BACKGROUND / FOREGROUND

dlilgliltiall

MONITOR

SYSTEM,

PROGRAMMER' S

REFERENCE

MANUAL

digital equipment corporation

DEC-9A-MRZA-D

qay-00z]oN] /6

PDP-9
BACKGROUND / FOREGROUND MONITOR SYSTEM

PROGRAMMER'S REFERENCE MANUAL

To OBTAIN ADDITIONAL COPIES OF THIS MANUAL. ORDER
NUMBER DEC-9A-MRZA-D FromM THE PROGRAM LIBRARY.

DiciTAL EQuiPMENT CORPORATION, MAYNARD, MASSACHUSETTS,
01754 PrICE $4.50

CONTENTS

Page

SECTION 1 BACKGROUND/FOREGROUND MONITOR
1.1 INTRODUCTION 1-1
1.2 BACKGROUND/FOREGROUND MONITOR FUNCTIONS 1-1
1.2.1 Scheduling of Processing Time 1-3
1.2.2 Protection of FOREGROUND Core and I/0 1-5
1.2.3 Sharing of Multi-Unit Device Handlers 1-5
1.2.4 Use of Software Priority Levels 1-7
1.2.5 Use of Real-Time Clock ’ 1-7
1.2.6 Communication Between BACKGROUND and

FOREGROUND Jobs 1-7
1.3 HARDWARE REQUIREMENTS AND OPTIONS 1-8
SECTION 2 BFKM9 - NON-RESIDENT BACKGROUND/FOREGROUND MONITOR
2.1 INTRODUCTION 2~1
2.2 LOCATION AND WHEN CALLED 2-1
2.3 INITIAL OPERATTION 2~2
2.4 INFORMATION COMMANDS 2-5
2.4.1 The LOG Command (L) 2-5
2.4.2 The REQUEST Command (R) 2-6
2.4.3 The DIRECT Command (D) 2-7
2.4.4 The INUSE Command (I) 2-7

2.5 ALLOCATION COMMANDS
2.5.1 The ASSIGN Command (A)
2.5.2 The FILES Command (F)
2.5.3 The FCORE Command
2.5.4 The FCONTROL Command
2.5.5 The BCONTROL Command
2.5.6 The NEWDIR Command (N)
2.5.7 The SHARE Command (8)
2.5.8 The NOSHARE Command
2.5.9 The 7CHAN Command (7)
2.5.10 ‘The 9CHAN Command (9)
2.5.11 The VC38 Command (V)
2.5.12 The MPOFF Command
2.5.13 The MPON Command (M)
2.6 PROGRAM LOAD COMMANDS
2.7 FINAL OPERATION

2.8 CONTROL CHARACTERS

2.9 SUMMARY OF COMMANDS

SECTION. 3

SECTION 4

&b S
. .
DN
« v s

=Y
w

B D S
(G628 0;] =S

=
(=)}

w -

N

CONTENTS (Cont.)

CONTROL CHARACTERS

PURPOSE
CONTROL TELETYPE
TELETYPE HANDLER
CTRL C (4C)
CTRL S (48)
CTRL T (4T)
CTRL P (4P)

NORMAL CTRL P

No Change

REAL-TIME CTRL P

CTRL R (4R)

CTRL Q (4Q)
CTRL U (@)
RUBOUT

CTRL D (4D)

LOADERS
INTRODUCTION
FOREGROUND LINKING LOADER
Option Characters and Their Meanings
Use of + Terminator
Sequence of Operation
BACKGROUND SYSTEM LOADER
BACKGROUND LINKING LOADER
LOADING XCT FILES
EXECUTE in the Foreground
EXECUTE in the Background
ERROR CONDITIONS

SYSTEM MEMORY MAPS

CONTENTS (Cont.)

Page
SECTION 5 BACKGROUND/FOREGROUND START-UP PROCEDURE
5.1 LOADING THE B/F MONITOR _ 5-1
5.2 .IDLE LOADED AS THE FOREGROUND JOB 5-2
5.3 SINGLE-USER FOCAL LOADED INTO THE FOREGROUND 5-3
5.4 TWO-USER FOCAL LOADED' IN THE FOREGROUND 5-3
SECTION 6 BACKGROUND/FOREGROUND MONITOR COMMANDS (SYSTEM MACROS)
6.1 INTRODUCTION 6-1
6.2 .REALR 6-2
6.3 .REALW 6-3
6.4 . IDLE 6-4
6.5 . IDLEC 6-5
6.6 .TIMER 6-5
6.7 .RLXIT ' 6-6
6.8 MAINSTREAM REAL-TIME SUBROUTINES | 6-7
SECTION 7 WRITING DEVICE HANDLERS FOR THE BACKGROUND/FOREGROUND
MONITOR SYSTEM
7.1 INTRODUCTION 7-1
7.2 FORMAT OF DEVICE HANDLER'S CAL PROCESSOR 72
7.2.1 SETUP 7-8
7.2.2 Initiating I/O 7-8
7.2.3 .OPER Functions 7-9
7.3 FORMAT OF DEVICE HANDLER'S INTERRUPT PROCESSOR 7-9
7.4 SYSTEM ANNOUNCEMENTS 7-13
7.4.1 Errors 7-13
7.5 STOP I/0 TECHNIQUE 7-17
7.3 SEQUENTIAL MULTI-USER DEVICE HANDLER 7-19
7.6.1 .WAITR 7-20
7.7 DEVICE HANDLER LISTING 7-20

CONTENTS (Cont.)

SECTION 8 SYSTEM GENERATION
APPENDIX I «SCOM REGISTERS
APPENDIX II ERRORS

APPENDIX III TELETYPE HARDWARE CHARACTERISTICS

II-1

ITI-1

SECTION 1

‘BACKGROUND/FOREGROUND MONITOR

1.1 INTRODUCTION

The reader is assumed to be familiar with the Keyboard Monitor
environment as described in the Advanced Software Monitors Manual,

DEC-9A-MADO-D. It should also be noted that all material presented

herein supersedes the information given in the Monitor Manual.

1.2 BACKGROUND/FOREGROUND MONITOR FUNCTIONS

The Background/Foreground Monitor is designed to control proces-
sing and I/0O operations in a real-time or time-shared environment.
It is, essentially, an extension of the Keyboard Monitor and allows
for time-shared use of a PDP-9 by a protected, priority, user F/RE-

GROUND program and an unprotected system or user BACKGROUND program.

The Background/Foreground Monitor greatly expands the capabili-
tiecs of PDP-9 ADVANCED Software and makes optimum use of all avail-
able hardware. It permits recovery of the free time (or dead time)
that occurs between input/output operations, thus promoting 100%

utilization of central processor time.

FOREGROUND programs are defined as the higher-priority, debugged
user programs that interface with the real-time environment. They
normally operate under Program Interrupt (PI) or Automatic Priority
Interrupt (API) control, and are memory protected. At load time
they have top priority in selection of core memory and I/0 devices,
and at execcution time they have priority (according to the assigned

priority levels) over processing time. Depending upon system require-

ments, the user's FOREGROUND program could be an Executive capable
of handling many recal-time programs or subprograms at four levels

of priority (with API present).

BACKGROUND processing is essentially the same as the proces-
sing normally accomplished under control of the Keyboard Monitor.
That is, it could be an assembly, compilation, debugging run, pro-
duction run, editing task, etc. BACKGROUND programs may use any
facilities (for example, core, I/0 and processing time) that are
available and not simultaneously required by the FOREGROUND job.
Under certain circumstancés, 1/0 devices may be shared by both

the FOREGROUND and the BACKGROUND jobs.

The Background/Foreground Monitor system is externally a
keyboard-oriented system; that is, FOREGROUND and BACKGROUND
requeéts for systems information, core, I/0 devices, programs to
be run, etc., are made via the Teletype keyboards. At run time,
the Monitor internally controls scheduling and processing of I/O

requests, while protecting the two resident users.

The Background/Foreground Monitor performs the following
functions as it controls the time-shared use of the PDP-9 central

processor by two co-resident programs:

a. Schedules processing time.

b. Protects the FOREGROUND job's core and I/O devices.

c. Provides for the sharing of multi-unit device handlers,
such as DECtape, by both FOREGROUND and BACKGROUND jobs.

d. Allows convenient use of API software levels by

FOREGROUND jobs.

¢. Provides for convenient and shared use of the
system Real Time Clock.

f. Allows communication between the BACKGROUND and
FOREGROUND jobs via core-to-core transfers or

by the shared use of bulk storage devices.

1.2.1 Scheduling of Processing Time

At run time, the FOREGROUND job retains control except when it
is I/0 bound; that is, when completion of an I/0 request must
occur before it can proceed any further. In the following
cxample, if the .WAIT is reached before the input requested

by thce READ has been completed, control is transferred to a
lower priority FOREGROUND scgment or to the BACKGROUND job

until the input for thce FOREGROUND job is completed.

.READ 3, 0, LNBUF, 48 /READ TO .DAT SLOT 3

.WAIT 3 /WAIT ON .DAT SLOT 3

Since multi-unit device handlers can be shared by FOREGROUND

and BACKGROUND programs, there is a mechanism by which a FORE-
GROUND I/0O request will cause a BACKGROUND I/O operation to be
stopped immediately so that the FOREGROUND operation can be
honored. On completion of the FOREGROUND I/0O, the BACKGROUND I/0O

is resumed with no adverse effects on the BACKGROUND job.

The FOREGROUND program can also indicate that it is I/O

bound by means of the .IDLE or .IDLEC command (Section 6.3 - 6.4).

This is useful when the FOREGROUND job is waiting for real-time
input from any one of a number of input devices. Consider the
following example (see Section 6.1 for description of real time

read .REALR command).

.REALR 1, 0,LNBUF1l, 32, CTRL1l, N1 /REAL
.REALR 2, 2,LNBUF2, 42, CTRLZ, N2 /TIME
.REALR 3, 3, LNBUF3, 36, CTRL3, N3 /READS
.IDLE

If .IDLE is reached before any of the input requests have
been satisfied, control is transferred to a lower priority FORE-
GROUND segment or to the BACKGROUND job. The lower priority job
retains control until one of the FOREGROUND input requests is
satisfied. Control is then returned to the FOREGROUND job by
exccuting the subroutine at the specified completion address
(CTRL1, CTKL2, CTRL3) and at the priority level specified by N1,

N2, N3 which may be:

Value of N Level

Mainstream (lowest level)
Current level (level of .REALR)
Software level 5

Software level 6

Software level 7

Nous o
o

NOTE

If real-time reads (.REALR), real-time writes
(.REALW) , or interval timer (.TIMER) requests
are employed in the BACKGROUND, N may be set to
0, 4, 5, 6, or 7, but is converted to 0 since
the BACKGROUND job can run only on the main-
stream level. This allows the value of N to

be preset in cases where a BACKGROUND program
is to be subsequently run in the FOREGROUND.

1.2.2 Protection of FOREGROUND Core and I/0O

The FOREGROUND job's core is protected by the Memory Protection Option
(Type KX09A). The BACKGROUND job runs with memory protect enabled;

the FOREGROUND job runs with memory protect disabled.

Protection of the FOREGROUND job's I/O devices is accomplished

via the hardware by the memory protect option, which prohibits IOT
and Halt instructions in the BACKGROUND area; and the software
since the Monitor and IOPS screen all I/0 requests made via I/0
'Macros. Also, the Monitor and the BACKGROUND Loaders prevent

the BACKGROUND job from requesting I/O which would conflict with
that of the FOREGROUND job (for example they would not honor a
BACKGROUND request for a paper tape handler being used by the

FOREGROUND job) .

