
FORTRAN IV

Language
Object Time System

Science Library

ADVANCED
SOFTVVARE SYSTEM

-

DIGITAL EQUIPMENT CORPORATION. MAYNARD, MASSACHUSETTS

FORTRAN IV

Part I. Language

Part II . Object Time System

Part III. Science Library

ADVANCED SOFTWARE SYSTEM
Programmer's Reference Manual

Order No.DEC-9A-KFZA-D from Program Library, Maynard, Mass. Price: $2.50

Direct comments concerning this manual to Software Quality Control, Maynard, Mass.

DIGITAL EQUIPMENT CORPORATION. MAYNARD. MASSACHUSETTS

1st Edition April 1968
2nd Edition (Revised) October 1968

Copyright© 1968 by Digital Equipment Corporation

The following are registered trademarks of Digital
Equi pment Corporati on, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

ii

PDP
FOCAL
COMPUTER LAB

CONTENTS

Part I: Language CHAPTER 1
INTRODUCTION

1.1

1.2

1 .2.1

1 .2.2

2.1

2.1.1

2.1.2

2.1 .3

2.1.4

2.1.5

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.3.1

2.3.2

2.3.3

2.4

2.4.1

2.4.2

2.4.3

2.5

Fortran

Source Program Format

Card Format (IBM Model 029 Keypunch Codes)

Paper Tape Format

CHAPTER 2
ELEMENTS OF THE FORTRAN LANGUAGE

Constants

Integer Constants

Real Constants (6-decimal-digit accuracy)

Double-Precision Constants (9-decimal-digit accuracy)

Logical Constants

Hollerith Constants

Variables

Variable Types

Integer Variables

Real Variables

Double-Precision and Logical Variables

Arrays and Subscripts

Arrangement of Arrays in Storage

Subscript Expressions

Subscripted Variables

Expressions

Arithmetic Expressions

Relational Expressions

Logical Expressions

Statements

CHAPTER 3
ARITHMETIC STATEMENTS

iii

1-1

1-1

1-2

1-2

1-5

1-5

1-5

1-6

1-6

1-7

1-7

1-7

1-7

1-8

1-8

1-8

1-8

1-9

1-9

1-9

1-9

1-11

1-12

1-13

CONTENTS (Cont)

Page

CHAPTER 4
CONTROL STATEMENTS

4.1 Unconditional Go To Statements 1-17

4.2 Ass ign Statement 1-17

4.3 Assigned Go To Statement 1-17

4.4 Computed Go To Statement 1-18

4.5 Arithmetic If Statement 1-18

4.6 Logical IF Statement 1-18

4.7 DO Statement 1-19

4.8 CONTINUE Statement 1-21

4.9 PAUSE Statement 1-21

4.10 STOP Statement 1-21

4.11 END Statement 1-21

CHAPTER 5
INPUT/OUTPUT STATEMENTS

5.1 General I/O Statements 1-24

5.1.1 Input/Output Argument Lists 1-24

5.1 .2 READ Statement 1-24

5.1 .3 WRITE Statement 1-25

5.2 FORMAT Statements 1-26

5.2.1 Specifying FORMAT 1-26

5.2.2 Conversion of Numeric Data 1-28

5.2.3 P-Scale Factor 1-30

5.2.4 Conversion of Alphanumeric Data 1-31

5.2.5 Logical Fields, L Conversion 1-31

5.2.6 Blank Fields, X Conversion 1-31

5.2.7 FORTRAN Statements Read in at Object Time 1-32

5.2.8 Printing of a Formatted Record 1-32

5.3 Auxiliary I/o Statements 1-33

5.3.1 BACKSPACE Statement 1-33

5.3.2 REWIN D Statement 1-33

5.3.3 ENDFILE Statement 1-33

iv

CONTENTS (Cont)

Page

CHAPTER 6
SPECIFICATION STATEMENTS

6.1 Type Statements 1-35

6.2 DIMENSION Statement 1-36

6.3 COMMON Statement 1-36

6.4 EQUIVALENCE Statement 1-37

6.5 EXTERNAL Statement 1-38

6.6 DATA Statement 1-38

CHAPTER 7
SUBPROGRAMS

7.1 Statement Functions 1-39

7.2 Intrinsic or Library Functions 1-40

7.3 External Functions 1-42

7.4 Subroutines 1-44

7.5 BLOCK DATA Subprogram 1-45

7.5.1 Example of BLOCK DATA Subprogram 1-45

APPENDIX 1
SUMMARY OF PDP-9 FORTRAN IV STATEMENTS 1-47

APPENDIX 2
A NOTE ON PDP-9 FORTRAN IV 1-49

APPENDIX 3
FORTRAN IV AND MACRO-9 LINKAGE I-51

APPENDIX 4
CHAINING FORTRAN IV PROGRAMS I-55

APPENDIX 5
FORTRAN IV ERROR LIST I-57

APPENDIX 6
SYMBOL TABLE SIZES (F4 V3A) I-59

ILLUSTRATIONS

1-1 FORTRAN Coding Form 1-3

v

TABLES

Page

1-1 Intrinsic Functions 1-41

1-2 External Functions 1-43

Part II: FORTRAN IV OBJECT - TIME SYSTEM

Introduction 11-1

OTS Binary Coded Input/Output 11-3

OTS Binary Input/Output 11-6

OTS Auxiliary Input/Output 11-8

OTS lOPS Communication 11-10

OTS Calculate Array Element Address 11-12

OTS Computed GOTO 11-14

OTS Stop 11-15

OTS Pause 11-16

OTS Octal Print 11-17

OTS Errors 11-18

Fi Ie Commands 11-19

Clock Handling 11-21

Adjustable Dimensioning 11-23

TABLES

11-1 OTS Errors 11-2

Part III: PDP-9 SCIENCE LIBRARY

Introducti on III-1

Intri nsi c Functi ons III-1

Externa I Functi ons 111-1

Sub-Functions 111-1

The Arithmetic Package 111-1

Accumulators III-2

A-Register III-2

Floating Accumulator III-2

Held Accumulator III-3

Calling Sequences III-3

Algorithm Descriptions III-l0

vi

III-l PDP-9 Science Library

TABLES

vii

Page

III-5

HOW TO OBTAIN REVISIONS AND CORRECTIONS

Notification of changes and revisions to currently available Digital software and
of new software manuals is available from the DEC Program Library for the PDP-5,
8,8/S, 8/1, L1NC-8, the PDP-4, 7, and 9 is currently published in DECUSCOPE,
the magazine of the Digital Equipment Computer User's Society (DEC US). This
information appears in a section of DECUSCOPE called "Digital Small Computer
News".

Revised software products and documents are shipped only after the Program Library
receives a specific request from a user.

DECUSCOPE is distributed periodically to both DEC US members and to non-members
who request it. If you are not now receiving this information, you are urged to
return the request form below so that your name will be placed on the mailing list.

To: DECUS Office,
Digital Equipment Corporation,
Maynard, Mass. 01754

Please send DECUS installation membership information.

Please send DECUS individual membership information.

Please add my name to the DECUSCOPE non-member mailing list.

Name

Company

Address

(Zip Code)

PREFACE

This manual describes the FORTRAN IV language and compiler system for the PDP-9 com­

puter. rt provides the user with the necessary information for writing FORTRAN programs for compila­

tion and execution with the PDP-9 Advanced Software System. The manual is divided into three parts:

Basic FORTRAN Language (Part I), FORTRAN Object Time System (Part II), and the FORTRAN Science

Library (Part III).

Part I, Basic FORTRAN IV Language, is divided into chapters as follows:

Chapter 1 . Introduction

Chapter 2. Elements of the FORTRAN Language

Chapter 3. Arithmetic Statements

Chapter 4. Control Statements

Chapter 5. Input/Output Statements

Chapter 6. Specification Statements

Chapter 7. Subprograms

Part I is intended to familiarize the user with specific PDP-9 FORTRAN coding procedures.

Several excellent texts are available for a more elementary approach to FORTRAN programming. "A

Guide to FORTRAN IV Programming," by Daniel D. McCracken (published by John Wiley and Sons,

Inc.) is recommended.

Part II, FORTRAN IV Object Time System, describes the group of subprograms that process

compiled FORTRAN statements, particularly I/O statements, at execution time.

Part III, PDP-9 Science Library, provides detailed descriptions of the intrinsic functions,

external functions, subfunctions, and arithmetic routines in the PDP-9 Science Library.

PDP-9 FORTRAN IV is essentially the language specified by the United States of America

Standards Institute (X3.9 - 1966) with the exceptions noted in Appendix 2 at the end of Part I of this

manual.

1.1 FORTRAN

CHAPTER 1
INTRODUCTION

Each type of digital computer is designed to respond to certain machine language codes.

The codes are different for each type of computer. FORTRAN makes it unnecessary for the scientist or

engineer to learn the machine language for specific computers. Using FORTRAN, he can write pro­

grams in a simple language that adapts easily to scientific usage. The FORTRAN language is composed

of mathematical-like statements, constructed in accordance with precisely formulated rules. A

FORTRAN program consists of meaningful sequences of FORTRAN statements that direct the computer to

perform specific operations and calculations. A program written using FORTRAN statements is called a

source program. It must be translated by the FORTRA N compi ler program before execution. The trans­

lated version of the program is referred to as an object program. It is in a binary-coded form that the

ma chi ne can understand.

1 .2 SOURCE PROGRAM FORMAT

The FORTRAN character set consists of the 26 letters:

the 10 digits:

and 11 special

A, B, C, D, E, F, G, H, I, J, K, L, M,

N, 0, P, Q, R, S, T, U, V, W, X, Y, z.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

characters:

Blank
Equals
Plus +
Minus
Asterisk *
Slash /
Left Parent~es is (
Right Parenthesis)
Comma
Decimal Point
Dollar Sign $

1-1

1.2.1 Card Format (IBM Model 029 Keypunch Codes)

The FORTRAN source program is written on a standard FORTRAN coding sheet (Figure 1-1)

which consists of the following fields: statement number field, line continuation field, statement field,

and identification field.

The FORTRAN statement is written in columns 7-72. If the statement is too long for one

I ine, it can be continued in the statement field of as many I ines as necessary if column 6 of each con­

tinuation line contains any character other than blank or zero. There are two exceptions to this rule:

(1) the DO statement must be on one line; and (2) the equal sign (=) of an assignment statement must

appear on the first line.

For one statement to be referenced by another, a statement number is placed in columns 1

through 5 of the first line of that statement. This number is made up of digits only, and may contain

from one to five digits. Leading zeros and all blanks in this field are ignored. The statement numbers

are used for identification only, and may be assigned in any order.

The FORTRAN compiler ignores the last eight columns (columns 73 through 80) which may be

used for program identification, sequencing, or any other purpose desired by the user. Comments may

be included in the program by putting a "C" in column 1 of each line containing a comment (or continu­

ation of a comment). The compiler ignores these comments except for printing them.

Blanks may be used to aid readabi lity of a FORTRAN statement, except where otherwise

indicated in this manual.

1.2.2 Paper Tape Format

When FORTRAN source program statements are prepared on paper tape, the sequence of

characters is exactly the same as for card input, and each line is terminated with a carriage return,

I ine feed sequence.

A statement number (all digits) may be written as the first five characters, or a "C" may be

the first character to indicate a comment line or a continuation of a comment line. For statement con­

tinuation lines, any numeric character other than blank or zero is written as the sixth character. The

seventh character begins the statement and must be alphabetic. Each line is terminated with a carriage

return, I ine feed.

The TAB key can increase the speed of writing FORTRAN statements on paper tape. A TAB

followed by an alphabetic character begins the statement in column 7. A TAB followed by a digit places

the digit in column 6, indicating a statement continuation line. A statement number less than fivedigits,

followed by a TAB, places the next character in column 6 if it is a digit, or in column 7 if it is a letter.

If it is desired to have a title at the beginning of the tape for listing purpose, it must be

entered as a comment line.

1-2

T
w

FORTRAN
CODER DATE PAGE ~-1

PROBLEM CODING FO~M

FORTRAN STATEMENT

+ +-+---+-+-+-+--+-+ I I I I I I I I I I I I I I I I 'I I I I t I I I I I I I , I I I I I

r- +--I--+-+-+-+-+-+++++-+-+ I

IDENTIFICATION

t-+~- ~-=-=-~~::::: :~~::: I::::::: I
~~
~~J-h-.. ~+----+-+-+--+-+--+---+----+-+--++-+-+-+-I
~~++ I 1 , 1 +-r-~-++-+-+-+ -+-+-1 -+-+-+-+--+-I--t-+--+-+-+-+-+-!--+-+-+-+-+--+-+-+--+-+

l ' -:it=~-==:=+-+-+-+-+-I 1 I I I I I 1 1 1 I I I I I 1 I

i j' f: :: .1 I I I I I 1 I I I I I I +-+-t-+-+-+-+-+-+++-+--'- I I I I I I 1 I I I I I I I I I I I I I I I 1 I I I I I I I I I 1 I I I I I I 1 1 1 1 I I
~+--+-+-I I I I I I I I I I I I I I I I I I 'i i I I I I I I I I I I

~-+--+-+-+-+---+--+-----+--+--+ I I I I +---+----+--+---+-__+__+___+_+_+_ I I I I I I i I I I I I I I I

I I I I I I -+-+-----+---+---+---+--+-+----+--+-+-1 I

f-+-++--+-- +-+-+--+ 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1-+-+ 1 I 1 I 1 1 1 I 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 I I 1 1 I I 1 I I

~+-+-t-t-+-+-+-+---+--+-, I

I I I I 1 +++-+-+-+-+++-+-+-+-+-+-1 1 I I I I ! 1 ! I 1 I I I 1 I I I I I I 1 1 I I I I , I I I I I I I I I I , I I I I , I I ii" I I I I I

t2~ i_ /~~61'_G.~i~~' ~i~~~~l i ~ ~':!>-:;;; n'2; 2A' 25'26' 2;2~;:;; 3/ J;33'3~ ?~ ~3;~39i"~A I !42~3~"~5'46'''''''8!A9 50 oS I 5253 5C SSS657 515960616263046.566 6161. 70 n 7~ 737475 71777179 .~
"G DIGITAL EQUIPMENT CORPORATION AYNARD. MASSACHUSETTS 100 -12(04

Figure 1-1 FORTRAN Coding Form

CHAPTER 2
ELEMENTS OF THE FORTRAN LANGUAGE

2.1 CONSTANTS

There are five types of constants allowed in the FORTRAN source program: integer, real,

double-precision, logical, and Hollerith.

2.1.1 Integer Constants

An integer constant is a number written without a decimal point, consisting of one to six

decimal digits. A + or - sign preceding the number is optional. The magnitude of the constant must

be less than or equal to 131071 (2 17 -1).

Example:

+97
o
-2176
576

If the magnitude>2 17 -1, an error message will be output. Negative numbers are repre­

sented in 2's complement notation.

2.1.2 Real Constants (6-decimal-digit accuracy)

A real constant is an integer, fraction, or mixed format number and may be written in the

following forms:

a. A number consisting of one to six significant decimal digits with a decimal point included

someplace within the constant. A + or - sign preceding the number is optional.

b. A number followed by the letter E, indicating a decimal exponent, and a 1- or 2-digit

constant with magnitude less than 76* indicating the appropriate power of 10. A + or - sign may pre­

cede the scale factor. The decimal point is not necessary in real constants having a decimal exponent.

Example:

352.
+12.03
-.0054
5.E-3
+5E7

* If the adjusted magnitude exceeds 75, an error results. .999999E75 is legal, but 999. 999E73 is
illegal.

1-5

Real constants are stored in two words in the following format:

o

LOW ORDER
MANTISSA

89

EXPONENT
12'S COM~)

17

SIGN OF + HIGH ORDER MANTISSA
MANTISSA L_.L-_________________________ -'

o 17

Negative mantissae are indicated with a change of sign.

2.1.3 Double-Precision Constants (9-decimal-digit accuracy)

A double-precision constant is written as a real number followed by a decimal exponent,

indicated by the letter D and a 1- or 2-digit constant with magnitude not greater than 76. A + or -

sign may precede the constant and may also precede the scale factor. A decimal point within the

constant is optional. A double-precision constant is interpreted identi cally to a rea I cons.tant, the

only difference be ing that the degree of accuracy is greater.

Example:

-3.0DO
987. 6542D15
32. 123D+7

Double-precision constants are stored in three PDP-9 words:

EXPONENT 12'S COMP.)

0

SIGN OF +
MANTISSA _

HIGH ORDER MANTISSA

0

LOW ORDER MANTISSA

0

2.1.4 Lo~ical Constants

17

NEGATIVE
MANTISSAE
ARE
INDICATED
WITH A
CHANGE

17 OF
SIGN

17

The two logical constants are the words TRUE and FALSE, each both preceded and followed

by a decimal point.

. TRUE.

.FALSE.
777777
o

1-6

2.1.5 Hollerith Constants

A Hollerith constant is written as an unsigned integer constant, whose value, n, must be

equal to or greater than one and less than or equal to five, followed by the letter H, followed by

exactly n characters, which are the Hollerith data. Any FORTRAN character, including blank, is

acceptable. The Hollerith constants are used only in CALL and DATA statements and must be associ­

ated with reai variable names. The Hollerith constants are packed in 7-bit ASCII, five, per two words

of storage with the rightmost bit always zero.

