Corsote CoPY

FORTRAN [V

Language
Object Time System
Science Library

ADVANCED
SOFTWARE SYSTEM

PDP-S

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

FORTRAN [V

Part |. Language
Part II. Object Time System
Part lll. Science Library

ADVANCED SOFTWARE SYSTEM
Programmer’'s Reference Manual

Order No.DEC-9A-KFZA-D from Program Library, Maynard, Mass. Price: $2.50

Direct comments concerning this manual to Software Quality Control, Maynard, Mass.

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

1st Edition April 1968
2nd Edition (Revised) October 1968

Copyright (C) 1968 by Digital Equipment Corporation
pyr Y P p

The following are registered trademarks of Digital
Equipment Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

CONTENTS

Part I: Language CHAPTER 1
INTRODUCTION
1.1 Fortran
1.2 Source Program Format
1.2.1 Card Format (IBM Model 029 Keypunch Codes)
1.2.2 Paper Tape Format
CHAPTER 2
ELEMENTS OF THE FORTRAN LANGUAGE
2.1 Constants
2.1.1 Integer Constants
2.1.2 Real Constants (6~decimal-digit accuracy)
2.1.3 Double-Precision Constants (9-decimal-digit accuracy)
2.1.4 Logical Constants
2.1.5 Hollerith Constants
2.2 Variables
2.2.1 Variable Types
2.2.2 Integer Variables
2.2.3 Real Variables
2.2.4 Double-Precision and Logical Variables
2.3 Arrays and Subscripts
2.3.1 Arrangement of Arrays in Storage
2.3.2 Subscript Expressions
2.3.3 Subscripted Variables
2.4 Expressions
2.4.1 Arithmetic Expressions
2.4.2 Relational Expressions
2.4.3 Logical Expressions
2.5 Statements

CHAPTER 3
ARITHMETIC STATEMENTS

Page

I-1
I-1
I-2
-2

I-11
I-12
I-13

(S, BN S, S, NG, BN G BN S NN NS, NS NN, BN TS TN S N &)}

.

RN ORI O ST SR O S

g O O
w W W

© N ot x wo

w N

CONTENTS (Cont)

CHAPTER 4
CONTROL STATEMENTS
Unconditional Go To Statements
Assign Statement
Assigned Go To Statement
Computed Go To Statement
Arithmetic If Statement
Logical IF Statement
DO Statement
CONTINUE Statement
PAUSE Statement
STOP Statement
END Statement

CHAPTER 5

INPUT/OUTPUT STATEMENTS

General 1/O Statements
Input/Output Argument Lists
READ Statement
WRITE Statement

FORMAT Statements
Specifying FORMAT
Conversion of Numeric Data
P-Scale Factor
Conversion of Alphanumeric Data
Logical Fields, L Conversion

Blank Fields, X Conversion

FORTRAN Statements Read in at Object Time

Printing of a Formatted Record
Auxiliary 1/O Statements

BACKSPACE Statement

REWIND Statement

ENDFILE Statement

Page

I-17
I-17
I-17
I-18
I-18
I-18
I-19
I-21
I-21
I-21
I-21

I-24
1-24
1-24
I-25
[-26
I-26
1-28
1-30
1-31
I-31
I-31
1-32
[-32
I-33
I-33
I-33
1-33

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5
7.5.1

1-1

CONTENTS (Cont)

CHAPTER 6
SPECIFICATION STATEMENTS
Type Statements
DIMENSION Statement
COMMON Statement
EQUIVALENCE Statement
EXTERNAL Statement
DATA Statement
CHAPTER 7
SUBPROGRAMS
Statement Functions
Intrinsic or Library Functions
External Functions
Subroutines
BLOCK DATA Subprogram
Example of BLOCK DATA Subprogram

APPENDIX 1
SUMMARY OF PDP-9 FORTRAN IV STATEMENTS

APPENDIX 2
A NOTE ON PDP-9 FORTRAN IV

APPENDIX 3
FORTRAN IV AND MACRO-9 LINKAGE

APPENDIX 4
CHAINING FORTRAN IV PROGRAMS

APPENDIX 5
FORTRAN IV ERROR LIST

APPENDIX 6
SYMBOL TABLE SIZES (F4 V3A)

ILLUSTRATIONS

FORTRAN Coding Form

Page

I-35
I-36
1-36
1-37
I-38
1-38

1-39
1-40
1-42
1-44
1-45
1-45
1-47
1-49
I-51
1-55

1-57

I-59

TABLES

Page
1-1 Intrinsic Functions 1-41
1-2 External Functions 1-43
Part II: FORTRAN IV OBJECT - TIME SYSTEM
Introduction I1-1
OTS Binary Coded Input/Output I1-3
OTS Binary Input/Output 11-6
OTS Auxiliary Input/Output I11-8
OTS IOPS Communication 11-10
OTS Calculate Array Element Address 11-12
OTS Computed GOTO 11-14
OTS Stop 1-15
OTS Pause 11-16
OTS Octal Print 11-17
OTS Errors [1-18
File Commands I1-19
Clock Handling I1-21
Adjustable Dimensioning 11-23
TABLES
II-1 OTS Errors 11-2
Part 11I: PDP-9 SCIENCE LIBRARY
Introduction | -1
Intrinsic Functions -1
External Functions -1
Sub=Functions -1
The Arithmetic Package -1
Accumulators I11-2
A-Register I11-2
Floating Accumulator I11-2
Held Accumulator 11-3
Calling Sequences I11-3

Algorithm Descriptions I1I-10

vi

TABLES
Page
-1 PDP-9 Science Library -5

vii

- —— o — —— — S G S e S G ey Gma e s - Sm— . — - — —

HOW TO OBTAIN REVISIONS AND CORRECTIONS

Notification of changes and revisions to currently available Digital software and
of new software manuals is available from the DEC Program Library for the PDP-5,
8,8/S, 8/1, LINC-8, the PDP-4, 7, and 9 is currently published in DECUSCOPE,
the magazine of the Digital Equipment Computer User's Society (DECUS). This
information appears in a section of DECUSCOPE called "Digital Small Computer
News",

Revised software products and documents are shipped only after the Program Library
receives a specific request from a user,

DECUSCORPE is distributed periodically to both DECUS members and to non-members
who request it. If you are not now receiving this information, you are urged to
return the request form below so that your name will be placed on the mailing list.

To: DECUS Office,
Digital Equipment Corporation,
Maynard, Mass. 01754
Please send DECUS installation membership information.
Please send DECUS individual membership information.

Please add my name to the DECUSCOPE non-member mailing list.

Name

Company
Address

(Zip Code)

PREFACE

This manual describes the FORTRAN IV language and compiler system for the PDP-9 com-

puter. [t provides the user with the necessary information for writing FORTRAN programs for compila-

tion and execution with the PDP-9 Advanced Software System. The manual is divided into three parts:

Basic FORTRAN Language (Part), FORTRAN Object Time System (Part 1), and the FORTRAN Science

Library (Part 111).

Part |, Basic FORTRAN IV Language, is divided into chapters as follows:

Chapter 1.
Chapter 2.
Chapter 3.
Chapter 4.
Chapter 5.
Chapter 6.
Chapter 7.

Introduction

Elements of the FORTRAN Language
Arithmetic Statements

Control Statements

Input/Qutput Statements
Specification Statements

Subprograms

Part | is intended to familiarize the user with specific PDP-9 FORTRAN coding procedures.

Several excellent texts are available for a more elementary approach to FORTRAN programming. "A

Guide to FORTRAN IV Programming," by Daniel D. McCracken (published by John Wiley and Sons,

Inc.) is recommended.

Part Il, FORTRAN IV Object Time System, describes the group of subprograms that process

compiled FORTRAN statements, particularly 1/O statements, at execution time.

Part I1l, PDP-9 Science Library, provides detailed descriptions of the intrinsic functions,

external functions, subfunctions, and arithmetic routines in the PDP-9 Science Library.

PDP-9 FORTRAN IV is essentially the language specified by the United States of America

Standards Institute (X3.9 - 1966) with the exceptions noted in Appendix 2 at the end of Part | of this

manual .

CHAPTER 1
INTRODUCTION

1.1 FORTRAN

Each type of digital computer is designed to respond to certain machine language codes.
The codes are different for each type of computer. FORTRAN makes it unnecessary for the scientist or
engineer to learn the machine language for specific computers. Using FORTRAN, he can write pro-
grams in a simple language that adapts easily to scientific usage. The FORTRAN language is composed
of mathematical-like statements, constructed in accordance with precisely formulated rules. A
FORTRAN program consists of meaningful sequences of FORTRAN statements that direct the computer to
perform specific operations and calculations. A program written using FORTRAN statements is called a
source program. |t must be translated by the FORTRAN compiler program before execution. The trans-
lated version of the program is referred to as an object program. It is in a binary-coded form that the

machine can understand.

1.2 SOURCE PROGRAM FORMAT

The FORTRAN character set consists of the 26 letters:

AI BI Cl DI El FI Gl l-ll Il JI KI I-I MI
N,O,P,QR,ST,UVWXY,Z

the 10 digits:
0,1,2,3,4,5,6,7,8,9
and 11 special characters:

Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthssis
Right Parenthesis
Comma ,

Decimal Point .
Dollar Sign $

+ 1

e NG |

1.2.1 Card Format (IBM Model 029 Keypunch Codes)

The FORTRAN source program is written on a standard FORTRAN coding sheet (Figure 1-1)
which consists of the following fields: statement number field, line continuation field, statement field,
and identification field.

The FORTRAN statement is written in columns 7-72. If the statement is too long for one
line, it can be continued in the statement field of as many lines as necessary if column 6 of each con-
tinuation line contains any character other than blank or zero. There are two exceptions to this rule:
(1) the DO statement must be on one line; and (2) the equal sign (=) of an assignment statement must
appear on the first line.

For one statement to be referenced by another, a statement number is placed in columns 1
through 5 of the first line of that statement. This number is made up of digits only, and may contain
from one to five digits. Leading zeros and all blanks in this field are ignored. The statement numbers
are used for identification only, and may be assigned in any order.

The FORTRAN compiler ignores the last eight columns (columns 73 through 80) which may be
used for program identification, sequencing, or any other purpose desired by the user. Comments may
be included in the program by putting a "C" in column 1 of each line containing a comment (or continu-
ation of a comment). The compiler ignores these comments except for printing them.

Blanks may be used to aid readability of a FORTRAN statement, except where otherwise

indicated in this manual.

1.2.2 Paper Tape Format

When FORTRAN source program statements are prepared on paper tape, the sequence of
characters is exactly the same as for card input, and each line is terminated with a carriage return,
line feed sequence.

A statement number (all digits) may be written as the first five characters, or a "C" may be
the first character to indicate a comment line or a continuation of a comment line. For statement con-
tinuation lines, any numeric character other than blank or zero is written as the sixth character. The
seventh character begins the statement and must be alphabetic. Each line is terminated with a carriage
return, line feed.

The TAB key can increase the speed of writing FORTRAN statements on paper tape. A TAB
followed by an alphabetic character begins the statement in column 7. A TAB followed by a digit places
the digit in column 6, indicating a statement continuation line. A statement number less than five digits,
followed by a TAB, places the next character in column 6 if it is a digit, or in column 7 if it is a letter.

If it is desired to have a title at the beginning of the tape for listing purpose, it must be

entered as a comment line.

€1

FORTRAN CODER DATE PAGE
CODING FORM PROBLEM
Clomment|o -
S Symbolc g
8 Boolean|] FORTRAN STATEMENT IDENTIFICATION
PARECER RS b
. 5
)
1234 5(6]/789101112131415161718192021222324 2526272829303132333435363738394041 424344454647 484950 51525354555657585960616263646566676869707172{7374757677 787980
+ S S S S G S S S S S S S S S S S S VO SO0 S S S S S S S S S S S S S SR ettt
R B L L e o L o e o A e o B
bt S— + + + + + + +—+ + + + +———+ +—+ +————+——+ +—+—+ +——+—+ +—+—+—+—+—+
S S U S G S B SO
4t b + N 4 + At U N
+ (- F U S S W T + + n P TRt + ek T n PRI U S S S S R Pt U S W R S ST E § T SN T W S S
+
i
t +—t t R +—+ - ——————+ —t——————+——+——+—+—+—+————+—+—+—+—+
]
I +—+ At b A
! 4 + + PR IR T S S S S S G T N | U SRR TS U S A VA S S G ST S I S W T T WA S WA W TR T S U SN WU WU SR S S S St T S S W S Tt
+ et ——————+ y +——————
et
- +—+ +———+—+—+ H——+———+—+
bt I R B LA 2 S T T o B L S e S o B o A
S S S S S S S S T R R U S S U U U U I U A RSN B U S
+ot At + +—— +—+ +—+ + +——+ + —————+
S R Y DS AN TS S S0 WO S SO0 WU SN S0 S 0 WHUF SN U S0 UL SN SN U SO S G0 WY NN S S TR SO0 S UH S WA S0 WS U S S A U5 WA (AN U S NN U S S WA N NS U S T WO WA N A B S W o | I N U U Y
1+ L e e e LS S B B 4 Pt 4+ +— L e +—+—+ t +—+— —+—t+++t+t+t+++++1+ + +—+—+
+ b R A B A o B B
bbbttt ettt PPN —t NG I U S
A +——+—+ + A
L4 1 S G N S G OSSN0 SO VO WA S S SN ST SRS WD SO S SN S S SO VA I AU A S S S U S-S U S S B G G0 S S S S W WU U 0 N A S S U S G S S N S S S T B U W e | R S U S St
©1 234567 89101112131415161718192021222324252627282930 313233 34 353637383940 41 424344454647 484950 515253545556 57 585960610626364 656867686070 71 72| 7374757877 7879 80|
- P St

PG DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS 100 12764

Figure I-1 FORTRAN Coding Form

CHAPTER 2
ELEMENTS OF THE FORTRAN LANGUAGE

2.1 CONSTANTS

There are five types of constants allowed in the FORTRAN source program: integer, real,

double-precision, logical, and Hollerith.

2.1.1 Integer Constants

An integer constant is a number written without a decimal point, consisting of one to six
decimal digits. A + or - sign preceding the number is optional. The magnitude of the constant must

be less than or equal to 131071 (2]7-1).

Example:

+97
0
-2176
576
. 17 . .
If the magnitude>2 " -1, an error message will be output. Negative numbers are repre-

sented in 2's complement notation.

2.1.2 Real Constants (6~decimal-digit accuracy)

A real constant is an integer, fraction, or mixed format number and may be written in the

following forms:

a. A number consisting of one to six significant decimal digits with a decimal point included
someplace within the constant. A + or - sign preceding the number is optional.

b. A number followed by the letter E, indicating a decimal exponent, and a 1- or 2-digit
constant with magnitude less than 76* indicating the appropriate power of 10. A + or - sign may pre-

cede the scale factor. The decimal point is not necessary in real constants having a decimal exponent.

Example:

352.
+12.03
-.0054
5.E-3
+5E7

*If the adjusted magnitude exceeds 75, an error results. .999999E75 is legal, but 999.999E73 is
illegal.

Real constants are stored in two words in the following format:

LOW ORDER EXPONENT
MANTISSA (2'S COMP)

M:;JGTT‘sg:] HIGH ORDER MANTISSA

Negative mantissae are indicated with a change of sign.

2.1.3 Double-Precision Constants (9-decimal-digit accuracy)

A double-precision constant is written as a real number followed by a decimal exponent,
indicated by the letter D and a 1- or 2-digit constant with magnitude not greater than 76. A + or -
sign may precede the constant and may also precede the scale factor. A decimal point within the
constant is optional. A double-precision constant is interpreted identically to a real constant, the

only difference being that the degree of accuracy is greater.

Example:

-3.0D0
987.6542D15
32.123D+7

Double-precision constants are stored in three PDP-9 words:

EXPONENT (2'S COMP.)
0 17
NEGATIVE
MANTISSAE
ARE
SIGN OF __| INDICATED
e — 1> HIGH ORDER MANTISSA ? vt
CHANGE
[o] 1 17 OF
SIGN
LOW ORDER MANTISSA
0 17

2.1.4 Logical Constants

The two logical constants are the words TRUE and FALSE, each both preceded and followed

by a decimal point.

TRUE. 777777
.FALSE. 0

2.1.5 Hollerith Constants

A Hollerith constant is written as an unsigned integer constant, whose value, n, must be
equal to or greater than one and less than or equal to five, followed by the letter H, followed by
exactly n characters, which are the Hollerith data. Any FORTRAN character, including blank, is
acceptable. The Hollerith constants are used only in CALL and DATA statements and must be associ-
ated with real variable names. The Hollerith constants are packed in 7-bit ASCII, five, per two words

of storage with the rightmost bit always zero.

Examples:
THA
4HA$CD
2.2 VARIABLES

A variable is a symbolic representation of a numeric quantity whose values may change
during the execution of a program either by assignment or by computation. The symbol's representation,
or name of the FORTRAN variable consists of from one to six alphanumeric (alphabetic and numeric)

characters, the first of which must be alphabetic.