1.2.3 Sharing of Multi-Unit Device Handlers

The Background/Foreground Monitor allows sharing of multi-unit,
mass-storage device handlers (such as, DECtape, Magnetic Tape,

and Disk between BACKGROUND and FOREGROUND jobs). Using these

1-5

multi-unit handlers, n files can be open simultaneously, where

n equals thé number of .DAT slots associated with the particular
bulk storage device. Some multi-unit handlers require external
data buffers (assigned at load time), one for each open file.
These buffers are acquired from and released to a pool by the

handler as needed.

When this count is not accurate (because of the .DAT slots not
being used simultaneously), the keyboard command FILES (Sec-
tion 2.5.2) can be used to specify the actual number of files
simultaneously open. Both the FOREGROUND and BACKGROUND jobs
can indicate their file requirements by means of the FILES

keyboard command.

The multi-unit handlers are capable of stacking one BACKGROUND
T/0 request. This provision is made to simulate exactly program
operation as it would occur under Keyboard or 1/0 Monitor (i.e.,
single user) control. Thus, control is returned to the BACKGROUND
job to allo& non-I1/0 related processing when the handler is pre-
occupied with an I/0 request from the FOREGROUND job. For
example, if the FOREGROUND job has requested DECtape I/0 with a
.READ, and is waiting for its completion on a .WAIT, control is
returned to the BACKGROUND job. If the BACKGROUND job then re-
gquests DECtape I/0 with a .READ, the handler will stack the
request and return control to the BACKGROUND job following the

.READ. The BACKGROUND job can then continue with non-I/0

related processing as though the .READ werce being honored.

1.2.4. Use of Software Priority Levels

In hardware configurations which include the Automatic Priority
Interrupt (API) option, the Background/Foreground Monitor allows
convenient use of software priority levels of the API by the FORE-
GROUND job. The BACKGROUND job is permitted to use only the

mainstream level.

1.2.5 Use of Real-Time Clock

The Background/Foreground Monitor provides for convenient and
shared use of the system real-time clock, It will effectively
handle many intervals at the same time; thus, the real-time

clock can be used simultaneously by both BACKGROUND and FORE--

GROUND jobs.

1.2.6 Communication Between BACKGROUND and FOREGROUND Jobs

The Background/Foreground Monitor allows communication between
BACKGROUND and FOREGROUND jobs wia core-to-core transfers. This
is accomplished by means of a special "Core I/0 device" handler
within IOPS. Complementing I/0 requests are required for a core-
to-core transfer to be effected; for example, a FOREGROUND .READ
(.REALR) from core must be matched with a BACKGROUND .WRITE

(.REALW) to core.

Two possible uses of this feature are:
a. The BACKGROUND job could be related to the

I"OREGROUND job, and as a result of its processing,

pass on information that would affect FOREGROUND

" processing, or vice-versa.

b. The BACKGROUND job could be a future FOREGROUND
job, and the current FOREGROUND job, being its
predecessor, could pass on real-time data to

create a true test environment.

Communication between two jobs can also be done by storing

and retrieving data on shared bulk storage devices.

1.3 HARDWARE REQUIREMENTS AND OPTIONS

The following hardware is required to operate the Background/

Foreground Monitor System:

a. Basic PDP-9 with Teletype,
b. Memory Extension Control, Type KG09A,
c. Additional 8192-Word Core Memory Module, Type MM0924,
d. Memory Protection Option, Type KX09a,
c. External Telectype System, including at least*:
(1) One Teletype Control, Type LT09A or LT19A,
(2) one Teletype Line Unit, Type LT09B or LT19B,

(3) Onc Teletype, Model KSR33, KSR35 or equivalent*¥*,

*The basic system Teletype is normally assigned to the BACKGROUND
cenvironment. One Teletype of the external Teletype system must be
reserved for the FOREGROUND job; additional Teletypes may be
assigned to either BACKGROUND or FOREGROUND functions. If the

API option is available, a Type LT19A Teletype Control and a Type
LT19B Line Unit are recommended.

**Model 37 Teletypes are not supported. Model 33 or 35ASR Teletypes
are supported only to the extent that they operate as KSR's only;
their paper tape input and output facility cannot be used. LT09's
and LT19's may not both appear in the same configuration.

1-8

f. Bulk Storage System, comprising either:

(1) One DECtape Control, Type TC02, and two DECtape

Transports, Type TU55 (three recommended), or

(2) One Disk System, Type RB09 (and one DECtape

Control, Type TCO0Z2,

and at least one DECtape

Transport, Type TU55), or

(3) One Disk System, Type RF09/RS02 (and one

DIliCtape Control, Type TC02, and at least

one DECtape Transport, Type TU55)

The following options currently supported by software may

be added to improve system performance (as noted) :

Options

Additional 8192-Word Core Memory
Modules, Type MMO9B and MMO09C
(to a maximum of 32,768 words)

Automatic Priority Interrupt,
Type KFO9A

Extended Arithmetic Element,
Type KEO9A

Additional DECtape Transports,
Type TU55, or IBM-compatible
Magnetic Tape Transports, Type
TU20 or TU20A and Tape Control
Type TC59

Effeg&

Incrcase the maximum sirc of
both BACKGROUND and FOREGROUND
programs that can be handled
by the system.

Allows for quicker recognition

of requests for service by I1I/0
devices.

Increases speed of arithmetic
calculations.

Allows greater bulk storage
capability, simultaneous use

of storage media by more
programs. Since only one file
may be open at a time on IBM-
compatible magnetic tape trans-
ports, more than two Type TU20
or TU20A transports may be de-
sirable for some applications.

Automatic Line Printer, Type 647 Provides greater listing capa-
bilities.

200 CPM Card Reader, Type CRO3Bl Allows card input and control
cards for BACKGROUND Batch
processing.

Additional Teletype Line Units, Provides additional output

Type LT09B, (or LT19B) and Tele- devices if multiple FOREGROUND

types, Type KSR33, KSR35 or equi- jobs may require simultaneous

valent** (up to a maximum of 1610 output or BACKGROUND jobs wish

LT09B or LT19B units, requiring to use multiple devices.

four LTO9A or LT19A controls).

1
The Type CROLE and Type CRO2B Card Readers, although no
longer sold by the Company, are supported by software in
the BACKGROUND/FOREGROUND System.

Note: The 339 Programmed Buffered Display is supported by
software.

SECTION 2

BFKM9 -~ NON-RESIDENT BACKGROUND/FOREGROUND MONITOR
2.1 INTRODUCTION

BFKM9 is the title of the noﬁ—resident portion of the
Background/Foreground Monitor. It is identical in nature to
the Keyboard }istening section of the Keyboard Monitor, with
which the reader is assumed to be familiar. BFKM9 reads and
interprets commands typed by the user at a control teletype
(there is one Background control teletype and one Foreground

control teletype).

There are three kinds of commands which the user may
type:

a. Requests for information, such as, a directory
listing of unit g of the system device;

b. Allocation parameters, such as, core size,
number of open files, and I/0 devices to be used;

c. Load a system or user program.

2.2 LOCATION AND WHEN CALLED

BFKM9 is loaded from register 12000 of the highest core
bank to the top of memory and is transparent to the user

since it is always overlayed.

When the Background /Foreground system is loaded or re-
loaded to start a new Foreground job, the Resident Monitor is
first loaded into lower core from unit @ of the system device,
either by use of the paper tape bootstrap or by typing CTRL C
at the Foreground control teletype. The Resident Monitor then

brings the Non-resident Monitor into the top of memory. When

operating in the Foreground, BFKM9 runs with memory protect

disabled.

After the Foreground user program has been loaded and has
started to run, the Non-resident Monitor is re-loaded, with
memory protect enabled, to converse with the user at the
Background control teletype. BFKM9 is also re-loaded whenever
the Background job exits or the user types CTRL C at the

Background control teletype.

In both the Foreground and Background, after the user has
given a command to load a program, the Non-resident Monitor
brings the System Loader into memory from the system device,

overlaying the Non-resident Monitor.

2.3 INITIAL OPERATION

When BFKM9 is started for the Foreground job, it must
perform some initialization of which the following is of

interest:

a. Set the contents of .SCOM+25 to 2. This sets
the initial size of free core to be allotted
to the Foreground job, in addition to the space
required by the Foreground user programs. The
user may assign more free core by issuing the
FCORE command, described in section 2.5.3.

b. BFKM9 checks the entire Foreground Device As-
signment Table (.DATF) to see if any of those
.DAT slots request the teletype handler and
the unit number currently assigned to the
Background control teletype. If so, those slots
are changed to the Foreground control teletype
and a message is output as in the following
cxample.

EXAMPLE 1l: The Foreground control teletype is TT1,

the Background control teletype is TT#,
and the initial contents of .DATF slots

1 and 3 refer to TTA@. .DATF slots 1

and 3 will be changed to refer to TTAl and
the following message will be printed on
the Foreground control teletype:

FGD .DATS CHANGED TO TTAl:
1 3

FKM9 V1A
$

The Non-resident Monitor identifies itself
to the Foreground user by printing FKM9 v1a
and types $ whenever it is ready to accept
a command.

When BFKM9 is started for the Background job, it performs

initialization of which the following is of interest:

It builds the initial configuration of the Back~-
ground .DAT table (.DATB). Any .DATB slots which
request a single user version of a device handler
(for example, DTB or DTC) will be changed to the
multi-unit handler (DTA in this case) if it is
already in core for the Foreground job or if it
is the resident system device handler.

BFKM9 will check all Background .DAT slots to

make certain that they do not conflict with Fore-
ground I/0. The Resident Monitor contains, for
this purpose, a table (.IOIN) which lists all

I/0 handlers and unit numbers in use. The follow-
ing occurs: .

(1) If a handler for this I/0 device is not
already in core, the Background .DAT
slot is left untouched.

(2) If a single user handler for this device
is already in core for use by the Fore-
ground job, by definition the Background
job may not use this device. Therefore

the Background .DAT slot is cleared (set
to zero).

(3) If the multi-unit handler for this device
is in core, but the device unit number in
question is not assigned to the Foreground
job, Background is allowed to share that
handler. Unit @ of the system device may
always be used by the Background job.

(4) If the Background .DAT slot requests a
multi-unit handler and unit number already

assigned to the Foreground, normallg this
is illegal and that .DAT slot will be

cleared. However, some users may wish to
allow both jobs to access the same unit.
This is permitted only for bulk storage
devices (DECtape, Disk, etc.) provided
that the Foreground user typed the command
SHARE, explained in section 2.5.7.

If the initial Background .DAT table was altered by clear-
ing .DAT slots for the reasons given above, a message will be

output to the Teletype as in the following example.

EXAMPLE 2: The Foreground job is running and has been
assigned device handlers and unit numbers
DTAL, DTA2, TTAl, TTA2, and LPA (line
printer handler - not shareable). The
initial Background .DAT table contains
conflicting requests as follows:

.DAT SLOT CONTENTS
-12 LPAY
-4 DTA2

3 TTA2

The following will be printed on the Back-
ground control teletype when BFKM9 is first
loaded:

BGD .DATS CLEARED BECAUSE OF FGD I/0:
-15 =12 -4 3

FCONTROL = TTAl

FGD DEV-UNITS:

TTAZ2
DTAl
DTAZ2

BKM9 V1A
$

FCONTROL indicates which unit is the Foreground
control teletype. The remainder of the message
indicates what I/0 is being used by the Fore-
ground job. The Monitor identifies itself to
the Background job user as BKM9 V1A and signals
that it is ready to accept a command by printing
S.

2.4 INFORMATION COMMANDS

The following information commands exist in Background/Fore-

ground:
COMMAND USE
0G To print a comment
REQUEST To examine .DAT slots
DIRECT To obtain a directory listing
INUSE To list information about core

and I/0 in use by the Foreground.

