DEC -9A-AF46-D

DIGITAL EQUIPMENT CORPORATION » MAYNARD, MASSACHUSETTS

DEC -9A-AF49-D

FORTRAN IV LANGUAGE MANUAL
. PDP-9
ADVANCED SYSTEM SOFTWARE

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

Copyright 1967 by Digital Equipment Corporation

PDP-9 FORTRAN IV

PREFACE

This manual describes the FORTRAN IV language for the PDP-9. It
provides users with the necessary information for writing FORTRAN programs for
compilation and execution in the PDP-9 ADVANCED Software System.

Operating instructions will be given in later publications. In paper
tape systems, the compiler along with an Input/Output Monitor is loaded from
paper tape. In larger systems with a bulk storage device such as DEC’rdpe, the
Keyboard Monitor accepts direct console commands to load the compiler in an
I/O device independent environment.

Several excellent texts are available for a more elementary approach
to FORTRAN programming. "A Guide to FORTRAN Programming," by Daniel D.
McCracken (published by John Wiley and Sons, Inc.) is recommended.

This is essentially the language of USA Standard FORTRAN (X3.9-1966)

with the exceptions noted in appendix 2.

PDP-9 FORTRAN IV

CONTENTS
Chapter ‘ Page
1 INTRODUCTION........ Ceerieens Cereneees et eeeaieatii ettt 1
1.1 FORTRAN . ttitittietoneenussenecesnsssmensssoscsnssasonsanannns]
1.1.1 Card FOrmat suuseeueeesneeseronansossesnessssssssnesssasosnosns 1
1.1.2 Paper Tape Formatvuvuiiiiiiiiiiiiiiieiiiiiiiiiiiiiiiene, 2
2 ELEMENTS OF THE FORTRAN LANGUAGE .. vciveitieerereenecassocsnenans 3
2.1 Constants o eveeeoosroinsorescsseresssssnssnsessesasnancansnos eeeee 3
2.1.1 Integer Constants 4 .uveneiiieienennessnensssssesssecssrosnsnnsos 3
2.1.2 Real Constants (6~decimal-digit accuracy) voveevereenveencenennenn. 3
2.1.3 Double-Precision Constants (9-decimal-digit accuracy) v..cvvevvunnn. 4
2.1.4 Logical Constantscveeeeiennnn Cereeisseiasecenaees cerereeen 4
2.1.5 Hollerith Constants 4 ..veviusiiiiiesoneseoessanesensonacsasnannes 5
2.2 Variables ouveeeieeeseteieee it ctessscsesastattscsttrientasnsane 5
2.2.1 Variable Types vuvieereroeserosessssersncassossesassoancans ceeee 5
2.2.2 Integer Variables Cesceeencenseesensons cereeeas G eeeenee . 5
2.2.3 Real Varigbles cvvvveiiiiiiiiiiiiiiiiinineiiiniiieneinneness 5
2.2.4 Double-Precision and Logical Variablescovivviviiniann.. ceene 6
2.3 Arrays and Subscripts ..., C e eereererenateceetess e rerttteretebarenn 6
2.3.1 Arrangement of Arrays in Storage Ceetstecetesenttatteaananees 6
2.3.2 Subscript EXpressions v.vveverceanesss Ceenssrenesessastsesssenenns 6
2.3.3 Subscripted Variables Chteeertseseecasttetertstatetstesnas 7
2.4 EXPressions sveeveveerosaseeosacsenens cetennen Cereeereatsateaeesaeas 7
2.4.1 Arithmetic Expressions ...ceveees Ceeesesesrsetcueiattsrrasannnas 7
2.4.2 Relational Expressions et eseseeesecnessenaenstsrernaens . 9
2.4.3 Logical Expressionseceeveeecesencccconnns Ceeteteesereaatonn 10
2.5 Statementsieveienieeianans ceesereseannens e . 11
3 ARITHMETIC STATEMENTSivveennnns S eereceeieeecreasettaetttaenane 13
4 CONTROL STATEMENTS +.vveevnnns C s eeecetesetaettastttaatesanoans . 15
4.1 Uncondifio’nql GO TO Statements Ceseceeanesnenas Ceeereteeies 15
4.2 ASSIGN Statement ,...eeevieiiirierinneeacanans Cetecarencicnsesennon 15
4.3 Assigned GO TO Statement c..vveeinerrseesosasasassrassssssasssasasns 15

PDP-9 FORTRAN IV

CONTENTS (continued)

Chapter Page
4.4 Computed GO TO Statement .vviviveceranenans Cetersteseiceteanenaan 16
4.5 Arithmetic IF Statement....c.iviiiiiiiinnnnenoennnass e eeeeaaas .. 16
4,6 Logical IF Statement ...vvve.. ceenses Ceeeeenn C et eeresesentenrenonanas 16
4.7 DO Statement ..eeeeesessss feereriraeseaaes tesseceesnateneseaneans . 17
4.8 CONTINUE Statement Ceeriseees RN Creececetrransnernn .o 19
4.9 PAUSE Statementevevevernnonn Ceeeennene terenane Chereeirrereens . 19
4.10 STOP Statementuvvrieievtnoneennaness Cesesesesieertatansasoannn 19
4,11 END Statement ..vveennennes cheeenias Ceesesecaarsesaaesns 19
5 INPUT/QUTPUT STATEMENTS ..tieirieierneenananns fetiseiacisaessenae . 21
5.1 General I/O Statements Ceeeeeenn B 22
5.1.1 Input/Output Argument Lists o.vveeevenneonesss Ceerrenniiia ceeeee 22
5.1.2 READ Statement o.cuveevsisneencsenenenns crseieenns Ceereana teees 22
5.1.3 WRITE STOtEMeNt 4.uvuuuesovrneeessoasoancesacnnaseasassennnesons 23
5.2 FORMAT Statements e riereeieanas Ceeserencacactrtetanaeenas . 24
5.2.1 Specifying FORMAT . it iiiuiiiisernssneessenntosensaenssosnsans 24
5.,2.2 Conversion of Numeric Dataiereieneeeenveereeennnenseroanns 26
5.2.3 P=SCAlE FACIOT 4 vevsateteeenneeeenaneeeeeanneeerenneeensnnns . 28
5.2.4 Conversion of Alphanumeric Data ovuvveienerinenernnernnecnnennns 28
5.2.5 Logical Fields, L Conversion Cesteseieiscitecesraannae . 29
5,2.6 Blank Fields, X Conversioneeeveeeeenes. e tetcteeereasneans 29
5.2.7 FORTRAN Statements Read in at Object Time c.ovveiivevervennnecnss 29
5.2.8 Printing of a Formatted Record ceeeanaase hesenes ceeesennes .o 30
5.3 Auxiliary 1/O Statementsvveu... ceiriaees cersesanns Cheserenenns 31
5.3.1 BACKSPACE Statementccveeveearees cecesaes cetesenens ceeens 31
5.3.2 REWIND Statement ...ivvveivennesennes teretensreseriansan ceraae 31
5.3.3 ENDFILE Statementeceveevens Ceeessseetaietieeaatatoarenann 31
6 SPECIFICATION STATEMENTS +tiiiuriiernieroonsossnsnrssssssessssssanas 33
6.1 Type Statements teresrenes ceerenens tessesientrecerinos benene 33
6.2 DIMENSION Statement ...cvvvevvnvensnn teeseseraietseesnsanas R 33
6.3 COMMON Statement o.ivseveeeesetsssessssssssassaones 34
6.4 EQUIVALENCE Stafement ...cevievovssnvonnns Cereietrentenanes teeene 35

vi

PDP-9 FORTRAN IV

CONTENTS (continued)

_gqi;?lgr : Page
6.5 EXTERNAL Statement vvveveereveocsensasnees cresesenas Ceereeeesennne . 35
6.6 DATA Statement vuveeeseeesoeeenosooessssssssenessosansonscosonsonss 36
7 SUBPROGRAMS ciieeveerrsecconsceness Cereesereenrenen Ceereeen Ceeeaeee . 37
7.1 Statement FUNCTIONS vueeeeeeerererosocsoecessocsscssnosssoacnsssnssns 37
7.2 Intrinsic or Library FUNCIONS 4. vueieneeesrasenernneecnsentneronssnsnns 38
7.3 External Functions ..eeeieveoeenens e e eenee et sereenesetecteneeonns . 40
7.4 Subroutines ...ieeieeennns Ceeeceseacanns Ceeereesenneens cereesenenes . 4]
7.5 Block Data SUbprogram . uiu.euseeereiensasscssssossssrsnsroasosnassns 43
7.5.1 Example of BLOCK DATA Subprogramveeeveveennrnneneennennns 43
Appendix

1 SUMMARY OF PDP-9 FORTRAN IV STATEMENTS tierererrnnenernracocennns 45

2 A NOTE ON USA STANDARD FORTRAN IV sttt iterenonerneeeonnnconnoncns 47

TABLES

Table

1 Infrinsic FUNCHIONS viiveereneeereeeeeececosoessoscecensssasesenosscsassss 39

2 External Functions C e et et e neaeeeteneteaeseeterensenrentanrerenaannn 4]

vii

PDP-9 FORTRAN TV

CHAPTER 1
INTRODUCTION

1.1 FORTRAN

FORTRAN (for FORmula TRANSslation) is the most widely used programming language for
engineering and scientific applications. It consists of precise procedures for expressing numerical

compilations.
. The FORTRAN character set consists of the 26 letters:

Al BI CI Dl EI FI Gl HI II JI I<I LI MI
N,O,P,Q,R,S,T,UV,W,X,Y,Z

the 10 digits:
0,1,2,3,4,5,6,7,8,9
and 11 special characters:

Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Decimal Point
Dollar Sign $

+ 1

P e T N |

1.1.1 Card Format (IBM Model 029 Keypunch codes)

The FORTRAN source program is written on a standard FORTRAN coding sheet, which consists
of the following fields: statement number field, line continuation field, s’rdt_emenf field, and identifica-

tion field.

