Same as OSC plus:
SU3(1)AMBI15(1) = CMPL KE3
CMPL = ADROO-17 = O BUS00-17 KC20
54 Same as OSC except:
MB17(0) =SCO
40 Same as OSC
10 Same as OSC
Table 3-5
LACS Functions
641001 Load the AC with the SC
Process Function Drawing No.
75 Same as OSC
43 Same as OSC
41 Same as OSC except:

MQI(1)AMBO8(1)AEAE(1) = EAE OR ARO

3-6

Table 3-5 (cont)
LACS Functions

641001 Load the AC with the SC
Process Functions Drawing No.
54 Same as OSC except:
CM STROBEAEAE OR ARO = ARO(0)
40 Same as OSC
10 Same as OSC
Takle 3-6
LACQ Functions
641002 Load the AC with the MQ
Process Function Drawing No.
75 Same as OSC
43 Same as OSC
41 Same as OSC plus:
MQI(1)AMBO8(1)AEAE(1) = EAE OR ARO KE3
54 SU3(1)AMB16(1) = EAE or MQO
(ACI, EAE-R, CONT, CMA40) KC18
CM STROBEAEAE OR MQO = MQO(1) KC19
MQO(1) = MQO0-17— A BUS00-17 KC20
A BUS00-17— ADR00-17 KC21
NOSH = ADR00-17—O BUS00-17 KC20
ACI(1) = O BUS00-17 = ACO00-17 KC20
EAE-R(1) = O BUS L— TEMP2 KE3
CONT(1)ACM STROBE =GO TO 40 KC16
40 Same as OSC
10 Same as OSC
Table 3-7
ABS Functions
644000 Get Absolute Value of AC
Process Function Drawing No.
75 Same as OSC plus:
If ACO0 =1, then SUT(1)AMB06(1)AMBO7(0)AACO0(1) = CMPL KE3
CMPL = ADRO0-17 — O BUS00-17 KC20
43 Same as OSC
41 Same as OSC

3-7

Table 3-7 (cont)
ABS Functions

644000 Get Absolute Value of AC
Process Function Drawing No.
54 Same as OSC except:
MB17(0) = SCO
40 Same as OSC
10 Same as OSC
Table 3-8
CLQ Functions
650000 Clear the MQ
Process Function Drawing No.
75 Same as OSC except:
MBO05(1) = EAE OR MQO
43 Same as OSC except:
CM STROBEAEAE OR MQO = MQO(0)
MQO(0) =0 — A BUS00-17
41 Same as OSC
54 Same as OSC except:
MB17(0) = SCO
40 Same as OSC
10 Same as OSC
Table 3-9
LMQ Functions
652000 Load the MQ with the AC
Process Function Drawing No.
75 Same as OSC except:
MBO5(1) = EAE OR MQO
MBO7(1) = EAE OR ARO KE3
43 (ACI, EAE, CONT, CMA41) KC18
CM STROBEAEAE OR ARO = ARO(1) KC19
ARO(1) = AR00-17 — A BUS00-17 KC20
A BUS00-17 — ADROO-17 KC21
NOSH = ADR00-17 -+ O BUS00-17 KC20
ACI(1) = O BUS00-17 — ACO00-17 KC20
LI(0) = LAR — LINK KC15
CM STROBEACONT(1) = GO TO 41 KC16

3-8

Table 3-9 (cont)
LMQ Functions

652000 Load the MQ with the AC
Process Function Drawing No.
41 Same as OSC
54 Same as OSC except:
MB17(0) = SCO
40 Same as OSC
10 Same as OSC
Table 3-10
GSM Functions
664000 Get Sign and Magnitude of AC
Process Function Drawing No.
75 Same as OSC except:
If ACOO =1, then
SUT(1)AMBO06(1)AMBO7(0)AACO0(1) = CMPL KE3
CMPL = ADR0O0O-17 — O BUS00-17 KC20
SUT(1)AMBO4(1)AACO00(1) = A BUS LINK KE3
A BUS LINK = ADRL KC15
SHIFT = ADRL = O BUS L KC15
LI(1) = O BUS L = LAR(1) KC15
43 Same as OSC
41 Same as OSC
54 Same as OSC except:
MB17(0) = SCO
40 Same as OSC
10 Same as OSC
3.5 SHIFT INSTRUCTIONS

Long left, long right, and accumulator-left shift instructions include a step count in bits 12

through 17 which commands the number of bit positions to be shifted. Preliminary operations governed

by the early shift entry process words transfer the 2s complement of the step count into the step counter

SC12 through 17 in the EAE logic, drawing KE2. The SC, then, becomes binary up-counter which steps

toward O with each shift process. When the SC reaches 0, it sets a pair of overflow flip-flops SCOV and

SCOV2, in turn, which shut off the shift processes and cause the computer to branch to the BGN next

fetch process word.

The data to be shifted may be signed or unsigned. For signed data shifts, an early process
word (43) transfers the sign (ACOO) into the LINK, and the LINK is shifted thereafter unchanged. For
unsigned data shifts, the LINK is usually initialized to O and shifted thereafter unchanged. Table 3-11

shows the SHIFT instruction format. Bit 04 of the insiruction commands the signed or unsigned operation.

Table 3-11
EAE Shift Instruction Format
Op Code Shift Commands Number
64g Code of Shifts
0 1 2|3 4 5|6 7 89 10 11112 13 14|15 16 17
6 4 0* 5 X X LRS
6 6 o* 5 X X LRSS
6 4 0* & X X LLS
6 6 0* 6 X X LLSS
6 4 o* 7 X X ALS
6 6 0* 7 X X ALSS

*May be used for same functions as EAE SETUP.

Bits 12 through 17 can contain step codes of up to 448 for long register shifts of up to 36 bit
positions. For accumulator left shifts (ALS, ALSS) bits 12 through 17 can contain step codes of up to
228 for AC left shifts of up to 18 bit positions.

Table 3-12 through 3-14 and Figures 3-2 through 3-4 illustrate the operations involved for
LRSS, LLSS, and ALSS instructions calling for one, two, and three shift steps, respectively. A comparison
of the three reveals the pattern for shifting the data and terminating the instruction.

While the NOSH level generated gn drawing KC13 commands direct bit-for-bit transfers be-
tween registers, the shift operations make use of the SHL1 and SHR1 levels on the same drawing to shift
a bit one position left or right into the receiving register. Register input/output gating and data flow is
as usual from output register to A bus to ADR to O bus to input register. These functions are abbreviated

in the tables for convenience.

Table 3-12
LRSS Functions

660501 Long Right Shift Signed {One Position)
Process Function Drawing No.
75 (ACO,ARI,EAE, LI, CONT,CMA43) KC18
ACO(1)AARI(1)ANOSH = AC — AR KC20-21
SAQ09(1)ASATO(0)ASAT1(1) = LRS KE4
EAE(1)AARI(1) = SU1(T) KE3
SUI(1) =0 = SCOV,SCOV2,FIRST,EAE RUN,EAE SIGN,MQ SIGN| KE2-3
SUT(T)ASETUP = SC CLR KE2
SCCLR=0 = 5C KE2
SUT(1)AMBO05(0) = EAE OR MQO KE3
If ACO0 =1, then SUT(1)AMBO4(1)AACO00(1) = A BUS LINK KE3
A BUS LINK — ADRL KC15
LI(1) = ADRL — LAR KC15
LI(1) = ADRL = TEMP3 KE3
CM STROBEACONT(1) = GO TO 43 KC16
43 (ACI,EAE,CONT,CMAA41) KC18
CM STROBEAEAE OR MQO = MQO(1) KC19
MQO(1)ANOSHAACI(1) = MQ — AC KC20-21
1s Com EAE(T)AACI(1)ASETUP = SU2(1) KE3
o SCP SU2(1) = MB12=17 = 111110 = SC KE2
LI(0) = LAR — LINK KC15
CM STROBEACONT(1) = GO TO 41 KC16
41 (ACO,MQI,EAE,CONT,CMA54) KC18
ACO(1) ANOSHAMQI(1) = AC = MQ KC20-21
MQI(1)AMBO08(0) = EAE OR ARO KE3
CM STROBEACONT(1) = GO TO 54 KC16
54 (ACI,EAE-R,CONT,CMA40) KCi8
A CM STROBEAEAE OR ARO = ARO(1) KC19
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
EAE-R(1)ASCOV(0) = R~-PULSE KE2
2s Comp R-PULSE = 111111 = SC =SC FULL KE2
to SC EAE-R(1)ASCOV2(0) = ADDR 10 KE3
EAE-R(1) = O BUS L = LINK = TEMP2 (not used) KE3
CMA40AADDR 10 = CMA50 KC17
v CM STROBEACONT(1) = GO TO 50 KC16
50 (MQO, ARI,EAE-P,CONT,CMA42) KC18
MQO(1)ANOSHAARI(1) = MQ — AR KC20-21
EAE-P(1)AEAE RUN(0) = FIRST(1) KE3
EAE-P(1)ASCOV2(0) = EAE RUN(1) KE3
EAE-P(1) = O BUS L = LINK — TEMP1 (not used) KE3
EAE-P(1) = TEMP2 = LINK = END BITOO (not used) KC15
EAE-P(1) = TEMP3 = LINK — END BIT17 (not used) KC15
CM STROBEACONT(1) = GO TO 42 KC16

Table 3-12 (cont)
LRSS Functions

Process Function Drawing No.
1;‘2 (ACO,MQI,EAE-R,CONT,CMA55) KC18
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 000000 — SC KE2
EAE-R(1)ASC FULL = SCOV(1) KE2
EAE-R(1)ASCOV2(0)AEAE RUN(T)AEIRT0(0O)AEIR11(1) = IN SHRI1 KE4
IN SHR1 = SHRI1 KC13
Shift 1 ACO(1)ASHRIAMQI(1) = ACh = MQn+1 KC20-21
' SHR1 = ADR17 — O BUS L KC15
EAE-R(1) = O BUS L = TEMP2 KE3
EAE-R(1) = ADRL — END BIT00 KC15
EAE-R(1) = TEMP1 = LINK — END BIT17 (not used) KC15
MQI(1)ASHR1 = END BIT00 — MQ00 KC20
v CM STROBEACONT(1) = GO TO 55 KC1é6
55 (ARO,ACI,EAE-P,CONT,CMA53 KC18
EAE-P(1)AEAE RUN(1) = FIRST(0) KE3
FIRST(0)ASCOV2(0)AEAE RUN(T)AEIR10(0)AEIRT1(1) = IN SHR1 KE4
JIN SHR1T = SHR1 KC13
ARO(1)ASHRIAACI(1) = ARn — ACn+1 KC20-21
SHR1 = ADR17 = O BUS L KC15
EAE-P(1) = O BUS L = TEMP1 (not used) KE3
EAE-P(1) = TEMP2 — END BIT00 KC15
EAE-P(1) = TEMP3 — END BIT17 (not used) KC15
SHRT = END BITO0 — ACO00 KC20
v CM STROBEACONT(1) = GO TO 53 KC1é
53 (MQO, ARI,EAE-R,CONT,CMA56) KC18
EAE-R(1)ASCOV(1) = SCOV2(1) KE2
SCOV2(1) = IN SHR1 KE4
SCOV(1) = R-PULSE KE2
MQO(1)ANOSHAARI(1) = MQ - AR KC20-21
CM STROBEACONT(1) = GO TO 56
56 (ACO,MQI,EAE-P,CONT,CMA57) KC18
ACO(1ANOSHAMQI(1) = AC = MQ KC20-21
_ CM STROBEACONT(1) = GO TO 57 KC16
57 (ARO,ACI,EAE-R, CONT,CMAA40) KC18
EAE-R(1)ASCOV2(1) = EAE RUN(0) KE3
EAE RUN(0)ASCOV2(1) = ADDR 10 KE3
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
CM STROBE CONT(1) = GO TO 40 KC16
40 (EAE,DONE,CMAI10) KC18
CLK(B)*+670 nsAEAE(1)ADONE(1) = INPUT IO RESTART KD3(3)
INPUT IO RESTART = IO RESTART KD3(3)
10 RESTART = GO TO 10 KC16
10 (PCO,SM,CMA21) KC18

BGN next fetch

3-12

NOTE

CML 42 Set SCOV, CML 53 Set SCOV2, and CML 57
reset EAE RUN which inhibited the generation of ADDR
10. If the shift process has not reset EAE RUN when
CML 40 is pointed to, it will go back through CML's
50, 42, 55, 53, 56, 57, and then to 40.

o] [w1 =]

¢ | [acee-iz | [wmaee-1z | [acee-17 |
t |

54

—

TEMP {

se L [aceo-17 | | wmaee-17 | | wase-17 |
| I
| aorL }—a EnpBiTOl |—

?
“C EE=l rir‘f‘] o]

_____ L

il

END BIT 40

o
o
freme—
-
L)

[aci7]moso-16] | L]aces-16] |mose-1e 17|
'

ITENPI l

LOST

ssf o | [aci7 fmoga-16| [[acee-16] | L] Acoo—ch

t t
sel o | [aci7 [mage-16] [aci7[wove-16| | [acea-r1s]
L1 r 1

A [«]acoa-16] [aci7|mose-16] | |aceo-ie]
t !]

4@ DONE

Figure 3-2 LRS, LRSS Register Manipulation (One Position)

Table 3-13
LLSS Functions

660602 Long Left Shift, Signed (Two Positions)
Process Function Drawing No.
75 Same as LRSS except:
SA09(1)ASAT0(1)ASATT(0) = LLS KE4
43 Same as LRSS except:
SU2(1) =111101—5C
41 Same as LRSS
54 Same as LRSS except:
R-PULSE= 111110—SC
50 (MQO, ARI, EAE-P, CONT, CMA42) KC18
EAE-P(1)AEAE RUN(0) = FIRST(1) KE3
EAE-P(T1)ASCOV2(0) = EAE RUN(1) KE3
EAE-P(1)ASCOV(0)AEIRO9(1)AEIRT1(0)= IN SHL1 KE4
IN SHL1 = SHL1 KC13
MQO (1)ASHLTAARI(1) = MQn = ARn-1 KC20-21
Shift 1 SHLT = ADROO ~O BUS L KC15
EAE-P(1) = O BUS L—=TEMPI KE3
EAE-P(1) = TEMP2—END BIT00 KC15
EAE-P(1) = TEMP3 —END BIT17 KC15
SHL1= END BIT17— AR17 KC20
CM STROBEACONT(1) = GO TO 42 KC16
42 (ACO,MQI,EAE-R, CONT, CMA55) KC18
EAE-R(T)ASCOV(0) = R-PULSE KE2
R-PULSE = 111111—=SC = SC FULL _ KE2
EAE-R(1A SCOV2(Q)AEAE RUN(T)AEIROZ(1)ALRS = IN SHL1 KE4
IN SHL1= SHL1 KC13
ACO (1)ASHLIAMQI(1)= ACn —=MQn-1 KC20-21
SHL1 = ADROO—O BUS L KC15
EAE-R(1)= O BUS L—=TEMP2 (lost) KE3
EAE-R(1)= TEMP1—END BIT17 KC15
SHL1= END BIT17-MQ17 KC20
CM STROBEACONT(1) = GO TO 55 KC16
55 (ARO,ACI, EAE-P, CONT,CMAS53) KC18
EAE-P(1)AEAE RUN(1) = FIRST(0) KE3
EAE-P(1ASCOV(0)AEIRO9(1)AEIR11(0) = IN SHL1 KE4
IN SHL1= SHL1 KC13
ARO(1)ASHLIAACI(1)= ARn—=ACn-1 KC20
Shift 2 SHL1= ADRO0O—O BUS L KC15
EAE-P(1)= O BUS L—TEMP1 KE3
EAE-P(1)= TEMP2 —END BITO00 (lost) KC15
EAE-P(1)= TEMP3—END BIT17 KC15
SHL1= END BIT17—AC17 KC20