2.4.1 The LOG Command (L)

This command is legal in both Foreground and Background and may be
abbreviated by the single letter L. It is used to record comments
on the Teletype. Unlike all other commands, LOG is terminated only
by the character ALTMODE, so that multiple comment lines may be

typed.

LXAMPLE 3:

$ LOG THIS LINE)
AS WELL AS THIS ONE)
AND THIS ONE ARE IGNORED ALTMOD@

2.4.2 The REQUEST Command (R)

This command is legal in both Foreground and Background ‘and may
be abbreviated by the single letter R. It is used to examine

the contents of all or part of the user's .DAT table. The Fore-

ground user may examine only the Foreground .DAT table and the

Background user only the Background .DAT table.
FORM 1: R)

This requests a printout of the entire .DAT table. No example

is given since R is essentially the same reguest as in the

Keyboard Monitor System.
FORM 2: RyUSER)

This requests a printout of the contents of all the positive

numbered .DAT slots. The result, again, is the same as in the

Keyboard Monitor System.
FORM 3: RyXYZ)

Here, XYZ stands for the name of a system program; e.g., MACRO,

PIP, F4, LOAD, etc. The names given must be identical to those

used to load the programs. The information printed, as in the Keyboard
Monitor System, is those .DAT slots used by the given system program.
Since, at present, the only system program load commands allowed

in the Forcground are LOAD, GLOAD, PIP and EXECUTE, only these

four may be used in Foreground REQUEST commands.

FORM 4: R,.DAT,Jj, k, 1, ... , r, s)
Here, j, k, .1, etc., are .DAT slot numbers.
EXAMPLE 4:

$R,.DAT -3, -1, 4, 7)
TTAl DTA2 NONE LPAJ

$

2.4.3 The DIRECT Command (D)

This command is legal in both Foreground and Background and
may be abbreviated as D. The format is:
Dun)

where n = a unit number (§ through 7) on the system device.
Directory listings have ‘been altered in BFKM9 to print the
number of free blocks before the file names. The background
user may hot request directory listings of any units owned
by the Foreground job unless the Foreground user typed the

SHARE command (see below).

2.4.4 The INUSE Command (I)

This command is legal only in the Background and may be abbre-
viated by the single letter I. It causes the Monitor to print
the first free core location above the Foreground job, the
Foreground control teletype unit number and any other I/O

used by Foreground.

EXAMPLE 5:

$ 1)

1ST REG ABOVE FGD = 323@1
FCONTROL = TTA2

FGD DEV-UNITS:

DTAl
LPAJ

2.5 ALLOCATION COMMANDS

The following commands assign parameters, control and

conditions:
COMMAND PURPOSE .
ASSIGN To assign I/0 handlers to .DAT slots
FILES To specify handler file capacity
FCORE To set up Foreground free core
FCONTROL To select Foreground control teletype
BCONTROL To select Background control teletype
NEWDIR To write a new file directory
SHARE To allow jobs to share same I/0 units
NOSHAPE To nullify effect of SHARE
7CHAN To specify 7-channel MAGtape operation
9CHAN To specify 9-channel MAGtape operation
vC38 To load the VC38 character table
MPOFF To let Background access all of core
MPON To nullify effect of MPOFF

2.5.1 The ASSIGN Command (A)

This command is legal in both Foreground and Background and may
be abbreviated by the single letter A. Its format and function
are, with a few exceptions, identical to the same command in the

Keyboard Monitor System.

The format is: A DDINym, n, ..., p/ .../DDLN m, n, ..., p)
where DD stands for the two letter device name; e.g., DT

for DECtape, LP for line printexr, etc.

L is the third letter of a device handler name and is optional.
If not given, the letter A is assumed; e.g., DTl = DTAl. The
"A" version of a handler is the multi-unit, shareable handler,
provided that one exists. LPA, for example, is not a multi-

unit handler.

N is the unit number to go with the device handler and is
also optional. If missing, N is assumed to be §, e.g., DTA
= DTA@. Therefore, DT = DT@ = DTA = DTA@. The letters m, n,
..., p stand for .DAT slot numbers. The slash (/) separates

handlers.

To clear out a .DAT slot, assign NONE to it. If any error
is detected in the command, none of the assignments will be

made.

The Foreground and Background users may make assignments only to
their respective .DAT tables. Foreground may not assign TTAS

if, for example, that is the Background control teletype. Since
DTA is permanently in core with the Resident Monitor (assuming
that DECtape is the system device) DTB, DTC, etc., when assigned,
will automatically be changed to DTA. This applies as well to
hanuler assignments made in the Background whenever the multi-

unit version of the handler is in core for Foreground use.

Background .DAT slot assignments are tested to insure that they

do not conflict with Foreground I/O, as explained in section 2.3.

Whenever the Monitor detects such a conflict, it will print the

message:
OTHER JOB's DEV~-UNIT

To insure that no conflict can occur when assigning the core-

to-core handler, COA., the unit number, independent of what
the user typed, is set to @ for Foreground and 1 for Background.

The core-to-core handler disregards the unit number.

2.5.2 The FILES Command (F)

This command is legal in both Foreground and Background and may
be abbreviated as F. The purpose of this command is to save
core space by limiting the number of I/0 buffers assigned to multi-

unit device handlers.

The format of the FILES command is:
FILES,DD_N)

where DD stands for the multi-unit handler or device name (e.qg.,

DTA or DT) and N for an octal file count.

EXAMPLE 6: Assume that the Foreground user programs are being
loaded into core by the Foreground Linking Loader
and that these programs use .DAT slots 1 through 1§.
(.IODEV 1, 2, 3,, 1l@). Further, assume that
all 1f slots were assigned to DECtape, DTAn {the
unit numbers are unimportant to this discussion).

Most multi-unit handlers, DTA being one of
them, require that I/O buffers be assigned to
them externally. This is done by the various
loaders. 1In this example, the Foreground Link-
ing Loader, seeing that no FILES command was
given for the handler DTA, must assume that the
user wants 1f files open simultaneously. This
will require 1@ buffers, each 6@@ octal words

in size.

The FILES command is used to tell the loaders

to assign a given number of buffers for a
particular multi-unit handler based on the

maximum number of files that the user programs will
have open simultanecusly. Each multi-unit handler
has a maximum open file capacity; for example, DTA
may have up to 2@ octal. If 1¢ I/0 buffers are
assigned for DTA in the Foreground, then only up

to 1f may be assigned for Background.

The FILES

command issued in the Foreground specifies only
Foreground I/0O buffers. Thus, to limit the
number of I/O buffers assigned to the Background,
the FILES command, for the same multi-unit device,

must also be issued in the Background.

At load-time, I/O buffers are set aside in core by the Loaders.

The buffers are recorded in a table within the Resident Monitor,

.BFTAB, but are not flagged for the exclusive use of particular

device handlers. At run-time, each multi-unit handler which needs

a buffer must request a buffer from the Monitor. The handler must

also release the buffer to the pool when it is no longer needed.

The resident buffer, permanently assembled into the
Monitor, is always available to the Background job.
is assumed to be as large as the largest I/0 device

{60 octal words). 1In the event that the Background

. IODEV only one .DAT slot which is linked to a multi-

Resident
This buffer

buffer

job were to

unit handler

that requires external buffers, (DTA. for example) the user
could save 68§ registers by typing: S$SFILES DT ,#. That is,

assign one less buffer than is needed.

In the FILES command, the pseudo-device .. is recognized. The
size of the external buffer for this pseudo-device is 148

octal. Some functions in multi-unit handlers may require a
smaller buffer size than others. If the user were only to use
the former function type, he could type, for example, $FILES,DT_#
and $FILES .. n. In DTA., .TRAN and .MTAPE commands only reguire

the smaller buffer.

2.5.3 The FCORE Command

This command is legal only in the Foreground and may not be

abbreviated.

The format of the FCORE command is:
FCORE, N)
where N is the amount (in octal) of free core requested for

the Foreground job.

As in the Keyboard Monitor System, unused (free) core is defined
by the address pointers in the registers .SCOM+2 and .SCOM+3,
the lowest and the highest free core location, respectively.
Since both the Foreground and the Background jobs have their

own separate free core areas, the values in .SCOM+2 and .SCOM+3
are changed appropriately whenever control passes from one job

to the other.

The FCORE command allows the Foreground user t§ specify how
much free core his program will need, in addition to that
required to load his program. It is possible for all of core
to be assigned to Foreground. This means, however, that there
will be nc room for Background to run, which is perfectly

legal. If this is the case, the message:
SORRY, NO ROOM FOR BGD
is printed on the control teletype:

2.5.4 The FCONTROL Command

This command is legal only in the Foreground and may not be
abbreviated. It is used to transfer the control teletype to

some other teletype unit.
The format of the FCONTROL command is:
FCONTROL_N)
where N is the number (octal) of any teletype on the system.

If N is already the Foreground control teletype, the command is
ignored. If N is the current Background control teletype, the
two teletypes are swapped but no message will be printed to this
effect. Changing the Background control teletype may affect
Foreground .DAT slots and an appropriate message will be printed
on the Foreground control teletype. This is fully explained in

the next section on the BCONTROL command.

When FPCONTROL changes the Foreground control teletype, the
following action takes place:

a. The following message is printed on the old
control unit:

CONTROL RELINQUISHED
ABORT

b. The system is reloaded from the system device.
c. The Monitor prints

FKM9 V1A
$

on the new Foreground control unit and is ready
to accept commands there.

2.5.5 The BCONTROL Command

This command is legal both in the Foreground and in the Background
and may not be abbreviated. It is used to transfer the Background

control teletype to some other teletype unit.

The format of the BCONTROL command is:

BCONTROL, N)

where N is the number (octal) of any teletype on the system.
This command is illegal and is ignored if unit N belongs to

the Foreground job. Even though unit N may have been assigned
to a Foreground .DAT slot, it does not belong to the Foreground
job unless it happens to be the Foreground control teletype

or unless the Foreground user programs contained an .IODEV to
that .DAT slot. This command is also ignored if unit N is

alrcady the Background control teletype.

If BCONTROL is issued in the Foreground or if the Background

control teletype is changed because
all Foreground .DAT slots which now
control unit will be changed to the

to avoid I/0 conflict. Should that

of an FCONTROL command,
refer to the new Background
Foreground control unit

situation occur, the fol-

lowing example shows what would be printed on the Foreground

control unit:

FGD .DATS CHANGED TO TTAl

-6 2 7 18

If BCONTROL is issued in the Background, the following action

takes place:

a. The following message is printed on the old

control unit:

CONTROL RELINQUISHED

b. 4C is printed on the new unit,

c. The Non-resident Monitor (BFKM9) is reloaded for

Background from the system
d. The Monitor prints

BKMY9 V1A
$

device

on the new Background control teletype and is
ready to accept commands there.

2.5.6 The NEWDIR Command (N)

This command is legal in both Foreground and Background and may

be abbreviated by the single letter N. Just as in the Keyboard

Monitor System, this command allows the user to write a new

file directory on some unit of the system device. However,

space will not be reserved for a +Q (CTRL Q) area.

The format of the NEWDIR command is:

NLMD
where M is some unit number (octal) on the system device.
Unit @ may not be used. The Background may not write a new
file directory on a unit that belongs to the Foreground

unless the Foreground has issued the SHARE command (see below).
2.5.7 The SHARE Command ({S)

This command is legal only in the Foreground and may be ab-
breviated by the single letter S. 1Its purpose is to allow the
Background job to assign and to use the same units of any I/0
devices that belong to the Foregrcund job, provided that they

are bulk storage devices (DECtape, Disk, Magtape, etc.) and

that the device handlers are the multi-unit versions. The user
must be careful when allowing this condition to occur. The "tape"
could be fouled if both jobs were to try to use the same unit

for output at the same time.