The FORTRAN statement is written in columns 7-72, If the statement is too long for one line,
it can be continued in the statement field of as many lines as necessary if column 6 of each continuation
line contains any character other than blank or zero. There are two exceptions to this rule: (1) the DO
statement must be on one line; and (2) the equal sign (=) of an assignment statement must appear on the

first line.

PDP-? FORTRAN 1V

For one statement to be referenced by another, a statement number is placed in columns 1-5
of the first line of that statement. This number is made up of digits only, and may contain one to five
digits. Leading zeros and all blanks in this field are ignored. The statement numbers are used for identi-
fication only, and they may be assigned in any order.

The FORTRAN compiler ignores the last eight columns (columns 73-80) which may be used
for program identification, sequencing, or any other purpose desired by the user. Comments may be
included in the program by putting a "C" in column 1 of each line containing a comment (or continuation
of a comment). The compiler ignores these comments except for printing them.

Blanks may be used to aid readability of a FORTRAN statement, except where indicated in this

manual.

1.1.2 Paper Tape Format

When FORTRAN source program statements are prepared on paper tape, the sequence of char-
acters is exactly the same as for card input, and each line is terminated with a carriage return, line feed
sequence.

A statement number (all digits) may be written as the first five characters, or a "C" may be the
first character to indicate a comment line or a continuation of a comment line. Forstatement continuation
lines, any character other than blank or zero is written as the sixth character. The seventh character be-
gins the statement and must be alphabetic. Each line is terminated with a carriage return, line feed.

The TAB key can increase the speed of writing FORTRAN statements on paper tape. A TAB
followed by an alphabetic character begins the statement in column 7. A TAB followed by a digit places
the digit in column 6, indicating a statement continuation line. A statement number less than five digits,

followed by a TAB, places the next character in column 6 if it is a digit or in column 7 if it is a letter.

PDP-9 FORTRAN IV

CHAPTER 2
ELEMENTS OF THE FORTRAN LANGUAGE

2.1 CONSTANTS

There are five types of constants allowed in the FORTRAN source program: integer, real,

double-precision, logical, and Hollerith.

2,1.1 Integer Constants

An integer constant is a number written without a decimal point, consisting of one to six

decimal digits. A + or — sign preceding the number is optional. The magnitude of the constant must
7

be less than or equal to 131071 (2] ~1). Example:

+97

0

=2176

576

. 17 . .
If the magnitude >2 ° =1, an error message will be output. Negative numbers are represented

in 2's complement notation.

2.1.2 Real Constants (6-decimal-digit accuracy)

A real constant is an integer, fraction, or mixed format number and may be written in the

following forms:

a. A number consisting of one to six significant decimal digits with a decimal point

included someplace within the constant. A + or — sign preceding the number is optional.

b. A number followed by the letter E, indicating a decimal exponent, and a 1- or 2-digit
constant with magnitude less than 76*indicating the appropriate power of 10. A + or — sign
may precede the scale factor. The decimal point is not necessary in real constants having
a decimal exponent. Example:

352.

+12.03

~.0054

5.E-3
+5E7

* If the adjusted magnitude exceeds 75, an error results. .999999E75 is legal, th 999.999E73
is illegal.

PDP-9 FORTRAN IV

Real constants are stored in two words in the following format:

LOW ORDER EXPONENT
MANTISSA (2'S COMP)
0o 89 17
SIGN OF
MANTISSA —_—t> HIGH ORDER MANTISSA
o] 1 17

Negative mantissae are indicated with a change of sign.

2.1.3 Double-Precision Constants (9-decimal-digit accuracy)

A double~-precision constant is writien as a real number followed by a decimal exponent, in-
dicated by the letter D and a 1- or 2=digit constant with magnitude not greater than 76. A + or — sign
may precede the constant and may also precede the scale factor. A decimal point within the constant is
optional. A double-precision constant is interpreted identically to a real constant, the only difference
being that the degree of accuracy is greater. Example:

-3.0D0

987.6542D15
32.123D+7

Double-precision constants are stored in three PDP-9 words:

3N
EXPONENT (2'S COMP.)
0 17
NEGATIVE
MANTISSAE
ARE
SIGN OF __| INDICATED
MANTISSA > HiGH ORDER MANTISSA > WITH A
CHANGE
o 1 17 OF
SIGN
LOW ORDER MANTISSA
o 17 J

2.1.4 Logical Constants

The two logical constants are the words TRUE and FALSE, ecich both preceded and followed
by a decimal point.

777777
0

.TRUE.
.FALSE.

PDP-9 FORTRAN 1V

2.1.5 Hollerith Constants

A Hollerith constant is wriften as an unsigned integer constant, whose value, n, must be equal
to or greater than one and less than or equal to five, followed by the letter H, followed by exactly n
characters, which are the Hollerith data. Any FORTRAN character, including blank, is acceptable.
The Hollerith constants are used only in CALL and DATA statements and must be associated with real
variable names. The Hollerith constants are packed in 7-bit ASCII, five per two words of storage with

the righmost bit always zero. Examples:

THA
4H A$C

2.2 VARIABLES

A variable is a symbolic representation of a numeric quantity whose values may change during
the execution of a program either by assignment or by computation. The symbol's representation, or name,
of the FORTRAN variable consists of one to six alphanumeric (alphabetic and numeric) characters, the
first of which must be alphabetic. Example:

X =Y+ 10. Both X and Y are variables; X by computation, and Y by assignment
in some previous statement.

TEST

GAMMA

X12345

2.2.1 Variable Txges

Variables in FORTRAN may represent one of the following types of quantities: integer, real,

double-precision, or logical. This corresponds to the type of constant the variable is supposed to represent.

2,2,2 Integer Variables

Variable names beginning with the letters 1, J, K, L, M, or N are considered to be integer
variables. If the first letter is not one of the above letters, it is an integer variable only if it was named

in a previous integer type specification statement.

2.2.3 Real Variables

Variable names beginning with letters other than I, J, K, L, M, or N are considered to be real
variables. If the first character is one of the above letters, it is a real variable only if it was named in a

previous real type specification statement.

PDP-9 FORTRAN 1V

2.2.4 Double-Precision and Logical Variables

A type specification statement is the only way to assign a variable value to one of these two

types. This is done with either a double precision statement or a logical statement.

2.3 ARRAYS AND SUBSCRIPTS

An array is an ordered set of data identified by a symbolic name. Each individual quantity
in this set of data is referred to in terms of its position within the array, This identifier is called a sub-

script. For example,
A (3)

represents the third element in a one~dimensional array named A. To generalize further, in an array A
with n elements, A (I) represents the Ith element of the array A where 1=1, 2,..., n.
FORTRAN allows for one=, two-, and three=dimensional arrays, so there can be up to three

subscripts for the array, each subscript separated from the next by a comma. For example,
B(1,3)

represents the value located in the first row and the third column of a two-dimensional array named B.
A dimension statement defining the size of the array (i.e., the maximum values each of its subscripts

can attain) must precede the array in the source program.

2.3.1 Arrangement of Arrays in Storage

Arrays are stored in column order in ascending absolute storage lc cations. The array is stored
with the first of its subscripts varying most rapidly and the last varying least rapidly. For example, a
three-dimensional array A, defined in a DIMENSION statement as A(2, 2, 2) will be stored sequentially
in this order:

A(1,1,1)

A2,1,1)

A(1,2,1)

A(2,2,1) ascending absolute
A(1,1,2) storage locations
A(2,1,2)

A(1,2,2)

A(2,2,2)

2.3.2

PDP-9 FORTRAN 1V

Subscript Expressions

Subscripts may be written in any of the following forms:

\%

C

vV +k
V-k
c*V
C*V+k
C*V -k

where C and k represent unsigned integer constants and V represents an unsigned integer variable. Example:

2.3.3

I

13
IMOST + 3
ILAST =1
5 * IFIRST
2% J+9
4% M1 =7

Subscripted Variables

A subscripted variable is a variable name followed by a pair of parentheses which contain

one to three subscripts separated by commas. Example:

2.4

A (D)
B (I, J=23)
BETA (5* J+ 9, K+ 7,6 * JOB)

EXPRESSIONS

An expression is a combination of elements (constants, subscripted or nonsubscripted variables,

and functions) each of which is related to another by operators and parentheses. An expression represents

one single value which is the result of the calculations specified by the values and operators that make

up the expression. The FORTRAN language provides two kinds of expressions: arithmetic and logical.