Examples:

lHA
4HA$CD

2.2 VARIABLES

A variable is a symbolic representation of a numeric quantity whose values may change

during the execution of a program either by assignment or by computation. The symbol's representation,

or name of the FORTRAN variable consists of from one to six alphanumeric (alphabetic and numeric)

characters, the first of which must be alphabetic.

Example:

2.2.1

X=Y+10.

TEST
GAMMA
Xl 2345

Both X and Yare variables; X by computation, and Y by
assignment in some previous statement.

NOTE

If three or less characters are used for each symbol, con­
siderable core space can be saved during compi lation.

Variable Types

Variables in FORTRAN may represent one of the following types of quantities: integer, real,

double-precision, or logical. This corresponds to the type of constant the variable is supposed to

represent.

2.2.2 Integer Variables

Variable names beginning with the letters I, J, K, L, M, or N are considered to be integer

variables. If the first letter is not one of the above letters, it is an integer variable only if it was named

in a previous integer type specification statement.

1-7

2.2.3 Real Variables

Variable names beginning with letters other than I, J, K, L, M, or N are considered to be

real variables. If the first character is one of the above letters, it is a real variable only if it was

named in a previous real type specification statement.

2.2.4 Double-Precision and Logical Variables

A type specification statement is the only way to assign a variable value to one of these two

types. This is done with either a double precision statement or a logical statement.

2.3 ARRAYS AND SUBSCRIPTS

An array is an ordered set of data identified by a symbolic name. Each individual quantity

in this set of data is referred to in terms of its position within the array. This identifier is called a sub­

script. For example,

A (3)

represents the third element in a one-dimensional array named A. To generalize further, in an array A

with n elements, A (I) represents the Ith element of the array A where 1== 1, 2, ... , n.

FORTRAN allows for one, two, and three-dimensional arrays, so there can be up to three

subscripts for the array, each subscript separated from the next by a comma. For example,

B (l, 3)

represents the value located in the first row and the third column of a two-dimensional array named B.

A dimension statement defining the size of the array (i.e., the maximum values each of its subscripts

can attain) must precede the array in the source program.

2.3.1 Arrangement of Arrays in Storage

Arrays are stored in column order in ascending absolute storage locations. The array is stored

with the first of its subscripts varying most rapidly and the last varying least rapidly. For example, a

three-dimensional array A, defined in a DIMENSION statement as A (2,2,2) will be stored sequentially

in this order:

A(l,l,l)
A(2, 1, 1)
A(1,2,1)
A(2,2,1)
A(1,1,2)
A(2,1,2)
A(l,2,2)
A(2,2,2)

ascending absolute
storage locations

1-8

2.3.2 Subscri pt Express ions

Subscripts may be written in any of the following forms:

v
C
V + k
V - k
C*V
C*V+k
C*V-k

where C and k represent unsigned integer constants and V represents an unsigned integer variable.

Example:

2.3.3

I
13
IMOST + 3
ILAST - 1
5 * IFIRST
2 * J + 9
4*Ml-7

Subscripted Variables

A subscripted variable is a variable name followed by a pair of parentheses which contain

one to three subscripts separated by commas.

Example:

A (I)
B (I, J - 3)
BETA (5 * J + 9, K + 7, 6 * JOB)

2.4 EXPRESSIONS

An expression is a combination of elements (constants, subscripted or nonsubscripted varia­

bles, and functions) each of which is related to another by operators and parentheses. An expression

represents one single value which is the result of the calculations specified by the values and operators

that make up the expression. The FORTRAN language provides two kinds of expressions: arithmetic

and logical.

2.4.1 Arithmetic Expressions

An arithmetic expression consists of arithmetic elements joined by the arithmetic operators +,

-, *, I, and **, which denote addition, subtraction, multiplication, division, and exponentiation,

respectively. An expression may consist of a single element (meaning a constant, a variable, or a

1-9

function name). An expression enclosed in parentheses· is considered a single element. Compound

expressions use arithmetic operators to combine single elements.

2.4. 1 . 1 Mode of an Expression - The type of quantities making up an expression determines its mode;

i.e., a simple expression consisting of an integer constant or an integer variable is said to be in the

integer mode. Similarly, real constants or variables produce a real mode of expression, and double­

precision constants or variables produce a double-precision mode. The mode of an arithmetic expression

is important because it determines the accuracy of the expression.

In general, variables or constants of one mode cannot be combined with variables or constants

of another mode in the same expression. There are, however, exceptions to this rule.

a. The following examples show the modes of the valid arithmetic expressions involving the

use of the arithmetic operators +, -, *, and /. I, R, and D indicate integer, real, and double­

precision variables or constants. A + is used to indicate anyone of the four operators:

I + I
R+R

R + D }
D+R
D+D

Integer result
Real result

Double-precision result

b. When raising a value to a power, the mode of the power may be different than that of

the value being raised. The following examples show the modes of the valid arithmetic expressions

using the arithmetic operator**. As above, I, R, and D indicate integer, real, and double-precision.

1**1
R**I
R**R

R**D ! D**I
D**R
D**D

Integer result

Real result

Double-precision result

The subscript of a subscripted variable, which is always an integer quantity, does not affect

the mode of the expression.

2.4.1.2 Hierarchy of Operations - The order in which the operations of an arithmetic expression are

to be computed is based on a priority rating. The operator with the highest priority takes precedence

over other operators in the expression. Parentheses may be used to determine the order of computation.

If no parentheses are used, the order is understood to be as follows:

1-10

a. Function reference
b. **(Exponentiation)
c. Unary minus evaluation
d. * and/(multipl ication and division)
e. + and -(addition and subtraction)

Within the same priority, operations are computed from left to right.

Example:

FUNC + A*B/C-O(I,J) + E**F*G-H

interpreted as,

FUNC + ((A*B)/C) - O(I,J) + (EF * G) - H

2.4. 1 .3 Rules for Constructing Arithmeti c Expressions -

a. Any expression may be enclosed in parentheses.

b. Expressions may be preceded by a + or - sign.

c. Simple expressions may be connected to other simple expressions to form a compound

expression, provided that:

(1) No two operators appear together.

(2) No operator is assumed to be present.

d. Only valid mode combinations may be used in an expression (described under Mode of an

Expression, Section 2.4. 1 .1).

e. The expression must be constructed so that the priority scheme determines the order of

operation desired (described in Section 2.4.1.2, Hierarchy of Operations).

Examples of arithmetic expressions follow:

2.4.2

3
A(I)
B + 7.3
C*O
A + (B*C) - 0**2 + E/F

Relational Expressions

A relational expression is formed with the arithmetic expressions separated by a relational

operator. The result value is either true or false depending upon whether the condition expressed by

the relational operator is met or not met. The arithmetic expressions may both be of the integer mode

or they may be a combination of real and/or double-precision. No other mode combinations are legal.

The relational operators must be preceded by and followed by a decimal point. They are:

1-11

Examples:

2.4.3

· LT. Less than «) ~
· LE. Less than or equal to W
.EQ. Equalto(=)
· NE. Not equal to (1)
· GT . Greater than (»
· GE. Greater than or equal to (»

N .LT.5
DELTA + 7. 3 . LE. B/3E7
(KAPPA + 7/5 . NE.IOTA
1. 736D-4. GT. BETA
X.GE. Y*Z**2

Logical Expressions

A logical expression consists of logical elements joined by logical operators. The value is

either true or false. The logical operator symbols must be preceded by and followed by a decimal point.

They are:

.NOT.

.AND.

.OR.

Logical negation. Reverses the state of the logical quantity that
follows.

Logical AND generates a logical result (TRUE or FALSE) deter­
mined by two logical elements as follows:

T .AND. T generates T
T .AND. F generates F
F .AND. T generates F
F .AND. F generates F

Logical OR generates a logical result determined by two logical
elements as follows:

T . OR. T generates T
T • OR. F generates T
F . OR. T generates T
F • OR. F generates F

2.4.3.1 Rules for Construction Logical Expression -

a. A logical expression may consist of a logical constant, a logical variable, a reference

to a logical function, a relational expression, or a complex logical expression enclosed in parentheses.

b. The logical operator. NOT. need only be followed by a logical expression, while the

logical operators .AND. and .OR. must be both preceded by and followed by a logical expression for

more complex logical expressions.

c. Any logical expression may be enclosed in parentheses. The logical expression following

the logical operator. NOT. must be enclosed in parentheses if it contains more than one quantity.

1-12

d. No two logical operators may appear in sequence, not separated by a comma or paren­

thesis unless the second operator is . NOT. In addition, no two decimal points may appear together,

not separated by a comma or parenthesis, unless one belongs to a constant and the other to a relational

operator.

2.4.3.2 Hierarchy of Operations - Parentheses may be used as in normal mathematical notation to

specify the order of operations. Within the parentheses, or where there are no parentheses, the order

in which the operations are performed is as follows:

a. Eva I uation of functions

b. **(Exponentiation)

c. Evaluation of unary minus quantities

d. * and/ (multiplication and division)

e. + and - (addition and subtraction)

f. . LT., . LE. , .EQ., .NE., .GT., .GE .

MU ~ r ~4V £. p/teCIJ ,1-I£SiS /jte.QIJPO
i-C C;; I <!-/J J- U AJ ,,.

g .. NOT.­
IF fi!..£.f!.£O£O 81 4";)(Olf/&£ syt-?8c,-

h. .AND. and .OR.

i. = Replacement operator

Unlike an arithmetic expression where sequence of elements of the same priority (i .e., oper­

ations being performed from left to right) is important for the end result of the expression, the order of

operation within the same priority in logical and relational expressions is unimportant.

2.5 STATEMENTS

Statements specify the computations required to carry out the processes of the FORTRAN pro­

gram. There are four categories of statements provided for by the FORTRAN language:

a. Arithmetic statements define a numerical calculation.

b. Control statements determine the sequence of operation in the program.

c. Input/output statements are used to transmit information between the computer and

related input/output devices.

d. Specification statements define the properties of variables, functions, and arrays appear­

ing in the source program. They also enable the user to control the allocation of storage.

1-13

CHAPTER 3
ARITHMETIC STATEMENTS

An arithmetic statement is a mathematical equation written in the FORTRAN language which

defines a numerical or logical calculation. It directs the assignment of a calculated quantity to a given

variable. An arithmetic statement has the form

v = E

where V is a variable (integer, real, double-precision, or logical, subscripted or nonsubscripted) or any

array element name; = means replacement rather than equivalence, as opposed to the conventional

mathematical notation; and E is an expression.

In some cases, the mode of the variable may be different from that of the expression. In such

cases an automatic conversion takes place. The rules for the assignment of an expression E to a variable

V are as follows:

V Mode E Mode Assianment Rule

Integer Integer Assign

Integer Real Fix and assign

Integer Double-precision Fix and assign

Real Integer Float and assign

Real Real Assign

Real Double-precision Double-precision eval-
uate and real assign

Double-precision Integer Double-precision float
and assign

Double-precision Real Double-precision eval-
uate and assign

Double~precision Double-precision Assign

Logical Logical Assign

Mode conversions involving logical quantities are illegal unless the mode of both V and E is

logical. Examples of an assignment statement:

ITEM = ITEM + 1
A(I) = B(I) + ASSIN (C (I))
V = .FALSE.
X=A.GT.B.AND.C .LE. G
A=B

1-15

CHAPTER 4
CONTROL STATEMENTS

The statements of a FORTRAN program normally are executed as written. However, it is

frequently desirable to alter the normal order of execution. Control statements give the FORTRAN user

this capability. This section discusses the reasons for control statements and the ways in which they

may be used.

4.1 UNCONDITIONAL GO TO STATEMENTS

The form of the unconditional GO TO statement is

GO TO n

where n is a statement number. Upon the execution of this statement, control is transferred to the state­

ment identified by the statement number, n, which is the next statement to be executed.

Example:

GO TO 17

4.2 ASSIGN STATEMENT

The general form of an ASSIGN statement is

ASSIGN n TO i

where n is a statement number and i is a nonsubscripted integer variable name which appears in a sub­

sequently executed assigned GO TO statement. The statement number, n, is the statement to which

control will be transferred after the execution of the assigned GO TO statement.

Example:

ASSIGN 27 TO ITEST

4.3 ASSIGNED GO TO STATEMENT

Assigned GO TO statements have the form

GO TO i, (n1, n2 , , nm)

where i is a nonsubscripted integer variable reference appearing in a previously executed ASSIGN

statement, and n1, n2 , , nm are the statement numbers which the ASSIGN statement may legally

assign to i. Examples:

ASSIGN 13 TO KAPPA
GO TO KAPPA, (1, 13, 72, 100, 35)

There is no object time checking to ensure that the assignment is one of the legal statement

numbers.

1-17

4.4 COMPUTED GO TO STATEMENT

The format of a computed GO TO statement is

GO TO (n1, n2 , , nm), i

where n1, n2, , nm are statement numbers and i is an integer variable reference whose value is

greater than or equal to 1 and less than or equal to the number of statement numbers enclosed in paren­

theses. If the value of i is out of this range, the statement is effectively a CONTINUE statement.

Example:

GO TO (3, 17, 25, 50, 66), ITEM

If the value of ITEM is 2 at the time this GO TO statement is executed, the statement to which control

is transferred is the statement whose number is second in the series, i. e., statement number 17.

4.5 ARITHMETIC IF STATEMENT

The form of the arithmetic IF statement is

IF (e) n1, n2 , n3

where e is an arithmetic expression and n1, n2 , n3 are statement numbers. The IF statement evaluates

the expression in parentheses and transfers control to one of the referenced statements. If the value of

the expression (e) is less than, equal to, or greater than zero, control is transferred to n1, n2, or n3

respective Iy.

Example:

IF (AUB (I) - B*D) 10, 7, 23

4.6 LOGICAL IF STATEMENT

The general format of a logical IF statement is

IF (e) s

where e is a logical expression and s is any executable statement other than a DO statement or another

logical IF statement. The logical expression is evaluated, and different statements are executed

depending upon whether the expression is true or false. If the logical expression e is true, statement s

is executed and control is then transferred to the following statement (unless the statement is a GO TO

statement or an arithmetic IF statement, in which cases control is transferred as indicated; or the state­

ment s is a CALL statement, in which case control is transferred to the next statement after return from

the subprogram). If the logical expression e is false, statement s is ignored and control is transferred to

the statement following the IF statement. elJAl I3c efJl.JTIIlJ vEO ON1-'! iJe,PIJIe,E

PINAL Ct-fJ 81AJt: p/Ht£Al TJ.le6IS
(

~ • .12., IF ()(, AJ£.,

I 1 (JOrD ~

1-18

Example:

IF (Ll) I = 1+ 1
IF (L. LE. k) GO TO 17
IF (LOG.AND. (.NOT.LOG1)) IF (X) 3,5,5

4.7 DO STATEMENT

The DO statement is a command used to execute repeatedly a specified series of statements.

The general format of the DO statement is

DO n i = m1, m2, m3

or

where n is a statement number representing the terminal statement or the end of the "range"; i is a non­

subscripted integer variable known as the" index"; and m1, m2 , and m~.are unsigned nonzero integer
<-II\JI-\'<!.H MuS,T O/.jUY 8£ As.~/C'1UCO FbS/ililC' V4?U£"~

constants or nonsubscripted integer variables, which represent the "initial," "final," and "increment"

values of the index. If m3 is omitted, as in the second form of the DO statement, its value is assumed

to be 1.

The DO statement is a command used to execute repeatedly a group of statements following it,

up to and including statement n. The initial value of i is m1 (m1 must be less than or equal to m2).

Each succeeding time the statements are operated, i is increased by the value of m3 . When is is greater

than m2, control passes to the statement following statement number n.

The range of a DO statement is a series of statements to be executed repeatedly. It consists

of all statements immediately following the DO, up to and including statement n. Any number of state­

ments may appear between the DO and statement n. The terminal statement (statement n) may not be a

GO TO (of any form), an arithmetic IF, a RETURN, a STOP, a PAUSE, or a DO statement, or a logical

IF statement containing any of these forms.

The index of a DO is the integer variable i which is controlled by the DO statement in such

a way that its initial value is set to m1, and is increased each time the range of statements is executed

by m3, until a further incrementation would cause the value of m2 to be exceeded. Throughout the

range of the DO, the index is avai lable for computation either as an ordinary integer variable or as the

variable of a subscript. However, the index may not be changed by any statement within the DO range.

The initial value is the value of the index at the time the range is executed for the first time.

The final value is the value which the index must not exceed. When the condition is satis­

fied the DO is completed and control passes to the first executable statement following statement n.

The increment is the amount by which the index is to be increased after each execution of

the range. If the increment is omitted, a value of 1 is implied.

1-19

Example:

D072I=l, 10,2
DO 15 K= 1, 5
DO 23 I = 1, 11, 4

Any FORTRAN statement may appear within the range of a DO statement, including another

DO statement. When such is the case, the range of the second DO must be contained entirely within

the range of the first; i.e., it is not permissible for the ranges of DOs to overlap. A set of DOs satis­

fying this rule is called a nest of DOs. It is possible for a terminal statement to be the terminal state­

ment for more than one DO statement. The following configuration, where brackets are used to repre­

sent the range of the DOs, indicates the permissible and illegal nesting procedures.

PERMISSIBLE ,------- DO

Ir=DO

~oo

ILLEGAL ,------ 00

,-----00

Transfer of control from within the range of a DO statement to outside its range is permitted

at any time. However, the reverse is not true; i.e., control cannot be transferred from outside the

range of a DO statement to inside its range. The following examples show both valid and invalid

transfers.