CM STROBEACONT(1)= GO TO 53

3-14

Table 3-13 (cont)
LLSS Functions

660602 Long Left Shift, Signed (Two Positions)
Process Function Drawing No.
.3:\3 (MQO, ARI, EAE-R, CONT, CMA56) KC18
EAE-R(1) ASCOV(0) = R-PULSE KE2
R-PULSE = 000000 — SC KE2
R=PULSE ASC FULL = SCOV(T) . KE2
EAE-R(1) ASCOV2(0) AEAE RUN(T) AEIRO9(T) ATRS = IN SHL1 KE4
Shift 2 MQO(1) ASHLT AARI(1) = MQn — ARn-1 KC20
SHL1 = ADR0OO — O BUS L KC15
EAE-R(T) = O BUS L — TEMP2 (lost) KE3
EAE-R(1) = TEMP1 — END BIT17 KC15
SHL1 =END BIT17 — AR17 KC20
v CM STROBE ACONT(1) = GO TO 56 KC16
56 (ACO,MQI,EAE-P,CONT,CMA57) KC18
SCOV(1) = 1IN SHLI1 KE4
ACO(1)ANOSHAMQI(1) = AC = MQ KC20-21
CM STROBEACONT(1) = GO TO 57 KC16
57 (ARO,ACI,EAE-R,CONT,CMA40) KCi8
EAE-R(1)ASCOV(1) = SCOV2(1) KE2
SCOV(1) = R-PULSE KE2
SCOV2(1) = 1IN SHLI KE4
ARO(1)ANOSHAACI = AR — AC KC20-21
EAE-R(T)AEAE RUN(1) = ADDR 10 KE3
CMA40AADDR 10 = CMA50 KC17
CM STROBEACONT(1) = GO TO 50 KC16
50 (MQO,ARI,EAE-P,CONT,CMA42) KC18
SCOV(T) = IN SHLI1 KE4
MQO(1)ANOSHAARI(1) = MQ — AR KC20-21
CM STROBEACONT(1) = GO TO 42 KC16
42 (ACO,MQI,EAE-R,CONT,CMA55) KC18
EAE-R(T)ASCOV2(1) = EAE RUN(0) KE3
SCOV2(1) =1IN SHLI KE4
ACO(1)ANOSHAMQI(1) = AC = MQ KC20-21
CM STROBEACONT(1) = GO TO 55 KC16
55 (ARO,ACI,EAE-P,CONT,CMA53) KCi1s.
SCOV(1) =IN SHLI KE4
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
CM STROBEACONT(1) = GO TO 53 KC16
53 (MQO, ARI,EAE-R,CONT,CMA56) KC18
SCoV2(1) =IN SHLT KE4
MQO(1)ANOSHAARI(1) = MQ — AR KC20-21
CM STROBEACONT(1) = GO TO 56 KC16

3-15

Table 3-13 (cont)
LLSS Functions

660602 Long Left Shift, Signed (Two Positions)
Process Function Drawing No,
56 (ACO,MQI,EAE-P,CONT,CMA57) KC18
SCOV(1) = IN SHLI KE4
ACO(T) ANOSHAMQI(1) = AC = MQ KC20-21
CM STROBEACONT(1) = GO TO 57 KC16
57 (ARO,ACI,EAE-R, CONT,CMA40) KCI18
SCOV2(1) = IN SHL1 KE4
ARO(T)ANOSHAACK(T) = AR — AC KC20-21
EAE RUN(O)ASCOV2(1) = ADDR 10 KE3
CM STROBEACONT(1) = GO TO 40 KC16
40 (EAE,DONE,CMAT0) KCI18
CLK(B)+670 nsAEAE(T)ADONE(1) = INPUT IO RESTART KD3(3)
INPUT IO RESTART = IO RESTART KD3(3)
IO RESTART = GO TO 10 KC16
10 (PCO,SM,CMA2T) KC18
BGN next fetch
Table 3-14
ALSS Functions
660703 Accumulator Left Shift Signed (Three.Positions)
Process Function Drawing No.
75 Same as LRSS except:
SAOP(1)ASATO(1)ASATI(1) = ALS KE4
43 Same as LRSS except:
SU2(1) =111100 = SC KE2
41 Same as LRSS
54 Same as LRSS except:
R-PULSE = 111101 = SC KE2
50 Same as LRSS
42 (ACO,MQI,EAE-R,CONT,CMA55) KC18
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE= 111110 = SC _ KE2
EAE-R(1)ASCOV2(0)AEAE RUN(1AEIRO?(1)ALRS = IN SHLI1 KE4
IN SHL1 = SHL1 KC13
ACO(1)ASHLIAMQI(1) = ACn — MQn-1 KC20-21
SHL1 = ADROO = O BUS L KC15

3-16

Table 3-14 (cont)
ALSS Functions

660703 Accumulator Left Shift, Signed (Three Positions)
Process Function Drawing No.
42(cont) EAE-R(1) = O BUS L—=TEMP2 KE3
EAE-R(1)= TEMP1—END BIT17 KC15
SHL1 = END BIT17 -» MQ17 KC20
CM STROBEACONT(1) = GO TO 55 KC16
55 (ARO,ACI,EAE-P,CONT,CMA53) KC18
EAE-P(1)AEAE RUN(T) = FIRST(0) KE3
ARO(T)ANOSHAACI(1) = AR = AC KC20-21
EIR11(1) = IN SHL1 KE4
SHIFT = ADRL = O BUS L KC15
EAE-P(1) = O BUS L — TEMP1 KE3
EAE-P(1) = TEMP2 — END BITOO (lost) KC15
EAE-P(1) = TEMP3 — END BIT17 (hot used) KC15
CM STROBEACONT(1) = GO TO 53 KC16
?3 (MQO,ARI,EAE-R,CONT,CMA56) KE18
} EAE-R(1)ASCOV (0) = R-PULSE KE2
R~-PULSE = 111111 — SC =SC FULL . KE2
EAE-R(1)ASCOV2(0)AEAE RUN(1)AEIRO9(1)ALRS = IN SHLI KE4
IN SHL1 = SHL1 KC13
Shift 2 MQO(1)ASHLIAARI(1) = MQn — ARn-1 KC20-21
SHL1 = ADROO =@ O BUS L KC15
EAE-R(1) = O BUS L — TEMP2 KE3
EAE-R(1) = TEMP1 — END BIT17 KC15
SHL1 = END BIT17 = AR17 KC20
v CM STROBEACONT(1) = GO TO 56 KC16
56 (ACO,MQI,EAE-P,CONT,CMA57) KC18
EIRT1(1) = IN SHLI1 KE4
ACO(1)ANOSHAMQI(1) = AC = MQ KC20-21
SHIFT = ADRL— O BUS L KC15
EAE-P(1) = O BUS L — TEMP1 KE3
EAE-P(1) = TEMP2 — END BITO0O (lost) KC15
EAE-P(1) = TEMP3 — END BIT17 (not used) KC15
CM STROBEACONT(1) = GO TO 57 KC16
57 (ARO,ACI,EAE-R,CONT,CMA40) KCi18
4\ EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 000000 — SC KE2
R-PULSEASC FULL = SCOV(1) L KE2
EAE-R(1)ASCOV2(0)AEAE RUN(T)AEIRO9(1)ALRS = IN SHL1 KE4
IN SHLT = SHL1 KC13
ARO(1)ASHLIAACI(1) = ARn — ACn-1 KC20-21
Shift 3 SHL1 = ADROO — O BUS L KC15
EAE-R(1) = O BUS L — TEMP2 (lost) KE3
EAE-R(1) = TEMP1 — END BIT17 KC15

Table 3=14 (cont)
ALSS Functions

660703 Accumulator Left Shift, Signed (Three Positions)
Process Function Drawing No.

57(cont) SHL1 = END BIT17 — AC17 KC20
EAE-R(T)AEAE RUN(1) = ADDR 10 KE3
CMA40AADDR 10 = CMA50 KC17
CM STROBEACONT(1) = GO TO 50 KC16

50 (MQO, ARI,EAE-P,CONT,CMA42) KC18
SCOV(1) = TN SALT KE4
MQO(T1) ANOSHAARI(1) = MQ = AR KC20-21
CM STROBEACONT(1) = GO TO 42 KC16

42 (ACO,MQI,EAE-R,CONT,CMAS55) KC18
EAE-R(1)ASCOV(1) = SCOV2(1) KE2
SCOV(1) = R-PULSE KE2
SCOV2(1) = IN SHLI1 } KE4
ACO(1)ANOSHAMQI(1) = AC = MQ _ KC20-21
CM STROBEACONT(1) = GO TO 55 KC16

55 (ARO,ACI,EAE-P,CONT,CMA53) KC18
SCOV(1) = IN SHLI KE4
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
CM STROBEACONT(1) = GO TO 53 KC16

53 (MQO, ARI,EAE-R, CONT,CMA56) KC18
EAE-R(1)ASCOV2(1) = EAE RUN(0) KE3
SCOV2(1) =IN SHLI KE4
MQO(1)ANOSHAARI(1) = MQ — AR KC20-21
CM STROBEACONT(1) = GO TO 56 KC16

56 (ACO, MQI,EAE-P,CONT,CMA57) KC1i8
SCOV(1) =IN SHL1 KE4
ACO(1)ANOSHAMQI(1) = AC = MQ KC20-21
CM STROBEACONT(1) = GO TO 57 KC16

57 (ARO,ACI,EAE-R,CONT,CMA40) KC18
SCOV2(1) = IN SHLI KE4
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
EAE RUN(O)ASCOV2(1) = ADDR 10 KE3
CM STROBEACONT(1) = GO TO 40 KC16

40 (EAE,DONE,CMA10) KC18
CLK (B)+670 nsAEAE(1)ADONE(1) = INPUT 10 RESTART KD3(3)
INPUT 1O RESTART =IO RESTART KD3(3)
10 RESTART =GO TO 10 KC16

10 (PCO,SM,CMA21) KCi18
BGN next fetch

LLINK I

L2] [w] [« |

5 L e{ rewe 3}
| END BIT 17 l

sa| L | | acee-1z | | woaee-1z | | aree-17 |
|
sef L | | acse-17 | [wmaeo|maei-17] fwmasi-7 | L |

ITEMPiI—D[END BIT 17 l
v

[Acao | Acm-n] [aco-17 [maoe | [maer-17] o |

| TEMP 2 l-—b LOST

[maoz-17T LT] [acer-17]mose] [wmoor [mas2-17] o |

[reme 1 |-of EnoBiT 17 |

I MQOZ—!Tl L l L] [ACO!] AC@2-17 I mMQoo I I AC@2-17 [M0001 MQOt]

I i

TEMP 2

L.OST

{Mooz-17] L L] [mogz -17] " [L] [acez-17[maoa-e:]

L1 |

[acoz-17 | mava-a1 | {maez-17] L |0 | [acez-17 [mase-a1]

[Aco2-17 [mooe-01] fmoez-z[L] [weez-i7] L]0

1 ?

| ace2-17 [mase-o1 | [acez-17 | mose-01 | [1002-11] L l L]

[wooz-7] L T] {acoz-17 [moss-81| fmosz-17] c]
Lt 1 . l |

[ﬁoz-nl L I L l [Acoz—nluou—ooJ [Acoz—nluou-u]

)

{maoz-17] L[] [wmesa-vr] T] [Acaz-nluoouml

I N

[acez-17| maee-01] [mosz-ir] L |] [acez -17 [mapa -a1 |

40 DONE

Figure 3-3 LLS, LLSS Register Manipulation (Two Positions)

3-19

v] [ac) [w] [=]

sal o | | acee-1z | | woes-17 | | aces-17 |
' |
58 I L 1 [ACE® -17] r waoe -17 | [Mooa -17 |

YEE

42[L] [acos | acer-17 | IACG|—17I L]
ss{ o | | wmaee-1z | Jacer-iz] | | wess-17 |

t |

53] L l [MQoa -17] IACGH lAC02-17| L l IACQZ-!?I L [L]

v L r ¢
|TEMP2 |—>LOST

56[L _l I MQad - 17 I LMOOO—V!] IAC¢2—17I L l L]
I

TEMP |]-—’rEND BIT {7 I
'

57[L l [aces-17] o [L [v] | wose-17 J IAcozlAcaa-n[L] L I

t 1t l
LOST

se| o | Jaces-r| L[] [wage-tr 1| wmese-17 |

&
N
r

| [aces-ir] L] L‘l | faces-irl i o] o] [meee-ir]

55[L] [wooa-17 | Jacea-z[o[l]0L] [MO®g -17 J

ss{ o | [wmose-tz | faces-erf i |c] [Acos-n[LlLlL]

sel o | | wose-17 | [woee-1z | [aces-vzf || L]

I

| [aces-izf e]] [wose-v | [aces-iz] |0]

s7 |

-

40 DONE

Figure 3-4 ALS, ALSS Register Manipulation (Three Positions)

3-20

3.6 NORMALIZE INSTRUCTIONS

The NORM and NORMS instructions, Table 3-15, are commonly used within a subroutine to
convert an integer into a fraction and exponent for use in floating=point arithmetic. The algorithm for
normalize is to shift the contents of the AC and MQ left until ACOO differs with ACO1. For signed,
normalized positive numbers this results in AC00(0) and ACO1(1). For signed, normalized negative
numbers the result is ACOO(1) and ACO1(0). For sigﬁed normalized numbers the sign (ACO0) is first
duplicated in the LINK. For unsigned numbers the LINK is usually initialized to 0. In both cases the
content of MQOO enters AC17, the content shifted out of ACO0 is lost, and the content of the LINK
enters MQ17, on each shift. When shifting halts, the contents of the SC reflect the number of shifts

executed to reach the normalized condition. The SC contents are available through the use of the EAE

OSC or EAE LACS instruction.

Table 3-15
EAE NORM Instruction Format
Op Code Not NORM Number of
648 Used 48 Shifts
0O 1 213 4 5|6 7 819 10 11{12 13 14|15 16 17
4 0 4 4 4 NORM
6 0 4 4 4 NORMS

For normalized numbers, the binary point is assumed to be between AC00 and ACO1, the
mantissa of the fraction extends from ACO1 to MQ17, the sign is in AC00, and the value of the exponent
is in the SC. The number in the SC after normalize is actually the sum of the pre~established charac-
teristic and the exponent (n) in 2s complement form. The characteristic is a number equivalent to the

total number of bit positions in the AC and MQ, 36, or 44,. The NORM(S) instruction contains this

10 8
number in bits 12 through 17 and loads it into the SC in 2s complement to establish the exponent in ex=~
cess 44 code. This means that the exponential range of the fraction when normalized is 20 to 235, or
- +
448 n.

For example, if the integer +3 is stored in the MQ (MQ16, MQ17 are 1s) and it is desired to

convert this to a fraction and exponent, the following program sequence is required.

NORM(S) /NORMALIZE CONTENTS OF AC, MQ

DAC /DEPOSIT AC IN MEMORY

LACQ /MOVE MQ TO AC

DAC /DEPOSIT MQ IN MEMORY

LACS /MOVE SC TO AC

TAD (44 /SUBTRACT CHARACTERISTIC FROM STEP COUNT
DAC /DEPOSIT RESULT (EXPONENT) IN MEMORY

3-21

In the process of normalizing, a total of 33 shifts is required to shift MQ16(1) into ACO1.
This leaves the SC with a step count of:

011100 initialized step count
100001 plus 33 steps
111101 final step count

Since the step count is in 2s complement, the TAD (448 instruction (2s complement add) in

effect subtracts the characteristic from the final step count to arrive at the exponent:

111101 final step count
100100 TAD characteristic
100001 exponent

The NORM(S) logic functions are very similar to the LLS(S) functions. Table 3-13 lists the
functions for a two-position LLSS instruction. The functions for a NORMS instruction requiring only
two shifts to normalize can be correlated with those of Table 3-13.

In the NORMS case, any positive integer whose most=significant 1 bit is located in ACO3
requires two shifts to normalize. Likewise, any negative integer whose most-significant 0 bit is in AC0O3
requires two shifts to normalize. Substituting the positive=integer NORMS case in the listings of

Table 3-13, the following NORMS functions become apparent.

75 SAO09(1)ASA10(0)ASA11(0) = NORM KE4
43 SU2(1) = 011011 = SC KE2
41 Same

54 R-PULSE = 011100 — SC KE2
50 Same, first shift

42 Same, first shift, plus:

R-PULSE = 011101 = SC
EAE STROBE DLYDAEAE-R(1)ANORMAO BUSO0AO BUSO1=SCOV(T) KE2

55 Same, second shift
53 Same, second shift, plus:

R-PULSE = 011110 — SC KE2
EAE STROBE DLYDAEAE~-R(1)ANORMAOBUSO0AO BUSOT = SCOV(1) KE2

56,57,50,42,55,53,56,57,40,10 Same

Although the execution of a NORM(S) instruction cannot be interrupted by a program interrupt
(PI) or an automatic priority interrupt (API) request, the central processor can grant such a request be-
fore the executed NORM(S) results can be extracted from the EAE registers and processed. Therefore,
if interrupt-accessed subroutines are to make use of the EAE, the following instruction sequences are
suggested fo preserve the register contents during the interrupt and to restore them to the EAE upon com-

pletion of the interrupt service routine.

