
mamaala to
::t>
("""')

A
Ci)
;:;::c
0
c::
::z
t::1

.........

-n
0
;:;::c
fT1
Ci)
;:;::c
0
c::
::z
t::1

:::3:
C>
::z -~
<::)
;:;::c

en
-<
C/')
~
rr1
:::3: ..

-c
;:;::c
0
Ci)
;:;::c
::t:>
:::3:
3:
rn
:::::c ...
C/)

:::::c
rn
-n
rn
;:;::c
rn
:z
("""')
rn

::::3:
::t:>
::z
c::
:J>
I

digit.al equipment. corporation

DEC-9A-MRZA-D

PDP-9

BACKGROUND / FOREGROUND MONITOR SYSTEM

PROGRAMMER1S REFERENCE MANUAL

To OBTAIN ADDITIONAL COPIES OF THIS MANUAL, ORDER
NUMBER DEC-9A-MRZA-D FROM THE PROGRAM LIBRARY,
DIGITA.L EQUIPMENT CORPOR:ATION, MAYNARD, MASSACHUSETTS,
01754 PRICE $4.50

SEC'rION 1

1.1

1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6

1.3

SECTION

2.1

2.2

2.3

2.4
2.4.1
2.4.2
2.4.3
2.4.4

2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6
2.5.7
2.5.8
2.5.9
2.5.10
2.5.11
2.5.12
2.5.13

2.6

2.7

2.8

2.9

2

CONTENTS

BACKGROUND/FOREGROUND MONITOR

INTRODUCTION

BACKGROUND/FOREGROUND MONITOR FUNCTIONS
Scheduling of processing Time
Protection of FOREGROUND Core and I/O
Sharing of Multi-Unit Device Handlers
Use of Software Priority Levels
Use of Real-Time Clock
Communication Between BACKGROUND and

FOREGROUND Jobs

EARDWARE REQUIREMENTS AND OPTIONS

1-1

1-1
1-3
1-5
1-5
1-7
1-7

1-7

1-8

BFKM9 - NON-RESIDENT BACKGROUND/FOREGROUND MONITOR

INTRODUCTION

LOCATION AND WHEN CALLED

INITIAL OPERATION

INFORMATION COMMANDS
The LOG Command (L)
The REQUEST Command (R)
The DIRECT Command (D)
The INUSE Command (I)

ALLOCATION COMMANDS
The ASSIGN Command (A)
The FILES Command (F)
The FCORE Command
The FCONTROL Command
The BCONTROL Command
The NEWDIR Command (N)
The SHARE Command (S)
The NOSHARE Command
The 7CHAN Command (7)
The 9CHAN Command (9)
The VC38 Command (V)
The MPOFF Command
The MPON Command (M)

PROGRAM LOAD COMMANDS

FINAL OPERATION

CONTROL CHARACTERS

SUMMARY OF COMMANDS

2-1

2-1

2-2

2-5
2-5
2-6
2-7
2-7

2-8
2-8
2-10
2-12
2-13
2-14
2-15
2-16
2-17
2-17
2-17
2-18
2-19
2-19

2-20

2-20

2-20

2-21

SECTION 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7
3.7.1
3.7.2
3.7.3

3.8

3.9

3.10

3.11

3.12

SECTION 4

4.1

4.2
4.2.1
4.2.2
4.2.3

4.3

4.4

4.5
4.5.1
4.5.2

4.6

4.7

CONTENTS (Cont.)

CONTROL CHARACTERS

PURPOSE

CONTROL TELETYPE

TELETYPE HANDLER

CTRL C (tC)

CTRL S (tS)

CTRL T (tT)

CTRL P (tP)
NORMAL CTRL P
No Change
REAL-TIME CTRL P

CTRL R (tR)

CTRL Q (tQ)

CTRL U (@)

RUBOUT

CTRL D (tD)

LOADERS

INTRODUCTION

FOREGROUND LINKING LOADER
Option Characters and Their Meanings
Use of + Terminator
Sequence of Operation

BACKGROUND SYSTEM LOADER

BACKGROUND LINKING LOADER

LOADING XCT FILES
EXECUTE in the Foreground
EXECUTE in the Background

ERROR CONDITIONS

SYSTEM MEMORY MAPS

3-1

3-1

3-2

3-2

3-3

3-3

3-4
3-5
3-6
3-6

3-7

3-8

3-9

3-10

3-10

4-1

4-1
4-2
4-2
4-3

4-4

4-6

4-7
4-8
4-9

4-9

4-11

SECTION 5

5.1

5.2

5.3

5.4

SECTION 6

6.1

6.2

6.3

6.4

6.S

6.6

6.7

6.8

SECTION 7

7.1

7.2
7.2.1
7.2.2
7.2.3

7.3

7.4
7.4.1

7 .. 5

7.0
7.6.1

7.7

CONTENTS (Cant.)

BACKGROUND/FOREGROUND START-UP PROCEDURE

LOADING THE B/F MONITOR 5-1

.IDLE LOADED AS THE FOREGROUND JOB 5-2

SINGLE-USER FOCAL LOADED INTO THE FOREGROUND 5-3

TWO-USER FOCAL LOADED' IN THE FOREGROUND 5-3

BACKGROUND/FOREGROUND MONITOR COMMANDS (SYSTEM MACROS)

INTRODUCTION 6-1

.REALR 6-2

.REALW 6-3

.IDLE 6-4

.IDLEC 6-1';

.TIMER 6-5

.RLXIT 6-6

MAINSTREAM REAL-TIME SUBROUTINES 6-7

WRITING DEVICE HANDLERS FOR THE BACKGROUND/FOREGROUND
MONITOR SYSTEM

INTRODUCTION

FORMAT OF DEVICE HANDLER'S CAL PROCESSOR
SETUP
Initiating I/O
.OPER Functions

FORMAT OF DEVICE HANDLER'S INTERRUPT PROCESSOR

SYSTEM ANNOUNCEMENTS
Errors

STOP I/O TECHNIQUE

SEQUENTIAL MULTI-USER DEVICE HANDLER
.WAITR

DEVICE HANDLER LISTING

7-1

7-2
7-8
7-8
7-9

7-9

7-13
7-13

7-17

7-19
7-20

7-20

CONTENTS (Cont.)

SECTION 8 SYSTEM GENERATION 8-1

APPENDIX I .SCOM REGISTERS r"-1

APPENDIX II ERRORS II-1

APPENDIX III TELETYPE HARDWARE CHARACTERISTICS 1II-1

SECTION 1

BACKGROUND/FOREGROUND MONITOR

1.1 INTRODUCTION

The reader is assumed to bE~ familiar with the Keyboard Monitor

environment as described in the Advanced Software Monitors Manual,

DEC-9A-MADO-D. It should also be noted that all material presented

herein supersedes the information given in the Monitor Manual.

1.2 BACKGROUND/FOREGROUND MONn~OR FUNCTIONS

The Background/Foreground Monitor is designed to control proces­

sing and I/O operations in a real-time or time-shared environment.

It is, essentially, an extension of the Keyboard Monitor and al10ws

for time-shared use of a PDP-9 by a protected, priority, user F'!RE­

GROUND program and an unprotected system or user BACKGROUND program.

The Background/Foreground Monitor greatly expands the capabili­

ties of PDP-9 ADVANCED Software and makes optimum use of all avail­

able hardware. It permits recovery of the free time (or dead time)

that occurs between input/output operations, thus promoting 100%

utilization of central processor time.

FOREGROUND programs are defined as the higher-priority, debugged

user programs that interface with the reaL-time environment. They

normally operate under Program Interrupt (PI) or Automatic Priority

Interrupt (API) control, and are memory protected. At load time

they have top priority in select.ion of core memory and I/O devices,

and ~t execution time they have priority (according to the assigned

priority leveLs) over processing time. Depending upon system require-

1-1

ments, the user's FOREGROUND program could be an Executive capable

of handling many real--time programs or subprograms at four levels

of priority (with API present).

BACKGROUND processing is essentially the same as the proces­

sing normally accomplished under control of the Keyboard Monitor.

That is, it could be an assembly, compilation, debugging run, pro­

duction run, editing task, etc. BACKGROUND programs may use any

facilities (for example, core, I/O and processing time) that are

available and not simultaneously required by the FOREGROUND job.

Under certain circumstances, I/O devices may be shared by both

the FOREGROUND and the BACKGROUND jobs.

The Background/Foreground Monitor system is externally a

keyboard-oriented system; that is, FOREGROUND and BACKGROUND

requests for systems information, core, I/O devices, programs to

be run, etc., are made via the Teletype keyboards. At run time,

the Monitor internally controls scheduling and processing of I/O

requests, while protecting the two resident users.

The Background/Foreground Monitor performs the following

functions as it controls the time-shared use of the PDP-9 central

processor by two co-resident programs:

a. Schedules processing time.

b. Protects the FOREGROUND job's core and I/O devices.

c. Provides for the sharing of multi-unit device handlers,

such as DECtape, by both FOREGROUND and BACKGROUND jobs.

d. Allows convenient use of API software levels by

FOREGROUND jobs.

1-2

c. Provides for convenient and shared use of the

system Real Time Clock.

f. Allows communication b(~tween the BACKGROUND and

FOREGROUND jobs via core-to-core transfers or

by the shared use of bulk storage devices.

1.2.1 Scheduling of Processing Time

At run time, the FOREGROUND job retains control except when it

is I/O bound; that is, when completion of an I/O request must

occur before it can proceed any further. In the following

example, if the .WAIT is reached before the input requested

l)y the . READ has becn completed, control is ·transferred to ,\

lowc'r priori ty FOlmGROUND segment or to the BACKGROUND job

until the input for the FOREGROUND job is completed.

.READ 3, 0, LNBUF, 48 /READ TO .DAT SLOT 3

.WAIT 3 /WAIT ON .DAT SLOT 3

Since multi-unit device handlers can be shared by FOREGROUND

and BACKGROUND programs, there is a mechanism by which a FORE­

GROUND I/O request will cause a BACKGROUND I/O operation to be

stopped immediately so that the FOREGROUND operation can be

honored. On completion of the FOREGROUND I/O, the BACKGROUND I/O

is resumed with no adverse effects on the BACKGROUND job.

The FOREGROUND program can also indicate that it is I/O

bound by means of the .IDLE or .IDLEC command (Section 6.3 - 6.4).

1-3

This is useful when the FOREGROUND job is waiting for real-time

input from anyone of a number of input devices. Consider the

following example (see Section 6.1 for description of real time

read .REALR command).

.REALR 1, Q,LNBUFl, 32, CTRLl, Nl /REAL

.REALR 2, 2,LNBUF2, 42, CTRL2, N2

.REALR 3, 3, LNBUF3, 36, CTRL3, N3

/TIME

/READS

. IDLE

If .IDLE is reached before any of the input requests have

been satisfied, control is transferred to a lower priority FORE-

GROUND segment or to the BACKGROUND job. The lower priority job

retains control un"til one of the FOREGROUND input requests is

satisfied. Control is then returned to the FOREGROUND job by

executing the subroutine at the specified completion address

(CTRLl, CTkL2, CTRL3) and at the priority level specified by Nl,

N2, N3 which may be:

Value of N

Q

4
5
6
7

Level

Mainstream (lowest level)
Current level (level of ~EALR)
Software level 5
Software level 6
Software level 7

1-4

NOTE

If real-time reads (.REALR), real-time writes
(.REALW), or interval timer (.TIMER) requests
arc employed in the BACKGROUND, N may be set to
0, 4, 5, 6, or 7, but is converted to 0 since
the BACKGROUND job can run only on the main­
stream level. This allows the value of N to
be preset in cases where a BACKGROUND program
is to be subsequently run in the FOREGROUND.

1.2.2 Protection of FOREGROUND Core and 1/<2,.

The FOREGROUND job's core is protected by the Memory Protection Option

(Type KX09A). The BACKGROUND job runs with memory protE~ct enabled;

the FOREGROUND job runs with memory protect disabled.

Protection of the FOREGROUND job's I/O devices is accomplished

via the hardware by the memory protect option, which prohibits lOT

and Halt instructions in the BACKGROUND area; and the software

since the Monitor and lOPS screen all I/O requests made via I/O

Macros. Also, the Monitor and the BACKGROUND Loaders prevent

the BACKGROUND ~ob from requesting I/O which would conflict with

that of the FOREGROUND job (for example they would not honor a

BACKGROUND request for a paper tape handler being used by the

FOREGROUND job).

The Background/Foreground Monitor allows sharing of mUlti-unit,

mass-storage device handlers (such as, DECtape, Magnetic Tape,

d.mj ui sk Letwecn BACKGROUND and I;'OREGROUND jobs). Using these

1-5

multi-unit handlers, n files can be open simultaneously, where

n equals the number of .DAT slots associated with the particular

bulk storaqe device. Some multi-unit handlers require external

data buffers (assigned at load time) ,one for each open file.

These buffers are acquired from and released to a pool by the

handler as needed.

When this count is not accurate (because of the .DAT slots not

Doing used simultaneously), the keyboard command FILES (Sec­

tion 2.5.2) can be used to specify the actual number of files

simultaneously open. Both the FOREGROUND and BACKGROUND jobs

can indicate their file requirements by means of the FILES

keyboard command.

The multi-unit handlers are capable of stacking one BACKGROUND

I/O request. This provision is made to simulate exactly program

operation as it would occur under Keyboard or I/O Monitor (i.e.,

:lingle user) control. Thus, control is returned to the BACKGROUND

JOD to allow non-I/O related processing when the handler is pre­

occupied with an I/O request from the FOREGROUND job. For

example, if the FOREGROUND job has requested DECtape I/O with a

.READ, and is waiting for its completion on a .WAIT, control is

returned to the BACKGROUND job. If the BACKGROUND job then re­

quests DECtape I/O with a .READ, the handler will stack the

request and return control to the BACKGROUND job following the

. READ. The BACKGROUND job can then continue with non-I/O

related proccssinq asthouqh the .REl\D were being honored.

1-6

In hardware configurat.ions which include the Automatic Priori ty

Interrupt (API) option, the Background/Foreground Monitor allows

convenient use of software priority levels of the API by the FORE-

GROUND job. The BACKGROUND job is permitted to use only the

mainstream level.

1.2.5 Use of Real-Time Clock

The Background/Foreground Monitor provides for convenient and

shared use of the system real-time clock. It will effectively

handle many intervals at the same time; thus, the real-t:imc.

clock can be used simultaneously by both BACKGROUND and FORE·-

GROUND jobs.

1.2.6 Communication Between BACKGROUND and FOREGROUND ,Jobs

The Background/Foreground Monitor allows communication between

BACKGROUND and FOREGROUND jobs via core-to-core transfers. 'l'his

is accomplished by means of a special "Core I/O device" handler

within lOPS. Complementing I/O requests are required for a core-

to-core transfer to be effected; for example, a FOREGROUND .READ

(.REALR) from core must be matched with a BACKGROUND .WRITE

(.REALW) to corc.

Two possible uses of this feature are:

d. rrhc~ BACKGROUND job could be related to the

FOREGROUND job, and as a result of its processing,

1-7

pass on information that would affect FOREGROUND

. 9rocessing, or vice-versa.

b. The BACKGROUND job could be a future FOREGROUND

job, and the current FOREGROUND job, being its

predecessor, could pass on real-time data to

create a true test environment.

Communication between two jobs can also be done by storing

and retrieving data on shared bulk storage devices.

1.3 HARDWARE REQUIREMENTS AND OPTIONS

The following hardware is required to operate the Background/

Foreground Monitor System:

a. Basic PDP-9 with Teletype,

b. Memory Extension Control, Type KG09A,

c. Additional 8192-Word Core Memory Module, Type MM09A,

d. Memory Protection Option, Type KX09A,

e. External Teletype System, including at least*:

(1) One Teletype Control, Type LT09A or LT19A,

(2) One Teletype Line Unit, Type LT09B or LT19B,

(3) One Teletype, Model KSR33, KSR35 or equivalent**,

'*'l'he basic system Teletype is normally assigned to the BACKGROUND
environment. One Teletype of the external Teletype system must be
reserved for the FOREGROUND job; additional Teletypes may be
assigned to either BACKGROUND or FOREGROUND functions. If the
API option is available, a Type LT19A Teletype Control and a Type
LT19B Line Unit are recommended.

**Model 37 Teletypes are not supported. Model 33 or 35ASR Teletypes
are supported only to the extent that they operate as KSR's only;
their paper tape input and output facility cannot be used. LT09's
and LT19's may not both appear in the same configuration.

1-8

f. Bulk Storage System, comprising either:

(1) One DEC tape Control, Type TC02, and two DECtape

Transports, Type TU55 (three recommended), or

(2) One Disk System, Type RB09 (and one DECtape

Control, Type TC02, and at least one DECtape

Transport, Type TU55), or

(3) One Disk System, Type RF09/RS09 (and one

DECtape Control, Type TC02, and at least

one DECtape Transport, Type TU55)

The following options curr,:!ntly supported by software may

be added to improve system performance (as noted) :

Additional 8192-Word Core Memory
Modules, Type MM09B and MM09C
(to a maximum of 32,768 words)

Automatic P~iority Interrupt,
'I'ype KF09A

Extended Arithmetic Element,
Type KE09A

Additional DECtape Transports,
Type TU55, or IBM-compatible
Magnetic Tape Transports, Type
TU20 or TU20A and Tape Control
Type TC59

1-9

Effect

Increase the maximum f:i ;~C' of
both BACKGROUND and FOREGROUND
programs that can be handled
by the system.

Allows for quicker recognition
of requests for service by I/O
devices.

Increases speed of arithmetic
calculations.

Allows greater bulk storage
capability, simultaneous use
of storage media by more
programs. Since only one file
may be open at a time on IBM­
compatible magnetic tape trans­
ports, more than two Type TU20
or TU20A transports may be de­
sirable for some applications.

Automatic Line Printer, Type 647

200 CPM Card Reader, Type CR03Bl

Additional Teletype Line Units,
Type LT09B, (or LT19B) and Tele­
types, Type KSR33, KSR35 or equi­
valent** (up to a maximum of 1610
LT09B or LT19B units, requiring
four LT09A or LT19A controls) .

1

Provides greater listing capa­
bilities.

Allows card input and control
cards for BACKGROUND Batch
processing.

Provides additional output
devices if multiple FOREGROUND
jobs may require simultaneous
output or BACKGROUND jobs wish
to use multiple devices.

The Type CROlE and Type CR02B Card Readers, although no
longer sold by the Company, are supported by software in
the BACKGROUND/FOREGROUND System.

Note: The 339 Programmed Buffered Display is supported by
software.

1-10

SECTION 2

BFKM9 - NON-RESIDENT BACKGROUND/FOREGROUND MONITOR

2.1 INTRODUCTION

BFKM9 is the title of the non-resident portion of the

Background/Foreground Monitor. It is identical in nature to

the Keyboard listening section of the Keyboard Monitor, with

which the reader is assumed to be familiar. BFKM9 reads and

interprets commands typed by the user at a control teletype

(there is one Background control teletype and one Foreground

control teletype).

type:

There are three kinds of commands which the user may

a. Requests for information, such as, a directory
listing of unit ~ of the system device;

b. Allocation parameters, such as, core size,
number of open files, and I/O devices to be used;

c. Load a system or user program.

2.2 LOCATION AND WHEN CALLED

BFKM9 is loaded from register 12000 of the highest core

bank to the top of memory and iB transparent to the user

since it is always overlayed.

When the Background /Foreground system is loaded or re-

loaded to start a new Foreground job, the Resident Monitor is

first loaded into lower core from unit ~ of the system device,

either by use of the paper tape bootstrap or by typing CTRL C

at the' Foreground control teletype. The Resident Monitor then

brings the Non-resident Monitor into the top of memory. When

2-1

operating in the Foreground, BFKM9 runs with memory protect

disabled.

After the Foreground user program has been loaded and has

started to run, the Non-resident Monitor is re-loaded, with

memory protect enabled, to converse with the user at the

Background control teletype. BFKM9 is also re-loaded whenever

the Background job exits or the user types CTRL C at the

Background control teletype.

In both the Foreground and Background, after the user has

given a command to load a program, the Non-resident Monitor

brings the System Loader into memory from the system device,

overlaying the Non-resident Monitor.

2.3 INITIAL OPERATION

When BFKM9 is started for the Foreground job, it must

perform some initialization of which the following is of

interest:

a. Set the contents of .SCOM+25 to 2. This sets
the initial size of free core to be allotted
to the Foreground job, in addition to the space
required by the Foreground user programs. The
user may assign more free core by issuing the
FCORE command, described in section 2.5.3.

b. BFKM9 checks the entire Foreground Device As­
signment Table (.DATF) to see if any of those
.DAT slots request the teletype handler and
the unit number currently assigned to the
Background control teletype. If so, those slots
Qrc changed to the Foreground control teletype
Qnd a message is output as in the following
example.

2-2

EXAMPLE 1: The Foreground control teletype is TTl,
the Background control teletype is TT~,
and the initial contents of .DATF slots
1 and 3 refer to TTA~. .DATF slots 1
and 3 will be changed to refer to TTAI and
the following message will be printed on
the Foreground control teletype:

FGD .DATS CHANGED TO TTAl:

1 3

FKM9 VIA
$

The Non-resident Monitor identifies itself
to the Foreground user by printing FKM9 VIA
and types $ whenever it is ready to accept
a command.

When BFKM9 is started for the Background job, it performs

initialization of which the following is of interest:

a. It builds the initial configuration of the Back­
ground . DAT table (. DA,]~B). Any. DATB slots which
request a single user version of a device handler
(for example, DTB or DTC) will be changed to the
multi-uni t handler (DT1~ in this case) if it is
already in core for the Foreground job or if it
is the resident system device handler.

b. BFKM9 will check all Background .DAT slots to
make certain that they do not conflict with Fore­
ground I/O. The Resident Monitor contains, for
this purpose, a table (.IOIN) which lists all
I/O handlers and unit numbers in use. The follow­
ing occurs:

(1) If a handler for this I/O device is not
already in core, the Background .DAT
slot is left untouched.

(2) If a single user handler for this device
is already in core for use by the Fore­
ground job, by definition the Background
job may not use this device. Therefore

2-3

the Background .DAT slot is cleared (set
to zero).

(3) If the multi-unit handler for this device
is in core, but the device unit number in
question is not assigned to the Foreground
job, Background is allowed to share that
handler. Unit ~ of the system device may
always be used by the Background job.