VALID ~ INVALID 3

C~
?) C 3

2)

1-20

4.8 CONTINUE STATEMENT

The CONTINUE statement causes no action and generates no machine coding. It is a dummy

statement which is used for terminating DO loops when the last statement would otherwise be an illegal

terminal statement (i.e., GOTO, arithmetic IF, RETURN, STOP, PAUSE, or DO, ora logical IF con­

taining any of these forms). The form consists of the single word

CONTINUE

4.9 PAUSE STATEMENT

A PAUSE statement is a temporary halt of the program at run time. The PAUSE statement has

one of the two forms

PAUSE

or

PAUSE n

where n is an octal integer whose value is less than 7777778 . The integer n is typed out on the console

Teletype for the purpose of determining which of several PAUSE statements was encountered. Program

execution is resumed, by typing control P (fP), starting with the first statement following the PAUSE

statement.

4.10 STOP STATEMENT

The STOP statement is of one of the forms

STOP

or

STOP n

where n is an octal integer whose value is less than 77777778 . The STOP statement is placed at the

logical end of a program and causes the computer to type out on the console Teletype, the integer n

and then to exit back to the Monitor. There must be at least one STOP statement per main program,

but none are allowed in subprograms.

4.11 END STATEMENT

The END statement is placed at the physical end of a program or subprogram. The form con­

sists of the single word

END

The END statement is used by the compiler and generates no code. It signals the compiler

h I A/OW ASSt.JtI'-t£O iF IUD ~ that the processing of t e source program is comp ete. ,~ ,

1-21

A control transfer type statement, a STOP statement, or a RETURN statement must immedi­

ately precede END. This will be checked by the compiler.

1-22

CHAPTER 5
INPUT/OUTPUT STATEMENTS

The input/output (I/O) statements direct the exchange of data between the computer and I/O

devices. The information thus transmitted by an I/O statement is defined as a logical record, which

may be formatted or unformatted. A logical record, or records, may be written on a device as one or

more physical records. This is a function of the size of the logical record(s) and the physical device

used.

The definition of the data which comprises a user's optimum physical record varies for each

I/O device, as follows:

Unit
or

Device

Typewriter
(input and output)

Line printer

Cards
(input and output)

Paper tape
(input and output)

Magneti c tape

Disc/drum/
DECtape

Formatted Physical
Record Definition

One I ine of type is terminated by a carriage
return. Maximum of 72 printing characters
per line

One line of printing. Maximum of 120
characters per line

One card. Maximum of 80 characters

One line image of 72 printing characters

One line image of 630 characters

One I ine image of 630 characters

Unformatted
(Binary) Physical
Record Definition

Undefined

Undefined

50 words

50 words

252 words

252 words

Each I/O device is identified by an integer constant which is associated with a device

assignment table in the PDP-9 Monitor. This table may be modified at system generation time, or just

before run time. For example, the statement

READ (u,f) list

requests one logical record from the device associated with slot u in the device assignment table.

The statement descriptions in this section use u to identify a specific I/O unit, f as the state­

ment number of the FORMAT statement describing the type of data conversion, and list as a I ist of

arguments to be input or output.

1-23

5.1 GENERAL I/O STATEMENTS

These statements cause the transfer of data between the computer and I/O devices.

5. 1 . 1 Input/Output Argument Lists

An I/O statement which calls for the transmission of information includes a I ist of quantities

to be transmitted. In an input statement this list consists of the variables to which the incoming data is

to be assigned; in an output statement the list consists of the variables whose values are to be transmitted

to the given I/O device. The list is ordered, and the order must be that in which the data words exist

(input) or are to exist (output) in the I/O device. Any number of items may appear in a single list.

The same statement may transmit integer and real quantities. If the data to be transmitted exceeds the

items in the list, only the number of quantities equal to the number of items in the list are transmitted.

The remaining data is ignored. Conversely, if the items in the list exceed the data to be transmitted,

succeeding superfluous records are transmitted until all items specified in the I ist have been transmitted.

5. 1 . 1 . 1 Simple Lists - The I ist uses the form

where each C. is a variable, a subscripted variable, or an array identifier. Constants are not allowed
I

as I ist items. The I ist reads from left to right. When an array identifier appears in the list, the entire

array is to be transmitted before the next item in the list. Examples of Simple Lists:

Y,Y,Z
A, B (3), C, D (I + 1, 4)

5.1.1.2 DO-Implied Lists - Indexing similar to that of the DO statement may be used to control the

number of times a group of simple I ists is to be repeated. The I ist elements thus controlled, and the

index control itself, are enclosed in parentheses, and the contents of the parentheses are regarded as

a single item of the I/O list.

Example:

W, X (3), (Y (I), Z (I, K), I = 1, 1 0)

5.1.2 READ Statement

The READ statement is used to transfer data from any input device to the computer. The

general READ statement can be used to read either BCD or binary information. The form of the state­

ment determines what kind of input will be performed.

1-24

5.1.2.1 Formatted READ - The formatted READ statements have the general form

READ (u,f) list

or

READ (u,f)

Execution of this statement causes input from device u to be converted as specified by format statement

f, the resulting values to be assigned to the items specified by list, if any.

Examples:

READ (3,13) A, B, C
READ (2,10) A, (B (I), 1=1,5)
READ (1,3)

5. 1 .2.2 Unformatted READ - An unformatted READ statement has the genera I form

READ (u) list

or

READ (u)

Execution of this statement causes input from device u, in binary format, to be assigned to the items

specified by list. If no list is given, one record will be read, but ignored. If the record contains more

information words than the I ist requires, that part of the record is lost. If more elements are in the list

than are in one record, additional records are read unti I the I ist is satisfied.

Example:

5.1.3

READ (5) I,J, K
READ (8)

WRITE Statement

The WRITE statement is used to transmit information from the computer to any I/O device.

The WRITE statement closely parallels the READ statement in both format and operation.

5.1.3.1 Formatted WRITE - The formatted WRITE statement has the general form

WRITE (u,f) list

or

WRITE (u, f)

Execution of this statement causes the list elements, if any, to be converted according to format state­

ment f, and output into dev i ce u.

1-25

5.1 .3.2 Unformatted WR ITE - The unformatted WRITE statement has the genera I form

WRITE (u) list

Execution of this statement causes output onto device u, in binary format, of all words specified by the

list. If the list elements do not fill the record, the remaining part of the record is filled with blanks.

If the I ist elements more than fill one record, successive records are written until all elements of the

I ist are satisfied, the last record padded with blanks if necessary. Examples of WR ITE:

WRITE (1,10) A, (B (I), (C (I,J), J=2,10,2), 1=1,5)
WRITE (2,7) A, B, C
WRITE (5) W,X(3), Y(I + 1,4),Z

5.2 FORMAT STATEMENTS

These statements are used in conjunction with the general I/O statements. They specify the

type of conversion which is to be performed between the internal machine language and the external

notation. FORMAT statements are not executed. Their function is to supply information to the object

program.

5.2.1 Specifying FORMAT

The genera I form of the FORMAT statement is

FORMAT (Sl' S2' , Sn)

where Sl Sn are data field descriptions. Breaking this format down further, the basic data field

descriptor is written in the form

nkw.d

where n is a positive unsigned integer indicating the number of successive fields for which the data con­

version will be performed according to the same specification. This is also known as the repeat count.

If n is equal to 1, it may be omitted. The control character k indicates which type of conversion will

be performed. Thi s character may be I, E, F , G, D, P, L,A, H, or X. The nonzero integer constant w speci­

fies the width of the field. The integer constant d indicates the number of digits to the right of the

decimal point.

Six of the nine control characters listed above provide for data conversion between internal

machine language and external notation.

Internal

Integer variable

Real variable

Rea I variable

E

F

1-26

External

Decimal integer

Floating-point, scaled

Floating-point, mixed

Internal Type External

Real variable G Floating-point, mixed/scaled

Double-precision D Floating-point, scaled
variable

Logical variable L Letter Tor F

Alphanumeric A Alphanumeric (BCD) characters

The other three control types are special purpose cantrol characters:

~ Purpose

P Used to set a scale factor for use with E, F, and D conversions.

X Provides for skipping characters in input or specifying blank characters
in output.

H Designates Hollerith fields.

FORMA T statements are not executed and therefore may be placed anywhere in the source

program. Because they are referenced by READ or WRITE statements, each FORMAT statement must be

given a statement number.

Commas (,) and slashes (j) are used as field separators. The comma is used to separate field

descriptors, with the exception that a comma need not follow a field specified by an H or X control

character. The slash is used to specify the termination of formatted records. A series of slashes is also

a field separator. Multiple slashes are the equivalent of blank records between output records, or

records skipped for input records. If the series of n slashes occurs at the beginning or the end of the

FORMAT specifications, the number of input records skipped or blank lines inserted in output is n. If

the series of n slashes occurs in the middle of the FORMAT specifications, this number is n-l. A comma

may not precede and/or follow a slash. An integer value cannot precede a slash.

For all field descriptors (with the exception of H and X), the field width must be specified.

For those descriptors of the w. d type (see next page), the d must be specified even if it is zero. The

field width should be large enough to provide for all characters (including decimal point and sign) neces­

sary to constitute the data value as well as blank characters needed to separate it from other data values.

Since the data value within a field is right justified, if the field specified is too small, the most signifi­

cant characters of the value will be lost.

Successive items in the I/O I ist are transmitted according to successive descriptors in the

FORMAT statement, until the entire I/O list is satisfied. If the list contains more items than descriptors

in the FORMAT statement, a new record must be begun. Control is transferred to the preceding left

parenthesis where the same specifications are used again until the list is complete.

1-27

Field descriptors (except H and X) are repeated by preceding the descriptor with an unsigned

integer constant (the repeat count). A group repeat count is used to enable the repetition of a group of

field descriptors or field separators enclosed in parentheses. The group count is placed to the left of

the parenthesis. Two levels of parentheses (not including those enclosing the FORMAT specification)

are permitted.

The field descriptors in the FORMAT must be the same type as the corresponding item in the

I/O list; i.e., integer quantities require integer (I) conversion; real quantities require real (E or F)

conversion, etc.

Example:

FORMAT (17, FlO. 3)
FORMAT (13, 17/E10.4,E10.4)
FORMAT (214, 3(15,010.3))

5.2.2 Conversion of Numeric Data

5.2.2.1 I-Type Conversion - Field descriptor: Iw or nlw

The number of characters specified by w is converted as a decimal integer.

On input, the number in the input field by w is converted to a binary integer. A minus sign

indicates a negative number. A plus sign, indicating a positive number, is optional. The decimal

point is illegal. If there are blanks, they must precede the sign or first digit. All imbedded blanks are

interpreted as zero digits.

On output, the converted number is right justified. If the number is smaller than the field w

allows, the leftmost spaces are filled with blanks. If an integer is too large, the most significant digits

are truncated and lost. Negative numbers have a minus sign just preceding their most significant digit

if sufficient spaces have been reserved. No sign indicates a positive number.

Examples (b indicates blank):

Format Descriptor

15
13
18

bbbbb
-b5
bbb12345

Internal

+00000
-05
+12345

Output

bbbbO
b-5
bbb12345

-r- "T .1 I!J Of-.r p(JRHAT,s
I £MpoiAtt1 teGSTt,.I(!.T/ON - MUST Us£ O£CIHIII- POI tv IN oOtH r::.

5.2.2.2 E-Type Conversion - Field descriptor: Ew.d or nEw.d

The number of characters specified by w is converted to a floating-point number with d

spaces reserved for the digits to the right of the decimal point. The w includes field d, spaces for a

sign, the decimal point, plus four spaces for the exponent (written E ± XX) in addition to space for

optional sign and one digit preceding the decimal point.

1-28

The input format of an E-type number consists of an optional sign, followed by a string of

.1igits containing an optional decimal point, followed by an exponent. Input data can be any number
±39

0f digits in length, although it must fall within the range of 0 to ± 10

E output consists of a minus sign if negative (blank if positive), the digit 0, a decimal point,

a string of digits rounded to d significant digits, followed by an exponent of the form E ± XX.

Examples:

Format Descriptor

E10.4
E9.4
E10.3

00.2134E03
0.2134E02
bb-23.0321

Internal

213.4
21.34
-23.0321

5.2.2.3 F-Type Conversion - Field descriptor: Fw.d or nFw.d

Output

0.2134E+03
.2134E+02
-0.230E+02

The number of characters specified by w is converted as a floating-point mixed number with

d spaces reserved for the digits to the right of the decimal point.

Input for F-type conversion is basically the same as that for E-type conversion, described

above.

The output consists of a minus sign if the number is negative (blank if positive), the integer

portion of the number, a decimal point, and the fractional part of the number rounded to d significant

digits.

Examples:

Format Descriptor

F6.3
F6.3
F9.2
F7.2

b13457
313457
-21367.
-21367.

Internal

13.457
313.457
-21367.
-21367-

5.2.2.4 G-Type Conversion - Field descriptor: Gw.d or nGw.d

Output

13.457
13.457
-21367.00
1367.00

The external field occupies w positions with d significant digits. The value of the list item

appears, or is to appear, internally as a real number.

Input for G-type conversion is basically the same as that for E-type conversion, described

in paragraph 5.2.2.2.

The form of the G-type output depends upon the magnitude of the internal floating-point

number. Comparison is made between the exponent (e) of the internal value and the number of signi­

ficant digits (d) specified by the format descriptor. If e is greater than d, the E-type conversion is used.

If e is less than or equal to d, the F-type conversion is used, but modified by the following formula:

F (w-4). (d-e) ,4X

1-29

The 4X represents four blank spaces that are always appended to the value. If the value to be repre­

sented is less than .1 ,the E-type conversion is always used.

Examples:

Format Descriptor

G14.6
G14.6
G14.6
G14.6

Internal

.12345678 x 10- 1

· 12345678 x 100

· 12345678 x 104
· 12345678 x 108

Output

0.12345678E-01
bbO.123456bbbb
bbb1234.56bbbb
bbO.123456E+08

Tcf1,tJOCAl! y /t66TltltTIOAf - H()5 T us& pce /I:?/li- fJo/A.-IT /AJ 080//-1
5.2.2.5 D-Type Conversion - Field descriptor: Dw.d or nDw.d Or-£ FORHifTS

The number of characters specified by w is converted as a double-precision floating-point

number with the number of digits specified by d to the right of the decimal point.

The input and output are the same as those for E-type conversion except that a D is used in

place of the E in the exponent.

Examples:

5.2.3

Format Descriptor

D12.6
D12.6
D12.6

bb+21345D 03
b+3456789012
-12345.6D-02

P-Scale Factor - Field descriptor: nP or -nP

Internal

21.345
3456.789012
-123.456

Output

0.213450D+02
0.345678D+04
0.123456D+03

This scale factor n is an integer constant. The scale factor has effect only on E,F,G, and

D-type conversions. Initially, a scale factor of zero is implied. Once a P field descriptor has been

processed, the scale factor established by n remains in effect for all subsequent E,F, and D descriptors

within the same FORMAT statement until another scale factor is encountered.

For E, F, G, and D input conversions (when no exponent exists in the external field) the

scale factor is defined as external quantity = internal quantity x 10n.

The scale factor has no effect if there is an exponent in the external field.

The definition of scale factor for F output conversion is the same as it is for F input. For E

and D output, the fractional part is multiplied by 10n and the exponent is reduced by n.

Examples:

Format Descriptor

-3PF6.3
-3PE12.4
1PD10.4

Input Scale Factor

123456 -3
123456 -3
12.3456 +1

1-30

Internal

+123456.
+12345.6
+1.23456

Output

23.456
bbO.0001E+08
1.2345D+00

5.2.4 Conversion of Alphanumeric Data

5.2.4.1 A-Type Conversion (7-Bit ASCII, Handled As REAL Variables) - Field descriptor: Aw or nAw

The number of alphanumeric characters specified by w is transmitted according to list specifi-

cations.

If the field width specified for A input is greater than or equal to five (the number of charac­

ters representable in two machine words), the rightmost five characters are stored internally. If w is

less than five, 5-w trailing blanks are added.

For A output, if w is greater than five, w-5 leading blanks are output followed by five

alphanumeric characters. If w is less than or equal to five, the leftmost w characters are output.

5.2.4.2 H-Field Descriptor (7-Bit ASCII) - Field descriptor: nHa 1 a 2a 3 ... a n

The number of characters specified by n immediately following the H descriptor are transmitted

to or from the external device. Blanks may be included in the alphanumeric string. The value of n must

be greater than o.
On Hollerith input, n characters read from the external device replace the n characters fol­

lowing the letter H.

Examples:

5.2.5

In output mode, the n characters following the letter H, including blanks, are output.

3HABC
17H THIS IS AN ERROR
16H JANUARY 1,1966

(See Paragraph 5.2.8 for an exception to this rule when printing a formatted record.)

Logical Fields, L Conversion - Field descriptor: Lw or nLw

The external format of a logi cal quantity is T or F. The internal format of a logical quantity

is T or F. The interna I format is 7777778 for T or 0 for F.

On L input, the first nonblank character must be a T or F. Leading blanks are ignored. A

nonblank character is illegal.

For L output, if the interna I va I ue is 0, an F is output. Otherw ise a T is output. The F or T

is preceded by w-1 leading blanks.