3-22

/SAVE EAE REGISTERS DURING INTERRUPT

JMS SUBENTR
SUBENTR, 0

DAC ACSAVE

LACQ

DAC MQSAVE

LACS

DAC SCSAVE

LAC SCSAVE
XOR (77

TAD (640402
AND (640477
DAC.+1

HLT*

LAC MQSAVE
LMQ

LAC ACSAVE
DBR

JMP I SUBENTR

/SAVE AC CONTENTS
/MOVE MQ TO AC
/SAVE MQ CONTENTS
/MOVE SC TO AC
/SAVE SC CONTENTS

/COMPLEMENT STEP COUNT

/DEVELOP PSEUDO NORM

/DELETE POSSIBLE STEP COUNT OVERFLOW
/PLACE NORM IN SEQUENCE

/STEP COUNT TO SC

/

/LOAD THE MQ

/LOAD THE AC

/RESTORE PC, LINK, ETC

Restoration of the step count fo the SC requires that the 2s complemented quantity, taken

from the SC at the time of interrupt, be complemented, then combined with the pseudo NORM instruc-

tion. The step count following TAD,AND fis one less (1s complement) than the actual value produced

by the previous normalization (2s complement). Execution of the pseudo NORM instruction, then, 2s

complements this step count into the SC, and in shifting the AC and MQ left one bit position adds the

necessary 1 to the SC to produce the correctly restored step count (the 6404XX present in the AC from
TAD, AND shifts to become 501XXX). From the previous two-shift NORM(S) sample:

011110 LAC ACSAVE
111111 XOR (77
100001
64048 000010 TAD (640402
100011
64044 111111 AND (640477
6404, T000T1 DEPOSIT IN HLT* = 640443 = NORM
NORM = 011100 Is complement = SC
011101 25 complement — SC
011110 shift once, step 5C

The DBR instruction preceding the JMP I subroutine termination primes the computer for resto-

ration of the interrupted program. This restoration occurs during JMP 1. During this time, the PC and

* Good programming practices dictate that instructions to be developed at "run" time be represented by
HLT instructions in the source program. If the development does not occur, the HLT will facilitate de-

bugging the program,

3-23

LINK are restored to the contents existing at the time of interrupt.: The memory protect and extended
memory options, if in the system, are restored to their on or off status. Refer to the PDP-9 Maintenance

Manual and option manuals for details.

3.7 MULTIPLY INSTRUCTIONS

The MUL(S) instruction, Table 3-16, multiplies the contents of the AC (multiplier) by the
contents of the next sequential core memory location (multiplicand) to form a product in the AC and
MQ. Bits 12 through 17 in the instruction are usually programmed for a step count of 228 (]8]0), repre=
senting the multiplication of one 18-bit quantity (sign bit and 17 magnitude bits for MULS) by another
to produce a 36-bit product. When such precision is not required, the microprogrammed step count can
be decreased by subtracting the appropriate number "n" from the instruction code. The product is al-
ways sca|éd 18-n from MQ17. If "n" is programmed in the instruction, the 18-n lower order bits in the

_long register are meaningless.

Table 3-16
EAE MUL Instruction Format
OPéiUde - M]UL Commands Product
8 8 Precision
3 45 7 8192 10 1112 13 14|15 16 17
5 3 1 X X MUL
5 "7 1 X X MULS

For a MUL instruction the LINK must previously have been initialized to O and remains 0.
During the preparatory pEasé the multiplier is transferred from the AC to the MQ, the AC is cleared,
and the SC is set to the 2s complement of the step count in bits 12 through 17 of the instruction. A core
memory cycle takes place to read the mulfi.pliccmd into the MB. The arithmetic phase, executed as
multiplication of one unsigned quantity by another (binary point of no consequence), halts when the SC
counts up to 0, 4

For a MULS instruction a previous LAC/GSM/DAC CAND sequence stores the absolute value
of the multiplicand in memory and places the original sign of the multiplicand in the LINK. During the
preparatory phase of MULS, a core memory cycle reads the absolute value multiplicand into the MB,
transfers the LINK content to a TEMPorary storage flip-flop in the EAE, and resets the LINK. The mul-
tiplier is transferred to the MQ and is 1s complemented if negative, the AC is cleared to 0, and the SC
is initialized to the 2s complement ‘of the step count in bits 12 through 17 of the instruction. The arith-

metic phase, executed as multiplication of one signed quantity by another (sign bit plus 17 magnitude

3-24

bits, binary point of no consequence), halts when the SC counts ‘up to 0. Bits ACOO and ACO1 each
receive the sign of the product; the remaining AC and MQ bits represent the magnitude.

From the above description of MULS, it can be seen that the arithmetic phase always starts
with positive, like=signed quantities in the MQ (multiplier) and the MB (multiplicand). The TEMPorary
storage flip-flop which receives the original sign of the multiplicand (TEMP3, drawing KE3) acts upon
the MQ SIGN and EAE SIGN flip~flops which perform certain complementary functions during the
arithmetic phase to arrive at the correctly signed product.

Thus, the complementary functions govern the four signed multiply situations as follows.

Hx =+ (behaves as simple unsigned -multiply, no complementing
of the final product)
+tx == (negative multiplier is first complemented in preparatory
: phase, final product complemented after arithmetic phase)
-x+t== (EAE GSM sets LINK, complements multiplicand; MULS
‘ complements final product after arithmetic phase)
-x ==+ (EAE GSM sets LINK, complements multiplicand; MULS

complements multiplier in preparatory phase; no comple-
menting of final product) '

The algorithm for multiplication using the EAE is sample, add, and shift right. Each bit of
the‘mulfiplfer is sampled, starting with the least significant bit. If the sampled bit is a 1, the multi-
plicand is added fo the partial product. The partial product and the multiplier are fheﬁ shifted right’
one position for the next multiplier bit sampling. If the sampled bit is a 0, zeros are added to the
partial product. With each shift the content of the least significant bit is lost. Multiplication ends
when the SC, up-counted with each shift, reaches O. ‘

A sample program for signed multiplication of two positive numbers, 28 X 58 follows. The
logic functions that perform the MULS operations are tabulated in Table 3=17. Table 3-18 is a listing
of the arithmetic operations by process word functions.”. The sample program and the mivcroprogrammed
bits 12 through 17 in the MULS instruction reflect an initial step count of 048, resulting in a product
precision of eight bits. The MULS instruction is used here to explain EAE SIGN operations; actually,
the sample program can be modified for MUL by eliminating the GSM sequence if dealing with unsigned
numbers. chl.es 3-1.9, 3-20, and 3-21 list the ramifications of Table 3-]7 for different sign situations.

/MULTIPLY 28 x5

8
ST, 0200 200100 LAC CAND /LOAD MULTIPLICAND INTO AC
0201 100500 JMS MPY /STORE MAIN PROGRAM ADDRESS IN 0500
_ /AND JUMP TO MPY SUBROUTINE
0202 200101 LAC PLIER /LOAD MULTIPLIER INTO AC
0203 /MAIN PROGRAM RE-ENTRY

*Table 3-18 utilizes 4-bit binary numbers for simplicity. The actual result obtained in multiplying
2, x 58 is 0000008 in the AC and 5000008 in the MQ. Fourteen more shifts to the right would align
the answer as 12g~ (MQ000012g). 7

3-25

MPY 0500 000202 PC /MAIN PROGRAM ADDRESS
0501 664000 GSM /STORE CAND SIGN IN LINK AND
/ABSOLUTE VALUE IN AC
0502 040505 DAC .*+3 /DEPOSIT CAND IN 0505
0503 420500 XCT I MPY /LOAD MULTIPLIER INTO AC
0504 657122 MULS /FETCH CAND AND MULTIPLY
CAND 0505 000002
0506 440500 ISZ PC /INCREMENT MAIN PROGRAM ADDRESS
0507 620500 JMP 1500 /JUMP TO MAIN PROGRAM
0100 000002 MULTIPLICAND
0101 000005 MULTIPLIER
TQb'e 3-]7 00]0
MULS Functions x 0101
657104 Multiply, Signed (Four Steps) 29 x 59
Process Function Drawing No.
75 (ACO, ARI,EAE, LI, CONT,CMA43) KC18
ACO(1)ANOSHAARI(1) = AC — AR KC20-21
SAQ9(0)ASATO(0)ASATI(1) = MUL KE4
EAE(1)AARI(1) = SU1(1) KE3
SUT(1) =0 — SCOV,SCOV2,FIRST, EAE RUN, EAE SIGN,MQ SIGN| KE2-3
SUT(T)ASETUP = SC CLR KE2
SCCIR=0—-5C KE2
SUT(1)AMBO7(1) = EAE OR ARO KE3
LI(1) = ADRL = LAR(0) KC15
LI(1) = ADRL — TEMP3(0) KE3
EAE(1) =0 — EN CMPL KE3
TEMP3(0) = condition MQ SIGN MUL = condition MQ SIGN KE3
CM STROBEACONT(1) = GO TO 43 KC16
43 (ACI,EAE,CONT,CMA41) KC18
CM STROBEAEAE OR ARO = ARO(1) KC19
ARO(1)ANOSHAACI(1) = AR — AC KC20-21
EAE(1AACI(1)ASETUP = SU2(1) KE3
SU2(1) = MB12-17 = SC = 111011 KE2
LI(0) = LAR(O) = LINK(0) KC15
CM STROBEACONT(1) = GO TO 41 KC16
41 (ACO,MQI,EAE,CONT,CMA54) KC18
ACO(1ANOSHAMQI(1) = AC —» MQ KC20-21
CM STROBEACONT(1) = GO TO 54 KC16
54 (ACI,EAE-R,CONT,CMA40) KC18
ACI(1) =0 = AC KC20
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 111100 — SC KE2
EAE-R(1) = O BUS L = LINK — TEMP2(0) KE3
EAE(O)ATEMP3(0) = MQ SIGN(1) KE3

3-26

Table 3-17 (cont)
MULS Functions

657104 Multiply, Signed (Four Steps) 25 x 5
Process Function I Drawing No.
54(cont) MQ SIGN(1) = condition EAE SIGN KE3
EAE-R(1)ASCOV2(0) = ADDR 10 KE3
EAE-R(1)AEIRO9(0)ASCOV2(0)AEAE RUN(0) = ODD ADDR KE3
CM STROBEACONT(1)ACMA40AADDR 10AODD ADDR = GO TO 51| KC16
51 (PCO,SM, MBI, CMA52) KC18
PCO(1) ANOSHAMBI(1) = PC — MB (CAND ADDRESS) KC20-21
SM(1ACLK = FETCH CAND MC2
SM(T)ACLK = CM STROBE KC16
CM STROBE = GO TO 52 KC17
52 (MBO, +1,PCI,LI,CMA50) KC18
+1(1)=Cn7 KC14
MBO(T)ANOSHACIT7 APCI(1) = MB (CAND ADDRESS) +1 — PC KC20-21
+1(1) = A BUS LINK — ADRL KC15
LI(1)=ADRL—LAR(0) LI(1) = ADRL — TEMP3(0) KC15
LI(HACONT = EAE CLR RQ KE3
EAE CLR RQ = IN CLR, CLR KC16
IN CLR =CLR I=0 - PCI, MBO KC19
CLR=0—+1, 1 = SAO KC19
IN CLR =1 — MBI KC19
SAO(1) = A BUS LINK = ADRL (Since +1 is cleared by CLR, KC15
SAQ(T1) inhibits erroneous setting
of LAR)
SAO(T)ANOSHAMBI(1) = SA(CAND) — MB KC20-21
MEM STROBE = GO TO 50 KC16
50 (MQO,ARI,EAE-P,CONT,CMA42) KC18
A EAE-P(1)AEAE RUN(0) = FIRST(1) KE3
EAE-P(1)ASCOV2(0) = EAE RUN(T) KE3
FIRST(T)AEAE RUN(T)AMQ SIGN(1)=CMPL EAE SIGN=EAE SIGN(1)| KE3
FIRST(T)AMUL = MQ SIGN (1) KE3
MQ SIGN(1) = condition EAE SIGN
Sample MQO(T)ANOSHAARI(1) = MQ —* AR KC20-21
EAE-P(1TYAMULASCOV(0)AO BUS17(1) = EAE OR MBO KE3
EAE-P(1) = O BUS L = LINK = ADRL - TEMP1 (not used) KE3
LI(0) = LAR(O) = LINK(O) KC15
v CM STROBEACONT(1) = GO TO 42 KC16
42 (ACO,MQI,EAE-R,CONT,CMA55) KC18
0 EAE-R(1)ASCOV/(0) = R-PULSE KE2
R-PULSE = 111101 = SC KE2
CM STROBEAEAE OR MBO = MBO(1) KC19
EAE-R(1)ASCOV2(0)AEAE RUN(T)AEIRTO(0)AEIR11(1) = IN SHR1 KE4
IN SHR1 = SHRI1 KC13
ADD ACO(1)ASHRIAMQI(1) = ACn — MQnt+1 KC20-21
Shift i MBO(1)ASHRTAMQI(1) = MBn — MQn+1 KC20-21

3-27

Table 3-17 (cont)
MULS Functions

2 x5

657104 Multiply, Signed (Four Steps) 8778
Process Function Drawing No.
42 (cont) EAE-R(1) = ADRL = END BITO0 (CO00=0) KC18
SHR1 = END BITO0 — MQO00 KC20
SHRT = ADR17 = O BUS L KC15
EAE-R(T) = O BUS L — TEMP2 KE3
EAE-R(1) = TEMP1 = LINK — END BIT17 (lost) KC15
CM STROBEACONT(1) = GO TO 55 KC16
55 (ARO,ACI,EAE-P,CONT,CMA53) KC18
A EAE-P(1)AEAE RUN(1) = FIRST(0) KE3
EAE-P(1)AFIRST(0)ASCOV2(0)AEAE RUN (1)AEIRTO(0)AEIR11(1)
=IN SHR1 KE4
IN SHR1 = SHR1 KC13
Shift 1 ARO(T1)ASHRTIAACI(1) = ARn —» ACn+1 _ KC20-21
Sam |el EAE-P(1)AMULASCOV (0)AO BUS17(0) = EAE OR MBO KE3
P SHR1 = ADR17 = O BUS L KC15
EAE-P(1) = O BUS L = TEMPI (lost) KE3
EAE-P(1) = TEMP2 — END BIT00 KC15
SHR1 = END BIT00 — ACO00 KC20
v CM STROBEACONT(1) = GO TO 53 KC16
53 (MQO, ARI,EAE-R,CONT,CMA56) KC18
A EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 111110 = SC KE2
EAE-R{1)ASCOV2(0)AEAE RUN(T)AEIRTO(0)AEIR11(1) = IN SHR1 KE4
IN SHR1 = SHR1 KC13
Shift 2 MQO(1)ASHRIAARI(1) = MQn —» ARn+1 KC20-21
Add Zer,<;s EAE-R(1) = ADRL — END BITO0 KC15
SHR1 = END BITOO — AROO KC20
SHR1 = ADR17 = O BUS L KC15
EAE-R(1) = O BUS L — TEMP2 KE3
v CM STROBEACONT(1) = GO TO 56 KC16
56 (ACO,MQI,EAE-P,CONT,CMA57) KCi18
A EAE-P(1)AFIRST(0)ASCOV2(0)AEAE RUN(1)AEIRTO(O)AEIRT1(1)
= IN SHR1 KE4
IN SHR1 = SHR1 KC13
ACO(T)ASHRIAMQI(1) = ACn — MQn+1 KC20-21
Shift 2, EAE-P(1)AMULASCOV (0)AO BUS17(1) = EAE OR MBO KE3
Sample SHRT = ADR17 = O BUS L KC15
EAE-P(1) = O BUS L = TEMP1 (lost) KE3
EAE-P(1) = TEMP2 — END BIT00 KC15
SHR1 = END BITO0 — MQO00 KC20
 / CM STROBEACONT(1) = GO TO 57 KC16