The SHARE command also removes the restriction that the Foreground
user program may not use unit @ on the system device. Normally,

this unit is reserved for the Background.

The format for this command is:

SHARE)

2.5.8 The NOSHARE Command

This command is legal both in Foreground and in Background and
may not be abbreviated. It nullifies the effect of any pre-
vious SHARE command; i.e., does not allow the Background to

share device units with the Foreground.

When NOSHARE is issued in the Background it may cause some
Background .DAT slots to be cleared. A message, as in Example 2,

will be printed to that effect.
The command format is: ‘NOSHARE)

2.5.9 The 7CHAN Command (7)

This command is legal only in the Foreground and may be
abbreviated by the single character 7. The effect of this com-
mand is to clear bit 6 in .SCOM+4 to inform the Magtape device

handlers that the default assumption is 7-channel operation.
The format of the 7CHAN command is:
7CHAN)

2.5.10 The 9CHAN Command (9)

This command is legal only in the Foreground and may be
abbreviated by the single character 9. It sets bit 6 in
.5COM+4 to inform the Magtape device handlers that the

default assumption is 9-channel operation.

The format of the 9CHAN command is:
9CHAN)

2.5.11 The VvC38 Command (V)

This command is legal in both Foreground and Background and méy
be abbreviated by the single letter V. No action is taken until
a command has been given to load a program. At that time, if
the VC38 command was given, the Non-resident Monitor will seek
and load the file VC38TB DMP from unit @ of the system device.
The VC38 character table is used in conjunction with the 339
display handler, DYA., when the system does not have a VC38

hardware character generator.

The table is loaded into core such that its base address is a

multiple of 1g@P octal. The base address is stored as the

first word in the 339 Pushdown List. The address of the Pushdown

List is in .SCOM+12.

The VC38 command given in the Background will be accepted but

ignored if the 339 display handler is assigned to the Foreground.
The format of the VC38 command is:

vC38)

2.5.12 The MPOFF Command

This command is legal only in the Foreground and may not be

abbreviated.

Format:
MPOFF)

Normally, Background may not modify nor transfer to registers
within the Resident Monitor and the Foreground job; it also
cannot issue IOT's. The MPOFF command signals the Resident

Monitor to set the hardware protect bound to zero and also

allows Background IOT's to be issued.

2.5.13 The MPON Command (M)

This command is legal in both Foreground and Background and

may be abbreviated by the letter M.
Format:

MPON)

The MPON command nullifies the effect of MPOFF, thereby

protecting the Foreground job from the Background job in

the normal manner.

2.6 PROGRAM LOAD COMMANDS

In the Foregound, only four load commands are legal:
LOAD), GLOAD), PIP)-and EXECUTE (; XXX). EXECUTE may be abbre-
viated by the single letter E. LOAD and GLOAD have the same

meaning and effect as in the Keyboard Monitor System.

The following program load commands exist in the Back-

ground:
PATCH) LOAD)
CHAIN) GLOAD)
F4) DDT)
F43) DDTNS)
EDIT) SGEN
PIP) DUMP)
EXECUTE,XXX) UPDATE) ,

CONV)

2.7 FINAL OPERATION

After BFKM9 has received a program load command from
either the Foreground or Background, it will bring the System
Loader (.SYSLD) into the top of core overlaying BFKM9. In the
Foreground, .SYSLD is actually the Foreground Linking Loader.
In the Background, .SYSLD loads Background System Programs,

including the Background Linking Loader.

2.8 CONTROL CHARACTERS

While control is in BFKM9, the user may type CTRL P

to terminate execution of the current command and to restart.

Restart in this manner does not nullify the effect of

previously executed commands;

e.g., will not reset the .DAT

table to its initial configuration. To reload the Monitor for

the current job, the user may type CTRL C.

2

LEGAL
IN

tg kg g

Wt W ww

L e s B

Lo e Bies Bles Be e |

o W

.9

B
B
B

[seftveiiveRRvelivollvsMieo Rl Rl veiive R ve R ve v vl ve Rl vs M vo)

SUMMARY OF COMMANDS

ABBREVIATION

A

D

W o2 HE

ogn

<R

COMMAND EXAMPLE
ASSIGN DTAL 2, 3/TT1l,_ 1, 4/DT,-4)
BCONTROL,,2)
DIRECT, g,
FCONTROL,
FCORE, ,1400)
FILES_DT,,3)
INUSE

NEWDIR,5)

NOSHAR%}

REQUEST{ ,XXX) or REQUEST, USERJ)or
REQUEST, .DAT j,k,1) or REQUEST).
SHARE)

7CHAN)

9CH

MPOFF

MPON)

VC38)

CHAIN)
CONV,)
DDTQ
DDTNS)
DUME)
EDIT)
EXECUTE,_XXX)
F4

F
GLOAD))
LOAD)
MACRQ%
MACRO.
PATCH})
PIE
scﬁ%)
UPDATE)

SECTION 3

CONTROL CHARACTERS
3.1 PURPOSE

Control characters are single characters typed by the user
at a teletype which request special action by the Monitor.
Except for the character RUBOUT, all control characters are
formed by holding down the control key CTRL while striking the

appropriate letter key.

The characters CTRL U and RUBOUT are used as "erase"
characters dﬁring teletype input or output. CTRL C, CTRL P,
CTRL S, and CTRL T are used to interrrupt the operation of
the current program and to transfer control elsewhere. CTRL R
is used to restart I/O after a not-ready condition has been
detected for some device. CTRL Q stops the current job and
dumps memory onto a specified area of some unit of the system
device. CTRL D effects an end-of-file condition during tele-

type input.

3.2 CONTROL TELETYPE

In the Background/Foreground System, which may accommodate
up to 17 (decimal) teletype units, two teletypes are designated
as control teletypes (one for Background and one for Foreground).
Initially, it is assumed that unit @ (the console teletype) is

the control teletype for Background and unit 1 is the control

unit for Foreground.

Control teletypes differ from the other units in two ways:

a. They are used to converse with the Non-resident
Monitor and system programs in order to set up

parameters and conditions for a job and to initi-
ate the loading and execution of programs.

b. Certain control characters are recognized only
at control teletypes; i.e., are ignored if they
are typed on the other teletype units (see sec-
tion 3.4 and following).

3.3 TELETYPE HANDLER

The multi-unit teletype handler (TTA) which is imbedded in

the Resident Monitor, makes special tests for control characters

when it receives typed input. Normally, when no .READ request

has been issued to a teletype, characters received from that
unit are ignored unless they are control characters. A descrip-
tion of the action taken in each case is given in the following

paragraphs.
3.4 CTRL C (tC)

This character is ignored unless typed at a control tele-

type. It will be echoed to the teleprinter as 4C.

If CTRL C is typed at the Background control teletype, the
Background job will be aborted and the Non-resident Monitor will
be loaded to start a new Background job. Foreground is not affec-

ted.

CTRL C typed at the Foreground control teletype aborts both

the Foreground and the Background jobs. In this case, the entire

system is restarted; that is, the Resident Monitor and the Non-
resident Monitor are reloaded to start a new Foreground job and

the message ABORT is printed on the Background control teletype.

3.5 CTRL S (48)

CTRL S is recognized only at a control teletype and,
specifically, only after the Monitor has printed #S. This is
the result of loading a user program by giving the command $LOAD
(instead of $GLOAD) to ﬁhe Non-resident Monitor. Both commands
bring in the Linking Loader to load user programs. $GLOAD means
LOAD-AND-GO. SLOAD means load the user programs, signal the
user that this has been done (by printing #8), and then wait for

the go-ahead signal (when the user types CTRL S).

This feature allows the user to set up I/O devices before
starting his program. When CTRL S is typed by the user and is

accepted by the Monitor, 4S8 is echoed back to the teleprinter.
3.6 CTRL T (4T)

This character is recognized only at the Background control
teletype when the user has called in the system program DDT. When

CTRL T is typed and accepted, it is echoed to the teleprinter as 4T.

CTRL T provides a means of interrupting the execution of a
user program and transferring control to DDT. When CTRL T is

typed, the Monitor saves the status of the Link, extend memory,

and memory protect along with the interrupted PC in .SCOM+7

so that DDT will be able to return control to the user program
at the point at which it was interrupted. The contents of

the AC at the time of interruption is returned in the AC and

saved by DDT.
3.7 CTRL P (4P)

CTRL P is the interrupt and restart character available
to user and system programs. When it is typed on some teletype
and is accepted by the Monitor, tP is echoed to the teleprinter

on that unit.

I[n the Background/Foreground system there are two types
of CI'RL P functions:

1) NORMAL CTRL P and

2) REAL TIME CTRL P.
The two CTRL P functions are described, individually, in para-

graphs 3.7.1 and 3.7.3.

Setting a CTRL P restart address (ADDR) is accompiished by
issuing the I/0O MACRO .INIT to any .DAT slot linked to the

Teletype handler.

The format of the .INIT macro is:

.INIT A,M,P+ADDR

which is c¢xpanded by the MACRO assembler into the following

machine code:

LocC CAL Mg+Ag_17

LOC+1 1
LOC+2, P+ADDR,y ,,
LOC+3) -

where p = a .DAT slot number (octal radix)

[}

M = transfer mode

1]

Input

Output

ADDR = a 15-bit address (octal) of a restart point in
the program or of the entry point of a closed’

real-time subroutine.

)
100000
P = priority code 2000008
390009
400008
Spgpag
600p0p
109899

= Normal CTRL P

Mainstream (REAL-TIME)

No change to CTRL P
Priority level of the .INIT
APT level 5

API level 6

API level 7

Background requests to an API level (40@g07 - 79899@8) will be

converted to Mainstream since Background programs cannot use the

API software levels.

3.7.1 NORMAL CTRL P

A .INIT to set up a NORMAL CTRL P

done only to a control teletype.

(priority code @) may be

NORMAL CTRL P was so named

because the action taken when the user types CTRL P is nearly

the same as in the Keyboard Monitor System.

When a control teletype has been set up for a NORMAL CTRL P

and that character is typed by the user, the teletype handler

will abort all Teletype I/0 for that job (Background or Fore-
ground). The Monitor will, when control is at Mainstream, save

the status of the Link, extend memory, and memory protect with
the interrupted PC in .SCOM+10 (whose contents are swapped in
and out for Background and Foreground), return the interrupted
AC to the AC, and transfer control to the restart address ADDR
as specified by the last .INIT.

Note: When the Monitor processes a CTRL T or a NORMAL

CTRL P, it kills any pending mainstream real-
time routines to be run by zeroing the contents

of .SCOM+57 (Foreground) or .SCOM+6l (Background).
The user's program (if NORMAL CTRL P) or the user
(if CTRL T) must zero the entry points of all his
mainstream real-time routines. CTRL P and CTRL T
do not affect API level real-time requests.
If the restart address ADDR = f, CTRL P to the given teletype

will be disabled; i.e., ignored if typed (except if P = 3g9@gg).

3.7.2 No Change

If .INIT for a given teletype unit contains the priority code
309@29, the restart address is ignored and the status of CTRL P

to that unit is not changed.

3.7.3 REAL-TIME CTRL P

A .INIT to set up a REAL-TIME CTRL P may be done to any teletype
unit. When so set up and the user types CTRL P, I/0 to that
teletype is aborted. Control eventually goes to a closed real-

time subroutine, ADDR, at the priority level defined by P,

in the same manner as for a .REALR, .REALW or .TIMER

reguest.

If the restart address ADDR = @, CTRL P to the given tele~

type will bhe disabled; i.e., ignoréd if typed.