5.2.6 Blank Fields, X Conversion - Field descriptor: nX

The value of n is an integer number greater than o. On X input, n characters are read but

ignored. On X output, n spaces are output.

1-31

5.2.7 FORTRAN Statements Read in at Object Time

FORTRAN provides the facility of including the formatting data along with the input data.

This is done by using an array name in place of the reference to a FORMAT statement label in any of

the formatted I/O statements. For an array to be referenced in such a manner, the name of the variable

FORMAT specification must appear in a DIMENSION statement, even if the size of the array is 1. The

statements have the general form:

READ (u, name)
READ (u, name) list

WRITE (u, name)
WRITE (u, name) list

The form of the FORMAT specification which is to be inserted into the array is the same as the source

program FORMAT statement, except that the word FORMAT is omitted and the nH field descriptor may

not be used. The FORMAT specification may be inserted into the array by using a data initialization

statement, or by using a READ statement together with an A format.

For example, this facility can be used to specify at object time, the format of a deck of

cards to be read. The first card of the deck would contain the format statement,

1 10

((I 7 , FlO. 3)

the subsequent cards would contain data in the general form,

(
7 17

xx xxxx

DIMENSION AA (10)
13 FORMAT (lOA5)

READ (3,13) (AA(1),1=1, 10)

READ (3,AA) JJ, BOB

With the card reader assigned to device number 3, the first READ places the format statement

from the first card into the array AA, and the second READ statement causes data from the subsequent

cards to be read into JJ and BOB with format specifications 17 and F10.3, respectively.

5.2.8 Printing of a Formatted Record

When formatted records are prepared for output on a hard-copy devi ce, the first character of

the record is not printed. The first character is used instead to determine vertical spacing as follows:

1-32

Character

Blank
o
1
+

Vertical Spacing Before Printing

One line
Two lines
Skip to first I ine of next page
No advance

Output of formatted records to other devices considers the first character as an ordinary character in the

record.

5.3 AUXILIARY I/O STATEMENTS

These statements manipulate the I/O file oriented devices. The u is an unsigned integer

constant or integer variable specifying the device.

5.3.1 BACKSPACE Statement

The BACKSPACE statement has the general form

BACKSPACE u

Execution of this statement causes the I/O device identified by u, to be positioned so that the record

which had been the preceding record becomes the next record. If the unit u is positioned at its initial

point, execution of this statement has no effect.

5.3.2 REWIND Statement

The REWIND statement has the general form

REWIND u

Execution of this statement causes the I/O device identified by u to be positioned at its initial point.

5.3.3 ENDF ILE Statement

The EN DF I LE statement has the genera I form

ENDFILE u

Execution of this statement causes an endfi Ie record to be written on the I/O dev i ce identified by u.

1-33

CHAPTER 6

SPECIFICATION STATEMENTS

Specification statements are nonexecutable because they do not generate instructions in the

object program. They provide the compiler with information about the nature of the constants and vari­

ables used in the program. They also supply the information required to allocate locations in storage for

certain variables and/or arrays. All SPECIFICA nON statements must appear before any executable code

generating statement. They must appear in this order: type statements, DIMENSION statements,

COMMON statements, and EQUIVALENCE statements. EXTERNAL and DATA statements must appear

a fter a II other speci fi cati on statements and before executab le-code-generati ng statements and FORMAT

statements.

6.1 TYPE STATEMENTS

The type statements are of the forms

INTEGER a ,b ,e
REAL a ,b,c
DOUBLE PRECISION a,b ,c
LOGICAL a,b,c

where a, b, andcarevariable names which may be dimensional or function names. A type statement is

used to inform the compi ler that the identifiers listed are variables or functions of a specified type, i.e.,

INTEGER, REAL, etc. It overrides any implicit typing; i.e., identifiers which begin with the letters

I,J,K,L,M, or N are implicitly of the INTEGER mode; those beginning with any other letter are

implicitly of the REAL mode. The type statement may be used to supply dimension information. The

variable or function names in each type statement are defined to be of that specific type throughout the

program; the type may not change.

Examples:

INTEGER ABC,IJK,XYZ
REAL A (2,4), I,J,K
DOUBLE PRECISION ITEM, GROUP
LOGICAL TRUE, FALSE

Any functi on references (statement functi ons, i ntri nsi c functi ons, or externa I functi ons) whi ch

are not implicitly REAL or INTEGER must appear in the appropriate TYPE statement.

Example:

DOUBLE PRECISION B,X,DABS,DATAN

B = DATAN (DABS (X))

In this example, if DABS and DATAN were not declared double precision, improper code

would be generated by the compi ler and no error diagnostic wi II occur.

1-35

6.2 DIMENSION STATEMENT

The DIMENSION statement is used to declare arrays and to provide the necessary information

to allocate storage for them in the object program.

The general formof the DIMENSION statement is:

where each V is the name of an array and each i is composed of one, two, or three unsigned integer

constants separated by commas. The number of constants represents the number of dimensions the array

contains; the value of each constant represents the maximum size of each dimension. The dimension in­

formation for the variable can be given in a type statement, a COMMON statement I or a DIMENSION

statement; however, di mensi oni ng i nformati on should on Iy be given once.

Example:

DIMENSION ITEM (150), ARRAY (50,50)

When arrays are passed to subprograms, they must be redeclared in the subprogram. The mode, number

of dimensions, and size of each dimension must be the same as that declared by the call ing program.

6.3 COMMON STATEMENT

The COMMON statement provides a means of sharing memory storage between a program and

its subprograms. The general form of the COMMON statement is:

where each x is a variable which is a COMMON block name, or it can be blank. If Xl is blank, the

first two slashes are optional. Each a represents a list of variables and arrays separated by commas.

The list of elements pertaining to a block name ends with a new block name, with a blank COMMON

block designation (two slashes), or the end of the statement.

The elements of a COMMON block, which are listed following the COMMON block name

(or the blank name), are located sequentially in order of their appearance in the COMMON statement.

An entire array is assigned in sequence. Block names may be used more than once in a COMMON

statement, or may be used in more than one COMMON statement within the program. The entries so

assigned are strung together in the given COMMON block in order of their appearance. Labeled

COMMON blocks with the same name appearing in several programs or subprograms executed together

must contain the same number of total words. The elements within the blocks, however, need not agree

in name, mode, or order. A blank COMMON may be any length.

1-36

Examples:

COMMON A, B,C/XX/X, Y ,Z
COMMON/A/X(3, 3), Y(2,5)//Z(5,10, 15)

The COMMON statement is a means of transferring data between programs. If one program

contains the statements,

COMMON/N/AA, BB,CC
AA=3
BB=4
CC=5

and another program which is called later contains the statement,

COMMON/N/XX, YY, ZZ

the latter program will find the values 3, 4, and 5 in its variables XX, YY, and ZZ, respectively,

since variables in the same relative positions in COMMON statements share the same registers in memory.

6.4 EQUIVALENCE STATEMENT

The EQU IVALENCE statement is used to permit two or more entities of the same size and type

to share the same storage location. The general format of the EQUIVALENCE statement is:

where each k represents a list of two or more variables or subscripted variables separated by commas.

Each element in the list is assigned the same memory storage location.

An EQU IVALENCE statement may lengthen the size of a COMMON block. The size can

only be increased by extending the COMMON block beyond the last assignment for that block made

directly by a COMMON statement. A variable cannot be made equivalent to an element of an array

if it causes the array to extend past the beginning of the COMMON block.

When two variables or array elements share the same storage location because of the use of

an EQUIVALENCE statement, they may not both appear in COMMON statements within the same pro-

gram.

Example:

EQUIVALENCE (A,B), (C(10), 0(10), E(l5))

An EQUIVALENCE statement which refers to an array which also appears in a COMMON

statement must refer to the first element of that array.

Example:

DIMENSION A(100),B(50)
COMMON A
EQUIVALENCE (A(1), B(1))

1-37

The above example shows a legal EQUIVALENCE statement. If, however, the statement

were changed to read

EQUIVALENCE (A (50) , B(1}}

the statement would cause an error diagnostic.

6.5 EXTERNAL STATEMENT

An EXTERNAL statement is used to pass a subprogram name on to another subprogram. The

genera I form of an EXTERNAL statement is:

Example:

EXTERNA L Y ,z, •••

EXTERNAL ISUM, ISUB
·

CALL DEBUG «SUM,A,B}
·

CALL DEBUG (ISUB,A,B)

END
SUBROUTINE DEBUG (X,Y,Z)

·
RETURN
END

6.6 DATA STATEMENT

The DATA statement is used to set variables or array elements to initial values at the time

the object program is loaded. The general form of the DATA initialization statement is:

where each k is a list of variables or array elements (with constant subscripts) separated by commas, and

each d is a corresponding list of constants with optional signs. The k list may not contain dummy argu­

ments. There must be a one-to-one correspondence between the name I ist and the data list, except

where the data list consists of a sequence of identical constants. In such a case, the constant need be

written only once, preceded by an integer constant indicating the number of repeats and an asterisk.
~ {)ocJ8~£ IR£~<>I()IJ . (l.cA.lSil1,.!T /-liI~{r.,­

A Hollerith constant may appear in the data list. BE.. wll.,..-reiJ' £:;ILPJ,(C,-rl,... Y IN 0() pc. "",..,4-
(lbf/' I. c O-r «)1)

Variable or array elements appearing in a DATA statement mat not be in blank COMMON.

They may be in a labeled COMMON block and initially defined only in a BLOCK DATA subprogram.

Example:

DATA A,B,C/3*2.0/
DATA X(l}, X(2), X(3), X(4)/0.0, 0.1, 0.2, 0.3/, Y(l), Y(2)
2Y(3), Y(4)/1.0E2, 1.0E-2, 1.0E4, 1.0E-4/

1-38

CHAPTER 7
SUBPROGRAMS

A subprogram is a series of instructions which another program uses to perform complex or

frequently used operations. Subprograms are stored only once in the computer, regardless how many

times they are referred to by another program.

There are five categories of subprograms:

a. Statement Functions
b. Intrinsic or Library Functions
c. External Functions
d. External Subroutines
e. Block Data Subprograms

The first three categories of subprograms are referred to as functions. The fourth category is

referred to as subroutines. Functions and subroutines differ in the following two respects. Functions

can return only a single value to the calling program; subroutines can return more than one value.

Functions are called by writing the name of the function and an argument list in a standard arithmetic

expression; subroutines are called by using a CALL statement. The last category is a special purpose

subprogram used for data initialization purposes.

7.1 STATEMENT FUNCTIONS

A statement function is defined by a single statement similar in form to that of an arithmetic

assignment statement. It is defined internally to the program unit by which it is referenced. Statement

functions must follow all specification statements and precede any executable statements of the program

unit of which they are a part. The general format of a statement function is:

where f is a function name; the a's are nonsubscripted variables, known as dummy arguments, which are

to be used in evaluating the function; and e is an expression.

The value of a function is a real quantity unless the name of the function begins with I, J,

K, L, M, or N; in which case it is an integer quantity, or the function type may be defined by using _
'TZl rl-J£. 1l ,Co N 7

h . 'f" t s 1Z£~rL Ie. T£ P ~I'-l- F vp.)<'! n >;J,v , t e appropriate specl Icatlon s atement. -'-1/1£//" US t:' t£.. s;r/rrl£ rl AI rlns tJ,J /L-L ~

Since the arguments are dummy variables,' tL;,1Oi£.eex .,Ig : n .. t,,:;' e:~e;ft~'ifc,fc~~;'~F~E.v)
\/41Z..11I-131-£

mode, aeel me) hi lJ,ed dseyvLe ... it II I :ogluiiI, including within the expression on the right side ofw ,TH THe
S'/Jr"7C M 0 a£: IfAJO A);tlMC

the statement function. #: 0 F f}IJ~1"1 Y Vrl/(..I/I d/oJ,..,.... "
IC IJI-c.- _ / 0 ,

The expression of a statement function, in addition to containing nonsubscripted dummy

arguments, may only contain:

1-39

a. Non-Hollerith constants
b. Variable references
c. Intrinsic function references
d. References to previously defined statement functions
e. Externa I function references

A statement function is called any time the name of the function appears in any FORTRAN arithmetic

expression. The actual arguments must agree in order, number, and type with the corresponding dummy

arguments.

Execution of the statement function reference results in the computations indicated by the

function definition. The resulting quantity is used in the expression which contains the function refer-

ence.

Examples:

A(X) = 3.2+SQRT (5.7* X**2)
SUM (A, B,C) = A+B+C
FUNC (A,B) = 2.*A/B**2.+Z

7.2 INTRINSIC OR LIBRARY FUNCTIONS

Intrinsic or library functions are predefined subprograms that are a part of the FORTRAN

system library. The type of each intrinsic function and its arguments are predefined and cannot be

changed.

An intrinsi c function is referenced by using its function name with the appropriate arguments

in an arithmetic statement. The arguments may be arithmetic expressions, subscripted or simple varia­

bles, constants, or other intrinsic functions (see table 1-1).

Examples:

x = ABS (A)
1= INT (X)
J = IF IX (R)

1-40

Table 1-1.
Intrinsic Functions

No. of Symbolic Type of Type of
Intrinsi c Functions Definition Arguments Name Argument Function

Absolute value 10 I
ABS Real Real
lABS Integer Integer
DABS Double Double

Truncation Sign of a times largest AINT Real Real
integer::; I a I INT Real Integer

IDINT Double Integer

Rema indering* 0 1 (mod O2) 2 AMOD Real Real
MOD Integer Integer

Choosing largest Max (0 1,02 , ...) 2 AMAXO Integer Real
value AMAX1 Real Real

MAXO Integer Integer
MAX1 Real Integer
DMAX1 Double Double

Choosi ng sma "est Min (0 1,02 , •..) 2 AMINO Integer Real
value AMIN1 Real Real

MINO Integer Integer
MIN1 Real Integer
DMIN1 Double Double

Float Conversion from FLOAT Integer Real
integer to real

Fix Conversion from real IFIX Real Integer
to integer

Transfer of sign Sign of O2 times 2 SIGN Real Real

I 0 1 I
ISIGN Integer Integer
DSIGN Double Double

Positive difference 0 1 - Min (0 1,02) 2 DIM Real Real
101M Integer Integer

Obtain most signi- SNGL Double Real
ficant part of double
precision argument

Express single pre- DBLE Real Double
cision argument in
double precision
form

*The function MOD or AMOD (0 1,02) is defined as a - [a/a2 J O2 , where[xJ is the integer whose

magnitude does not exceed the magnitude of x and whose sign is the same as x.

1-41

7.3 EXTERNAL FU NCT ION S

An external function is an independently written program which is executed whenever its

name appears in another program. The general form in which an external function is written is:

t FUNCTION NAME (a 1 ,a2 , .•. ,an)

(FORTRAN statements)

NAME = final calculation
RETURN
END

where t is either INTEGER, REAL, DOUBLE PRECISION, LOGICAL, or is blank; NAME is the sym­

bolic name of the function to be defined; and the als are dummy arguments which are nonsubscripted

variable names, array names, or other external function names.

The first letter of the function name impl icitly determines the type of function. If that

letter is I, J, K, L, M, or N, the value of the function is INTEGER. If it is any other letter, the

value is REAL. This can be overridden by preceding the word FUNCTION with the specific type name.

The symbolic name of a function is one to six alphanumeric characters, the first of which

must be the alphabetic name and must not appear in any nonexecutable statement of the function sub­

program except in the FUNCTION statement where it is named. The function name must also appear

at least once as a variable name within the subprogram. During every execution of the subprogram, the

variable must be defined before leaving the function subprogram. Once defined, it may be referenced

or redefined. The value of this variable at the time any RETURN statement in the subprogram is

encountered is called the value of the function.

There must be at least one argument in the FUNCTION statement. These must be nonsub­

scripted variable names. If a dummy argument is an array name, an appropriate DIMENSION statement

is necessary. The dummy argument names may not appear in an EQUIVALENCE, COMMON, or DATA
. . ~-r IU.. Ahl rllJ£rt.- () F ()Ih.,,,,, Y ,QIZC () M ~ -rs ~ /1)

statement In the function subprogram.

The function subprogram may contain any FORTRAN statements with the exception of a

BLOCK DATA, SUBROUTINE, or another FUNCTION statement. It, of course, cannot contain any

statement which references itself, either directly or indirectly.

A function subroutine must contain at least one RETURN statement. The general form is:

RETURN

This signifies the logical end of the subprogram and returns control and the computed value to the calling

program. At least one RETURN statement must appear between the last executable statement and the

END statement.

An END statement, described in Section 4.11, signals the compiler that the physical end of

the subprogram has been reached.