(4) If the Background .DAT slot requests a
multi-unit handler and unit number already
assigned to the Foreground, normally this
is illegal and that .DAT slot will be
cleared. However, some users may wish to
allow both jobs to access the same unit.
This is permitted only for bulk storage
devices (DECtape, Disk, etc.) provided
that the Foreground user typed the command
SHARE, explained in section 2.5.7.

If the initial Background .DAT table was altered by clear-

ing .DAT slots for the reasons given above, a message will be

output to the Teletype as in the following example.

EXAMPLE 2: The Foreground job is running and has been
assigned device handlers and unit numbers
DTA1, DTA2, TTA1, TTA2, and LPA (line
printer handler - not shareable). The
initial Background .DAT table contains
conflicting requests as follows:

.DAT SLOT
-IS
-12
-4

3

CONTENTS
DTAI
LPA~
DTA2
TTA2

The following will be printed on the Back­
ground control teletype when BFKM9 is £irst
loaded:

BGD .DATS CLEARED BECAUSE OF FGD I/O:

-15 -12 -4 3

FCONTROL TTAl

2-4

FGD DEV-UNITS:

TTA2
DTAI
DTA2

BKM9 VIA
$

FCONTROL indicates which unit is the Foreground
control teletype. The remainder of the message
indicates what I/O is being used by the Fore­
ground job. The Monitor identifies itself to
the Background job user as BKM9 VIA and signals
that it is ready to accept a command by printing
$.

2.4 INFORMATION COMMANDS

The following information commands exist in Background/Fore-

ground:

COMMAND
LOG
REQUEST
DIRECT
IN USE

2.4.1 The LOG Command (L)

USE
To print a comment
To examine .DAT slots
To obtain a directory listing
To list information about core

and I/O in use by the Foreground.

This command is legal in both Foreground and Background and may be

abbreviated by the single leti:er L. It is used to record comments

on the Teletype. Unlike all other commands, LOG is terminated only

by the character ALTMODE, so 1:hat multiple comment lines may be

typed.

LXAMPLE 3:

$ LOG THIS LINE)
AS WELL AS THIS ONE)
AND THIS ONE ARE IGNORED Q\LTMOD~

$

2-5

2.4.2 The REQUEST Command (R)

This command is legal in both Foreground and Background and may

be abbreviated by the single letter R. It is used to examine

the contents of all or part of the user's .OAT table. The Fore-

ground user may examine only the Foreground .OAT table and the

Background user only the Background .OAT table.

This requests a printout of the entire .OAT table. No example

is given since R is essentially the same request as in the

Keyboard Monitor System.

FORM 2: RuUSER)

This requests a printout of the contents of all the positive

numbered .OAT slots. The result, again, is the same as in the

Keyboard Monitor System.

FORM 3: RuXYZ~

Here, XYZ stands for the name of a system program; e.g., MACRO,

PIP, F4, LOAO, etc. The names given must be identical to those

used to load the programs. The information printed, as in the Keyboard

Monitor System, is those .OAT slots used by the given system program.

Since, at present, the only system program load commands allowed

in the Foreground are LOAD, GLOAO, PIP and EXECUTE, only these

four may be used in Foreground REQUEST commands.

2-6

FORM 4: Ru.DATuj, k, 1, ... , r, s)

Here, j, k, .1, etc., are .DAT slot numbers.

EXAMPLE 4:

$Ru .DATw -3, -1, 4, 7}

TTAI DTA2 NONE LPA~

$

2.4.3 The DIRECT Command (D)

This command is legal in both Foreground and Background and

may be abbreviated as D. The format is:

Dun)

where n = a unit number (~ through 7) on the system device.

Directory listings have been altered in BFKM9 to print the

number of free blocks before thE~ file names. The background

user may not request directory listings of any units owned

by the Foreground job unless the Foreground user typed the

SHARE command (see below).

2.4.4 The INUSE Command (I)

rrhis command is legal only in the Background and may be abbre­

viated by the single letter I. It causes the Monitor to print

the first free core location above the Foreground job, the

Foreground control teletype unit. number and any other I/O

used by Foreground.

2-7

EXAMPLE 5:

$ I)

1ST REG ABOVE FGD 323.01

FCONTROL = TTA2

FGD DEV-UNITS:

$

DTAI
LPA.0

2.5 ALLOCATION COMMANDS

The following commands assign parameters, control and

conditions:

COMMAND
ASSIGN
FILES
FCORE
FCONTROL
BCONTROL
NEWDIR
SHARE
NOSHAPE
7CHAN
9 CHAN
VC38
MPOFF
MPON

PURPOSE
To assign I/O handlers to .DAT slots
To specify handler file capacity
To set up Foreground free core
To select Foreground control teletype
To select Background control teletype
To write a new file directory
To allow jobs to share same I/O units
To nullify effect of SHARE
To specify 7-channel MAGtape operation
To specify 9-channel MAGtape operation
To load the VC38 character table
To let Background access all of core
To nullify effect of MPOFF

2.5.1 The ASSIGN Command (A)

This command is legal in both Foreground and Background and may

be abbreviated by the single letter A. Its format and function

are, with a few exceptions, identical to the same command in the

Keyboard Monitor System.

2-8

The format is: AuDDLNum, n, •.. , pi ... IDDLNum, n, •.. , P)

where DD stands for the two letter device name~ e.g., DT

for DECtape, LP for line printer, etc.

L is the third letter of a device handler name and is optional.

If not given, the letter A is assumed~ e.g., DTI = DTAI. The

"A" version of a handler is the multi-unit, shareable handler,

provided that one exists. LPA, for example, is not a multi­

unit handler.

N is the unit number to go with the device handler and is

also optional. If missing, N is assumed to be g, e.g., DTA

= DTA~. Therefore, DT = DT.0 = DTA = DTA~. The letters m, n,

... , p stand for .DAT slot numbers. The slash (I) separates

handlers.

To clear out a .DAT slot, assign NONE to it. If any error

is detected in the command, none of the assignments will be

made.

The Foreground and Background users may make assignments only to

their respective .DAT tables. Foreground may not assign TTA.0

if, for example, that is the Background control teletype. Since

DTA is permanently in core with the Resident Monitor (assuming

that DECtape is the system device) DTB, DTC, etc., when assigned,

will automatically be changed to DTA. This applies as well to

ll<.lIlUlcr assignments made in the Background whenever the multi­

unit version of the handler is in core for Foreground use .

.2-9

Background .DAT slot assignments are tested to insure that they

do not conflict with Foreground I/O, as explained in section 2.3.

Whenever the Monitor detects such a conflict, it will print the

message:

OTHER JOB's DEV-UNIT

To insure that no conflict can occur when assigning the core-

to-core handler, COA., the unit number, independent of what

the user typed, is set to ~ for Foreground and 1 for Background.

The core-to-core handler disregards the unit number.

2.5.2 The FILES Command (F)

This command is legal in both Foreground and Background and may

be abbreviated as F. The purpose of this command is to save

core space by limiting the number of I/O buffers assigned to multi-

unit device handlers.

The format of the FILES command is:

where DD stands for the multi-unit handler or device name (e.g.,

DTA or DT) and N for an octal file count.

EXAMPLE 6: Assume that the Foreground user programs are being
loaded into core by the Foreground Linking Loader
and that these programs use .DAT slots 1 through l~.
(.IODEV 1, 2, 3, .•.. , l~). Further, assume that
all l~ slots were assigned to DECtape, DTAn (the
unit numbers are unimportant to this discussion).

2-10

Most multi-unit handlers, DTA being one of
them, require that I/O buffers be assigned to
them externally. This is done by the various
loaders. In this example, the Foreground Link­
ing Loader, seeing that no FILES command was
given for the handler DTA, must assume that the
user wants l~ files open simultaneously. This
will require l~ buffers, each 6~S octal words
in size.

The FILES command is used to tell the loaders
to assign a given number of buffers for a
particular mUlti-unit handler based on the
maximum number of files that the user programs will
have open simultaneously. Each multi-unit handler
has a maximum open file capacity; for example, DTA
may have up to 2~ octal. If IS I/O buffers are
assigned for DTA in the Foreground, then only up
to IS may be assigned for Background. The FILES
command issued in ·the Foreground specifies only
Foreground I/O buffers. Thus, to limit the
number of I/O buffers assigned to the Background,
the FILES con~and, for the same multi-unit device,
must also be issued in the Background.

At load-time, I/O buffers are set aside in core by the Loaders.

The buffers are recorded in a table within the Resident Monitor,

. BFTAB , but are not flagged for the exclusive use of particular

device handlers. A-t run-time, E~ach multi-unit handler which needs

a buffer must request a buffer from the Moni tor. The handler must.

also release the buffer to the pool when it is no longer needed.

The resident buffer, permanently assembled into the Resident

Monitor, is always available to the Background job. This buffer

is assumed to be as large as the largest I/O device buffer

(6~S octal words) . In the event that the Background job were to

.IODEV only one .DAT slot whjch is linked to a multi-unit handler

2-11

that requires external buffers, (DTA. for example) the user

could save 6~~ registers by typing: $FILESuDTu~' That is,

assign one less buffer than is needed.

In the FILES command, the pseudo-device is recognized. The

size of the external buffer for this pseudo-device is l~~

octal. Some functions in multi-unit handlers may require a

smaller buffer size than others. If the user were only to use

the former function type, he could type, for example, $FILE~DTw~

and $FILES .. n. In DTA., .TRAN and .MTAPE commands only require

the smaller buffer.

2.5.3 The FCORE Command

This command is legal only in the Foreground and may not be

abbreviated.

The format of the FCORE command is:

FCOREwN ~

where N is the amount (in octal) of free core requested for

the Foreground job.

~s in the Keyboard Monitor System, unused (free) core is defined

by the address pointers in the registers .SCOM+2 and .SCOM+3,

the lowe[:i t and the highes t free core location, respectively.

Since both the Foreground and the Background jobs have their

own separate free core areas, the values in .SCOM+2 and .SCOM+3

are changed appropriately whenever control passes from one job

to ·the other.

2-12

The FCORE command allows the Foreground user to specify how

much free core his program will need, in addition to that

required to load his program. It is possible for all of core

to be assigned to Foreground. This means, however, that there

will be nc room for Background to run, which is perfectly

legal. If -this is the case, the message:

SORRY, NO ROOM FOR BGD

is printed on the control teletype:

2.5.4 The FCONTROL Command

This command is legal only in the Foreground and may not be

abbreviated. It is used to transfer the control teletype to

some other teletype unit.

The format of the FCONTROL command is:

where N is the number (octal) of any teletype on the system.

If N is already the Foreground control teletype, the command is

ignored. If N is the current Background control teletype, the

two teletypes are swapped but no message will be printed to this

effect. Changing the Background control teletype may affect

Foreground .DAT slots and an appropriate message will be printed

on the Foreground control teletype. Th~s is fully explained in

the next section on the BCONTROL command .

.2 --13

Wh(~n FCONTROL changes the Foreground control teletype, the

following action takes place:

a. The following message is printed on the old
control unit:

CONTROL RELINQUISHED
ABORT

b. The system is reloaded from the system device.

c. The Monitor prints

FKM9 VIA
$

on the new Foreground control unit and is ready
to accept commands there.

2.5.5 The BCONTROL Command

This command is legal both in the Foreground and in the Background

and may not be abbreviated. It is used to transfer the Background

control teletype to some other teletype unit.

The format of the BCONTROL command is:

BCONTR°LuN)

where N is the number (octal) of any teletype on the system.

This command is illegal and is ignored if unit N belongs to

the Foreground job. Even though unit N may have been assigned

to a Foreground .DAT slot, it does not belong to the Foreground

job unless it happens to be the Foreground control teletype

or unless the Foreground user programs contained an .IODEV to

that .DAT slot. This command is also ignored if unit N is

already the Background control teletype.

2-14

If BCONTROL is issued in the Foreground or if the Background

control telE2type is changed because of an FCONTROL command,

all Foreground .DAT slots which now refer to the new Background

control unit will be changed to the Foreground control unit

to avoid I/O conflict. Should that situation occur, the fol-

lowing example shows what would be printed on the Foreground

control unit:

FGD .DATS CHANGED TO TTAI

-6 2 7 l~

If BCONTROL is issued in the Background, the followinq action

takes place:

a. The following message is printed on the old
control unit:

CONTROL RELINQUISHED

b. tc is printed on the new unit,

c. The Non-resident Monitor (BFKM9) is reloaded for
Background from the system device

d. The Monitor prints

BKM9 VIA
$

on the new Background control teletype and is
ready to accept commands there.

This command is legal in both Foreground and Background and may

be abbreviated by the single letter N. Just as in the Keyboard

.2-15

Monitor System, this command allows the user to write a new

file directory on some unit of the system device. However,

space will not be reserved for a tQ (CTRL Q) area.

The format of the NEWDIR command is:

NwM~

where M is some unit number (octal) on the system device.

Unit ~ may not be used. The Background may not write a new

file directory on a unit that belongs to the Foreground

unless the Foreground has issued the SHARE command (see below).

This command is legal only in the Foreground and may be ab-

breviated by the single letter S. Its purpose is to allow the

Background job to assign and to use the same units of any I/O

devices that belong to the Foreground job, provided that they

are bulk storage devices (DECtape, Disk, Magtape, etc.) and

that the device handlers are the multi-unit versions. The user

must be careful when allowing this condition to occur. The "tape"

could be fouled i f ~~_-t:~. jobs were to try to use the same uni t

for output at the same time.

The SHARE command also removes the restriction that the Foreground

user program may not use unit ~ on the system device. Normally,

this unit is reserved for the Background.

The format for this command is:

SHARE~

2 --16

2.5.8 The NOSHARE Command

This command is legal both in Foreground and in Background and

may not be abbreviated. It nullifies the effect of any pre­

vious SHARE command; i. e., dOE~s not allow the Background to

share device units with the Foreground.

When NOSHARE is issued in the Background it may cause some

Background . DAT slots to be cleared. A. message, as in Example 2,

will be printed to that effect.

The command format is: NOSHAR.E)

2.5.9 The 7CHAN Command (7)

This command is legal only in the Foreground and may be

abbreviated by the single character 7. The effect of this com­

mand is to clear bit 6 in .SCOM+4 to inform the Magtape device

handlers that the default assumption is 7-channel operation.

The format of the 7CHAN command is:

7CHAN)

2.5.10 The 9CHAN Command (9)

This command is legal only in the Foreground and may be

abbreviated by the single character 9. It sets bit 6 in

.SCOM+4 to inform the Magtape device handlers that the

default assumption is 9-channel operation.

2-17

The format of the 9CHAN command is:

9CHAN)

2.5.11 The VC38 Command (V)

This command is legal in both Foreground and Background and may

be abbreviated by the single letter V. No action is taken until

a command has been given to load a program. At that time, if

the VC38 command was given, the Non-resident Monitor will seek

and load the file VC38TB DMP from unit fO of the system device.

The VC38 c~aracter table is used in conjunction with the 339

display handler, DYA., when the system does not have a VC38

hardware character generator.

The table is loaded into core such that its base address is a

multiple of l~fO~ octal. The base address is stored as the

first word in the 339 Pushdown List. The address of the Pushdown

List is in .SCOM+12.

The VC38 command given in the Background will be accepted but

ignored if the 339 display handler is assigned to the Foreground.

The format of the VC38 command is:

VC38)

2-18

2.5.12 The MPOFF Command

This command is legal only in i:he Foreground and may not be

abbreviated.

Format:

MPOFF}

Normally, Background may not modify nor transfer to registers

within the Resident Monitor and the Foreground job; it also

cannot issue rOT's. The MPOFF command signals the Resident

Monitor to set the hardware protect bound to zero and also

allows Background rOT's to be issued.

2.5.13 The MPON Command (M)

This command is legal in both Foreground and Background and

may be abbreviated by the letter M.

Format:

MPON)

The MPON command nullifies the effect of MPOFF, thereby

protecting the Foreground job from the Background job in

the normal manner.

2-19

2.6 PROGR~M LOAD COMMANDS

In the Foregound, only four load commands are legal:

LOAD), GLOAD) , PIP) 'and EXECUTE u XXX). EXECUTE may be abbre-

viated by the single letter E. LOAD and GLOAD have the same

meaning and effect as in the Keyboard Monitor System.

The following program load commands exist in the Back-

ground:

PATCH;
CHAIN)
F4)
F4A}
EDIT)
PIP)
EXECUTEuXXX)

2.7 FINAL OPERATION

LOAD)
GLOAD}
DDT)
DDTNS)
SGENl
DUMP-)
UPDATE) "
CONV)

After BFKM9 has received a program load command from

either the Foreground or Background, it will bring the System

Loader (.SYSLD) into the top of core overlaying BFKM9. In the

Foreground, .SYSLD is actually the Foreground Linking Loader.

In the Background, .SYSLD loads Background System Programs,

including the Background Linking Loader.

2.8 CONTROL CHARACTERS

While control is in BFKM9, the user may type CTRL P

to terminate execution of the current command and to restart.

Restart in this manner does not nullify the effect of

2-20

previous ly executed commands; €!. g ., wi 11 not reset the . DAT

table to its initial configuration. To reload the Monitor for

the current job, the user may t:ype CTRL C.

2.9 SUMMARY OF COMMANDS

LEGAL
IN ABBREVIATION

F B A
F B
F B D
F
F
F B F

B I
F B L
F B N
F B
F B R

F S
F 7
F 9
F
F B M
F B V

B
B
B
B
B
B

F B E
B
B

F B
F B

B
B
B

F 13
13
13

COMMAND EXAMPLE
ASSIGNuDTAlu 2, 3/TTlwl, 4/DTu- 4)
BCONTRO~2)
DIRECTu .0')
F CONT ROLu.lJ
FcoREu14.0't)
FILE SuDTu 3)
INUSE)
LOGu €LTMOD~
NEWDIRa..,S)
NOSHAREj
REQUES~XXX) or REQUESTuUSER)or
REQUEST u .oAT j ,k, 1) or REQUEST).
SHARE)

~g~~~ .•.
MPO~~)
MPON}
VC38)

CHAIN)
CONV)
DDT)
DDTN~
DUMP)
EDIT)
EXECUTEuXXX)
F4)
F4A)
GT.JOAD)
LOAD)
Ml~CRO)
Ml~CRO~J
PATCHI
PIP)
SGEN)
UPDATE)

2-21

3.1 PURPOSE

SEc'rION 3

CONTROL CHARACTERS

Control characters are single characters typed by the user

at a teletype which request special action by the Monitor.

Except for the character RUBOUT, all control characters are

formed by holding down the control key CTRL while striking the

appropriate letter key.

The characters CTRL U and RUB OUT are used as "erase"

characters during teletype input or output. CTRL C, CTRL P,

CTRL S, and CTRL T are used to interrrupt the operation of

the current program and to transfer control elsewhere. CTRL R

is used to restart I/O after a not-ready condition has been

detected for some device. CTRL Q stops the current job and

dumps memory onto a specified area of some unit of the system

device. CTRL D effects an end-of-file condition during tele­

type input.

3.2 CONTROL TELETYPE

In the Background/Foreground System, which may accommodate

up to 17 (decimal) teletype units, two teletypes are designated

as control teletypes (one for Background and one for Foreground).

Initially, it is assumed that unit ~ (the console teletype) is

the control teletype for Background and unit 1 is the control

unit for Foreground.

3-1

Control teletypes differ from the other units in two ways:

a. They are used to converse with the Non-resident
Monitor and system programs in order to set up
parameters and conditions for a job and to initi­
ate the loading and execution of programs.

b. Certain control characters are recognized only
at control teletypes; i.e., are ignored if they
are typed on the other teletype units (see sec­
tion 3.4 and following).

3.3 TELETYPE HANDLER

The multi-unit teletype handler (TTA) which is imbedded in

the Resident Monitor, makes special tests for control characters

when it re~eives typed input. Normally, when no .READ request

has been issued to a teletype, characters received from that

unit are ignored unless they are control characters. A descrip-

tion of the action taken in each case is given in the following

paragraphs.

3.4 CTRL C (tC)

This character is ignored unless typed at a control tele-

type. It will be echoed to the teleprinter as tC.

If CTRL C is typed at the Background control teletype, the

Background job will be aborted and the Non-resident Monitor will

be loaded to start a new Background job. Foreground is not affec-

ted.

CTRL C typed at the Foreground control teletype aborts both

the Foreground and the Background jobs. In this case, the entire

3-2

system is restarted; that is, the Resident Monitor and the Non­

resident Monitor are reloaded to start a new Foreground job and

the message ABORT is printed on the Background control teletype.

3.5 CTRL 5 (t5)

CTRL 5 is recognized only at a control teletype and,

specifically, only after the Monitor has printed t5. This is

the result of loading a user program by giving the 'command $LOAD

(instead of $GLOAD)to the Non-resident Monitor. Both commands

bring in the Linking Loader to load user programs. $GLOAD means

LOAD-AND-GO. $LOAD means load the user programs, signal the

user that this has been done (by printing t5), and then wait for

the go-ahead signal (when the user types CTRL 5) .

This feature allows the user to set up I/O devices before

starting his program. When CTRL 5 is typed by the user and is

accepted by the Monitor, t5 is echoed back to the teleprinter.

3.6 CTRL T (tT)

This character is recognized only at the Background control

teletype when the user has called in the system program DDT. When

CTRL T is typed and accepted, it is echoed to the teleprinter as tT.

CTRL T provides a means of interrupting the execution of a

user program and transferring control to DDT. When CTRL T is

typed, the Monitor saves the status of the Link, extend memory,

3-3

and memory protect along with the interrupted PC in .SCOM+7

so that DDT will be able to return control to the user program

at the point at which it was interrupted. The contents of

the AC at the time of interruption is returned in the AC and

saved by DDT.

3.7 CTRL P (tP)

CTRL P is the interrupt and restart character available

to user and system programs. When it is typed on some teletype

and is accepted by the Monitor, tP is echoed to the teleprinter

on that unit.

fn the Background/Foreground system there are two types

of CTRL P functions:

1) NORMAL CTRL P and

2) REAL TIME CTRL P.

The two CTRL P functions are described, individually, in para­

graphs 3.7.1 and 3.7.3.

Setting a CTRL P restart address (ADDR) is accomplished by

issuing the I/O MACRO .INIT to any .DAT slot linked to the

Teletype handler.

The format of the .INIT macro is:

.INIT A,M,P+ADDR

which is expanded by the MACRO assembler into the following

machine code:

3-4

LOC
LOC+l
LOC+2
LOC+3

where A

CAL M 8 +A 9 _ 1 7

1
P+ADDR g 17
Jl -

a .DAT slot number (octal radix)

Jl Input
M transfer mode

ADDR

P

1 Output

a IS-bit address (octal) of a restart point in
the program or of the entry point of a closed
real-time subroutine.