2.4.1

Arithmetic Expressions

An arithmetic expression consists of arithmetic elements joined by the arithmetic operators +,

-, *,/, and **, which denote addition, subtraction, multiplication, division, and exponentiation,

respectively. An expression may consist of a single element (meaning a constant, a variable, or a

function name). An expression enclosed in parentheses is considered a single element. Compound

expressions use arithmetic operators to combine single elements.

PDP-? FORTRAN 1V

2.4.1.1 Mode of an Expression = The type of quantities making up an expression determine its mode;

i.e., a simple expression consisting of an integer constant or an integer variable is said to be in the
integer mode. Similarly, real constants or variables produce a real mode of expression, and double-
precision constants or variables produce a double-precision mode. The mode of an arithmetic expression

is important because it determines the accuracy of the expression.

In general, variables or constants of one mode cannot be combined with variables or constants

of another mode in the same expression. There are, however, exceptions to this rule.

a. The following examples show the modes of the valid arithmetic expressions involving
the use of the arithmetic operators +, —, *, and /. I, R, and D indicate integer, real,

and double-precision variables or constants. A + is used to indicate any one of the four

operators:
I+1 Integer result
R+R Real result
R+D
D+R Double-precision result
D+D

b. When raising a value to a power, the mode of the power may be different than that
of the value being raised. The following examples show the modes of the valid arith-
metic expressions using the arithmetic operator **. As above, I, R, and D indicate

integer, real, and double=-precision.

**1 Integer result

*%
E**II{ | Real result

R**D

D**I ..

D**R Double~precision result
D**D

The subscript of a subscripted variable, which is always an integer quantity, does not

affect the mode of the expression.

2.4.1.2 Hierarchy of Operations = The order in which the operations of an arithmetic expfession are

to be computed is based on a priority rating. The operator with the highest priority takes precedence
over other operators in the expression. Parentheses may be used to determine the order of computation.

If no parentheses are used, the order is understood to be as follows:

PDP-9 FORTRAN IV

Function reference

. **{Exponentiation)

. Unary minus evaluation

. * and /(multiplication and division)
. * and —(addition and subtraction)

o Q0 o Q

Within the same priority, operations are computed from left to right. Example:
FUNC + A*B/C-D(I,J) + E¥*F*G—H
interpreted as,

FUNC + (A*B)/C)~D(1,J) + (EF *G)=H

2.4.1.3 Rules for Constructing Arithmetic Expressions -

a. Any expression may be enclosed in parentheses.
b. Expressions may be preceded by a + or — sign.

c. Simple expressions may be connected to other simple expressions to form a compound

expression, provided that:

(1) No two operators appear together.

(2) No operator is assumed to be present.

d. Only valid mode combinations may be used in an expression (described under Mode

of an Expression, section 2.4.1.1).

e. The expression must be constructed so that the priority scheme determines the order

of operation desired (described in section 2.4.1.2, Hierarchy of Operations).

Examples of arithmetic expressions follow:

3

A(l)

B+7.3

c*D

A+ (B*C) = D**2 + E/F

2.4.2 Relational Expressions

A relational expression is formed with the arithmetic expressions separated by a relational
operator. The result value is either true or false (depending upon whether the condition expressed by
the relational operator is met or not met. The arithmetic expressions may both be of the integer mode
or they may be a combination of real and/or double-precision. No other mode combinations are legal.

The relational operators must be preceded and followed by a decimal point. They are:

PDP-2 FORTRAN 1V

AT. Less than (<)

.LE. Less than or equal to (<)

.EQ. Equal to (5)

.NE. Not equal to (#)

.GT. Greater than (>)

.GE. Greater than or equal to (>)
Examples:

N .LT.5

DELTA + 7.3 .LE. B/3E7
(KAPPA + 7/5 .NE. IOTA
1.736D—4.GT.BETA
X.GE. Y*Z**2

2.4.3 Logical Expressions

A logical expression consists of logical eleménts joined by logical operators. The value is

either true or false. The logical operator symbols must be preceded and followed by a decimal point.

They are:
.NOT. Logical negation. Reverses the state of the logical quantity
that follows.
AND., Logical AND generates a logical result (TRUE of FALSE) deter-

mined by two logical elements as follows:
T .AND. T generates T
T .AND. F generates F
F .AND. T generates F
F .AND. F generates F

.OR. Logical OR generates a logical result determined by two logical
elements as follows: ‘
T .OR. T generates T
T .OR. F generates T
F .OR. T generates T
F .OR. F generates F

2.4.3.1 Rules for Construction Logical Expression

a. A logical expression may consist of a logical constant, a logical variable, a reference
to a logical function, a relational expression, or a complex logical expression enclosed

in parentheses.

b. The logical operator .NOT. need only be followed by a logical expression, while
the logical operators .AND. and .OR. must be both preceded and followed by a

logical expression for form more complex logical expressions.

10

PDP-9 FORTRAN 1V

c. Any logical expression may be enclosed in parentheses. The logical expression
following the logical operator .NOT. must be enclosed in parentheses if it contains

more than one quantity.

d. No two logical operators may appear in sequence, not separated by a comma or
parenthesis unless the second operator is \NOT. In addition, no two decimal points
may appear together, not separated by a comma or parenthesis, unless one belongs

to a constant and the other to a relational operator.

2.4.3.2 Hierarchy of Operations - Parentheses may be used as in normal mathematical notation to

specify the order of operations. Within the parentheses, or where there are no parentheses, the order

in which the operations are performed is as follows:

a. Evaluation of functions

b. **(Exponentiation)

c. Evaluation of unary minus quantities

d. * and /(multiplication and division)

e. *+and —(addition and subtraction)

f. .LT., .LE., .EQ., .NE., .GT., .GE.
g. .NOT. ‘

h. .AND. and .OR.

i. =Replacement operator

Unlike an arithmetic expression where sequence of elements of the same priority (i.e., opera=-
tions being performed from left to right) is important for the end result of the expression, the order of

operation within the same priority in logical and relational expressions is unimportant.

2.5 STATEMENTS

Statements specify the computations required to carry out the processes of the FORTRAN
program. There are four categories of statements provided for by the FORTRAN language:

a. Arithmetic statements define a numerical calculation.

b. Control statements determine the sequence of operation in the program.

c. Input/output statements are used to transmit information between the computer

and related input/output devices.

d. Specification statements define the properties of variables, functions, and arrays

appearing in the source program. They also enable the user to control the allocation

of storage.

11

PDP-9 FORTRAN IV

CHAPTER 3
ARITHMETIC STATEMENTS

An arithmetic statement is a mathematical equation written in the FORTRAN language which
defines a numerical or logical calculation. It directs the assignment of a calculated quantity to a given
variable. An arithmetic statement has the form

V=E
where V is a variable (integer, real, double-precision, or logical, subscripted or nonsubscripted) or any
array element name; = means replacement rather than equivalence, as opposed to the conventional math-
ematical notation; and E is an expression.

In some cases, the mode of the variable may be different from that of the expression. In such
cases an automatic conversion takes place. The rules for the assignment of an expression E to a variable

V are as follows:

V Mode E Mode Assignment Rule

Integer Integer Assign

Integer Real Fix and assign

Integer Double-precision Fix and assign

Real Integer Float and assign

Real Real Assign

Real Double-precision Double-precision eval-
vate and real assign

Double- Integer Double-precision float

precision and assign

Double- Real Doukle-precision eval-

precision vate and assign

Double- Double=-precision Assign

precision

Logical Logical Assign

Mode conversions involving logical quantities are illegal unless the mode of both V and E

is logical. Examples of an assignment statement:

ITEM = ITEM + 1
A(T) = B(I) = ASSIN (C (I))

V = .FALSE.
X=A.GT.B.AND. C .LE. G
A=B

13

PDP-9 FORTRAN IV

CHAPTER 4
CONTROL STATEMENTS

The statements of a FORTRAN program normally are executed as written. However, it is
frequently desirable to alter the normal order of execution. Control statements give the FORTRAN user
this capability. This section discusses the reasons for control statements and the ways in which they may

be used.

4.1 UNCONDITIONAL GO TO STATEMENTS
The form of the unconditional GO TO statement is
GO TOn

where n is a statement number. Upon the execution of this statement, control is transferred to the state-

ment identified by the statement number, n, which is the next statement to be executed. Example:

GO TO 17

4.2 ASSIGN STATEMENT
The general form of an ASSIGN statement is
ASSIGN n TO i
where n is a statement number and i is a nonsubscripted integer variable name which appears in a sub-

sequently executed assigned GO TO statement. The statement number, n, is the statement to which

control will be transferred after the execution of the assigned GO TO statement. Example:

ASSIGN 27 TO ITEST

4,3 ASSIGNED GO TO STATEMENT
Assigned GO TO statements have the form

GO TO i (n], Nps veees nm)

where i is an nonsubscripted integer variable reference appearing in a previously executed ASSIGN state-
ment, and Ar Ngr eeve, nare the statement numbers which the ASSIGN statement may legally assign

to i. Examples:

ASSIGN 13 TO KAPPA
GO TO KAPPA (1, 13, 72, 100, 35)

There is no object time checking to ensure that the assignment is one of the legal statement

numbers.