REAL-TIME CTRL P is useful for multi-user programs, for instance,
multi-user FOCAL, where each teletype has the ability to interrupt

and restart.
3.8 CTRL R (4R)

In the Background/Foreground system, I/0 device handlers
which detect a not-ready condition will request the Monitor
to print a message on the appropriate control teletype. The
line printer handler message, for instance, would be:

LP@¥ NOT READY

The unit number has no significance for the line printer.
Some single-unit handlers, such as the card reader handler, use
the unit number designation to indicate the cause of the not-ready
condition. After the message has been printed, the user should
ready the device and then type CTRL R, which is echoed as 4R. I/0

for that device is then resumed.

While the Monitor is waiting for the user to type CTRL R,
the user's program continues execution provided that it is not
hung up waiting for completion of 1/0 from the not-ready device.
The Monitor can handle one not-ready condition per job. Should

a second not-ready request occur while another is being processed,

job execution will be aborted with a .ERR #ff4 terminal

error.
3.9 CTRL Q (+Q)

CTRL Q may be typed at any time, but it is ignored if it

is not issued at a control teletype.

The purpose of typing CTRL Q is to stop program execution
and to dump all of core memory onto a specified area of some
unit on the system device. The dump starts with block 181 octal
on the given unit and overlays any data that may have existed
in that area on the output device. A 16K system will dump 10¢
octal blocks (l@1-2g@); a 24K system, 148 octal blocks (1@1 - 24¢);

a 32K system, 2@@ octal blocks (1@1-329).

To insure that CTRL Q will not overlay useful data, the user
must employ the system program PIP to write a new file direc-
tory on that unit, using the (S) switch to reserve space for
CTRL Q. For example: |

>N_XXu,,(8))

where XX is the device name and u the unit number. Note that
the size of the CTRL Q area reserved is based on the amount of
core existing in the system in which the new directory is written.

The area reserved on a DECtape in a 16K system is not sufficient

to do a protected CTRL Q in a 24K or 32K system.

3-8

When the Monitor accepts CTRL Q, it first terminates
execution of the job (Foreground if Foreground CTRL Q, Back-
ground if Background CTRL Q). This involves calling all
device handlers tied to that job to stop I/0, clearing all
Monitor queues of entries for that job and disabling all

control characters for that job except CTRL C.

The Monitor then prints 1Q on the appropriate control
teletype aad reads one character. The user must then type the
number of the unit on which the dump is to occur. Unit zero
may not bé used. If the SHARE command is not in effect, a
dump may not be done to a unit which belongs to the other
job. If the Monitor rejects the typed character, it prints

40 again and waits for another character.

When the unit number is accepted, the dump takes place;
then the Monitor is automatically reloaded. A Background
CTRL Q does not affect Foreground. A Foreground CTRL Q, on
the other hand, aborts the Background job. It is not possible

to load and restart a core dump in Background/Foreground.
3.1 CTRL U (Q)

CTRL U may be typed at any teletype unit. If a .READ or
.REALR was issued to some teletype and the user decides he
wants to "erase" everything he has typed for that read request,

he may type CTRL U, which will be echoed to the teleprinter as @.

The .READ or .REALR will still be in effect and he may then

retype the input.

While output to a teletype is being done as a result of a

.WRITE or .REALW, the user may type CTRL U to terminate the

write. In this case nothing is echoed to the teleprinter.
3.11 RUBOQUT

This character is recognized only while the user is
typing input to satisfy a .READ or .REALR request. When
typed, RUBOUT deletes the last input character. For example,
if the user has typed ABC and then RUBOUT, the C will be
"erased". If he now types another RUBOUT, the B will be
"erased". Every time a character is so removed, the character

is echoed to the teleprinter.
3.12 CTRL D (4D)

The character CTRL D is recognized at all teletypes and
is echoed kack as tD. When typing input, CTRL D effects
an end-of-file condition by terminating the .READ or .REALR
request and storing the end-of-file, @@1@F5, in the input line
buffer header. Since the word pair count returned is a 1l, any
characters typed prior to the CTRL D for the same read reqﬁest

will be lost.

SECTION 4

LOADERS
4.1 INTRODUCTION

There are three program Loaders in the Background/Foreground
system. On the system file directory they are listed as .SYSLD SYS,

BFLOAD BIN and EXECUT BIN.

.SYSLD is an absolute system program that functions as two
loaders: when it is called in for Foreground loading, it is the
Foreground Linking Loader; when it is called in for Background
loading, it is the Background System Program Loader. BFLOAD is the

Background Linking Loader.

EXECUTE operates in both Foreground and Background as a loader
of overlay programs (XCT files) built by the CHAIN system program.

A description of CHAIN and EXECUTE is given in the utility manual.

4.2 TFOREGROUND LINKING LOADER

Link loading of the Foreground job is initiated by typing GLOAD
(Load-and~Go) or LOAD (Load-and-Pause) to the Monitor at the Fore-
ground control teletype. The Foreground Link Loader (.SYSLD) is
then brought into the top of memory, overlaying the Non~resident

Monitor. The following message will then be printed:

FGLOAD V1A

>

The > signals the user that he may now type in his command string.

The command string format is nearly the same as for the

Linking Loader in the Keyboard Monitor System. The only

change is the addition of memory map options, which must pre-

cede the list of user program names. The format is as follows:
roptions«mainprog, others,... ALTMODE

4.2.1 Option Characters And Their Meanings

Character Meaning)
p Print program names and their assigned relocation
factors
C Print common block names and their assigned
locations

[}

Print global symbol names and their definitions

4.2.2 Use of « Terminator

Prior to the terminator <« all characters except option
characters are ignored. Carriage return preceding the <« starts

a continuation line headed by ». ALTMODE preceding the «

restarts the Loader; therefore, no loading is done unless the

character +« appears in the command string.

If no option characters precede the <, the default assumption

is that no memory map is to be printed.

After the +, type the program names (main program first - no

extensions) separated by comma or carriage return. Terminate

the command string with ALTMODE. Before the terminating ALTMODE

has been typed, the Loader may be restarted by typing CTRL P.

4.2.3

Sequence of Operation

Once the command string has been accepted, the Loader will perform

the following sequence of operations:

a.

Load all user programs, specified in the command
string, from .DATF -4. These programs are loaded
from the bottom of core up, starting at the top

of the Resident Monitor. Calls to external library
routines via .GLOBL, common block definitions,

and .IODEV requests are" saved in the Loader's

symbol table, built from the bottom of the Loader
down. Programs containing executable code (which
excludes BLOCKDATA subprograms) are relocated such
that they do not overlap core bank boundaries.

If a library search is necessary and the contents
of .DATF -5 is non-0, the Loader will seek the user
library, .LIBR BIN, via that .DAT slot, and will
load all requested library routines which it finds.
I/0 device handlers must not be in the user library.

If a library search is still necessary for non-I1/0
routines, the Loader will search the system arith-
metic Library, .F4LIB BIN, via .DATF -7 in the same
manner as above. I/0 device handlers must not be

in .F4LIB.

If any I/0 handlers must be loaded, the Loader
searches through the system I/O Library, .IOLIB BIN,
via .DATF -7. After this has been done, program
loading has terminated.

At this point, all undefined common blocks are
defined and assigned core space. Common blocks
are allowed to overlap core banks.

If there are still some undefined global symbols,
they will be matched with common block names and,
if a match is found, defined as the base address
of the matching common block.)

For all multi-unit device handlers in use for

the user's programs, external I/0 buffers are
assigned core space (if necessary) and recorded

in .BFTAB within the Resident Monitor. The number
of such buffers depends on the $FILES counts

given by the user to the Non-resident Monitor or,
if no counts given, the number of .IODEV'ed .DAT
slots calling those handlers. I/0 buffers are
allowed to overlap core boundaries.

h. The amount of free core assigned to the Foreground
job (contents of .SCOM + 25) is added to the current
size of assigned Foreground core to determine the
upper limit c¢f the Foreground job. Pointers to

tne first and last registers in Foreground free core
are then stored in .SCOM+2 and .SCOM+3, respectively.

i. The Loader now exits to the Resident Monitor. The
Resident Monitor prints 4SS and waits for the user
to type CTRL S, if the Loader is called by the LOAD
command. Control then is given to the start address
of the user's main program, which was stored in
.SCOM+6 by the Loader.

4.3 BACKGROUND SYSTEM LOADER

Loading of all system programs is done by the System Loader
(.8YSLD), which also performs link loading for the Foreground.
Initiation of the loading cycle is done when the user, in the
Background, types a request to the Non-resident Monitor to load

a system program; e.g., SPIP, SSEDIT, etc.

The Non-resident Monitor puts a code number in .SCOM+5 to
tell the System Loader which program to load. The System Loader

is then loaded into upper core overlaying the Non-resident Monitor.

.SYSLD contains a table which lists the .DAT slots used by
each system program. Information about the load address, start
address, size and initial block number on the system device for

each system program is available in block 1@1 (SYSBLK).

To load in a system program in the Background, .SYSLD

performs the:fbllowing operations:

a. For each .DAT slot (with non-0 contents) required

by a system program, it determines which device
handlers are needed; and, if a library search is
necessary, it brings in the handlers from the

file .IOLIB BIN on the system device through .DATB -7.

They are loaded starting immediately above the
top of the Foreground job.

b. I/0 buffers are then assigned core space immedi-
ately above the handlers as in the description
in paragraph 4.2g. The hardware memory protect
bound is set above the handlers and buffers.

c. If the load command was $LOAD, $GLOAD, S$DDT or
$SDDTNS, the Background Link Loader (BFLOAD), a
relocatable file, is loaded starting just above
the new hardware protect bound.

d. For all other system programs, .SYSLD builds a
short routine just above the hardware protect
bound to bring in the program overlaying the
System Loader.

e. Finally, .SYSLD exits to the Resident Monitor
which establishes the new hardware protect
bound and then passes control to the system
program via the address stored by .SYSLD in
.3COM+5.

The Loader allows the loading of absolute .LOC programs
prior to loading any relocatable files. This permits the user
to load programs which may overlay parts of the Resident Monitor.
Mixing of absolute and relocatable .LOC's in the same program
file is not allowed and will be flagged as an error. The Loader
insures that the relocatable programs do not overlay any of the

absolute programs.

The Foreground Linking Loader is also responsible for load-
ing the system program PIP in the Foreground. The Foreground
version of PIP exists in the system as the relocatable file
PIP BIN. It is loaded by typing PIP as a command to the

Non-resident Monitor.

4.4 BACKGROUND LINKING LOADER

Externally, the Background Linking Loader (BFLOAD) looks
nearly the same to the user as the Foreground Linking Loader.
When it has been loaded, it prints the following message on
the Background control teletype:

BGLOAL: V1A

>
The command string processing is identical with that of the

Foreground Linking Loader (see 4.2).

If the Load command was $DDT or $DDTNS, the system program
DDT (a relocatable file) has already been loaded into the top

of core via .DATB -1, prior to reading in the command string.

Once the command string has been accepted, the Loader

will perform the following sequence of operations:

a. Load all user programs specified in the command
string from .DATB -4. These programs are loaded
from the top of core down. Calls to external
library routines via .GLOBL, common block defini-
tions, and .IODEV requests are saved in the
Loader's symbol table, built from the top of the
Loader upwards in core. Programs containing
executable code (which excludes BLOCKDATA
subprograms) are relocated such that they
do not overlap core boundaries.