Jl Normal CTRL P
lfOJl~JlfO Mainstream (REAL-TIME)

priority code 2fOfOfOJlfO
3fOfOJlJlfO No chanqe to CTRL P

4 50 JlJl 5050 Priority level of the
SfOfOJlJlJl API level S
6 JlJlfOJlfO API level 6
7 50 fOfO JlfO API level 7

.INIT

Background requests to an l\.P I level (4JlfOJlYffO - 7 fOfOfOJlfO) wi 11 be

converted to Mainstream since Background programs cannot use the

API software levels.

3.7.1 NORMAL CTRL P

A .INIT to set up a NORMl\L CTRL P (priority code 50) may be

done only to a control teletype. NORMl\L CTRL P was so named

because the action taken when the user types CTRL P is nearly

the same as in the Keyboard Monitor System.

When a control teletype has been set up for a NORMAL CTRL P

and that character is typed by the user, the teletype handler

3-S

will abort all Teletype I/O for that job (Background or Fore-

ground). The Monitor will, when control is at Mainstream,· save

the status of the Link,extend memory, and memory protect with

the interrupted PC in .SCOM+IO (whose contents are swapped in

and out for Background and Foreground), return the interrupted

AC to the AC, and transfer control to the restart address ADDR

as specified by the last .INIT.

Note: When the Monitor processes a CTRL T or a NORMAL
CTRL P, it kills any pending mainstream real­
time routines to be run by zeroing the contents
of .SCOM+S7 (Foreground) or .SCOM+61 (Background).
The user's program (if NORMAL CTRL P) or the user
(if .CTRL T) must zero the entry points of all his
mainstream real-time routines. CTRL P and CTRL T
do not affect API level real-time requests.

If the restart address ADDR = ~, CTRL P to the given teletype

will be disabled; i.e., ignored if typed (except if P = 3~~~~~).

3.7.2 No Change

If .INIT for a given teletype unit contains the priority code

3~~~~~, the restart address is ignored and the status of CTRL P

to that unit is not changed.

3.7.3 REAL-TIME CTRL P

A .INIT to set up a REAL-TIME CTRL P may be done to any teletype

unit. When so set up and the user types CTRL P, I/O to that

teletype is aborted. Control eventually goes to a closed real-

time subroutine, ADDR, at the priority level defined by P,

3-6

in the same manner as for a .REALR, .REALW or .TlMER

request.

If the restart address ADDR = ~, CTRL P to the given tele­

type will he disabled; i.e., ignored if typed.

REAL-TIME CTRL P is useful for multi-user programs, for instance,

multi-user FOCAL, where each teletype has the ability to interrupt

and restart.

3 • 8 CT RL R (t R)

In the Background/Foreground system, I/O device handlers

which detect a not-ready condition will request the Monitor

to print a message on the appropriate control teletype. The

line printer handler message, for instance, would be:

LP~ NOT READY

The unit number has no significance for the line printer.

Some single-unit handlers, such as the card reader handler, use

the unit number designation to indicate the cause of the not-ready

condition. After the message has been printed, the user should

ready the device and then type CTRL R, which is echoed as tR. I/O

for that device is then resumed.

While the Monitor is waiting for the user to type CTRL R,

the user's program continues execution provided that it is not

huruj up waiting for completion of I/O from the not-ready device.

The Monitor can handle one not-ready condition per job. Should

a second not-ready request occur while another is being processed,

3-7

job execution will be aborted with a .ERR ~~4 terminal

error.

3. 9 CTRL Q (tQ)

CTRL Q may be typed at any time, but it is ignored if it

is not issued at a control teletype.

The purpose of typing CTRL Qis to stop program execution

and to dump all of core memory onto a specified area of some

unit on the system device. The dump starts with block l~l octal

on the given unit and overlays any data that may have existed

in that area on the output device. A 16K system will dump l~~

octal blocks (1~1-2~~); a 24K system, 14~ octal blocks (l~l - 24~);

a 32K system; 2~~ octal blocks (1~1-3~~).

To insure that CTRL Q will not overlay useful data, the user

must employ the system program PIP to write a new file direc­

tory on that unit, using the (S) switch to reserve space for

CTRL Q. For example:

>NuXXuu(S))

where XX is the device name and u the unit number. Note that

the size of the CTRL Q area reserved is based on the amount of

core existing in the system in which the new directory is written.

The area reserved on a DECtape in a 16K system is not sufficient

to do a protected CTRL Q in a 24K or 32K system.

3-8

When the Monitor accepts CTRL Q, it first terminates

execution of the job (Foreground if Foreground CTRLQ, Back­

ground if Background CTRL Q). This involves calling all

device handlers tied to that job to stop I/O, clearing all

Monitor queues of entries for that job and disabling all

control characters for that job except CTRL C.

The Monitor then prints tQ on the appropriate control

teletype and reads one character. The user must then type the

number of the unit on which the dump is to occur. Unit zero

may not be used. If the SHARE command is not in effect, a

dump may not be done to a unit vlhich belongs to the other

job. If the Monitor rejects thE~ typed character, it prints

tQ again and waits for another character.

When the unit number is accepted, the dump takes place;

then the Monitor is automatically reloaded. A Background

CTRL Q does not affect Foregrourid. A Foreground CTRL Q, on

the other hand, aborts the Background job. It is not possible

to load and restart a core dump in Background/Foreground.

3.l~ CTRL U (@)

CTRL U may be typed at any teletype unit. If a .READ or

.REALR was issued to some teletype and the user decides he

wants to "erase" everything he has typed for that read request,

he may type CTRL U, which will be echoed to the teleprinter as @.

3-9

The .READ or .REALR will still be in effect and he may then

retype the input.

While output to a teletype is being done as a result of a

.WRITE or .REALW, the user may type CTRL U to terminate the

write. In this case nothing is eChoed to the teleprinter.

3.11 RUB OUT

This character is recognized only while the user is

typing input to satisfy a .READ or .REALR request. When

typed, RUBOUT deletes the last input character. For example,

if the US2r has typed ABC and then RUBOUT, the C will be

"erased". If he now types another RUBOUT, the B will be

"erased". Every time a character is so removed, the character

is echoed to the teleprinter.

3.12 CTRL D (tD)

The character CTRL D is recognized at all teletypes and

is echoed back as tD. When typing input, CTRL D effects

an end-of-file condition by terminating the .READ or .REALR

request and storing the end-of-file, ~~1~~5, in the input line

buffer header. Since the word pair count returned is a ~, any

characters typed prior to the CTRL D for the same read request

will be lost.

3-10

4.1 INTRODUCTION

SECTION 4

LOADERS

There are three program Loaders in the Background/Foreground

system. On the system file directory they are listed as .SYSLD SYS,

BFLOAD BIN and EXECUT BIN .

. SYSLD is an absolute system program that functions as two

loaders: when it is called in for Foreground loading, it is the

Foreground Linking Loader; when it is called in for Background

loading, it is the Background System Program Loader. BFLOAD is the

Background Linking Loader.

EXECUTE operates in both Foreground and Background as a loader

of overlay programs (XCT files) built by the CHAIN system program.

A description of CHAIN and EXECUTE is given in the utility manual.

4.2 FOREGROUND LINKING LOADER

Link loading of the Foreground job is initiated by typing GLOAD

(Load-and~Go) or LOAD (Load-and-·Pause) to the Moni tor at the Fore­

ground control teletype. The Foreground Link Loader (.SYSLD) is

then brought into the top of memory, overlaying the Non-resident

Monitor. The following message will then be printed:

FGLOAD VIA

>

The;.,. signals the user that he may now type in his command string.

The command string format is nearly 'the same as for the

Linking Loader in the Keyboard Monitor System. The only

4-1

change is the addition of memory map options, which must pre-

cede the list of user program names. The format is as follows:

>options+mainprog, others, ... ALTMODE

4.2.1 Option Characters And Their Meanings

Character
P

C

G

Meaning
Print program names and their assigned relocation
factors

Print common block names and their assigned
locations

Print global symbol names and their definitions

4.2.2 Use of + Terminator

Prior to the terminator + all characters except option

characters are ignored. Carriage return preceding the + starts

a continuation line headed by>. ALTMODE preceding the +

restarts the Loader; therefore, no loading is done unless the

character + appears in the command string.

If no option characters precede the +, the default assumption

is that no memory map is to be printed.

After the +, type the program names (main program first - no

extensions) separated by comma or carriage return. Terminate

the command string with ALTMODE. Before the terminating ALTMODE

has been typed, the Loader may be restarted by typing CTRL P.

4-2

4.2.3 Sequence of Operation

Once the command string has been accepted, the Loader will perform

the following sequence of operations:

a. Load all user programs, specified in the command
string, from .DATF -4. These programs are loaded
from the bottom of core up, starting at the top
of the Resident Monitor. Calls to external library
routines via .GLOBL, co:mmon block definitions,
and . IODEV requests are-' saved in the Loader's
symbol table, built fro:m the bottom of the Loader
down. Programs containing executable code (which
excludes BLOCKDATA subprograms) are relocated such
that they do not overlap core bank boundaries.

b. If a library search is necessary and the contents
of .DATF -5 is non-O, the Loader will seek the user
library, .LIBR BIN, via that .DAT slot, and will
load all requested library routines which it finds.
I/O device handlers mus-t not be in the user library".

c. If a library search is still necessary for non-I/O
routines, the Loader will search the system arith­
metic Library, .F4LIB BIN, via .DATF -7 in the same
manner as above. I/O device handlers must not be
in .F4LIB.

d. If any I/O handlers must be loaded, the Loader
searches through the system I/O Library, .IOLIB BIN,
via .DATF -7. After this has been done, program
loading has terminated.

e. At this point, all undefined common blocks are
defined and assigned core space. Common blocks
are allowed to overlap core banks.

f. If t.here are still some undefined global symbols,
they will be matched with common block names and,
if a match is found, defined as the base address
of the matching common block.

g. For aLl mUlti-unit device handlers in use for
the user's programs, external I/O buffers are
assigned core space (if necessary) and recorded
in .BFTAB within the Resident Monitor. The number
of such buffers depends on the $FILES counts

4-3

given by the user to the Non-resident Monitor or,
if no counts given, the number of .IODEV'ed .DAT
alots calling those handlers. I/O. buffers are
allowed to overlap core boundaries.

h. The amount of free core assigned to the Foreground
job (contents of .SCOM + 25) is added to the current
size of assigned Foreground core to determine the
upper limit of the Foreground job. Pointers to
t~~ first and last registers in Foreground free core
are then stored in .SCOM+2 and .SCOM+3, respectively.

i.. The Loader now exits to the Resident Monitor. The
Resident Monitor prints tS and waits for the user
to type CTRL S, if the Loader is called by the LOAD
c~mmand. Control then is given to the start address
of the user's main program, which was stored in
.SCOM+6 by the Loader.

4.3 BACKGROUND SYSTEM LOADER

Loading of all system programs is done by the System Loader

(.SYSLD), which also performs link loading for the Foreground.

Initiation of the loading cycle is done when the user, in the

Background, types a request to the Non-resident Monitor to load

a system program; e.g., $PIP, $EDIT, etc.

The Non-resident Monitor puts a code number in .SCOM+5 to

tell the System Loader which program to load. The System Loader

is then loaded into upper core overlaying the Non-resident Monitor .

. SYSLD contains a table which lists the .DAT slots used by

each system program. Information about the load address, start

address, size and initial block number on the system device for

each system program is available in block l~l (SYSBLK).

4-4

To load in a system program in the Background, .SYSLD

performs the following operations:

a. For each .DAT slot (with non-O contents) required
by a system program, it determines which device
handlers are needed; and, if a library search is
necessary, it brings in the handle.rs from the
file .IOLIB BIN on the system device through .DATB -7.
They are loaded starting immediately above the
top of the Foreground job.

b. I/O buffers are then assigned core space immedi­
ately above the handlers as in the description
in paragraph 4. 2g. ThE~ hardware memory protect
bound is set above the handlers and buffers.

c. If the load command was $LOAD, $GLOAD, $DDT or
$DDTNS, the Background Link Loader (BFLOAD), a
relocatable file, is loaded starting just above
the new hardware protect bound.

d. For all other system programs, .SYSLD builds a
short routine just above the hardware protect
bound to bring in the program overlaying the
System Loader.

e. Finally, . SYSLD exi ts ,to the Resident Moni tor
which establishes the new hardware protect
bound and then passes control to the system
program via the address stored by .SYSLD in
. SCOM+5.

The Loader allows the loading of absolute .LOC programs

prior to loading any relocatable files. This permits the user

to load programs which may overlay parts of the Resident Monitor.

Mixing of absolute and relocatable .LOC's in the same program

file is not allowed and will be flagged as an error. The L:::>ader

insures that the relocatable proqrams do not overlay any of the

absolute programs.

4-5

The Foreground Linking Loader is also responsible for load­

ing the system program PIP in the Foreground. The Foreground

version of PIP exists in the system as the relocatable file

PIP BIN. It is loaded by typing PIP as a command to the

Non-resident Monitor.

4.4 BACKGROUND LINKING LOADER

Externally, the Background Linking Loader (BFLOAD) looks

nearly the same to the user as the Foreground Linking Loader.

When it has been loaded, it prints the following message on

the Background control teletype:

BGLOA[· V1A
>

The command string processing is identical with that of the

Foreground Linking Loader (see 4.2).

If the Load command was $DDT or $DDTNS, the system program

DDT (a relocatable file) has already been loaded into the top

of core via .DATB -1, prior to reading in the command string.

Once the command string has been accepted, the Loader

will perform the following sequence of operations:

a. Load all user programs specified in the command
string from .DATB -4. These programs are loaded
from the top of core down. Calls to external
library routines via .GLOBL, common block defini­
tions, and .IODEV requests are saved in the
Loader's symbol table, built from the top of the
Loader upwards in core. Programs containing
ex'ecutable code (which excludes BLOCKDATA
subprograms) are relocated such that they
do not overlap core boundaries.

4-6

b. Same action as described in 4.2b, using .DATB -5.

c. Same action as described in 4.2c, using .DATB -7.

d. If any I/O handlers must be loaded, the Loader
searches through .IOLIB BIN via .DATB -7. The
handlers are relocated to run in lower core,
that is, as if they were being loaded upwards
in core starting just above the Foreground job.
They may, however, be loaded above the Loader
at this point in time because the Loader is in
the way.

c. Same action as described in 4.2 e,f,g. Common
blocks are assigned space in upper core; I/O
buffers, in lower core.

f. The hardware memory protect bound is established
above the I/O handlers and buffers. Common
blocks may go below the hardware protect bound.

g. If DDT was loaded and a symbol table was requested
(not $DDTNS), the symbol table is compacted to
delete entries not needed by DDT. The Loader
determines where the symbol table should be moved;
and, along with the I/O handlers which were loaded
into upper core, builds a special .EXIT list which
tells the Resident Monitor where to block transfer
each segment. The DDT symbol table may be loaded
bAlow the hardware protect bound.

h. The Loader then exits to the Resident Monitor,
which performs the block transfers, sets the new
hardware memory protect bound, and transfers
control to DDT (via .SCOM+5) or to the user
program (via .SCOM+6), pausing to print ts and
waiting for the user to type CTRL S if the Load
command was $LOAD.

4.5 LOADING XCT FILES

XCT files are overlay programs built by the system program

CHAIN and run by the system program EXECUTE. Loading of an XCT

file in either the Foreground or the Background is initiated by

4-7

typing EuXXX or EXECUTEuXXX to the Monitor (where XXX is the

file name without the extension XCT).

The Non-resident Monitor, BFKM9, stores the filename (.SIXBT

format) in .SCOM+l¢7, ll¢ and III for the Foreground or .SCOM+112,

113 and 114 for the Background. If EXECUTE's .DAT slot requests

the resident system device handler, the Monitor stores "XCS" as

the extension. If EXECUTE's handler is different from the

resident handler, the Monitor stores the extension "XCT."

The System Loader is then called in, overlaying the Non-

resident Monitor in upper core.

4.5.1 EXECUTE in the Foreground

The following operations are carried out when EXECUTE is used

in the Foreground:

a. EXECUTE's handler, if different from the resident
h~ndler, is loaded immediately above the Monitor.

b. 'rhe System Loader, which must open the XCT file,
checks the extension. If "XCS", meaning EXECUTE's
handler is the resident handler, load the file via
.DAT -7. If "XCT", load via .DAT -4. Set the
extension to "XCT".

c. Read the XCT file and check that it was indeed
built to be run in the Foreground of a PDP-9.

d. Save the upper and lower core limits of the over­
lay structure and check that it'does not overlay
the Resident Monitor.

e. Decode the .IODEV bit map in the XCT file. Set
the loading bound immediately above the area of
core to be occupied by the overlay structure and
then load all I/O handlers required by the XCT
file. Also, load another copy of EXECUTE's handler
(the first copy will be overlayed).

4-8

f. Load in EXECUTE.

g. S~me action as described in 4.2g and h.

h. The Loader exits to the Resident Monitor. The
Monitor gives control to EXECUTE, whose start
address is stored in .SCOM+6 by the Loader.

The following operations are carried out when EXECUTE is used in

the Background:

a. EXECUTE's handler, if different from the resident
handler, is loaded inunediately above the Foreground
job.

b. Same action as described in 4.S.I.b.

c. Read the XCT file and check that it was built to
be run in the Background of a PDP-9.

d. Save the lower core limit of the overlay structure
and test, when EXECUTE has been loaded, that they
do not overlap.

c. Decode the .IODEV bit map in the XCT file and then
load any I/O handlers needed by the file.

f. Same action as described in 4.2g.

g. Set the hardware memory protect bound above the
I/O buffers and then load EXECUTE starting above
this bound.

h. Same action as described in 4.3.e.

4.6 ERROR CONDITIONS

The number of different error messages in the Loaders has been

exp2nded in Background/Foreground. These are tabulated in Appendix

2, Section A2.S. The error number is passed on to the Resident

4-9

Monitor by a special error .EXIT macro (CAL sequence).

Loader errors are non-recoverable. After the error message

is printed, the Monitor will automatically be reloaded to

start another job.

4-10

4.7 SYSTEM MEMORY MAPS

Memory Map A

16K
System Bootstrap

8K

o

The System Bootstrap is loaded at the top of
core via the paper tape reader in HRM format.

4-11

Memory Map B

~~~~~~-r~---System Bootstrap 

8K - - - - --

• SCaM + l2J --iI"'i--r--r--:r---r-,-4 
.SCOM + 

o 

~----Resident Monitor includ­
ing the mUlti-unit 
teletype handler and 
the system device handler. 

The System Bootstrap automatically loads the Resident 
Monitor from the system device into lower core. 

4-12 



Memory Map C 

.SCOM--+-16K 

.SCOM + 

.SCOM + 

8K 

o 

..... ----Non-resident Monitor 

.... ----Resident Monitor 

The Resident Monitor loads the Non-resident Monitor 
(via the resident system device handler) into upper 
core, overlaying the System Bootstrap. 

4-13 



Memory Map D 

. SCOM---3Io- 16K 
.. ______ Foreground Linking 

Loader (. SYSLD) 

. SCaM + 3 --;..+-.L----''---L.._-I 

.SCOM + 

.SCOM + 

8K -- __ _ 

o 

~---------Resident Monitor 

To load a user FOREGROUND program, the Non-resident 
Monitor brings in the Foreground Linking Loader 
(.SYSLD), overlaying itself. 

4-14 



Memory Map E 

.SCOM--~)o 16K 

.SCOM + 

.SCOM + 

.SCOM + 

.SCOM + 

Foreground 
Job 

Foreground Linking Loader 
(. SYSLD) 

I/O Handlers 

Symbol Table 

-_---,W-,_~ ____ ~Hardware protect bound 
r-__ ~ __ ~~~~~~~~~=oftware protect bound 

Foreground free core 
User's I/O Handlers and 
I/O Buffers 
Foreground user programs 

Resident Monitor 

The Foreground Linking Loader first brings in any additional 
I/O handlers required for loading. Then it loads the user 
program(s), library routines, user I/O handlers and I/O 
buffers, and allocates Foreground free core. The software 
memory protect bound is established just above the Foreground 
job. The hardware memory protect bound, because it can be set 
only in increments of lK decimal, will leave some unused space 
between it and the Foreground job. The software protect bound 
allows this space to be used for dynamic data storage by the 
Background job. 

For a description of loading of Foreground XCT files, see 
Memory Map L. 

4-15 



Memory Map F 

· SCOM----II .... -16K 

.SCOM + 
· SCaM + 
· SCaM + 
.SCOM + 
.SCOM + 

o 

Non-resident Monitor 

job 

Resident Monitor 

bound 
bound 

When the FOREGROUND job becomes I/O bound, control is transfer­
red to the BACKGROUND job. The Resident Monitor loads the Non­
resident Monitor (via the resident system device handler) into 
upper core. It then gives control t~ the Keyboard Listener 
(within the Non-resident Monitor) to await a BACKGROUND keyboard 
command. Memory protect is enabled while the Background job is 
running. 

4-16 



Memory Map G 
.SCOM-----I ..... 16K 

~~ _____ Background System 
Loader (. SYSLD) 

.SCOM + 3------~1~~-~~-L~ 

.SCOM + 

.SCOM + 

.SCOM + 

.SCOM + 

.SCOM + 

o 

~-------Hardware protect bound 
~----Software protect bound 

Foreground Job 

1----- Res iden t Moni tor 

When a BACKGROUND keyboard command requests loading 
of a system or user program, the Non-resident Monitor 
brings in the System Loader, overlaying itself. Note 
that the BACKGROUND System Loader and the FOREGROUND 
Linking Loader arc physically the same program. 

4-17 



Memory Map H 

. SCOM------, ..... 16K 

.SCOM + 3- )10 

.SCOM + 32~ 

.SCOM + 

.SCOM + 

.SCOM + 

.SCOM + 

o 

Background 
-System Program 

Background Free Core 

__ ----Hardware Protect Bound 

~-----Software Protect Bound 
~~~~~~~_~ __ ----Background I/O Buffers 

Background I/O Handlers

Foreground Job

~------Resident Monitor

If the BACKGROUND request is for a system program, the
System Loader loads the system program I/O handlers up
from the top of the FOREGROUND job, allocates I/O buffer
space, and loads the system program at the top of core
(overlaying the System Loader). Control is returned to
the Resident Monitor, which sets the memory protect bound
above the buffer space and given control to the system
program.