15

PDP-9 FORTRAN IV

4.4 COMPUTED GO TO STATEMENT
The format of a computed GO TO statement is

GO TO (n], DVRTTY nm),i

where Ny Mgy eeee, N are statement numbers and i is an integer variable reference whose value is
greater than or equal to 1 and less than or equal to the number of statement numbers enclosed in paren=-
theses. If the value of i is out of this range, the statement is effectively a CONTINUE statement.

Example:
GO TO (3, 17, 25, 50, 66), ITEM

If the value of ITEM is 2 at the time this GO TO statement is executed, the statement to which control

is transferred is the statement whose number is second in the series, i.e., statement number 17.

4.5 ARITHMETIC IF STATEMENT

The form of the arithmetic IF statement is

IF (e) nysNor Ny

where e is an arithmetic expression and N,/ Ny, naare statement numbers. The IF statement evaluates
the expression in parentheses and transfers conirol to one of the referenced statements. If the value of
the expression (e) is less than, equal to, or greater than zero, control is transferred to nys Ny, O Ng

respectively. Example:

IF (AUB (1) - B*D) 10, 7, 23

4.6 LOGICAL IF STATEMENT
The general format of a logical IF statement is
IF (e) s

where e is a logical expression and s is any executable statement other than a DO statement or another
logical IF statement. The logical expression is evaluated, and different statements are executed de-
pending on whether the expression is true or false. If the logical expression e is true, statement s is
executed and control is then transferred to the following statement (unless the statement s is a GO TO
statement or an arithmetic IF statement, in which cases control is transferred as indicated; or the state=
ment s is a CALL statement, in which case control is transferred to the next statement after return from
the subprogram). If the logical expression e is false, statement s is ignored and control is transferred

to the statement following the IF statement. Example:

16

PDP~-2 FORTRAN IV

IFLDI=1+1
IF (L.LE.k) GO TO 17
IF (LOG.AND. (.NOT.LOG1)) IF (X) 3,5,5

4.7 DO STATEMENT

The DO statement is a command to execute repeatedly a specified series of statements. The
general format of the DO statement is

DO ni =my, my, ma
or

DOni=m],m2

where n is a statement number representing the terminal statement or the end of the "range"; i is a non-
subscripted integer variable known as the "index"; and m,, m,, and m, are unsigned nonzero integer
constants or nonsubscripted integer variables, which represent the "initial," "final," and "increment"
values of the index. If ma is omitted, as in the second form of the DO statement, its value is assumed
to be 1.

The DO statement is a command to execute repeatedly a group of statements following it up to
and including statement n. The initial value of i is m, (ml must be less than or equal to m2). Each suc-
ceeding time the statements are operated, i is increased by the value of ma. When i is greater than LY
control passes to the statement following statement number n.

The range of a DO statement is a series of statements to be executed repeatedly. It consists
of all statements immediately following the DO, up to and including statement n. Any number of state-
ments may appear between the DO and statement n. The terminal statement (statement n) may not be a
GO TO (of any form), an arithmetic IF, a RETURN, a STOP, a PAUSE, or a DO statement, or a logical
IF statement containing any of these forms.

The index of a DO is the integer variable i which is controlled by the DO statement in such a
way that its initial value is set to m, and is increased each time the range of statements is executed by
ma, until a further incrementation would cause the value of m,, to be exceeded. Throughout the range
of the DO, the index is available for computation either as an ordinary integer variable or as the variable
of a subscript. However, the index may not be changed by any statement within the DO range.

The initial value is the value of the index at the time the range is executed for the first time.

The final value is the value which the index must not exceed. When the condition is satis-

fied the DO is completed and control passes to the first executable statement following statement n.

17

PDP-9 FORTRAN IV

The increment is the amount by which the index is to be increased after each execution of
the range. If the increment is omitted, a value of 1 is implied. Example:

DO721=1,10,2

DO 15K =1,5

DO231=1, 11,4

Any FORTRAN statement may appear within the range of a DO statement, including another
DO statement. When such is the case, the range of the second DO must be contained entirely within
the range of the first; i.e., it is not permissible for the ranges of DOs to overlap. A set of DOs satis—
fying this rule is called a nest of DOs. It is possible for a terminal statement to be the terminal statement
for more than one DO statement. The following configuration, where brackets are used to represent the

range of the DOs, indicates the permissible and illegal nesting procedures.

PERMISSIBLE 0o ILLEGAL DO

[]e]

——.

Do

Transfer of control from within the range of a DO statement to outside its range is permitted
at any time. However, the reverse is not true; i.e., control cannot be transferred from outside the

range of a DO statement to inside its range. The following examples show both valid and invalid transfers.

VALID DO) INVALID 0o)
———— DO } — DO)

D) -——@

18

PDP-9 FORTRAN TV

4.8 CONTINUE STATEMENT

The CONTINUE statement causes no action and generates no machine coding. It is a dummy
statement which is used for terminating DO loops when the last statement would otherwise be an illegal
terminal statement (i.e., GO TO, arithmetic IF, RETURN, STOP, PAUSE, or DO, or a logical IF con-

taining any of these forms). The form consists of the single word

CONTINUE

4.9 PAUSE STATEMENT

A PAUSE statement is a temporary halt of the program at run time. The PAUSE statement has -

one of the two forms

PAUSE
or.

- PAUSE n

where n is an octal integer whose value is less than 7777778. The integer n is typed out on the console
Teletype for the purpose of determining which of several PAUSE statements was encountered. Program
execution is resumed by operator intervention, starting with the first statement following the PAUSE

statement.

4,10 STOP STATEMENT
The STOP statement is of one of the forms

STOP
or

STOP n

where n is an octal integer whose value is less than 7777778. The STOP statement is placed at the
logical end of a program and causes the computer to type out on the console Teletype the integer n and
then to exit back to the Monitor. There must be at least one STOP statement per main program, but

none are allowed in subprograms.

4.11 END STATEMENT

The END statement is placed at the physical end of a program or subprogram. The form con-

sists of the single word

END

PDP-? FORTRAN IV

4
The END statement is used by the compiler and generates no code. It signals the compiler
that the processing of the source program is complete.

A control transfer type statement must precede END. This will be checked by the compiler.

20

PDP-9 FORTRAN IV

CHAPTER 5
INPUT/OQUTPUT STATEMENTS

The input/output (I/O) statements direct the exchange of data between the computer and 1/0
devices. The information thus transmitted by an I/O statement is defined as a logical record, which may
be formatted or unformatted. A logical record, or records, may be written on a device as one or more
physical records. This is a function of the size of the logical record(s) and the physicdl device used.

The definition of the data which comprises a user's optimum physical record varies for each

1/0 device, as follows:

Unit Formatted Physical -Unformq‘rfe.d
or Record Definition (Binary) Physical
Device ' Record Definition
Typewriter One line of type is terminated by Undefined
(input and output) a carriage return. Maximum of
72 printing characters per line
Line printer One line of printing. Maximum Undefined
of 120 characters per line
Cards One card. Maximum of 80 char- 50 words
(input and output) acters
Paper tape One line image of 72 printing 50 words
(input and output) characters
Magnetic tape One line image of 630 characters 252 words
Disc/drum/ One line image of 630 characters 252 words
DECtape '

Each 1/O device is identified by an integer constant which is associated with a device as-

signment table in the PDP-9 Monitor. This table may be modified at system generation time, or just
before run time. For example, the statement

READ (u,f) list
requests one logical record from the device associated with slot u in the device assignment table.

The statement descriptions in this section use u to identify a specific 1/O unit, f as the state-
ment number of the FORMAT statement describing the type of data conversion, and list as a list of ar-

guments to be input or output.

21

PDP-2 FORTRAN IV

5.1 GENERAL I/O STATEMENTS

These statements cause the transfer of data between the computer and I/O devices.

5.1.1 Input/Output Argument Lists

An /O statement which calls for the transmission of information includes a list of quantities
to be transmitted. In an input statement this list consists of the variables to which the incoming data is
to be assigned; in an output statement the list consists of the variables whose values are to be transmitted
to the given I/O device. The list is ordered, and the order must be that in which the data words exist
(input) or are to exist (output) in the I/O device. Any number of items may appear in a single list. The
same statement may transmit integer and real quantities. If the data to be transmitted exceeds the items
in the list, only the number of quantities equal to the number of items in the list are transmitted. The
remaining data is ignored. Conversely, if the items in the list exceed the data to be transmitted, suc-

ceeding superfluous records are transmitted until all items specified in the list have been transmitted.