1-42

An external function is called by using its function name, followed by an actual argument

list enclosed in parentheses, in an arithmetic or logical expression. The actual arguments must cor­

respond in number, order, and type to the dummy arguments. An actual argument may be one of the

following:

a. A variable name
b. An array element name
c. An array name
d. Any other expression
e. The name of an external function or subroutine

Example:

Basic
External Function

Exponential

Natura I logarithm

Common logarithm

Trigonometric sine

Trigonometric cosine

Hyperbol i c tangent

Square root

DIMENS ION A(l 00), B(100)

RSLT = SUM (A, B)**2

END

FUNCTION SUM (X, Y)
DIMENSION X (100), Y(100)
SUM = X(l) + Y(l)
DO 10K = 2, 100
10 SUM = SUM + X(K) + Y(K)
RETURN
END

Definition

a
e

log (a)
e

10910 (a)

sin (a)

cos (a)

tanh (a)

(a) 1/2

Table 1-2
External Functions

No. of
Arguments

1-43

Main Program

Function Subprogram

Symbolic Type of Type of
Name Argument Function

EXP Real Real
DEXP Double Double

ALOG Real Real
DLOG Double Double

ALOG10 Real Real
DLOG10 Double Double

SIN Real Real
DSIN Double Double

COS Real Real
DCOS Double Double

TANH Real Real

SQRT Real Real
DSQRT Double Double

Basic
External Function

Arctangent

Remaindering*

Definition

arctan (a)

arctan (a /a2)

a 1 (mod a 2)

Table 1-2". (Cont)
External Functions

No. of
Arguments

1
1
2
2

2

Symbolic Type of Type of
Name Argument Function

ATAN Real Real
DATAN Double Double
ATAN2 Real Real
DATAN2 Double Double

DMOD Double Double

*The function DMOD (a1,a2) is defined as a 1 - [a/a2] a2 , where [x] is the integer whose

magnitude does not exceed the magnitude of x and whose sign is the same as the sign of x.

7.4 SUBROUTINES

A subroutine is defined externally to the program unit which references it. It is similar to

an external function in that both contain the same sort of dummy arguments, and both require at least

one RETURN statement and an END statement. A subroutine, however, may have multiple outputs.

The general form of a subroutine is:

SUBROUTINE NAME (a1,a2 , ... ,an)

or

SUBROUTINE NAME

where NAME is the symbolic name of the subroutine subprogram to be defined; and the a's are dummy

arguments (there need not be any) whi ch are nonsubscripted variable names, array names, or the dummy

name of another subroutine or external function.

The name of a subroutine consists of one to six alphanumeric characters, the first of which is

alphabetic. The symbolic names of the subroutines cannot appear in any statement of the subroutine

except the SUBROUTINE statement itself.

The dummy variables represent input and output variables. Any arguments used as output

variables must appear on the left side of an arithmetic statement or an input list within the subprogram.

If an argument is the name of an array, it must appear in a DIMENSION statement within the subroutine.

The dummy argument names may not appear in an EQUIVALENCE, COMMON, or DATA statement in

the subprogram.

The subroutine subprogram may contain any FORTRAN subprograms with the exception of

FUNCTION, BLOCK DATA, or another SUBROUTINE statement.

1-44

The logical termination of a subroutine is a RETURN statement. The physical end of the sub­

routine is an EN D statement.

A subroutine is referenced by a CALL statement, which has the general form

1t...5.IO

or
US C I!Ol'l/"1IJIU I r:- -x.. >1 0

CALL NAME

where NAME is the symbolic name of the subroutine subprogram being referenced, and the als are the

actual arguments that are being supplied to the subroutine. The actual arguments in the CALL statement

must agree in number , order, and type with the corresponding arguments in the SUBROUT INE subpro-

gram. The array sizes must be the same.

following:

7.5

a. A Hollerith constant
b. A variable name
c. An array element name
d. An array
e. Any other expression
f. The name of an external function or subroutine M411V p,ed(!,.

PIM&JV;;,Q"'; 4t~
(iOMMol(,J <3

BLOCK DATA SUBPROGRAM
{t;'JLL :5&J8 (AlI~

The BLOCK DATA subprogram is a special subprogram used to enter data into a COMMON
:SW!Jte4 .JT/AJ€ SV$

block during compilation. A BLOCK DATA statement takes the form ~

BLOCK DATA P'I'1EIJ~;>lDt..J 14(1)
t!. DM,..,/J.u 3
<!4J.L 4t:q" I I A If\

This special subprogram contains only DATA, COMMON, EQUIVALENCE, DIMENSION, and TYPE (:;JIil~

statements. It cannot contain any executable statements. It can be used to initialize data only in a

labeled COMMON block area; not in a blank COMMON block area.

All elements of a given COMMON block must be listed in the COMMON statement, even

if they do not all appear in a DATA statement. Data may be entered in more than one COMMON block

in a single BLOCK DATA subprogram.

7.5.1

An END statement signifies the termination of a BLOCK DATA subprogram.

Example of BLOCK DATA Subprogram

BLOCK DATA
DIMENSION X (4) , Y(4)
COMMON/NAME/A, B, C, I,J, X, Y
DATA A, B,C/3*2. 0/

DATA X(l), X(2), X(3), X(4)/0.O, 0.1, 0.2, 0.3;Y(l), Y(2)
2Y(3) , Y(4)/1 .OE2, 1.0E-2, 1 .OE4, 1.0E-4/
END

1-45

APPENDIX 1
SUMMARY OF PDP-9 FORTRAN IV STATEMENTS

CONTROL STATEMENTS

1'-ASS IG N n to i

CALL name (a1 ,a2, •••)

CONTINUE •••••••

DO n i=m1,m2,m3 ••

GO TO n •••••••

~GO TO i, (n1 ,n2, •••)

GO TO (n1 ,n2, ••.), i

IF (e1) n1,n2,n3 ••

IF (e) 5 • •

PAUSE •

PAUSE n

STOP

STOP n

END

RETURN

SUBROUTINE NAME (a1 ,a2,·· • an)

FUNCTION NAME (a1 ,a2, •.. an) •• •••

'.\< O£1-6T~D Flo,"", F0l...,e,HJ 1Sl:.
INPUT/OUTPUT STATEMENTS

BACKSPACE u. •

END FILE u

FORMAT (51,52, ••• ,sn)

READ (u,f)

READ (u,f) list

READ (u) • • • •

READ (u) list .

READ (u, name)

READ (u,name) list

REWIND u ••

WRITE (u,f) list

1-47

1-15

1-42

1-19

1-17

1-15

1-15

1-16

1-16

1-16

1-19

1-19

1-19

1-19

1-19

1-39

1-41

1-39

1-31

1-31

1-24

1-23

1-23

1-23

1-23

1-30

1-30

1-31

1-23

WRITE (u, f)

WRITE (u) list

WR ITE (u, name)

WR ITE (u, name) list

SPECIF ICATION STATEMENTS

COMMON /x/a/x2/a2/ ••• /x/an •

DATA k/d/,k2/d2/, ... kn/d/ ••

DIMENSION V1(il)' V2(i2), ... Vn(in)

DOUBLE PRECISION a,b,c ••

l'EQU IVALENCE (k1) ,(k2) ... (kn)

*'EXTERNAL y,z, ..• ,

INTEGER a,b,c

LOGICAL a,b,c

REAL a,b, c

BLOCK DATA •.

t-ofl..ET£O FeoN r=otlfAAi JI!

1-48

1-23

1-24

1-30

1-30

1-33

1-35

1-32

1-32

1-34

1-34

1-32

1-32

1-32

1-42

APPENDIX 2
A NOTE ON PDP-9 FORTRAN IV

The FORTRAN language used in this manual is essentially the language of USASI Standard

FORTRAN (X3.9-1966) with the exception of the following features which are modified to allow the

compi ler to operate in 8192 words of core storage:

a. All references to complex arithmetic are illegal.

b. The size of arrays in subprograms is not adjustable to the size specified by the calling

program.

c. Blank COMMON is treated as name COMMON.

d. The implied DO feature is not legal in a DATA statement.

There are two versions of the FORTRAN IV compi ler: F4 and F4A. F4 is the basic compi ler,

and F4A is an abbreviated version of the com pi ler that allows DECtape input and output in an 8K system.

F4A operates under control of the Keyboard Monitor only, and is called by typing F4A rather than F4

on the Teletype. The F4A version does not provide for EQUIVALENCE, EXTERNAL, ASSIGN, and

Assigned GOTO statments, or the following options available in the F4 version:

o

~ L
~~FI/-

Objeet GOde I is I! "g

Source Ii sti ng
f'flIAlToUTS oPTlolJ Hils 10 eGIJ
DEJ.,{;;.T£D

In paper tape systems, the FORTRAN compiler along with necessary I/O device handlers and

an appropriate version of the I/o Monitor are punched on a tape in absolute format, referred to as a

"system tape." At the beginning of the system tape is a Bootstrap Loader. The system tape can be loaded

by setting the starting address of the Loader (17720 for 8K systems, 37720 for 16K) on the console address

switches, pressing I/O RESET, and then pressing the READIN switch. (Refer to the I/o Monitor Guide

for Paper Tape Systems, DEC-91\-NGAA-D.)

In larger systems with a bulk storage device such as DECtape, the Keyboard Monitor accepts

direct keyboard commands to load the com pi ler in a device-independent environment. (Refer to Keyboard

Monitor Guide, DEC-9U-NGAA-D.) This feature enables use of READ (I,f) or READ (I) statements where

the value of I is undefined at compile and load times. If such statements are used, it is important to

clear unused positive .DAT slots before loading to avoid loading device handlers that are not required.

Either DDT -9 or the Linking Loader must be used to load user object programs for execution.

Refer to the appropriate Monitor Guide (I/O Monitor of Keyboard Monitor) for operating procedures.

1-49

APPENDIX 3
FORTRAN IV AND MACRO-9 LIN KAGE

1 • Linking FORTRAN IV Programs With MACRO-9 Subprograms

There are two essential elements of a MACRO subprogram that is linked to FORTRAN IV.

One is the declaration of the name of the subprogram (as used in the F4 program) in a .GLOBL statement

with in the subprogram. The second is leaving open registers in the subprogram for the transfer vectors of

the arguments used in the FORTRAN calling sequence. The number of open registers must agree with the

number of arguments given in the calling sequence.

As an illustrative example, consider a FORTRAN program and a MACRO-9 subprogram wh ich

read, negate, and write a number. One positive, single-precision floating-point number is read by the

FORTRAN' program, negated in the MACRO-9 subprogram, and written out from the FORTRAN program.

FORTRAN IV PROGRAM:

C
C
1
100
C

C

TEST MACRO SUBPROGRAM
READ A NUMBER (A)
READ (1,100) A
FORMAT (E12.4)
NEGATE THE NUMBER AND PUT IT IN B
CALL MIN (A, B)
WRITE OUT THE NUMBER (B)
WRITE (2,100) B
STOP
END

MACRO-9 SUBPROGRAM:

MIN

MIN1
MIN2

. TITLE MIN

. GLOBL MIN, .DA
o
JMS* .DA

JMP .+3

.DSA 0

.DSA 0
LAC* MIN1
DAC* MIN2
ISZ MIN1
ISZ MIN2
LAC* MIN1
TAD (400000
DAC* MIN2
JMP* MIN
.END

/ENTRY /EXfT
fUSE THE F4 GENERAL GET ARGUMENT
/SUBPROGRAM TO LOAD THE ARGUMENTS
/JUMP AROUND REGISTERS LEFT FOR
/ARGUMENT ADDRESSES
/ARG 1
/ARG2
/PICK UP FIRST WORD OF A
/STORE IN FIRST WORD OF B
/BUMP THE POINTER TO SECOND WORD
/OF A AND B
/PICK UP SECOND WORD OF A
/SIGN BIT = 1
/STORE IN SECOND WORD OF B
/EXIT

I-51

Since A is a single-precision, floating-point number, two machine words are required and

must be accounted for in the subprogram. Thus MIN1 and MIN2 (which contain the addresses of A and

B) must be incremented to get to the second word of each number. FORTRAN expands the CALL state­

ment as follows:

CALL MIN (A, B)
00013 JMS*
00014 JMP
00015 .DSA
00016 .DSA
$00014=00017

MIN
$00014
A
B

(Exit to MACRO-9 subprogram)
(Entry from MACRO subprogram)

When the program is loaded, the address (plus relocation factor) of A is stored in location

00015 (plus relocation factor) and the address of Bin 00016 (plus relocation factor). When .DA is

called from the MACRO-9 subprogram, it stores these addresses in MIN1 and MIN2 (plus relocation

factor). Thus MIN 1 must be referenced indirectly to get the va lue of A (a direct reference wou Id get

the address of A).

2. linking MACRO-9 Programs With FORTRAN IV Subprograms:

There are two forms of FORTRAN IV subprograms: subroutines and external functions. The

main difference between the two is the method of returning arguments to the calling program: subroutines

return the argument directly to the calling program, while functions return arguments through accumulators.

The MACRO-9 program set-up for a FORTRAN IV subroutine is basically that described in

Part III of this manual for FORTRAN IV Science library routines. The name of the subroutine to be

called must be declared as a global, there must be a jump around the argument addresses, and the num­

ber and type (integer, real, double precision) of arguments must agree from the calling program to the

subroutine.

An example of a calling routine:

TITLE
.GLOBL
JMS*
JMP
.DSA
.DSA

.DSA

SUBROT
SUBROT
.+N+l
ADDR OF ARGl
ADDR OF ARG2

ADDR OF ARGN

I-52

/+400000 if indirect
/+400000 if indirect

/+400000 if indirect

When the FORTRAN IV subroutine is compiled, the compiler will generate code for .DA,

the General Get Argument Routine, which will transfer the arguments from the MACRO-9 calling pro­

gram to the FORTRAN IV subroutine. • DA expects to find the calling sequence just described for the

calling program. The following is an example of an expansion of the beginning of a FORTRAN IV

subroutine.

C

000000
000001
000002
000003
00004
$000002=000005

TITLE SUBROT
SUBROUTINE SUBROT (A, B)

CAL 0
JMS* .DA
JMP $000002
.DSA A
.DSA B

The simplest method of passing arguments between the main program and the subroutine is to

use one of the calling arguments as output. For example, if the value of D is to be calculated in the

subroutine, use D as one of the calling arguments. "D=" will generate a "DAC* D", which will store

the value calculated for D by the subroutine in location D in the calling program.

The MACRO-9 program set-up for a FORTRAN IV External Function is identical to that for

linkage with subroutines, except that some provision must be made for storage of the values calculated

and stored in the accumulator. In the case of integers, the value is returned in the A-register, and in

the floating accumulator for real and double precision numbers. The simplest method of storing the

values is to use the FORTRAN IV routines furnished in the library for this purpose. .AH store real val­

ues, and .AP stores double precision values. Since the A-register is the standard hardware accumulator,

a DAC instruction wi II store integer values.

3. Linking MACRO-9 Programs With FORTRAN IV Library Routines

Refer to Part III of this manual, PDP-9 Science Library, for a complete description of the

linkage to library routines.

()Gr,I\IEO

TH6

/Is

WITH HfJ(!.It.o SI.J8te.cuTINC:$

/l£HIJ/N .4PTE~ THE I-QI9~G ~

S YS rGM L.1($1'<19/e,ES

117T£H~T WILL 6£

THE
THE

I-53 (~J

ANt)

FJ-i - IN r6GG t!.

e.o t-1 MoN

H,4e. tt-O

...... tJZ- M >f-

157-

r.rz.. M *-

OZM:¥"

IJ.,S,c..

/t3i-()(!. 1<'1/ ~

, x. '0(

,x.x...

Il<.l(.

I3Lo<!K I

/
.I AMc rolf!.. 8i-AAIK

.XX IS Fir N" -

eo MMO/J 8 j-CJ e: K.

/ AlGX.T /fO()I2.GSS J Pol<.. VAIClfH3i...E (3

I f!. i-~/:Uc 13

/ fiG-41A.i, !3i.o<! KI

rH£ 1=-'£&7 VfU?lfl6i-c

I3Lo c...c::. 0 r- c..o~noA/

S Ho Ui. t:J

or-

,ss IN o.-s ,-0<;; IC!...AL,

APPENDIX 4
CHAINING FORTRAN IV PROGRAMS

Chaining is a method of program segmentation that allows for multiple core overlap of

executable code and certain types of data areas. FORTRAN programs can thus be divided into segments

and executed separately, with intersegment communication of data accomplished through common

storage. Common areas of core are reserved by means of the blank COMMON statement.

Transfer of control from one chain segment to another can be specified in a FORTRAN source

program with the statement

CALL CHAIN (N)

where N is the ~egment number to be called. The chain number (N) is established at chain-build time

(refer to the CHAIN section of the Keyboard Monitor Guide, DEC-9U-NGBA-D). N can be greater

than or less than but not equal to the current chain number. Only variables and arrays named in blank

COMMON statements are retained from one chain segment to another. Blank common size should be

the same for all chain segments.

C
C
C

C

NOTE

Use of a CALL CHAI N (N) statement rather than a STOP
statement immediately preceding the END statement wi II
cause an I error during compilation (illegal statement pre­
ceding the END statement). This error should be ignored
since it is a warning only. The CHAIN subroutine will
never return control to the statement followi ng the CALL
CHAIN (N) statement (control is transferred to the begin­
ning of the chain which is called).

TEST CHAIN PROGRAM

CHAIN JOB SEGMENT 1
COMMON A,B,C
DIMENSION ARRAY (10,10)
READ (4 ,5) ARRAY

CALL CHAIN (2)
END

CHAIN JOB SEGMENT 2
COMMON A,B,C
DIMENSION TABLE (30) .
CALL CHAIN (3)
END

I-55

C CHAIN JOB SEGMENT 3
COMMON A,B,C
DIMENSION A UST (5,5)

.
WRITE (4,6) AUST
6 FORMAT (E10.3)
STOP
END

I-56

APPENDIX 5
FORTRAN IV ERROR LIST

These I etter-coded error messages app Iy to a II versi ons of F4 and F4A. Refer to page II-2

of this manua I for a list of object-time errors.