4-18

Memory Map I

.SCOM ~16K
· SCOM + 3 J

· SCOM + 2 --------

.SCOM + 32-.-----------­

.SCOM + 1 t-
· SCaM + 25 --- >-
.SCOM -I- 31

()

P/// V// ~ Background System
rL.....L-L----L--I Loader (. SYSLD)
I

~Background Linking Loader

Moni t.or

If the BACKGROUND program is a user program*, the
System Loader loads the Linking Loader I/O handlers
up from the top of the FOREGROUND job and loads the
Linking Loader such that the memory protect bound
can be set just below it.,

*Uscr programs may be loaded along with the system
program DDT.

4-19

.SCOM

.SCOM

Memory Map J

ll----~ 16 K

+ 3J Background user Programs
-E,- Library Routines

~_Background User I/O
Handlers

.SCOM + 2 ------i ~-=---;;;:;;';-;::::"';",". ~ Loader's Symbol Table

~ Background Linking Loader

. SCaM + 32 _____ ~

.SCOM +

. SCaM +

.SCOM +

o

~Hardware Protect Bound

Prote~t Bound

Foreground Job

The Bl.CKGROUND Linking Loader overlays the System Loader
by loading user programs down from the top of core. User
I/O handlers, presuming that they cannot fit in core
b(~tweenthe FOREGROUND job and the bottom of the Loader,
are loaded into upper core but relocated to run just above
the FOREGROUND job so that they memory protect bound can
be set above them. Common blocks and I/O buffers are not
shown in this memory map.

4-20

Memory Map K

.SCOM-----------~~~16K

OII!'---- Background User Programs
and Library routines

---- User's Common Blocks
.SCOM + 3--------~I~~~I~~uwy

.SCOM+ 32~

.SCOM + 2}-_

.SCOM + 31 ~
~~-L-..\~~~-'r-'--"-.!-~

~ .. --Background
.SCOM + l*l handlers
. SCaM + 2 ~r------'~'" I-~..,x-~-...... ><-.->'_r__"+

Foreground Job

8K

....-I ... E:----Resident Monitor

o

The .EXIT from the Linking Loader causes the user program
I/O handlers to be block transferred to their running
position, the memory protect bound to be set just above
the I/O buffer space, and control given to the user program.
if DDT was also loaded, it resides at the top of core, above
the user programs. Its symbol table, built by the Loader,
is block transferred by the Monitor to start at the soft­
ware protect bound.

*If DD7 is loadGd, .SCOM + 1 will be set to point at the
start of DDT symbol table.

4-21

Memory Map L

.SCOM

symbol table

protect bound
protect bound

~ Foreground free core

.SCOM +

.SCOM +

.SCOM +

.SCOM + ------~~~~~~~

Foreground
Job

o

~~~~~~~EXECUTE 

~
. /0 Handlers + I/O buffers 
including 2nd copy of 

~~~~~~~ EXECUTE's handler 

}

Core occupied by
OverlaY,structure

-=-~ ~--=-:. =- J lIs t copy of EXECUTE's
nI/O handler

t---r--r--~-r---r--1

rrhe System Loader first loads EXECUTE's I/O handler (if not
the resident handler) in order to read the XCT file. The
core limits of the overlay structure are read from the file
as well as the request for I/O from its .IODEV bit map.
'rhe requested handlers, including a second copy of EXECUTE's
handler, are loaded above the core area to be occupied by
the overlay structure. Then I/O buffers are created, if
necessary, and EXECUTE is loaded above them. Finally,
Foreground free core, the software protect bound and the
hardware protect bound are established.

4-22

.SCOM

Core occupied by
Overlay structure

Memox:'y Map M

.SCOM + 3--------~)o

. SCOM + 2 -~-------~ I-"-''>''''---'--'-->-'~~

.SCOM + 32-------------~·1

.SCOM + 31------~--------~~-~~~~r;'

.SCOM + 25--~---------~.1-~~~~-=~~~

8K ------

o

table

protect bound

Pro.tect Bound

Background I/O handlers
and I/O buffers

Foreground job

Monitor

The System Loader loads EXECUTE's I/O handler (if not in
core) in order to read the XCT file. The core limits of
the overlay structure and tJne I/O requests in the . IODEV
bit map are read from the XCT file. The user's I/O
handlers and I/O buffers are then laoded above EXECQTE's
handler, and the hardware protect bound is established
above them. EXECUTE is loaded above the bound and Back­
ground free core is set up from the top of EXECUTE to the
bottom of the overlay area.

4-23

SECTION 5

BACKGROUND/FOREGROUND START-UP PROCEDURE

5.1 LOADING THE B/F MONITOR

Before startup procedures can be carried out, the user must

generate a working system (usin~ .SGEN) from the master tape

supplied with the system. Refer to Section 8 for .SGEN proce­

dures.

In Disk systems, the Monitor and system programs are

assumed to be on Unit ~.

In DECtape systems, mount the working system tape onto

DECtape unit 8 (i.e., ~) and perform the following:

1) Load appropriate paper tape Bootstrap in the

reader.

2) Momentarily depress Reader TAPE FEED pushbutton

to clear end-of-tape flag.

3) Set console address switches as follows:

If you have a -

16K System

24K System

32K System

Set switches to -

37637

57637

1'7637

4) Press and release in sequence the console I/O

RESET and READ IN switches.

5-1

When loaded, the monitor identifies itself and indicates its

readiness by outputting the following on the Foreground control

Teletype (i.e., norma1iy unit 1)

FKM9 VIA

$

The paper tape bootstraps used to load the Background/Foreground

monitor are identical to those used in the PDP-9 Keyboard Monitor

system. The bootstrap restart address, however, is different

(i.e., .SCOM+11 = register lIla) because the resident Monitor

contains a copy of the bootstrap.

The three examples given in paragraphs 5.2, 5.3 and 5.4

are intended to get the user "on the air". Note that the symbol

$ is output by the Monitor to indicate that it is ready. to accept

commands, whereas">"and "*" are used by system programs to

denote readiness.

The symbol ® in the text below indicates the typing of

an ALTMODE terminator.

5.2 .IDLE LOADED AS THE FOREGROUND JOB

An Idle job is loaded in the Foreground to allow immediate

use of the Background. Refer to section 6.3 for a discussion

of .IDLE.

FKM9 V1A

$A ~TA~
DKA~

$GLO D

FGLOAD V1A
>+-IDLE ®

-4 /The program "IDLE" is on unit
/~ of the system device
/Ca11 the Loader to Load-and-Go

/The Loader is in core
/Load "IDLE BIN".

5-2

When IDLE is loaded, no indication is given on the Fore-

ground control teletype. Control passes to the Background

and the Non-resident Monitor is loaded into core. The Monitor

identifies itself on the Background control teletype as:

BKM9 VIA
$

/The Monitor is now ready to
/accept background commands.

5.3 SINGLE-USER FOCAL LOADED INTO THE FOREGROUND

FKM9 VIA

$A fDT~ -4
LI?Kfd

$A DT 3
$A TTl 5
$FCORE lfdfJfJ
$GLOAD

/FOCAL is on the "system tape".

/Library input to FOCAL.
/Library output to FOCAL.
/Free core for FOCAL buffer area.
/Call Loader to Load-and-Go.

FGLOAD VIA /The Loader is in core.
>+-FOCAL, FNEW ® /Load FOC.A.L and its library, FNEW

FOCAL V3A

*
/FOCAL is in core and
lis ready to accept commands.

Once FOCAL is running in the Foreground, the Non-resident

Monitor will be loaded into core as explained in 5.2.

5.4 TWO-USER FOCAL LOADED IN 'rHE FOREGROUND

FKM9 VIA
$A fDTm -4

LDKm
$A TTl 1
$A DTI 2
$A TT2 3
$A DT2 4
$FCORE 3fJfJfJ

$GLOAD

/FOCAL2 is on the "system tape".
/Teletype for user #1.
/Library In/Out for user #1.
/Teletype for user #2.
/Library In/Out for user #2.
/Assign 14fJfJ (Octal) locations of free
/core for each user.
/Call the Loader to Load-and-Go.

FGLOAD VIA /The Loadl~r is in core.
;>-<FOCAL2 ,FNEW @ /Load two'-user FOCAL and its

/library, FNEW.
POCAL V3A /FOCAL is in core and will
* /identify itself on each user's teletype.

5-3

SEc'rION 6

BACKGROUND/FOREGROUND MONITOR COMMANDS (SYSTEM MACROS)

6.1 INTRODUCTION

The System MACROS unique to the Background/Foreground

Monitor are listed and described briefly in Table 6-1. The

Monitor Macros listed are available in addition to the Macros

provided in the Advanced Keyboard Monitor System for use in

programs that are to be run in the Background/Foreground en-

vironment. Detailed descriptions of the Macros are given in

the remainder of this Section.

'rABLE 6-1

Background/Foreground System Macros

Name

.REALR

.REALW

. IDLE

.IDLEC

.'rIMER

.RLXIT

See Section 3.7.

Purpose

Real time transfer of data from I/O device to
line buffer (real-time READ).

Real time transfer of data from line buffer to
I/O device (real-time WRITE) .

Allows FOREGROUND job to indicate that control
can be given to lower levels of the FOREGROUND
job or to the BACKGROUND job until completion
of any FOREGROUND real-time transfer or clock
interval.

Allows FOREGROUND Mainstream to give control
to BACKGROUND job with FOREGROUND continuinq
ufter the .IDLEC on completion of any FOREGROUND
rCul-time transfer or clock interval.

Calls and uses real-time clock and allows
priority level to be established.

Accomplishes the exit from all real-time
subroutines that were entered via .REALR,
.REALW, .TIMER or real-time CTRL pl requests.

6-1

6.2 .REALR

FORM:

VARlALLES:

EXPANSION:

'. RE,ALR A, M, L, W, ADDR, P

A = .DAT slot number (octal radix)

M = Data Mode

lOPS binary
Image binary
lOPS ASCII

1 {

f1

3:

1

Image Alphanumeric
Dump Mode

L 15-bLt buffer address (octal radix)

W Line buffer word count (decimal radix) I

including the two-word header
2

ADDR = IS-bit address of closed subroutine that
is given control when the request made by
the .REALR is completed.

P API priority level at which to go to ADDR

LOC
LOC+l
LOC+2

LOC+3

LOC+4

P Priority Level

fJ Mainstream
4 Level of . REALR
5 API software level
6 API software level
7 API software level

CAL+lfJfJfJ~+M6-8+A9-17

IfJ
L
.DEC /Decimal Radix
-W
.OCT
ADDR+PO-2

/Octal Radix

5
6
7

IData modes 5, 6 and 7 are passed to all I/O handlers.

2The subroutine specified by a .REALR, .REALW, .TIMER or real­
time CTRL P should not be used at more than one priority level.
The subroutine is entered via a JMS and thus cannot be protected
against re-entry.

6-2

DESCRIPTION: The .REALR command is used to transfer
the next line of data from the device assigned to .DAT
slot A to the line buffer in the user's program. In
this operation, M defines the modes of the data to be
transferred, L is the address of the line buffer, W is
the number of words in the line buffer (including the
two-word header), and ADDR is the address of a closed
subroutine which should be constructed as shown in the
following example.

EXAMPLE 1: STRUCTURE OF A REAL-TIME SUBROUTINE

ADDR

6.3 .REALW

FORM:

VARIABLES:

o /Entry point

DAC S AVE AC /Eave AC

LAC SAVEAC

.RLXIT ADDR

/Any system Macro may
/be issued at this point.

/Restore AC

/Return to interrupted
/point via Monitor CAL

.REALW A, M, L, W, ADDR, P

A = .DAT slot number (octal radix)

Ml= Data Mode {
~ = IOPS binary
1 = Image bina-i:y
2 = IOPS ASCII
3 = Image Alphanumeric
4 = Dump Mode

L IS-bit Line buffer address (octal radix).

W Line buffer word count (decimal radix),
fucluding the two-word header

ADD~= IS-bit address of closed subroutine that
is given control when the request made by
the . REALvv is completed.

1 Da ta modes 5, 6 and 7 are passE~d to all I/O handlers.
2See footnote 2, page 6-2.

6-3

P API priority level at which to go to ADDR

P priority Level

~ Mainstream
4 Level of .REALW
5 API software level 5
6 API software level 6
7 API software level 7

EXPANSION: LOC CAL+l~~~~+M6-B+A9-17
LOC+l 11
LOC+2 L

.DEC /Decimal Radix
LOC+3 "'W

.OCT /Octal Radix
LOC+4 ADDR+Po- 2

DESCRIPTION: The .REALW command is used to transfer the
next line of data from the line buffer in the user's
program to the device assigned to .DAT slot A. In this
operation, M defines the mode of the data to be transfer­
red, L is the address of the line buffer, W is the count
of the number of words in the line buffer (including the
two-word header), and ADDR is the address of a closed sub­
routine which should be constructed as shown in EXAMPLE 1
above.

6.4 . IDLE

FORM:

EXPANSION:

. IDLE

LOC
LOC+l

CAL
17

DESCRIPTION: The FOREGROUND job in a Background/Foreground
environment can indicate that it wishes to relinquish
control to lower levels of the FOREGROUND job or to the
BACKGROUND job by executing this command. This is useful
when the FOREGROUND job is waiting for the completion of
real-time I/O from anyone of a number of I/O requests
that it has initiated or for completion of .TlMER requests.

The .IDLE is the logical end of the current level's proces­
sing; that is, control never returns to LOC+2. If the .IDLE
is issued at a FOREGROUND API software level, it effects a
debreak (DBR) from that level so that pending real-time

6-4

routines at that level will not be executed until the
level is requested again. If the .IDLE is issued at
FOREGROUND Mainstream, control goes to the BACKGROUND
job. If the .IDLE is issued at BACKGROUND Mainstream,
control is returned to the .IDLE CAL.

6.5 .IDLEC

FORM: .IDLEC

EXPANSION: LOC
LOC+I

CAL+I~J~JiY

DESCRIPTION: Identical to .IDLE except when issued at
the FOREGROUND Mainstream level. In this case, control
goes to the BACKGROUND job, and LOC+2 is saved as the
FOREGROUND Mainstream return pointer. The next time
control returns to FOREGROUND (at any priority level),
FOREGROUND Mainstream processing will resume at LOC+2
when Mainstream becomes the highest active FOREGROUND
level.

6.6 .TIMER

FORM: .TIMER N, ADDR, P

VARIABLES: ~ = Number of clock increments (decimal radix)

ADDlf= IS-bit add.ress of closed real-time sub­
routine to handle interrupt at end of
interval

P API priority level at which to go to ADDR

lTo transfer control to subroutine ADDR at priority level P
immediately, N should be set equal to zero.

2The subroutine specified should not be used at more than
one priority level. The subroutine is entered via a JMS
and thus cannot be protected against re-entry.

6-5

EXPANSION: LOC
LOC+I
LOC+2

LOC+3

P priority Level

fJ Mainstream
4 Level of .TIMER
5 API software level 5
6 API software level 6
7 API software level 7

CALI
14
ADDR+Po-2
.DEC /Decimal Radix
-N

DESCRIPTION: .TIMER is used to set the real-time clock
to N increments and to start it. Each clock increment
represents 1/60s for 60 Hz systems and 1/50s for 50 Hz
systemi. When the Monitor services the clock interrupt,
it passes con"trol to location ADDR+l with the priority
level set to P. The coding at ADDR should be in closed
subroutine fo:rm, as in EXAMPLE 1.

6.7 .RLXI':.'

FORM:

VARIABLES:

EXPANSION:

.RLXIT ADDR

ADDR = l3-bit entry point address of the
real-time subroutine from which an
exit is to be made.

LOC
LOC+I

CAL
2~

ADDR

DESCRIPTION: .RLXIT is used to exit from all real-time
subroutines that were entered via .REALR, . REALW , .TIMER
or real-time CTRL P requests. The instruction just
preceding the .RLXIT call should restore the AC with
the value of the AC on entrance to this subroutine. .RLXIT
will restore the link from bit ~ of the contents of ADDR .

. RLXIT protects against re-entrance to BACKGROUND or FORE­
GROUND Mainstream real-time subroutines. When the contents
of ADDR is non-zero, the subroutine is assumed active;
.RLXIT sets the contents of ADDR to ~, thus making it avail-

lWhen bit 8 of CAI~ is set to I, an abort • TIMER is effected.
All intervals having the same address and priority level (LOC+2)
will be aborted.

6-6

able again. NOTE: Real-time subroutines should initially
hav.e their entry point register set to fO; and restart -­
procedures, enteredvla CTRL P or after CTRL T, shOUTd
reset all entry pOlnts to ~.

6.8 MAINSTREAM REAL-TIME SUBROUTINES

Mainstream real-time subroutines in the Foreground are

not equivalent to those in the Background due to the manner

in which I/O busy situations are handled. If the Background

becomes I/O busy, the Monitor "sits on" the Background CAL

instruction (while Background is in control) until it can be

processed. Therefore, Background Mainstream real-time routines

can be executed despite the fact that Background Mainstream

is I/O busy. If Foreground Mainstream is I/O busy, Foreground

Mainstream real-time routines cannot be executed until the busy

situation is terminated. This is due to the fact that control

is given to the Background whenever Foreground Mainstream

becomes I/O busy_ The device handler responsible for the busy

situation is rememberod in the Foreground Mainstream busy flag.

Mainstream real-time routines cannot then be run because they

too could become busy.

This situation can be avoided either by usinq .REALR or

. REALW in conjunction with . IDLE or . IDLEC, or by usinq . v-7AITR

to prevent Foreground Mainstream from becoming I/O bound.

6-7

SECTION 7

WRITING DEVICE HANDLERS FOR THE BACKGROUND/FOREGROUND
MONITOR SYSTEM

7.1 INTRODUCTION

Writing a handler which will run in the Background/Foreground

Monitor environment requires adherence to certain established

conventions which differ from those in the Keyboard Monitor en-

vironment. The CAL handler in the Monitor has been implemented

to do as @uch of the function processing as possible. In giving

control to the I/O handler, the CAL handler will have set up

registers in the I/O handler with all pertinent information (argu­

ments) of the CAL in the most accessible state, and will then

transfer control to the appropriate function processor via the

JMP table in the I/O handler which begins at word 208. There

are three types of I/O device handlers that one may wish to develop

to operate under the Background/Foreground Monitor System:

1. Single user --- This handler can be used by either
the Foreground job or the Background job but not
both during the same core load; that is, it is
dedicated to one job and the Monitor System will
not permit the other job to be connected to it.

2. Sequential Multi-user --- This handler can be con­
nected to both the Foreground and the Background
job and they both can utilize it on a sequential,
first come-first served basis.

3. Multi-user --- This handler can be connected to
both the Foreground and the Backqround jobs with
the Foreground job having priority on usage. If
the Background job is using the handler and Fore­
ground requires it; the Background I/O will be
deferred until the Foreground I/O has been completed.

This section will be primarily devoted to describing the

development of single-user handlers. After having done this,

it will show the transition fro:m single use to sequential multi-

use.

7-1

I/O handler type 3 (Multi-user) is too involved to be

presented without example listings (such as our Multi-user

DECtape handler) and personal consultation regarding the

philosophies of the Background/Foreground Monitor System.

Consultatio~ is available to customers whose applications

require type 3 handlers.

7.2 FORMAT OF DEVICE HANDLER'S CAL PROCESSOR

The first 37 (octal) words of the I/O handler must have

the format described in the following pages. An assembly

listing of the Background/Foreground line printer handler

(LPA) is appended to this section for reference.

WORD~: JMS SWAP /SWAP is in the I/O handler

The SWAP subroutine must execute WORDS which restores the

state of the program interrupt and DBK from level ~ of the API.

The presence of this routine becomes functionally necessary

for type 3 (Multi-user) handlers to accomplish swapping from

Background to Foreground usage. The I/O device independ~nce

of the system requires that all handlers look alike to the

outside world (namely, the CAL handler).

WORD 1: Foreground Busy Register

~=Not Busy

must be assembled
with ~ contents

Non~=Busy (Current .DAT slot number, 18 bits
if negative)

WORD 2~ Background Busy Register

~=Not Busy

must be assembled with
~ contents

Non~=Busy (Current .DAT slot number, 18 bits
if negative)

7-2

The CAL handler checks the validity of the .DAT slot

number for this job (Foreground or Background), checking for

its existence, whether or not a device has been assigned to

it and if the appropriate handler was loaded.

The CAL handler then checks the appropriate busy register

and proceeds as follows:

1) If the flag indicates that the handler is
already busy, the job becomes I/O bound at
this level.

2) If the flag indicates not busy, it is set
to busy and the CAL handler processes the
function and passes the request on to the
device handler.

Note that .WAIT's and .WAITR's are completely processed

by the CAL handler and are not passed on to the I/O handler

If the corresponding flag indicates:

1) BUSY

a) For .WAIT in the Foreground, control
is given to a lower Foreground level
or the Background.

b) For .WAIT in the Background, hang on
the CAL.

c) For .WAITR in either the Background or
Foreground, control goes to the address
in LOC+2 (which must be above the hard­
ware memory protect bound if in the
Background) .

2) NOT BUSY - Fall through.

WORD 3: Foreground .CLOSE register -- must be assembled
with fJ contents

!J=.CLOSE not in progress
NONfJ=.CLOSE in progress

7-3

WORD 4: Background .CLOSE register --- must be assembled
with ~ contents

~=.CLOSE not in progress
Non~=.CLOSE in progress

WORD 5~ ION or IOF (state of PIC on INTERRUPT or CAL entries).

WORD &: Same as WORD 5 on CAL entries; DBR on INTERRUPT
entries.

WORD~: Return pointer. The CAL handler places the
address of CALXIT in this register.

WORD l~: JMP FUNC

After checking the validity of function and subfunction
codes, the CAL handler places a JMP to the appropriate entry
in the function JMP table (words 2~-32) of the I/O handler
in this register.

WORD 11: User CAL in progress. The CAL handler sets this
register.

~=Foreground
l=Background

WORD 12: .DAT slot number (IS-bits if negative). The
CAL handler sets this register.

WORD 13: Unit number for Multi-unit devices in Bits ~-2,
with bits 3-17 containing the address of the
CAL. The CAL handler sets this register.

lWhen a hardware interrupt occurs to this I/O device handler, the
interrupt processor must:

a) Save the state of the program interrupt in Word 5
b) Place a DBR in Word 6
c) and place the interrupted program counter (with link,

extend mode and memory protect bits) in Word 7.