4-6

b. Same action as described in 4.2b, using .DATB -5.
c. Same action as described in 4.2c, using .DATB -7.

d. If any I/O handlers must be loaded, the Loader
searches through .IOLIB BIN via .DATB -7. The
handlers are relocated to run in lower core,
that is, as if they were being loaded upwards
in core starting just above the Foreground job.
They may, however, be loaded above the Loader
at this point in time because the Loader is in
the way.

e. Same action as described in 4.2 e,f,g. Common
blocks are assigned space in upper core; I/O
mruffers, in lower core.

f. The hardware memory protect bound is established
above the I/0 handlers and buffers. Common
blocks may go below the hardware protect bound.

g. If DDT was loaded and a symbol table was requested
(not S$DDTNS), the symbol table is compacted to
delete entries not needed by DDT. The Loader
determines where the symbol table should be moved;
and, along with the I/0O handlers which were loaded
into upper core, builds a special .EXIT list which
tells the Resident Monitor where to block transfer
each segment. The DDT symbol table may be loaded
below the hardware protect bound.

h. The Loader then exits to the Resident Monitor,
which performs the block transfers, sets the new
hardware memory protect bound, and transfers
control to DDT (via .SCOM+5) or to the user
program (via .SCOM+6), pausing to print 4S and
waiting for the user to type CTRL S if the Load
command was S$LOAD.

4.5 LOADING XCT FILES

XCT files are overlay programs built by the system program
CHAIN and run by the system program EXECUTE. Loading of an XCT

file in either the Foreground or the Background is initiated by

typing E XXX or EXLECUTE_ XXX to the Monitor (where XXX is the

file name without the extension XCT) .

The Non-resident Monitor, BFKM9, stofes the filename (.SIXBT
format) in .SCOM+1@7, 11¢ and 111 for the Foreground or .SCOM+112,
113 and 114 for the Background. If EXECUTE's .DAT slot requests
the resident system device handler, the Monitor stores "XCS" as

the extension. If EXECUTE's handler is different from the

resident handler, the Monitor stores the extension "XCT."

The System Loader is then called in, overlaying the Non-

resident Monitor in upper core.

4.5.1 EXECUTE in the Foreground

The following operations are carried out when EXECUTE is used

in the Foreground:

a. EXECUTE's handler, if different from the resident
handler, is loaded immediately above the Monitor.

b. The System Loader, which must open the XCT file,
checks the extension. If "XCS", meaning EXECUTE's
handler is the resident handler, load the file via
.DAT -7. 1If "XCT", load via .DAT -4. Set the
cxtension to "XCT".

c. Recad the XCT file and check that it was indeed
built to be run in the Foreground of a PDP-9.

d. Save the upper and lower core limits of the over-
lay structure and check that it does not overlay
the Resident Monitor.

e. Decode the .IODEV bit map in the XCT file. Set
the loading bound immediately above the area of

core to be occupied by the overlay structure and
then load all I/O handlers required by the XCT
file. Also, load another copy of EXECUTE's handler

(the first copy will be overlayed).

f. Load in EXECUTE.

g. Same action as described in 4.2g and h.

The Loader exits to the Resident Monitor. The
Monitor gives control to EXECUTE, whose start
address is stored in .SCOM+6 by the Loader.

4.5.2 BXECUTE in the Background

The following operations are carried out when EXECUTE is used in
the Background:

a. EXECUTE's handler, if different from the resident
handler, is loaded immediately above the Foreground
job.

b. Same action as described in 4.5.1.b.

c. Read the XCT file and check that it was built to
be run in the Background of a PDP-9.

d. Save the lower core limit of the overlay structure
and test, when EXECUTE has been loaded, that they
do not overlap.

. Decode the .IODEV bit map in the XCT file and then
load any I/O handlers nceded by the file.

f. Same action as described in 4.2qg.

g. Set the hardware memory protect bound above the
I/0 buffers and then load EXECUTE starting above
this bound.

h. Same action as described in 4.3.e.

4.6 ERROR CONDITIONS

The number of different error messages in the Loaders has been

expanded in Background/Foreground. These are tabulated in Appendix

2, Section A2.5. The error number is passed on to the Resident

Monitor by a special error .EXIT macro (CAL segquence).
Loader errors are non-recoverable. After the error message
is printed, the Monitor will automatically be reloaded to

start another job.

4.7 SYSTEM MEMORY MAPS

Memory Map A

16K /////// <« System Bootstrap

8K b — — — = —

The System Bootstrap is loaded at the top of
core via the paper tape reader in HRM format.

Memory Map B

.SCOM—> 16K
/<>/ //K————System Bootstrap
BKj—-—— — — —]
.SCOM + 1 .
.SCOM + 2 //

1 Resident Monitor includ-
ing the multi-unit
teletype handler and
the system device handler.

0 //

The System Bootstrap automatically loads the Resident
Monitor from the system device into lower core.

Memory Map C

7 o
7

.SCOM—>»16K

8Kl — — — — —

.SCOM + 1
.SCOM + 2

The Resident Monitor loads the Non-resident Monitor
(via the resident system device handler) into upper
core, overlaying the System Bootstrap.

Memory Map D

.SCOM—> 16K

.SCOM + 3

%

N

Foreground Linking
Loader (.SYSLD)

8K
.scoM + 1]

.SCOM + ZJ#

bg———————Resident Monitor

To load a user FOREGROUND program, the Non-resident
Monitor brings in the Foreground Linking Loader
(.SYSLD), overlaying itself.

Memory Map E

.S5COM ——> 16K
§ +Foreground Linking Loader
/ (.SYSLD)
L pa :

k-Loader's I/0 Handlers

\\\C\iS\FQ\eloader's Symbol Table

.SCOM + 32 . Hardware protect bound
.SCOM + 3flﬁ : oftware protect bound
.SCOM + 3 s OO XX XX Xle-Foreground free core
.SCOM +

2 +pser's I/0 Handlers and
I1/0 Buffers

Forggiound 8Kk \€i§$i>\ +Ibreground user programs

:;j;j;:;:ije51dent Monitor

o [/

The Foreground Linking Loader first brings in any additional
I/0 handlers required for loading. Then it loads the user
program(s), library routines, user I/O handlers and I/O
buffers, and allocates Foreground free core. The software
memory protect bound is established just above the Foreground
job. The hardware memory protect bound, because it can be set
only in increments of 1K decimal, will leave some unused space
between it and the Foreground job. The software protect bound
allows this space to be used for dynamic data storage by the
Background job.

For a description of loading of Foreground XCT files, see
Memory Map L.

Memory Map F

. SCOM————=] 6K

N

l¢-Non-resident Monitor

.SCOM

SCOM I i Tl ___ _ _ _ _le-Hardware protect bound
.SCOM + 2 j > Software protect bound
.SCoM + 25J \
.SCOM + 31

¢ 8K - Foreground job

EEEEE;EEEE;‘RCSldent Monitor

When the FOREGROUND job becomes I/O bound, control is transfer-
red to the BACKGROUND job. The Resident Monitor loads the Non-
resident Monitor (via the resident system device handler) into
upper core. It then gives control to the Keyboard Listener
(within the Non-resident Monitor) to await a BACKGROUND keyboard
command. Memory protect is enabled while the Background job is
running.

Memory Map G

.SCOM—————= 16K /7’;//
/// - Background System
/ Loader (.SYSLD)
.SCOM + 3 -

.SCOM + 32

.SCoM + 1 \\\\‘*~ —————— « — lg————Hardware protect bound
.SCOM + 2 o \~~Y<-————Software protect bound
.SCOM + 25 \\\

.SCOM + 3%J

? Foreground Job

o
7

AN

When a BACKGROUND keybcard command requests loading
of a system or user program, the Non-resident Monitor
brings in the System Loader, overlaying itself. Note
that the BACKGROUND System Loader and the FOREGROUND
Linking Loader arc physically the same program.

Memory Map H

.SCOM—————»16K

Background

/////) “System Program
3 e '

.SCOM +

Background Free Core
SSCOM 4 32— | . <«-|———Hardware Protect Bound
.gcoM + 2 : Software Protect Bound
.SCOM + 31 ——————Background I/0 Buffers
.SCoM + 1 7} Background I/0 Handlers
.SCOM + 25 |

Foreground Job

- Resident Monitor

NN

If the BACKGROUND request is for a system program, the
System Loader loads the system program I/O handlers up
from the top of the FOREGROUND job, allocates I/0 buffer
space, and loads the system program at the top of core
(overlaying the System Loader). Control is returned to
the Resident Monitor, which sets the memory protect bound
above the buffer space and given control to the system
program.

Memory Map I

- SCOM 16K
.S5COM + 3

<« Background System
Loader (.SYSLD)

SCOM + 2 >

}!!”,I <«<——Background Linking Loader
.SCOM + 32- > Hardware Protect Bound
.SCcoM + 1 1 <«——TLink Loader's I/0 Handlers
.SCOM + 25
.S5COM 4

31_j g \m
v
// < Resident Monitor

'\g «-— Software Protect Bound
\\giié\ Foreground Job

N

NN

If the BACKGROUND program is a user program*, the
System Loader loads the Linking Loader I/0 handlers
up from the top of the FOREGROUND job and loads the
Linking Loader such that the memory protect bound
can be set just below it.

*Uscr programs may be loaded along with the system
program DDT.

Memory Map J

.scoM]———————161(/
.S5COM + 3 Background user Programs}

///// Library Routines
e

_Background User I/0
Handlers

.SCOM + 2 S < [pader's Symbol Table
—«<—— Background Linking Loader
.5COM + <« Hardware Protect Bound
.S5COM +
Software Protect Bound
.SCOM +
.SCOM +

Foreground Job

«——Resident Monitor

The BAZCKGROUND Linking Loader overlays the System Loader

by loading user programs down from the top of core. User
T/0 handlers, presuming that they cannot fit in core
between the FOREGROUND job and the bottom of the Loader,
are loaded into upper core but relocated to run just above
the FOREGROUND job so that they memory protect bound can

be set above them. Common blocks and I/0 buffers are not
shown in this memory map.

Memory Map K

.SCOM-————> 16K

Background User Programs
and Library routines

N
N

]Illl]ll,” «——— User's Common Blocks
.SCOM + 3 >
Background Free core

.8COM + 32—
.SCOM + 2) == Hardware Protect Bound
.SCOM + 3{) UL Software Protect Bound

< Background User I/0
.SCOM + 1;1 handlers

.SCoM + 25 \\\ Foreground Job
N
-

<————Resident Monitor

DR
ARNAAAN

The .EXIT from the Linking Loader causes the user program
I/0 handlers to be block transferred to their running
position, the memory protect bound to be set just above

the I/0 buffer space, and control given to the user program.
if DDT was also loaded, it resides at the top of core, above
the user programs. Its symbol table, built by the Loader,

is block transferred by the Monitor to start at the soft-
ware protect bound.

*If DDT is loaded, .SCOM + 1 will be set to point at the
start of DDT symbol table.

Memory Map L

.SCOM—— 16K
;;;// ///q———System Loader

<« TLoader's symbol table

.SCOM + 32— | —— — — — -«<— Hardware protect bound
.SCOM + 25 and 3l=t—= Software protect bound

'gggg I 2—~"~——¢'r «— Foreground free core

«<—EXECUTE

=
\ 1/0 Handlers + I/0 buffers
including 2nd copy of
EXECUTE's handler

Foreground
Job Core occupied by
Overlay, structure
8Kl _ _| '
_______ |1st copy of EXECUTE's
L Y] I1/0 handler

7

///////////cb—-Re51dent Monitor
0 //////j:;

The System Loader first loads EXECUTE's I1I/0 handler (if not
the resident handler) in order to read the XCT file. The
core limits of the overlay structure are read from the file
as well as the request for I/O from its .IODEV bit map.

The requested handlers, including a second copy of EXECUTE's
handler, are loaded above the core area to be occupied by
the overlay structure. Then I/0 buffers are created, if
necessary, and EXECUTE is loaded above them. Finally,
Foreground free core, the software protect bound and the
hardware protect bound are established.