Example:

X =Y +10. Both X and Y are variables; X by computation, and Y by
assignment in some previous statement.

TEST
GAMMA
X12345

NOTE

If three or less characters are used for each symbol, con-
siderable core space can be saved during compi lation.

2.2.1 Variable Types

Variables in FORTRAN may represent one of the following types of quantities: integer, real,
double-precision, or logical. This corresponds to the type of constant the variable is supposed to

represent.

2.2.2 Integer Variables

Variable names beginning with the letters |, J, K, L, M, or N are considered to be integer
variables. If the first letter is not one of the above letters, it is an integer variable only if it was named

in a previous integer type specification statement.

-7

2.2.3 Real Variables

Variable names beginning with letters other than I, J, K, L, M, or N are considered to be
real variables. If the first character is one of the above letters, it is a real variable only if it was

named in a previous real type specification statement.

2.2.4 Double-Precision and Logical Variables

A type specification statement is the only way to assign a variable value to one of these two

types. This is done with either a double precision statement or a logical statement.

2.3 ARRAYS AND SUBSCRIPTS

An array is an ordered set of data identified by a symbolic name. Each individual quantity
in this set of data is referred to in terms of its position within the array. This identifier is called a sub-

script. For example,

A (3)
represents the third element in a one-dimensional array named A. To generalize further, in an array A
with n elements, A (I) represents the lth element of the array A where | =1, 2,...,n.
FORTRAN allows for one, two, and three-dimensional arrays, so there can be up to three

subscripts for the array, each subscript separated from the next by a comma. For example,

B (1, 3
represents the value located in the first row and the third column of a two-dimensional array named B.
A dimension statement defining the size of the array (i.e., the maximum values each of its subscripts

can attain) must precede the array in the source program.

2.3.1 Arrangement of Arrays in Storage

Arrays are stored in column order in ascending absolute storage locations. The array is stored
with the first of its subscripts varying most rapidly and the last varying least rapidly. For example, a
three-dimensional array A, defined in a DIMENSION statement as A (2,2,2) will be stored sequentially

in this order:

A(1LT,1)
A2,1,1)
A(1,2,1)
A(2,2,1) ascending absolute
A(1,1,2) storage locations

A(2,1,2)
AQ1,2,2)
A@,2,2) V

2.3.2 Subscript Expressions

Subscripts may be written in any of the following forms:

where C and k represent unsigned integer constants and V represents an unsigned integer variable.

Example:

I

13
IMOST + 3
ILAST -1
5 * IFIRST
2*J+9
4* M1 -7

2.3.3 Subscripted Variables

A subscripted variable is a variable name followed by a pair of parentheses which contain

one to three subscripts separated by commas.

Example:

A (1)

B(l,J-23

BETA(5*J+9, K+7, 6 *JOB)
2.4 EXPRESSIONS

An expression is a combination of elements (constants, subscripted or nonsubscripted varia-
bles, and functions) each of which is related to another by operators and parentheses. An expression
represents one single value which is the result of the calculations specified by the values and operators
that make up the expression. The FORTRAN language provides two kinds of expressions: arithmetic

and logical.

2.4.1 Arithmetic Expressions

An arithmetic expression consists of arithmetic elements joined by the arithmetic operators +,

-, *, /, and **, which denote addition, subtraction, multiplication, division, and exponentiation,

respectively. An expression may consist of a single element (meaning a constant, a variable, or a

function name). An expression enclosed in parentheses is considered a single element. Compound

expressions use arithmetic operators to combine single elements.

2.4.1.1 Mode of an Expression - The type of quantities making up an expression determines its mode;

i.e., asimple expression consisting of an integer constant or an integer variable is said to be in the
integer mode. Similarly, real constants or variables produce a real mode of expression, and double-
precision constants or variables produce a double-precision mode. The mode of an arithmetic expression
is important because it determines the accuracy of the expression.

In general, variables or constants of one mode cannot be combined with variables or constants

of another mode in the same expression. There are, however, exceptions to this rule.

a. The following examples show the modes of the valid arithmetic expressions involving the
use of the arithmetic operators +, -, *, and /. 1, R, and D indicate integer, real, and double-

precision variables or constants. A + is used to indicate any one of the four operators:

I +1 Integer result

R+R Real result

R+ D l

D+R | Double-precision result
D+D/

b. When raising a value to a power, the mode of the power may be different than that of
the value being raised. The following examples show the modes of the valid arithmetic expressions

using the arithmetic operator**. As above, |, R, and D indicate integer, real, and double-precision.

[**]
R**|
R**R %
R**D \
*%
g**IIQ { Double-precision result
)

D**D

Integer result

Real result

The subscript of a subscripted variable, which is always an integer quantity, does not affect

the mode of the expression.

2.4.1.2 Hierarchy of Operations - The order in which the operations of an arithmetic expression are

to be computed is based on a priority rating. The operator with the highest priority takes precedence
over other operators in the expression. Parentheses may be used to determine the order of computation.

If no parentheses are used, the order is understood to be as follows:

Function reference
**(Exponentiation)

Unary minus evaluation

* and/(multiplication and division)
+ and -(addition and subtraction)

® Q 0 O Q

Within the same priority, operations are computed from left to right.
Example:
FUNC + A*B/C-D(l,J) + E**F*G-H
interpreted as,
FUNC + ((A*B)/C) - D(1,J) + (E * G) - H

2.4.1.3 Rules for Constructing Arithmetic Expressions -

a. Any expression may be enclosed in parentheses.
b. Expressions may be preceded by a + or - sign.
c. Simple expressions may be connected to other simple expressions to form a compound
expression, provided that:
(1) No two operators appear together.
(2) No operator is assumed to be present.
d. Only valid mode combinations may be used in an expression (described under Mode of an
Expression, Section 2.4.1.1).
e. The expression must be constructed so that the priority scheme determines the order of

operation desired (described in Section 2.4.1.2, Hierarchy of Operations).

Examples of arithmetic expressions follow:

3
A(l)

B+7.3

C*D

A + (B*C) - D**2 + E/F

2.4.2 Relational Expressions

A relational expression is formed with the arithmetic expressions separated by a relational
operator. The result value is either true or false depending upon whether the condition expressed by
the relational operator is met or not met. The arithmetic expressions may both be of the integer mode
or they may be a combination of real and/or double-precision. No other mode combinations are legal.

The relational operators must be preceded by and followed by a decimal point. They are:

LT. Less than (<) <

P

.LE. Less than or equal to @

.EQ. Equal to (9)

.NE. Not equal to (#

.GT. Greater than (>)

.GE. Greater than or equal to (>)
Examples:

N .LT.5

DELTA + 7.3 .LE. B/3E7
(KAPPA +7/5 .NE.IOTA
1.736D-4.GT.BETA
X.GE. Y*Z**2

2.4.3 Logical Expressions

A logical expression consists of logical elements joined by logical operators. The value is
either true or false. The logical operator symbols must be preceded by and followed by a decimal point.

They are:

.NOT. Logical negation. Reverses the state of the logical quantity that
follows.

.AND. Logical AND generates a logical result (TRUE or FALSE) deter-
mined by two logical elements as follows:

T .AND. T generates T
T .AND. F generates F
F .AND. T generates F
F .AND. F generates F

.OR. Logical OR generates a logical result determined by two logical
elements as follows:

T .OR. T generates T
T .OR. F generates T
F .OR. T generates T
F .OR. F generates F

2.4.3.1 Rules for Construction Logical Expression -

a. A logical expression may consist of a logical constant, a logical variable, a reference
to a logical function, a relational expression, or a complex logical expression enclosed in parentheses.

b. The logical operator .NOT. need only be followed by a logical expression, while the
logical operators .AND. and .OR. must be both preceded by and followed by a logical expression for
more complex logical expressions.

c. Any logical expression may be enclosed in parentheses. The logical expression following

the logical operator .NOT. must be enclosed in parentheses if it contains more than one quantity.

d. No two logical operators may appear in sequence, not separated by a comma or paren-
thesis unless the second operator is .NOT. In addition, no two decimal points may appear together,
not separated by a comma or parenthesis, unless one belongs to a constant and the other to a relational

operator.

2.4.3.2 Hierarchy of Operations - Parentheses may be used as in normal mathematical notation to

specify the order of operations. Within the parentheses, or where there are no parentheses, the order

in which the operations are performed is as follows:

Evaluation of functions

a.
b. **(Exponentiation)

c. Evaluation of unary minus quantities

d. * and/ (multiplication and division)

e. *and - (addition and subtraction)

f. .LT., .LE., .EQ., .NE., .GT., .GE. o Lo AL UM T
g. .NOT. — ™ousT #AU;E :ZEZGEE‘; 75";55'557’4%4%)‘ OT:5£ sy rr8oL
h. .AND. and .OR.

i. = Replacement operator

Unlike an arithmetic expression where sequence of elements of the same priority (i.e., oper-
ations being performed from left to right) is important for the end result of the expression, the order of

operation within the same priority in logical and relational expressions is unimportant.

2.5 STATEMENTS

Statements specify the computations required to carry out the processes of the FORTRAN pro-
gram. There are four categories of statements provided for by the FORTRAN language:

a. Arithmetic statements define a numerical calculation.

b. Control statements determine the sequence of operation in the program.

c. Input/output statements are used to transmit information between the computer and

related input/output devices.

d. Specification statements define the properties of variables, functions, and arrays appear-

ing in the source program. They also enable the user to control the allocation of storage.

An arithmetic statement is a mathematical equation written in the FORTRAN language which

defines a numerical or logical calculation. It directs the assignment of a calculated quantity to a given

CHAPTER 3

ARITHMETIC STATEMENTS

variable. An arithmetic statement has the form

where V is a variable (integer, real, double-precision, or logical, subscripted or nonsubscripted) or any

array element name; = means replacement rather than equivalence, as opposed to the conventional

mathematical notation; and E is an expression.

In some cases, the mode of the variable may be different from that of the expression.

cases an automatic conversion takes place. The rules for the assignment of an expression E to a variable

V are as follows:

V Mode

Integer
Integer
Integer
Real
Real

Real

Double-precision
Double-precision

Double=precision

Logical

Mode conversions involving logical quantities are illegal unless the mode of both V and E is

E Mode

Integer

Real
Double=-precision
Integer

Real

Double-precision
Integer
Real

Double-precision

Logical

logical. Examples of an assignment statement:

ITEM = ITEM + 1

A(l) = B(I) + ASSIN (C (1))

V = .FALSE.
X=A.GT.B.AND.C

A=B

.LE. G

Assignment Rule

Assign

Fix and assign
Fix and assign
Float and assign
Assign

Double-precision eval-
vate and real assign

Double-precision float
and assign

Double-precision eval-
vate and assign

Assign
Assign

CHAPTER 4
CONTROL STATEMENTS

The statements of a FORTRAN program normally are executed as written. However, it is
frequently desirable to alter the normal order of execution. Control statements give the FORTRAN user
this capability. This section discusses the reasons for control statements and the ways in which they

may be used.

4.1 UNCONDITIONAL GO TO STATEMENTS

The form of the unconditional GO TO statement is

GO TOn
where n is a statement number. Upon the execution of this statement, control is transferred to the state-
ment identified by the statement number, n, which is the next statement to be executed.

Example:
GO 1O 17

4.2 ASSIGN STATEMENT

The general form of an ASSIGN statement is
ASSIGN n TO i
where n is a statement number and i is a nonsubscripted integer variable name which appears in a sub-
sequently executed assigned GO TO statement. The statement number, n, is the statement to which
control will be transferred after the execution of the assigned GO TO statement.
Example:

ASSIGN 27 TO ITEST

4.3 ASSIGNED GO TO STATEMENT

Assigned GO TO statements have the form

GO TO i, (n], Nyr =nep M)

m

where i is a nonsubscripted integer variable reference appearing in a previously executed ASSIGN

statement, and n., n,,, n_are the statement numbers which the ASSIGN statement may legall
17 M2 m y legally

assign to i. Examples:

ASSIGN 13 TO KAPPA
GO TO KAPPA, (1, 13, 72, 100, 35)

There is no object time checking to ensure that the assignment is one of the legal statement

numbers.

4.4 COMPUTED GO TO STATEMENT

The format of a computed GO TO statement is
GO TO (n], UV nm), i

where Ny, Ny, ..., nare statement numbers and i is an integer variable reference whose value is
greater than or equal to 1 and less than or equal to the number of statement numbers enclosed in paren-
theses. If the value of i is out of this range, the statement is effectively a CONTINUE statement.
Example:

GO TO (3, 17, 25, 50, 66), ITEM

If the value of ITEM is 2 at the time this GO TO statement is executed, the statement to which control

is transferred is the statement whose number is second in the series, i.e., statement number 17.

4.5 ARITHMETIC IF STATEMENT

The form of the arithmetic IF statement is

IF (e) Ny, Ny, Ng

where e is an arithmetic expression and Ny, Ny, ngare statement numbers. The IF statement evaluates

3

the expression in parentheses and transfers control to one of the referenced statements. If the value of

the expression (e) is less than, equal to, or greater than zero, control is transferred to Ny, Ny, oF N

2 3

respectively.
Example:

IF (AUB (l) - B*D) 10, 7, 23

4.6 LOGICAL IF STATEMENT

The general format of a logical IF statement is
IF (e) s
where e is a logical expression and s is any executable statement other than a DO statement or another
logical IF statement. The logical expression is evaluated, and different statements are executed
depending upon whether the expression is true or false. If the logical expression e is true, statement s
is executed and control is then transferred to the following statement (unless the statement is a GO TO
statement or an arithmetic IF statement, in which cases control is transferred as indicated; or the state-
ment s is a CALL statement, in which case control is transferred to the next statement after return from
the subprogram). If the logical expression e is false, statement s is ignored and control is transferred to
the statement following the IF statement. CANV BE godTINUED oMLY BEFOKE
FiNAL CLOBING PRIEENTIHESS
Lo, 1F (X CE,
/ >9 o7 afb

Example:

F (L) I=1+1
IF (L.LE.K) GO TO 17
IF (LOG.AND. (.NOT.LOG1)) IF (X) 3,5,5

4.7 DO STATEMENT

The DO statement is a command used to execute repeatedly a specified series of statements.
The general format of the DO statement is

DOni=m.|,m2, ma

or

DOni=m

10 m

2
where n is a statement number representing the terminal statement or the end of the "range"; iis a non-

subscripted integer vorlqble known as the "index"; and my, M, and m,, are unsigned nonzero, integer
SwWHied MUsT oLy 'Be Ass'c;’vé?lo s Ve VAruesg
constants or nonsubscripted integer variables, 'which represent the "initial," "final," and "increment"

values of the index. If m is omitted, as in the second form of the DO statement, its value is assumed

to be 1.
The DO statement is a command used to execute repeatedly a group of statements following it,

up to and including statement n. The initial value of i is m, (m. must be less than or equal to m

2)'
When is is greater

1
Each succeeding time the statements are operated, i is increased by the value of mo.
than m,, control passes to the statement following statement number n.

The range of a DO statement is a series of statements to be executed repeatedly. It consists
of all statements immediately following the DO, up to and including statement n. Any number of state-
ments may appear between the DO and statement n. The terminal statement (statement n) may not be a
GO TO (of any form), an arithmetic IF, a RETURN, a STOP, a PAUSE, or a DO statement, or a logical
IF statement containing any of these forms.

The index of a DO is the integer variable i which is controlled by the DO statement in such

a way that its initial value is set fo m., and is increased each time the range of statements is executed

1

by ma, until a further incrementation would cause the value of m, to be exceeded. Throughout the

range of the DO, the index is available for computation either oszon ordinary integer variable or as the
variable of a subscript. However, the index may not be changed by any statement within the DO range.
The initial value is the value of the index at the time the range is executed for the first time.
The final value is the value which the index must not exceed. When the condition is satis-
fied the DO is completed and control passes to the first executable statement following statement n.

The increment is the amount by which the index is to be increased after each execution of

the range. If the increment is omitted, a value of 1 is implied.

I-19

Example:

DO721=1, 10, 2
DO15K=1, 5
DO231=1, 11, 4

Any FORTRAN statement may appear within the range of a DO statement, including another
DO statement. When such is the case, the range of the second DO must be contained entirely within
the range of the first; i.e., it is not permissible for the ranges of DOs to overlap. A set of DOs satis-
fying this rule is called a nest of DOs. It is possible for a terminal statement to be the terminal state-
ment for more than one DO statement. The following configuration, where brackets are used to repre-

sent the range of the DOs, indicates the permissible and illegal nesting procedures.

PERMISSIBLE ~————————— DO ILLEGAL ~——————————— DO
00

0o EE—)

Transfer of control from within the range of a DO statement to outside its range is permitted
at any time. However, the reverse is not true; i.e., control cannot be transferred from outside the
range of a DO statement to inside its range. The following examples show both valid and invalid

transfers.