7-4

The CAL handler makes a general check for validity on:

a) File type
b) Data Mode
c) MAGtape subfunction code
d) Transfer directions
e) .OPER subfunction code
f) All addresses
g) Word counts

and will pass on what appears to be legitimate values .. Each

handler must then make its own validity determination with

respect to the device it controls. For example, the CAL handler

will always accept data modes ~ through 7; however, the device

handler may only accept a subset of these.

The contents of words Word 14 through Word 17 vary with

the function being processed. l\.dj acent to what will appear

in each of these words is the limits on the values that will

be accepted and passed on by the CAL handler.

WORD 14: .INIT --- File type ~=input
l=output

.READ, .REALR ~=IOPS binary
l=imaqe binary

.WRITE, .REALW - Data Mode 2 2=IOPS ASCII
3=Imaqe ALPHA
4=DUMP

.MTAPE

.TRAN

.OPER

--MAGtape function
--Transfer direction
--Subfunction code

7-5

5=DUMP ALPHA
6=are passed on
7=by the CAL handler

(~-178)
(~-3
(1-3)

WORD 15:

WORD 16:

WORD 17:

.INIT --- User restart address plus code bits (~-2)

.READ, .REALR

.WRITE, .REALW --- Line buffer address (checked
for memory violation on software protect
bound (SCOM+3l) if Background job .

. DLETE , .RENAM

.FSTAT, .ENTER, .SEEK --- Address of Directory
entry block (checked for memory violation
on .SCOM+31 if Background job) .

• 'rRAN --- Core starting address (checked for
memory violation on .SCOM+31 if Background
job .

. INIT --- Address of Register which is to have
standard buffer size placed in it (checked
for memory violation on .SCOM+31 if Back­
ground job) .

. TRAN, . READ , .REALR -- Line buffer word count
(from CAL ARG. LIST). Counts are checked
for core fit and negative value if Back­
ground job .

. WRITE, .REALW --- Line buffer word count (from
line buffer word pair ct., except for
dump mode and Mode 5 which use counts
from CAL argument list.) Counts are
checked for core fit and negative value
if Background job.

.TRAN --- Device address tBlock number)

.FSTAT --- Address of register which will have
the device code put in bits ~-2, (checked
for memory violation on .. SCOM+31 if
Background job) .

. REALR, .REALW --- Address to give control to on
completion of I/O request and priority
level in bi ts ~-2 1 , (checked for memory
violation on .SCOM+32, the hardware protect
bound, if Backqround job).

lIf--it is a Background CAL, bits ~-2 of this register will always
contain ~, which indicates Background Mainstream. If it is a
Foreground CAL and there is no API, bits ~-2 contain 1, the Fore­
ground Mainstream code.

7-6

Function JMP Table

Ignored functions, functions that do not issue lOT's at the

CAL level, and error functions must set up to have the Fore-

ground or Background busy flag (Words 1 a~d 2, respectively)

cleared during the protected exit routine (which begins at

LPTIO in the line printer handler).

WORD 2~: JMP INIT /Function 1
WORD 21: JMP OPER /Function 2
WORD 22: JMP SEEK /Punction 3
WORD 23: JMP ENTER /Punction 4
WORD 24: JMP CLEAR /Function 5
WORD 25: JMP CLOSE /punction 6
WORD 26: JMP MTAPE /Function 7
WORD 27: JMP READ (.REALR) /Function 1.0
WORD 30: JMP WRITE (. REALW) /Punction 11
WORD 31: NOP /.WAIT or .WAITR never get to

I/O handler
WORD 32: JMP TRAN /Punction 13

WORD 33: .0 /Storaqe for .SCOM+35, the "in
an interrupt service" flag.

WORD 34: SUBRF /Stop FGRD I/O subroutine

When the Foreground job terminates (.EXI1', tc, terminal error, etc.)

this routine in every Foreground device is called at Mainstream

level to effect the controlled shutting down of the device (see 7.4).

WORD 35: SUBRF /Stop BGRD I/O subroutine

For single user device handlers (devices that
cannot be shared by Foreground and Background) ,
the same subroutine can be used for FGRD and
BGRD STOP I/O.

WORD 36: /Handler I.D. code

This word has other values (Non-0) for devices
that require special consideration from the CAL
handler.

7-7

7.2.1 . SETUP

On the first (and only on the first) .INIT to a device handler,

the device handler must call .SETUP to connect the device handler's

interrupt service routine to the appropriate API channel register

or program interrupt skip chain entries. The address of .SETUP

can be found in .SCOM+55 (155 8),

Calling sequence:

LAC *
DAC
JMS*
LSDF
LPINT

(. SCOM+55
LPTEMP
LPTEMP

/SKIP lOT
/ADDRESS OF INTERRUPT SERVICE

If this is not done, the first hardware interrupt for this device

will be deemed an illegal interrupt and processed accordingly.

It is imperative that all lOT's that initiate hardware opera-

tions be executed during protected (API level ~, IOF) exit from

the handler to assure that the exit takes place prior to the

hardware operation completing and causing re-entry to the handler

at the interrupt level for servicing.

CAL function requests that require more than one hardware opera-

tion should cause the 2nd throuqh Nth operations to be initiated

at the interrupt level durinq protected exit. A handler should

7-8

not cause sitting on a CAL until the entire function is com-

pleted because this prevents opt.imum usage of central processor

time for the duration of the function. The user cannot do

other things while the hardware operations proceed.

7.2.3 .OPER Functions

.OPER functions (.FSTAT, .RENAM and .DLETE) are unique in

that they return information in the AC. For device handlers

that wish to utilize this function, the method is as follows:

On completion of .OPER operation, the interrupt
service level of the handler sets the appropriate
close register (Word 3 if Poreground, Word 4 if
Background) to:

l=File not present

INFORMATION+l=File present (where information
is the device block number).

The information must not = -1

As at the completion of other I/O requests, it sets up to have

the appropriate busy flag (Word 1 if Foreground, Word 2 if Back-

ground) cleared during protected exit.

7.3 FORMAT OF DEVICE HANDLER'S INTERRUPT PROCESSOR

Figure 7-1 contains a detailed flow chart of the interrupt

service routine of a single-user handler. This is the actual

flow chart of the LPA. handler whose listing is appended to

this section for reference.

7-9

fnterrupt Processor of Device
Handler in BACKGROUND/FOREGROUND
MONITOR Environment

LPINT

Save AC, PC, L, XM, MP
in WORD7 of handler.
Save status of PIC in WORD5.

[Jfave contents of .SCOM+35
in WORD33 of handler

__________ -L ______________ ~

non ~ to .SCOM+35
(on exit, .SCOM+35 is
returned to its saved state)

len-tered WI. th-memory - -I
Iprotect disabled and I

.- "', at hardware level (API I
I~r_ PIcl...?~~e~ice ___ .l

I When -:-SCOM+35 i-; no~"".01
lat least one interruptr

.- .- L:>ervic=- i~ in ..Erogre~l

1 Wh;n -locatio;-~ is -;'on ~ I
lat least one interrupt I
I~ervic-=- is in .J?rogr-=ss I --

Set location
")--L--~ ~ to ~

Clear
STOP I/O
Switch

Clear flag, enable PIC,
DBR to WORD6 of handler~------~

N Process
>--------:~ Interrupt

y Set up to issue
next lOT in pro­
tected (API and

~----~PlC) exit routine.

LPEMPT

Set up to have BGRD or FGRD
L. __ ~ busy flag cleared during

protected exit routine.

I WORD I 1 Ofhandlerl
lindicates BGRD orl

--I FGRD ownership ofl
1.2/~ reque.:..t ~ _ ..J

Figure 7-1 Interrupt Service Routine, Flow Chart

7-10

LPNOR

Ithi; is -the -commo~1
Iprotected exit fori
,interrupt and CAL I
I~ntr~s ______ ,

NOTE:
The addrese of
CALL4 is in
.SCOM+S4 (154 8)
CALL4 initiates
an API (or
pseudo API)
level 4 inter­
rupt with the
level 4 interrupt

Check for device ready
prior to initiating I/O

LPTIO

IRaise to API level ~, IOF FEh"Ts-was-an -,
linterrupt I
Iservice entry I
---:::;..-- ---

,./"
./"

JMS CALL
WORD7
WORD33

processor LPT.6
controlling r----------------~------------~
BGRD to FGRD
transitions
and real-
time requests.

restore .SCOM+3S from
WORD33 of handler

Clear BGRD and/or FGRD busy
flag as previously set up.

LPIOT I
~l

execute setup lOT (IOF if
completE!d)

!
J

Irestore AC DBK from level ~

execute WORDS which is the
exit status of PIC

jcxecute WORDG (DBR if inter­
rupt entry, same as WORDS if
CAL entry)

exit

Figure 7-1 (Cont.)

7-11

LPT3l

NOTE:
The address of
IOBUSY is in
.SCOM+52 (152 8).
If the FGRD job
became I/O bound
on this handler.,
IOBUSY will prime
the Monitor to
continue the
FGRD job on the
busy CAL.

ICall real=- --I
I time processor 1

I with level/ I,
I subroutine I""",
La~d~e~ J-~ AC .J '

NOTE:
The address of
REALTP is in
.SCOM+Sl (ISla).
REALTP pr ilfles
the Monitor to
honor real-time
requests.

Raise
IOF

ION
DBK from API level ~

N

Raise to API level ~
IOF

ION
DBK from API level ~

(Check if-thi;-I
·Idevice involvedl

/' / 1 it; .1/0. busy I
I~F!: .. u~t2:..0n ___ 1

LPNOR

ITO determine whether the completed operation is real-time:

a) WORDl~ must contain a JMP to WORD27 (READ or .REALR) or
WORD 3 ~ (. WRI'rE or . REALW) .

b) and WORDl7 must be non-~.

Figure 7-1 (Cont.)

7-12

Please note that interrupt service routines (the

coda beginning at LPINT in the LPA. handler) must be set up

to operate with or without API.

7.4 SYSTEM ANNOUNCEMENTS

7.4.1 Errors

All device handler error messages should be terminal; that is,

should terminate the operation of user programs. After the

printing of the error message, the user has the option of

typing CTRL P (to restart his program at the CTRL P restart

address), CTRL T (to return to DDT), CTRL Q (to take a dump

of memory), or CTRL C (to return to the Monitor to load

another job).

Device handlers that wish to set up an error condition should

use the following coding sequence:

AUXARG

LAC*
DAC
LAC
ISA
IOF
LAW
JMS*
XX
DBK
ION

(. SCOM+66
TEMP
(4~~2~~

CODE
TEMP

/CLEAR BUSY FLAG (WORD 1 or WORD 2)
/EXIT HANDLER VIA PROTECTED EXIT.

/POINTER'TO ERRORQ
/SUBROUTINE.
/RAISE TO API
/IJEVEL ~.

/SEE BELOW.
/CALL ERRORQ.
/AUXILIARY ARGUMENT.
/RETURN HERE.

The first argument, given in the AC to ERRORQ, may be loaded

either by LAW code or by LAC code in the following format:

7-13

Code

Bits ~-5 are ignored
Bit 6=1 means terminal error
Bit 7=1 means Background error l

Bit 8=1 means Foreqround error l

Bits 9-17 is a 3-diqit error code

The auxiliary argument, following the JMS to ERRORQ, will be

printed in the error message as a 6-digit octal number. The

error message will be printed in the form:

.ERR NNN XXXXXX

where NNN = the 3-digit error code

xxxxxx = the 6-digit auxiliary information

The actual printing of the error message and processing of

the error will be done only after all interrupt processing

has ceased and when control is no longer in the CAL handler.

7.4.2 Recovery from I/O Device Not Ready Condition

The Background/Foreground monitor system is designed to handle

simultaneously one not-ready condition per job. This is a

limitation but a reasonable one based on Keyboard Monitor

(single-user) experience.

I/O handlers that can encounter and detect not-ready conditions

must adhere to the following ground rules in their announcement

of the non-terminal error and in their continuation once the

condition has been corrected.

IBits 7 and ·8 may both be set if the error applies to both the
Foreground and the Background jobs.

7-14

Since all 1/0 in B/F handlers must be initiated in the common,

protected exit routine of the handler (the code beginning at

LPNOR in the line printer example), it is there and only there

where not-ready conditions should be checked and handled. 1

Prior to executing the desired IOT, check for not-ready with

the code at LPNOR which is as follows:

LPNOR IDO WHATEVER IS NECESSARY
ITO DETERM,INE WHETHER
IDEVICE (UNIT) IS READY.

JMP LPRDY IDEVICE READY.
IWITH THE DEVICE (UNIT) NOT READY IT
lIS NOW NECESSARY TO DEFER THE
IDESlRED lOT, ANNOUNCE THE NON­
ITERMINAL ERROR, AND EXIT FROM. THE
IHANDLER SET UP TO CONTINUE WHEN
ItR IS TYPED O~ THE USEP'S CONTROL
ITELETYPE.

LPRDY

LAC
DAC
LAC
DAC
JMS

LPIOT
LPIOTB
(IOF
LPIOT
LPMSG

!Sl\VE DESIRED lOT.
I
IEXECUTE IOF IN
IPLACE OF lOT.
IINITIATE NOT READY MSG.

Where the code at LPMSG is as follows:

ISUBROUTINE TO CALL A ROUTINE IN THE RESIDENT
IMONITOR TO INITIATE A NOT READY MESSAGE.
ICALLING SEQUENCE:
I JMS LPMSG
I RETURN WITH LPCTLR NON-~ IF
I REQUEST HONORED, OTHERWISE,
I LPCTLR IS SET TO ~ AND A
I TERMINAL ERROR WILL RESULT
I

IThe exception to this is when a handler can only determine not
ready at the interrupt level; that is, after it has issued the
desired lOT and an error flag results.

7-lS

LPMSG ~
/DETERMINE WHICH JOB (FGRD OR BGRD)
/IS CURRENTLY MANIPULATING THTS DEVICE.

LAC LPA.+ll /~=FGRD,l=BGRD
DAC LPARGl
LAC LPCTLR /EXIT IF MESSAGE
SSA!CMA /ALREADY REQUESTED
JMP* LPMSG /FOR THIS DEVICE.
DAC LPCTLR /SETtR FLAG.
LAC UNITNO /UNIT NUMBER (BITS
DAC LPARG3 /~-2) IF APPLICABLE.
LAC * (.SCOM+64 /POINTER TO tR
DAC LPTMPl /QUEUER IN MONITOR.
LAC (4~~2~~ /RAISE TO API
ISA /LEVEL ~ AND
IOF /TURN OFF PIC.
JMS* LPTMPl /GO TO tR QUEUER.

LPARGl XX /~=FGRD, l=BGRD •
. ASCII /LP/ /DEVICE NAME
.LOC .-1

LPARG3 ~ /UNIT NUMBER (BITS ~-2) IF APPLICABLE
LPFRA + 2~~~~~ /FGRDtR SUB AND DEVICE'S API LEVEL
LPFRA + 2~~~~~ /BGRDtR SUB AND DEVICE'S API LEVEL
DSM LPCTLR /REQUEST NOT HONORED-TERMINAL ERROR.
ION /PIC ON (RETURN HERE IF HONORED).
DBK /DEBREAK FROM LV~
JMP* LPMSG

Where the code at LPFRA is as follows:

/SUBROUTINE ENTERED AT API LEVEL 2, PIC OFF.
/WHEN tR IS INPUT FROM KEYBOARD, EVEN IF DEVICE IS
/ONLY CONNECTED TO PIC, AN API HARDWARE
/LEVEL (~,1,2,OR 3) MUST HAVE BEEN SPECIFIED.
LPFRA ~

DSM LPCTLR /CLEAR tP FLAG
/DO WHATEVER IS NECESSARY
/TO DETERMINE WHETHER DEVICE (UNIT)
/IS READY

/IF STILL NOT READY, CALL LPMSG
/TO CAUSE NOT READY MESSAGE TO BE
/OUTPUT AGAIN.

LPIOTB
LPFOUT

JMS
JMP
LAC
XX
ION
DBR

LPMSG
LPFOUT
LPIOAC

JMP* LPFRA
/'rTfF. CONTROL R(fR) IN PROGRESS FLAG
/MUS'.r TNI'l'IALLY BE CLEARED IN THE
/S'J'OP I/O ROUTINE.
r,PC'rLH ftJ /tR FLAG

7-16

/BYPASS lOT.
/AC FOR lOT IF APPLICABLE.
/DEFERRED lOT.
/PIC ON.
/DEBREAK FROM LEVEL ~.

7.5 STOP I/O TECHNIQUE

In the Background/Foreground Monitor environment, it is

necessary to have some orderly means of stopping I/O that is

in progress. When a job terminates (.EXIT, tc, terminal error,

('te.), Ul(\ Monitor SYf:;tem must assurc~ that all I/O for that job

is rdlUt down before! i.t rcmovns t:h(~ associatQd device handlers

from cor~. This is accomplished via the following method:

a) Word 34 of every device handler points to the
Foreground STOP I/O subroutine which is
internal to the handler.

b) Word 35 of every device handler points to the
Background STOP I/O subroutine which for
single-user handlers can be the same as the
Foreground STOP I/O routine.

c) When a job terminates, the Monitor calls the
appropriate STOP I/O subroutine at Mainstream
level which actually accomplishes the orderly
shut down of I/O.

d) For devices that can sf:op I/O hardwarewise,
via an lOT, this plus steps 4, 5, 6, and 9
must be done.

For devices that cannot stop I/O hardwarewise via an lOT,

the following procedure can be used:

1) Raise to level fJ of the API and turn off the
program interrupt to protect against getting
interrupted in mid-decision.

2) Check the fR flag. If it is set, clear the
software flag that will be tested in Step 8
and bypass Step 3. This is done because no
I/O is under way if this handler is waiting
on a tRw

7-17

3) Check the appropriate busy register (WORDl
o~ WORD2). If it is not set, no I/O is in
progress; therefore, we do not have to wait
tor its completion. If it is set, set a
software flag that will be tested in Step 8.

4) Clear the appropriate busy register (WORDl
or WORD2).

5) Clear the appropriate .CLOSE register (WORD3
or WORD 4) •

6) Clear the tR flag (see Section 7.4.2).

7) Debreak (DBR) from API level ~ and turn on
the program interrupt to allow servicing of
hardware flags that may have or will occur.

8) If the appropriate busy register had been
set, sit in a tight loop testing the
software flag that was set in Step 3 above,

I.E. LAC
SSA
JMP

FLAG

.-2

FLAG is the STOP I/O switch that must be
cleared (SET=~) by the interrupt service
routine on all interrupts that are final.
Final means that no other flags will occur
without more I/O being initiated via an lOT.

The interrupt service routine must also
make a decision whether or not to initiate
more I/O. When the appropriate busy regis­
ter (WORDl or WORD2) has been cleared,
(Step 4) this should indicate that no new
I/O should be started. (See the flow chart
in Section 7.3).

9) Exit from the STOP I/O subroutine.

7-18

7.6 SEQUENTIAL MULTI-USER DEVICE HANDLER

To accomplish the transition from a single-user device

handler to a sequential multi-user device handler, the follow-

ing procedures must be adhered to:

a) The device handler mus"t be the "A" version;
that is, LPA., MTA., etc. as the Background/
Foreground Moni tor Sys"tem will only allow "A"
versions to be connected to both jobs simul­
taneously. Also, this shareability must be
specified to the B/F system"at generation
time.

b) The SWAP subroutine (pointed to by WORD~ of
the handler) must set both busy registers
(WORDI and WORD2) to prevent the Foreground
job from forcing itself in before the Back­
ground job has completed its operation.
This is in addition to and prior to its
normal duties as outlined in 7.2.

c) There must be two unique stop I/O subroutines,
one for Foreground (pointed to by WORD34) and
one for Background (pointed to by WORD35) .
Before executing the STOP I/O procedures, both
subroutines must first determine if the I/O
belongs to their respective job. This is done
by testing WORDII, (~=Foreground I/O, I=Back­
ground I/O). They should do nothing if the
other job is in control.

In Step 2 of the stop I/O Routine, if the tR
flag is set, the I/O busy routine in the Moni­
ter (pointed to by .SCOM+52) must be called in
CUHC the Foreground job is I/O bound on this
d(~vice .

d) Bacause the SWAP ~jubrou"tine sets both busy
registc~rs (WORDI and WORD2), the CLEAR BUSY
FLAG routine that sets up to have the flags
cleared during protected e~it from the device
handler must always set up to have both flags
cleared. The STOP I/O subroutines should also
clear both busy registers.

7-19

7.6.1 .WAITR

When a sequential multi-user device handler is being used by

the Background job, the Foreground job will become I/O bound

if it attempts to use the same handler.

The .WAITR monitor function affords both the Foreground job

and the Background job a means of determining that the handler

is available before requesting I/O from and to it. This

feature is only useful when the job has other things which

can be performed while it is waiting for the handler to free

up.

7.7 DEVICE HANDLER LISTING

A listing of the Background/Foreground line printer device

handler (LPA) is given on pages 7-21 through 7-34 of this

section.