X

V

N

S

F

D

T

L

M

C

-Jo'E

H

Error Code

Syntax error

Variable/constant
mode error

Statement number 'error

Argument/subscript error

FORMAT statement error

Character / statemen t/
term error

DO loop error

Table overflow

Nesting error

Magn i tude error

COMMON/EQUIVALENCE/
DIMENSION/DATA statement
error

FUNCTION/SUBROUTINE/
EXTERNAL/CALL statement
error

Hollerith error

Cause

Statement cannot be recognized as a properly
constructed FORTRAN IV statement.

Illegal mode mixing. Missing constant, variable or
exponent, or illegal matching of constants or vari­
ables in a DATA statement.

Phase error, number more than 5 digits, no statement
number where one is required, statement shouldn't
be labeled or doubly defined statement numbers.

Missing argument or subscript, illegal use of sub­
scripts, illegal construction of subscripted variable,
more than 3 subscripts or stated number of subscripts
does not agree with dec lared number.

Illegal FORMAT specification or illegal construction
of FORMAT statement.

Illega I character, unrecogn izable statement, i lIega I
statement for program type, statement out of order
or improper statement preceding END statement.

Illegal DO construction or illegal statement termi­
nating DO LOOP.

Symbol/constant/arg (I)/OP(I) table limits exceeded.

Illegal nesting or DO nesting too deep.

Program exceeds 8190 words, maximum number of
dummy arguments or EQUIVALENCE classes exceeded,
or constant/variable exceeds specified limits.

Illega I construction of statement, illegal EQUIVA­
LENCE relationships, illegal COMMON declaration
or non-common storage declared in BLOCK DATA
subprogram.

Illegal use of FUNCTION/SUBROUTINE name, out
of order, or illegal variable for EXTERNAL decla­
ration.

Hollerith data illegal in this statement or illegal of
Hollerith constant.

it 1F TfiE:' AJ4 M €,. OF .4 ;)u6 f!..CUIJJV£ Oe.. FUIUc...n{)~ OO£S­

W,TJ.; THE FIt-€. 11./1414£ ~ /t/£IU) >£<
vJ I'-L Ot!. e. () Ie

IJ.s II Wfl~IJII\J(!', (r£rltj

I-57

APPENDIX 6
SYMBOL TABLE SIZES (F4 V3A)

The following symbol table sizes are for 8K systems with the full complement of skip lOTs

in the skip chain.

F4

a.

b.

F4A

a.

b.

c.

NOTE

Handlers listed are for DAT slots -11, -12, and -13, re­
specti ve Iy.

PRB, TTA, PPC - 189 symbo Is (deci ma I)

DTC, TTA, PPC - 62 symbols (decimal)

PRB, HA, PPC- 407 symbols (decimal)

DTC, TTA, PPC - 278 symbols (decimal)

DTB, TTA, DTB - 54 symbols (decimal)

I-59

FORTRAN IV OBJECT - TIME SYSTEM

I NTRO DUCT 10 N

Part II describes the subprograms included in the PDP-9 FORTRAN IV Object Time System.

The Object Time System is a group of subprograms that process compiled FORTRAN IV statements,

particularly I/O statements, at execution time. The compiler outputs calls in the form of globels to

various subprograms, depending upon the content of the FORTRAN program. When the compiled pro­

gram is loaded via the Linking Loader, the Loader attempts to satisfy these globels by searching the

FORTRAN library. As it finds the required object time subprograms, it brings them into core and sets

up the necessary linkages.

Included in the package are programs for processing formatted and unformatted READ and

WRITE statements, BACKSPACE, REWIND and ENDFILE statements, the index of computed GO TO

statements, STOP and PAUSE statements, and File commands. There are eight error messages output by

the object time system which are described in Table 11-1.

The following information is given for each program:

a. Class
b. Purpose
c. Calling sequence
d. External calls
e. Size
f. Error conditions

11-1

Error Number

!D7

1,,0

11

12

13

14

Not used

Table 11-1.
OTS Errors

Error Description

Negative REAL Square Root Argument

Negative DOUBLE PRECISION Square
Root Argument

"'ega' Index in Computed GO TO

Illegal I/O Device Number

Bad input data - lOPS Mode Incorrect

Bad FORMAT

Negative or Zero REAL Logarithmic
Argument

Negative or Zero DOUBLE PRECISION
Logarithmic Argument

Library Routines*
That May Cause Error

SQRT

DSQRT

.GO

.FR, .FW, .FS, .FX,

.FR, .FA, .FE, .FF, .FS,

.FR, .FA, .FE, .FF, .FS,

.FA, .FE, .FF

. BC,. BE,ALOG

. B D, . BF, . BG, . B H,
DLOG, DLOG 1!D

*Only those routines whose calls are generated by the compiler are listed.

1/-2

BCDIO

l. Class:

2. Purpose:

OTS Binary Coded Input/Output

Object - Time System

The BCD input/output object-time package is designed to process the formatted
READ and WRITE statements in FORTRAN IV programs and subprograms. The
FORTRAN IV compiler generates all the necessary object-time subroutine calls to
perform input and output operations on a character-to-character basis under the
control of a FORMAT statement. To permit FORMAT statements to be altered or
read at execution time, the FORMAT statements are interpreted by BCDIO at
execution time rather than at compile-time. This has two advantages:

1) It provides a greater flexibility to the FORTRAN programmer,

2) It provides the ability to utilize fully the capabilities of BCDIO in
machine-language programs.

In demonstrating this capability, an illustrative MACRO-9 language program is
given below, which reads 8 floating point numbers into memory with F-conversion
and writes them on an output devi ce using the E-conversion.

Example:

ENTRY

LOOPl
ARGl

. TITLE

.GLOBL

.IODEV
JMS*
JMS*
.DSA
.DSA

LAW
DAC
LAC
DAC

JMS*
,0'

ISZ
ISZ
ISZ
JMP
JMS*

JMS*
.DSA
. DSA
LAW
DAC

.FP, .FR, .FE, .FF, .FW
3,4
.FP /Initialize I/O device status table.
.FR /Initialize device 3 for input
(3) /under control of FORMAT statement
FRMTl /FRMTl and read first record into line

/buffer.
- l,0' /Set loop counter to 8.
COUNT
(ARRAY) /Set element address to first word
ARGl lin the array.

. FE /Convert next I ine buffer field from
/BCD to floating point binary and
/store in ARRAY.

ARGl /Increment ARRAY address by two.
ARGl
COUNT /Check the counter and
LOOPl /if not done, repeat loop.
.FF /Otherwise, terminates reading.

.FW /Initialize device 4 for output
(4) /under control of FORMAT
FRMT2 /statement FRMT2.
- l,0' /Set loop counter to 8.
COUNT

/1-3

LOOP2
ARG2

ARRAY
FRMTl
FRMT2
COUNT

3. Calling Sequences:

LAC
DAC
JMS*
¢

ISZ
ISZ
ISZ
JMP
JMS*

HLT
. BLOCK
.ASCII
.ASCII
¢
.END

(ARRAY)
ARG2
.FE

ARG2
ARG2
COUNT
LOOP2
.FF

2¢
'(8F10.5)'
'(8E12.5)'

OTS Binary Coded Input/Output

/Set element address to fi rst
/word in the array.
/Convert floating-point binary word
/pair to BCD and store in line-buffer.

/Increment ARRAY address by 2.

/
/Check count.
/If not done, go to LOOP 2.
/if done, output last line-buffer
land terminates writing.

a. To initialize a device for BCD input (output):

JMS* .FR (.FW)
· DSA address of slot number.
· DSA address of first word of FORMAT statement or array.

b. To input (output) a data element:

.FE JMS*
.DSA address of element (first word)

c. To input (output) an entire FORTRAN array:

JMS* .FA
· DSA address of last word in the Array Descriptor Blo ck.

d. To terminate the current logical record:

JMS* . FF

All BCDIO routines utilize the F lOPS object-time package to perform all
I/O data transfers between devices and the FlOPS line buffer. Device level
communication is never employed.

e. External Calls:

FlOPS, OTSER, REAL ARITHMETIC

f. Size: 2773 octal locations

11-4

OTS Binary Coded Input/Output
g. Error Conditions:

OTS ERROR 1¢ - Illegal I/O Device Number
OTS ERROR 11 - Bad Input Data (lOPS Mode Incorrect)
OTS ERROR 12 - Illegal FORMAT

11-5

BINIO

1. Class:

2. Purpose:

OTS Binary Input/Output

Object - Time System

The Binary Input/Output Object-Time package is designed to process the unformatted
READ and WRITE statements in FORTRAN IV programs and subprograms. A FORMAT
statement is not required and the data transfer is on a word-to-word basis instead of
on character-to-character basis, regardless of data type.

The size of the physical data record is always the standard line buffer size provided
by lOPS.

Logical data records are comprised of one or more physical records, the number of
which is determined by the length of the·I/O list associated with the WRITE state­
ments that generates the logical record.

Each WRITE statement generates one logical record.

Each READ statement reads one logical record, regardless of the length of its I/O
I ist. For this reason, it is the responsibil ity of the FORTRAN programmer to ensure
that I/O I ists for WR ITE and READ statements are compatible.

3. Call ing Sequences:

a. To initialize a device for binary input (output):

JMS*
.DSA

FX
.FS (.EW)
DEVICE

b. To input (or output) an integer data element:

JMS*
.DSA

.FI
address of the element

c. To input(or output) a real data element:

JMS*
.DSA

.FJ
address of the element (first word)

d. To input (or output) a double precision data element:

JMS*
.DSA

.FK
address of the element (first word)

e. To input (or output) a logical data element:

JMS*
.DSA

.FL
address of the element

f. To input (or output) an entire FORTRAN array:

JMS*
. DSA

.FB
address of the last word in the Array Descriptor Block .

11-6

4. External Calfs:

5. I Size:

OTS Binary Input/Output

g. To terminate the current logical record:

JMS* .FG

The third word of each physical record contains a record of ID numbers starting with
ZERO for the first record. Then ID is incremented by one as each physical record
is generated until the last record in the logical record has bit st set.

A typical WRITE statement may generate the following record for ID:

LOGICAL
RECORD

FlOPS, OTSER

244 octal locations

PHYSICAL RECORD
FOR ID (OCTAL)

6. Error Conditions:

OTS ERROR 1st - Illegal I/O Device Number
OTS ERROR 11 - Illegal Input Data (lOPS Mode Incorrect)

1/-7

AUXIO

1. Class:

2. Purpose:

OTS Auxi I iary Input/Output

Object - Time System

Auxi I iary Input/Output consists of the processors for the three aux i I iary I/O state­
ments in FORTRAN IV: BACKSPACE, REWIND, and ENDFILE.

These statements are normally used to control Magnetic Tape Transports which are
being used by unformatted READ and WRITE statements (BINIO).

1) BACKSPACE (.FT):

Repositions the tape at a point just prior to the first physical record
associated with the current logical record.

Example:

WRITE (7) A,B,C
BACKSPACE (7)
READ (7) D, E, F

These three instructions as shown in the above order cause the data of
A, B, and C to be transferred to D, E, and F.

2) REWIND (.FU)

Causes the specified device to be positioned at its initial (load) point.

3) EN DF I LE (. FV)

Issues an lOPS command to close the current file on the specified device.

In the case of Magnetic Tape, this writes a file mark.

3. Calling Sequences:

4. External Calls:

a. To backspace one logical record:

JMS*
.DSA

.FT
DEVICE

b. To position a device at its initial point:

JMS*
.DSA

.FU
DEVICE

c. To end (close) a file:

JMS*
.DSA

FlOPS

.FV
DEVICE

11-8

OTS Auxil iary Input/Output

5. Size: 64 octa I locations

6. Error Conditions:

OTS ERROR l¢ - Illegal I/O Device Number

/1-9

FlOPS

1. Class:

2. Purpose:

OTS lOPS Communication

Object - Time System

F lOPS provides the necessary calls to lOPS required by all FORTRAN input and
output statements.

Slot numbers are initialized by the .FC routine (Initialize I/O Device). Initializa­
tion of all slots is maintained in the device status table. The first time that .FC is
called for any device, the appropriate .INIT call is made to lOPS. The buffer size
and input/output flag are stored in the status word table. Then all subsequent calls
to .FC for the same device suppress another .INIT unless the input/output flag has
changed.

One life buffer is used by all FORTRAN programs. Data transfers between the line
buffer and I/O devices are performed by the .FQ routine, which performs a .READ
if the input/output flag (.FH) is "ZERO" or a .WRITE if .FH is "ONE." A .WAIT
is a Iways performed.

The .FP routine is called at the beginning of all FORTRAN main programs. This
routine sets all words in the device status table to zero, indicating that all devices
are uninitialized.

3. Calling Sequences:

a. To initialize the I/O device status table:

JMS* .FP

b. To specify input:

DZM* .FH

c . To specify output:

LAC (1)
DAC* .FH

d. To select device:

LAC
JMS*

DEV ICE (address of slot number)
.FC

e . To input or output the line buffer:

LAC
JMS*

f. Notes:

address of . DAT slot number (bits 9-17) and lOPS mode (bits 6-8)
.FQ

1) DEVICE is a cell containing the slot number.
2) The line buffer is in locations .FN to .FN+377 S.

11-10

4. External Calls:

5. Size:

OTS lOPS Communication

3) The standard line buffer size (for the device currently selected) is in
location .FM.

4) On output, lOPS header words (.FN and .FN + 1) must be prepared by
the user.

OTSER

530 octal locations

6. Error Conditions:

OTS ERROR 1.0'- Illegal I/O Device Number

11-11

. SS

1. Class:

2. Purpose:

OTS Calculate Array Element Address

Object - Time System

To calculate the array element address. The Array Descriptor Block is constructed
as follows:

.-z?r&l\ f wd 1 1000 I M I Size I
0 2 345 17

wd 2 IN* I max
Generated by

wd 3 IN* I * J I F4
: max max:

1j/lf.AY wd 4 I Address of Array

M: data type - translates to number of words per array element (n)

M N Type

00 01 integer
01 02 real
10 03 double precision
11 01 logical

Subscript calculation formula (for declared A (I,J,K) and specified A (i,j,k))

Addr of A (i, j, k) =

A + (i-1) * n + (j-1) * 1* n + (k-1) * 1* J 'k n
'--y-J '---v---" •
wd 4 wd 2 wd 3

1-dimension array
.. .

2-dimension array

3-dimension array

3. Calling Sequence;

.GLOBL
JMS*
.DSA

LAC
LAC
LAC
DAC

ARRAY
.SS
ARRAY

Sl
S2
S3

/Address (indirect) of array
/Descri ptor Block
/S ubscri pt 1 (l)
/Subscript 2 (J)
/Subscript 3 (K)
/Store array element address here

11-12

OTS Calculate Array Element Address

4. External Calls:

INTEGER and REAL ARITHMETIC

5. Size: 57 octo I locations

6. Error Conditions:

None.

11-13

OTS Computed GOTO

GOTO (.GO)

1. Class: Object - Time System

2. Purpose: To compute the index of a computed GO TO

3. Calling Sequence:

LAC V /Index value in A-register
JMS* .GO
-N /Number of statement addresses
STMT ADDR (1)
STMT ADDR (2)

STMT ADDR (N)

4. Externa I Co lis:

OTSER

5. Size: 26 octal locations

6. Error Conditions:

OTS ERROR 7 if the index is illegal (equal to or less than zero).

1/-14

OTS Stop

STOP (. ST)

1. Class: Object - Time System

2. Purpose: To process the STOP statement and return control to the monitor.

3. Calling Sequence:

LAC (Octal number to be printed)
JMS* .ST

4. External Calls:

SPMSG (. SP)

5. Size: 13 octal locations

6. Error Conditions:

None

11-15

PAUSE (.PA)

1. Class:

2. Purpose:

OTS Pause

Object - Time System

To process the PAUSE statement. After receiving a t P (Control P) from the key­
board, control is returned to the program.

3. Calling Sequence:

LAC (Octal number to be printed)
JMS* .PA

4. Externa I Co lis:

SPMSG (. SP)

5. Size: 14 octal locations

6. Error Conditions:

None

1/-16

SPMSG (. SP)

1. Class:

2. Purpose:

OTS Octal Print

Object - Time System

To print the octal number coded with STOP and PAUSE. If no number is given,
zero (m is assumed.

3. Calling Sequence:

4. Externa I Co lis:

LAC
JMS*
.DSA
LAC
LAC
LAC
LAC
LAC
LAC

None

(Octal integer to be printed)
.SP
(Control return) jpause only
1 st Character
2nd Character
3rd Character
4th Character
5th Character
6th Character

5. Size: 74 octal locations

6. Error Conditions:

None

/1-17

OTSER (. ER)

1. Class:

2. Purpose:

Object - Time System

a. To announce an error on the teletype:

JMS*
.DSA

.ER
Error number

OTS Errors

b. If bit fJ of the error number is a 1, the error is recoverable and program control
is returned to the calling program at the first location following the error number.

c. If bit fJ of the error number is a fJ, the error is unrecoverable and program control
is transferred to the monitor by means of the . EX IT function.

d. In the case of recoverable errors, the AC and link are restored to their original
contents prior to returning control to the caller.

e. If the error is a bad format statement (unrecoverable), the current 5/7 ASCII
word pa ir of the erroneous format statement is printed in addition to the error
number.