3-28

Table 3-17 (cont)
MULS Functions

2.x5

657104 Multiply, Signed (Four Steps) 8778
Process Function Drawing No.
57 (ARO, ACI,EAE-R,CONT,CMA40) KCI18
A EAE-R(1)ASCOV/(0) = R-PULSE KE2
R=-PULSE = 111111 = SC = SC FULL KE2
EAE-R(1)ASCOV2(0)AEAE RUN(T)AEIRTO(O)AEIRT1(1) = SHR1 KE4
IN SHRT = SHR1 KC13
CM STROBEAEAE OR MBO = MBO(1) KC19
Add, ARO(TASHRIAACI(1) = ARn = ACn+1 KC20-21
Shift 3 MBO(1ASHRTAACI(1) = MBn = ACn+1 KC20-21
EAE-R(1) = ADRL— END BIT00 (CO00 — 0) KC15
SHRT = END BITO0 — ACO00 KC20
SHRT = ADR17 - O BUS L KC15
EAE-R(1) = O BUS L — TEMP2 KE3
EAE-R(1) = TEMPT — END BIT17 (lost) KC15
EAE-R(1)ASCOV2(0) = ADDR10 KE3
 J CM STROBEACONT(1)ACMA40AADDR 10 = GO TO 50 KC16
50 (MQO, ARI, EAE-P, CONT, CMA42) KC18
A EAE-P(1)AFIRST(0)ASCOV2(0)AEAE RUN(T1)AEIR10(0)AEIRT1(1)
= IN SHRI KE4
IN SHRI = SHR1 KC13
MQO(1)ASHRIAARI(1) = MQn — ARn+1 KC20-21
Shift 3, EAE-P(1)AMULASCOV (0)AO BUS17(0) = EAE OR MBO KE3
Sample SHRT = ADR17 = O BUS L KC15
EAE-P(1) = O BUS L = TEMPIT (lost) KE3
EAE-P(1) = TEMP2 — END BIT00 KC15
SHRT = END BITOO — ARO0O KC20
v CM STROBEACONT(1) = GO TO 42 KC1é6
42 (ACO,MQI,EAE-R,CONT,CMA55) KC18
A EAE-R(1)ASCOV/(0) = R-PULSE KE2
R-PULSE = 000000 — SC KE2
EAE-R(1)ASC FULL =sSCOV(1) KE2
EAE-R(1)ASCOV2(0)AEAE RUN(T)AEIRTO(0)AEIRT1(1) = IN SHRI1 KE4
IN SHRT = SHRI1 KC13
Shift 4, ACO(DASHRTIAMQI(1) = ACnh = MQn+1 KC20-21
Add Zeros EAE-R(1) = ADRL — END BITO00 KC15
SHRT1 = END BIT00 — MQO00 KC20
SHRT = ADR17 = O BUS L KC15
EAE-R(1) = O BUS L — TEMP2 KC15
EAE-R(1) = TEMP1 — END BIT17 (lost) KC15
CM STROBEACONT(1) = GO TO 55 KC16

3-29

Table 3-17 (cont)
MULS Functions

2_x5

657104 Multiply, Signed (Four Steps) 8778
Process Function Drawing No.
55 (ARO, ACI,EAE-P,CONT,CMA53) KC18
A EAE-P(1)AFIRST(0)ASCOV2(Q)AEAE RUN(1)AEIRTO(0)AEIRT1(1)
= IN SHR1 KE4
IN SHR1 = SHR1 KC13
Shift 4 ARO(DASHRIAACI(1) = ARn = ACn+1 KC20-21
No Sample EAE-P(1)AMULASCOV (1) = EAE OR MBO KE3
SHRT = ADR17 = O BUS L KC15
EAE-P(1) = O BUS L — TEMP1 (lost) KE3
EAE-P(1) = TEMP2 — END BIT00 KC15
SHR1 = END BIT0O0 — ACO00 KC20
“’ CM STROBEACONT(1) = GO TO 53 KC16
53 (MQO, ARI,EAE-R,CONT,CMA56) KCi8
EAE-R(1)ASCOV(1) = R-PULSE KE2
EAE-R(1)ASCOV(1) = SCOV2(1) KE3
SCOV2(1) = IN SHRI KE4
MQO(1)ANOSHAARI(1) = MQ — AR KC20-21
CM STROBEACONT(1) = GO TO 56 KC16
56 (ACO,MQI,EAE-P,CONT,CMA57) KC18
SCOV2(1) = IN SHRI1 KE4
EAE-P(1)AACO(1)AMQI(1)AEIROZ(0)ASCOV2(1) = EN CMPL(1) KE3
EN CMPL(1)AMULAMQ SIGN(1)=CMPL EAE SIGN=EAE SIGN(0)| KE3
EAE SIGN(0) = CMPL KE3
ACO(1)ANOSHAMQI(1)ACMPL = AC = MQ KC20-21
CM STROBEACONT(1) = GO TO 57 KC16
57 (ARO,ACI,EAE-R,CONT,CMAA40) KC18
SCOV2(1) = IN SHRI1 KE4
EAE-R(1)ASCOV2(1) = RUN(0) KE3
EAE=-R(1)ASCOV2(1)ARUN (0) ="ADDR 10 KE3
EN CMPLAEAE SIGN (0) = CMPL KE3
ARO(1ANOSHAACI(1)ACMPL= AR = AC KC20-21
CM STROBEACONT(1)AADDR 10= GO TO 40 KC16
40 (EAE,DONE,CMAT10) KCI18
CLK(B) DLYDAEAE(1)ADONE(1) = INPUT IO RESTART KD3
IO RESTART=GO TO 10 KC16
10 (PCO, SM,CMA2T) KC18

BGN next fetch

3-30

Table 3-18
MULS Arithmetic

878

AC MQ AR

> sample
50 0000 0101 PLIER ———= 0101
42 0010 CAND
CRY-<-0010 SHR1 > 0001 o101
l / A
/ r->|osr

55 0010 0001 0101

él SHR1 I —> sample
v
53 0010 0001 SHR1——=0000
—=>lost /
56 0010 SHR1 ~——>1001 0000
sample
57 0001« 1001 0010 CAND
A CRY <— 0010—
SHRI F
50 0001 1001 SHR1 —=>0100
1> ost
sample
Y
42 0001 SHR1—————= 0000 0100
—> lost
55 1010 0000 0100
=1 SHR1 I

53 1010 0000 > 0000

56 1010 >1010 0000

57 0000 <—[1010 J—OOOO

|<_._.____answer ——-——al
124

3-31

Table 3-19
MULS Functions

657104 Multiply, Signed (Four Steps) 2 =38
Process Function
75 TEMP3(0) = condition MQ SIGN
MUL = condition MQ SIGN
ACO00(1) = condition EAE SIGN
EAE(1) =0 — EN CMPL
43 SU2(1)AMBOG(T)AACO00(1) = EAE SIGN (1)
SU2(1)/\EI_R_O9(0)/\EAE SIGN(1)AEIRTT(1) = CMPL
CMPL=AR = AC
4] AC = MQ
54 EAE(O)ATEMP3(0) = MQ SIGN(1)
MQ SIGN(1) = condition EAE SIGN
0 — AC
51 CAND fetch
52 MB+1 — PC
50 FIRST(T)AEAE RUN(T) AMQ SIGN(T)AEAE SIGN (1) = EAE SIGN(0)
FIRST(1) AMUL = MQ SIGN(1)
42,55,53 | same as MULS 28 x 58
56 EAE-P(1)ASCOV2(1)AMQI(1)AERRO9(0)AACO(1) = EN CMPL(1)
MULAEN CMPLAMQ SIGN(T)AEAE SIGN (0) = EAE SIGN(1)
EN CMPL_(]_)/\EAE SIGN(1) = CMPL
CMPL = AC = MQ
57 EN CMP_I:/_\EAE SIGN (1) = CMPL
CMPL = AR = AC
Table 3-20
MULS Functions
657104 Multiply, Signed (Four Steps) "2 %3
Process Function
75 TEMP3(1) = no conditioning of MQ SIGN
ACO00(0) = no conditioning of EAE SIGN
MUL = condition MQ SIGN EAE(1)=0 EN CMPL
43 AR = AC
41 AC = MQ
54 0 - AC
51 CAND fetch
52 MB+1 = PC
50 FIRST(1)AMUL = MQ SIGN (1)

FIRST(1)AEAE RUN(1) = no effect on EAE SIGN

3-32

Table 3-20 (cont)
MULS Functions

657104 Multiply, Signed (Four Steps) 23 % 3
Process Function
42,55,53 | same as MULS 28 X 58
56 EAE-P(1)ASCOV2(1) AMQI(T)AEIRO9(0)AACO(T1) = EN CMPL(1)
EN CMPL(1)AMULAMQ SIGN(1)AEAE SIGN (0) = EAE SIGN (1)
EN CMPL(1)AEAE SIGN (1) = CMPL
CMPL = AT - MQ
57 EN CMPLAEAE SIGN (1) = CMPL
CMPL = AR = AC
Table 3-21
MULS Functions
657104 Multiply, Signed (Four Steps) -28 x =5g
Process Function
75 TEMP3(1) = no conditioning of MQ SIGN

ACO00(1) = condition EAE SIGN
MUL = condition MQ SIGN
EAE(1) =0 — EN CMPL

43 SU2(T)AMBO6(1)AACOO(1) = EAE SIGN (1)
SU2(1)AEIRO9(0)AEAE SIGN(1)AEIR11(1) = CMPL
CMPL=AR = AC

41 AC = MQ

54 0 = AC

51 CAND fetch

52 MBH1 — PC

50 FIRST(1)AMUL = MQ SIGN(1)

FIRST(1)AEAE RUN(1) = no effect on EAE SIGN

42,55,53 | same as MULS 28 x 58

56 EAE-P(])/\SCOVZ(])/\MQI(])/\EIRO()(O)/\ACO(]) = EN CMPL(1)
EN CMPL(T) AMULAMQ SIGN(1)AEAE SIGN (1) = EAE SIGN (0)
EN CMPL(T)AEAE SIGN(0) = CMPL

AC =» MQ
57 EN CMPL(1)AEAE SIGN(0) = CMPL
AR = AC
3.8 DIVIDE INSTRUCTIONS

Six divide instructions including integer divide and fraction divide, Table 3-22, divide the

contents of the AC and MQ (integer dividend, fraction dividend, long register dividend) by the contents

3-33

of the next sequential core memory location (divisor) to form a quotient in the MQ and remainder in the
AC. Bits 12 through 17 in the instruction are usually programmed for a step count of 23g (19]0),
representing division of a 36-bit dividend (actual or implied) by an 18-bit divisor. When such precision
is not required, the microprogrammed step count can be decreased by subtracting the appropriate number
"n" from the instruction code. The quotient is always right-justified in the MQ and the remainder right-
justified in the AC. If "-n" is programmed in the instruction, the n high-order bits in the MQ and AC

are meaningless.

Table 3-22
EAE DIV Instruction Format
Op Code DIV Commands Precision of
648 38 QUOT/Remainder
01 2|3 4 5|6 7 8|9 10 11|12 13 1415 16 17
6 4 +0 3 X X DIV
6 4 4 3 X X DIVS
6 5 3 3 X X IDIV
6 5 7 3 X X IDIVS
6 5 0 3 X X FRDIV
6 5 4 3 X X FRDIVS

Instructions may be programmed for division of signed or unsigned quantities. Divide over-
flow occurs if the quotient exceeds the capacity of the MQ (7777778, unsigned; :h3777778, signed).
The LINK sets to indicate an overflow, divide execution ends in 5 computer cycles, and the register

confents are meaningless. The computer goes on to the next instruction.

3.8.1 DIV(S) Instruction

The DIV(S) instruction divides the contents of the AC and MQ (long register dividend) by the
contents of the next sequential core memory location to form a quotient in the MQ and remainder in
the AC.

For a DIV instruction the LINK must previously have been set to 0 and remains O unless divide
overflow occurs (Section 3.8.4). During the preparatory phase, the SC is set to the 2s complement of
the step count in bits 12 through 17 of the instruction. A core memory cycle takes place to read the |
divisor into the MB. The arithmetic phase, executed as the division of one unsigned quantity by an-
other (binary point of no consequence), halts when the SC counts up to 0.

For a DIVS instruction, a previous LAC/GSM/DAC DIVR sequence stores the absolute value
of the divisor in memory and places the original sign of the divisor in the LINK. During the preparatory

phase of DIVS, a core memory cycle reads the absolute value divisor into the MB, transfers the LINK

3-34

contfent to the temporary storage register TEMP3 in the EAE, and resets the LINK. The SC is set to the
2s complement of the step count in bits 12 through 17 of the instruction. The arithmetic phase, executed
as the division of one signed quantity by another (binary point of no consequence), halts when the SC
counts up to 0. The dividend contains a double sign in bits ACO0 and ACO1. MQOO receives the sign
of the quotient, and ACOO receives the original sign of the dividend.

As with the execution of MULS, the arithmetic phase of DIVS starts with positive, like-signed
quantities in the divisor and dividend. TEMP3, MQ SIGN, and EAE SIGN flip-flops act to 1s comple-
ment the MQ portion of a negative dividend during the preparatory phase and to perform other comple-

mentary functions during the arithmetic phase fo arrive at the correctly signed quotient as follows.

+F =+ (behaves as simple unsigned divide, final quotient
complemented after arithmetic phase)
+Fo=- (EAE GSM sets LINK, complements divisor; final

quotient not complemented)

-F+=- (MQ portion of dividend complemented during pre-
paratory phase; quotient not complemented; remainder
complemented after arithmetic phase)

-F-=+ (EAE GSM sets LINK, complements divisor; MQ por-
tion of dividend complemented during preparatory phase,
quotient complemented after arithmetic phase).

The algorithm for divide using the EAE is sample, add or subtract, and shift left. The divisor
is first subtracted from the AC portion of the dividend, and the result is shifted left. The LINK and
TEMP3 receive the most significant bit of the result for sampling. If the result is a negative number, the
divisor is added to the quotient; if the result is a positive number, the divisor is subtracted from the quo-
tient. The result is then shifted left one position for the next sampling. If in the first subtraction the
divisor is not greater than the AC portion of the dividend, divide overflow occurs, stopping divide oper-
ations (Section 3.8.4). The subtract operation takes the form of a 2s complement add.

Following is a sample program for the signed division of two positive numbers, 128 +58' The
logic functions that perform the DIVS operations are listed in Table 3-23. Table 3-24 is a listing of the
arithmetic operations by process word functions. The sample program and the microprogrammed bits 12
through 17 in the DIVS instruction reflect an initial step count of 058’ resulting in a four-bit precision
of the quotient and remainder. The DIVS instruction is used here for purposes of explanation of the
EAE SIGN operations; actually, the sample program can be modified for DIV by eliminating the GSM
sequence if dealing with unsigned numbers. Tables 3-25, 3-26, and 3-27 list the ramifications of
Table 3-23 for different sign situations.