7-2Q

I D A
L ~ .., • PAGE

kHHH:'0 R
~'~HH"1 R
000e2 R
000~3 R
001304 R
000e5 R
00e~6 R
000?-7 R

00010 R
130011 R
00012 R
1301313 R
00014 R
00015 R
00016 R
00017 R

00020 R
00021 R
00022 R
e~0?3 R
~W024 R
0~025 R
tL~026 R
00027 R
00030 R
~"~I.3J ,~

1

70 65 0 1 A
706502 A

706566 A·
706526 A
706546 A
706601 A

706602 A
706606 A

706626 A

0000133 A

100525 R
001Zl00~ A
000000 A
000000 A
0000013 A
740~40 A
7413040 A
74 0040 A

74004(]J A
740040 A
740040 A
740040 A
740040 A
740040 A
740C!l40 A
740040 A

600046 R
600523 R
600 Ci 12 R
600523 R
600'523 R
600V140 R
600'123 R
600512 R
600167 R
]~!'~~~ ,~

,TITLE LPA.
I ., .• ED IT ~4 , .•. 2 DEC 69
ILPA.---8AC~GROUND/FOREGROUND MONITOR SYSTEM.
ILPA.=LINE PRINTER (647) HANDLER,
ICALLING SEQuENCE:

ICAL+.OAT SLOT (9-17)
IFUNCTION
IN ARGUMENTS, WHERE N IS A FUNCTION OF FUNCTION.
INORMAL RETURN

LSDF=7e6501 ISKIP ON DONE FLAG -CONNECTED TO INTERRUPT
LPCB=7e6502 ICLEAR DONE FLAG, CLEAR PRINTER BUFFER,

LPL1=706566
LPL2=706526
LPLD=706546
LSEF=706601

LPCF=706602
LPPB=706606

LPLS=706626

.MED=3

.SCOM=10~

ISET aONE FLAG
ILOAD PR!NT[R RUFFER 1 CHAR (Ae 12-17)
ILOAD PRINTER RUFFER 2 CHAR (AC 6-11. 12-17)
ILOAD PRINTER BUFFER 3 CHAR (AC 0-5.6-11,12-8)
ISKIP ON ERROR FLAG -NOT CONNECTED TO
IINTERRUPT
ICLEAR DONE FLAG
ICLEAR DONE FLAG, SELECT PRINTER,
IPRINT BUFFER, CLEAR BUFFER, SET ~ONE FLAG
ILOAD SPACING BUFFER CAC 15-17), SPACE
15ET DONE FLAG

.GLOBL LPA.
LPA. JMS SWAP

o
€I

"
'" LPSWCH XX

LPWRD6 XX
LPTOUT XX
1ST ART OF OATA REGISTERS.
IFOR SINGLE-USER DEVICES,
LPWD10 XX

XX
LV2WC XX
LPSVAC XX
LPWPC XX
LPLBHP XX
LP8CT XX
LPWo17 XX
lEND OF DATA REGISTERS.
IBEGIN~"G OF FUNCTION DISPATCH TABLE.

JMP LPIN
JMP LPIGN
JMP LPERR
JMP LPIGN
JMF LPIGN
JMP LPCLOS
JMF LPIGN
JMP LPERR

LWRITE JMP LPWRT
LV2FC XX

IFOREGROUND BUSY REGISTER.
IBACKGROUND BUSY REGISTER
IFOREGROUND .CLOSE REGISTER.
IBACKGROUND .CLOSE REGISTER.
lION OR IOF
lION OR IOF OR DBR
IRETURN POINTER

IJMP FUNCTB
ICAL OWNER (0=F,1=B)
1.0AT SLOT NUMBER
IUNIT NUMBER (BITS 0-2) CAL ADDRESS (BITS 3-17)
IW14
IW15 - LiNE BUFFER ADDRESS.
IW16
IW17

I. I NIT
I.OPER - IGNORED.
I.SEEK - ERROR.
I.ENTER - IGNORED.
I.CLEAR - IGNORED.
I.CLOSE
I.MTAPE - IGNORED
I.READ <.REALR) - ERROR
I.WRITE <.REALW)
I.WAIT (.WAITR) PROCESSED COMPLETELY BY CAL HANDL

........,
I

N
N

LPA.

0/032
00033
00034
00035
00036
00037

00040
00041
~0042

00043
00044
00045

00046
00047
00050
00051
00052
00053
00054
00055
00056
00057
00060
00061
00062
00063
00064

00065
00066
00067
00070
00071
011'072
011'073
00074
00075
00076
00077
00100
00101
00102
00103
00104.
00105
QhH06
00107
00110
00111
00112

PAGE

R

R
R
R
R

R
R
R
R
R
R

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

R
R
R
R
R

2

740v:4?
~v0531.

~W~531
0?0000
~HHH'0e

140:;'12
140434
750001
04043'3
200M~2

600\764

750001
04\iW12
040e'31
2e0Mn
060016
220604
040~53

120053
706501
000350
200062
040053
600063
200605
0401H'

100120
220606
040037
100571
200006
54016'5
741000
600100
120037
000007
000033
200033
060607
74017100
74\iH?00
21710f10
0401V12
0401 (~3
20043'5
74004"0
200(}13
703304

A
R
R
A
A

R
R
A
R
R
R

A
R
R
R
R
R
R
R
A
R
R
R
R
R
R

R
R
R
R
R
R
A
R
R
R
R
R
R
A
A
R
R
R
R
A
R
A

Jr~P LPERR
SCOM35 xx

LP~ERO

LPTMPl
I.CLOSE
LPCLOS

LPSPCE

LPSTP
LPSTP
o
171

LPT ROUTINE
DlM LV2WC
O~M PGECNT
CLA!CMA
DAC LPIOAC
LAC (LPLS
JMP LPCOMD

IINIT LPT ROUTINE.
LPIN CLA!CMA

DAC LV2WC
DAC LV2FC
LAC (64
DACo LPA.+16

LPIN2

LP57T

LPWORD
LPHRTB
LP3CHR

LAC* <.SCOM+55
OAC LPIN2
JMS* LPIN2
LSDF
LPINT
LAC • +2
DAC LPIN2
JMP .+1
LAC (LPCB

LPCO~D DAC LPIOT
ICOMMON EXIT SEQUENCE FOR CAL
lAND INTERRUPT LEVEL ENTRIES.
I
I
LPNOR

LPTIO

LPT.6

LPFCLR
LPBCLR

LPIOT

JMS
LAC*
DAC
JMS
LAC
SAO
SKP
JMP
JMS*
LPA.+7
SCOM35
LAC
DAC*
NOP
Nap
LAC
DAC
OAC
LAC
XX
LAC
DSK

LPSVAC

LPNRDY
(.SCOM+54
LPTMP1
LPRAIS
LPWRD6
LPDSR

LPT.6
LPTMPl

SCOM35
<.SCOM+35

(NOP
LPFCLR
LPBCLR
LPIOAC

I.TRAN - ERROR
1ST OR AGE FOR .SCOM+35

IFGRD STOP 1/0 SUBROUTINE
18GRO STOP 1/0 SUBROUTINE
IHA"'JOLER 10

IFORM FEED.
IINITIALI2E #LINES/PAGE COUNTER

ISET UP TO 00 1/0 DURING
IPROTECTED EXIT.

ISET UP FOR FORM FEED ON INTERRUPT FROM LPCB.
152 (DECIMAL)---RETURN

ISTANDARD LINE BUFFER SItE TO USER.
I - ONCE ONLY CODE.

I.SETUP - THESE 6 REGISTERS ARE OVERLAYED.

LEVEL

ICHECK IF DEVICE READY.
IADDRESS
10F CALL4
IRAISE TO API LEVEL 0, TURN PIc OFF.

IINTERRUPT
ICAL

IPC

IRESTORE IN INTERRUPT
IHANDLER FLAG.
INOP IF FGRD BUSY FLAG NOT TO BE CLEARED
INOP IF BGRD BUSY FLAG NOT TO BE CLEARED
IRESET
ISWITCHES.

lAC FOR lOT
IIOF OR lOT
IRESTORE AC.
IFROM LEVEL 0.

..
N
\.N

LPA.

;:' \:' 11_ 3
~,~, 114
Z?115
V'Z116
0Z117
0v12~

0?121
00122
00123
0e124
00125
e~126

e0127
00130

00131
00132
021133

00135
100136
00137
100140
100141
010142
1010143
00144
1010145
010146
010146
vHH oi 6
00147
el01~el

q

R

R
R

P

R

R
q
q

P

R
R
R

R
R

R
R
R
R
P
R
R

100151 R
010152 R
1010153 R

00154 R
0?155 R
~01'56 R
~Wl157 R
00160 q

00161 R
..,0162 R
iHH63 R

3

4'70'70"i

4e07l~fl
4e1011'"
4Q'10117
620?,~iJ7

e'70':'(A91
7i'6f~1

62:1271
2?\~11~

04v1163
2et1574
~:;"1011 ~

1010131
62012(11

1O{,0Vl~0

2010556
740201
620131
1040556
200011
0410144
220611
1040037
1010571
1210037
7410040
462 4 00
000000

1000NH'
2(110154
200154

R
R
R
R
R
A
A
R
R
R
R
R
R
R

A
R
A
R
R
R
R
R
R
R
R
A.
A
A

A
R
R

140556 R
1010576 R
620131 R

000vH:~(II

140')56
7066011
6N~16?

100131
600164
2lH,435
740Vt4Vl

A
R
A
R
R
R
R
A

XC'T LP~.+5

XCT LPA.+6
X CT +.

XC T • + 1.
JMC". LPA.+7

LPNRDY 0
LS~F

lION OR rOF
lION OR lOF OR D8R

JMP~ LPNRQY IDEVICE READY.
LAC LPIOT ISAVE lOT.
OAC LPIOTB
LAC LP!OF IEFFECTIVELY DEFER lOT,
D/lC LPIOT
JMS LP~SG IINITIATE NOT READY REQUEST.
Jt-1 P * LPNROY

ISUSROUTINE TO C_lL A ROUTINE IN THE RESIDENT MONITOR TO
IINITIATE A ~OT READY REQUEST.
ICALLING SEQUENCE:
I JMS LPMSG
I RETURN wITH LPcTLR NON-0 IF REQUEST
I HO~OREJ; 0 OTHERWISE.
I
LPMSG ~

LAC LPCTLR ItR FLAG.
S~A:C~A IAVOID DUPLICATE CALL.

LPARG1

/

I

JMFo
DAC
LAC
DAC
LAC~

DAC
JMS
JMS~

XX

LPCTLR
LPA.+11
LPARGl
(.SCOM+64
LPTMPl
LPRAIS
LPTMPl

.ASCII ILPI

.LOC .-1
~

LprRA+20~0~0

LPFRA+20~~00

LPCTLR
LPLOhR
LPMSG

I.ERR 4 ALREADY REQUESTED.
ISET tR IN PROGRESS FLAG.
10=FGRO, l=BGRD

IPOINTER TO tR QUEUER

ITO API LEVEL 0, PIC OFF
IGO TO tR QUEUER
10=FGRD, l=BGRD

IUNIT NUMBER
IRE TURN ADDRESS AT LEVEL 2
/SAME FOR RGRO

ITERMINAL ERROR. REQUEST NOT HONORED
IPIC ON, OE8REAK FROM LV 0

ISUBROUTINE FNTEREO AT API LEVEL 2. PIC OFF. WHEN tR FROM KEYBOARD
lIS ASSOCIATED WITH LINE PRINTER.
I
LPFRA

LPIOTB

e
rt~

LSEF
JMP
JMS
JMP
LAC
XX

LPCTLR

.+3
LPf'4SG
LPIOTB+l
LPIOAC

ICLEAR tR FLAG

INOT REAnY CONnlTION
INOT CORRECTED.
lAC FOR lOT
IEXECUTE SAVED lOT.

LPA. PAGE 4

~1 ~116 4 R 7i7J07:42 A I 0 ~\
~h~ 1 f.'? R 703344 A LPOSR n8f< IFROM LEVEL 2
00166 R 6?01~4 R JMP". LPFRA

IWRITE LPT RDUTINE.
J v116 7 R 7'? kHlVl 1 A LPWRT CLA!CMA
(",1170 R lil4~4')(Jl R OAr LP'5Cf-, I IN! T REFORE CALL TO .LPCONV
(~0171 R 200(1"114 R LAC LPA.+14 IDATA ~OOE SITS 15-17
~Q1172 R 540612 R SAn (2
0"173 R 6010176 R JMP LPOK IIOPS ASC I I
00174 R 765007 A LAw 50~7 IILLEGAL DATA MODE.
""0175 R 600513 R JMP LPER06+1
00176 R 220 01 15 R LPOK LAC* LPLSHP IWPC
00177 R 500A13 R AND (3770100
00200 R 04(1H"14 R DAC LPwPC
100201 R 140012 R O~M LV2WC
00202 R 440015 R IS~ LPLBHP IMOVE L. B. POINTER (! N USER'S
~~02(j13 R 44V'l015 R 1St LPLBHP IAREA) TO 1ST DATA WORD.
00204 R 140V131 R O~M LV2FC IIOPS ASCII MODE NO FORM CONTROL
00205 R 777770 A LAW 177710 IINITIALltE SWITCH AT LPCONV
00206 R 0410212 R OAC LPCONV
00207 R 777775 A LPTSTR LA~ 17775 13 CHAR. COUNTER FOR
00210 R 040062 R DAG LP3CHR 13/6 WORD.
00211 R 140060 R DiM LPWORD ICLEAR DATA WORD.

ITHIS ROUTINE GETS THE
INEXT 7-BIT ASCII CHAR.

'-I IF ROM THE 5/7 LINE BUFFER (USER'S AREA)
I lIT RETURNS WITH IT RIGHT
"" ..c:- IJUSTIFIED IN AN OTHERWISE

ICLEAR AC.
ILP5CH MUST BE SET TO
1777777 BEFORE THE INITIAL
ICALL TO LPCONV, LPWPC TO WPc INCLUDING HEADER,
ILPLBHP TO 1ST DATA WORD IN L.B.(USER'S AREA)

00212 R 777770 A LPCONV LAW 17770 IINITIALI2ATION
0v.l213 R 040016 R DAC LP8CT IFOR
00214 R 200614 R LAC (SAD LPCTAB ICONTROL CHAR.
00215 R 040304 R DAC LPVTST ISCANNING.
00216 R 440450 R IS~ LP5CH. IMODIFIED FOR HOR. TAB.
00217 R 60023') R JMP LPGET5 ITHIS 5/7 PAIR NOT EXHAUSTED.
00220 R 7770010 A LA~ 17000
00221 R 340014 R TAO LPWPC
00222 R 0413014 R DAC LPWPC ISKIP ON NON 0.
00223 R 741300 A SNA!SPA
00224 R 600301 R JMP LPEND IWORD PAIRS EXHAUSTED
00225 R 22001t; R LAC* LPL8HP IPICK UP NEXT
1016226 R eJ40~~55 R OAC LP57T IWORO PAIR
160227 R 440015 R IS~ LPLBHP
00230 R 2?VW1t; R LAC* LPLBHP
~0231 R 040V'15A R OAC LP57T+1
00232 R 440(i11t; R ISl LPLBHP
00233 R 77777~ A LAW 17773 IRESET CHAR. COUNTER
V'~234 R 0416 4 50 R DAC LPt;CH IFOR THIS WORD PAIR
00235 R 777770- A LPGET5 LAW 17770
00236 R 040057 R DAC LP57T+2 IGO THROUGH SHIFT LOOP 7 1/2 TIMES .•
00237 R 200056 R LPGET6 LAC LP'57T+l

LPA. PAG~ 5

;. :124 0, L, 74 Vi:' ~? HAL

vW2 4 1 R 44 0v' =:; 7 ~ ISf LP,)7T+2
(,1.rl 242 R 6V10?4t:; R JMP . +,
V10243 R 5(iH101 '5 R ANn (177 IGOT CHARACTER.
(:2244 p 6i'0?5:; R JMF) LPCONl
VI~245 R 040V'5f. R DAC LP,)7T+1
00246 R 2 C' .~ ,? 5"5 R LAC LP,)7T
~0247 R 74 .,? 1.0 A RAL
002')0 R 04,' 7::;') R DAC LP')7T
00251 R 6eV?37 R JMP LPGET6
00252 R 540fl::; R LPCON1 SAD (177
00253 R 600.212 R JMP LPCONV IDELETE RUBOUTS.
0.¥'l254 R 340.3,)7 R TAU LPM40 1-40
0.0255 R 741101? A SPA
0.0.256 R 6~0.30.4 R JMP LPVTST ICHAR. (.d0.---CONTROL CHAR.
00.25.7 R 340616 R TAD (777700 1-1"H!1
00260 R 7411~H~ A SPA.
0121261 R 340.617 R TAn (4\11

0.0.262 R 34~~62~ R TAD (1 00 1140-176 MAPPED INTO 100-136
0.0.263 R 500621 R LPCON2 AND (77 16-BIT TRIMMED.
0.026 4 R 240.?6(~ R XQR LPWORD ICONSTRUCT 3/6 WORD.
00265 R 4409\62 R 1S2 LP3CHR 13 CHARAcTER COUNTER.
1210266 R 6e0273 R' JMP LPCON3

""'-.I IDATA. WORD COMPLETE.
I

N 0.CiJ267 R 440012 R 1St: LV2WC IINDEX DATA WORD COUNT
V1 00270 R 040 4 35 R OAC LPIOAC

0121271 R 20062? R LAC (LPLO
00272 R 600.064 R JMP LPCOMD
00273 R 742010 A LPCON3 RTL ISHIFT CHARS. LEFT
00274 R 742010 A RTL
00275 R 742(i'lV' A RTL
00276 R 51iH'l616 R AND (777700 lIN CASE LINK WAS ON.
00.277 R 04006~ R OAC LPWORD
0031il0 R 600212 R JMP LPCONV IGET NEXT CHAR.

lEND OF CHARACTER STRING OR CARR. RETURN (lOPS ASCII)
003vH R 200t-2~ R LPEND LAC (47
003~2 R 040012 R OAC LV2WC
00303 R 60.0332 R JMP LPHT3 IpAD LAST WORD WITH SPACES.

ICONTROL CHARACTER ROUTINE. - CHAR. IN AC.
013304 R 740?4!i1 A LPVTST XX IS AD LPCTAB-SAD LPCTAB+7
00305 R 600316 R JMP LPFORM IVERTICAL FORM CONTROL CHAR,
00306 R 440304 R IS~ LPVTST ISAO LPCTAB+N-SAD LPCTAB+N+l
00307 R 440016 R 1St: LP8cT
00310 R 600304 R JMP LPVTST
00311 R 540446 R SAO LPCTAB+l?1
00312 R 600301 R JMP LPEND ICARRIAGE RETURN.
00313 R 540447 R SAD LPCTAB+l1
00314 R 600.~21 R JMP LPI-IT IHORI~ONTAL TAB.
0111315 R 600212 R JMP LPCONV IDELETE MEANINGLESS CHAR.

ICO~PUTE FORt-' CONTROL CODE A.NO PLACE
lIN LV2FC

00316 R 2e0~1r, R LPFORM LAC LP8CT
00317 R 04~H)31 R OAC LV2FC 1 ... ,3. H. IN D. B.
00320 R 600212 R JMP LPCONV

ICONVERT HOR. TAB TO N SPACES, WHERE N IS THE NUMBER

LPA. PAGE 6

INECrSSARY T (I HAVE THE NEXi CHAR. I r--. COLUr--~ 11.21,31.41.51 ...• 111.
003:;Jl R 2?0V,1? R LPHT LAC LV?WC IOATA ~ORO GOU~T

0(11322 R 744:i'1~ A CLL!RAL IX2
0032:; R 340r1? R TAU LV2WC IX3
~0324 R 340t'24 R TAn (4

~03?5 R 34006? R TAn LP3CHR ICURRE/lJT ",ORO CHAR, COUNTER.
00326 R 340f,2S R TAn (777766 1-1~ (DECIMAL)
00327 R 740300- A SMA!StA
00330 R 600326 R JMP • -2
00331 R 34042'5 R TAD LPOVRP
00332 R 040(7;61 R LPHT3 OAC LPHRTB
00333 R 200626 R LAG (JMP LPHT2
Vl0334 R 0 4 0212 R nAC LPCC~~V

00335 R 761004'" A LPHT2 LAW 40
00336 R 440061 R 1St: LPHRTB
00337 R 600263 R JMP LPCON2
00340 R 77777111 A LAW 17770
00341 R 040212 R DAC LPCONV
00342 R 600212 R JMP LPCONV

IINTERRUPT HANDLER.
00343 R 04QHH3 R LPPIC DAG LPSVAC ISAVE AC
00344 R 220~36 R LAC* LPtERO
00345 R 040007 R DAC LPTOUT ISAVE PC, L, EM, MP

~
00346 R 200372 R LAC LPION

I 00347 R 600361 R JMP LPSTON
tv 00350 R 600343 R LPINT JMP LPPIC IPIC ENTRY. en

00351 R 04~W13 R DAC LPSVAC IAPI ENTRY, SAVE AC.
00352 R 200350 R LAC LPINT IPC, L, EM, MP
00353 R 040007 R ·DAC LPTOUT
00354 R 140350 R DtH LPINT 10=API ENTRY
00355 R 700314 A 10RS IREAt) 1/0 STATUS
00356 R 750100 A SMA!CLA
00357 R 777740 A LPM40 LAW 17740 IPIC OFF -- SUlLO JOF
00360 R 340372 R TAD LPION /PIC ON -- ION
00361 R 040005 R LPSTON OAC LPSWCH
00362 R 220607 R LAC* <.SCOM+35
00363 R 040033 R OAC SCOM35
00364 R 750001 A CLA!CMA
00365 R 060607 R OAC* <.SCOM+35
12!12!366 R 2~0350 R LAC LPINT
00367 R 7412!21210 A StA
00370 R 160036 R DtM* LPtERO IPIC ENTRY
00371 R 706602 A LPCF ICLEAR LPT DONE FLAG
1210372 R 700042 A LPION ION IENABLE PIC
00373 R 200165 R LAC LPOBR
00374 R 040006 R DAC LPr4RD6
00375 R 140555 R OtM LPSTPS ICLEAR STOP 1/0 SWITCH
00376 R 200001 R LAC LPA.+1
1210377 R 340VlC1!? R TAD LPA.+2
0040~1 R 74120V1 A SNA 100 NOT CONTINUE I/O IF
1210401 p 6004S1 R JMP LPEMPT IBOTH 8USY FLAGS ARE 0

IINITIATE MORE OUTPUT IF APPROPRIATE.
00402 R 200012 R LPTOK LAC LV2WC
00403 R 741200, A SNA
1210404 R 600451 R JMP LPEMPT

LPA. PAGE

:~ 4f115 R

V'\" 4 fi'!6 R
~q407 F
0\'1410 R
00411 R
00412 R
e0413 R
00414 R
00.4:15 R
00416 R
0~417 R
00420 R
00421 R
00422 R

.00423 R
00424 R

00425 R
100426 R
100427 R

IOl1430 R
00431 R
010432 R
100433 R
010434 R

00435 R

1010436 R
010437 R
010440 R
010441 R
00442 R
100443 R
1010444 R
1010445 R
1010446 R
1010447 R
10104510 R

1010451 R

004'12 R
100453 R
00454 R
00455 R
010456 R
00457 R

7

7411(i1? A
6(~041? R
540A27 R
60041~ R
600.?07 R
14k~01? R
77772f: A
34\434 R
74(:?01 A
21012P31 R
5410425 R
60.0430 R
500630 R
540630 R
140434 R
040435 R
777776 A
1040.031 R
60.0044 R

14001? R
440434 R
2010('31 R
60.0064 R
0000.100 A

777752 A
777761 A
777762 A
777753 A
777763 A
777764 A
77776rJ1 A
777754 A
777755 A
777751 A
100100.100. A

11010476 R

220A3? R
040.037 R
100571 R
2010633 R
12100.37 R
11010576 R

LPCLSE
LPSPPR

SPA
JMP LPCLSE
SAil (50

JMP LPSPPR
JMP LPTSTR
Dttl.l L V?WC
LAW 177106
TAO PGECNT
StA!CMA
LAC LV2FC
SAD LPOVRP
JMP LPOVER
AND (7
SAO (7

IBUFFER FULL,

lIS PAGE FULL?