3. Ca II ing Sequence:

4. External Calls:

ERROR #12
only

None

JMS*
.DSA
LAC
LAC

.ER
Error number, octa I
Note word 1
Note word 2

Words 1 and 2 are the current 5 chara cters (i n 5/7 ASC II of the bad
format statement (ERROR #12)

5. Size: 117 octal locations

6. Error Conditions:

None

11-18

FILE

1. Class

2. Purpose:

Additions to the PDP-9 FORTRAN IV Subroutine Library

Fi Ie Commands

Externa I Subrouti ne

To provide the device-independent .IOPS commands SEEK, ENTER, CLOSE, FSTAT,
RENAM, and DLETE. These commands are used to allow the FORTRAN IV Object Time
System to communi cate wi th .IOPS fi le-ori ented devi ces.

a. SEEK finds and opens a named input fi Ie.

b. ENTER initiates and opens a named output fi Ie.

c. CLOSE terminates an input or an output fi Ie and must be used if SEEK or ENTER
has been used.

d. FSTAT checks for the presence of a named fi Ie.

e. RENAM checks for the presence of a fi Ie and renames it if found.

f. DLETE checks for the presence of a file and deletes it if found.

NOTE

BACKSPACE, REWIND, and ENDFILE commands should
never be used with a device that is operating in the fi le­
ori en ted mode usi ng the above subrouti nes •

3. Ca Iling Sequences:

a. To seek a named file:

CALL SEEK (N ,A)

where N = device number
A = array name containing the 9-character 5/7

ASCII fi Ie name and extension.

The fi Ie array has the following format for the named fi Ie FILNAM EXT:

DIMENSION FILEN (2)
DATA FILEN(l), FILEN(2)/5HFILNA,4HMEXT/

To use this named file for input on .DAT slot 1:

CALL SEEK (l,FILEN)

b. To enter a named fi Ie:

CALL ENTER (N ,A)

where N and A are the same as for SEEK.

c. To close a named fi Ie:

CALL CLOSE (N)

where N is the same as for SEEK.

11-19

d • To check for the presence of a named fi Ie

CALL FSTAT (N, A, I)

where N and A are the same as for SEEK and I = -1

(.FALSE.) if fj Ie not found and I = 0 (. TRUE.) if fj Ie found and action complete.

e. To rename a fjle A and call it B

CALL RENAM (N, A, B, I)

where N, A (B is the same as A), and I are the same as for FSTAT.

f. To delete a named fi Ie

CALL DLETE (N, A, I)

where N, A, and I are the same as for FST AT •

4. Externa I Ca lis

5. Si ze

6. Error Conditi ons

FlOPS, .DA, .SS, .SEEK, .ENTER, .CLOSE, • FSTAT , .RENAM, .DLETE

322 octa I locations

.OTS Error 10 if I/o device number is illegal

.IOPS Error 13 if fj Ie not found on SEEK

.IOPS Error 14 if directory full on ENTER

11-20

Clock Handling

TIME

1. Class: Externa I Subroutine

2. Purpose: To provide the ability to record elapsed time in minutes and seconds

3. Calling Sequence:

Example:

A

4 • Externa I Ca lis:

5. Size:

CALL TIME (IMIN, ISEC, IOFF)

This ca II causes the c lock to be started and the elapsed time recorded as minutes
and seconds in IMIN and ISEC. To stop the clock, set IOFF to non-zero.

Only one call to TIME or TIME10 can be active at any point in the user program.

CALL TIME (1M, IS, IOF)

IOF = 1
WRITE (4,100) 1M, IS

This sequence wi" cause the time taken to execute the code at A to be output.

.DA, • TIMER

53 octal locations

6. Error Conditions:

None

11-21

TIME10

1. Class:

2. Purpose:

Clock Handling

Externa I S ubrouti ne

To provide the ability to record elapsed time in minutes, seconds, and tenths of
seconds.

3. Ca Iii ng Sequence:

Example:

4. Externa I ca lis:

5. Size:

CALL TIME10 (IMIN, ISEC, ISEC10, IOFF)

This call causes the clock to be started and the elapsed time to be recorded as
minutes, seconds, and tenths of seconds in IMIN, ISEC, and ISEC10 respectively.
To stop the clock, set IOFF to non-zero. Only one call at TIME10 or TIME can
be active at any point in the user program.

See TIME

.DA, • TIMER

66 octa I locati ons

6. Error conditions:

None

11-22

Adjustable Dimensioning

ADJ1

1. Class: Externa I S ubrouti ne

2. Purpose: To provi de di mensi on adj ustment on a one di mensi ona I array

3. Calling Sequence:

Example:

4. External calls:

5. Size:

DIMEN SIaN B(l)

CALL ADJ1 (B,A)

Where B is the array whose storage begins at A. A must be an array element (such
as C (200)) wi th suffi ci ent storage beyond A to a IIow for a II the entri es of array B.
The di mensi ons or type of array A do not have to agree with array B.

B cannot be a dummy argument in a subroutine but A can be a dummy argument.

DIMENSION A(300), B(I), C(I)

CALL ADJ1 (B, A(l 01))
CALL ADJ1 (C,A(201))

After the ca lis to ADJ 1, the arrays Band C may be referenced as if they had been
dimensioned as (100) each. No further calls to ADJ1 have to be made.

.DA

17 octa I I ocati ons

6. Error Condi ti ons:

None

II-23

Adjustable Di mensioning

ADJ2

1. Class: Externa I Subroutine

2. Purpose: To provide dimension adjustment for a two dimension array.

3. Calling Sequence:

Example:

4. Externa I Ca lis:

5. Size:

DIMENSION B(l,l)

CALL ADJ2 (B ,A, NR)

where NR is the number of rows to appear in array B.
See ADJl for comments on B and A.

DIMENSION A(300), B(l,l), C(l,l)

CALL ADJ2 (B ,A (1), 10)
CALL ADJ2 (C,A (101), 20)

After the ca lis to ADJ2, the arrays Band C may be referenced as if they had been
dimensioned (10,10) and (20,10) respectively. No further calls to ADJ2 have to
be made.

DA, .AD

36 octal locations

6. Error Conditions:

None

II-24

Adjustable Dimensioning

ADJ3

1. Class: Externa I S ubrouti ne

2. Purpose: To provide dimension adjustment for a three dimension array

3. Calling Sequence:

Example:

4. Externa I Ca lis:

5. Size:

DIMENSION B (1,1,1)

CALL ADJ3 (B,A, NR, NC)

where NR and NC are the number of rows and columns respectively to appear in array
B. See ADJI for comments on Band A.

See ADJI and ADJ2

.DA, .AD

41 octal locations

6. Error Conditions:

None

11-25

PDP-9 SCIENCE LIBRARY

INTRODUCTION

All mathematical routines in the PDP-9 Science Library are described in Part III. Most of the

descriptive material is listed in Table 111-1; in cases where detailed calculations or algorithms are in­

volved, a reference (6.) is made in column 1 to detailed descriptions following the table. Information

given in Table III-1 for each routine includes the routine name, mnemonic, calling sequence, function,

mode, errors, accuracy and timing (where available), storage requirements, and external calls. Rou­

tines are categorized by Intrinsic Functions, External Functions, Sub-Functions, or part of the Arith­

metic Package and are listed in the table accordingly.

Intrinsic Functions

Intrinsic Functions are predefined subprograms that are part of the FORTRAN library. The

type of each Intrinsic Function and its arguments is predefined and cannot be changed. Intrinsic

Functions are referenced in a FORTRAN program by writing the function name along with the desired

arguments in an appropriate FORTRAN statement.

Example:

x = ABS (A)

Externa I Fun ctions

External Functions are independently written programs that are executed each time their

name appears in a FORTRAN program. Each External Function accepts one or more numerical arguments

and computes a single result. SIN, COS, and ALOG are examples of external functions. All basic

External Functions supplied with the FORTRAN system are described in Table III-l.

Sub-F unctions

Sub-Functions are called by Intrinsic and External Functions, but are not directly accessible

to the user via FORTRAN. For example, the Sub-Function . EB is called by the External Function SIN,

and performs the actua I computation of the sine.

The Arithmetic Package

The Arithmetic Package contains all arithmetic routines required for integer, real, and

double precision arithmetic. Both EAE and non-EAE versions are available, depending upon the hardware.

111-1

A ccumu lators

There are three accumulators referred to in the CALLING SEQUENCE column of the table.

These include the A-register, the floating accumulator, and the held accumulator.

A-Reg ister

The A-register is the standard hardware accumulator and is used in some of the computations

that involve integer values.

F loati ng Accumu lator

The floating accumulator is a software accumulator that is included in the REAL ARITHMETIC

package. It is a 3-word accumulator, .AA being the label of the first word, .AB the second, and .AC

the third. Numbers are stored in this accumulator in the following format:

.AA EXPONENT (2's COMP.)

o 17

.AB

SIGN OF MANTISSA

I £ HIGH ORDER MANTISSA

o 17

.AC LOW ORDER MANTISSA

o 17

Negative mantissae are indicated with a change of sign.

Used by both the single and double precision routines, this format is also that of double pre­

cision numbers. Sing Ie precision numbers have a different format and must be converted before and

after use in the floating accumulator. The format of single precision numbers is:

SIGN OF
MANTISSA

o

o

LOW ORDER
MANTISSA '

89

EXPONENT
(2's COMP.)

HIGH ORDER MANTISSA

•

111-2

17

17

Held Accumulator

The held accumulator has the same format as the floating accumulator and is used as tem­

porary storage by some routines. The labels of the three words are CE01, CE02, and CE03.

Calling Sequences

The MACRO-9 calling sequences, given in the third column of Table 3-1, assume in some

cases where there are two arguments, that the appropriate accumulator has been loaded with the first

argument. If the first argument is an integer value, it can be loaded into the A-register with a LAC

instruction. If the first argument is a real or double precision value, the routines .AG and .AO,

respectively, should be used to load the floating accumulator. The DAC instruction may be used to

store the result of routines that return with an integer value in the A-register. The routines .AH and

.AP should be used to store the result of routines that return with real or double precision values in the

floating accumulator.

In calling sequences that use the. DSA pseudo operation to define the symbolic address of

arguments, 400000 must be added to the address field if indirect addressing is involved.

FORTRAN library routines that are used in MACRO-9 programs must be declared with a

.GLOBL pseudo operation in the MACRO-9 program. There must be agreement in the number and type

of arguments between the calling program and the FORTRAN libra~y routine.

The following example shows a section of a MACRO-9 main program that uses the FORTRAN

External Function SIN.

· TITLE
· GLOBL

JMS*
JMP

· DSA
JMS*
· DSA

X · DSA
· DSA

SIN, .AH

SIN
.+2
A
.AH
X

o
o

/JUMP AROUND ARGUMENT
/+400000 IF INDIRECT
/STORE IN REAL FORMAT AT X

When the above MACRO-9 program is loaded, the Linking Loader will attempt to satisfy the

globals by searching the Science Library. The External Function SIN and the REAL ARITHMETIC pack­

age will be loaded. The references to these routines in the MACRO-9 program must be indirect (as

indi cated in the example) since only the transfer vectors are given in the main program.

111-3

......
I

LIl

ROUTINE NAME Mnemonic Calling Sequence

INTRINSIC FUNCTIONS

Exponentiation:
{fC

ARGl (base)}
JMS* .BB

Integer Base, Integer Exponent .BB
LAC ARG2 (exp)

Real Base, Integer Exponent .BC r

DP Base, Integer Exponent .BD

Real Base, Real Exponent . BE

Real Base, DP Exponent . BF -< JMS* SUBR >-
.DSA ADDR of ARG2

(exp.)

OP Base, Rea I Exponent .BG

OP Base, DP Exponent .BH

Absolute Value: r

Real Absolute Value ABS

Integer Absolute Value lABS

DP Absolute Value DABS JMS* SUBR

1-< JMP .+2 ;>-
.DSA ADDR of ARG

Truncation:

Real to Real Truncation AINT
Real to Integer Truncation INT
DP to Integer Truncation IDINT

Remoindering: r

Real Remaindering AMOD

Integer Remaindering MOD

DP Remo indering DMOO

Transfer of Sign: JMS* SUBR

Real Transfer of Sign SIGN JMP .+3
-< . DSA ADDR of ARGl

Integer Transfer of Sign ISIGN .DSA ADDR of ARG2

DP Transfer of Sign DSIGN

Positive Difference:

Real Positive Difference DIM

Integer Positive Oifference IDIM

Conversion:

Integer ta Real Conversion FLOAT

Real to Integer Conversion IFIX to SU~ } JMP .+2
DP to Real Conversion SNGL .DSA ADDR of ARG

Real ta DP Conversion DBLE

Table III-l
PDP-9 Science Library

Function Mode

I

I**'K 1=1**1

A**K R=R**I

A**K D=D**I

A**B R=R**R

A**B D=R**D

A**B D=O**R

A-'B D=D**O

I A I R=ABS(R)

II I I=IABS(I)

I A I D=OABS(O)

rgnOfA time'}
R=AINT(R)

~1est integer I=INT(R)
I=IDINT(D)

Note 2 R=AMOD(R,R)

Note 2 I=MOD(I,Q

Note 2 D=DMOD(D, D)

{"'T'} R=S IGN(R, R)
I=SIGN(I,I)
D=SIGN(D,D)

Sign of A2

Al-MIN(Al,A2) R=DIM(R,R)

I1-MIN(ll,12) I=IDIM(I,Q

A I R=FLOAT(I)

I+-A I=IFIX(R)

A B R=SNGL(D)

A B D=DBLE(R)

- --

Errors

None

#13, if base '::::0

#14, if base .sO

#13, if base .s9
#13, if base "::::'0

#14, if base .:::p
#14, if base .5fJ

None

None

None

None
None
None

None

None

None

None
None
None

None

None

None

None

None

None

t
Timing

Accur. Non- Storage
Bits EAE EAE (Octal) Externa I Ca lis

N.A. Note 1 45 INTEGER

26 23.2 ms 44 .EE, .EF, REAL

32 27.8 ms 46 · DE, . DF, DOUBLE

26 23.0 ms 20 · EE,. EF ,REAL

26 27.6 ms 21 · EE, . DF, DOUBLE

32 27.6 ms 22 · DE, . DF, DOUBLE

32 26.6 ms 21 · DE, . DF, DOUBLE

N.A. 120 ~s 16 .OA,REAL

N.A. 64 ~s 14 .DA

N.A. 120 ~s 16 · DA, DOUBLE

N.A. 365 ~s 15 .DA,REAL
N.A. 180 ~s 13 · DA,REAL
N.A. 180 ~s 13 · DA, REAL, DOUBLE

N.A. 3015 ~s 27 .DA,REAL

N.A. 477 ~s 24 · DA, INTEGER

N.A. 3335 ~s 30 .OA,DOUBLE

N.A. 198 ~s 26 .DA,REAL
N.A. 81 ~s 20 .DA
N.A. 192 ~s 26 .OA,DOUBLE

N.A. 794 ~s 22 .OA,REAL

N.A. 85 ~s 15 · DA, INTEGER

N.A. 246 ~s 11 .DA,REAL

N.A. 180 ~s 13 .DA,REAL

N.A. 144 ~s 27 .DA,DOUBLE

N.A. 115 ~s 11 · DA,REAL

--

NOTES: Timing indicated in this column is estimated unless indicated ta be otherwise with a dagger (t). The dagger indicates actual, average-to-worst~case times based on arbitrarily chosen values.
1. Timing is dependent upon the size of the exponent, but is approximately equal to 335 ~s times n, where n is the largest power of 2 in the exponent.
2. Remaindering is defined as A 1 - [A 1/A21 A2, where [A 1/A21 is the integer whose magnitude does not exceed the magnitude of A 1/A2 and whose sign is the some as A 1/A2.