Memory Map M

.SCOM >]16K

Core occupied by ~——System Loader

Overlay structure

~— Loader's symbol table

.SCOM + 3 > -
.SCOM + 2 ”_§\§<\b<\s<\‘““‘Free core
~——EXECUTE
-SCOM + 32— ' '—/>€/></C/' ~~—Hardware protect bound
.SCOM + 31— , e -~
4 Software Protect Bound
.SCOM + 25 » - el Background I/O handlers

and I/0 buffers

Foreground job
8K | e — e

N

<——Resident Monitor

The System Loader loads EXECUTE's I/O handler (if not in
core) in order to read the XCT file. The core limits of
the overlay structure and the I/0 requests in the .IODEV
bhit map are read from the X€T file. The user's I/O
handlers and I/0 buffers are then laoded above EXECUTE's
handler, and the hardware protect bound is established
above them. EXECUTE is loaded above the bound and Back-
ground free core is set up from the top of EXECUTE to the
bottom of the overlay area.

SECTION 5

BACKGROUND/FOREGROUND START-UP PROCEDURE

5.1 LOADING THE B/F MONITOR

Before startup procedures can be carried out, the user must

generate'a working system (using: .SGEN) from the master tape
supplied with the system. Refer to Section 8 for .SGEN proce-

dures.

In Disk systems, the Monitor and system programs are

assumed to be on Unit .

In DECtape systems, mount the working system tape onto

DECtape unit 8 (i.e., @) and perform the following:

1) Load appropriate paper tape Bootstrap in the
reader.
2). Momentarily depress Reader TAPE FEED pushbutton

to clear end-of-tape flag.

3) Set console address switches as follows:
If you have a - Set switches to -

16K System 37637

24K System 57637

32K System 77637

4) Press and release in seguence the console I/0

RESET and READ IN switches.

When loaded, the monitor identifies itself and indicates its

readiness by outputting the following on the Foreground control

Teletype (i.e., normally unit 1)

FKM9 V1A

$
The paper tape bootstraps used to load the Background/Foreground
monitor are identical to those used in the PDP-9 Keyboard Monitor
system. The bootstrap restart address, however, is different
(i.c., .SCOM+1l1l = register 1114) because the resident Monitor

contains a copy of the bootstrap.

The three examples given in paragraphs 5.2, 5.3 and 5.4
are intended to get the user "on the air". Note that the symbol
$ is output by the Monitor to indicate that it is ready. to accept
commands, whereas">"and "*" are used by system programs to

denote readiness.

The symbol C) in the text below indicates the typing of

an ALTMODE terminator.

5.2 L.IDLE LOADED AS THE FOREGROUND JOB

An Idle job is loaded in the Foreground to allow immediate

use of the Background. Refer to section 6.3 for a discussion

of .IDLE.

FKM9 Vi1a

SA |DTAQ -4 /The program "IDLE" is on unit
DKAQ /9 of the system device

SGLOAD) /Call the Loader to Load-and-Go

FGLOAD V1A ‘ /The Loader is in core

><IDLE (3) /Load "IDLE BIN".

5-2

When IDLE is loaded, no indication is given on the Fore-

ground control teletypce. Control passes to the Background

and the Non-resident Monitor is loaded into core. The Monitor

identifies itself on the Background control teletype as:

BKM9 V1A /The Monitor is now ready to
$ /accept background commands.

5.3 SINGLE-USER FOCAL LOADED INTO THE FOREGROUND

FKM9 V1A

sa brg] _,
DKJ

SA DT 3

$A TT1 5

SFCORE 1000

SGLOAD

FGLOAD V1A

><FOCAL, FNEW(}

FOCAL V3A
*

/FOCAL is on the "system tape".

/Library input to FOCAL.

/Library output to FOCAL.

/Free core for FOCAL buffer area.
/Call Loader to Load-and-Go.

/The Loader is in core.
/Load FOCAL and its library, FNEW

/FOCAL 1is in core and
/1is ready to accept commands.

Once FOCAL is running in the Foreground, the Non-resident

Monitor will be loaded into core as explained in 5.2.

5.4 TWO-USER FOCAL LOADED IN THE FOREGROUND

FKM9 V1A

$A [DTﬂJ -4
DK

s$aA TT1 1

$A DTl 2

$SA TT2 3

$A DT2 4

$FCORE 3088

SGLOAD

FGLOAD V1A

/FOCAL2 is on the "system tape”.
/Teletype for user #l.

/Library In/out for user #1.

/Teletype for user #2.

/Library In/Out for user #2.

/Assign 14@@ (Octal) locations of free
/core for each user.

/Call the Loader to Load-and-Go.

/The Loader is in core.

>«FOCAL2,FNEW (§) /Load two-user FOCAL and its

FOCAL V3A
*

/library, FNEW.
/FOCAL 1s in core and will
/identify itself on each uscr's teletype.

5-3

SECTION 6

BACKGROUND/FOREGROUND MONITOR COMMANDS (SYSTEM MACROS)
6.1 INTRODUCTION

The System MACROS unique to the Background/Foreground
Monitor are listed and described briefly in Table 6-1. The
Monitor Macros listed are available in addition to the Macros
provided in the Advanced Keyboard Monitor System for use in

programs that are to be run in the Background/Foreground en-

vironment. Detalled descriptions of the Macros are given in

the remainder of this Scction.

TABLE 6-1

Background/Foreground System Macros

Name Purpose

.REALR Real time transfer of data from I/0 device to

line buffer (real-time READ).

.REALW Real time transfer of data from line buffer to

I/0 device (real-time WRITE).

.IDLE Allows FOREGROUND job to indicate that control
can be given to lower levels of the FOREGROUND
job or to the BACKGROUND job until completion
of any FOREGROUND real-time transfer or clock

interval.

.IDLEC Allows FOREGROUND Mainstream to give control
to BACKGROUND job with FOREGROUND continuing
after the .IDLEC on completion of any FOREGROUND

rcal-time transfer or clock interval.

.T'IMER Calls and uses real-time clock and allows
priority level to be established.

.RLXIT Accomplishes the exit from all real-time
subroutines that were entered via .REALR,

.REALW, .TIMER or real-time CTRL P! requests.

1
See Section 3.7.

6.2 .REALR

FORM: .REALR A, M, L, W, ADDR, P
VARIALLES: A = .DAT slot number (octal radix)

IOPS binary

Image binary

IOPS ASCII

Image Alphanumeric
Dump Mode

M = Data Mode

W NS
L (TR |

L = 15-bit buffer address (octal radix)

W = Line buffer word count (decimal radix),
including the two-word header

2
ADDR = 15-bit address of closed subroutine that
is given control when the request made by
the .REALR is completed.

P = API priority level at which to go to ADDR

Priority Level

l

2 Mainstream .
4 Level of .REALR
5 API software level 5
6 API software level 6
7 API software level 7
EXPANSION: LOC CAL+10p@@F+Me~8+RAo~17
LOC+1l . 18
LOC+2 L
.DEC /Decimal radix
LOC+3 -W
.OCT /0Octal Radix
LOC+4 ADDR+Po -2

"Data modes 5, 6 and 7 are passed to all I/O handlers.

2The subroutine specified by a .REALR, .REALW, .TIMER or real-
Lime CTRL P should not be used at more than one priority level.
The subroutine is entered via a JMS and thus cannot be protected
against rce-entry.

o)
1
\S]

DESCRIPTION: The .REALR command is used to transfer
the next line of data from the device assigned to .DAT
slot A to the line buffer in the user's program. In
this operation, M defines the modes of the data to be
transferred, L is the address of the line buffer, W is
the number of words in the line buffer (including the
two-word header), and ADDR is the address of a closed
subroutine which should be constructed as shown in the
following exXample.

EXAMPLE 1l: STRUCTURE OF A REAL-TIME SUBROUTINE

ADDR 0 ‘ /Entry point
DAC SAVEAC /Bave AC

. /Any system Macro may
/be issued at this point.

LAC SAVEAC /Restore AC

.RLXIT ADDR /Return to interrupted
/point via Monitor CAL

6.3 .REALW

FORM: .REAIW A, M, L, W, ADDR, P
VARIABLES: A = .DAT slot number (octal radix)
g = 10PS binary
L 1 = Image binary
M°= Data Mode 2 = TOPS ASCII
3 = Image Alphanumeric
4 = Dump Mode

i
It

15-bit Line buffer address (octal radix).

W = Line buffer word count (decimal radix),
ncluding the two-word header

ADDR’ = 15-bit address of closed subroutine that
is given control when the request made by
the .REALW is completed.

!pata modes 5, 6 and 7 are passed to all I/O handlers.
’see footnote 2, page 6-2.

P = API priority level at which to go to ADDR

P Priority Level

Mainstream

Level of .REALW
API software level
API software level
API software level

N oUW
~Novwn

EXPANSION: LOC CAL+1Pp0P+Me—8+Ag—17
Loc+1 11
LOC+2 L .
.DEC /Decimal Radix
LOC+3 =W
.OCT /Octal Radix
LOC+4 ADDR+P,-»

DESCRIPTION: The .REALW command is used to transfer the
next line of data from the line buffer in the user's
program to the device assigned to .DAT slot A. 1In this

operation, M defines the mode of the data to be transfer-
red, L is the address of the line buffer, W is the count

of the number of words in the line buffer (including the
two-word header), and ADDR is the address of a closed sub-

routine which should be constructed as shown in EXAMPLE 1
above.

.IDLE
FORM: . IDLE
EXPANSION: LOC CAL

LOC+1 17

DESCRIPTION: The FOREGROUND job in a Background/Foreground
environment can indicate that it wishes to relinquish
control to lower levels of the FOREGROUND job or to the
BACKGROUND job by executing this command. This is useful
when the FOREGROUND job is waiting for the completion of
real-time I/0 from any one of a number of I/O requests

that it has initiated or for completion of .TIMER requests.

The .IDLE is the logical end of the current level's proces-
sing; that is, control never returns to LOC+2. If the .IDLE
is issued at a FOREGROUND API software level, it effects a
debreak (DBR) from that level so that pending real-time

routines at that level will not be executed until the
level is requested again. If the .IDLE is issued at
FOREGROUND Mainstream, control goes to the BACKGROUND
job. If the .IDLE is issued at BACKGROUND Mainstream,
control is returned to the .IDLE CAL.

6.5 .IDLEC

FORM: .IDLEC
EXPANSION: LOC CAL+1898
LOC+1

DESCRIPTION: Identical to .IDLE except when issued at
the FOREGROUND Mainstream level. In this case, control
goes to the BACKGROUND job, and LOC+2 is saved as the
FOREGROUND Mainstream return pointer. The next time
control returns to FOREGROUND (at any priority level),
FOREGROUND Mainstream processing will resume at LOC+2
when Mainstream becomes the highest active FOREGROUND
level.

6.6 .TIMER
FORM: .TIMER N, ADDR, P
VARIABLES: N = Number of clock increments (decimal radix)

ADDFR

15-bit address of closed real-time sub-
routine to handle interrupt at end of
interval

P = API priority level at which to go to ADDR

7o transfer control to subroutine ADDR at priority level P
immediately, N should be set equal to zero.

’The subroutine specified should not be used at more than
one priority level. The subroutine is entered via a JMS
and thus cannot be protected against re-entry.

P Priority Level
P Mainstream
4 Level of .TIMER
5 API software level 5
6 API software level 6
7 API software level 7
EXPANSION: 1.0OC caL!
LOC+1 14
LOC+2 ADDR+P ¢,) _
.DEC /Decimal Radix
LOC+3 -N
DESCRIPTION: .TIMER is used to set the real-time clock

to N increments and to start it. Each clock increment
represents 1/60s for 60 Hz systems and 1/50s for 50 Hz
systems. When the Monitor services the clock interrupt,
it passes control to location ADDR+1 with the priority
level set to P. The coding at ADDR should be in closed
subroutine form, as in EXAMPLE 1.

6.7 .RLXIY
FORM: .RLXIT ADDR
VARIABLES: ADDR = 13-bit entry point address of the

real-time subroutine from which an
exit is to be made.