IYES - FORM FEED

IOVERPRINT.

DiM PGECNT
OAC LPyOAC
LAl-i 17776

IINIT #LINES/PAGE CNT
LPVMOV
LPOVRP

IVERT. SPACING BEFORE PRINTING

OAC LV2FC
JMP LPSPCE

IWORD COUNT EXHAUSTED.
LPOVER DtM LV~WC

1St PGECNT
LAC (LPPB

IINCREMENT #LINES/PAGE CNT
IPRINT BUFFER.

JMP LPCOMD
PGEC"lT o IINITIALltED

I1NCREMENTED
I HAVE BEEN

TO 0 WHEN AT TOP OF FORM
BY 1 UNTIL 58(1~) LINES
OUTPUT OR FORM FEED IS ENCOUNTERED

LPIOAC o
ITABLE OF ASCII CONTROL CHAR'S'SCANNEO

LPCTAB 777752 ILF-EVERY LINE 0 ---12
777761 IOC1-EVERY 2ND LINE 1
777762 IDC2-EVERY 3RD LINE 2
777753 IVT-EVERY 6TH LINE 3
777763 IDC3-EVERY 10TH LINE 4
777764 IDC4-EVERY 20TH LINE 5
777760 IDLE-OVER PRINT 6 ---2~
777754 IFF-TOP ON NEXT FORM 7
777755 ICR ---15
777751 IHT ---11

LP5CH ~ 15/7 COUNTER
ISET UP SWITCH IN EXIT ROUTINE TO
ICLEAR FOREGROUND OR BACKGROUND BUSY REGISTER AS
IA FUNCTION OF WORD11, AND PLACE 10F IN LPT
IIOT REGISTER SO THAT NO ·NEW 1/0 WILL BE STARTED.
LPEMPT JMS CLFLAG
lIS THiS DEVICE INVOLVED IN 1/0 BUSY SITUATION.

BY LPT IN lOPS ASCI I MODE

---21
---22
---13
---23
---24

---14

LPT31 LAC* (.SCOM+52 IADDRESS OF
nAC LPTI1Pl
JMS LPRA!S
LAC (LPA.
JMS* LPTMPl
JMS LPLOWR

I
IROUTINE TO DETERMINE 1F THIS 1/0
tWAS A REAL TIME REQUEST OR NOT.

IIIO BUSY TESTER
IRAISE TO LEVEL 0 AND TURN OFF PIC

"""-J
I

N
00

LPA.

t?461
0(11462
0(~463

0~464
(i1,,~ 465
0;'Q66
00467
0.0470
00471
0,0472
0~473

0V'474
00475

00476
00.477
00500
00501
00502
00503
00504
00505
005~6

00507
005113
0~511

F
P
R

R
R
R
R
p

R
R
R
R
R

P
R
R
R
R
R
R
R
R
R
R
R

00512 R
00513 R
130514 R
~0515 R
00516 R
00.517 R
00520 R
130521 R
00522 R

8

741?~(i'

60QlVti"5
2Vi0f.,4
54W~1111

74H~9J(i\

600065
220635
040037
Hi0"571
200~17

120037
100576
6~~0.65

000~100

200.574
1340110
200CJ.11
740200
613135137
21313543
1340102
620.476
2013544
1340103
620476

000512
765006
13413037
2013013
0413566
2130011
7413200
2013636
2413037
11313557

A
R
R
R
A
R
R
R
R
R
R
R
R

A
R
R
R
A
R
R
R
R
R
R
R

R
A
R
R
R
R
A
R
R
R

00523 R 1130476 R
00524 R 60006"5 R

005?5 R ~00~00 A
0~526 R 400V0"5 R
00.527 R 70330.4 A
00530 R 6213525 R

00531 R 0.013000 A

LAC
S:\J A

JMP
LAC
SA.G
SKP

LPW017

LPNOR
(JMP UIR I TE
LPW010

JMP LPNOR
LAC~ <.SCOM+51
OAC LPTMPl
JMS LPRAIS
LAC LPWD17
JMS* LPTMPl
J~lS LPLOWR
JMP LPNOR

INOW g IF REAL TIME.

INOT .REALW

IJMP FUNCTION
/.REALw
INOT REAL TIME REQUEST.
IAOOR. OF
IREAL TIME PROCESSOR

ISUBROUTINE TO SET UP CLEARING OF THE
IAPPROPRIATE BUSY FLAG (AT PROTECTED EXIT TIME)
lAND NULL (IOF) LINE PRINTER lOT
IREGISTER.
CLFLAG 0.

/
LPERR=.
LPER06

I

LAC
OAC
LAC
S2A
JMP
LAC
OAC
JMP*
LAC
DAC
JMP*

LA~

OAC
LAC
OAG
LAC
SlA
LAC
XOR
JMS

LPIOF
LPIOT
LPA.+11

.+4
LPFBSY
LPFCLR
CLFLAG
LPBBSY
LPBCLR
CLFLAG

513136
LPTMPl
LPSVAC
LPTAUX
LPA.+11

(3131313
LPTMPl
LPTERR

IIOF

IWORO 11 OF LIVE REGS.
/0=FGRO, l=BGRD

IFOREGROUND

IBACKGROUND

IILLEGAL FUNCTIONS

IBGRO

LPIGN JMS CLFLAG ICLEAR BUSY FLAG
JMP LPNOR

ITHIS SUBROUTINE IS EXECUTED BY THE
ICAL HANDLER VIA WORD 0 OF THIS I/O
IHANOLER JUST PRIOR TO GIVING CONTROL
ITO THE HANDLER AT THE APPROPRIATE
IENTRY IN THF FU~CTION DISPATCH TA8LE.
SWAP ~

XCT LPA.+5 lION OR IOF
OB~ IFROM LEVEL 0
.)MP * SWAP

ISTOP 1/0 SURROUTINE
LPSTP ~

LPA. PAGE 9

,/,,~5~2 R lH~C:;;71 ~ .)MS LPRAIS IPROTECT
VJ?33 R 2(7;\I!')5A ~ LAC LPCTLR 100 "JOT HANG IF
fi~534 w 7'50?'i'? A StA:CLA IfR IN PROGRESS.
0:1535 R 6'?!0')4? R JMP LPCLER
~jl~536 R 200001 R LAC LPA.+1 IIF 1/0 IS UNOrR WAY SET
0~537 R 3407;0? R TAr LPA.+2 ISTOP SwITCH.
0C~54Vl R 75J20V' A SlA!CLA
00541 R 74 l CJ,0:1 A CMA
0Vl542 R 04 55') R LPCLER OAC LPSTPS
00543 R 14~i 'Hoi R LPFBSY OlM LPA.+1 ICLEAR 1/0 BUSY SWITCHES.
00544 R 140002 R LP88SY OtM LPA.+2
~H154 5 R 140 0 03 R OtM LPA.+3 ICLEAR CLOSE SWITCHES.
00546 R 140004 R OlM LPA.+4
00547 R 140556 R alM LPCTLR /'R FLAG
00550 R 10!0576 R jMS LPLOWR IALLOW INTERRUPTS.
00551 R 200555 R LAC LPSTPS IWAIT UNTILL I/O IS DONE.
005')2 R 740200 A StA
00553 R 600'551 R jMP .-2
00554 R 620531 R jMP* LPSTP
00555 R 000000 A LPSTPS 0 /STOP I/O SWITCH,
00556 R 000000 A LPCTLR

'"
/,R IN PROGRESS IF NON-0.

I
I

'J ISUBROUTINE TO CAUSE OUTPUTTING OF ERROR MESSAGE.
I 00557 R 000~00 A LPTERR 0 N

1..0 00560 R 040564 R OAe LPTLAW /LAW CODE
00561 R 220637 R LAC* <.SCOM+66
00562 R 040037 R OAC LPTMPl
00563 R 100571 R JMS LPRAIS IRAISE TO API LEVEL 0 AND TURN OF PIC.
00564 R 740040 A LPTLAW XX ILAW CODE
00565 R 120037 R jMS* LPTMPl
00566 R 740040 A LPTAUX XX
00567 R 100576 R JMS LPLOWR
00570 R 620557 R jMP* LPTERR

I
ISUBROUTINE TO RJ\ISE TO API LEVEL 0
lAND TUR~ OFF PIC.

00571 R 000000 A LPRAIS 0
00572 R 200640 R LAC (400200
00573 R 705504 A ISA
00574 R 7VHHl02 A LPIOF IOF
0~575 R 620571 R jMP* LPRAIS

ISUBROUTINE TO DEBREAK FROM API LEVEL 0
lAND TURN ON PIC.

00576 R vH~0~eJeJ A LPLOwR 0
'00577 R 703304 A OBK
00600 R 700042 A ION
0060.1 R 620576 R JMP* LPLOWR

0e100~~ A .END
0060~ R 706(:.2f> A *L IT
0~603 R 0vHH'64 A *L IT
00604 R 0001')~ A *LIT
~0605 R 706')02 A -L IT
006Q'6 R 000154 A *LIT
00607 R 00013~ A -LIT

LPA. PAGE 10

0'1610 R 740·~?'0 A *LIT
0~611 R 0?0:lf:l4 A *LIT
~~ .~ 61 '2 R 000V02 A *LIT
vH613 R 377000 A *LIT
IiL"'614 R 5421 4 36 R *LIT
0'~615 R 000.177 A *LIT
t~616 R 77770,11 A *LIT
011617 R 000c:'!40 A *LIT
00620 R 000100 A *LIT
00.621 R 000077 A *LIT
00622 R 706546 A *LIT
00623 R 00.017>47 A *LIT
0vl624 R 1000((1;;'4 A *LIT
00625 R 777766 1. *LIT
00626 R 600335 R *LIT
00627 R 0000'50 A *L IT
00630 R 000007 A *LIT
00631 R 706606 A *LIT
00632 R 000152 A *LIT
00633 R 000000 R *LIT

"""'J 00634 R 600030 R *LIT I
\.N 00.635 R 000151 A *LIT
0

00636 R 003000 A *LIT
00.637 R 000166 A *LIT
00640 R 400:?00 A *LIT

NO ERROR LINES

LPA. PAGE 11

CLC:-L~~: ~Q'476 p

LP aRC>. ;')0144 R

LPA. ~~~V1~ R
LPR8S' 0V'!544 R

LP8CL~ ?'V"H13 R
LPCB 706502 A

LPCF 7066V'2 A

LPCLER 00542 R
LPCLOS 0""040 R
LPCLSE 0~412 R
LPCOM[) 00064 R
LPCONV· 00212 R
LPCO!'-41 00252 R
LPCON2 00263 R
LPCON3 00273 R
LPCTAB ~'le4~6 R
LPCTLR 0~5'56 R

LPOSR 0~165 R
LPEMPT 00451 R
LPEND 003V'1 R
LPERR 000512 R
LPER06 00512 R
LPF8SY 00543 R

'-J LPFCLR 00102 R
I LPFORM. 00316 R
~ LPFRA 00154 R ~

LPGET5 00235 R
LPGET6 00237 R
LPHRTB 00061 R
LPHT 00321 R
LPHT2 00335 R
LPHT3 00332 R
LPIGN 00523 R
LPIN 000 4 6 R
LPINT 00350 R
LPIN2 00053 R
LPIOAC 00435 R
LPIOF 00574 R
LPION 00372 R
LPIOT 00110 R
LPIOTB 00163 R
LPLBHP 00015 R

LPLO 706546 A
LPLOwR 00576 R
LPLS 706626 A
LPL1 706566 A

LPL2 706526 A

LPMSG 00131 R
LPM4e 00357 R
LPNOR 0~065 R
LPNROY 00120 R
LPOK 00176 R
LPOVER 0e430 R
LPOVRP 00425 R

LPPB 706606 A

LPA. PAGE 12

LPPIC 00343 ~

LPRAIS 00571 R
LPSPCE 00044 R
LPSPPR 00413 R
LPSTOI\J 00361 R

LPSTP 00531 R

LPSTPS 00555 R
LPSVAC 00013 R
LPSWCH 00005 R
LPTAUX 00566 R
LPTERR 00557 R
LPTIO 00070 R
LPTLAW 00564 R
LPTMP1 00037 R
LPTOK ,00402 R
LPTOUT 00007 R
LPTSTR 00207 R
LPT.6 00100 R
LPT31 00452 R
LPVMOV 00424 R
LPVTST 00304 R

"""-J LPWD10 00010 R I
\.N LPWD17 00017 R
N

LPWORD 00060 R
LPWPC 00014 R
LPWRD6 00006 R
LPWRT 00167 R

LPZ!ERO 0f(1036 R
LP3CHR 00062 R
LP5CH 00450 R
LP57T 00055 R
LP8CT 00016 R
LSDF 706501 A
LSEF 706601 A
LV2FC 00031 R
LV2WC 00012 R
LWRITE 00030 R
PGECNT 00434 R
SCOM35 00033 R
SWAP 00525 R
.MED 000003 A
.SCOM 000100 A

LPA. PAG~ ~ 3

LPA. 01'2>71 ~

,MEO 00?l7~ A

LPSWC~1 0ee?5 .-<

LPwR06 0re26 q

LPTOUT 0ee(7 Q

LPW01~ 0?312 R
LV2WC 0??12 q

LPSVAC tWl! 3 q

LPWPC 00014 R

LPLBHP 0NH5 R

LP8CT ~0e16 R
LPW017 0~~17 R

LWRITE 000:;2 R

LV2FC 1!'0031 Ii
SCOM35 00033 R

LP~ERO 00036 R

LPTMPl 01!'037 R
LPCLOS 00.043 R
LPSPCE 00044 q

LPIN 00046 R
LPIN2 00053 p

LP57T 000'55 R

""-J LPWORO 00060 R
I LPHRTB 00061 R

Vol LP3CHR 0~062 R '-."4
LPCOMO 00064 R

LPNOR 00065 R

LPTIO 00070 R
LPT.6 00100 R
.SCOM 000100 A
LPFCLR 00H".2 R

LPBCLR 00103 R
LPIOT 00110 R
LPNROY 00120 p

LPMSG 00131 R
LPARG1 00144 R
LPFRA 00154 R
LPIOTB 00163 q

LP08R ~0165 R
LPWRT 00167 R
LPOK 0~176 R
LPTSTR 00207 R
LPCONV 00212 R
LPGET5 00235 R

LPGET6 00237 R
LPCONl 00252 R

LPCON2 0PJ2f3 p

LPCON3 00273 R
LPENO 003el R

LPVTST 0~304 R
LPFORM ee316 R

LPHT 00321 R
LPHT3 00332 R

LPHT2 00335 R

LPPIC 00343 R

LPA. PAGE: 14

LPI"r 003'50 R

LP"'4'? 00357 R

LPSTO\ 00361 R
LPION 0e372 R
LPTOK 00402 R
LPCLSE 00412 R
LPSpPR 00413 R
LPVMOV 00424 R
LPOVRP 00425 R
LPOVER 00430 R
PGECNT 00434 R
LPIOAC 0~435 R
LPCTA8 00436 R
LP5CH 00450 R
LPEMPT 00451 R
LPT31 00452 R
CLFLAG 00476 R
LPERR ~00512 R
LPER06 00512 R
LPIGN 00523 R
SWAP 00525 R
LPSTP 00531 R

"""-J LPCLER 00542 R
I LPFBSY 0~543 R \JJ

...t::" LP88SY 00544 R
LPSTPS 00555 R
LPCTLR 00556 R
LPTERR 00557 R
LPTLAW 00564 R
LPTAUX 00566 R
LPRAIS 00571 R
LPIOF 00574 R
LPLOWR 00576 R
LSDF 706501 A

LPCB 706502 A

LPL2 706526 A
LPLD 706546 A
LPL1 706566 A
LSEF 706601 A
LPCF 7066~2 A
LPPB 706606 A
LPLS 706626 A

SECTION 8

SYSTEM GENERATION

The system utility program .SGEN, used to tailor a

Background/Foreground tape to operate in different hard-

ware configurations, is not available at this time.

8-1

APPENDIX I

.SCOM REGISTERS

The function of the .SCOM (§ystem COMmunication) Registers

is to provide, among the various program elements of the

Background/Foreground Monitor System, an easily accessible

set of registers which contain communication pointers, data

words, and program flags indicating the state of the system.

The .SCOM table begins at location lfiYfiY8 within the Resident

Monitor. Location lfiYfiY is referred to as .SCOM or .SCOM + •

and the (N+ l)th register is referred to as .SCOM + N.

Each .SCOM register has a special meaning and format. At

present, there are about 115 8 such registers. Slots at the

end will be allotted for future expansion as needed.

REGISTER DEFINITIONS: The following list indicates the

contents of each .SCOM register. Those which are fixed at

assembly or system generation t:ime and never changed are

marked by (F). Some .SCOM registers must have a Foreground

value and a Background value. Therefore, their contents must

be swapped from one to the other, depending upon which job

has control. They are flagged by (S). Some .SCOM registers

have been reserved for future software. If their contents

(format) a:e as yet unspecified, they will be flagged with

(U) •

.SCOM + fiY (F) Pointer to the highest register in core
(37777, 57777, or 77777).

I-I

.SCOM + 1

. SCOM + 2

.SCOM + 3

.SCOM + 4

(S)

(S)

(F)

(F)

(F)
(U)
(F)
(F)

(a) Address just above the Resident Monitor
when the Non-resident Monitor has been loaded
for Foreground.

(b) Address just above the Foreground job
when the Resident Monitor has loaded the Non­
resident Monitor in the Background. If the
system program PIP is called, this will be
the first location of its .DEV table.

(c) For DDT in the Background this points
to the start of its symbol table.

(a) Same as (a) for .SCOM + 1 .

(b) Normally used by user and system pro­
grams to indicate the first (lowest) location
in free core.

(c) For DDT in the Background this points to
the first location after the symbol table,
which is also the first Location of free core.

Normally used by user and svsteIl! prog.rams ___ _
to indicate the last (highest) locatIOn--fn
free core. For the Foreground, this is also
the highest location allocated to the Fore­
ground job.

Bits indicate machine configuration:

Bit ~l
Bit 1
Bits 2-5
Bit 6 2

Bit 7
Bits 8-13
Bit 14
Bits 15-17

fJ=NO API; I=API
fJ=No EAE i l=EAE
fJ (Reserved and unused)
~=7-channel MAGtape
1=9-channel MAGtape
~=Bank Mode (PDP-9)
Unassigned
l=Background/Foreground
Drum size for RM~9=
~=No drum
1=32K (RM,0'9A)
2=6SK (RM,09B)
3=13IK(RM,eJ9C)
4=262K(RM~9D)
5=S24K(RM,09E}

lThe presence or lack of EAE is determined dynamically by the
Resident Monitor.
27/9-channel default operation may be set by Foreground Keyboard
command.

1-2

.SCOM + 5

.SCOM + 6

.SCOM + 7

. SCOM + l~ (S)

. SCOM + 11 (F)

. SCOM + 12 (F)

(a) Initially this points to RESINT, the
address of the initialization section in
RESMON. The paper tape bootstrap loader
transfers control indirectly through this
location.

(b) When calling the System Loader to
bring in a system program, the Non-resident
Monitor stores here the code number of the
program to be loaded.

(c) When running a system program, its
start address is stored here.

(a) When the Non-resident Monitor calls
the System Loader to load user programs,
bits ~ - 2 indicate which command was

,given to the Monitor:

$LOAD, $GLOAO, $DOT, or $DDTNS.
Bit ~ 1 if $OOT or $DDTNS (DDT load)
Bit 1 = ~ if $LOADi Bit 1 = 1 if $GLOAD
Bit 2 = ~ if $DDTi Bit 2 = 1 if $DDTNS

(b) When the user programs have been
loaded, the start address of the main
program is stored here. The load command
code bits (~-2) remain as in (a).

The interrupted PC plus L,XM,MP are saved
here for DDT in the Background when CTRL T
has been typed .

The interrupted PC plus L,XM,MP are saved
here after a. NORMAL CTRL P has been typed
and honored .

Bootstrap restart instruction .

Pointer to the 339 Pushdown list within
the Resident Monitor.

1-3

·SCOM + 1) (F)

.SCOM + 14 (F)

. SCOM + 15 (F)

.SCOM + 16 (F)

.SCOM + 1'7 (F)

. SCaM + 2fJ (U)

. SCOM + 21

. SCOM + 22

.SCOM + 23 (F)

. SCOM + 24 (F)

Pointer to the .IOIN 1 table in the Resi­
dent Monitor.

Pointer to the .MUD 2 table in the Resi­
dent Monitor.

Pointer to the .BFTAB 3 table in RESMON .

Pointer to .DATF 4 , Foreground .DAT slot
~, in the Resident Monitor.

Pointer to .DATB 4 , Background .DAT slot
~, in the Resident Monitor.

Reserved for PDP-15 .

MAGtape status register .

Reserved for MAGtape handler •

Twos complement size of the Monitor's transfer
vector table (used by system generator) .

Pointer to the Monitor's transfer vector
table (used by System Generator).

1.IOIN is the table which indicates which I/O devices are in core,
which units on each device are spoken for, and which job (Background
or Foreground) owns them.

2. MUD is a table listing all available multi-unit device handlers,
with pertinent information about those handlers.

3. BFTAB is a buffer table containing pointers to and the sizes of
all external I/O buffers that were set up by the loaders.

4.DATF is the Device ~ssignment Table for Foreground .
. DATB is the Device ~ssignment Table for ~ackground.

1-4

·SCOM + 25

. SCOM + 26 (S)

. SCOM + 27 (F)

. SCOM + 3.0 (F)

.SCOM + 31

.SCOM + 32

. SCOM + 33

.SCOM + 34 (F)

.SCOM + 35

. SCOM + 36 (F)

(a) Prior to loading the Foreground job,
the amount of free core requested by the $FCORE
command is stored here. If no $FCORE command
is given, the default assumption is 2 registers.

(b) After the Foreground job has been loaded,
this register contains a pointer to the regis­
ter immediately above the Foreground core area .