5.1.1.1 Simple Lists = The list uses the form
C], C2, ceeey Cn

where each Ci is a variable, a subscripted variable, or an array identifier. Constants are not allowed
as list items. The list reads from left to right. When an array identifier appears in the list, the entire
array is to be transmitted before the next item in the list. Examples of Simple Lists:

Y, Y, Z
AI B(3)ICID(I+]I4)

5.1.1.2 DO-Implied Lists = Indexing similar to that of the DO statement may be used to control the

number of times a group of simple lists is to be repeated. The list elements thus controlled, and the
index control itself, are enclosed in parentheses, and the contents of the parentheses are regarded as

a single item of the 1I/O list. Example:
W, X@3), (v (M, 2 (1,K), 1=1, 10)

5.1.2 READ Statement

The READ statement is used to transfer data from any input device to the computer. The gen-
eral READ statement can be used to read either BCD or binary information. The form of the statement

determines what kind of input will be performed.

22

PDP-9 FORTRAN IV

5.1.2.1 Formatted READ - The formatted READ statements have the general form
READ (u,f) list

or
READ (u,f)
Execution of this statement causes input from device u to be converted as specified by format statement f,

the resulting values to be assigned to the items specified by list, if any.

5.1.2.2 Unformatted READ = An unformatted READ statement has the general form
READ (u) list

or
READ (u)

Execution of this statement causes input from device u, inbinary format, to be assigned to the items specified by

list, If no list is given, one record will be read, but ignored. If the record contains more information

words than the list requires, that part of the record is lost. If more elements are in the list than are in

one record, additional records are read until the list is satisfied. Example of READ:

READ (3,13) A,B,C

READ (2,10) A, (B (), 1=1,5)
READ (1,3)

READ (5) 1,J,K

READ (8)

5.1.3 WRITE Statement

The WRITE statement is used to transmit information from the computer to any 1/O device.

The WRITE statement closely parallels the READ statement in both format and operation.

5.1.3.1 Formatted WRITE - The formatted WRITE statement has the general form
WRITE (u,f) list

or
WRITE (u,f)
Execution of this statement causes the list elements, if any, to be converted according to format state=

ment f, and output into device u.

5.1.3.2 Unformatted WRITE = The unformatted WRITE statement has the general form
WRITE (u) list

Execution of this statement causes output onto device u, in binary format, of all words specified by the

list. If the list elements do not fill the record, the remaining part of the record is filled with blanks.

23

PDP-9 FORTRAN IV

If the list elements more than fill one record, successive records are written until all elements of the
list are satisfied, the last record padded with blanks if necessary. Examples of WRITE:

WRITE (1,10) A, (B (1), (C (1,J), J=2,10,2), 1=1,5)
WRITE (2,7) A, B,C
WRITE (5) W,X(3), Y1+ 1,4),Z

5.2 FORMAT STATEMENTS

These statements are used in conjunction with the general I/O statements. They specify the
type of conversion which is to be performed between the internal machine language and the external
notation. FORMAT statements are not executed. Their function is to supply information to the object

program.

5.2.1 Specifying FORMAT

The general form of the FORMAT statement is

FORMAT (S], SZ’ coesy Sn)

where S] ceee Sn are data field descriptions. Breaking this format down further, the basic data field
descriptor is written in the form

nkw.d
where n is a positive unsigned integer indicating the number of successive fields for which the data con-
version will be performed according to the same specification. This is also known as the repeat count.
If n is equal to 1, it may be omitted. The control character k indicates which type of conversion will
be performed. This character may be 1,E,F,D,P,L,A,H, or X. The nonzero integer constant w specifies
the width of the field. The integer constant d indicates the number of digits to the right of the decimal
point.

Six of the nine control characters listed above provide for data conversion between internal
machine language and external notation.

Internal External

Integer variable Decimal integer

Real variable Floating=point, scaled
Real variable Floating=point

Double-precision
variable

Floating=point, scaled

Logical variable Letter T or F

L |
> U-nrn-—'i‘_é

Alphanumeric Alphanumeric (BCD) characters

24

PDP-9 FORTRAN IV

The other three control types are special purpose control characters:

Type Purpose
P Used to set a scale factor for use with E, F, and D
conversions.
X Provides for skipping characters in input or speci-

fying blank characters in output.

H Designates Hollerith fields

FORMAT statements are not executed and therefore may be placed anywhere in the source
program. Because they are referenced by READ or WRITE statements, each FORMAT statement must be
given a statement number.

Commas (,) and slashes (/) are used as field separators. The comma is used to separate field
descriptors, with the exception that a comma need not follow a field specified by an H or X control
character. The slash is used to specify the termination of formatted records. A series of slashes is also
a field separator. Multiple slashes are the equivalent of blank records between output records, or
records skipped for input records. If the series of n slashes occurs at the beginning or the end of the
FORMAT specifications, the number of input records skipped or blank lines inserted in output is n. If
the series of n slashes occurs in the middle of the FORMAT specifications, this number is n=1. A comma
may precede and/or follow a slash, but is not necessary. An integer value cannot precede a slash.

For all field descriptors (with the exception of H and X), the field width must be specified.
For those descriptors of the w.d type (see next page), the d must be specified even if it is zero. The

field width should be large enough to provide for all characters (including decimal point and sign) neces-
sary to constitute the data value as well as blank characters needed to separate it from other data values.
Since the data value within a field is right justified, if the field specified is too small, the most signifi-

cant characters of the value will be lost.

Successive items in the I/O list are transmitted according to successive descriptors in the
FORMAT statement, until the entire 1/O list is satisfied. If the list contains more items than descriptors
in the FORMAT statement, a new record must be begun. Control is transferred to the preceding left
parenthesis where the same specifications are used again until the list is complete.

Field descriptors (except H and X) are repeated by preceding the descriptor with an unsigned
integer constant (the repeat count). A group repeat count is used to enable the repetition of a group of
field descriptors or field separators enclosed in parentheses. The group count is placed to the left of the
parenthesis. Two levels of parentheses (not including those enclosing the FORMAT specification) are

permitted.

25

PDP-9 FORTRAN IV

The field descriptors in the FORMAT must be the same type as the corresponding item in the
I/O list; i.e., integer quantities require integer (I) conversion; real quantities require real (E or F) con-

version, etc. Example:

FORMAT (17, F10.3)
FORMAT (13, 17/E10.4, E10.4)
FORMAT (214, 3(15, D10.3))

5.2.2 Conversion of Numeric Data

5.2.2.1 I—Ty.pe Conversion -

Field descriptor: Iw or nlw

The number of characters specified by w is converted as a decimal integer.

On input, the number in the input field by w is converted to a binary integer. A minus sign
indicates a negative number. A plus sigﬁ, fndicating a positive number, is optional. The decimal point
is illegal. If there are blanks, they must precede the sign or first digit. All imbedded blanks are inter-
preted as zero digits. ‘

On output, the converted number is right justified. If the number is smaller than the field w
allows, the leftmost spaces are filled with blanks. If an integer is too large, the most significant digits
are truncated and lost. Negative numbers have a minus sign just preceding their most significant digit

if sufficient spaces have been reserved. No sign indicates a positive number. Examples (b indicates

blank):

Format .
Descriptor Input_ Internal Output
5 bbbbb +00000 bbbb0
I3 ~b5 : -05 ' b-5
18 bbb12345 +12345 bbb12345

5.2.2.2 E-Type Conversion -

Field descriptor: Ew.d or nEw.d »

The number of characters specified by w is cénverfed to a floating=point number with d spaces
reserved for the digits to the right of the decimal point. The w includes field d, spaces for a sign, the
decimal point, plus four spaces for the exponent (written E £ XX) in addition to space for optional sign

and one digit preceding the decimal point.

26

PDP-?2 FORTRAN IV

The input format of an E-type number consists of an optional sign, followed by a string of
digits containing an optional decimal point, followed by an exponent. Input data can be any number of
e . +39
digits in length, although it must fall within the range of O to = 10 .

E output consists of a minus sign if negative (blank if positive), the digit 0, a decimal point,

a string of digits rounded to d significant digits, followed by an exponent of the form E + XX. Examples:

Format

Descriptor Input Internal Output
E10.4 00.2134E03 213.4 0.2134E+03
E9.4 0.2134E02 21.34 .2134E+02
E10.3 bb—23.0321 -23.0321 —0.230E+02

5.2.2.3 F-Type Conversion -

Field descriptor: Fw.d or nFw.d
The number of characters specified by w is converted as a floating=point mixed number with d
spaces reserved for the digits to the right of the decimal point,

Input for F-type conversion is basically the same as that for E-type conversion, described
~above.
The output consists of a minus sign if the number is negative (blank if positive), the integer

portion of the number, a decimal point, and the fractional part of the number rounded to d significant

digits. Examples:

DerC::rrr?Eaffor _ Input Internal Output
F6.3 b13457 13.457 13.457
F6.3 313457 313.457 13.457
F9.2 —21367. -21367. ~21367.00
F7.2 -21367. ~21367. 1367.00

5.2.2.4 D-Type Conversion -

Field descriptor: Dw.d or nDw.d

The number of characters specified by w is converted as a double-precision floating=point

number with the number of digits specified by d to the right of the decimal point.