@
. D

[-20

4.8 CONTINUE STATEMENT

The CONTINUE statement causes no action and generates no machine coding. It is a dummy
statement which is used for terminating DO loops when the last statement would otherwise be an illegal
terminal statement (i.e., GO TO, arithmetic IF, RETURN, STOP, PAUSE, or DO, or a logical IF con-
taining any of these forms). The form consists of the single word

CONTINUE

4.9 PAUSE STATEMENT

A PAUSE statement is a temporary halt of the program at run time. The PAUSE statement has
one of the two forms
PAUSE

or

PAUSE n

where n is an octal integer whose value is less than 777777 .. The integer n is typed out on the console

8"
Teletype for the purpose of determining which of several PAUSE statements was encountered. Program
execution is resumed, by typing control P (TP), starting with the first statement following the PAUSE

statement.

4.10 STOP STATEMENT

The STOP statement is of one of the forms
STOP

or
STOP n

where n is an octal integer whose value is less than 7777777 .. The STOP statement is placed at the

8
logical end of a program and causes the computer to type out on the console Teletype, the integer n
and then to exit back to the Monitor. There must be at least one STOP statement per main program,

but none are allowed in subprograms.

4.11 END STATEMENT

The END statement is placed at the physical end of a program or subprogram. The form con-
sists of the single word
END
The END statement is used by the compiler and generates no code. It signals the compiler

that the processing of the source program is complete. NoW ASSUMED iE LoT
Founo (?)

[-21

A conirol transfer type statement, a STOP statement, or a RETURN statement must immedi-

ately precede END. This will be checked by the compiler.

[-22

CHAPTER 5
INPUT/OUTPUT STATEMENTS

The input/output (I/O) statements direct the exchange of data between the computer and 1/0O
devices. The information thus transmitted by an /O statement is defined as a logical record, which
may be formatted or unformatted. A logical record, or records, may be written on a device as one or
more physical records. This is a function of the size of the logical record(s) and the physical device
used.

The definition of the data which comprises a user's optimum physical record varies for each

1/O device, as follows:

Unit Unformatted
or Formatted Physical (Binary) Physical
Device Record Definition Record Definition
Typewriter
(input and output) One line of type is terminated by a carriage Undefined
return. Maximum of 72 printing characters
per line
Line printer One line of printing. Maximum of 120 Undefined

characters per line

Cards One card. Maximum of 80 characters 50 words
(input and output)

Paper tape One line image of 72 printing characters 50 words
(input and output)

Magnetic tape One line image of 630 characters 252 words
Disc/drum/ One line image of 630 characters 252 words
DECtape

Each 1/O device is identified by an integer constant which is associated with a device
assignment table in the PDP-9 Monitor. This table may be modified at system generation time, or just

before run time. For example, the statement

READ (u, f) list
requests one logical record from the device associated with slot u in the device assignment table.
The statement descriptions in this section use u to identify a specific /O unit, f as the state-
ment number of the FORMAT statement describing the type of data conversion, and list as a list of

arguments to be input or output.

[-23

5.1 GENERAL I/O STATEMENTS

These statements cause the transfer of data between the computer and /O devices.

5.1.1 Input/Output Argument Lists

An 1/O statement which calls for the transmission of information includes a list of quantities
to be transmitted. In an input statement this list consists of the variables to which the incoming data is
to be assigned; in an output statement the list consists of the variables whose values are to be transmitted
to the given /O device. The list is ordered, and the order must be that in which the data words exist
(input) or are to exist (output) in the |/O device. Any number of items may appear in a single list.

The same statement may transmit integer and real quantities. [f the data to be transmitted exceeds the
items in the list, only the number of quantities equal to the number of items in the list are transmitted.
The remaining data is ignored. Conversely, if the items in the list exceed the data to be transmitted,

succeeding superfluous records are transmitted until all items specified in the list have been transmitted.

5.1.1.1 Simple Lists = The list uses the form

C,, C ., C
1 n

2"
where each Ci is a variable, a subscripted variable, or an array identifier. Constants are not allowed
as list items. The list reads from left to right. When an array identifier appears in the list, the entire

array is to be transmitted before the next item in the list. Examples of Simple Lists:

Y, Y, Z
A, B(3,C, D(I+1,4

5.1.1.2 DO-Implied Lists = Indexing similar to that of the DO statement may be used to control the

number of times a group of simple lists is to be repeated. The list elements thus controlled, and the
index control itself, are enclosed in parentheses, and the contents of the parentheses are regarded as
a single item of the /O list.

Example:

W, X (3, (v (), Z(,K), 1=1, 10

5.1.2 READ Statement

The READ statement is used to transfer data from any input device to the computer. The
general READ statement can be used to read either BCD or binary information. The form of the state-

ment determines what kind of input will be performed.

1-24

5.1.2.1 Formatted READ - The formatted READ statements have the general form

READ (u,f) list
or

READ (u,f)
Execution of this statement causes input from device u to be converted as specified by format statement
f, the resulting values to be assigned to the items specified by list, if any.

Examples:

READ (3,13) A,B,C
READ (2,10) A, (B(I), I1=1,5)
READ (1,3)

5.1.2.2 Unformatted READ - An unformatted READ statement has the general form

READ (u) list
or
READ (u)

Execution of this statement causes input from device u, in binary format, to be assigned to the items
specified by list. [f no list is given, one record will be read, but ignored. If the record contains more
information words than the list requires, that part of the record is lost. If more elements are in the list
than are in one record, additional records are read until the list is satisfied.

Example:

READ (5) I,J,K
READ (8)

5.1.3 WRITE Statement

The WRITE statement is used to transmit information from the computer to any 1/O device.

The WRITE statement closely parallels the READ statement in both format and operation.

5.1.3.1 Formatted WRITE - The formatted WRITE statement has the general form

WRITE (u,f) list
or
WRITE (u,f)
Execution of this statement causes the list elements, if any, to be converted according to format state-

ment f, and output into device u.

[-25

5.1.3.2 Unformatted WRITE - The unformatted WRITE statement has the general form

WRITE (v) list

Execution of this statement causes output onto device u, in binary format, of all words specified by the
list. If the list elements do not fill the record, the remaining part of the record is filled with blanks.
If the list elements more than fill one record, successive records are written until all elements of the
list are satisfied, the last record padded with blanks if necessary. Examples of WRITE:

WRITE (1,10) A, (B (l), (C (1,3), J=2,10,2), I=1,5)

WRITE (2,7) A, B,C
WRITE (5) W, X(3), Y(I +1,4),Z

5.2 FORMAT STATEMENTS

These statements are used in conjunction with the general /O statements. They specify the
type of conversion which is to be performed between the internal machine language and the external
notation. FORMAT statements are not executed. Their function is to supply information to the object

program.

5.2.1 Specifying FORMAT

The general form of the FORMAT statement is
FORMAT (S] , 52, cee ey Sn)

where S] e .Sn are data field descriptions. Breaking this format down further, the basic data field

descriptor is written in the form

nkw.d

where n is a positive unsigned integer indicating the number of successive fields for which the data con-
version will be performed according to the same specification. This is also known as the repeat count.
If nis equal to 1, it may be omitted. The control character k indicates which type of conversion will
be performed. This character may be I,E,F,G,D,P,L,A,H, or X. The nonzero integer constant w speci-
fies the width of the field. The integer constant d indicates the number of digits to the right of the
decimal point.

Six of the nine control characters listed above provide for data conversion between internal

machine language and external notation.

Internal Type External
Integer variable | Decimal integer
Real variable E Floating=-point, scaled
Real variable F Floating=-point, mixed

[-26

Internal Type External

Real variable G Floating-point, mixed/scaled
Double-precision D Floating=-point, scaled
variable

Logical variable L Letter T or F

Alphanumeric A Alphanumeric (BCD) characters

The other three control types are special purpose control characters:

Type Purpose
P Used to set a scale factor for use with E, F, and D conversions.
X Provides for skipping characters in input or specifying blank characters
in output.
H Designates Hollerith fields.

FORMAT statements are not executed and therefore may be placed anywhere in the source
program. Because they are referenced by READ or WRITE statements, each FORMAT statement must be
given a statement number.

Commas (,) and slashes (/) are used as field separators. The comma is used to separate field
descriptors, with the exception that a comma need not follow a field specified by an H or X control
character. The slash is used to specify the termination of formatted records. A series of slashes is also
a field separator. Multiple slashes are the equivalent of blank records between output records, or
records skipped for input records. If the series of n slashes occurs at the beginning or the end of the
FORMAT specifications, the number of input records skipped or blank lines inserted in output is n. If
the series of n slashes occurs in the middle of the FORMAT specifications, this number is n-1. A comma
may not precede and/or follow a slash. An integer value cannot precede a slash.

For all field descriptors (with the exception of H and X), the field width must be specified.
For those descriptors of the w.d type (see next page), the d must be specified even if it is zero. The
field width should be large enough to provide for all characters (including decimal point and sign) neces-
sary to constitute the data value as well as blank characters needed to separate it from other data values.
Since the data value within a field is right justified, if the field specified is too small, the most signifi-
cant characters of the value will be lost.

Successive items in the 1/O list are transmitted according to successive descriptors in the
FORMAT statement, until the entire 1/O list is satisfied. If the list contains more items than descriptors
in the FORMAT statement, a new record must be begun. Control is transferred to the preceding left

parenthesis where the same specifications are used again until the list is complete.

1-27

Field descriptors (except H and X) are repeated by preceding the descriptor with an unsigned
integer constant (the repeat count). A group repeat count is used to enable the repetition of a group of
field descriptors or field separators enclosed in parentheses. The group count is placed to the left of
the parenthesis. Two levels of parentheses (not including those enclosing the FORMAT specification)
are permitted.

The field descriptors in the FORMAT must be the same type as the corresponding item in the
1/O list; i.e., integer quantities require integer (I) conversion; real quantities require real (E or F)

conversion, etc.

Example:
FORMAT (17,F10.3)
FORMAT (13, 17/E10.4,E10.4)
FORMAT (214, 3(15,D10.3))
5.2.2 Conversion of Numeric Data
5.2.2.1 |-Type Conversion - Field descriptor: Iw or nlw

The number of characters specified by w is converted as a decimal integer.

On input, the number in the input field by w is converted to a binary integer. A minus sign
indicates a negative number. A plus sign, indicating a positive number, is optional. The decimal
point is illegal. If there are blanks, they must precede the sign or first digit. All imbedded blanks are
interpreted as zero digits.

On output, the converted number is right justified. If the number is smaller than the field w
allows, the leftmost spaces are filled with blanks. If an integer is too large, the most significant digits
are truncated and lost. Negative numbers have a minus sign just preceding their most significant digit
if sufficient spaces have been reserved. No sign indicates a positive number.

Examples (b indicates blank):

Format Descriptor Input Internal Output
15 bbbbb +00000 bbbb0
13 -b5 -05 b-5
18 bbb12345 +12345 bbb12345

-
TEMPORARY RESTRieTIoN = MST USE DECIMAL PUNT /N BoTH O E FOlIATS

5.2.2.2 E-Type Conversion - Field descriptor: Ew.d or nEw.d

The number of characters specified by w is converted to a floating-point number with d
spaces reserved for the digits to the right of the decimal point. The w includes field d, spaces for a
sign, the decimal point, plus four spaces for the exponent (written E + XX) in addition to space for

optional sign and one digit preceding the decimal point.

[-28

The input format of an E-type number consists of an optional sign, followed by a string of
Jigits containing an optional decimal point, followed by an exponent. Input data can be any number
of digits in length, although it must fall within the range of 0 to + IOi .

E output consists of a minus sign if negative (blank if positive), the digit 0, a decimal point,

a string of digits rounded to d significant digits, followed by an exponent of the form E £ XX.

Examples:
Format Descriptor Input Internal Output
E10.4 00.2134E03 213.4 0.2134E+03
E9.4 0.2134E02 21.34 .2134E+02
E10.3 bb-23.0321 -23.0321 -0.230E+02

5.2.2.3 F-Type Conversion - Field descriptor: Fw.d or nFw.d

The number of characters specified by w is converted as a floating=point mixed number with
d spaces reserved for the digits to the right of the decimal point.

Input for F-type conversion is basically the same as that for E-type conversion, described
above.

The output consists of a minus sign if the number is negative (blank if positive), the integer

portion of the number, a decimal point, and the fractional part of the number rounded to d significant

digits.
Examples:
Format Descriptor Input Internal Output
F6.3 b13457 13.457 13.457
F6.3 313457 313.457 13.457
F9.2 -21367. -21367. -21367.00
F7.2 -21367. -21367- 1367.00

5.2.2.4 G-Type Conversion - Field descriptor: Gw.d or nGw.d

The external field occupies w positions with d significant digits. The value of the list item
appears, or is to appear, internally as a real number.

Input for G-type conversion is basically the same as that for E-type conversion, described
in paragraph 5.2.2.2.

The form of the G-type output depends upon the magnitude of the internal floating=point
number. Comparison is made between the exponent (e) of the internal value and the number of signi-
ficant digits (d) specified by the format descriptor. If e is greater than d, the E-type conversion is used.
If e is less than or equal to d, the F-type conversion is used, but modified by the following formula:

F (w-4).(d-e),4X

[-29

The 4X represents four blank spaces that are always appended to the value. If the value to be repre-

sented is less than .1 , the E-type conversion is always used.

Examples:

Format Descriptor

Gl4.6
Gl4.6
Gl14.6
Gl4.6

12345678 x 10
.12345678 x 10°
.12345678 x 104
.12345678 x 108

Internal

1

Ou'rEut

0.12345678E-01
bb0.123456bbbb
bbb1234 . 56bbbb
bb0.123456E+08

TEMPORARY RESTRIETION - MUST USE DLECIFAL fosuwr 'K BoT #H
5.2.2.5 D-Type Conversion - Field descriptor: Dw.d or nDw.d OrE FoeMYrs

The number of characters specified by w is converted as a double-precision floating-point
number with the number of digits specified by d to the right of the decimal point.
The input and output are the same as those for E-type conversion except that a D is used in

place of the E in the exponent.

Examples:
Format Descriptor Input Internal Output
D12.6 bb+21345D 03 21.345 0.213450D+02
D12.6 b+3456789012 3456.789012 0.345678D+04
D12.6 -12345.6D-02 -123.456 0.123456D+03

5.2.3 P-Scale Factor - Field descriptor: nP or -nP

This scale factor n is an integer constant. The scale factor has effect only on E,F,G, and
D-type conversions. Initially, a scale factor of zero is implied. Once a P field descriptor has been
processed, the scale factor established by n remains in effect for all subsequent E,F, and D descriptors
within the same FORMAT statement until another scale factor is encountered.

For E, F, G, and D input conversions (when no exponent exists in the external field) the
scale factor is defined as external quantity = internal quantity x 10",

The scale factor has no effect if there is an exponent in the external field.

The definition of scale factor for F output conversion is the same as it is for F input. For E

and D output, the fractional part is multiplied b 10" and the exponent is reduced by n.
P Y P Y

Examples:
Format Descriptor Input Scale Factor Internal Output
-3PF6.3 123456 -3 +123456. 23.456
-3PE12.4 123456 -3 +12345.6 bb0.0001E+08
1PD10.4 12.3456 +1 +1.23456 1.2345D+00

[-30

5.2.4 Conversion of Alphanumeric Data

5.2.4.1 A-Type Conversion (7-Bit ASCII, Handled As REAL Variables) - Field descriptor: Aw or nAw

The number of alphanumeric characters specified by w is transmitted according to list specifi-
cations.

If the field width specified for A input is greater than or equal to five (the number of charac-
ters representable in two machine words), the rightmost five characters are stored internally. If w is
less than five, 5-w trailing blanks are added.

For A output, if w is greater than five, w=5 leading blanks are output followed by five
alphanumeric characters. If w is less than or equal to five, the leftmost w characters are output.
5.2.4.2 H-Field Descriptor (7-Bit ASCII) - Field descriptor: an] 0203 LR

The number of characters specified by n immediately following the H descriptor are transmitted

to or from the external device. Blanks may be included in the alphanumeric string. The value of n must
be greater than 0.

On Hollerith input, n characters read from the external device replace the n characters fol-
lowing the letier H.

In output mode, the n characters following the letter H, including blanks, are output.

Examples:

3HABC
17H THIS IS AN ERROR
16H JANUARY 1, 1966

(See Paragraph 5.2.8 for an exception to this rule when printing a formatted record.)

5.2.5 Logical Fields, L Conversion - Field descriptor: Lw or nLw

The external format of a logical quantity is T or F. The internal format of a logical quantity
is T or F. The internal format is 7777778 for T or O for F.

On L input, the first nonblank character must be a T or F. Leading blanks are ignored. A

nonblank character is illegal.

For L output, if the internal value is 0, an F is output. Otherwise a T is output. The F or T

is preceded by w-1 leading blanks.

5.2.6 Blank Fields, X Conversion - Field descriptor: nX

The value of n is an integer number greater than 0. On X input, n characters are read but

ignored. On X output, n spaces are output.

1-31

5.2.7 FORTRAN Statements Read in at Object Time

FORTRAN provides the facility of including the formatting data along with the input data.