Timing t
Accur. Non- Storage

ROUTINE NAME Mnemonic Calling Sequence Function Mode Errors Bits EAE EAE (Octal) External Calls

INTRINSIC FUNCTIONS (Cant)

Maximum/Minimum Value: r,

Integer Maximum/Minimum IMNMX JMS' MAXO,MINO, 106 INTEGER, REAL
AMAXO, or AMINO

JMP .+n+l
Integer to Integer Max. MAXO -< . DSA ADDR of ARGl ::> Max. Value I~MAXO(ll, •.. , In) None N.A. Note 3

.DSA ADDR of ARG2
Integer to Integer Min. MINO Min. Value I~MINO(ll, ... , In) None N.A. Note 3

Integer to Real Max. AMAXO .DSA ADDR of ARGn Max. Value R~AMAXO(ll , ... In) None N.A. Note 4

Integer to Real Min. AMINO r Min. Value R~AMINO(ll , ... In) None N.A. Note 4

Real Maximum/Minimum RMNMX JMS' AMAXl ,AMINI, 117 INTEGER, REAL
MAX1, or MIN2

JMP .+n+1
Real to Real Max AMAXl .DSA ADDR of ARGl >- Max. Value R~AMAX1(Rl, ... Rn) None N.A. Note 5

-< . DSA ADDR of ARG2

Real to Real Min. AMINI Min. Value R~AMIN1(Rl, ... Rn) None N.A. Note 5

Real to Integer Max. MAX1 .DSA ADDR of ARGn Max. Value I~AX1(Rl, •.. Rn) None N.A. Note 6

---I

Real to Integer Min. MINl -' Min. Value I~MIN1(R1, ... Rn) None N.A. Note 6

DP Maximum/Minimum DMNMX fM

"

~"~'N} 105 DOUBLE
JMP .+n+1

DP Maximum DMAXl .DSA ADDR of ARG1 Max. Value D~DMAX1(D1, ... Dn) None N.A. Note 7
I

DP Minimum DMINl Min. Value D~DMIN1(Dl, ... Dn) None N.A. Note 7
.DSA ADDR of ARGn

0.. EXTERNAL FUNCTIONS

Square Root:
r,

Real Square Root & SQRT Xl/ 2 R~SQRT(R) #5,ARG < 0 26 t6.657ms t 3.584 ms 66 · DA,. ER,REAL

DP Square Root & DSQRT Xl/2 D~DSQRT(D) #6,ARG < 0 34 t 8.191 ms t 4 .094 ms 66 · DA, . ER, DOUBLE

Exponentia I:

Real Exponential & EXP X
R~EXP(R) #13, ARG ::s.0 26 t 15.489 ms t4.672ms 13 · DA, .EF, .ER,REAL e

DP Exponential & DEXP JMS' SUBR X
D~DEXP(D) #14, ARG .sO 34 t 17.664 ms t7.223ms 13 .DA,DF, .ER, e

DOUBLE

Natural Logarithm: JMP .+2

Real Natural Logarithm & ALOG .DSA ADDR of ARG Loge X R~ALOG(R) #13, ARG <0 26 t 8.197 ms t 4 .092 ms 20 · DA, . EE, . ER, REAL

DP Natural Logarithm & DLOG Log X D~DLOG(D) #14, ARG <0 32 t 15.489 ms t 4.095 ms 21 .DA, .DE, .ER,
1-< ::> e DOUBLE

Common Logarithm:

Real Common Logarithm & ALOG1C Lo9 10 X R~A LOG 1 O(R) #13, ARG<O 26 t8.197ms t 4.094 ms 20 · DA, . EE, . ER, REAL

DP Common Logarithm & DLOG1C Log 10 X D~DLOG 1 O(D) #14, ARG<O 32 t ll . 7ms 21 .DA, .DE, .ER,

Sine:
DOUBLE

Real Sine &, SIN Sin (X) R~SIN(R) None 26 tlO.368ms t 4 .094 ms 13 · DA,. EB, REAL

DP Sine &, DSIN Sin (X) D~SIN(D) None 34 t 16.383 ms t 5 .632 ms 13 · DA, DB, DOUBLE

Cosine:

Real Cosine &, COS Cos (X) R~COS(R) None 26 t II .025 ms t 4 . 901 ms 20 · DA, . EB, REAL
DP Cosine 6 DCOS Cos (X) D~COS(D) None 34 t16.383ms t 6. 145 ms 21 · DA, . DB, DOUBLE

I

NOTES: 3. 57 ~s + 40 I's for each argument.
4. 2421's + 40 ~s for each argument.
5. 168 ~s + 624 ~s for each argument.

6. 2331'S + 6241'5 for each argument.
7. 163 ~s + 607,,, for each argument.

I
'-J

Table III-l
PDP-9 Science library (Cont)

ROUTINE NAME Mnemonic Calling Sequence Function Mode

EXTERNAL FUNCTIONS (Cont)

Arctongent:

ill -1
R=ATAN(2) Real Arctongent ATAN ~MS' ATAN 0' DATAN } tan (a)

JMP -1
DP Arctangent ill DATAN .DSA ADDR or ARG tan (a) D=DATAN(D)

Real Arctangent (x/y) ill -1
R=ATAN2(R,R) ATAN2 tMS

'

ATAN' 0' DATAN} tan (x/y)
JMP .+3 -1

DP Arctangent (x/y) It DATAN2 .DSA ADDR of ARGl tan (x/y) D=DATAN2(D, D)
.DSA ADDR of ARG2

Hyperbolic Tangent &, TANH tMS
*

TANH } tanh (a) R=TANH(R)
JMP .+2
.DSA ADDR OF ARG

SUB-FUNCTIONS
;-,

Sine Computation:

Real Sine ill .EB Sin (a) R=. EB(R)

DP Sine & .DB Sin (a) D=. DB(D)

Arctangent Computation:

Real Arctangent ill .ED -1
tan (a) R=. ED(R)

DP Arctangent &, .DD 1-< JMS* SUBR
-1

~ tan (a) D=. DD(D)

Logarithm (Base 2) Computation: NOTE

Real Log ill .EE Enter with argument in 1092 a R=. EE(R)
DP Log floating accumulator. 1092 a D=. DE(D)

Returns with result in
float i ng a ccumu lator .

Exponentia I Computation:

Real Exponential ill . EF X
R=.EF(R) e

DP Exponential ill . DF :: X
D=.DF(D)

.....
e

Polynomial Evaluation: JMS* . EC or . DC
n

Real Polynomial Evaluation ill .EC
CAL PLiST x= L R=. EC(R2, R1,

i=O
2i+l ... Rn)

ill
C2i+1 Z

DP Polynomial Evaluation .DC PLiST -N /-No. of D=. DC(D2, D1, n
terms +1 x= L ... D) 1-< C /Iast term » i=O n n

2i+l
Cn_1 /next to last C2i+1 Z

C1 /2nd term

Co /1 st term

'-

NOTES: 8. 2.0 ms + 1.3 ms for each coefficient.

Timing
Accur. Non- Storage

Errors (Bits) EAE EAE (0 cto I) External Calls

I
None 26 16.352 ms 5.632 ms 13 .DA, .ED,REAL I

None 34 14.6 ms 13 · DA,. DD, DOUBLE

None 26 12.4 ms 17 .DA, .ED,REAL

Nane 34 16.2 ms 17 · DA,. DD, DOUBLE

None 26 16.383 ms 7.233 ms 47 .DA,.EF,REAL

None 19 9.3 ms 100 · EC, .REAL

None 28 10.8 ms 116 · DC,. DOUBLE

None 26 11.0 ms 65 · EC, .REAL

None 34 14.5 ms 144 · DC,. DOUBLE

#13, ARG $ 0 26 9.0 ms 71 · ER, . REAL
#14, ARG $ 0 32 10.7 ms 101 · ER, . DOUBLE

None 26 12.2 ms 116 REAL

None 34 15.0 ms 137 DOUBLE

None N.A. Note 8 44 REAL

None N.A. Note 8 47 DOUBLE

......
I

00

Table III-l
PDP-9 Science Library (Cont)

Accur.
ROUTINE NAME Mnemonic Colling Sequence Function Mode Errors Bits

SUB-FUNCTIONS (Cont)
~,
Routine that calls

Generol Get Argument .DA Ca I ling Routine Calling Routine N.A. N.A. None N.A.

JMS* SUBR SUBR CAL 0
JMP .+n+1 JMS* .DA

-< . DSA ARGI JMP .+n+1 ~
.DSA ARG2 (address of ARGI)

(address of ARG2)

DSA ARGn
(address of ARGn)

ARITHMETIC PACKAGE

Integer Arithmeti c: INTEGE
ARGI

A-Resister ARG2

Multipl i cation .AD Multiplicand Multiplier I*J 1=1*1 None
Division .AE Dividend Divisor ~ I/J 1=1/1 None
Reverse Division .AF Divisor Dividend JMS* SUBR J/I 1=1/1 None
Subtroction .AY Minuend Subtrohend LAC ARG2 I-J 1=1-1 None
Reverse Subtroction .AZ Subtrohend Minuend --' J-I 1=1-1 None

Double Precision Arithmetic: DOUBLE ARGI,
FL.ACC. ARG2

Load .AO Address N.A. D=.AO(D) None N.A.
Store .AP Value Address N.A. D=.AP(D) None N.A.
Add .AQ Augend Addend A+B D=D-D None
Subtroct .AR Minuend Subtrohend JMS* SUBR A-B D=D-D None

.DSA ARG2
Reverse Subtroct .AU Subtrohend Minuend B-A D=D-D None
Multiply .AS Multiplicand Multiplier A*B D=D*D None
Divide .AT Dividend Divisor A/B D=D/D None
Reverse Divide .AV Divisor Dividend __ B/A D=D/D None

ARGI

Real Arithmetic (Includes REAL FL.ACC. ARG2

Floating):
Load .AG Address N.A. R=.AG(R) None N.A.
Store .AH Value Address N.A. R=.AH(R) None N.A.
Add .AI Augend Addend A+B R=R+R None
Subtroct .AJ Minuend Subtrohend JMS* SUBR A-B R=R-R None

.DSA ARG2
Reverse Subtroct .AM Subtrohend Minuend B-A R=R-R None
Multiply .AK Multiplicand Multiplier A*B R=R*R None
Divide .AL Dividend Divisor A/B R=RjR None
Reverse Divide .AN Divisor Dividend B/A R=RjR None

NOTES: 9. 37 fJS + 15 fJs for eoch argument.

10. The sign of the result (the exclusive OR of the sign bits of .AB and CE02) is stared in .CE. The sign of .AB is saved in CE05.

II. 1308 for EAE, 1648 for non EAE.

12. 7648 for EAE, 733 for non EAE.

r ',g t Imln

Non- Storoge
EAE EAE (Octo I) Externol Calls

Note 9 46 None
I
I

i

Note 11

t 281 fJS
t 352 fJs

t 48 fJS
t 55 fJS

142 REAL

t 70 fJS
t72 fJs
t 255 fJS
t 324 fJS

t2.047ms t 272 fJS
tl.537 ms t 352 fJs

Note 12

t 67 fJS
t 70 fJs

t280 fJS
t 385 fJs

t t 264 fJS t 1.937 ms
1.327 ms t 324 fJS

-------_ .. _---

I
-.0

ARITHMETIC PACKAGE (Cont)

Floating Arithmetic

Float
Fix
Negate

Multiply

Divide

Add

Normalize

Hold
Round & Sign
Sign Control

Short Get Argument

Mnemonic

. AW

.AX

.BA

.CA

.CI

.CC

.CD

. CF

.CH

.CG

.CB

Table III-l
PDP-9 Science Library (Cent)

Calling Sequence Function

A-Resister FL.ACC. }
Integer F.P. No . A-I

F.P. No. JMS* SUBR I-A
A--A

FL.ACC. HELD ACC"'.

Multiplicand Multiplier A*B

Divisor Dividend A/B

Augend Addend JMS* SUBR A+B

Value N.A.

Value N.A .
Value N.A.
Value Value Note 10

-'

{LO } N.A.
JMS* .CB
CAL 0
.DSA 0

Timing
Accur. Non- Storage

Mode Errors Bits EAE EAE (Octal) Externa I Co lis

R=.AW(I) None N.A. 185 fJs
1=. AX(R) None N.A. 65 fJs
R=. BAeR) None N.A. 10 fJS

R=R*R None 774 fJS
(avg)

R=R/R None 1124 fJS
(real)

1444 fJs
(DP)

R=R+R None 300 fJS
(avg)

R=.CD(R) None N.A. 160 fJS
(avg)

R=.CF(R) None N.A. 16 fJS
R=.CH(R) None N.A. 30 fJs
R=.CG(R) None N.A. 30 fJS

R=.CB(R) None N.A. 28 fJS

PDP-9 SCIENCE LIBRARY ALGORITHM DESCRIPTIONS

1. SQUARE ROOT (SQRT, DSQRT)

A first-guess approximation of the square root of the argument is obtained as follows.

If the exponent (EXP) of the argument is odd:

Po = .5

(EXP-l,
-2-)

(EXP-l)

+ ARG 2

If the exponent (EXP) of the argument is even:

(EXP -1)

+ ARG 2

Newton's iterative approximation is then applied three times.

1
"2

(P. + ARG)
I P.

I

2. EXPONENTIAL (EXP, DEXP, .EF, .DF)

The function eX is calculated as 2 x lo92e where x log e , 2

will have an integral portion (I) and a fractional portion (F). Then

where l=(;
i=O

The values of Care:

Co 1.0

C1 0.34657359

C2 0.06005663

C3 0.00693801

C4 0.00060113

C5 0.00004167

C6 0.00000241

C7 = 0.00000119

Cs = 0.00000051S

III-10

and n ,= 6 for EXPand .EF,
or n = 8 for DEXP and .DF.

3. NATURAL AND COMMON LOGARITHMS (ALOG, ALOG10, DLOG, DLOG10)

The exponent of the argument is saved as one greater than the integra I portion of the

result. The fractional portion of the argument is considered to be a number between

1 and 2. Z is computed as fo lIows.

x - .[2
Z=---

X + .J2

Then log X = - + ~ 1 en
2 2 i=O

C Z2i+i\
2i + 1)

where n = 2 for ALOG, and n = 3 for DLOG. The values of C are as follows.

ALOG & ALOG10 DLOG & DLOG10

C1 2.8853913 C1 2.8853900

C3 0.96147063 C3 0.96180076

C5 = 0.59897865 C5 0.57658434

C7 0.43425975

Finally,
log X = (log2 X) (log 2), for ALOG & DLOG

e e

and

10910 X = (l092 X) (log 102) , for ALOG1 0 & DLOG10.

4. SINE AND COSINE (SIN, COS, DSIN, DCOS, .EB, .DB)

The argument is converted to quarter circles by multiplying by 2/1Y. The low two bits

of the integra I portion determine the quadrant of the argument and produce a modified

value of the fractional portion (Z) as follows.

Low 2 Bits Quadrant Modified Value (Z)

00 I F
01 II 1-F
10 III -F
11 IV -(l-F)

Z is then applied to the following polynomial expression.

sin X =(~
i=O

C Z 2i + 1,\
2i + 1)

where n=4 for REAL routines and n=6 for DP routines. The values of C are as follows.

III-ll

REAL ROUT INES DP ROUTINES

C1 = 1.570796318 C1 = 1.5707932680

C3 =-0.645963711 C3 = -0.6459640975

C5 = 0.079689677928 C5 = 0.06969262601

C7 = -0. 00467376557 C7 =-0.004681752998

C9 = O. 0001 5148419 C9 = 0.00016043839964

C11 = -0.000003595184353

C13 = 0.000000054465285

The argument for COS and DCOS routines is adjusted by adding 'h' /2. The sin sub­

function is then used to compute the cosine according to the following relationship:

cos x = sin (~ + x)

5. ARCTANGENT (ATAN, DATAN, ATAN2, DATAN2, .ED, .DD)

ForX less than or equal to 1, Z=X, and:

arctangent X = (.~
1=0

2i+l\
C2i+1 Z)

where n = 7 for REAL routines and n = 3 for DP routines. For X greater than 1,

Z = l/X, and:

arctangent X = ¥ -(.~
1=0

2i+l\
C2i+1 Z)

where n = 8 for REAL routines and n = 3 for DP routines. The values of C are as

follows.

REAL ROUTINES

C 1 = 0 .9999993329

C3 = - 0.3332985605

C 5 = 0 • 1 994653599

C7 = - 0.1390853351

C 9 = 0 .0964200441

'C 11 = -0.0559098861

C 13 = 0.0218612288

C 1 5 = - 0 .0040540580

III-12

DP ROUTINES

C 1 = O. 9992150

C3 = -0.3211819

C5 = 0.1462766

C7 = -0.0389929

6. HYPERBOLIC TANGENT (TANH)

tanh IX I =~- ~2~'\
l+e 2\X \ -.;

x x log e
e ,calculated as 2 2, where x 1092e will have an integral portion (I) and a

fractional portion (F), then:

where

F (n
2 = .~

1=0
and n = 6

The values of C are as follows.

C1 1.0

C2 0.34657359

C3 0.06005663

C4 0.00693801

C5 = 0.00060113

C6 0.00004167

C7 O. 00000241

7. LOGARITHM, BASE2(.EE,.DE)

The exponent of the argument is saved as one greater than the integer portion of the

result. The fractional portion of the argument is considered to be a number between

1 and 2. Z is computed as follows.

x - ~2
Z=---

X+~2

Then

1 en log X = - + ~
2 2 .-0

1-

2i+1'\
C2i+1 Z)

where n = 2 for .EE and n = 3 for .DE. The values of C are as follows.

III-13

.EE .DE

C1 2.8853913 C1 2.8853900

C3 0.96147063 C3 0.96180076

C5 0.59897865 C5 0.57658434

C7 0.43425975

8. POLYNOMIAL EVALUATOR (.EC, .DC)

The polynomial is evaluated as follows.

x = Z (C + Z2 (C ... +Z2 (C Z2 + C 1))) o 1 n n-

III-14

READER'S COMMENTS

UTILITY PROGRAMS
ADVANCED SOFTWARE SYSTEM

PROGRAMMER'S REFERENCE MANUAL
DEC-9A-KFZA-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its publications.
To do this effectively, we need user feedback: your critical evaluation of this manual and the DEC products described.

Please comment on this publication. For example, in your judgment, is it complete, accurate, well-organized, well-

written, usable, etc? _______________________________________ _

What is the most serious fault in this manual? _____________________________ _

What single feature did you like best in this manual? __________________________ _

Did you find errors in this manual? Please describe. ___________________________ _

Please describe your position. ____________________________________ _

Name ______________________ Organization'-_________________ _

StreetL _____________________ State _______________ Zip'---___ _

" ... Fold Here .. .

.. Do Not Tear - Fold Here and Staple

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by: momoomo
Digital Equipment Corporation
Software Quality Control
Building 12
146 Main Street
Maynard, Mass. 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

momaomo

DIGITAL EQUIPMENT CORPORATION. MAYNARD, MASSACHUSETTS

Printed in U.S.A.