27

PDP-2 FORTRAN 1V

The input and output are the same as those for E=type conversion except that a D is used in

place of the E in the exponent. Examples:

Format
Descriptor Input v Internal Output
Zescripror 2npur hrerna? ~utput
D12.6 bb+21345D 03 21.345 0.213450D+02
D12.6 bt+3456789012 3456.789012 0.345678D+04
D12.6 —~12345.6D-02 —123.456 0.123456D+03

5.2.3 P-Scale Factor

Field descriptor: nP or —nP

This scale factor n is an integer constant. The scale factor has effect only on E-, F-, and
D-type conversions. Initially, a scale factor of zero is implied. Once a P field descriptor has been
processed, the scale factor established by n remains in effect for all subsequent E, F, and D descriptors
within the same FORMAT statement until another scale factor is encountered.

For F, E, and D input conversions (when no exponent exists in the external field) the scale
factor is defined as external quantity = internal quantity x 107,

The scale factor has no effect if there is an exponent in the external field.

The definition of scale factor for F output conversion is the same as it is for F input. For E

and D output, the fractional part is multiplied b 10" and the exponent is reduced by n. Examples:
p P Y P Y

Format Scale
Descriptor Input Factor Internal Qutput
F6.3 123456 -3 +123456. 23.456
E12.4 7 123456 -3 +12345.6 bb0.0001E+08
D10.4 12.3456 +1 +1.23456 1.2345D+00
5.2.4 Conversion of Alphanumetic Data

5.2.4.1 A-Type Conversion (7-Bit ASCII, Handled As REAL Variables) -

Field descriptor: Aw or nAw

The number of alphanumeric characters specified by w is transmitted according to list
specifications.

If the field width specified for A input is greater than or equal to five (the number of char-
acters representable in two machine words), the rightmost five characters are stored internally. If w is

less than five, 5-w trailing blanks are added.

28

PDP-9 FORTRAN IV

For A output, if w is greater than five, w=5 leading blanks are output followed by five alpha-

numeric characters. If w is less than or equal to five, the leftmost w characters are output.

5.2.4.2 H-Field Descriptor (7-Bit ASCII) -

Field descriptor: an] aydg eeed

The number of characters specified by n immediately following the H descriptor are transmitted
to or from the external device. Blanks may be included in the alphanumeric string. The value of n must
be greater than 0.

On Hollerith input, n characters read from the external device replace the n characters fol-
lowing the letter H.

In output mode, the n characters following the letter H, including blanks, are output.

Examples:

3HABC
17H THIS IS AN ERROR
16H JANUARY 1, 1966

5.2.5 Logical Fields, L Conversion

Field descriptor: Lw or nLw

The external format of a logical quantity is T or F. The internal format is 7777778 for T or
0 for F.

On L input, the first nonblank character must be a T or F. Leading blanks are ignored. A
nonblank character is illegal.

For L output, if the internal value is 0, an F is output. Otherwise a T is output. The For T

is preceded by w-1 leading blanks.

0 5.2.6 Blank Fields, X Conversion
Field descriptor: nX

The value of n is an integer number greater than 0. On X input, n characters are read but

ignored. On X output, n spaces are output.

5.2.7 FORTRAN Statements Read in at Object Time

FORTRAN provides the facility of including the formatting data along with the input-data.

This is done by using an array name in place of the reference to a FORMAT statement label in any of

the formatted I/O statements. For an array to be referenced in such a manner, the name of the variable

FORMAT specification must appear in a DIMENSION statement, even if the size of the array is 1.

29

PDP-9 FORTRAN 1V

The statements have the general form:

READ (u, name)
READ (u, name) list

WRITE (u, name)
WRITE (u, name) list
The form of the FORMAT specification which is to be inserted in the array is the same as the source pro-
gram FORMAT statement, except that the word FORMAT is omitted and the nH field descriptor may not
be used. The FORMAT specification may be inserted in the array by using a data initialization statement,
or by using a READ statement together with an A format. ‘
For example, this facility can be used to specify at object time the format of adeck of cards to be
read. The first card of the deck would contain the format statement,
1 10
((17,F10.3)

the subsequent cards would contain data in the general form,

7 17

|/ XX XXXX .
DIMENSION AA (10)

13 FORMAT (10A5)
READ (3,13) (AA(I),1=1,10)
READ (3,AA) JJ,BOB

With the card reader assigned to device number 3, the first READ places the format statement
from the first card into the array AA, and the second READ statement causes data from the subsequent

cards to be read into JJ and BOB with format specifications 17 and F10.3 respectively.

5.2.8 Printing of a Formatted Record

When formatted records are prepared for printing, the first character of the record is not

printed. The first character is used instead to determine vertical spacing as follows:

Character Vertical Spacing Before Printing
Blank One line
0 Two lines
1 Skip to first line of next page
+ No advance

Output of formatted records to other devices considers the first character as an ordinary character in

the record.

30

PDP-9 FORTRAN IV

5.3 AUXILIARY 1/O STATEMENTS

These statements manipulate the 1/O file oriented devices. The u is an unsigned integer

constant or integer variable specifying the device.

5.3.1 BACKSPACE Statement

The BACKSPACE statement has the general form

BACKSPACE v
Execution of this statement causes the 1/O device identified by u to be positioned so that the record
which had been the preceding record becomes the next record. If the unit u is positioned at its initial

point, execution of this statement has no effect.

5.3.2 REWIND Statement

The REWIND statement has the general form
REWIND u

Execution of this statement causes the 1/O device identified by u to be positioned at its initial point.

5.3.3 ENDFILE Statement

The ENDFILE statement has the general form
ENDFILE u

Execution of this statement causes an endfile record to be written on the /O device identified by u.

31

PDP-9 FORTRAN IV:

CHAPTER 6
SPECIFICATION STATEMENTS

Specification statements are nonexecutable because they do not generate instructions in the
object program. They provide the compiler with information about the nature of the constants and vari-
ables used in the program. They also supply the information required to allocate locations in storage for
certain variables and/or arrays. All SPECIFICATION statements, with the exception of the DATA
statement, must appear before any executable code generating statement. They must appear in this
order: type statements, DIMENSION statements, COMMON statements, and EQUIVALENCE state-
ments. EXTERNAL statements may appear anywhere after all type statements and before the executable

code generating statements. The DATA statements may appear anywhere in the source program.

6.1 TYPE STATEMENTS
The type statements are of the forms

INTEGER a, b, ¢

REAL a, b, ¢

DOUBLE PRECISION q, b, ¢

LOGICALa, b, ¢
where a, b, and c are variable names which may be dimensional or function names. A type statement
is used to inform the compiler that the identifiers listed are variables or functions of a specified type,
i.e., INTEGER, REAL, etc. It overrides any implicit typing; i.e., identifiers which begin with the
letters I, J, K, L, M, or N are implicitly of the INTEGER mode; those beginning with any other letter
are implicitly of the REAL mode. The type statement may be used to supply dimension information.
The variable or function names in each type statement are defined to be of that specific type through-
out the program; the type may not change. Examples:

INTEGER ABC, 1JK, XYZ

REALA (2, 4),1, J, K

DOUBLE PRECISION ITEM, GROUP
LOGICAL TRUE, FALSE

6.2 DIMENSION STATEMENT

The DIMENSION statement is used to declare arrays and to provide the necessary informa-

tion to allocate storage for them in the object program.

33

PDP-9 FORTRAN IV

The general form of the DIMENSION squehenf is:
DIMENSION V (i]), V2 (i2), cee Vn(in)

where each V is the name of an array and each i is composed of one, two, or three unsigned integer
constants separated by commas. The number of constants represents the number of dimensions the array
contains; the value of each constant represénts the maximum size of each dimension. If the dimension
information for the variable is given in a type statement or a COMMON statement, it must not be in-

cluded in a DIMENSION statement. Example:
DIMENSION ITEM (150), ARRAY (50, 50)

When arrays are passed to subprograms, they must be redeclared in the subprogram. The mode, number

of dimensions, and size of each dimension must be the same as that declared by the calling program.

6.3 COMMON STATEMENT

The COMMON statement provides a means of sharing memory storage between a program

and its subprograms. The general form of the COMMON statement is:
5. COMMON /xl/a]/xz/az/ .. ./Xn/Cln

where each x is a variable which is a COMMON block name, or it can be blank. If 3 is blank, the
first two slashes are optional. Each a represents a list of variables and arrays separated by commas.
The list of elements pertaining to a block name ends with a new block name, with a blank COMMON
block designation (two slashes), or the end of the statement.