/DIVIDE 128 +58

ST, 0500 200100 LAC DIVR /LOAD DIVISOR INTO AC
0501 100200 JMS DIV /STORE PROGRAM ADDRESS IN 0200 AND
/JUMP TO DIV SUBROUTINE
0502 /MAIN PROGRAM RE-ENTRY

3-35

DIV 0200 000502 PC /PROGRAM ADDRESS

0201 664000 GSM /STORE DIVR SIGN IN LINK AND ABSOLUTE
/VALUE IN AC

*0202 040207 DAC. +5 /DEPOSIT DIVR IN 0207

0203 200101 LAC DIVDI1 /LOAD HALF DIVIDEND INTO AC

0204 652000 LMQ /MOVE TO MQ

0205 200102 LAC DIVD2 /LOAD HALF DIVIDEND INTO AC

0206 644323 DIVS /FETCH DIVR AND DIVIDE

DIVR 0207 000005
0210 620200 JMP 1 200 /RETURN TO MAIN PROGRAM

0100 000005 DIVISOR
0101 000012 DIVIDEND (LEAST SIGNIFICANT)
0102 000000 DIVIDEND (MOST SIGNIFICANT)

NOTE: The following discussion of a divide signed operation is using a 4 bit divisor and 8 bit dividend instead
of 18and36. Referencestoa givenregisterbit 17 arereferring to the least significant bit of the applicable

register.,
Table 3-23)'——'_
DIVS Functions 0101/0000 1010
644305 Divide, Signed (Five Steps) 123 7 3¢
Process Function Drawing No.
75 (ACO,ARI,EAE,LI,CONT,CMA43) KC18
ACO(1)ANOSHAARI(1) = AC = AR KC20-21
SAO09(0)ASATO(1)ASAT1(1) = DIV KE4
EAE(1)AARI(1) = SU1(1) KE3
SU1(1) =0 = SCOV,SCOV2,FIRST,EAE RUN,MQ SIGN, EAE SIGN| KE2-3
SUT(1)ASETUP =SC CLR KE2
SCCIR=0—=SC KE2
SUT(1)AMB05(0) = EAE OR MQO KE3
LI(1) = O BUS L = ADRL — LAR(0) KC15
LI(1) = ADRL = LINK — TEMP3(0) KE3
TEMP3(0) = condition MQ SIGN KE3
EAE(1) = 0 = EN CMPL, KE3
ACO00(0) = no conditioning of EAE SIGN KE3
CM STROBEACONT(1) = GO TO 43 KC16
43 (ACI,EAE,CONT,CMAA41) KC18
EAE(1)AACI(1)ASETUP = SU2(1) KE3
SU2(1) = MB12-17 = 111010 = SC KE2
SU2(1) AMBO6(1)AACO0(0) = no effect on EAE SIGN (EAE SIGN 0) KE3
CM STROBEAEAE OR MQO = MQO(1) KC19
MQO(1)ANOSHAACI(1) = MQ = AC KC20-21
LI(0) = LAR(0) — LINK(0) KC15
CM STROBEACONT(1) = GO TO 41 KC16
41 (MQI,ACO,EAE,CONT,CMA54) KC18
ACO(1)ANOSHAMQI(1) = AC = MQ KC20-21
MQI(1)AMBO08(0) = EAE OR ARO KE3
CM STROBEACONT(1) = GO TO 54 KC16

3-36

TcBIe 3-23 (cont)
DIVS Functions

644305 Divide, Signed (Five Steps) 125~ 3¢
Process Function Drawing No.
54 (ACI,EAE-R, CONT, CMA40) KC18
CM STROBEAEAE OR ARO = ARO(1) KC19
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 111011 = SC KE2
EAE-R(1)ASCOV2(0) = ADDR 10 KE3
EAE-R(1)AEIRO9(0) ASCOV2(0) AEAE RUN(0) = ODD ADDR KE3
EAE(0)ATEMP3(0) = MQ SIGN(1) KE3
MQ SIGN(1) = condition EAE SIGN KE3
EAE-R(1) = O BUS L = LINK — TEMP2(0) KE3
CM STROBEACONT(1)ACMA40AADDR 10AODD ADDR = GO TO 51| KC16
51 (PCO, SM, MBI, CMA52) KC18
PCO(1)ANOSHAMBI(1) = PC — MB (DIVR ADDRESS) KC20-21
SM(1)ACLK = FETCH DIVR MC2
SM(1)ACLK = CM STROBE KC16
CM STROBE = GO TO 52 KC16
52 (MBO,+1,PCI, LI, CMA50) KC18
+1(1) = C117 KC14
MBO(1)ANOSHACI17APCI(1) = MB (DIVR ADDRESS) +1 — PC KC20-21
+1(1) = A BUS LINK — ADRL KC15
LI(1) = ADRL — LAR(0) KC15
LI(1)ACONT(0) = EAE CLR RQ KE3
LI(1)AADRL = TEMP3(0) KE3
EAE CLR RQ = IN CLR, CLR KC16
IN CLR = CLR I= 0 — PCI, MBO KC19
CLR=0—+1, T = SAO KC19
IN CLR = 1 — MBI KC19
SAO(1) = A BUS LINK — ADRL KC15
SAO(1) ANOSHAMBI(1) = SA (DIVR) — MB KC20-21
MEM STROBE = GO TO 50 KC16
50 (MQO, ARI, EAE-P, CONT, CMA42) KC18
A EAE-P(1)ASCOV2(0) = EAE RUN(1) KE3
EAE-P(1)AEAE RUN(0) = FIRST(1) KE3
FIRST(1)AEAE RUN(T)AMQ SIGN(1)=CMPL EAE SIGN=EAE SIGN(1)| KE3
EAE-P(1)ASCOV2(0)ADIV = IN SHLI KE4
IN SHLI = SHL1 KC13
MQO(1)ASHLIAARI(1) = MQn = ARn-1 KC20-21
Shife 1 SHL1 = ADROO = MQOO(1) = O BUS L KC15
Somple. EAE-P(1) = O BUS L — TEMPI(1) KE3
EAE=P(1) = TEMP2(0) — END BITOO (lost) KC15
EAE-P(1) = TEMP3(0) —» END BIT17 KC15
SHL1 = END BIT17 — AR17(0) KC20
LI(0) = LAR(0) — LINK(0) KC15

3-37

Table 3-23 (cont)
DIVS Functions

644305 Divide, Signed (Five Steps)]28 28
Process Function Drawing No.
50 (cont) EAE-P(1)ASCOV(0O)ATEMP3(0)ADIV = EAE OR SUB KE3
EAE-P(1)ASCOV2(0)ADIV = EAE OR LI KE3
CM STROBEACONT(1) = GO TO 42 KC16
42 (ACO,MQI,EAE-R,CONT,CMA55) KC18
A CM STROBEAEAE OR SUB = SUB(1) KC19
CM STROBEAEAE OR LI = LI(1) KC19
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 111100 — SC KE2
EAE-R(1)ASCOV (0)AEAE RUN(1)ADIV = IN SHLI1 KE4
IN SHL1 = SHL1 KC13
EAE-R(1)ASUB(1) = CI17 KE3
Sub, SUB(1)ASHLIACIT7ZAMQI(1) = MB+1 = MQn-1 KC20-21
Shiftl ACO(1)ASHLIAMQI(1) = ACnh = MQn-1 KC20-21
SHL1 = ADROO(1) = O BUS L KC15
EAE-R(1) = O BUS L — TEMP2(1) KE3
LI(1) = O BUS L = LAR(1) KC15
EAE-R(1) = TEMP1(1) — END BIT17 KC15
SHLT = END BIT17 = MQ17(1) KC20
LINK(O)ASUB(1)AEAE R(1) = A BUS LINK KC15
A BUS LINKACOO0 = ADRL | KCI5
LI(1) = ADRL — TEMP3(1) KE3
v CM STROBEACONT(1) = GO TO 55 KC16
55 (ARO, ACI,EAE-P,CONT,CMA53) KC18
A EAE-P(1)ASCOV2(0)ADIV = IN SHL1 KE4
IN SHL1 = SHLI KC13
EAE-P(1)AEAE RUN(1) = FIRST(0) KE3
ARO(1)ASHLIAACI(1) = ARn = ACn-1 KC20-21
SHL1 = ADROO(0) - O BUS L KC15
Shift 2 EAE-P(1) = O BUS L — TEMP1(0) KE3
Sam |e’ EAE-P(1) = TEMP2(1) = END BITOO (lost) KC15
P EAE-P(1) = TEMP3(1) = END BIT17 KC15
SHL1 = END BIT17 = AC17(1) KC20
EAE-P(1)ASCOV2(0)AEAE OR SUBAO BUS 17ADIV = EAE OR MBO| KE3
LI(0) = LAR(1) = LINK(1) KC15
EAE-P(1)ASCOV2(0)ADIV = EAE OR LI KE3
v CM STROBEACONT(1) = GO TO 53 KC16
53 (MQO,ARI,EAE-R,CONT,CMA56) KC18
i CM STROBEAEAE OR MBO = MBO(1) KC19
CM STROBEAEAE OR LI = LI(1) KC19
EAE-R(1)ASCOV(0) = R-PULSE KE2
Add R-PULSE = 111101 = SC KE2
Shif; 2 EAE-R(1)ASCOV(0)AEAE RUN(1)ADIV = IN SHLI1 KE4
IN SHL1 = SHL1 KC13
MQO(1)ASHLIAARI(1) = MQn — ARn-1 KC20-21

3-38

Table 3-23 (cont)
DIVS Functions

]28+ 5

644305 Divide, Signed (Five Steps) 8
Process Function Drawing No.
53 (cont) MBO(1)ASHLIAARI(1) = MBn — ARn-1 KC20-21
SHL1=ADROO(1) = O BUS L KC15
EAE-R(1) = O BUS L — TEMP2(1) KE3
LI(1) = O BUS L— LAR(1) KC15
LI(1) = ADRL = TEMP3(1) KE3
EAE-R(1) = TEMP1(0) — END BIT17 KC15
SHL1 = END BIT17— AR17(0) KC20
LINK(1)ASUB = A BUS LINK KC15
A BUS LINKATOO00 = ADRL KC15
v CM STROBEACONT(1) = GO TO 56 KC16
56 (ACO,MQI,EAE-P,CONT,CMA57) KC18
A EAE-P(1)ASCOV2(1)ADIV = IN SHLI KE4
IN SHLI = SHLI KC13
ACO(1)ASHLIAMQI(1) = ACnh = MQn-1 KC20-21
SHL1 = ADROO(1) = O BUS L KC15
EAE-P(1) = O BUS L = TEMP1(1) KE3
Shift 3, EAE-P(1) = TEMP2(1) = END BITOO (lost) KC15
Sample EAE-P(1) = TEMP3(1) = END BIT17 KC15
SHL1 = END BIT17 = MQ17(1) KC20
EAE-P(1)ASCOV2(0)AEAE OR SUBAO BUS 17ADIV = EAE OR MBO| KE3
LI(0) = LAR(1) = LINK(1) KC15
EAE-P(1)ASCOV2(0)ADIV = EAE OR LI KE3
v CM STROBEACONT(1) = GO TO 57 KC16
57 (ARO,ACI,EAE-R,CONT, CMA40) KC18
A CM STROBEAEAE OR MBO = MBO(1) KC19
CM STROBEAEAE OR LI = LI(1) KC19
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 111110 = SC KE2
EAE-R(1)ASCOV (0)AEAE RUN(1)ADIV = IN SHLI KE4
IN SHL1 = SHLI KC13
Add ARO(1)ASHLIAACI(1) = ARn = ACn-1 KC20-21
Shift 3 MBO(1)ASHLIAACI(1) = MBn = ACn-1 KC20-21
SHL1 = ADROO(1) = O BUS L KC15
EAE-R(1) = O BUS L — TEMP2(1) KE3
EAE-R(1) = TEMP1(1) = END BIT17 KC15
SHL1 = END BIT17 = AC17(1) KC20
LI(1) = O BUS L — LAR(1) KC15
LINK(T)ASUB = A BUS LINK KC15
A BUS LINKACOO00 = ADRL KC15
LI(1) = ADRL = TEMP3(1) KC15
EAE-R(1)ASCOV2(0) = ADDR 10 KE3
v CM STROBEACONT(1)ACMA40AADDR 10 = GO TO 50 KC16

3-39

Table 3-23 (cont)
DIVS Functions

644305 Divide, Signed (Five Steps) 125 5
Process Function Drawing No.
50 (MQO, ARI, EAE-P, CONT,CMA42) KC18
A EAE=P(1)ASCOV2(0)ADIV = IN SHL1 KE4
IN SHLT = SHLT KCI13
MQO(1)ASHLTAARI(T) = MQn — ARn-1 KC20-21
SHL1 = ADROO(0) = O BUS L KC15
Shift 4 EAE-P(1) = O BUS L — TEMP1(0) KE3
samp|e' EAE-P(1) = TEMP2(1) = END BIT00 (lost) KC15
EAE=-P(1) = TEMP3(1) — END BIT17 KC15
SHL1 = END BIT17 = AR17(1) KC20
LI(0) = LAR(T) — LINK(1) ' KC15
EAE-P(1)ASCOV2(0)AEAE OR SUBAO BUS 17ADIV.= EAE OR MBO | KE3
EAE=P(1)ASCOV2(0)ADIV = EAE OR LI KE3
v CM STROBEACONT(1) = GO TO 42 KC16
42 (ACO, MQI, EAE-R,CONT,CMA55) KC18
A CM STROBEAEAE OR MBO = MBO(1) KC19
CM STROBEAEAE OR LI = LI(1) KC19
EAE-R(1)ASCOV(0) = R-PULSE KE2
R-PULSE = 111111 = SC = SC FULL KE2
EAE-R(1)ASCOV(0)AEAE RUN(1)ADIV = SHL1 KE4
IN SHLT = SHLT KC13
ACO(1)ASHLTAMQI(1) = ACn = MQn-1 KC20-21
Add, MBO(1)ASHLIAMQI(1) = MBn — MQn-~1 KC20-21
Shift 4 SHLT = ADROO(0) = O BUS L KC15
EAE-R(1) = O BUS L — TEMP2(0) KE3
LI(1) = O BUS L — LAR(0) KC15
EAE-R(1) = TEMP1(0) = END BIT17 KC15
SHL1 = END BIT17 = MQ17(0) KC20
LINK(1)ASUB = A BUS LINK KC15
A BUS LINKACOO00 = ADRL KC15
LI(1) = ADRL — TEMP3(0) KE3
v CM STROBEACONT(1) = GO TO 55 KC16
55 (ARO, ACI,EAE-P,CONT, CMA53) KC18
EAE-P(1)ASCOV2(0)ADIV = IN SHLI KE4
IN SHL1 = SHLI KC13
ARO(1)ASHLIAACI(1) = ARn = ACn-1 KC20-21
SHL1 = ADROO(0) = O BUS L KC15
Shift 5, EAE-P(1) = O BUS L — TEMP1(0) KE3
Sample EAE-P(1) = TEMP2(0) = END BITOO (lost) KC15
EAE-P(1) = TEMP3(0) — END BIT17 KC15
SHL1 = END BIT17 = AC17(0) KC20
EAE-P(1)ASCOV2(0)ADIV = EAE OR LI KE3
EAE-P(1)ASCOV (0)ATEMP3(0)ADIV = EAE OR SUB KE3
LI(0) = LAR(0) — LINK(0) KC15
CM STROBEACONT(1) = GO TO 53 KC16

3-40

Table 3-23 (cont)
DIVS Functions

12,+ 5

644305 Divide, Signed (Five Steps) 8 8
Process Function Drawing No.
53 (MQO, ARI, EAE=-R,CONT,CMA56) KC18
CM STROBEAEAE OR SUB = SUB(1) KC19
CM STROBEAEAE OR LI = LI(1) KC19
EAE-R(1) = R-PULSE KE2
R=PULSE = 000000 — SC KE2
R=PULSEASC FULL = SCOV(1) KE2
SCOV(1) = IN SHL1 KE4
Sub SUB(1)AEAE-R(1) =CI17 KE3
SUB(1) ANOSHACIT7AARI9T) = MB+1 — AR KC20-21
MQO(T)ANOSHA ARI(1) = MQ — AR KC20-21
SUB(T)AEAE-R(T)ALINK(0) = A BUS LINK
A BUS LINKACOO0 = ADRL KC15
SHIFT= ADRL— O BUS L KC15
EAE-R(1) = O BUS L — TEMP2(1) KE3
LI(T) = O BUS L — LAR(1) KC15
LI(T) = ADRL — TEMP3(1) KE3
CM STROBEACONT(1) = GO TO 56 KC16
56 (ACO, MQI,EAE-P,CONT,CMA57) KC18
EAE-P(1)ASCOV2(0)ADIV = IN SHLI1 KE4
IN SHL1 = SHLI1 KC13
ACO(1)ASHLIAMQI(1) = ACn —» MQn-1 KC20-21
SHL1 = ADROO(1) = O BUS L KC15
EAE-P(1) = O BUS L — TEMPI(1) KE3
Shift 5, EAE-P(1) = TEMP2(1) — END BITOO (lost) KC15
Sample EAE-P(1) = TEMP3(1) — END BIT17 KC15
SHL1 = END BIT17 = MQ17(1) KC20
EAE-P(1)ASCOV2(0)AEAE OR SUBAO BUS 17ADIV = EAE OR MBO| KE3
EAE-P(1)ASCOV2(1)ADIV = EAE OR LI KE3
LI(0) = LAR(1) — LINK(1) KC15
CM STROBEACONT(1) = GO TO 57 KC16
57 (ARO,ACI,EAE-R,CONT,CMA40) KC18
CM STROBEAEAE OR MBO = MBO(1) KC19
CM STROBEAEAE OR LI = LI(1) KC19
EAE-R(1)ASCOV(1) = SCOV2(1) KE2
SCOV(1) = 1IN SHLI KE4
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
Add MBO(1)ANOSHAACI(1) = MB = AC KC20-21
A BUS LINKACOO00 = ADRL KC15
SHIFT = ADRL— O BUS L KCI15
EAE-R(1) = O BUS L — TEMP2(0) KE3
LI(T) = O BUS L — LAR(0) KC15
LI(T) = ADRL — TEMP3(0) KE3
EAE-R(T)ARUN(1) = ADDR 10 KE3
CM STROBEACONT(1) ACMA40A ADDR 10 = GO TO 50 KC16