This is done by using an array name in place of the reference to a FORMAT statement label in any of

the formatted 1/O statements. For an array to be referenced in such a manner, the name of the variable
FORMAT specification must appear in a DIMENSION statement, even if the size of the array is 1. The
statements have the general form:

READ (u, name)

READ (u, name) list

WRITE (u, name)

WRITE (u, name) list
The form of the FORMAT specification which is to be inserted into the array is the same as the source
program FORMAT statement, except that the word FORMAT is omitted and the nH field descriptor may
not be used. The FORMAT specification may be inserted into the array by using a data initialization
statement, or by using a READ statement together with an A format.

For example, this facility can be used to specify at object time, the format of a deck of

cards to be read. The first card of the deck would contain the format statement,

1 10

|/ (17,F10.3)

the subsequent cards would contain data in the general form,

7 17

I/ XX XXXX

DIMENSION AA (10)
13 FORMAT (10A5)
READ (3,13) (AA(l), I=1,10)

READ (3,AA) JJ, BOB

With the card reader assigned to device number 3, the first READ places the format statement
from the first card into the array AA, and the second READ statement causes data from the subsequent

cards to be read into JJ and BOB with format specifications 17 and F10.3, respectively.

5.2.8 Printing of a Formatted Record

When formatted records are prepared for output on a hard-copy device, the first character of

the record is not printed. The first character is used instead to determine vertical spacing as follows:

[-32

Character Vertical Spacing Before Printing

Blank One line

0 Two lines

1 Skip to first line of next page
+ No advance

Output of formatted records to other devices considers the first character as an ordinary character in the

record.

5.3 AUXILIARY 1/O STATEMENTS

These statements manipulate the 1/O file oriented devices. The u is an unsigned integer

constant or integer variable specifying the device.

5.3.1 BACKSPACE Statement

The BACKSPACE statement has the general form

BACKSPACE v

Execution of this statement causes the 1/O device identified by u, to be positioned so that the record
which had been the preceding record becomes the next record. If the unit u is positioned at its initial

point, execution of this statement has no effect.

5.3.2 REWIND Statement

The REWIND statement has the general form

REWIND u

Execution of this statement causes the 1/O device identified by u to be positioned at its initial point.

5.3.3 ENDFILE Statement

The ENDFILE statement has the general form

ENDFILE u

Execution of this statement causes an endfile record to be written on the 1/O device identified by u.

I-33

CHAPTER 6
SPECIFICATION STATEMENTS

Specification statements are nonexecutable because they do not generate instructions in the
object program. They provide the compiler with information about the nature of the constants and vari-
ables used in the program. They also supply the information required to allocate locations in storage for
certain variables and/or arrays. All SPECIFICATION statements must appear before any executable code
generating statement. They must appear in this order: type statements, DIMENSION statements,
COMMON statements, and EQUIVALENCE statements. EXTERNAL and DATA statements must appear
after all other specification statements and before executable-code-generating statements and FORMAT

statements.

6.1 TYPE STATEMENTS
The type statements are of the forms

INTEGER @b, c

REAL a,b,c

DOUBLE PRECISION a,b,c
LOGICALa,b,c

where a, b, and care variable names which may be dimensional or function names. A type statement is

used to inform the compiler that the identifiers listed are variables or functions of a specified type, i.e.,
INTEGER, REAL, etc. It overrides any implicit typing; i.e., identifiers which begin with the letters
1,J,K,L,M, or N are implicitly of the INTEGER mode; those beginning with any other letter are
implicitly of the REAL mode. The type statement may be used to supply dimension information. The
variable or function names in each type statement are defined to be of that specific type throughout the
program; the type may not change.

Examples:

INTEGER ABC,1JK,XYZ
REAL A (2,4),1,J,K

DOUBLE PRECISION ITEM, GROUP
LOGICAL TRUE, FALSE

Any function references (statement functions, intrinsic functions, or external functions) which
are not implicitly REAL or INTEGER must appear in the appropriate TYPE statement .

Example:

DOUBLE PRECISION B,X,DABS,DATAN
B = DATAN (DABS (X))

In this example, if DABS and DATAN were not declared double precision, improper code

would be generated by the compiler and no error diagnostic will occur.

I-35

6.2 DIMENSION STATEMENT

The DIMENSION statement is used to declare arrays and to provide the necessary information

to allocate storage for them in the object program.

The general form of the DIMENSION statement is:

DIMENSION V (i]), V2(i2), V()

n n
where each V is the name of an array and each i is composed of one, two, or three unsigned integer
constants separated by commas. The number of constants represents the number of dimensions the array
contains; the value of each constant represents the maximum size of each dimension. The dimension in-
formation for the variable can be given in a type statement, a COMMON statement, or a DIMENSION
statement; however, dimensioning information should only be given once.

Example:

DIMENSION ITEM (150), ARRAY (50, 50)

When arrays are passed to subprograms, they must be redeclared in the subprogram. The mode, number

of dimensions, and size of each dimension must be the same as that declared by the calling program.

6.3 COMMON STATEMENT

The COMMON statement provides a means of sharing memory storage between a program and

its subprograms. The general form of the COMMON statement is:
COMMON /x]/a]/xz/az/ .. ./xn/an

where each x is a variable which is a COMMON block name, or it can be blank. [f X, is blank, the
first two slashes are optional. Each a represents a list of variables and arrays separated by commas.
The list of elements pertaining to a block name ends with a new block name, with a blank COMMON
block designation (two slashes), or the end of the statement.

The elements of a COMMON block, which are listed following the COMMON block name
(or the blank name), are located sequentially in order of their appearance in the COMMON statement.
An entire array is assigned in sequence. Block names may be used more than once in a COMMON
statement, or may be used in more than one COMMON statement within the program. The entries so
assigned are strung together in the given COMMON block in order of their appearance. Labeled
COMMON blocks with the same name appearing in several programs or subprograms executed together
must contain the same number of total words. The elements within the blocks, however, need not agree

in name, mode, or order. A blank COMMON may be any length.

[-36

Examples:
COMMON A,B,C/XX/X,Y,Z
COMMON/A/X(3,3), Y(2,5)//Z(5,10,15)
The COMMON statement is a means of transferring data between programs. If one program

contains the statements,

COMMON/N/AA, BB, CC
AA=3

BB=4

CC=5

and another program which is called later contains the statement,
COMMON/N/XX,YY,ZZ

the latter program will find the values 3, 4, and 5 in its variables XX, YY, and ZZ, respectively,

since variables in the same relative positions in COMMON statements share the same registers in memory.

6.4 EQUIVALENCE STATEMENT

The EQUIVALENCE statement is used to permit two or more entities of the same size and type

to share the same storage location. The general format of the EQUIVALENCE statement is:

EQUIVALENCE (k]), (k2), ceey (k)

n
where each k represents a list of two or more variables or subscripted variables separated by commas.
Each element in the list is assigned the same memory storage location.

An EQUIVALENCE statement may lengthen the size of a COMMON block. The size can
only be increased by extending the COMMON block beyond the last assignment for that block made
directly by a COMMON statement. A variable cannot be made equivalent to an element of an array
if it causes the array to extend past the beginning of the COMMON block.

When two variables or array elements share the same storage location because of the use of
an EQUIVALENCE statement, they may not both appear in COMMON statements within the same pro-
gram.

Example:

EQUIVALENCE (A, B), (C(10), D(10), E(15))

An EQUIVALENCE statement which refers to an array which also appears in a COMMON
statement must refer to the first element of that array.

Example:

DIMENSION A(100),B(50)
COMMON A
EQUIVALENCE (A(1), B(1))

1-37

The above example shows a legal EQUIVALENCE statement. If, however, the statement
were changed to read
EQUIVALENCE (A(50), B(1))

the statement would cause an error diagnostic.

6.5 EXTERNAL STATEMENT

An EXTERNAL statement is used to pass a subprogram name on to another subprogram. The

general form of an EXTERNAL statement is:
EXTERNALy,z,...
Example:

EXTERNAL ISUM, ISUB
CALL DEBUG (ISUM,A,B)
CALL DEBUG (ISUB,A,B)

END
SUBROUTINE DEBUG (X,Y,Z)

RETURN
END

6.6 DATA STATEMENT

The DATA statement is used to set variables or array elements to initial values at the time

the object program is loaded. The general form of the DATA initialization statement is:
DATA k]/d]/, k2/d2/, .. .kn/dn/

where each k is a list of variables or array elements (with constant subscripts) separated by commas, and
each d is a corresponding list of constants with optional signs. The k list may not contain dummy argu-
ments. There must be a one-to-one correspondence between the name list and the data list, except
where the data list consists of a sequence of identical constants. In such a case, the constant need be
written only once, preceded by an integer constant indicating the number of repeats and an asterisk.
A Hollerith constant may appear in the data list. é?; ue;ﬂrgr‘éa/ ﬂgf%gé?%_ Y@c{ﬁrzﬂ;o/éﬁ;r
Variable or array elements appearing in a DATA statement gnpg?ﬁolf‘ cI;e D":— sl‘gnk COMMON.
They may be in a labeled COMMON block and initially defined only in a BLOCK DATA subprogram.
Example:

DATA A,B,C/3*2.0/
DATA X(1), X(2), X(3), X(4)/0.0, 0.1, 0.2, 0.3/,Y(1), Y(2)
2Y(3), Y(4)/1.0E2, 1.0E-2, 1.0E4, 1.0E-4/

[-38

CHAPTER 7
SUBPROGRAMS

A subprogram is a series of instructions which another program uses to perform complex or
frequently used operations. Subprograms are stored only once in the computer, regardless how many
times they are referred to by another program.

There are five categories of subprograms:

Statement Functions
Intrinsic or Library Functions
External Functions

External Subroutines
Block Data Subprograms

® Q0 T Q

The first three categories of subprograms are referred to as functions. The fourth category is
referred to as subroutines. Functions and subroutines differ in the following two respects. Functions
can return only a single value to the calling program; subroutines can return more than one value.
Functions are called by writing the name of the function and an argument list in a standard arithmetic
expression; subroutines are called by using a CALL statement. The last category is a special purpose

subprogram used for data initialization purposes.

7.1 STATEMENT FUNCTIONS

A statement function is defined by a single statement similar in form to that of an arithmetic
assignment statement. |t is defined internally to the program unit by which it is referenced. Statement
functions must follow all specification statements and precede any executable statements of the program

unit of which they are a part. The general format of a statement function is:

o7 ...,an)=e

where f is a function name; the a's are nonsubscripted variables, known as dummy arguments, which are
7 ’ y arg

f(c], a

to be used in evaluating the function; and e is an expression.
The value of a function is a real quantity unless the name of the function begins with I, J,

K, L, M, or N; in which case it is an integer quantity, or the function type may be defined by usin

T THE 18 N7
h i ecification statement. _ e is REgTEICTER 10,27 VIR AV
the cpproprite pacii A e R
Since the arguments are dummy variables, ﬂu%, except fo indicate p,Frege/ T
VAR IA BL &
mode, ane-meny—ix e—tsed-etsevwhere—in , including within the expression on the right side of uy .\ 71 THE
. SO1€ fr00EL ANO AL
the statement function. OF ey VARIARGLE = /o,

The expression of a statement function, in addition to containing nonsubscripted dummy

arguments, may only contain:

[-39

Non-Hollerith constants

Variable references

Intrinsic function references

References to previously defined statement functions
External function references

® O 0 T Q

A statement function is called any time the name of the function appears in any FORTRAN arithmetic
expression. The actual arguments must agree in order, number, and type with the corresponding dummy
arguments.

Execution of the statement function reference results in the computations indicated by the

function definition. The resulting quantity is used in the expression which contains the function refer-

ence.
Examples:
A(X) = 3.2+SQRT (5.7* X**2)
SUM (A, B,C) = A+B+C
FUNC (A,B) =2.*A/B**2.+Z
7.2 INTRINSIC OR LIBRARY FUNCTIONS

Intrinsic or library functions are predefined subprograms that are a part of the FORTRAN
system library. The type of each intrinsic function and its arguments are predefined and cannot be
changed.

An intrinsic function is referenced by using its function name with the appropriate arguments
in an arithmetic statement. The arguments may be arithmetic expressions, subscripted or simple varia-

bles, constants, or other intrinsic functions (see table I-1).

Examples:
X = ABS (A)
I = INT (X)
J =1IFIX (R)

1-40

Table I-1.

Intrinsic Functions

No. of Symbolic Type of Type of
Intrinsic Functions Definition Arguments Name Argument Function
Absolute value |a ,] ABS Real Real
IABS Integer Integer
DABS Double Double
Truncation Sign of a times largest] AINT Real Real
integer < | a| INT Real Integer
IDINT Double Integer
Remaindering*® a (mod 02) 2 AMOD Real Real
MOD Integer Integer
Choosing largest Max (o] LIRS J) 2 AMAXO0 Integer Real
value AMAXI1 Real Real
MAXO0 Integer Integer
MAX1 Real Integer
DMAX1 Double Double
Choosing smallest Min (a] 19 e J) 2 AMINO Integer Real
value AMINI Real Real
MINO Integer Integer
MINI Real Integer
DMINI Double Double
Float Conversion from 1 FLOAT Integer Real
integer to real
Fix Conversion from real 1 IFIX Real Integer
to integer
Transfer of sign Sign of a, times 2 SIGN Real Real
ISIGN Integer Integer
o] DSIGN Double Double
Positive difference a, - Min (a] ,02) 2 DIM Real Real
IDIM Integer Integer
Obtain most signi=- 1 SNGL Double Real
ficant part of double
precision argument
Express single pre- 1 DBLE Real Double

cision argument in
double precision
form

*The function MOD or AMOD (a] ,02) is defined asa - [01/02] Ay, where [x]is the integer whose
magnitude does not exceed the magnitude of x and whose sign is the same as x.

[-41

7.3 EXTERNAL FUNCTIONS

An external function is an independently written program which is executed whenever its

name appears in another program. The general form in which an external function is written is:

t FUNCTION NAME (c] LIRS ,qn)
(FORTRAN statements)

NAME = final calculation
RETURN
END

where t is either INTEGER, REAL, DOUBLE PRECISION, LOGICAL, or is blank; NAME is the sym-
bolic name of the function to be defined; and the a's are dummy arguments which are nonsubscripted
variable names, array names, or other external function names.

The first letter of the function name implicitly determines the type of function. If that
letter is I, J, K, L, M, or N, the value of the function is INTEGER. If it is any other letter, the
value is REAL. This can be overridden by preceding the word FUNCTION with the specific type name.

The symbolic name of a function is one to six alphanumeric characters, the first of which
must be the alphabetic name and must not appear in any nonexecutable statement of the function sub-
program except in the FUNCTION statement where it is named. The function name must also appear
at least once as a variable name within the subprogram. During every execution of the subprogram, the
variable must be defined before leaving the function subprogram. Once defined, it may be referenced
or redefined. The value of this variable at the time any RETURN statement in the subprogram is
encountered is called the value of the function.

There must be at least one argument in the FUNCTION statement. These must be nonsub-
scripted variable names. If a dummy argument is an array name, an appropriate DIMENSION statement
is necessary. The dummy argument names may not appear in an EQUIVALENCE, COMMON, or DATA
statement in the function subprogram. PTAL Wur8ere of OUmrTY Arevrr el 7S =72

The function subprogram may contain any FORTRAN statements with the exception of a
BLOCK DATA, SUBROUTINE, or another FUNCTION statement. I, of course, cannot contain any
statement which references itself, either directly or indirectly.

A function subroutine must contain at least one RETURN statement. The general form is:

RETURN
This signifies the logical end of the subprogram and returns control and the computed value to the calling
program. At least one RETURN statement must appear between the last executable statement and the
END statement .
An END statement, described in Section 4,11, signals the compiler that the physical end of

the subprogram has been reached.

[-42

An external function is called by using its function name, followed by an actual argument
list enclosed in parentheses, in an arithmetic or logical expression. The actual arguments must cor-

respond in number, order, and type to the dummy arguments. An actual argument may be one of the

following:
a. A variable name
b. An array element name
c. An array name
d. Any other expression
e. The name of an external function or subroutine
Example:
DIMENSION A(100), B(100)
RSLT = SUM (A, B)**2 Main Program
END
FUNCTION SUM (X,Y)
DIMENSION X (100), Y(100)
SUM = X(1) +Y(1) .
DO 10 K = 2, 100 Function Subprogram
10 SUM = SUM + X(K) + Y(K)
RETURN
END
Table 1-2
External Functions
Basic No. of Symbolic Type of Type of
External Function Definition Arguments Name Argument Function
Exponential e 1 EXP Real Real
1 DEXP Double Double
Natural logarithm log (a) 1 ALOG Real Real
© 1 DLOG Double Double
Common logarithm Iog]o (a) 1 ALOGI0 Real Real
1 DLOGI0 Double Double
Trigonometric sine sin () 1 SIN Real Real
1 DSIN Double Double
Trigonometric cosine cos (a) 1 COS Real Real
1 DCOS Double Double
Hyperbolic tangent tanh (a) 1 TANH Real Real
Square root (a) 1/2 1 SQRT Real Real
1 DSQRT Double Double

[-43

Table 1-2". (Cont)

External Functions

Basic No. of Symbolic Type of Type of
External Function Definition Arguments Name Argument Function
Arctangent arctan (a) 1 ATAN Real Real

1 DATAN Double Double
arctan (01/02) 2 ATAN2 Real Real
2 DATAN2 Double Double
Remaindering® 9 (mod 02) 2 DMOD Double Double

*The function DMOD (a] ,02) is defined as a, - [a]/az] Ay where [x] is the integer whose

magnitude does not exceed the magnitude of x and whose sign is the same as the sign of x.