The elements of a COMMON block, which are listed following the COMMON block name |
(or the blank name), are located sequentially in order of their appearance in the COMMON statement.
An entire array is assigned in sequence. Block names may be used more than once in a COMMON
statement, or may be used in more than one COMMON statement within the program. The entries so
assigned are strung together in the given COMMON block in order of their appearance. Labeled
COMMON blocks with the same name appearing in several programs or subprograms executed together
must contain the same number of total words. The elements within the blocks, however, need not
agree in name, mode, or order. A blank COMMON may be any length. Examples:

COMMON A, B, C/XX/X, Y, Z
COMMON /A/X(@3, 3), Y(2, 5)//Z(5, 10, 15)

34

PDP-9 FORTRAN IV

The COMMON statement is a means of transferring data between programs. If one program
contains the statements,

COMMON /N/AA, BB,C
AA=3 .
BB=

CC=5

and another program which is called later contains the statement,
COMMON /N/XX,YY,ZZ
then the latter program will find the values 3, 4, and 5 in its variables XX, YY, and ZZ, respectively,

since variables in the same relative positions in COMMON statements share the same registers in memory.

6.4 EQUIVALENCE STATEMENT

The EQUIVALENCE statement is used to permit two or more entities of the same size and

type to share the same storage location. The general format of the EQUIVALENCE statement is:
EQUIVALENCE (k]), (kZ)' cees (kn)

where each k represents a list of two or more variables or subscripted variables separated by commas.
Each element in the list is assigned the same memory storage location.

An EQUIVALENCE statement may lengthen the size of a COMMON block. The size can
only be increased by extending the COMMON block beyond the last assignment for that block made
directly by a COMMON statement. A variable cannot be made equivalent to an element of an array
if it causes the array to extend past the beginning of the COMMON block.

When two variables or array elements share the same storage location because of the use of
an EQUIVALENCE statement, they may not both appear in COMMON statements within the same

program. Example:

EQUIVALENCE (A, B), (C(10), D(10), E(15))

6.5 EXTERNAL STATEMENT

An EXTERNAL statement is used to pass a subprogram name on to another subprogram. The

general form of an EXTERNAL statement is:

EXTERNAL y, z, ...
Example: EXTERNAL ISUM, ISUB

PDP-9 FORTRAN IV

6.6 DATA STATEMENT

The DATA statement is used to set variables or array elements to initial values at the time

the object program is loaded. The general form of the DATA initialization statement is:

DATA k]/d]/, k2/d2/, cen .kn/dn/

where each k is a list of variables or array elements (with constant subscripts) separated by commas, and
each d is a corresponding list-of constants with optional signs. The k list may not contain dummy
arguments. There must be a one-to-one correspondence between the name list and the data list, except
where the data list consists of a sequence of identical constants. In such a case, the constant need be
written only once, preceded by an integer constant indicating the number of repeats and an asterisk.

A Hollerith constant may appear in the data list.

Variable or array elements appearing in a DATA statement may not be in blank COMMON.
They may be in a labeled COMMON block and initially defined only in a BLOCK DATA subprogram.

Example:

DATA A, B, C/3*2.0/

DATA X(1), X(2), X(3), X(4)/0.0, 0.1, 0.2, 0.3/Y(1), Y(2)
2 Y(3), Y(4)/1.0E2, 1.0E-2, 1.0E4, 1.0E-4/

36

PDP-9 FORTRAN IV

CHAPTER 7
SUBPROGRAMS

A subprogram is a series of instructions which another program uses to perform complex or
frequently used operations. Subprograms are stored only once in the computer, regardless how many
times they are referred to by another program .

There are five categories of subprograms:

a. Statement Functions

b. Intrinsic or Library Functions
c. External Functions

d. External Subroutines

e. Block Data Subprograms

The first three categories of subprograms are referred to as functions. The fourth category is
referred to as subroutines. Functions and subroutines differ in the following two respects. Functions can
return only a single value to the calling program; subroutines can return more than one value, Functions
are called by writing the name of the function and an argument list in a standard arithmetic expression;
subroutines are called by using a CALL statement. The last category is a special purpose subprogram

used for data initialization purposes.

7.1 STATEMENT FUNCTIONS

A statement function is defined by a single statement similar in form to that of an arithmetic
assignment statement, i is defined internally to the program unit by which it is referenced. Statement
functions must follow all specification statements and precede any exectuable statements of the program
unit of which they are a part. The general format of a statement function is:

f(a], s vees an)=e

where f is a function name; the a'sare nonsubscripted variables, known as dummy arguments, which are
to be used in evaluating the function; and e is an expression.

The value of a function is a real quantity unless the name of the function begins with I, J,
K, L, M, or N; in which case it is an integer quantity, or the function type may be defined by using the
appropriate specification statement.

Since the arguments are dummy variables, their names are unimportant, except to indicate
mode, and may be used elsewhere in the program, including within the expression on the right side of

the statement function.

37

PDP-9 FORTRAN IV

" The expression. of a statement function, in addition to containing nonsubscripted dummy
arguments, may only contain;

a. Non-Hollerith constants

b. Variable references

c. Intrinsic function references

d. References to previously defined statement functions
e. External function references

_ A statement function is called any time the name of the function a'ppears in any FORTRAN arithmetic
expression, The actual arguments must agree in order, number, and type with the corresponding dummy
argui’nents. '

Execution of the statement function reference results in the computations indicated by the
function definition. The resulting quantity is used in the expression which contains the function refer-
ence, Examples:

A(X) = 3.2+SQRT (5.7* X**2)
SUM (A, B, C) = A+B+C
FUNC (A, B) = 3.*A/B**2 +Z

7.2 INTRINSIC OR LIBRARY FUNCTIONS

Intrinsic or library functions are predefined subprograms that are a part of the FORTRAN
system library. The type of each intrinsic function and its arguments are predefined and cannot be
changed.

An intrinsic function is referenced by using its function name with the appropriate qréumenfs
in an arithmetic statement, The arguments may be arithmetic expressions, subscripted or simple variables,

constants, or other intrinsic functions (see table 1).

38

PDP-9 FORTRAN IV

TABLE T INTRINSIC FUNCTIONS

No. of .
Intrinsic Functions Definition Argu- Symbolic Type of Type .OF
Name Argument Function
ments
Absolute value | a | 1 ABS Real Real
IABS Integer Integer
DABS Double Double
Truncation Sign of a times largest 1 AINT Real Real
integerSl a I INT Real Integer
- IDINT Double Integer
Remaindering* a, (mod 02) 2 AMOD Real Real
MOD Integer Integer
Choosing largest Max (a], Qs oo .) 2 AMAXO Integer Real
value ' AMAXI Real Real
MAXO Integer Integer
MAXI1 Real Integer
DMAXI Double Double
Choosing smallest Min (o], Apr ee .) 2 AMINO Integer Real
value AMINI Real Real
MINO Integer Integer
MINI Real Integer
- DMINI Double Double
Float Conversion from 1 FLOAT Integer Real
integer to real
Fix Conversion from real 1 IFIX Real Integer
to integer
Transfer of sign Sign of a, times 2 SIGN Real Real
|a] I ISIGN Integer Integer
DSIGN Double Double
Positive difference a - Min (a], 02) 2 DIM Real Real
IDIM Integer Integer
Obtain most signif- 1 SNGL Double - Redl
icant part of double
precision argument
Express single pre- 1 DBLE Real Double

cision argument in
double precision
form

*The function MOD or AMOD (ay, ap) is defined as a] - [a1/a] ap, where [x]is the integer whose
magnitude does not exceed the magnitude of x and whose sign is the same as x.

39

PDP-9 FORTRAN IV

7.3 EXTERNAL FUNCTIONS

An external function is an independently written program which is executed whenever its name
appears in another program. The general form in which an external function is written is:

t FUNCTION NAME (a;, dp +.vs 9)

(FORTRAN statements)

NAI\.AE = final calculation
RETURN
END

where t is either INTEGER, REAL, DOUBLE PRECISION, LOGICAL, or is blank; NAME is the symbolic
name of the function to be defined; and the a's are dummy arguments which are nonsubscripted variable
names, array names, or other external function names.,

The first letter of the function name implicitly determines the type of function. If that letter
isI, J, K, L, M, or N, the value of the function is INTEGER. If it is any other letter, the value is
REAL. This can be overridden by preceding the word FUNCTION with the specific type name,

The symbolic name of a function is one to six alphanumeric characters, the first of which must
be the alphabetic name and must not appear in any nonexecutable statement of the function subprogram
except in the FUNCTION statement where it is named. The function name must also appear at least once
as a variable name within the subprogram. During every execution of the subprogram, the variable must
be defined before leaving the function subprogram. Once defined, it may be referenced or redefined.
The value of this variable at the time any RETURN statement in the subprogram is encountered is called
the value of the function,

There must be at least one argument in the FUNCTION statement, There must be nonsub-
scripted variable names. If a dummy argument is an array name, an appropriate DIMENSION statement
is necessary. The dummy argument names may not appear in an EQUIVALENCE, COMMON, or DATA
statement in the function subprogrom .

The function subprogram may contain any FORTRAN statements with the exception of a BLOCK
DATA, SUBROUTINE, or another FUNCTION statement. It, of course, cannot contain any statement
which references itself, either directly or indirectly.