3-41

Table 3-23 (cont)
DIVS Functions

644305 Divide, Signed (Five Steps) 125+ 5
Process Function Drawing No.
50 (MQO, ARI, EAE-P,CONT,CMA42) KC18
SCOV2(1) = IN SHLI1 KE4
SCOV2(1) = EAE OR MBO,EAE OR SUB, EAE OR LI KE3
MQO(1)ANOSHAARI(1) = MQ — AR KC20=-21
LI(0) = LAR(O) — LINK(0) KC15
LINK (0) = ADRL KC15
SHIFT = ADRL— O BUS L KC15
EAE-P(1) = O BUSL — TEMP1(0) KE3
EAE-P(1) = TEMP2(0) = END BIT00 (lost) KC15
EAE-P(1) = TEMP3(0) — END BIT 17 KC15
CM STROBEACONT(1) = GO TO 42 KC16
42 (ACO, MQI,EAE-R,CONT,CMA55) KC18
EAE-R(1)ASCOV2(1) = EAE RUN(0) KE3
ACO(DANOSHAMQI(1) = AC = MQ KC20-21
CM STROBEACONT(1) = GO TO 55 KC16
55 (ARO,ACI,EAE-P,CONT,CMA53) KC18
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
CM STROBEACONT(1) = GO TO 53 KC16
53 (MQO,ARI,EAE-R,CONT,CMA56) KC18
MQO(1)ANOSHAARI(1) = MQ — AR KC20-21
CM STROBEACONT(1) = GO TO 56 KC16
56 (ACO,MQI,EAE-P,CONT,CMA57) KC18
EAE-P(1)AMQI(1)AACO(1)AEIR02(0)ASCOV2(1) = EN CMPL(1) KE3
EN CMPL(1)AEAE SIGN(1) = CMPL_ KE3
ACO(1)ANOSHAMQI(1)ACMPL = AC = MQ KC20-21
CM STROBEACONT(1) = GO TO 57 KC16
57 (ARO,ACI,EAE-R, CONT, CMAA40) KC18
EAE-R(T)ADIVAEN CMPLAMQ SIGN(T) AEAE SIGN(1) = EAE SIGN(0) KE3
EAE SIGN(0) = CMPL KE3
ARO(T)ANOSHAACI(1)ACMPL = AR — AC KC20-21
EAE-R(1)ASCOV2(1)ARUN(0) = ADDR T0 KE3
CM STROBEACONT(1) = GO TO 40 KC16
40 (EAE,DONE,CMA10) KC18
CLK(B) DLYDAEAE(1)ADONE(1) = INPUT IO RESTART KD3
IO RESTART = GO TO 10 KC16
10 (PCO,SM,CMA21) KC18

BGN next fetch

3-42

50

42

55
53
56

57

50

42

55
53
56

57

50
42
55
53
56

57

Table 3-24
DIVS Arithmetic

12, ¥5

8 8
L TEMP3 AC MQ AR
> sample
0 0 0000 1010 SHLI 0100 P
MB 1010<CI17 '
0 1<—CRY—101T ———SHLI ——>0111 0100
sample - SHLI1
* i j00) e— | o " Lo100
MB 0101 L——g
1 le— 1001 CRY —T1100 SHL1—3100
v —>sample
1 1001 —SHLI —>0011 1000
4 sHU MB 0101
1l 1on<:—-r 0011 J S
v ' CRY . sample
1 1011 001 I—— > SHLI—=011]
MB 0101 v
1 0<—CRY-1 0000 —SHLI > 0000 0111
sample
. é{ﬁ' SHLI
0 0 eI 0000 L o
MB 1010-CI17
0 1< 1o | CRY —1011 >1011
v >sample
11 1110 —SHLI 1107 1011
y MB 0101
1 0 0000 «<—— 1ot b—cry= 0000 —
]
¥ o 0000 1101 1101
0 0 0000 _> 0000 1101
0 0 1101 < ™ 0000 | 1101
0 0 1101 0000 >0000
0 0 1101 ——— CMPL——>0010 0000
0 0 0000 < I 0010 1 0000
le———-answer \l
2]

3-43

Table 3-25
DIVS Functions

128 - -58
Process Function

75 TEMP3(1) = no conditioning of MQ SIGN

ACO00(0) = no conditioning of EAE SIGN

EAE(1) = 0 - EN CMPL
43 MQ - AC
41 AC = MQ
54 EAE(O)ATEMP3(1) = no effect on MQ SIGN
51 through last 53 same as DIVS 128 * 58
56 EN CMPL(1)AEAE SIGN(0) = CMPL

AC = MQ
57 CMPL = AR — AC

Table 3-26
DIVS Functions _
-]28 45
Process Function

75 TEMP3(0) = condition MQ SIGN

ACO00(1) = condition EAE SIGN

EAE(1) = 0 = EN CMPL
43 MBO6(1)ASU2(1) = EAE SIGN(1)

SU2(1)AEAE SIGN(1) = CMPL

CMPL = MQ — AC
4] AC = MQ
54 EAE(O)ATEMP3(0) = MQ SIGN(1)

MQ SIGN(1) = condition EAE SIGN
51,52 same as DIVS 128 + 58
50 FIRST(T)AEAE RUN(TAMQ SIGN(T)AEAE SIGN(1) = EAE SIGN(0)
42 through last 53 same as DIVS 128 - 58

56

57

EN CMPL(1)AEAE SIGN(0) = CMPL
AC = MQ

EAE-R(T)AEN CMPL(T)ADIVAMQ SIGN(T)AEAE SIGN(0) = EAE SIGN(1)

EAE SIGN(1)AEN CMPL(1) = CMPL
CMPL="AR = AC

Table 3-27
DIVS Functions

-]28 - —58
Process Function
75 TEMP3(1) = no conditioning of MQ SIGN
ACO00(1) = condition EAE SIGN
EAE(1) =0 — EN CMPL
43 MBO6(1)ASU2(1) = EAE SIGN(1)
SU2(1)AEAE SIGN(1) = CMPL
CMPL=MQ — AC
41 AC = MQ
54 EAE(O)ATEMP3(1) = no effect on MQ SIGN
51 through last 53 same as 128 * 58
56 EN CMPL(l)/\EAE SIGN(1) = CMPL
CMPL = AC = MQ
57 EAE-R(DAEN CMPL(T)AD IVAMQ SIGN(0) = no effect on EAE SIGN(1)
E_éE SIGN(1AEN CMPL(1) = CMPL
AR — AC
3.8.2 IDIV(S) Instruction

The IDIV(S) instruction divides the contents of the AC (integer dividend) by the contents of

the next sequential core memory location to form a quotient in the MQ and a remainder in the AC.

The arithmetic phase of the instruction(s) is identical to that of DIV(S). The preparatory

phase transfers the contents of the AC to the MQ and clears the AC. Thereafter the arithmetic phase

in reality performs the division on the long register dividend just as for DIV. The exception here is that

the most significant portion of the dividend (AC) is at 0.

Therefore, the DIV(S) functions of Table 3-23 hold true for IDIV(S) with the following pre-

paratory exceptions.

75) SUT(1)AMBO7(1) = EAE OR ARO
AC — AR (same)

43) AR = AC

41) MBO08(1) = EAE OR ARO
AC = MQ (same)

54) ACI(1) =0 = AC

The rule for divide overflow, Section 3.8.4 is the same. In the IDIV(S) case overflow occurs

only if the computer attempts to divide by 0, since this is the only quantity not larger than the AC por-

tion of the dividend.

The sample divide in Table 3-23, although performed by a DIVS instruction, could in fact be

used as a sample IDIVS operation since the arithmetic phase also starts with a zero quantity in the AC.

3-45

3.8.3 FRDIV(S) Instruction

The FRDIV(S) instruction divides the contents of the AC (fraction dividend) by the contents
of the next sequential core memory location to form a quotient in the MQ and a remainder in the AC.

The arithmetic phase of the instruction(s) is identical to that of DIV(S). The preparatory
phase clears the MQ. The arithmetic phase thereafter is in reality a division of the long register with
the MQ at 0. For FRDIV the binary point is assumed at the left of AC00. For FRDIVS the binary point
is assumed between ACO0 and ACO1. The divide overflow rule, Section 3.8.4, is the same.

The DIV(S) functions of Table 3-23 hold true for FRDIV(S) therefore, with the following

exceptions.

75) SU1(1)AMBO05(1) = EAE OR MQO
SU1(1)AMB07(0) = EAE OR ARO
AC - AR (same)

43) ACI(1) =0 = AC
41) AC = MQ (same)
54) AR = AC (same)

3.8.4 Divide Overflow

For all divide instructions the first subtract operation of the arithmetic phase checks for a
divide overflow situation. Divide overflow exists when the computer attempts to divide a dividend by
a divisor which is not numerically greater than the most significant portion (AC) of the dividend. If
the divide operations were carried out, the result would exceed the capacity of the 18-bit MQ register,
and the MQ contents would be erroneous. For unsigned division, the capacity of the MQ is 2] -1, or
7777778. For signed division the capacity is +2]7-l , or +3777778.

For all divide instructions process word 52 during the divisor fetch from memory blocks the
recirculation of the LINK into the LAR; process word 50 transfers the LAR content(0) into the LINK and
starts the arithmetic phase of the instrucﬂor:. The arithmetic phase therefore always starts with the
LINK in the reset state. The LINK returns to the reset state at the end of all valid divide instructions.
If, however, the EAE logic encounters the divide overflow situation, the LINK sets and the instruction
execution is halted after five machine cycles as a time=-saving feature. The computer will then go on
to the next instruction, which is usually an instruction which tests the status of the LINK (OPR SZL,
OPR SNL, etc.).

Table 3-28 lists the functions that provide the overflow indication to the LINK and stop the
divide operations. The listing starts with process word 50, at which point the preparatory phase has
been completed, the divisor is in the MB, and the dividend is correctly placed in the AC and MQ. The
operation attempts to divide 32]0 by 2]0 for a quotient of 16 using a 4-bit MQ register, resulting in

overflow since the register capacity is 15 for unsigned divide.

3-46

Note from Table 2-3 that a valid five=step arithmetic divide operation requires seven machine
cycles for completion, whereas divide overflow stops the operation after the first step and five cycles.
For the overflow situation the step count in the SC does not matter since the DIV OV flip~flop controls

the SCOV, SCOV2, and RUN functions.

Table 3-28
DIV OV Functions .
640305 Divide, Unsigned (Five Steps) 210" 210
Process Function Drawing No.
50 (MQO, ARI, EAE-P,CONT,CMA42) KC18
EAE-P(1)AEAE RUN(0) = FIRST(1) KE3
EAE-P(1)ASCOV2(0) = EAE RUN(1) KE3
EAE-P(1) etc. = SHLI KE4
FIRST(1)AEAE RUN(1AMQ SIGN(T)AEAE SIGN(0) = EAE SIGN(1) | KE3
LI(0) = LAR(0) — LINK(1) KC15
EAE-P(1)ASCOV (0)ATEMP3(Q)ADIV = EAE OR SUB KE3
EAE-P(1)ASCOV2(0)ADIV = EAE OR LI KE3
MQO(1)ASHLIAARI(1) = MQn — ARn-1 KC20-21
SHL1 = ADROO(0) = O BUS L KC15
EAE-P(1) = O BUS L — TEMP1(0) KE3
EAE-P(1) = TEMP2 — END BITO00 (lost) KC15
EAE-P(1) = TEMP3(0) — END BIT17 KC15
SHL1 = END BIT17— AR 17(0) KC20
CM STROBEACONT(1) = GO TO 42 KC16
42 (ACO,MQI,EAE-R,CONT,CMAS55) KC18
CM STROBEAEAE OR SUB = SUB(1) KC19
EAE-R(1)ASUB(1) = CI17 KE3
CM STROBE EAE OR LI = LI(1) KC19
EAE-R(1), etc. = SHLI KE4
ACO(1)ASHLIAMQI(1) = ACnh — MQn-1 KC20-21
SUB(1)ASHLIAMQI(1)ACI17 ="MB¥T = MQn-1 KC20-21
EAE-R(1)ASUB(1)ALINK(0) = A BUS LINK KC15
A BUS LINKACOO00 ="ADRL KC15
ADRL = ADRL(B) KC15
EAE-R(1)AFIRST(1)AADRL(B)ADIV = DIV OV(1) KE3
SHL1 = ADROO(0) = O BUS L KC15
EAE-R(1) = O BUS L — TEMP2(0) KE3
EAE-R(1) = TEMP1(0) = END BIT17 KC15
SHL1 = END BIT17 = MQ17(0) KC20
LI(1) = DIV OV(1) — LAR(1) KC15
LI(1) ="ADRL — TEMP3(0) KE3
CM STROBEACONT(1) = GO TO 55 KC16
55 (ARO,ACI,EAE-P,CONT,CMA53) KC18
EAE-P(1)ARUN(1) = FIRST(0) KE3
EAE-P(1)ADIV OV(1) = DIV NO GO KE2
DIV NO GO = SCOV(1),5COV2(1),EAE RUN(0) KE2-3

3-47

Table 3-28(cont)
DIV OV Functions

640305 Divide, Unsigned (Five Steps) 310" 210
Process Function Drawing No.
55 (cont) LI(0) = LAR(1) — LINK(1) KC15
SCOV2(1) = IN SHLI1 KE4
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
CM STROBEACONT(1) = GO TO 53 KC16
53 (MQO, ARI,EAE-R,CONT,CMA56) KC18
MQO(1)ANOSHAARI(1) = MQ — AR KC20-21
CM STROBEACONT(1) = GO TO 56 KC16
56 (ACO,MQI,EAE-P,CONT,CMA57) KC18
ACO(1)ANOSHAMQI(1)ACMPL = AC — MA KC20-21
CM STROBEACONT(1) = GO TO 57 KC16
57 (ARO, ACI,EAE-R,CONT,CMA40) KC18
ARO(1)ANOSHAACI(1) = AR = AC KC20-21
EAE-R(1)ASCOV2(1)AEAE RUN(0) ="ADDR 10 KE3
CM STROBEACONT(1)ACMA40AADDR 10 = GO TO 40 KC16
40 (EAE,DONE,CMA10) KC18
CLK(B) DLYD EAE(1) DONE(1) = INPUT IO RESTART KD3
IO RESTART = GO TO 10 KC16
10 (PCO,SM,CMA21) KC18
BGN next fetch

3.9 EAE INSTRUCTION DEVELOPMENT

The addition of ng bits to the basic EAE op code 648 converts the basic instruction to a micro-
coded instruction to accomplish a setup, shift, or arithmetic operation not already in the instruction
repertoire. Refer to Table 3-29 for descriptions of the functional use of the individual bits. The sole
restriction for development of "n" is that the microcoded operations must not occur during the same

process word if they logically conflict.

Table 3-29
EAE Microinstructions
. Binary .
Bit Code Function
1 Enters ACOO info the LINK for signed operations.
1 Clears the MQ.

3-48

Table 3-29 (cont)
EAE Microinstructions

Binary

Bit Code Function

6 1 Reads ACOO into the EAE SIGN register prior to a signed multiply
or divide operation.

6,7 10 Takes the absolute value of the AC after the ACO0 bit is read
into the EAE SIGN register.

7 1 Inclusive-ORs the AC with the MQ and places the result in the
MQ.

8 1 Clears the AC.

9,10,11 000 SETUP instruction code. Accompanies code in bits 15, 16, 17.

92,10,11 001 MUL instruction code.