7.4 SUBROUTINES

A subroutine is defined externally to the program unit which references it. It is similar to
an external function in that both contain the same sort of dummy arguments, and both require at least
one RETURN statement and an END statement. A subroutine, however, may have multiple outputs.

The general form of a subroutine is:

SUBROUTINE NAME (a] YRR ,cn)
or
SUBROUTINE NAME

where NAME is the symbolic name of the subroutine subprogram to be defined; and the a's are dummy
arguments (there need not be any) which are nonsubscripted variable names, array names, or the dummy
name of another subroutine or external function.

The name of a subroutine consists of one to six alphanumeric characters, the first of which is
alphabetic. The symbolic names of the subroutines cannot appear in any statement of the subroutine
except the SUBROUTINE statement itself.

The dummy variables represent input and output variables. Any arguments used as output
variables must appear on the left side of an arithmetic statement or an input list within the subprogram.
If an argument is the name of an array, it must appear in a DIMENSION statement within the subroutine.
The dummy argument names may not appear in an EQUIVALENCE, COMMON, or DATA statement in
the subprogram.

The subroutine subprogram may contain any FORTRAN subprograms with the exception of
FUNCTION, BLOCK DATA, or another SUBROUTINE statement.

I-44

The logical termination of a subroutine is a RETURN statement. The physical end of the sub-
routine is an END statement.

A subroutine is referenced by a CALL statement, which has the general form

CALL NAME (q] Ay - .,an) < 0

or USE Cortir1ens ;= - >/0

CALL NAME
where NAME is the symbolic name of the subroutine subprogram being referenced, and the a's are the
actual arguments that are being supplied to the subroutine. The actual arguments in the CALL statement
must agree in number, order, and type with the corresponding arguments in the SUBROUTINE subpro-

gram. The array sizes must be the same. An actual argument in the CALL statement may be one of the
i. OUMMy ARQUMENTS WHILH AELC UseEP

following: At FubeTiod Yires A 5JIBPRoGRAMS
Wik AT edr1Pi g FPRIAPELLY
a. A Hollerith constant y
X J. ComrPic€ £ FRus WHEL B 30 8PCIZ e .G/
b. A variable name CONTAINS e Bimpy
c. An lement 0N STATERENT 4p0 A
. array element name PiIIENS, 0N ED #RERY ;S |8 2ur b 1rog ormems,
d. An array e _ A < # TERy
e. Any other expression TEre rIETHED
f. The name of an external function or subroutine rMAInv FEIG
PIMEN s 00) 4(;454‘
CorMMony a8
7.5 BLOCK DATA SUBPROGRAM doesa' b etk

CALL s48 (A(.))

The BLOCK DATA subprogram is a special subprogram used to enter data info a COMMON
SVBLITINE SUg

2o

block during compilation. A BLOCK DATA statement takes the form

2imE,
BLOCK DATA 2 JEHS1000 A)

This special subprogram contains only DATA, COMMON, EQUIVALENCE, DIMENSION, ande#\f?E i ét‘i;»a)g
statements. It cannot contain any executable statements. It can be used to initialize data only in a
labeled COMMON block areqa; not in a blank COMMON block area.
All elements of a given COMMON block must be listed in the COMMON statement, even
if they do not all appear in a DATA statement. Data may be entered in more than one COMMON block
in a single BLOCK DATA subprogram.

An END statement signifies the termination of a BLOCK DATA subprogram.

7.5.1 Example of BLOCK DATA Subprogram

BLOCK DATA

DIMENSION X(4), Y(4)

COMMON/NAME/A,B,C,1,J,X,Y

DATA A, B,C/3*2.0/

DATA X(1), X(2), X(3), X(4)/0.0, 0.1, 0.2, 0.3/Y(1), Y(2)
2Y(3), Y (4)/1.0E2, 1.0E-2, 1.0E4, 1.0E-4/

END

[-45

APPENDIX 1

SUMMARY OF PDP-9 FORTRAN IV STATEMENTS

CONTROL STATEMENTS

«ASSIGNntoi . .

ooooooooooooooooooooooooo

CALL name (a] LIS)

CONTINUE . .

GOTOn . . .

oooooooooooooooooooooooooo

oooooooooooooooooooooooooo

KRGO TO i, (n],nz,...)

GO TO (n] Mors

IF (e]) ny/ny,Na
IFs. ...

STOP

STOPn . ..
END . .
RETURN . . .

.
T

..........................
..........................
..........................
..........................
........................
..........................
..........................

oooooooooooooooooooooooooo

SUBROUTINE NAME (a] YRR) e e e e e e e e e e e e e e e e
FUNCTION NAME (a] Y .Cln)

¥ 0ELETED FROM ForTEAN I
INPUT /OUTPUT STATEMENTS

BACKSPACE v .
ENDFILEu .

FORMAT (s, 5, -

READ (u,f) .
READ (u,f) list

READ (v) . . .
READ (u) list .
READ (u, name)

ooooooooooooooooooooooooooo

,sn) e e e e e e e e e e e e e e e e

...........................
...........................
...........................
...........................

ooooooooooooooooooooooooooo

READ (u,name) list e e et e e e e e e

REWIND u
WRITE (u,) list

ooooooooooooooooooooooooooo

[-47

1-31
1-31
1-24
1-23
1-23
1-23
1-23
1-30
1-30
1-31
1-23

WRITE (u, f)

(

WRITE (u) list
WRITE (u, name)
WRITE (u, name) list

SPECIFICATION STATEMENTS

COMMON /XI/OI/XZ/OZ/' . ./xn/<:|n

DATA k. /d\/,ky/d /s ok /d /
DIMENSION V] (i]) , V2(i2) yoo .Vn(in)
DOUBLE PRECISION a,b,c
*EQUIVALENCE (k]) ,(k2) .o .(kn)
*EXTERNAL y,z, ...,
INTEGER q,b, c

ooooooooooooo

e o o o

ooooooooooooooooooooooooooo

oooooooooooooooooooooooo

ooooooooooooooooooo

oooooooooooo

ooooooooooooooooooooo

ooooooooooooooooooo

oooooooooo

oooooooooooooooooooooooooo

LOGICALa,b,c . v v v v v v v o e s e s e s e e e

ooooooooooooooooooooooooooo

REAL q,b,c
BLOCK DATA
DELETED FeoN ForTRAN TYT

1-48

ooooooooooooooooooooooooooo

1-23
1-24
1-30
1-30

1-33
1-35
1-32
1-32

1-34
1-32
1-32
1-32
[-42

APPENDIX 2
A NOTE ON PDP-9 FORTRAN IV

The FORTRAN language used in this manual is essentially the language of USASI Standard
FORTRAN (X3.9-1966) with the exception of the following features which are modified to allow the

compiler to operate in 8192 words of core storage:

a. All references to complex arithmetic are illegal.

b. The size of arrays in subprograms is not adjustable to the size specified by the calling
program.

c. Blank COMMON is treated as name COMMON.,

d. The implied DO feature is not legal in a DATA statement.

There are two versions of the FORTRAN IV compiler: F4 and F4A. F4 is the basic compiler,
and F4A is an abbreviated version of the compiler that allows DECtape input and output in an 8K system.
F4A operates under control of the Keyboard Monitor only, and is called by typing F4A rather than F4
on the Teletype. The F4A version does not provide for EQUIVALENCE, EXTERNAL, ASSIGN, and

Assigned GOTO statments, or the following options available in the F4 version:

CBJEGT CO0E ANP SYMBoL TABLE

O——Obteet-codetisting
S— Symbet-table-printov PRINTOUTS OoPTIoN HAS BEEWN
=2 L Source listing DELETED
rot i F#

In paper tape systems, the FORTRAN compiler along with necessary 1/O device handlers and

an appropriate version of the /O Monitor are punched on a tape in absolute format, referred to as a
"system tape." At the beginning of the system tape is a Bootstrap Loader. The system tape can be loaded
by setting the starting address of the Loader (17720 for 8K systems, 37720 for 16K) on the console address
switches, pressing I/O RESET, and then pressing the READIN switch. (Refer to the I/O Monitor Guide
for Paper Tape Systems, DEC-9A-NGAA-D.)

In larger systems with a bulk storage device such as DECtape, the Keyboard Monitor accepts
direct keyboard commands to load the compiler in a device-independent environment. (Refer to Keyboard
Monitor Guide, DEC-9U-NGAA-D.) This feature enables use of READ (I,f) or READ (I) statements where
the value of I is undefined at compile and load times. If such statements are used, it is important to
clear unused positive .DAT slots before loading to avoid loading device handlers that are not required.

Either DDT-9 or the Linking Loader must be used to load user object programs for execution.

Refer to the appropriate Monitor Guide (I/O Monitor of Keyboard Monitor) for operating procedures.

[-49

APPENDIX 3
FORTRAN IV AND MACRO-9 LINKAGE

1. Linking FORTRAN 1V Programs With MACRO-9 Subprograms

There are two essential elements of a MACRO subprogram that is linked to FORTRAN IV.
One is the declaration of the name of the subprogram (as used in the F4 program) in a . GLOBL statement
within the subprogram. The second is leaving open registers in the subprogram for the transfer vectors of
the arguments used in the FORTRAN calling sequence. The number of open registers must agree with the
number of arguments given in the calling sequence.

As an illustrative example, consider a FORTRAN program and a MACRO-9 subprogram which
read, negate, and write a number. One positive, single~precision floating-point number is read by the

FORTRAN program, negated in the MACRO=9 subprogram, and written out from the FORTRAN program.

FORTRAN IV PROGRAM:

C TEST MACRO SUBPROGRAM
C READ A NUMBER (A)
1 READ (1,100) A
100 FORMAT (E12.4)
C NEGATE THE NUMBER AND PUT IT IN B
CALL MIN (A, B)
C WRITE OUT THE NUMBER (B)
WRITE (2,100) B
STOP
END

MACRO-9 SUBPROGRAM:

LTITLE MIN
.GLOBL MIN, .DA
MIN 0 /ENTRY/EXIT
JMS* .DA /USE THE F4 GENERAL GET ARGUMENT
/SUBPROGRAM TO LOAD THE ARGUMENTS
JMP .3 /JUMP AROUND REGISTERS LEFT FOR
/ARGUMENT ADDRESSES
MINT .DSA 0 /ARG 1
MIN2 .DSA 0 /ARG2
LAC* MINT1 /PICK UP FIRST WORD OF A
DAC* MINZ2 /STORE IN FIRST WORD OF B
ISZ MINI /BUMP THE POINTER TO SECOND WORD
ISZ MIN2 /OF A AND B
LAC* MINI /PICK UP SECOND WORD OF A
TAD (400000 /SIGN BIT =1
DAC* MIN2 /STORE IN SECOND WORD OF B
JMP* MIN /EXIT
.END

[-51

Since A is a single-precision, floating-point number, two machine words are required and
must be accounted for in the subprogram. Thus MINT and MIN2 (which contain the addresses of A and
B) must be incremented to get to the second word of each number. FORTRAN expands the CALL state-

ment as follows:

CALL MIN (A,B)

00013 JMS* MIN (Exit to MACRO=9 subprogram)
00014 JMP $00014 (Entry from MACRO subprogram)
00015 .DSA A

00016 .DSA B

$00014=00017

When the program is loaded, the address (plus relocation factor) of A is stored in location
00015 (plus relocation factor) and the address of B in 00016 (plus relocation factor). When .DA is
called from the MACRO-9 subprogram, it stores these addresses in MINT and MIN2 (plus relocation
factor). Thus MIN1 must be referenced indirectly to get the value of A (a direct reference would get

the address of A).

2. Linking MACRO=-9 Programs With FORTRAN IV Subprograms:

There are two forms of FORTRAN 1V subprograms: subroutines and external functions. The
main difference between the two is the method of returning arguments to the calling program: subroutines
return the argument directly to the calling program, while functions return arguments through accumulators.
The MACRO=-9 program set-up for a FORTRAN IV subroutine is basically that described in
Part 111 of this manual for FORTRAN 1V Science Library routines. The name of the subroutine to be
called must be declared as a global, there must be a jump around the argument addresses, and the num-
ber and type (integer, real, double precision) of arguments must agree from the calling program to the
subroutine.

An example of a calling routine:

TITLE

.GLOBL SUBROT

JMS* SUBROT

JMP AN

.DSA ADDR OF ARGI /+400000 if indirect
.DSA ADDR OF ARG2 /+400000 if indirect
.DSA ADDR OF ARGN /+400000 if indirect

1-52

When the FORTRAN 1V subroutine is compiled, the compiler will generate code for .DA,
the General Get Argument Routine, which will transfer the arguments from the MACRO-9 calling pro-
gram to the FORTRAN IV subroutine. .DA expects to find the calling sequence just described for the
calling program. The following is an example of an expansion of the beginning of a FORTRAN IV

subroutine.

C TITLE SUBROT
SUBROUTINE SUBROT (A, B)
000000 CAL 0
000001 JMS* .DA
000002 JMP $000002
000003 .DSA A
00004 .DSA B

$000002=000005

The simplest method of passing arguments between the main program and the subroutine is to
use one of the calling arguments as output. For example, if the value of D is to be calculated in the
subroutine, use D as one of the calling arguments. "D=" will generate a "DAC* D", which will store
the value calculated for D by the subroutine in location D in the calling program.

The MACRO-9 program set=up for a FORTRAN IV External Function is identical to that for
linkage with subroutines, except that some provision must be made for storage of the values calculated
and stored in the accumulator. In the case of integers, the value is returned in the A-register, and in
the floating accumulator for real and double precision numbers. The simplest method of storing the
values is to use the FORTRAN 1V routines furnished in the library for this purpose. .AH store real val-
ves, and .AP stores double precision values. Since the A-register is the standard hardware accumulator,

a DAC instruction will store integer values.

3. Linking MACRO-9 Programs With FORTRAN 1V Library Routines

Refer to Part III of this manual , PDP-9 Science Library, for a complete description of the

linkage to library routines.

LINKING FORTRAN COMMoON WiTH MACRO SUBRCUTINES

VF ANY VIETUAL GLOBALS dLEMr72 /v AFTER

THE LoAoE R
HAs SEARARCHED

THE UsEr Awo SYS7TEA LICRAk s

0
/ c—\o oA,j /31.06 K.S

TO FMATCH

THESE CrLoBAL MNAMIES W T Y
NRMES, /F

COMrrr10A 6‘__06

5 MMACE | THE @r084L

/
S WEFWED 45 THE Hooresg oF

FH

inTEGEZ A8, C
corMoN /Brock i/
comrtoN A8
rMAco
) p BLANK
Q@LoBL BLoCK{, XX [xx s P4 NAMIE Fol
CommrionN Brock
Iz M XX /CLeqr g - wokECT REFerence
152 XX / NEXT ROORESS | FoR GARIABLE @
nzM* XX J crepe B
ozm™
BLlK] [AGAIN, Brocks 1S THE pogecss or
THE (F18ST VALIABLE N 7ug
BLockg or Cormron
pACkO-9 SUBRIUTMNE SHouro AleounT Fork VARIABLE
LENGTH A wo/Z053 SEE ,SS iN o7 FOR LOG(CAL,

INTEGER, KEAL, DoJUBiLE

(W)

PRECISION VARLIABLE WoR0O ~EMNETHS

APPENDIX 4
CHAINING FORTRAN IV PROGRAMS

Chaining is a method of program segmentation that allows for multiple core overlap of
executable code and certain types of data areas. FORTRAN programs can thus be divided into segments
and executed separately, with intersegment communication of data accomplished through common
storage. Common areas of core are reserved by means of the blank COMMON statement.

Transfer of control from one chain segment to another can be specified in a FORTRAN source

program with the statement

CALL CHAIN (N)

where N is the segment number to be called. The chain number (N) is established at chain=-build time
(refer to the CHAIN section of the Keyboard Monitor Guide, DEC-9U-NGBA-D). N can be greater
than or less than but not equal to the current chain number. Only variables and arrays named in blank
COMMON statements are retained from one chain segment to another. Blank common size should be

the same for all chain segments.

NOTE

Use of a CALL CHAIN (N) statement rather than a STOP
statement immediately preceding the END statement will
cause an I error during compilation (illegal statement pre-
ceding the END statement). This error should be ignored
since it is a warning only. The CHAIN subroutine will
never return control to the statement following the CALL
CHAIN (N) statement (control is transferred to the begin-
ning of the chain which is called).