A function subroutine must contain at least one RETURN statement. The general form is:

RETURN
This signifies the logical end of the subprogram and returns control and the computed value to the calling
program .

An END statement, described in section 4,11, signals the compiler that the physical end of

the subprogram has been reached.

40

PDP-2 FORTRAN IV

An external function is called by using its function name, followed by an actual argument list

enclosed in parentheses, in an arithmetic or logical expression. The actual arguments must correspond

in number, order, and type to the dummy arguments. An actual argument may be one of the following:

a.
b.
c.
d.
e.

A variable name

An array element name

An array name

Any other expression

The name of an external function or subroutine

Table 2 contains the basic external functions supplied by the FORTRAN System.

TABLE 2 EXTERNAL FUNCTIONS

No. of
Basic . - Symbolic Type of Type of .
External Function Definition Argu Name Argument Function
ments
Exponential e 1 EXP Real Real
1 DEXP Double Double
Natural logarithm log (a) 1 ALOG Real Real
© 1 DLOG Double Double
Common logarithm Iogw (a) 1 ALOGI10 Real Real
2 DLOGI10 Double Double
Trigonometric sine sin (a) 1 SIN Real Real
1 DSIN Double Double
Trigonometric cosine cos (a) 1 Cos Real Real
1 DCOS Double Double
Hyperbolic tangent tanh (a) 1 TANH Real Real
Square root (0)1/2 1 SQRT Real Real
1 DSQRT Double Double
Arctangent arctan (a) 1 ATAN Real Real
1 DATAN Double Double
arctan (01/02) 2 ATAN2 Real Real
2 DATAN2 Double Double
Remaindering* a (mod c|2) 2 DMOD Double Double

*The function DMOD (aj, a2) is defined as aj = [a)/a2] ap, where [x]is the integer whose magnitude
does not exceed the magnifude of x and whose sign is the same as the sign of x.

7.4 SUBROUTINES

A subroutine is defined externally to the program unit which references it. It is similar to an

external function in that both contain the same sort of dummy arguments, and both require at least one

41

PDP-9 FORTRAN IV

RETURN statement and an END statement. A subroutine, however, may have multiple outputs. The
general form of a subroutine is:

SUBROUTINE NAME (a], Uor vees an)
or

SUBROUTINE NAME
where NAME is the symbolic name of the subroutine subprogram to be defined; and the a's are dummy
arguments (there need not be any) which are nonsubscripted variable names, array names, or the dumimy
name of another subroutine or external function.

The name of a subroutine consists of one to six alphanumeric characters, the first of which is
alphabetic. The symbolic names of the subroutines cannot appear in any statement of the subroutine
except the SUBROUTINE statement itself.

The dummy variables represent input and output variables. Any arguments used as output
variables must appear on the left side of an arithmetic statement or an input list within the subprogram.
If an argument is the name of an array, it must appear in a DIMENSION statement within the subroutine.
The dummy argument names may not appear in an EQUIVALENCE, COMMON, or DATA statement in
the subprogram.

The subroutine subprogram may contain any FORTRAN subprograms with the exception of
FUNCTION, BLOCK DATA, or another SUBROUTINE statement.

The logical termination of a subroutine is a RETURN statement. The physical end of the sub-
routine is an END statement.

A subroutine is referenced by a CALL statement, which has the general form

CALL NAME (a], Aor eoes an)
or

CALL NAME
where NAME is the symbolic name of the subroutine subprogram being referenced, and the a's are the
actual arguments that are being supplied to the subroutine. The actual arguments in the CALL statement
must agree in number, order, and type with the corresponding arguments in the SUBROUTINE subprogram .
The array sizes must be the same. An actual argument in the CALL statement may be one of the following:

a. A Hollerith constant

b. A variable name

c. An array element name

d. An array

e. Any other expression

f. The name of an external function or subroutine

42

PDP-9 FORTRAN IV

7.5 BLOCK DATA SUBPROGRAM

The BLOCK DATA subprogram is a special subprogram used to enter data into a COMMON
block during compilation. A BLOCK DATA statement takes the form

BLOCK DATA
This special subprogram contains only DATA, COMMON, EQUIVALENCE, DIMENSION, and TYPE
statements, It cannot contain any executable statements. It can be used to initialize data only in a
labeled COMMON block areq; not in a blank COMMON block area.

All elements of a given COMMON block must be listed in the COMMON statement, even
if they don't all appear in a DATA statement. Data may be entered in more than one COMMON block
in a single BLOCK DATA subprogram.

An END statement signifies the termination of a BLOCK DATA subprogram.

7.5.1 Example of BLOCK DATA Subprogram

BLOCK DATA

DIMENSION X(4), Y(4)

COMMON /NAME/A,B,C,1,J,X,Y
DATA A, B, C/3*2.0/

DATA X(1), X(2), X(3), X(4)/0.0, 0.1, 0.2, 0.3/Y(1), Y(2),

2 Y(3), Y(4)/1.0E2, 1.0E-2, 1.0E4, 1.0E-4/
END

43

PDP-9 FORTRAN IV

APPENDIX 1

SUMMARY OF PDP-9 FORTRAN IV STATEMENTS

CONTROL STATEMENTS

ASSIGN ntoi c.ovvevensn Cheerereteetr e aes coeseas

CALL name (c], a

GO TOi, Ln], Nos O T e .o
GO TO (p»], Nor S T Ceeteaeertaeenas

IF (e]-) nye n

RETURN titiiiiiiietiitinntreennenseacenacsosesones

SUBROUTINE NAME (a], Upr «ee@

FUNCTION NAME (c], Apr ee .un) Cerrerenaae ceeennn

INPUT/OUTPUT STATEMENTS

o T
CONTINUE Serecesseseasnsenrereteaenas

gr Mg eereeteruniinniiiitiiiiieieneenn,

R I A I I AT A

oooooooooooooo

oooooooooooooo

oooooooooooooo

BACKSPACE U v.vvvvvennnenn Ceettereseieteaentisestrestansaesenns
END FILEu teeseresvisesssvasesrsoravess tecrerenens teaans .

FORMAT(S],SZ, ...,sn) ceresenans Cecesens Ceerenenes
READ (U, f) vivvvvrnnennnns cerenns Ceeteiesenereneans
READ (u, f) list vivvevnnnnnnn Cesectcretersnteenaas
READ (U) vvvunnnn ceetenene Ceresesecieteataenntonns .
READ (u) list vvvuunns teeteesseeieesetbeteaastasannens

oooooooooooooo

oooooooooooooo

READ (u, name) e erecetrensarstaetetcsarentetrstanes eeeee .o

READ (U, name) list o .vuviriieerinneennnernnnnennnns .
REWINDu.....ouvew. Cecesetetesesaecnsoanan cesecnnn

WRITE (U, £) 1ist eveeernrrnnroeeoenennencocoaoaoasnns .

45

oooooooooooooo

15
42
19
17
15
15
16
16
16
19
19
19
19
19
40
42
40

30
31

24
23
23
23
23
29
30
30
23

WRITE (u,) .

PDP-9 FORTRAN IV

WRITE (U) 1iSt oueettttte ettt ieennenseereorennnnneseesnnnnns
WRITE (U, NaME) o vvevrrernrnenns e e e e reeeasaeeeresaensonenanns
WRITE (U, name) list v.vvvervenrnnnnsn Ceeeeas e ererteeer et
SPECIFICATION STATEMENTS
COMMON /x]/G]/Xz/GZ/. . ./Xn/Cln
DATA k]/d]/, k2/d2/, . 'kn/dn/
DIMENSION V](i]), V2(i2), . ..Vn(in)
DOUBLE PRECISION a, b, ¢ vevvviiinnennnn Cetrssetesasatsenensnns
EQUIVALENCE (k,), (kp) «.(k) ... e
EXTERNAL Y, Z, seuy ereeessasesracenessactotassssoseossncsnansans
INTEGER @, b, € tvvevererrenotnssnconrsosssssssssnsasnsessnsansse
LOGICAL G, b, € tivvirerrsvonsarsnscssnsssasssssnsssassacsnanss
REALa, b, ¢ vevunns. S e e eeeencaeresctsitsasetesertaresssnansonnes
BLOCK DATA ittt iitenssossossossessscsasnssssssssssssssssnsnnss

46

23
23
29
30

34
35
34
33
35
35
33
33
33
43

PDP-9 FORTRAN IV

APPENDIX 2
A NOTE ON USA STANDARD FORTRAN IV

The FORTRAN language used in this manual is essentially the language of USA Standard
FORTRAN (X3.9-1966) with the exception of the following features which are modified to allow the

compiler to operate in 8192 words of core storage:

a. All references to complex arithmetic are illegal.
b. The size of arrays in subprograms is not adjustable to the size specified by the calling

program.
c. Blank COMMON is freated as named COMMON,
d. The implied DO feature is not legal in a DATA statement.

47

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

Printed in U.S.A. 1767

	0000
	001
	002
	003
	004
	005
	006
	007
	008
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	back