Contains ~ if Foreground is in control and 1
if Background is in control .

Pointer to lOT Skip literal table in the
Monitor (used by System Generator) .

Pointer to PI Skip Chain.

(a) The Software Memory Protect Bound set
from .SCOM + 25 after the System Loader has
loaded the Foreground job.

(b) Set to point just above the Background
I/O handlers and I/O buffers after the Back­
ground job has been loaded.

(a) Pointer to the Hardware Memory Protect
Bound (or where it should be set). Contents
(. SCaM + 32) 3 contents (. SCaM + 31).

Background Program Counter, including L,XM,MP .

Address of the resident teletype handler (TTA).

Interrupt Service Flag. Non-~ indicates that
control is in some interrupt service routine .

Bits to tell the teletype handler which units
are model 33 (specific bit = ~) and which
model 35 (specific bit = 1). Bit ~ corresponds
to unit ~; bit 1 to unit 1; and so on.

1-5

.SCOM + 37 (F)

. SCOM + 4~

. SCOM + 41

. SCOM + 42

. SCOM + 43

. SCOM + 44

. SCOM + 45

Pointer to CALER. Used to detect attempt
to re-enter CAL handler and to trap CAL*
instructions .

CAL Flag. Non-~ if control is in the CAL
handler (indication necessary for interrupt
servicing) .

"Who's running in the Background" Flag .
Bit ~ = 1 if a Loader is running.
Bits 1-17:
17777 Non-resident Monitor

~ user program or DDT
1 EDIT
2 MACRO
3 PIP
4 F4
5 SGEN
6 DUMP
7 UPDATE

10 CONV
11 MACROA
12 F4A
13 EXECUTE
14 CHAIN
15 PATCH

Level 5 (API, Foreground) busy register .
Zero indicates level 5 non-busy. Non-zero
indicates that Foreground level 5 is idle
waiting for some I/O to complete. Set non-~
with the initial address of the device handler
doing the I/O. If the device is teletype,
the unit number + 4~~~~~ is stored here instead .

Same as .SCOM + 42 for Foreground level 6 .

Same as .SCOM + 42 for Foreground level 7 .

Same as .SCOM + 42 for Foreground Mainstream
level.

I-6

·SCOM + 46

. SCOM + 47

. SCOM + 5.0

. SCOM + 51 (F)

. SCOM + 52 (F)

. SCOM + 53 (F)

. SCOM + 54 (F)

. SCOM + 55 (F)

. SCOM + 56 (F)

Foreground level 5 I/O satisfied flag.
Zero indicates that level 5, which was I/O
bound, can be started up again .

Same as .SCOM + 46 for level 6.

Same as .SCOM + 46 for level 7 .

Pointer to REALTPI in the Resident Monitor .

Pointer to IOBUSy 2 in the Resident Monitor .

Pointer to LV4Q 3 in the Resident Monitor .

Pointer to CALL4 4 in the Resident Monitor .

Pointer to .SETUp s in the Resident Monitor .

Pointer to GETBUF 6 in the Resident Monitor .

lREALTP is a subroutine to process real-time requests.

2 IOB USY is a subroutine to check for I/O busy termination.

3 LV4Q queue is a list of I/O handlers which are waiting to com­
plete their interrupt service processing at API level 4.

4CALL4 is a subroutine to initiate an API level 4 request.

5. SETUP is the routine initially called by all I/O handlers
to set up skips in the PI skip chain or API channel registers.

6GETBUF is a routine called by the I/O handlers which assigns
buffer areas to the handlers via .BFTAB.

1-7

.scaM + 57

. SCOM + 6,0

. SCOM + 61

. SCOM + 62

.scaM + 63

. SCOM + 64 (F)

.scaM + 65

. SCOM + 66 (F)

.SCOM + 67 (F)

. SCOM + 7,0 (F)

If non-~, a pointer to the entry point of
the last Mainstream Foreground real-time
subroutine in the chain of subroutines to
be run when Foreground Mainstream gets con­
trol .

Pointer to the entry point + 1 of the first
subroutine in the chain of Foreground Main­
stream real-time routines to be run when
Foreground Mainstream gets control.

Same as .SCaM + 57 for Background .

Same as .SCaM + 6~ for Background .

Argument for API instruction ISA when inter­
rupts at API software levels are to be re­
quested.

Pointer to CR.QR l in the Resident Monitor .

Set non-~, while a Foreground user program is
running, to indicate that the resident buffer
may not be used by the Foreground. The resi­
dent buffer must be available to the Background,
which presumably changes jobs more often, for
U:3e by the Monitor and the Loaders.

Pointer to ERRORQ2 in the Resident Monitor .

Pointer to Foreground control character table
in TTA .

Pointer to Background control character table
in TTA.

lCR.QR is a routine called by I/O handlers to initiate a device­
not-ready request.

2ERRORQ is a routine called to enter information in the Foreground
and/or Background error queue. and to set the error flags in
.SCOM + 71.

1-8

.SCOM + 71

.SCOM + 72 (F)

. SCOM + 73 (F)

. SCOM + 74

. SCOM + 75 (F)

. SCOM + 76 (F)

.SCOM + 77

. SCOM + 100 (F)

. SCOM + 101

Error flag. The following conditions exist
if the respective bit = 1:
~ - Background error
1 - Foreground error
2 - Background terminal error
3 - Foreground terminal error

Pointer to the Foreground error processing
subroutine plus the 2~~0J0 bit to turn on
extend memory after a DBR .

Same as .SCOM + 72 for Background error
subroutine .

Saved argument for Foreground error routine
ISA instruc·tion .

Contains JMS IGNORE, a call to a dummy inter­
rupt service routine, used during error proces­
sing .

Twos comple:ment count of the number of tele­
types on the machine.

$SHARE Flag (to allow Background to share
Foreground I/O bulk storage units. Non­
zero indicates that SH~RING is allowed.

Pointer to ENTERQl in the Resident Monitor .
Will contain ~, instead, if ENTERQ routine
not assembled into the Monitor .

If set non-zero by the Foreground keyboard
command, $MPOFF, Background enters EXEC
mode. The memory protect boundary register
is zeroed to allow Background to modify and
transfer to any location in core. Background
IOT's will still trap to the Monitor but the
IOTws will be executed.

lENTERQ is a subroutine which makes entries in the API queue.

1-9

· ;;COM + 1~2 (U)

.SCOM + 1~3 (U)

· SCOM + 1~4 (U)

. SCOM + 1.05 (F)

· SCOM + 1.06 (F)

.SCOM + 1.07

.SCOM + 11.0

. SCOM + 111

.SCOM + 112

.SCOM + 113

. SCOM + 114

.SCOM + 115 (F)

Unused

Unused

Unused

Twos complement size of the PI skip chain .
(Used by System Generator) .

Pointer to the register immediately above
the Resident Monitor (set by the Non-resident
Monitor after it has built the .MUD table) .

Used to store the file directory entry
block of the XCT file to be EXECUTE'd
in the Foregr?und .

Used to store the file directory entry
block of the XCT file to be EXECUTE'd
in the Background .

Maximum number of teletypes allowed, which
is a function of an assembly parameter in the
Monitor (Used by System Generator).

1-10

APPENDIX II

ERRORS

ERROR HANDLING IN BACKGROUND/FOREGROUND

The processing of errors detected by the Resident Monitor,

I/O handlers, the Linking Loader and the System Loader has

l>(~(~n chanqcd in the Background/Foreqround Sys tern from the way

they are treated in the Keyboard and I/O Monitor Systems.

The most significant chang'e is the introduction of terminal

and non-terminal errors. A terminal error stops execution of the

job associated with the error. This causes all I/O handlers

assigned to that job to be called to stop I/O that may be in

progress and all Monitor queues to be cleared of entries for

that job (Background, Foreground or both).

A non-terminal error is one that does not necessarily

warrant aborting the operation of the offending job. A non­

terminal error message is entered into a queue for the approp­

riate job and is printed on the appropriate control teletype

when that unit is free. While the printing of non-terminal

error messages is pending or in progress, operation of the of­

fending job is suspended. Thi~j restriction does not apply to

I/O handlers, which may continue interrupt processing.

The format for error messages generated by the Resident

Monitor, I/O handlers and the Loaders is:

.ERR HNN XXXXXX

11-1

where NNN = error code
XXXXXX = auxiliary information

These errors are tabulated on pages 2-4,-5,-6 and-7.

Errors detected by the FORTRAN Object Time System (OTS) are

formatted as follows:

.OTS NN

where NN error code

OTS errors are listed on page 2-8.

CONTINUATION AFTER ERROR

.OTS errors are terminal errors. After OTS has printed

the error message, it exits to the Monitor. Therefore, after

an .OTS error the user does not have the option of restarting

his program.

Non-terminal .ERR errors do not terminate the operation of

user programs. Continuation, following the printing of the error

message, is automatic.

Terminal .ERR errors terminate the operation of user programs.

After the printing of the error message, the user has the option

of typing CTRL P (to restart his program at the CTRL P restart

address), CTRL T (to return to DDT), CTRL Q (to take

a dump of memory), or CTRL C (to return to the Monitor to

11-2

load another job). If the error occurred while control was

in the Non-resident Monitor or in a Loader, the user does not

have the options indicated above. The Monitor will automatically

be reloaded.

ERROR CALL

Routines that wish to set up an error condition, I/O device

handlers for example, should use the following coding sequence:

LAC * (.SCOM + 66 /POINTER TO ERRORQ
DAC. TEMP /SUBROUTINE.
LAC (4~f02~fO /RAISE TO API
ISA /LEVEL ~.
IOF
LAW CODE /SEE BELOW.
JMS* TEMP /CALL ERRORQ.

AUXARG XX /AUXILIARY ARGUMENT.
DBK /RETURN HERE.
ION

The calling program must be operating with memory protect

disabled in order to be able to issue lOT's.

The first argument, given in the AC to ERRORQ, may be

loaded either by LAW code or by h~C code in the following format:

Code

Bits fO-5 are ignored
Bit 6 fO means non-terminal error
Bit 6 1 means terminal error
B-Lt 7 1 means Background error
nit 8 1 means Foreground error
Bits 9-17 is a 3-digit error code

both bits (7 and 8)
may be set to 1

To avoid the possibility of future conflicts, user programs

and device handlers should utilize codes 6fOfO - 777.

1I-3

The auxiliary argument, following the JMS to ERRORQ,

will be printed in the error message as a 6-digit octal number.

The error message will be printed in the form:

.ERR NNN XXXXXX

where NNN = the 3-digit error code
XXXXXX = the 6-digit auxiliary information

The actual printing of the error message and processing

of the error will be done only after all interrupt processing

has ceased and when control is no longer in the CAL handler.

BACKGROUND/FOREGROUND MONITOR ERRORS (.ERR)

The following abbreviations are used below in describing

the auxiliary information:

L - bit ~ is the status of the link
XM- bit 1 is the status of extend memory
MP- bit 2 is the status of memory protect
CAL AI,DR - bits .3-17 contain the address of the CAL in error.

ERROR NO. ERROR

ILLEGAL CAL FUNCTION

CALl ILLEGAL

.DAT SLOT ERROR (erroneous

.DAT slot number or .DAT
slot not tied to an I/O
handler)

ILLEGAL INTERRUPT

AUXILIJ>..RY
INFORMAT.ION

L, XM, MP, CAL

L, XM, MP, CAL

L, XM, MP , CAL

L, XM, MP, PC

TERMINAL

ADDR YES

ADDR YES

ADDR YES

YES

IThe auxiliary information, depending on the source of the error,
is sometimes UNIT i, CAL ADDR.

11-4

ERROR NO. ERROR

~~4 MORE THAN ONE DEVICE
NOT READY

~l~

~ll

~12

ILLEGAL . SETUP

ILLEGAL HANDLER FUNC'rION

ILLEGAL DATA MODE or
SUBFUNCTION CODE

FILE STILL ACTIVE

SEEK/ENTER NOT EXECU,]~ED

UNRECOVERABLE DECTAPE
ERROR

FILE NOT FOUND

DIRECTORY FULL

DECTAPE FULL

OUTPUT BUFFER OVERFLOW

AUXILIARY
INFORMATION

.ASCII /XX/ i
XX = DEVICE NAME

TERMINAL

YES

RETURN ADDRESS FROM YES
.SETUP (ADDRESS IN
CALLING DEVICE HANDLER)

L, XM, MP, CAL ADDRI YES

L, XM, MP, CAL ADDRI YES

UNIT # , CAL ADDR YES

UNIT # , CAL ADDR YES

STATUS REGISTER B YES
(Bits 0-1) AND UNIT
(Bits 15-17)

UNIT # , CAL ADDR YES

UNIT # , CAL ADDR YES

UNIT # , CAL ADDR YES

UNIT # , CAL ADDR YES

~13

~14

.0'15

~16

~17

.0'2~

~2l

~22

TOO MANY FILES FOR Hl\'NDLER UNIT #, CA.L ADDR YES

~23

DISK FAILURE

ILLEGAL DISK ADDRESS

TWO OUTPUT FILES ON ONE
UNIT

ILLEGAL WORD COUNT

(Either the word count was
positive or the starting
address plus the absolute
value of the word count
exceeded existing memory)

DISK STATUS REGISTER YES

UNIT #, CAL ADDR YES

UNIT #, CAL ADDR YES

L, XM, MP, CAL ADDR YES

IThe auxiliary information, depending on the source of the error,
is somet im(~s UNIT #, CAL ADDR.

11-5

ERROR

fJ27

fJ3l

fJ32

fJ33

fJ36

fJ5{J

fJ52

.053

{J55

fJ56

fJ57

fJ6fJ

,061

2.0.0

NO. ERROR

ILLEGAL DISK UNIT

NON-EXISTENT MEMORY
REFERENCE

MEMORY PROTECT VIOLA­
TION

MEMORY PARITY ERROR

BACKGROUND MEMORY PRO­
TECT VIOLATION ATTEMPT
VIA CAL ARGUMENT

.TIMER REQUEST
CANNOT FIT IN CLOCK
QUEUE OR BACKGROUND
REQUEST REMOVED TO
MAKE ROOM FOR FGRD
REQUEST ______ -

MAINSTREAM REAL TIME
REQUEST IGNORED BECAUSE
ROUTINE IS ALREADY
ENTERED

NO BUFFERS AVAILABLE

ILLEGAL .ERROR CAL 2

ILLEGAL .EXIT CAL

.INIT NOT EXECUTED

TOO MANY NON-TERMINAL
ERRORS

ILLEGAL TELETYPE UNIT

AUXILIARY
INFORMATION TERMINAL

UNIT #, CAL ADDR YES

L, XM, MP, PC YES

L, XM, MP, PC l YES

L, XM, MP, PC YES

L, XM, MP, CAL ADDR YES

ADDRESS OF REAL TIME NO
SUBROUTINE THAT WAS
TO GET CONTROL ON COM­
PLETION OF INTERVAL

PRIORITY LEVEL/SUB- NO
ROUTINE ENTRY POINT

ENTRY THAT WOULD NOT NO
FIT, (PRIORITY LEVEL/
SUBROUTINE ENTRY POINT)

RETURN ADDRESS FROM YES
GETBUF (ADDRESS IN
CALLING DEVICE HAND-
LER)

L, XM, MP, CAL ADDR YES

L, XM, MP' CAL ADDR YES

CAL ADDR YES

NUMBER OF KRRORS NO
DISCARDED

L, XM ,MP, CAL ADDR YES

IIf a memory protect violation occurs because of a Background JMP
instruction, the PC is the effective address rather than the loca­
tion of the JMP.

2A special error call to the Monitor (CAL code 16) is available
for use only by the Loaders.

II-6

LOADER ERRORS (.ERR)

All Loader errors are terminal. The auxiliary informa-

tion which is printed is irrelevant.

l~~ NO ROOM IN CORE FOR PROGRAM SEGMENT
l~ 1 PROGRAM AND SYMBOL ,]~ABLE OVERLAP
1~2 .BFTAB OVERFLOW
1~3 .IOIN TABLE OVERFLOW
1~4 $FILES COUNT OVERFLOW
1.05 PARITY ERROR, CHECKSUM ERROR, OR BUFFER OVERFLOW
1.06 ILLEGAL LOADER CODE (Bad input data)
1~7 COMMON BLOCK SIZE ERROR 1

ll~ MISSING GLOBAL{S)
III ILLEGAL .DAT SLOT NUMBER
112 . DAT SLOT CONTENTS == x:1
113 SAME DEVICE - DIFFERENT HANDLERS2
114 ILLEGAL HANDLER CODE (Illegal.DAT slot con"tents)
115 ABSOLUTE PROGRAM ERROR 3

116 FOREGROUND CAN'T USE UNIT .0 ON SYSTEM DEVICE 4

117 NO ROOM TO BUILD .EXIT LIST
l2~ XCT FILE OVERLAYS EXECUTE
121 XCT FILE OVERLAYS THE MONITOR
122 XCT FILE OVERLAYS THE SYMBOL TABLE
123 XCT FILE NOT BUILT FOR THIS CONFIGURATIONs

lCOMMON Block size declared differently when Block size previously
fixed in HLOCKDATA subprogram.

~only one version of a device handler may be in core. .DAT slot
requested a different handler for a device when another handler
for that device was already in core.

3 An absolute .LOC program may not be loaded once relocatable
programs have been loaded. Absolute and relocatable
.LOC in same program is illegal.

4$SHARE command was not given.

5 Con figuration word in IIXCT II file indicates if it was built to
run on a PDP-9 or PDP-IS and Background or Foreground.

11-7

OBJECT TIME SYSTEM ERRORS (.OTS)

All .OTS errors are terminal and no auxiliary information

is printed:

~-4 UNUSED
5 ILLEGAL REAL SQUARE ROOT ARGUMENT
6 ILLEGAL DOUBLE SQUARE ROOT ARGUMENT
7 ILLEGAL INDEX IN COMPUTED GOTO
l~ ILLEGAL I/O DEVICE NUMBER
11 ILLEGAL INPUT DATA
12 ILLEGAL FORMAT STATEMENT
13 ILLEGAL REAL LOGARITHMIC ARGUMENT
14 ILLEGAL DOUBLE LOGARITHMIC ARGUMENT

11-8

APPE:QlDIX III

TELETYPE HARDWARE CHARACTERISTICS

SYSTEM REQUIREMENTS AND OPTIONS

The multi-unit teletype handler assumes that the teletype

configuration consists of:

a. A Model 33 or Model 35KSR console teletype,

b. from 1 to 4 LTl9A or L~09A multi-station teletype
controls, and

c. from 1 to 1610 Model 33 or Model 35KSR teletypes
interfaced to the LT19A or LT09A controls.

The console teletype has i~s own set of IOTs 7 operates

as half-duplex and is connected to the PIC (Program Interrupt

Control). It cannot be connect:ed to the API.

LT09A multi-station teletype controls can handle from 1

to 5 teletype lines and is connected only to the PIC. The

LTl9A is identical to the LT09A except that if a machine has

API it will operate at API levE~ll 3, using channel registers 74

and 75.

Teletypes connected to LT09 or LTl9 controls are operated

in full-duplex mode, which reqU!ires the software to echo charac-

ters input from the Keyboard back to the teleprinter.

LT09/LTI9 lOTs

Whether LT09 or LTl9 is u:soed, the lOT's associated with a

particular teletype unit are the same. The following tables list

111-1

the device and subdevice codes associated with each teleprinter

and keyboard and indicate the logical unit numbers which the

teletype handler associates with them. The console teletype,

which is not connected to the LT09/LT19 controls, is defined to

be logical unit J.

LT09A/
LT19P.

#1

LT09A/
r,rr19A

#1

L'l'09A/
LT19A

#2

'l'ABLE 1:

UNIT

1
2
3
4
5

TABLE 2:

UNIT

1
2
3
4
5

1
2
3
4
5

1 to 5 units;

PRINTER
CODE

XX400X
XX402X
XX404X
XX406X
xx420X

1 LT09A or LT19A

KEYBOARD
CODE

XX410X
XX412X
XX414X
xx416X
XX430X

LOGICAL
UNIT #

1·
2
3
4
5

6 to 10 units; 2 LT09A's or LT19A's

PRINTER
CODE

XX400X
XX402X
XX404X
XX406X
XX440X

XX420X
XX422X
XX424X
XX426X
XX442X

KEYBOARD
CODE

XX410X
xx412X
XX414X
XX416X
XX450X

XX430X
xx432X
XX434X
XX436X
XX452X

LOGICAL
UNIT #

1
2
3
4

11

5
6
7

10
12

TABLE 3: 11 to 15 Units; 3 LT09A's or LT19A's

LT09A/
LT19A

#1

UNIT

1
2
3
4
5

PRINTER
CODE

XX400X
XX402X
XX404X
XX406X
XX460X

III-2

KEYBOARD
CODE

XX410X
XX412X
XX414X
XX416X
XX470X

LOGICAL
UNIT #

1
2
3
4

15

TABLE 3:
(cont'd)

UNIT

LT09A/ 1
LT19A 2

#2 3
4
5

LT09A/ 1
LT19A 2

#3 3
4
5

TABLE 4 :

UNIT

LT09A/ 1
LT19A 2

#4 3
4
5

11 to 15 units; 3 LT09A's or LT19A's

PRINTER KEYBOARD LOGICAL
CODE CODE UNIT #

xx420X XX430X 5
xx422X XX432X 6
xx424x XX434X 7
Xx426X xx436X 10
xX462X XX472X 16

XX440X xx450X 11
XX442X XX452X 12
xX444X xx454X 13
xX446x Xx456X 14
xX464X XX474X 17

16 units; 4 LT09A's or LT19A's

PRIWfER
CODE

Unused
Unused
Unused
Unused
XX466X

KEYBOARD
CODE

Unused
Unus·ed
Unused
Unused

LOGICAL
UNIT #

XX476X 20

(The setup for the first three controls would be as in Table 3).

TELETYPES

In the Background/Foreground System, teletype models

are presumed to have certain hardware characteristics:

Model 33:

Model 35:

No horizontal tabbing mechanism
No vertical tabbing mechanism
No form feed mechanism

Has all three of the above.

III-3

The teletypes are assumed to be KSR (Keyboard

Send/Receive) units. ASR (Automatic Send/Receive) teletypes

may be used; however, their paper tape input and output

capability cannot be used. The system will not support

Model 37 teletypes.

111-4

	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	8-01
	8-02
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	II-01
	II-02
	II-03
	II-04
	II-05
	II-06
	II-07
	II-08
	III-01
	III-02
	III-03
	III-04