TEST CHAIN PROGRAM

On0n

CHAIN JOB SEGMENT 1
COMMON A, B,C
DIMENSION ARRAY (10, 10)
READ (4,5) ARRAY

CALL CHAIN (2)
END

C CHAIN JOB SEGMENT 2
COMMON A,B,C
DIMENSION TABLE (30)

CALL CHAIN (3)
END

I-55

CHAIN JOB SEGMENT 3
COMMON A,3B,C
DIMENSION A LIST (5,5)

WRITE (4,6) ALIST
5 FORMAT (E10.3)
STOP
END

I-56

of this manual for a list of object-time errors.

APPENDIX 5
FORTRAN IV ERROR LIST

These letter-coded error messages apply to all versions of F4 and F4A. Refer to page 11-2

Error Code Cause

X Syntax error Statement cannot be recognized as a properly
constructed FORTRAN IV statement.

Vv Variable/constant Illegal mode mixing. Missing constant, variable or

mode error exponent, or illegal matching of constants or vari-
ables in a DATA statement.

N Statement number ‘error Phase error, number more than 5 digits, no statement
number where one is required, statement shouldn't
be labeled or doubly defined statement numbers.

S Argument/subscript error Missing argument or subscript, illegal use of sub-
scripts, illegal construction of subscripted variable,
more than 3 subscripts or stated number of subscripts
does not agree with declared number.

F FORMAT statement error Illegal FORMAT specification or illegal construction
of FORMAT statement.

I Character/statement/ Illegal character, unrecognizable statement, illegal

term error statement for program type, statement out of order
or improper statement preceding END statement.

D DO loop error Illegal DO construction or illegal statement termi-
nating DO LOOP.

T Table overflow Symbol/constant/arg (1)/OP(I) table limits exceeded.

L Nesting error Illegal nesting or DO nesting too deep.

M Magnitude error Program exceeds 8190 words, maximum number of
dummy arguments or EQUIVALENCE classes exceeded,
or constant/variable exceeds specified limits.

C COMMON/EQUIVALENCE/ Illegal construction of statement, illegal EQUIVA-
DIMENSION/DATA statement LENCE relationships, illegal COMMON declaration
error or non-common storage declared in BLOCK DATA

subprogram.

’(E FUNCTION/SUBROUTINE/ Illegal use of FUNCTION/SUBROUTINE name, out
EXTERNAL/CALL statement of order, or illegal variable for EXTERNAL decla-
error ration.

H Hollerith error Hollerith data illegal in this statement or illegal of

Hollerith constant.

b4
IFTAE WAME OF A 508 R0uTNE 08 FUNCTION 00Es wor HERES
WiTH 7HE Fie NAME ¢ ,uen)
J

AS 4 WARNING . (T€rp)
1-57

SES Wice ook IA) PIQS'S/

APPENDIX 6
SYMBOL TABLE SIZES (F4 V3A)

The following symbol table sizes are for 8K systems with the full complement of skip IOTs
in the skip chain,

NOTE

Handlers listed are for DAT slots =11, =12, and =13, re~
spectively.

PRB, TTA, PPC - 189 symbols (decimal)
b. DTC, TTA, PPC - 62 symbols (decimal)

F4A
a. PRB, TTA, PPC - 407 symbols (decimal)
b. DTC, TTA, PPC - 278 symbols (decimal)
c. DTB, TTA, DTB - 54 symbols (decimal)

1-59

FORTRAN IV OBJECT - TIME SYSTEM

INTRODUCTION

Part 1l describes the subprograms included in the PDP-9 FORTRAN IV Object Time System.
The Object Time System is a group of subprograms that process compiled FORTRAN 1V statements,
particularly 1/O statements, at execution time. The compiler outputs calls in the form of globals to
various subprograms, depending upon the content of the FORTRAN program. When the compiled pro-
gram is loaded via the Linking Loader, the Loader attempts to satisfy these globals by searching the
FORTRAN library. As it finds the required object time subprograms, it brings them into core and sets
up the necessary linkages.

Included in the package are programs for processing formatted and unformatted READ and
WRITE statements, BACKSPACE, REWIND and ENDFILE statements, the index of computed GO TO
statements, STOP and PAUSE statements, and File commands. There are eight error messages output by
the object time system which are described in Table I1-1.

The following information is given for each program:
Class
Purpose
Calling sequence
External calls

Size
Error conditions

~0 a0 o0

-1

Error Number

o-p4
@5
26

97
10

11
12
13

14

Table [I-1.
OTS Errors

Error Description

Not used
Negative REAL Square Root Argument

Negative DOUBLE PRECISION Square
Root Argument

Illegal Index in Computed GO TO
Illegal 1/O Device Number

Bad input data - IOPS Mode Incorrect
Bad FORMAT

Negative or Zero REAL Logarithmic
Argument

Negative or Zero DOUBLE PRECISION
Logarithmic Argument

Library Routines*
That May Cause Error

SQRT
DSQRT

.GO

.FR, .FW, .FS, .FX,
.FR, .FA, .FE, .FF, .FS,

.FR, .FA, .FE, .FF, .FS,
.FA, .FE, .FF
.BC, .BE,ALOG

.BD, .BF,.BG, .BH,
DLOG,DLOG1¢

*Only those routines whose calls are generated by the compiler are listed.

11-2

BCDIO
1. Class:
2. Purpose:

OTS Binary Coded Input/Output

Object - Time System

The BCD input/output object-time package is designed to process the formatted
READ and WRITE statements in FORTRAN IV programs and subprograms. The
FORTRAN IV compiler generates all the necessary object-time subroutine calls to
perform input and output operations on a character-to-character basis under the
control of a FORMAT statement. To permit FORMAT statements to be altered or
read at execution time, the FORMAT statements are interpreted by BCDIO at
execution time rather than at compile-time. This has two advantages:

1) It provides a greater flexibility to the FORTRAN programmer,
2) It provides the ability to utilize fully the capabilities of BCDIO in

machine-language programs.

In demonstrating this capability, an illustrative MACRO-9 language program is
given below, which reads 8 floating point numbers into memory with F-conversion
and writes them on an output device using the E-conversion.

Example:
.TITLE
.GLOBL .FP,.R,.FE,.FF,.FW
JIODEV 3,4
ENTRY JMS* .FP /Initialize 1/O device status table.
JMS* .FR /Initialize device 3 for input
.DSA (3) /under control of FORMAT statement
.DSA FRMTI1 /FRMT1 and read first record into line
/buffer.
LAW -1g /Set loop counter to 8.
DAC COUNT
LAC (ARRAY) /Set element address to first word
DAC ARGI /in the array.
LOOPI1 JMS* .FE /Convert next line buffer field from
ARGI o] /BCD to floating point binary and
/store in ARRAY .
I1SZ ARGI /Increment ARRAY address by two.
I1SZ ARGI
ISZ COUNT /Check the counter and
JMP LOOP1 /if not done, repeat loop.
JMS* .FF /Otherwise, terminates reading.
JMS* .FW /Initialize device 4 for output
.DSA (4) /under control of FORMAT
.DSA FRMT2 /statement FRMT2.
LAW -1g /Set loop counter fo 8.
DAC COUNT

11-3

OTS Binary Coded Input/Output

LAC (ARRAY) /Set element address to first
DAC ARG2 /word in the array.
LOOP2 JMS* .FE /Convert floating-point binary word
ARG2 o] /pair to BCD and store in line-buffer.
ISz ARG2 /Increment ARRAY address by 2.
ISz ARG2 /
ISZ COUNT /Check count.
JMP LOOP2 /If not done, go to LOOP 2.
JMS* .FF /if done, output last line-buffer
/and terminates writing.
HLT
ARRAY .BLOCK 2¢
FRMTI1 .ASCII '(8F10.5)"
FRMT2 LASCII '(8E12.5)"
COUNT o
.END

3. Calling Sequences:

a. To initialize a device for BCD input (output):

JMS* .FR (.FW)
.DSA address of slot number.
.DSA address of first word of FORMAT statement or array.

b. To input (output) a data element:

JMS* .FE
.DSA address of element (first word)

c. To input (output) an entire FORTRAN array:

JMS* .FA
.DSA address of last word in the Array Descriptor Block.

d. To terminate the current logical record:

JMS* .FF

All BCDIO routines utilize the FIOPS object-time package to perform all
I/O data transfers between devices and the FIOPS line buffer. Device level
communication is never employed.

e. External Calls:

FIOPS, OTSER, REAL ARITHMETIC

f. Size: 2773 octal locations

11-4

OTS Binary Coded Input/Output
g. Error Conditions:

OTS ERROR 1§ - lllegal I/O Device Number
OTS ERROR 11 - Bad Input Data (IOPS Mode Incorrect)
OTS ERROR 12 - lllegal FORMAT

-5

BINIO
1. Class:
2. Purpose:

OTS Binary Input/Output

Object - Time System

The Binary Input/Output Object-Time package is designed to process the unformatted
READ and WRITE statements in FORTRAN [V programs and subprograms. A FORMAT
statement is not required and the data transfer is on a word-to-word basis instead of
on character-to-character basis, regardless of data type.

The size of the physical data record is always the standard line buffer size provided

by IOPS.

Logical data records are comprised of one or more physical records, the number of
which is determined by the length of the /O list associated with the WRITE state-
ments that generates the logical record.

Each WRITE statement generates one logical record.

Each READ statement reads one logical record, regardless of the length of its 1/0
list. For this reason, it is the responsibility of the FORTRAN programmer to ensure
that /O lists for WRITE and READ statements are compatible.

3. Calling Sequences:

a. To initialize a device for binary input (output):

X
JMS* .FS (.EW)
.DSA DEVICE

b. To input (or output) an integer data element:

JMS* .Fl
.DSA address of the element

c. To input(or output) a real data element:

JMS* .FJ
.DSA address of the element (first word)

d. To input (or output) a double precision data element:

JMS* .FK
.DSA address of the element (first word)

e. To input (or output) a logical data element:

JMS* .FL
.DSA address of the element
f. To input (or output) an entire FORTRAN array:

JMS* .FB
.DSA address of the last word in the Array Descriptor Block.

-6

OTS Binary Input/Output
g. To terminate the current logical record:

JMS* .FG

The third word of each physical record contains a record of ID numbers starting with
ZERO for the first record. Then ID is incremented by one as each physical record
is generated until the last record in the logical record has bit @ set.

A typical WRITE statement may generate the following record for ID:

i}
2000
LOGICAL 0popp2 PHYSICAL RECORD
RECORD 000093 FOR ID (OCTAL)
oA

4. External Calls:

FIOPS, OTSER
5., Size: 244 octal locations
6. Error Conditions:

OTS ERROR 14 - lllegal 1/O Device Number
OTS ERROR 11 - lllegal Input Data (IOPS Mode Incorrect)

-7

OTS Auxiliary Input/Output

AUXIO
1. Class: Object - Time System
2. Purpose: Auxiliary Input/Output consists of the processors for the three auxiliary 1/O state-

ments in FORTRAN [V: BACKSPACE, REWIND, and ENDFILE.

These statements are normally used to control Magnetic Tape Transports which are
being used by unformatted READ and WRITE statements (BINIO).

1) BACKSPACE (.FT):

Repositions the tape at a point just prior to the first physical record
associated with the current logical record.

Example:

WRITE (7) A, B,C
BACKSPACE (7)
READ (7) D, E,F

These three instructions as shown in the above order cause the data of
A, B, and C to be transferred to D, E, and F.

2) REWIND (.FU)

Causes the specified device to be positioned at its initial (load) point.

3) ENDFILE (.FV)

Issues an IOPS command to close the current file on the specified device.

In the case of Magnetic Tape, this writes a file mark.
3. Calling Sequences:

a. To backspace one logical record:

JMS* FT
.DSA DEVICE

b. To position a device at its initial point:

JMS* .FU
.DSA DEVICE

c. To end (close) a file:

JMS* .FV

.DSA DEVICE
4. External Calls:

FIOPS

OTS Auxiliary Input/Output
5. Size: 64 octal locations

6. Error Conditions:

OTS ERROR 16 - lllegal 1/O Device Number

-9

FIOPS
1. Class:
2. Purpose:

OTS IOPS Communication

Object - Time System

FIOPS provides the necessary calls to IOPS required by all FORTRAN input and
output statements.

Slot numbers are initialized by the .FC routine (Initialize /O Device). Initializa-
tion of all slots is maintained in the device status table. The first time that .FC is
called for any device, the appropriate . INIT call is made to IOPS. The buffer size
and input/output flag are stored in the status word table. Then all subsequent calls
to .FC for the same device suppress another . INIT unless the input/output flag has
changed.

One life buffer is used by all FORTRAN programs. Data transfers between the line
buffer and /O devices are performed by the .FQ routine, which performs a .READ
if the input/output flag (.FH) is "ZERO" or a .WRITE if .FH is "ONE." A .WAIT

is always performed.

The .FP routine is called at the beginning of all FORTRAN main programs. This
routine sets all words in the device status table to zero, indicating that all devices
are uninitialized.

3. Calling Sequences:

a. To initialize the |/O device status table:
JMS* .FP

b. To specify input:

DZM* .FH

c. To specify output:

LAC (mn
DAC* .FH

d. To select device:

LAC DEVICE (address of slot number)
JMS* .FC

e. To input or output the line buffer:

LAC address of . DAT slot number (bits 9-17) and IOPS mode (bits 6-8)
JMS* FQ
f. Notes:

1) DEVICE is a cell containing the slot number.

2) The line buffer is in locations .FN to .FN+3778.

11-10

OTS IOPS Communication
3) The standard line buffer size (for the device currently selected) is in
location .FM.
4) On output, IOPS header words (.FN and .FN + 1) must be prepared by
the user.
4. External Calls:
OTSER
5. Size: 530 octal locations

6. Error Conditions:

OTS ERROR 14 - lllegal 1/O Device Number

=11

OTS Calculate Array Element Address

sS
1. Class: Object - Time System
2. Purpose: To calculate the array element address. The Array Descriptor Block is constructed

as follows:

LRty wd1l [000] M | Size |

0 2 345 17
wd 2 N* |
max

> Generated by
wd 3 N*1 %) F4

max max

AZZA)/ wd 4 Address of Array

T

M: data type - translates to number of words per array element (n)

M N Type

00 01 integer

01 02 real

10 03 double precision
11 01 logical

Subscript calculation formula (for declared A (1,J, K) and specified A (i,j, k))

Addr of A (i,j,k) =

A+(-1)*n+(G-)* I*n +(k=1)*1*J*n
S —/ ———

[—")
_wd 4) wd 2 wd 3
_1-dimension array
2-dimension array
3-dimension array

3. Calling Sequence:

.GLOBL ARRAY

JMS* .SS

.DSA ARRAY /Address (indirect) of array

/Descriptor Block

LAC S1 /Subscript 1 (1)

LAC S2 /Subscript 2 (J)

LAC S3 /Subscript 3 (K)

DAC . /Store array element address here

1-12

OTS Calculate Array Element Address
4. External Calls:
INTEGER and REAL ARITHMETIC
5. Size: 57 octal locations
6. Error Conditions:

None.

1-13

OTS Computed GOTO

GOTO (.GO)
1. Class: Object - Time System
2. Purpose: To compute the index of a computed GO TO

3. Calling Sequence:

LAC \% /Index value in A-register
JMS* .GO
-N /Number of statement addresses

STMT ADDR (1)
STMT ADDR (2)

STMT ADDR (N)
4. External Calls:

OTSER
5. Size: 26 octal locations

6. Error Conditions:

OTS ERROR 7 if the index is illegal (equal to or less than zero).

I1-14

OTS Stop

STOP (.ST)
1. Class: Object - Time System
2. Purpose: To process the STOP statement and return control to the monitor.

3. Calling Sequence:

LAC (Octal number to be printed)
JMS* ST

4. External Calls:
SPMSG (. SP)

5. Size: 13 octal locations

6. Error Conditions:

None

11-15

OTS Pause

PAUSE (.PA)
1. Class: Object - Time System
2. Purpose: To process the PAUSE statement. After receiving a * P (Control P) from the key-

board, control is returned to the program.

3. Calling Sequence:

LAC (Octal number to be printed)
JMS* .PA

4. External Calls:
SPMSG (. SP)

5. Size: 14 octal locations

6. Error Conditions:

None

11-16

SPMSG (. SP)
1. Class: Object - Time System
2. Purpose: To print the octal number coded with STOP and PAUSE.

zero (@) is assumed.

3. Calling Sequence:

LAC (Octal integer to be printed)
JMS* .SP

.DSA (Control return) /pause only
LAC 1st Character

LAC 2nd Character

LAC 3rd Character

LAC 4th Character

LAC 5th Character

LAC 6th Character

4. External Calls:

None
5. Size: 74 octal locations
6. Error Conditions:

None

1-17

OTS Octal Print

If no number is given,

OTSER (.ER)

OTS Errors

1. Class: Object - Time System

2. Purpose:

3. Calling Sequence:

To announce an error on the teletype:

JMS* .ER
.DSA Error number

If bit § of the error number is a 1, the error is recoverable and program control
is returned to the calling program at the first location following the error number.