9,10,11 010 Unused instruction code.

9,10,11 on DIV instruction code.

9,10,11 101 LONG RIGHT SHIFT instruction code.

9,10,11 110 LONG LEFT SHIFT instructions code.

9,10,11 100 NORMALIZE instruction code.

9,10,11 111 ACCUMULATOR LEFT SHIFT instruction code.

12-17 Specifies the step count for all EAE codes (9-11) except SETUP.

15 1 For SETUP instruction code only, complements the MQ contents.

16 1 For SETUP instruction code only, inclusive-ORs the MQ with the
AC and places the result in the AC.

17 1 For SETUP instruction code only, inclusive-=ORs the AC with the

SC and places the result in the AC.

3-49

CHAPTER 4
MAINTENANCE

4.1 GENERAL MAINTENANCE

The general maintenance practices described in the PDP=9 Maintenance Manual also apply

to the EAE option.

4.2 MAINTENANCE PROGRAM TAPES

Chapter 1 of the PDP-9 Maintenance Manual lists the diagnostic tapes and documents for
use with the EAE. | ’

4.3 REPLACEABLE PARTS

Table 4-1 lists all logic modules used in the EAE option by DEC type and quantity. The CP
UML drawing KC8 shows the module locations in the central processor wing of the PDP=9 frame. DEC
has available a spare modules kit, SPO9A, for use with the basic PDP=9 system and including spares for
the EAE option. If the kit is not on hand, it is recommended that one spare module of each logic type

be stocked to reduce equipment down-time while repairing faulty modules.

Table 4-1
EAE Module Complement
DEC Type : Module Type Quantity
B105 Inverter 1
B133 Inverter 1
B213 Flip-Flop 15
R0O02 , Diode Network 8
RITI | NAND/NOR Gate 1
S151 Binary-to=Octal Decoder 1
S181 DC Carry Chain 1
$206 " Flip-Flop 6
w005 - Clamped Load 1

CHAPTER 5
ENGINEERING DRAWINGS

This chapter contains a complete set of engineering drawings pertaining to the EAE option
along with circuit schematics of all logic modules. DEC engineering drawings are encoded as to type,
major assembly, and series. Drawing number codes and signal conventions are explained in Chapter 5

of the PDP-9 Maintenance Manual.

5.1 SIGNAL MNEMONIC INDEX

All signals originating on the EAE logic drawings are listed below in alphanumeric order.
The Origin column locates the source of the signals to the specific logic drawing, using the abbreviated

drawing number system.

Signal Origin Description
A BUS LINK KE3 Enter ACOO info LINK
ACO — LINK KE3 Recirculate LINK via LAR
ADDR 10 KE3 Add 10 to next Control Memory address
ALS KE4 Accumulator Left Shift command
CMPL KE3 Complement the register contents in transfer
CI117 KE3 Initiate a carry into the Adder
DIV KE4 Divide command
DIV NO GO KE2 Stop divide operations
DIV OV KE3 Divide Overflow
EAE CLRRQ KE3 Clear CM gating bits for argument fetch
EAE OR ARO KE3 Set ARO bit on next CM STROBE
EAE OR LI KE3 Set LI bit on next CM STROBE
EAE OR MBO KE3 Set MBO bit on next CM STROBE
EAE OR MQO KE3 Set MQO bit on next CM STROBE
EAE OR SUB KE3 Set SUB bit on next CM STROBE
EAE PWR CLR KE3 Clear flip~flops on power turn-on
EAE RUN KE3 - Start EAE instruction execution
EAE SIGN KE3 Store ACO0
EIRO%?-11 KE4 EAE instruction register
EN CMPL KE3 Enable complement function
FIRST KE3 Start first arithmetic operation

5-1

IN SHLI
IN SHR1
LLS

LRS

MQ SIGN
MUL
NORM
ODD ADDR
O BUS17(B)
R-PULSE
SC12-17
SC CLR

SC FULL
SCO
SCoV
SCoV(1)
SCOV2
SETUP
SU1-3
TEMP1-3

Origin Description
KE4 Enable Shift Left Function
KE4 Enable Shift Right function
KE4 Long Left Shift command
KE4 Long Right Shift command
KE3 Store divisor or multiplicand sign
KE4 Multiply command
KE4 Normalize command
KE3 Add 1 to next CM address
KE3 END Bit shifted into next regisl‘er‘
KE2 Up-date the Step Count
KE2 Step Counter register
KE2 Clear the Step Counter
KE2 Step Counter up-dated to 778
KE2 Step Counter output gate
KE2 Step Counter up~-dated to 008
KE2 Set SCOV on normalize condition
KE2 Step Counter up-dated to 008
KE4 Setup command
KE3 Setup or preparatory instruction phase
KE3

Temporary LINK and END Bit storage

- 5.2 DRAWING LIST

Below is a list of all drawings included in this chapter. Other related EAE logic is included

in the Chapter 5 drawings of the PDP-9 Mdintenance Manual as part of the prewired, basic system.

Drawing Number

B-CS-B105-0-1
B-CS-B133-0-1
B~CS~-B213-0~1
B-CS~R002~0-1
B-CS-R111-0-~1
B-CS~S151=0-1

B-CS-S181-0~1
B-CS=-5206-0-1

Title

Inverter B105, Circuit Schematic

Inverter B133, Circuit Schematic

Flip-Flop B213, Circuit Schematic

Diode Network R002, Circuit Schematic
NAND/NOR Gate R111, Circuit Schematic

Binary-to-Octal Decoder S151, Circuit
Schematic

DC Carry Chain S181, Circuit Schematic
Flip-Flop S206, Circuit Schematic

5-2

Revision Page
E 5-4
B 5-4
F 5-5
A 5-5
F 5-6
C 5-6
A 5-7
B 5-7

Drawing Number

B-CS-W005-0-1
D-BS=-KE09-A-2
D-BS-KE09-A-3
D=-BS-KE09-A-4
D-BS=-KE09-A=~5
D-BS~-KEQ09-A-6
D-BS=KEQ9=-A=6

Title
Clamped Load W005, Circuit Schematic
EAE Step Counter and Control, Block Schematic
EAE Operand Fetch Gating, Block Schematic
EAE Execution Gating, Block Schematic
EAE Data Flow, Flow Diagram
EAE Flow, Flow Diagram (SheetT)
EAE Flow, Flow Diagram(Sheet2)
Link Control for EAE Instructions

Revision

A

w W P> W X m

Page

5-9

5=-11
5-13
5-15
5-17
5-19
5-21

i
|
— L OB-Isv
[P
1 &1500 1
<
avl 1o |
ol R3 D2 R4 03 $Re D4 $Sm7 1] SRo ce :][g’ : 1“
Yoleesrsoo YWn-seaisoo Wo-eeadisoo Yo eead)s00 841,500 o1k | Mo-e62 -0l
T i WFD
1 4-D8 i
| 2RD-662 |
=u| ! i 3
2 ilor o
wro| 1o eea! |WFO
F K 1 s v i i
k08 !
| Bo-gez |
]
’ 4 : 2 L OC eND
| S——)
c1 c2 cs ce cr
) 56 o8 86
RI2 e RI3 —— Ri4 — RIS] Ri6 —
%S m ol RS me Q2 p @ 1995 e a4 195 w0 as
3,000 3,000 3,000 0% 3p00
o " L 3 T
E 3 v

UNLESS OTHERWISE INDICATED:
RESISTORS ARE 1/4W; 9%
CAPACITORS ARE MMFD
TRANSISTORS ARE DEC 2894-18

B-CS-B105~0-1 Inverter B105, Circuit Schematic

lﬂl <
, 1,500 <

€ ot

00

2 ¥R

UNLESS OTHERWISE IDICATED: LSTRATE
AESISTONS ARE 1/4W; 5%
TRANSHSTORS ARE ZNA258

DIODES ARE D-884 USE _THE ETCH BOARD OF THE Bl

B-CS-B133-0-1 Inverter B133, Circuit Schematic

5-4

or Os M GND oV
| . . GND
v
Da
013
5 i 03 a8 8.
(< N D24 029
s/ Des2
b——4 D28
l 02 D4 | D662
N Q2 E o027
DE62
026
a8V D662
= i 025
. 2.V D662
o3 i 4.2V
x| IR ¥
ol
MFO
v
[
o “R26
SRt 3Rz $R3 S Ri4 RIS SRIE SRIT 32t DEC 7500 Q Sres SR2s SR30
51,500 9750 S7,500 21,500 51500 S 750 7,500 31,500 36398 21,500 9730 Q750
8
UNLESS OTHERWISE INDICATED; RiY
RESISTORS ARE I/4W; 8% meecmeeommmeo=
DIODES ARE D664. TLTTIIIOEIITICS
TRANSISTORS ARE DEC 30098
.
B-CS-B213-0-1 Flip=Flop B213,
. N .
Circuit Schematic
Dio
DO— o}
D664 oF
08
EO P}
D664
D9
HO
De64 oK
D4
JO Bl
0664
e
Lo— Pt
D664 _on
3
wo——i-
D664
o7
PO Pt
D664 s
D2
RO— =|'
D664
D6
TO- i
D664 ov
DI
vo
D664

Amy e ssx o w o NEaen oy

B-CS-R002-0-1
Circuit Schematic

Diode Network R002,

~O) A+ 10V(A)
------- i
’ —Oc onD
2)
1
ol
D-682 |
1 |
[YT
| ¥ o-6e2,
! !
Lo o7
13 e t
¥ 8%z o 0-e82
g ov WFD i
i D-6e4 h
b | [b YU
o1 ' o | ¥ o-e0z,
D664 | {:1.1 0-684][] D-664 DI8 i
5]
+ b—oF | y Y Lo—P—4—on f Yo7 so—p—p—or BDRes i :
i 'L : 6)
S T Y ne R? >ny { Qmo |
| 218,000 $%,8001 Moo S0 18,000 7,800 ! $i800
! oo% | % 5% ! Séx !
I
! 2y * b ¢ : +-08-6v
| EXAMPLE DGL2 | R t
[| 1 i
STRTE
UNLESS OTHERWISE INDICATED:
RESISTORS ARE |/4W; 5%
PRINTED CIRCUIT REV. FOR
DGL BOARD 1S SIB
B-CS-R111-0-1 NAND/NOR Gate R111,
. . .
Circuit Schematic
. QA+ I0VIA)
SRI I’nz Ena $re SR7 §Re
> > > >
$100,000 100,000 }00,000 $100,000 $100,000 5K00,0 00
f 4 0D -OC GND
l{‘\“ Q2 08 o6 o7 a8 Yoo
L
// D42
o0 — o 4 o8 6 7 Yoew
[8 T v v ¢
9 943;%%
025 29 30 D3l 32 Fosée
':Ri" :»Rll R2(tﬂZE R23 >R 24 D4
53,000 $3,000 300 53,000 3,000 53,000 D-662
>
45 ‘b«; Yosr Yo Yoo T80
D- 662 D-662 D-862 D-662 0-662
s » -0 8-18v
Y
R9 RIO !! RII Ri2 p: RIS :> !! LU p:
18,000 > 533 18,000 D34 15,000 %35 BP0 > D36 15000 Da_,wpoo
D-662 D-662 D-662 D-882 D-682
]Dl kz q 3 k‘]rib 1%8 7 ziﬂ 9 §I0 1t 12 %IS]%M]Eﬁ %l@ 2;24
0. L IO
LFF 00)Y
Fio UNLESS OTHERWISE INDICATED:
2' FF RESISTORS ARE I/4W;5%
i?g TRANSISTORS ARE DEC 36398
2GS USE THE ETCH BOARD OF THE RIS DIODES ARE D-664

ceccsserccvem . -
<oy e rai-s Xl va R

B-CS=-5151-0-1 Binary=to=Octal Decoder S151,
Circuit Schematic

5-6

-0 A +10V
\ L
SRI S R2 > R3 SR4 > RS >Re 2R7
> > > > > >
* g——O C GND
v s R N P T u
—oO p—o —O p—o0 b—o0 }—o o Yoo o
Yoio
R8 R9 S RI0S ris Rz s RiaS Dt
b2 ol $ oz $ Tos 3 04 b3 DS 3 D6 4 07 \ 4
é . . : -]
Yos3 Yoz Yoz Yoia Yois A 41 Yoz Sris
- § e _oB-I8V
>
Yoe (Ema Yosgr? oz0 SRi8 21y grie 022 Y %nzo Yoa23 ER2I¥024 :Enzz
Y Y r % Y A2 3% 2334 22332 AX X224 3222434
D25 26| D27 026 {029 |o30 [031 [032(033[D34 [035 [D36 037 [D38[D30 [oolpat Joaz] Dasloas]oas [pae o4z [oas [oas|osolos Josz
° oF
O K
OF
O H
—OM
—Q D
.
B-CS-S181-0-1 DC Carry Chain S181,
. . .
Circuit Schematic
]Eousfou L Dse Aosr foso v
Do NO
-0 A +iOV
p—oL —oK —ou b—or|
S R4 Sre SRi6 SR20
03 %Dg > 100,000 > 100,000 !Lom !!024 1!0g7![o;o >100,000 >100,000 ![DQ&!LD“
[S < 0 ¢ GND
e N or |8 g lom] N SEL —_
3
LU G . i€ alngg LB e Yoes2 Turo
09 DI4 3 D38
o2 ¥ Yose2 D20 D26 ¥oee: ¥oe. D44
T [D13 - ™~ . bt} D32 037 Lnd 031
¥ooe: Yoee: Yoee: Yoce: A £
>t al
D4 5 ?I o% 5; r DE‘; DE gl o" 036 ﬂ:"g‘
| 050
Fo- NFO W Dee2
] DI0 DI ol9 D28 D34 D38 D43
] ld—e-D! »l 1ol Bl 049
~ Lol il L L L g gL f Lal !Znue
SR SR2 GR3 SRS SRe SA7 SRIO SRIZ SRI3 SRI4 SRIS SRI7 SRIB SRI9 SR22 SR24
$7,500$7,50057,800 51,500 51,800 $7,300 $7,80057,%00 >7,80057,80057,500 51,500 91,800 $7,500 57,6005 7,800
*1—OB-18v
SRo Smn bRz SR23 $R2D
7,80027,600 37,8003 7,500 21800
w el wlwly
UNLESS OTHERWISE INDICATED:
oo e s on | & | ox ose | 2
MM DI3 62 | p22 039 | 82 | Das
DIODES ARE 06684
TRANSISTORS ARE 2N4313 H {——i¢ ~OM SO Ll G ¢ ov
088 *ou ioeo ¥Dez

B-CS-5206-0-1 Flip=Flop 5206,
Circuit Schematic

QB -18v

T
i
1
|
. 1
o2 R2 De R4 (] Re ps ¢Rrs mo om0 Ipiz 2RIz D4 CR14 [Dis 2Ris !
¥ $so00 $3.000 ooy dn000 000 ¥y 33000 3,000 3000 1
b3 Q b3 > 2 |
1
i i t[|
|
|
o E 9 3 Fo I|1 !
D20
! &o-se2,
L Skl OC eND
| @0ts !
.!b-uz:
N [T v v 1o !
o] ? Lo 1Yo-es2) | c3
O X
wro | Lorr 1 Turo
{ { {) X.0-662!
N s Sas 5 A7 fos Ime ot Yan oz Smis !
33,000 <3,000 00 <3,000 S #,000 <3000 1&oe |
b > $ b3 bg b | Yo-ee2
5 : \ 1
-3vie !
I) |
| ON
| STk H
' |
n{ |
-3V ’
UNLEBS OTHERWISE INDICATED: | STRATE |
RESISTORS ARE_ /AW, 5% [Sl a
DIODES ARE D-664