If bit § of the error number is a @, the error is unrecoverable and program control
is transferred to the monitor by means of the .EXIT function.

In the case of recoverable errors, the AC and link are restored to their original
contents prior to returning control to the caller.

If the error is a bad format statement (unrecoverable), the current 5/7 ASCII
word pair of the erroneous format statement is printed in addition to the error
number.

JMS* .ER
.DSA Error number, octal
ERROR 12 LAC Note word 1
only LAC Note word 2

4. External Calls:

Words 1 and 2 are the current 5 characters (in 5/7 ASCII of the bad
format statement (ERROR #12)

None

5. Size: 117 octal locations

6. Error Conditions:

None

11-18

Additions to the PDP-9 FORTRAN 1V Subroutine Library

File Commands
FILE
1. Class External Subroutine
2. Purpose: To provide the device-independent .IOPS commands SEEK, ENTER, CLOSE, FSTAT,

RENAM, and DLETE. These commands are used to allow the FORTRAN IV Object Time
System to communicate with .IOPS file-oriented devices.

a. SEEK finds and opens a named input file,
b. ENTER initiates and opens a named output file.

c. CLOSE terminates an input or an output file and must be used if SEEK or ENTER
has been used.

d. FSTAT checks for the presence of a named file.
e. RENAM checks for the presence of a file and renames it if found.

f. DLETE checks for the presence of a file and deletes it if found.

NOTE
BACKSPACE, REWIND, and ENDFILE commands should
never be used with a device that is operating in the file-
oriented mode using the above subroutines.
3. Calling Sequences:
a. To seek a named file:

CALL SEEK (N,A)

where N = device number
A = array name containing the 9-character 5/7
ASCII file name and extension.

The file array has the following format for the named file FILNAM EXT:
DIMENSION FILEN (2)
DATA FILEN(1), FILEN (2)/5HFILNA ,4HMEXT/
To use this named file for input on .DAT slot 1:
CALL SEEK (1,FILEN)
b. To enter a named file:
CALL ENTER (N,A)
where N and A are the same as for SEEK.
c. Toclose a named file:
CALL CLOSE (N)

where N is the same as for SEEK.,

I1-19

d. To check for the presence of a named file
CALL FSTAT (N, A, 1)
where N and A are the same as for SEEK and I = -1
(.FALSE.) if file not found and 1 =0 (.TRUE.) if file found and action complete.
e. Torename a file A and call it B
CALL RENAM (N, A, B, I)
where N, A(B is the same as A), and I are the same as for FSTAT.
f. To delete a named file
CALL DLETE (N, A, 1)
where N, A, and I are the same as for FSTAT.
4, External Calls
FIOPS, .DA, .SS, .SEEK, .ENTER, .CLOSE, .FSTAT, .RENAM, .DLETE
5. Size
322 octal locations
6. Error Conditions
.OTS Error 10 if I/O device number is illegal
.IOPS Error 13 if file not found on SEEK
.IOPS Error 14 if directory full on ENTER

11-20

Clock Handling

TIME
1. Class: External Subroutine
2, Purpose: To provide the ability to record elapsed time in minutes and seconds

3. Calling Sequence:

CALL TIME (IMIN, ISEC, IOFF)

This call causes the clock to be started and the elapsed time recorded as minutes
and seconds in IMIN and ISEC. To stop the clock, set IOFF to non-zero.

Only one call to TIME or TIME10 can be active at any point in the user program.

Example: CALL TIME (IM, IS, 1OF)

IOF =1
WRITE (4,100) IM, IS

This sequence will cause the time taken to execute the code at A to be output.

4, External Calls:
.DA, .TIMER

5, Size:

53 octal locations

6. Error Conditions:

None

[1-21

Clock Handling

TIME10
1. Class: External Subroutine
2. Purpose: To provide the ability to record elapsed time in minutes, seconds, and tenths of

seconds.

3. Calling Sequence:
CALL TIMET0 (IMIN, ISEC, ISEC10, IOFF)

This call causes the clock to be started and the elapsed time to be recorded as
minutes, seconds, and tenths of seconds in IMIN, ISEC, and ISEC10 respectively.
To stop the clock, set IOFF to non-zero. Only one call at TIME10 or TIME can
be active at any point in the user program.

Example: See TIME

4, External calls:
.DA, .TIMER

5. Size:

66 octal locations

6. Error conditions:

None

11-22

ADJI1
1. Class:

2, Purpose:

Adjustable Dimensioning

External Subroutine

To provide dimension adjustment on a one dimensional array

3. Calling Sequence:

Example:

4, External calls:

5. Size:

DIMENSION B(1)

CALL ADJT (B,A)
Where B is the array whose storage begins at A, A must be an array element (such

as C(200)) with sufficient storage beyond A to allow for all the entries of array B.
The dimensions or type of array A do not have to agree with array B.

B cannot be a dummy argument in a subroutine but A can be a dummy argument,

DIMENSION A(300), B(1), C(I)

CALL ADJT (B, A(101))
CALL ADJT (C,A(201))

After the calls to ADJ1, the arrays B and C may be referenced as if they had been
dimensioned as (100) each. No further calls to ADJ1 have to be made.

DA

17 octal locations

6. Error Conditions:

None

[1-23

Adjustable Dimensioning

ADJ2
1. Class: External Subroutine
2. Purpose: To provide dimension adjustment for a two dimension array.

3. Calling Sequence:
DIMENSION B(1,1)

CALL ADJ2 (B,A, NR)

where NR is the number of rows to appear in array B.
See ADJI1 for comments on B and A.

Example:
DIMENSION A(300), B(1,1), C(1,1)
CALL ADJ2 (B,A (1), 10)
CALL ADJ2 (C,A (101), 20)

After the calls to ADJ2, the arrays B and C may be referenced as if they had been
dimensioned (10,10) and (20,10) respectively. No further calls to ADJ2 have to
be made.

4, External Calls:
DA, .AD

5. Size:

36 octal locations

6. Error Conditions:

None

[1-24

Adjustable Dimensioning

ADJ3
1. Class: External Subroutine
2. Purpose: To provide dimension adjustment for a three dimension array

3. Calling Sequence:
DIMENSION B (1,1,1)

CALL ADJ3 (B,A,NR,NC)
where NR and NC are the number of rows and columns respectively to appear in array
B. See ADJI for comments on B and A.

Example:
See ADJ1 and ADJ2
4, External Calls:
DA, .AD
5, Size:

41 octal locations

6. Error Conditions:

None

[1-25

PDP-9 SCIENCE LIBRARY

INTRODUCTION

All mathematical routines in the PDP-9 Science Library are described in Part III. Most of the
descriptive material is listed in Table III-1; in cases where detailed calculations or algorithms are in-
volved, a reference (A) is made in column 1 to detailed descriptions following the table. Information
given in Table III-1 for each routine includes the routine name, mnemonic, calling sequence, function,
mode, errors, accuracy and timing (where available), storage requirements, and external calls. Rou-
tines are categorized by Intrinsic Functions, External Functions, Sub-Functions, or part of the Arith-

metic Package and are listed in the table accordingly.

Intrinsic Functions

Intrinsic Functions are predefined subprograms that are part of the FORTRAN library. The
type of each Intrinsic Function and its arguments is predefined and cannot be changed. Intrinsic
Functions are referenced in a FORTRAN program by writing the function name along with the desired
arguments in an appropriate FORTRAN statement.

Example:

X = ABS (A)

External Functions

External Functions are independently written programs that are executed each time their
name appears in a FORTRAN program. Each External Function accepts one or more numerical arguments
and computes a single result. SIN, COS, and ALOG are examples of external functions. All basic
External Functions supplied with the FORTRAN system are described in Table III-1.

Sub-Functions

Sub-Functions are called by Intrinsic and External Functions, but are not directly accessible
to the user via FORTRAN. For example, the Sub-Function .EB is called by the External Function SIN,

and performs the actual computation of the sine.

The Arithmetic Package

The Arithmetic Package contains all arithmetic routines required for integer, real, and

double precision arithmetic. Both EAE and non-EAE versions are available, depending upon the hardware.

-1

Accumulators

There are three accumulators referred to in the CALLING SEQUENCE column of the table.

These include the A-register, the floating accumulator, and the held accumulator.

A-Register

The A-register is the standard hardware accumulator and is used in some of the computations

that involve integer values.

Floating Accumulator

The floating accumulator is a software accumulator that is included in the REAL ARITHMETIC
package. It is a 3-word accumulator, .AA being the label of the first word, .AB the second, and .AC

the third. Numbers are stored in this accumulator in the following format:

AA l EXPONENT (2's COMP.)

|—SIGN OF MANTISSA

AB V| HIGH ORDER MANTISSA

0 1 17
AC LOW ORDER MANTISSA

0 17

Negative mantissae are indicated with a change of sign.
Used by both the single and double precision routines, this format is also that of double pre-
cision numbers. Single precision numbers have a different format and must be converted before and

after use in the floating accumulator. The format of single precision numbers is:

s
LOW ORDER EXPONENT
MANTISSA - (2's COMP.) !
0 89 17
SIGN OF —+> HIGH ORDER MANTISSA
MANTISSA
0 1 17

-2

Held Accumulator

The held accumulator has the same format as the floating accumulator and is used as tem-

porary storage by some routines. The labels of the three words are CEO1, CE02, and CE03.

Calling Sequences

The MACRO-9 calling sequences, given in the third column of Table 3-1, assume in some
cases where there are two arguments, that the appropriate accumulator has been loaded with the first
argument. If the first argument is an integer value, it can be loaded into the A-register with a LAC
instruction. If the first argument is a real or double precision value, the routines .AG and .AO,
respectively, should be used to load the floating accumulator. The DAC instruction may be used to
store the result of routines that return with an integer value in the A-register. The routines .AH and
.AP should be used to store the result of routines that return with real or double precision values in the
floating accumulator.

In calling sequences that use the .DSA pseudo operation to define the symbolic address of
arguments, 400000 must be added to the address field if indirect addressing is involved.

FORTRAN library routines that are used in MACRO-9 programs must be declared with a
.GLOBL pseudo operation in the MACRO-9 program. There must be agreement in the number and type
of arguments between the calling program and the FORTRAN library routine.

The following example shows a section of a MACRO=-9 main program that uses the FORTRAN

External Function SIN.

.TITLE
.GLOBL SIN, .AH
JN\S.* SIN
JMP .+2 /JUMP AROUND ARGUMENT
.DSA A /+400000 IF INDIRECT
JMS* .AH /STORE IN REAL FORMAT AT X
.DSA X
X .DSA 0
.DSA 0

When the above MACRO-9 program is loaded, the Linking Loader will attempt to satisfy the
globals by searching the Science Library. The External Function SIN and the REAL ARITHMETIC pack-
age will be loaded. The references to these routines in the MACRO-9 program must be indirect (as

indicated in the example) since only the transfer vectors are given in the main program.

-3

Table I1I-1
PDP-9 Science Library

G-1I1

Timing
Accur.| Non- Storage
ROUTINE NAME Mnemonic| Calling Sequence Function Mode Errors Bits EAE EAE (Octaly| External Calls
INTRINSIC FUNCTIONS
Exponentiation: LAC ARG] (base) ‘
Integer Base, Integer Exponent | .BB Jms+ . BB ek =l None N.A.| Note 45 | INTEGRR
9 ¢ : LAC ARG2 (exp) AN
Real Base, Integer Exponent .BC r N A**K R=R**| 13, if base <0] 26 23.2 ms 44 | .EE,.EF, REAL
DP Base, Integer Exponent .BD A**K D=D**| #14, if base <0| 32 27.8 ms 46 | .DE,.DF,DOUBLE
Real Base, Real Exponent .BE A**B R=R**R #13, if base <0| 26 23.0 ms 20 | .EE,.EF,REAL
Real Base, DP Exponent JBF <IMs* SUBR | A D=R**D #13, if base <0| 26 27.6 ms 21 | .EE,.DF,DOUBLE
.DSA ADDR of ARG2
(exp.)
DP Base, Real Exponent .BG A**B D=D**R #14, if base <0| 32 27.6 ms 22 .DE, .DF, DOUBLE
DP Base, DP Exponent .BH - _/ A**B D=D**D #14, if base <0f 32 26.6 ms 21 .DE, .DF, DOUBLE
Absolute Value: . R
Real Absolute Value ABS A R=ABS(R) None N.A.| 120 ps 16 | .DA,REAL
Integer Absolute Value IABS [1] . I=1ABS(1) None N.A 64 us 14 [.DA
DP Absolute Value DABS JMS* SUBR ’ A | D=DABS(D) None N.A. 120 ps 16 .DA, DOUBLE
< JMP 42 >
.DSA ADDR of ARG
Truncation:
Real to Real Truncation AINT Sign of A times R=AINT(R) None N.A 365 ps 15 .DA,REAL
Real to Integer Truncation INT largest integer I=INT(R) None N.A 180 s 13 | .DA,REAL
DP to Integer Truncation IDINT _ D, <A I=IDINT(D) None N.A 180 ps 13 .DA,REAL, DOUBLE
Remaindering: - ~
Real Remaindering AMOD Note 2 R=AMOD(R,R) None N.A.| 3015 ps 27 .DA,REAL
Integer Remaindering MOD Note 2 I=MOD(l, I) None N.A 477 us 24 .DA,INTEGER
DP Remaindering DMOD Note 2 D=DMOD(D, D) None N.A. | 3335 ps 30 .DA, DOUBLE
Transfer of Sign: JMS* SUBR
Real Transfer of Sign SIGN J'B"SPA s Sign of Al R=SIGN(R, R) None N.A.| 198 s 26 | .DA,REAL
} of ARG1 > .
Integer Transfer of Sign ISIGN DSA ADDR of ARG2 I=SIGN(I, D None N.A.| - 8l 20 |.DA
9 g : D=SIGN(D, D) None N.A.| 192ps 26 | .DA,DOUBLE
DP Transfer of Sign DSIGN Sign of A2
Positive Difference:
Real Positive Difference DIM A1-MIN(A1,A2) | R=DIM(R,R) None N.A.| 794 ps 22 .DA,REAL
Integer Positive Difference IDIM 1T-MIN(I1, 12) I=IDIM(I,) None N.A 85 us 15 .DA, INTEGER
- /
Conversion: - ~
Integer to Real Conversion FLOAT Ae| R=FLOAT(l) None N.A. | 246 ps 1 .DA,REAL
Real to Integer Conversion IFIX JMS* SUBR l-A 1=IFIX(R) None N.A.| 180 ps 13 | .DA,REAL
JMP 2
DP to Real Conversion SNGL .DSA ADDR of ARG A+eB R=SNGL(D) None N.A. [144 ps 27 .DA,DOUBLE
Real to DP Conversion DBLE A+B D=DBLE(R) None N.A. 115 ps 11 .DA,REAL
~ 4

NOTES: T Timing indicated in this column is estimated unless indicated to be otherwise with a dagger (1). The dagger indicates actual, average-to-worst-case times based on arbitrarily chosen values.
1. Timing is dependent upon the size of the exponent, but is approximately equal to 335 us times n, where n is the largest power of 2 in the exponent.
2. Remaindering is defined as Al - [A1/A21 A2, where [A1/A2] is the integer whose magnitude does not exceed the magnitude of A1/A2 and whose sign is the same as A1/A2.

9-111

Timing

Accur. | Non- Storage
ROUTINE NAME Mnemonic| Calling Sequence Function Mode Errors Bits EAE EAE (Octal)| External Calls
INTRINSIC FUNCTIONS (Cont)
Maximum/Minimum Value: - ~
Integer Maximum/Minimum IMNMX JMS* MAXO0,MINO, 106 |INTEGER, REAL
AMAXO, or AMINO|
JMP . +n+]
Integer to Integer Max. MAXO0 4 .DSA ADDR of ARGI Max. Value I=MAXO0(!1,...,In)| None N.A. [Note 3
.DSA ADDR of ARG2
Integer to Integer Min. MINO . . Min. Value I=MINO(I1,...,In) | None N.A. | Note 3
Integer to Real Max. AMAX0 LD'SA ADDR of ARGn Max. Value R=AMAXO(11,...In) | None N.A. | Note 4
Integer to Real Min. AMINO = < Min. Value R=AMINO(I1,...In) | None N.A. | Note 4
Real Maximum/Minimum RMNMX| [JMS* AMAX1,AMINT, 117 |INTEGER, REAL
MAX1, or MIN2
JMP . +nt+l
Real to Real Max AMAX]1 < .DSA ADDR of ARG1 > Max. Value R=AMAXI(R]1,..Rn)| None N.A Note 5
.DSA ADDR of ARG2
Real to Real Min. AMINI : Min. Value R=AMINI1(R],..Rn) | None N.A. | Note 5
Real to Integer Max. MAX1 .DSA ADDR of ARGn Max. Value I=MAX1(R], ...Rn) None N.A. | Note 6
Real to Integer Min. MINI > < Min. Value I=MINI1(R]1,...Rn) None N.A. | Note 6
DP Maximum/Minimum DMNMX |JMS* DMAXI or DMIN1 105 |DOUBLE
JMP .4nt]
DP Maximum DMAX1 ﬁ .DSA ADDR of ARGI Max. Value D=DMAX1(D1,...Dn) None N.A. | Note 7
. . 1
DP Minimum DMIN1 . : Min. Value D=DMIN1(D],...Dn) None N.A. | Note7
.DSA ADDR of ARGn
- J
EXTERNAL FUNCTIONS
Square Root: ~ ; ;
Real Square Root /N sart | [x'/2 R=SQRT(R) #5,ARG<0 | 26 6.657ms | 3.584 ms 66 |.DA, .ER,REAL
DP Square Root /N DSQRT x'/2 D=DSQRT(D) #6,ARG<0 | 34 | 18.191 ms |T4.094 ms 66 |.DA,.ER,DOUBLE
Exponential:
Real Exponential /2\ EXP e R=EXP(R) 113, ARG <0| 26 | 115.489 ms| 4.672 ms 13 |.DA, .EF, .ER,REAL
DP Exponential /2\ DEXP JMS* SUBR R D=DEXP(D) #14, ARG <0| 3 117.664 ms| 7.223 ms 13 |.DA,DF, .ER,
DOUBLE
Natural Logarithm: JMP 42
Real Natural Logarithm /3\ ALOG | |.DSA ADDR of ARG Log, X R=ALOG(R) M3, ARG <0| 26 | T8.197 ms | T4.092 ms 20 |.DA,.EE,.ER,REAL
DP Natural Logarithm /3\ DLOG 2 Log, X D=DLOG(D) M4, ARG <0| 32 | T15.489 ms|14.095 ms 21 |.DA,.DE,.R,
DOUBLE
Common Logarithm:
Real Common Logarithm /3\ | ALOGI(Log, y X R=ALOG10(R) #13, RG<0 | 26 | T8.197 ms |74.094 ms 20 |.DA,.EE,.ER,REAL
DP Common Logarithm /3\ DLOGI(Log, X D=DLOG10(D) H4, ARG<0 | 2 |T11.7ms 21 |.DA,.DE,.R,
Sine: DOUBLE
Real Sine /N SIN Sin (X) R=SIN(R) None 26 110.368 ms| 14.094 ms 13 |.DA, .EB,REAL
DP Sine A DSIN Sin (X) D=SIN(D) None k7! 116.383 ms| 75.632 ms 13 |.DA,DB,DOUBLE
Cosine: T
Real Cosine /A cos Cos (X) R=COS(R) None 26 11.025 ms| 74,901 ms 20 |.DA,.EB,REAL
DP Cosine A\ pcos | _J | Cos (¥) D=COS(D) None 34 116,383 ms| T 6.145 ms 21 |.DA,.DB,DOUBLE
NOTES: 3. 57 pst 40 ps for each argument. 6. 233 ps + 624 ps for each argument .

4. 242 ps+40ps for each argument.
5. 168 ps + 624 ps for each argument.

7. 163 ps + 607 ps for each argument.

£-111

Table III-1

PDP-9 Science Library (Cont)

Timing
Accur. [Non- Storage
ROUTINE NAME Mnemonic | Calling Sequence Function Mode Errors (Bits) | EAE EAE (Octal)| External Calls
EXTERNAL FUNCTIONS (Cont)
Arctangent:
-1
Real Arctangent & ATAN JMS* ATAN or DATAN tan (a) R=ATAN(2) None 26 16.352ms | 5.632 ms 13 |.DA, .ED,REAL
IMP
DP Arctangent AN DATAN | |.DSA ADDR or ARG tan”! (o) D=DATAN(D) None 4 14.6 ms 13 |.DA,.DD, DOUBLE
Real Arctangent (x/y) /3\ ATANZ | [IMS* ATANZ or DATAND) [tan™(x/y) R=ATAN2(R,R) None 26 12.4 ms 17 |.DA, .ED,REAL
IMP 43
-1
DP Arctangent DATANZ2|) .DSA ADDR of ARG] ta D=DATAN2(D,D) | N)
rctangent (x/y) /5\ -DSA ADDR of ARG] n o (x/y) (D, D) one 34 16.2 ms 17 |.DA,.DD, DOUBLE
Hyperbolic Tangent /&\ TANH IMS* TANH tanh (a) R=TANH(R) None 26 16.383ms | 7.233 ms 47 |.DA, .EF,REAL
IMP 42
.DSA ADDR OF ARG
SUB-FUNCTIONS 4 B
Sine Computation:
Real Sine /A .EB Sin (a) R=.EB(R) None 19 9.3 ms 100 |.EC, .REAL
DP Sine /A .DB Sin (o) D=. DB(D) None 28 10.8 ms 116 |.DC,.DOUBLE
Arctangent Computation:
-1
Real Arctangent /5\ .ED tan”" () R=.ED(R) None 26 11.0 ms 65 |.EC,.REAL
DP Arctangent 5\ .DD IMS* SUBR \ tan”! (@) D=.DD(D) None 34 14.5 ms 144 |.DC,.DOUBLE
Logarithm (Base 2) Computation: NOTE
Real Log A JEE Enter with argument in log,, @ R=.EER) M3, ARG < 0| 26 9.0 ms 71 |.ER, .REAL
DP Log floating accumulator. Iog2 a D=.DE(D) #14, ARG 20| 32 10.7 ms 101 .ER, .DOUBLE
Returns with result in
floating accumulator.
Exponential Computation:
. X
Real Exponential A .EF e R=.EF(R) None 26 12.2 ms 116 |REAL
X
DP Exponential 2 .DF > < e D=.DF(D) None 34 15.0 ms 137 [DOUBLE
Polynomial Evaluation: JMS* ECor .DC B n
Real Polynomial Evaluation EC CA.L PL!ST x= iz R—.EC(RZ,R], None N.A. | Note 8 44 |REAL
c 2it1 Ry
2141 %
DP Polynomial Evaluation .DC PLIST -N /-No. of R D=.DC(D,,D,, | None N.A. | Note 8 47 |DOUBLE
terms +1 x= 3 D)
< C_ /last term > i= ™
" 2i+1
Cn-l /next to last C2i+] Z
C1 /2nd term
C0 /1st term
§ J

NOTES: 8.

2.0 ms + 1.3 ms for each coefficient.

Table III-1
PDP-9 Science Library (Cont)

8-111

Timing f
Accur.{ Non- Storage
ROUTINE NAME Mnemonic Calling Sequence Function Mode Errors Bits EAE EAE (Octal) | External Calls
SUB-FUNCTIONS (Cont)
-~ N
Routine that calls
General Get Argument DA Calling Routine Calling Routine N.A. N.A. None | N.A. | Note 9 46 None
JMS* SUBR SUBR CAL 0
JMP Antl JMS* DA
< -DSA ARGl JMP .4nt] ?
.DSA ARG2 (address of ARG1)
. . (address of ARG2)
DSA ARGn :
(address of ARGn)
“ J
ARITHMETIC PACKAGE N
Integer Arithmetic: INTEGE A-ﬁzGis]ter ARG2 Note 11
Multiplication .AD Multiplicand ~ Multiplier I*J) I=1*1 None T28] ps T48 s
Division .AE Dividend Divisor > 1/J =1/l None T352 ps t55 s
Reverse Division .AF Divisor Dividend JMS* SUBR J/1 I=1/1 None
Subtraction LAY Minuend Subtrahend| LAC ARG2 1-J I=1-1 None
Reverse Subtraction AZ Subtrahend MinuendJ : J-1 I=1-1 None
Double Precision Arithmetic: DOUBLE ARGI1 ~
FL.ACC. ARG2 142 REAL
Load .AO Address N.A. D=.AO(D)| None | N.A. |T70 s
Store AP Value Address N.A. D=.AP(D) | None |N.A. [[72 s
Add .AQ Augend Addend A+B D=D-D | None 1255 s
Subtract AR Minuend Subtrahend > JMS* SUBR A-B D=D-D None 324 ps
.DSA ARG2
Reverse Subtract AU Subtrahend Minuend B-A D=D-D None
Multiply .AS Multiplicand Multiplier A*B D=D*D | None 12,047 ms | T 272 s
Divide AT Dividend Divisor A/B D=D/D None 11.537 ms | 1352 s
Reverse Divide LAV Divisor Dividend) B/A D=D/D None
ARG1 ~
Real Arithmetic (Includes REAL FL.AcC. ARGZ Note 12
Floating):
Load .AG Address N.A. R=.AG(R) | None |N.A. |T67 s
Store .AH Value Address N.A. R=.AHR) | None |N.A. | 770 s
Add LAl Augend Addend L A+B R=R+R None 1280 ps
Subtract LAJ Minuend Subtrahend (" JMS* SUBR A-B R=R-R None T35 ps
.DSA ARG2
Reverse Subtract AM Subtrahend Minuend B-A R=R-R None
Multiply .AK Multiplicand ~ Multiplier A*B R=R*R None Tl .937 ms T264 s
Divide AL Dividend Divisor A/B R=R AR None T] 327 ms | T324 ps
Reverse Divide AN Divisor Dividendj B/A R=R R None

NOTES: 9. 37 ps + 15 ps for each argument,
10, The sign of the result (the exclusive OR of the sign bits of .AB and CE02) is stored in .CE. The sign of .AB is saved in CEO5.
11.]308 for EAE, 1648 for non EAE.
12. 7648 for EAE, 733 for non EAE.

Table I11-1
PDP-9 Science Library (Cont)

6-111

Timing
Accur.| Non- Storage
Mnemonic Calling Sequence Function Mode Errors | Bits EAE EAE (Octal) External Calls
ARITHMETIC PACKAGE (Cont)
Floating Arithmetic A-Register FL.ACC.
Float AW Integer F.P. No. A<l =.AW(l) |[None | N.A 185 ps
Fix AX F.P. No. (JMS* SUBR 1 <A =.AX(R) |[None | N.A 65 ps
Negate .BA A<-A =.BA(R) |None| N.A 10 ps
FL.ACC. HELD ACC))
Multiply .CA Multiplicand Multiplier A*B R=R*R None 774 us
(avg)
Divide .Cl Divisor Dividend A/B R=R/R None 1124 s
(real)
1444 ys
> (DP)
Add .CC Augend Addend JMS* SUBR A+B R=R+R None 300 ps
(avg)
Normalize .CD Value N.A. R=.CD(R) |None | N.A.| 160 ps
(avg)
Hold .CF Value N.A. R=.CF(R) [None | N.A. 16 ps
Round & Sign .CH Value N.A. R=.CHR) |None| N.A. 30 ps
Sign Control .CG Value Valve D, Note 10 R=.CG(R) [None| N.A. 30 ps
Short Get Argument .CB CAL 0 N.A. R=.CBR) |None | N.A.| 28ps
JMS* .CB
CAL 0
.DSA 0

PDP-9 SCIENCE LIBRARY ALGORITHM DESCRIPTIONS

1. SQUARE ROOT (SQRT, DSQRT)
A first-guess approximation of the square root of the argument is obtained as follows.

If the exponent (EXP) of the argument is odd:

EXP-1, EXP-1
S)
PO =.5 + ARG

If the exponent (EXP) of the argument is even:
EXP EXP
&5 (

Po=.5 + ARG

2. EXPONENTIAL (EXP, DEXP, .EF, .DF)

The function e” is calculated as 2 |og2e, where x |ogze

will have an integral portion (I) and a fractional portion (F). Then

&= 2} @

2

F n h

where 2 =< z Ci F> and n =6 for EXPand .EF,
i=0 or n =8 for DEXP and .DF.

The values of C are:

Cy = 1.0
| = 0.34657359
C, = 0.06005663
C, = 0.00693801
C, = 0.00060113
C, = 0.00004167
Cg = 0.00000241
C7 = 0.00000119

Cg = 0.000000518

111-10

3.

NATURAL AND COMMON LOGARITHMS (ALOG, ALOGI10, DLOG, DLOGI10)

The exponent of the argument is saved as one greater than the integral portion of the
result. The fractional portion of the argument is considered to be a number between

1 and 2. Z is computed as follows.

_X-N2
X+ A2

] n 2i+1
Then Iog2 X = 0 +<'Eo C2i . z >
|=

where n = 2 for ALOG, and n = 3 for DLOG. The values of C are as follows.

z

ALOG & ALOGI10 DLOG & DLOGI10

C, = 2.8853913 C, = 2.8853900

C; = 0.96147063 C, = 0.96180076

C, = 0.59897865 C, = 0.57658434

C, = 0.43425975

Finally,

log_ X = (log,, X) (log2), for ALOG & DLOG
and

Iog]0 X = (loQ2 X) (log]02), for ALOGI10 & DLOGI10.

SINE AND COSINE (SIN, COS, DSIN, DCOS, .EB, .DB)
The argument is converted to quarter circles by multiplying by 2/1%v. The low two bits
of the integral portion determine the quadrant of the argument and produce a modified

value of the fractional portion (Z) as follows.

Low 2 Bits Quadrant Modified Value (Z)
00 | F
01 " 1-F
10 I -F
11 \Y -(1-F)

Z is then applied to the following polynomial expression.

n
. _ 2i +1
sz—(i:zO C2i+l Z >

where n=4 for REAL routines and n=6 for DP routines. The values of C are as follows.

II-11

REAL ROUTINES DP ROUTINES

C] = 1.570796318 C] = 1.5707932680

C3 =-0.645963711 C3 =-0.6459640975

C5 = 0.079689677928 C5 = 0.06969262601

C7 =-0.00467376557 C7 =-0.004681752998

C9 = 0.00015148419 C‘? = 0.00016043839964
C] 1= -0.000003595184353
C]3= 0.000000054465285

The argument for COS and DCOS routines is adjusted by adding /2. The sin sub-

function is then used to compute the cosine according to the following relationship:

cos X = sin (—"1 + x)

2

ARCTANGENT (ATAN, DATAN, ATAN2, DATAN2, .ED, .DD)
For X less than or equal to 1, Z =X, and:
n

arctangent X =(2 C,. Z2'+]
=0 2i+1

where n =7 for REAL routines and n = 3 for DP routines. For X greater than 1,

Z=1/X, and:

n
o 2i+1
arctangent X = 5 - C;EO C2i+l Z >

where n = 8 for REAL routines and n = 3 for DP routines. The values of C are as

follows.
REAL ROUTINES DP ROUTINES
C] = 0.9999993329 C] = 0.9992150
C3 = - 0.3332985605 C3 = -0.3211819
C5 = 0.1994653599 C5 = 0.1462766
C7 =-0.1390853351 C7 = -0.0389929
C9 = 0.0964200441
"C” = -0.0559098861
C]3 0.0218612288
o 5= - 0.0040540580

[1-12

HYPERBOLIC TANGENT (TANH)

tanh [x]=<-]_;m_>

log 7€

X X
e, calculated as 2 , where x |ogze will have an integral portion (I) and a

fractional portion (F), then:

where

The values of C are as follows.

C] = 1.0

= 0.34657359
= 0.06005663
= 0.00693801
= 0.00060113
= 0.00004167
= 0.00000241

O O 0O 0 00
N0 o~ w N

LOGARITHM, BASE 2 (.EE,.DE)
The exponent of the argument is saved as one greater than the integer portion of the
result. The fractional portion of the argument is considered to be a number between

1 and 2. Z is computed as follows.

_X-N2
X+ 2

1 n 2i+1
log, X =3 +<i§0 Coin1 2 >

where n =2 for .EE and n = 3 for .DE. The values of C are as follows.

Then

I11-13

.EE .DE

;T 2.8853913 C] = 2.8853900
C3 = 0.96147063 C3 = 0.96180076
C5 = 0.59897865 C5 = 0.57658434

C7 = 0.43425975

POLYNOMIAL EVALUATOR (.EC, .DQ)

The polynomial is evaluated as follows.

2

_ 2 2
X=Z(Cy+Z°(Cy ... +Z°(C 2°+C 1))

[11-14

UTILITY PROGRAMS

ADVANCED SOFTWARE SYSTEM
PROGRAMMER'S REFERENCE MANUAL
DEC-9A-KFZA-D

READER’S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its publications.
To do this effectively, we need user feedback: your critical evaluation of this manual and the DEC products described.

Please comment on this publication. For example, in your judgment, is it complete, accurate, well-organized, well-

written, usable, etc?

Did you find this manual easy to use?

What is the most serious fault in this manual?

What single feature did you like best in this manual?

Did you find errors in this manual? Please describe

Please describe your position

Name Organization

Street State Zip

Lestesncnetseneretesterensenetatennnsitirsnsnsensrseonncestennrrassnsesebsseneennneeensens | LY (6l 3 (=] (PP PP PTPRS

Y Do Not Tear - Fold Here and S(ap]e seeesesececeecenctectessrsesetttasscasssossnascessssrasene coos

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by: ﬂngnlan

Digital Equipment Corporation
Software Quality Control
Building 12

146 Main Street

Maynard, Mass. 01754

DIGITAL EQUIPMENT CORPORATION ¢« MAYNARD, MASSACHUSETTS

Printed in U.S.A.