B-CS-W005-0-1 Clamped Load WO005,
Circuit Schematic

5-8

DIV NG 60 - a2 ’;o Rz .
su3 () | rg2 T2 R sy
E JTE| T R P R||P £ET E T R PR P E T E 7T R PR P E T E T |8 PR P
¢ 0
2 ! () |’ .ﬂo Ol‘ [1 D e 4010 B ecis | .goscwolo g sCi7 7
SCove Scov sCig S5CI13 !)
su1) F 15286 H@ 5286 HPL 8¢ CLR 520 & HB7 $226 H@7 F ls2@é HE8 5206 HE8 1s226 Hg9 S20s HO9
L *——
EAE-R() -2 R-PULSE s0—o53) |
K T]
M !
FIRST (1) scovn v
=
H $
scovi) MB 13(@) N = MB 15 () MB 17(8)
[~o] P 7] [~
N O A N
sC17(1) ")]ssg siel
scret —jie i) E
SC150)
SC 140)
5C 130) —
sci2g)
wggs
w@@s Fe7
Fo7 v
s se cLr I
R_[~o A BD
SUI () —® D
RN
SETUP 2 HIi ?)2'23 <> 5¢0
TV
:
[g——< DIV N0 GO 2D &
; £ o
piv ov() 2o ;‘;l/'\ 8213 sco
EAE-P() =¥ Tpa
K
sV EAE-R(!)—.E
1L L
rH o < SCOV (1)
K N
EAE-R{) A i SETUP _L‘Ra/;z
NORM —®\ 738 Tes mei7¢) Mel1xe
—AA—e F,T —A— m,P
o F " K
SEUS 33 ~ A
OBUS PP T erine OBUS O — 9 rbve
Iz ®J%9 wgss
Fe7 P & R-PULSE
P A s TR v R 2]
EAE STROBE scov oA
DLYD Reoz Rogz & ® Rl
T899 129 EAE-R() @ g g
T,V
M S B3
— e R —Are
T
csus o Ry, 0 BUSPE— 5133
E@3 E@3

D-BS-KE09-A-2 EAE Step Counter and Control,

Block Schematic

TOT Pwr R —Eo U °
Rp@g2
J @5
J L
ENCoRg o ro A
oL e B133
N P N P D E DE NP N P E D E D cPN_P N DE_ D E NP NP £93 E g e g R P R|P
—* WOBETS B2Ts c [@0BeR0® EAE PWR CLR CIAE) ES[®oBas $08230¢ M 3E) 052850 ¥
. %¢ Jig ! g0 ! Mo | I ¢ gps3 ! = |® g3 ¢ sga | -E_ ? Jpa) P pa !
SUt suz = Su3 N E JTEMP | Ryl TEMP 2 TEMP 3 - S Div OV MG SioN
wegs e =T Tor PR _waiﬁ‘z EAE PWR CLR—! | ——
=7 T ,J‘ e L
RO 0] o] or RN Lo o3 EAE-ROTeTy e
= = u ;
eefi—el F—J_‘— v = ADR L ADR L(B) . FirsT ()R WL — T
R N S / RUN (i EAE (@
ARTE—ef A ACI() : - /;a MQI(X)—T.RQQE v F\RST(D—EO AV EAE W 7 N ¢ <
= I SET oS
RPgel | sEv e e £ seTureRGe ov -LeEsz I o n Pacesn S
EAE-R(\) C Al sy 3(1)3 ~ A
T o ov—eBUL | mBge(e 2L
EHE() —<F Bl’}js CMPL P EAE OR MBO EAE OR SUB EAE OR LI cIi7 M, P
] PINS 4] WP oS T v
Tt PO —:3 wges em+E Fg7 N " EN CHFL() R¢/<;sa
i) TS A ML= 55 EAE-PI)—2efrT A LN vy : ~ A SUB(«)—:o ~ A Fde
mBge () &Rl _ r oiv Sel3uL o =eTL - e Kl)] BAE OR ARO =AE oF Mao
E
—nda scov (@) 2o A F F 1" wggsema wggs e 4 F
F <
ME BT (&) —e A |° 0 BUS i17(8—® 0 scova(o)—:_o hoe scwv(a»hoR@z Nscovz@)lof—Rzgv d K g
ac o) —eRoEe FAE CRSUS—e 3¢5 | TEMP30- e 7o | Tos o H ” y X N o 1"
WHES S H WMQL () A SUI) AU A o~ A U3 = ~ AN
Rt]
€95 o4l @ 0 BUS 17(3) EAED—® Tpg | wa¢T)—eRIlL MB ¢s@ e me e (H—o Bl
> =
‘ N « N mege @ e A T LY e o
su3M ~ A 0 BUSIT AR v RoDZ i i
MBS (1) —= gé"é ‘§4¢ A BUS LINK y Fp8
MNP MP v = AC @ LINK l—-<>N ODD ADDR roN ADDR ¢
<
% i sun(n)—:o ~ A : NV EAE-R(\)-E.N ~ t é\' A
ue g4() Ty S eIR gD R S ANLE
T €8s
R u o [H L 3 LSV 123 MP
suz) ~ A EN CMPL(Y) = é'“ A o = H K D H i
EIR 09 @ el | AT S-Setys AP ipe ooV B gy OV EOTITY
. . R213 LA EAE RUN@)I—® 712 | EAE RUNOD—g g
N9V AT R] CLR FJ
- K I RQ S
ERE SIGN (1) —® Rl i
conT @-2eRUL ¢

A
EIR ||(l)—£0$=°£§

DIV NO GO e
TOT PWR ctiR—Ry

£rE (1) B
EAE -P-PULSE__J.

PA
FiB6e?2| g m
[luss 1 100 L
- Ta H
MQT () —o N
sul EIR ¢9(¢)—7-¢ Rdo2
ERE-P() £0<
aco) Be A"
EAE-R() Rege
E@q

¥]
scov 2() EAE RUN()

PWR CLR POS——5)

EAE-P (i) ——Hc Pk

fF36

D-BS-KE09-A-3 EAE Operand Fetch Gating,
Block Schematic

5-1

éI

SETUP " bga
o ™A 9 X - 15 5 T >IN SHL |

EAE-R() ~ AN C ¥y A ereru ~ A =¥

ov —Ee R | erRgon-eRIl | Dy —2e{RUI | gzRgen——af R}

MUL LE2& | EdL EQL EUB

—d g {——-o MUL e F T Laaan 408 *-A-e TV o/ e F.T
18125 D F L N T v H K

SCoV(D) A scoved) N N SCOV (@) 7 N

EAE RUN()—E-@| RE22 [Rs M o RED2 RPOZ| £IR 1(p—1e RIBL

EQ7 E@? E2? E@7

£AE rRoNO) e A |
RPP2
Fgb » WOP5
NORM g, Do
NORM [n g <>IN SHRI
EAE Ruum—fo oA ; oA
Rl
FIRST (@) tpg |EAE RO—=—o '
owv—TM,P o-A—e F.T
P
scove@—e A 2 o v
EIR 19(0) -~ R292 L
@ EG? Fg8
L _——JIN P s
EIRN() —o A A
Rrgg2 R@@2
Fe8 F@g8

D-BS-KE09-A-4 EAE Execution Gating,
Block Schematic

LRSS, MUL ALS,NORM,LLS oiv

L Ai j TEMP 1] [TEMP 1] [Ri ALS: NO SHIFT TEMP 1] i ai i

(LOST! SeL L s¢ |

N NS

i SG [sGL | SGL
/ . 7,7 _Losm) (LosT) \

A/

b \ END BIT 17]

En: BT 2]] ADA Eno BT o] [END BIT 2] L 4R 1 ENC 3T T
B | L
LTENR 2] ; va] LETE [TEMP2) ! Ma] [rEmP 3] [TEmp 2] [M3 | TEME S
.
EAE-P EAE-P EAE-P

{LOST)
[_
Ri [TeEmPZ] [Ri] EN0 BIT @] | [LAR] [TEwPZ] Y
: (%400 . !
L 3 | I s
56] SGL (LOST) {Losm {seL | [6| “ | Temp3] [SoL | i
P NG .
v (-
[END BIT 2] [ADm | END BIT i7] [eno BIT o] [__aom | END BIT 17 | LADAL .
r - Al P 1R
| SUB: CMPL ueic
1 I | _ !
['ADAL —__Ac {f_m_‘_ﬁ'} ADRL AC [TEMP | | [Link [ac ! TEMF |

[w] [we] o [ws]

EAE-R EAE-R EAE-R

D-BS-KE09-A-5 EAE Data Flow, Flow Diagram

5-15

[75/AC0O, ARY, EAE, LI CONT] 43— ={43[ACI, EAE (ARO,NQ0) CONT] 41 41[ACD, WT, EAE CONT |54 ACI (ARD, HGD) , EAE-R, CONT] 44—(_. 43

EAE-Re MB 17(1) * SETUP : SCO
EAE-R+SETUP

EAE-R [SCOV 2(8) V EAE RUN (IJ]:ADDR 1
EAE-R + SCOV 2(£) » EAE RUN ()

o(MUL V DIV) : ODD ADDR
EAE-R * SCOV(8) 141->SC
EAE-R : LINK-STENP 2
IF NORMALIZED } 1->SCov

TEMP 3(D) *EAE¥DY 1-*MQ SIGN

ADDR 18

EAE-R -CEAE RUN(1) Vv SCov 2(]))

—— 59

EAE-ReEIR 89(8)*SCOV 2(#) » EAE UN(B)

e 51

0DD ADDR

EAE * ARI tsu 1 EAE » AC(» SETOP DSt 2 EAE sNQle SETUP : SU 3
SU 1eMB B4C1) 1AC BE-SLINK SU3eMB 15(1) : CNPL
SU 1.8 45() "EAE OR MQO SU 2 « (UL ¥ DIV) su 3 1 fSCOV 2
“EAE SIGN(1) : CMPL SU 3 UB I6(1) : EAE OR MQO
uO1 + N8 98(8) : BAE OR ARO
w2 — sU 3 : 1-SCOv
. . HJPRY

EAE
SU 1eHB B7(1) : OR ARO SU 2+ MB 85(1) 1 AC BB->EAE SIGN
SU 1+ 4B B6(1) + W8 87(g)

AC BS(1) : CMPL

61 @ SCOV. SCOV 2
SU 1 SETUP o I
1 D ADR L TEWP 3
su 1 g Finst

B EAE RUN

8 EAE SIGN

8 M SIGN
lst [pco, su, wei 52 52] N8O, +1, PCI, LI o | CIR }
CLK SH : START KAIN MEMORY L1 - SORT : EAE CLR RO

AND CTL MEMORY LI+ ADRL :ff +TEMP3

D-BS-KE09-A-6 E

AE Flow, Flow Diagram

(Sheet 1)

5-17

O TRANSFER

AC TRANSFER

~{42]ACO, MQI, EAE-R CONT|55)

'59° NQO, ARI, EAE-P CONT 42—

EAE-P - SCOV 2(8) % 1—EAE RUN
EAE-P = EAE RUN(B) &1—FIRST
EAE-P EAE RUN(1) :B-FIRST
EAE-P;

0 BUS L —> TENP 1

TEMP 2 —> END BIT B

TEMP 3 —> END BIT 17
FIRST(1) SCOV(1) :1-8COV 2

EAE—P(I) M SCUV(E)
v LLS) + SHL
SCOV 2(2),
EAE RUN(I) FIRST(E)
«(LRS v HUI
EAE—P(I) SCOV Z(B) DIV SHL
FIRSTN-EAE RIN('MG SIGN{NICMPL EAE SIGN

ALS; MOn—>WOn
LINK—> TEMP 1

NORM; LINK—HQ 17
MOn —>MOn-1
§Q 2 — TENP 1
LLS; SAME AS NORM
LRS; AC 17— MO B
Han - NGn+1
MQ 17 —>TEWP | (NOT USED)

MUL: PAR PROD 17— MQ BE

EAE-P - SCOV(R) EAE
< MUL - © BUS 17 . OR MBO
MOn — MQn +1

MPLRIT—> TENP 1 (NOT USED)

Dlv; 0—wMg 17

Man -—ﬂlun—\
!25"2 scuv ZEBE 0lv EAE
=0 BUS 17 . DR MBO
EAE-P : Al
scuvu)-rEnP J(ﬂ) ;EORESUB
EAE-P+ D EAE

o SCav Z(B) OR L1

Div OV-EAEP(IN: DIVIDE NO 60
DIVIDE NO€0O: @ = EAE RUN

Div ov(n I—“INK
=SCov
I" scov 2

ALS:

EAE-R-SCOVIE) :+1-sC »~
EAE-R: SC FULL 11->SCov

EAE-R = SCOV(1) 11 —a8C0V 2 55
EAE-R * SCOV 2(1) B—>EAE RU1

EAE-R

0 BUS L—~TEWP 2

ADRL —> END BIT 8

TEMP 1 —>END BIT 17
EAE-R(1) «SCOV 2(@) * EAE RUN(!)

(ALS V NORM V LLS) : SHL |
EAE-R(1) » SCOV 2(2)

EAE RUN(1) » (LRSVHUL) SHR
EAE-R{1) » SCOV
~EAE RUN(1) DIV SHL

LINK—AC 17
ACn — ACn=1
LINK—> AC-17
AC 88— TEMP 2 (NOT USED)

NORM; HU B —>AC 17

LLs
LRS

Cn — ACn-1
AC 83 —TENP 2 (NOT SED)
1+ NORMALIZED: i —5COV
. SAME AS NORM

; LINK—> AC B8
ACn —> ACn+1
AC 17—>TENP 2

MUL; B CRY—>AC g8

DIv;

PAR PRODN - ACn+!
PAR PROD 17—>TEMP 2
OR B3 ; MBO (ADD MULTIPL!CAND TO AC)

M 28 "‘AC 17
ACn —ACn-1
AC 8§ —>TEMP 2, LINK
Qn —TEMP 3
R : MBO (ADD DIVISOR TO AC)

OR SUB * SUB (ADD 2'S CMPL OF N]VISDR TQ AC)
Sug o LI (XFER AC B—>LINK; ACn-1 »B CRY—>TEMP 3)

SuB .17
EAE R(1) - FIRST(1)
<ADR L: 1—-DIV OV

58

)55‘ ARG,ACH,EAE-P CONT 53—

SAME AS ABOVE EXCEPT READ;

AR FOR MO
AC FOR AR

{

{53 MO0, ART EAE-R, — CONT [5]

SAME AS ABOVE EXCEPT READ;

MQ FOR AC
AR FOR MQ

56

|56/ ACO,MQI EAE-P __ CONT |57}
SAME AS ABOYE EXCEPT RZAD;

AC FOR MO
MO FOR AR

EAE-P - MOl * ACO EIR B9(F)- SCOV 2(1) @ EN CNPL
EN C4PL » EAE SIGN (1) . CNPL

={57 aR0.ACI EAE-R CONT [44

NOTE:
1. TEMP 3 CONTAINS THE LINK IF NOT MODIFIED VIA EAE

2 ESERBIT ESIS INPUT TO HICGH ORDER BIT OF RECIEVING
3, Eﬁglg|$ 17 1S INPUT TO LOW ORDER BIT OF RECIEVING
4, EEL RgEERENCES TO TRANSFERS ARE LOGICAL REGISTERS
5. gngémn N REFERS TO BITS NOT DESCRIBED OTHERWISE.

SAME AS ABOVE EXCEPT READ;

AR FOR AC
AC FOR MO

EAE-R
((Scov 2(8) v EAE RUN(1)]: ADD ADDR 18

EN CMPL ~ EAE SIGN (1) - CNPL

—={ 43 £AE DONE_(CONT) s]

EAE » DONE - CONT - CLK DLYD® RESTART CM TIMING
EAE—-yS:o-v EN CMPL

D-BS-KE09-A-6 EAE Flow, Flow Diagram

(Sheet 2)

5-19

12-9

um

Co o1

INSHR1

INSHL1 —@

ML
1'
co 0@ 4
3
A BUS LINK
-
jo— sus (1) SUB {9) —@ sutl) —e
0 1 ~A A uA
TEMP 3 j&— EAE-RI() MB4(1) —@
+1(@)
A A A
SAC (9B —e ACOS(1) —e
° ' ACD —> LINK A
L
su1)
LI PA A
4 MBp4(1)
>
° 1 ° 1 [1
LAR TEMP 1 TEM}’ 2
- L
. | F
s g
b3 LIm EAE-P (1) EAE-R(1) 1
0 BUS LINK J J J) END BIT @
} ADRL(®) ~—} TEMP 2 (1) —H
A SHL1 T v v
AXs() aoreo —el | v EAE-P{1) — EAE-P(@) —
SHR1 —@f]
A 1
ADR17 ,
A :
END BIT 17
DIV OV(1) T -
TEMP3(1) TEMP1 (1)
v vy
EAE-R(1) —<) EAE-R(D) —

Link Control for EAE Instructions

DIGITAL EGQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

Printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	4-01
	4-02
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	xBack