EXPANSION: LOC CAL ADDR
LOC+1 20
DESCRIPTION: .RLXIT is used to exit from all real-time

subroutines that were entered via .REALR, .REALW, .TIMER
or real-time CTRL P requests. The instruction just
preceding the .RLXIT call should restore the AC with

the value of the AC on entrance to this subroutine. .RLXIT
will restore the link from bit @ of the contents of ADDR.

.RLXIT protects against re-entrance to BACKGROUND or FORE-
GROUND Mainstream real-time subroutines. When the contents
of ADDR is non-zero, the subroutine is assumed active;
.RLXIT sets the contents of ADDR to @, thus making it avail-

!When bit 8 of CAL is set to 1, an abort .TIMER is effected.

All intervals having the same address and priority level (LOC+2)
will be aborted.

able again. NOTE: Real-time subroutines should initially
have their entry point register set to @; and restart
procedures, entered via CIRL P or after CTRL T, should
reset all entry points to f.

6.8 MAINSTREAM REAL-TIME SUBROUTINES

Mainstream real-time subroutines in the Foreground are
not equivalent to those in the Background due to the manner
in which 7/0 busy situations are handled. If the Background
becomes I/O busy, the Monitor "sits on" the Background CAL
instruction (while Background is in control) until it can be
processed. Therefore, Background Mainstream real-time routines
can be executed despite the fact that Background Mainstream
is I/0 busy. If Foreground Mainstream is I/O busy, Foreground
Mainstream real-time routines cannot be executed until the busy
situation is terminated. This is due to the fact that control
is given to the Background whenever Foreground Mainstream
becomes I/0 busy. The device handler responsible for the busy
situation is remembcred in the Foreground Mainstream busy flag.
Mainstrcam real-time routines cannot then be run because they

too could become busy.

This situation can be avoided either by using .REALR or
.REALW in conjunction with .IDLE or .IDLEC, or by using .WAITR

to prevent Foreground Mainstream from becoming I/O bound.

SECTION 7

WRITING DEVICE HANDLERS FOR THE BACKGROUND/FOREGROUND
MONITOR SYSTEM

7.1 INTRODUCTION

Writing a handler which will run in the Background/Foreground

Monitor environment requires adherence to certain established

conventions which differ from those in the Xeyboard Monitor en-

vironment. The CAL handler in the Monitor has been implemented

to do as rnwuch of the function processing as possible. In giving

control to the I/O handler, the CAL handler will have set up

registers in the I/0 handler with all pertinent information (argu-
ments) of the CAL in the most accessible state, and will then
transfer control to the appropriate function processor via the
JMP table in the I/O handler which begins at word 204. There

are three types of I/O device handlers that one may wish to develop

to operate under the Background/Foreground Monitor System:

1. 8ingle user --- This handler can be used by either
the Foreground job or the Background job but not
both during the same core load; that is, it is
dedicated to one job and the Monitor System will
not permit the other job to be connected to it.

2. Sequential Multi-user --- This handler can be con-
nected to both the Foreground and the Background
job and they both can utilize it on a sequential,
first come-first served basis.

3. Multi-user --- This handler can be connected to
oth the Foreground and the Background jobs with
the Foreground job having priority on usage. If
the Background job is using the handler and Fore-

ground requires it; the Background I/0 will be
deferred until the Foreground I/O has been completed.

This section will be primarily devoted to describing the
development of single-user handlers. After having done this,

it will show the transition from single use to sequential multi-

use.

I/0 handler type 3 (Multi-user) is too involved to be

presented without example listings (such as our Multi-user
DECtape handler) and personal consultation regarding the
philosophies of the Background/Foreground Monitor System.
Consultation is available to customers whose applications

require type 3 handlers.

7.2 FORMAT OF DEVICE HANDLER'S CAL PROCESSOR

The first 37 (octal) words of the I/0 handler must have
the format described in the following pages. An assembly
listing of the Background/Foreground line printer handler

(LPA) is appended to this section for reference.
WORD @: JMS SWAP /SWAP is in the I/0 handler

The SWAP éubroutine must execute WORD5 which restores the
state of the program interrupt and DBK from level @ of the API.
The presence of this routine becomes functionally necessary
for type 3 (Multi-user) handlers to accomplish swapping from
Background to Foreground usage. The I1I/0 device independence
of the system requires that all handlers look alike to the

outside world (namely, the CAL handler).

WORD 1l: Foreground Busy Register --- must be assembled
with @ contents
#=Not Busy
Non@=Busy (Current .DAT slot number, 18 bits
if negative)

WORD 2: Background Busy Register --- must be assembled with

contents
@#=Not Busy

Non@=Busy (Current .DAT slot number, 18 bits
if negative)

7-2

The CAL handler checks the validity of the .DAT slot
number for this job (Foreground or Background), checking for
its existence, whether or not a device has been assigned to

it and if the appropriate handler was loaded.

The CAL handler then checks the appropriate busy register

and proceeds as follows:

1) If the flag indicates that the handler is
already busy, the job becomes I/0O bhound at
this level.

2) If the flag indicates not busy, it is set
to busy and the CAL handler processes the
function and passes the request on to the
device handler.

Note that .WAIT's and .WAITR's are completely processed
by the CAL handler and are not passed on to the I/0O handler_
1f the corresponding flag indicates:

1) BUSY

a) Por .WAIT in the Foreground, control
is given to a lower Foreground level
or the Background.

b) For .WAIT in the Background, hang on
the CAL.

c¢) PFor .WAITR in either the Background or
Foreground, control goes to the address
in LOC+2 (which must be above the hard-
ware memory protect bound if in the
Background) .

2) NOT BUSY - Fall through.

WORD 3: Foreground .CLOSE register -- must be assembled
with @ contents
#=.crLosE Not in progress
NON@=.CLOSE in progress

WORD 4: Background .CLOSE register --- must be assembled
with @ contents
§=.CLOSE not in progress
Non@=.CLOSE in progress

WORD 5% ION or IOF (state of PIC on INTERRUPT or CAL entries).

WORD 6: Same as WORD 5 on CAL entries; DBR on INTERRUPT
entries.

WORD 7: Return pointer. The CAL handler places the
address of CALXIT in this register.

WORD 1@g: JMP FUNC

After checking the validity of function and subfunction
codes, the CAL handler places a JMP to the appropriate entry
in the function JMP table (words 2@-32) of the I/O handler
in this register.

WORD 1l: User CAL in progress. The CAL handler sets this

register.
p=Foreground
1=Background
WORD 12: .DAT slot number (18-bits if negative). The

CAL handler sets this register,

WORD 13: Unit number for Multi-unit devices in Bits @-2,
with bits 3-17 containing the address of the
CAL. The CAL handler sets this register.

lWhen a hardware interrupt occurs to this I/O device handler, the
interrupt processor must:
a) Save the state of the program interrupt in Word 5
b) ©Place a DBR in Word 6
c) and place the interrupted program counter (with link,
extend mode and memory protect bits) in Word 7.

The CAL handler makes a general check for validity on:

a) File type

b) Data Mode

¢) MAGtape subfunction code
d) Transfer directions

e) .OPER subfunction code
f) All addresses

g) Word counts

and will pass on what appears to be legitimate values. . Each

handler must then make its own validity determination with

respect to the device it controls,

For example,

the CAL handler

will always accept data modes @ through 7; however, the device

handler may only accept a subseit of these.

the function being processed.

The contents of words Word 14 through

Adjacent to

Word 17 wvary with

what will appear

in each of these words is the limits on the values that will

be

accepted and passed on by the CAL handler.

WORD 14: LINIT --- File type P#=input
l=output
.RFAD, .REALR
.WRITE, .REALW - Data Mode 2

+MTAPE
. TRAN
.OPER

--MAGtape function
-=-Transfer direction
--Subfunction code

#=I0PS binary
l=image binary
2=I0PS ASCII

3=Image ALPHA

4=DUMP

5=DUMP ALPHA

6=are passed on

7=by the CAL handler

(ﬂ-l78)
(g-3
(1~3)

WORD 15: L.(INIT --- User restart address plus code bits (@g-2)

.READ, .REALR

.WRITE, .REALW --- Line buffer address (checked
for memory violation on software protect
bound (SCOM+31l) if Background job.

.DLETE, .RENAM

.FSTAT, .ENTER, .SEEK --- Address of Directory
entry block (checked for memory violation
on .SCOM+31 if Background job).

.TRAN --- Core starting address (checked for
memory violation on .SCOM+31 if Background
job. .
WORD 16: .INIT --- Address of Register which is to have

standard buffer size placed in it (checked
for memory violation on .SCOM+31 if Back-
ground job).

.TRAN, .READ, .REALR ~-- Line buffer word count
(from CAL ARG. LIST). Counts are checked
for core fit and negative value if Back-
ground job.

.WRITE, .REAIW --- Line buffer word count (from
line buffer word pair ct., except for
dump mode and Mode 5 which use counts
from CAL argument list.) Counts are
checked for core fit and negative value
if Background job.

WORD 17: .TRAN --- Device address (Block number)

.FSTAT --- Address of register which will have
the device code put in bits #-2, (checked
for memory violation on. .SCOM+31 if
Background job).

.REALR, .REALW --- Address to give control to on
completion of I/0 request and priority
level in bits @g-2', (checked for memory

violation on .SCOM+32, the hardware protect
bound, if Background job).

contain f, which indicates Background Mainstream. If it is a
Foreground CAL and there is no API, bits @-2 contain 1, the Fore-
ground Mainstream code.

Function JMP Table

Ignored functions, functions that do not issue IOT's ét the
CAL level, and error functions must set up to have the Fore-
ground or Background busy flag (Words 1 and 2, respectively)
cleared during the protected exit routine (which begins at

LPTIO in the line printer handler).

WORD 24 : JMP INIT /Function 1

WORD 21: JMP OPER /Function 2

WORD 22: JMP SEEK /Function 3

WORD 23: JMP ENTER /Function 4

WORD 24: JMP CLEAR /Function 5

WORD 25: JMP CLOSE /Function 6

WORD 26: JMP MTAPE /Function 7

WORD 27: JMP READ (.REALR) /Function 18

WORD 30: JMP WRITE (.REALW)/Function 11

WORD 31: NOP /.WAIT or .WAITR never dget to

o I1/0 handler

WORD 32: JMP TRAN /Function 13

WORD 33: [} /Storage for .SCOM+35, the "in
an interrupt service" flag.

WORD 34: SUBRF /Stop FGRD I/0 subroutine

When the Foreground job terminates (.EXIT, +C, terminal error, etc.)
this routine in every Foreground device isg called at Mainstream

level to effect the controlled shutting down of the device (see 7.4).

WORD 35: SUBRF /Stop BGRD I/0 subroutine

For single user device handlers (devices that
cannot be shared by Foreground and Background),
the same subroutine can be used for FGRD and
BGRD STOP I/0.

WORD 36:] /Handler I.D. code

This word has other values (Non-f) for devices

that require special consideration from the CAL
handler.

7.2.1 .SETUP

On the first (and only on the first) .INIT to a device handler,

the device handler must call .SETUP to connect the device handler's
interrupt service routine to the appropriate API channel register
or program interrupt skip chain entries. The address of .SETUP

can be found in .SCOM+55 (1558).

Calling sequence:

LAC* (.SCOM+55

DAC LPTEMP

JTMS * LPTEMP

LSDF /SKIP IOT

LPINT /ADDRESS OF INTERRUPT SERVICE

If this is not done, the first hardware interrupt for this device

will be deemed an illegal interrupt and processed accordingly.

7.2.2 1Initiating I/O

It is imperative that all IOT's that initiate hardware opera-
tions be executed during protected (API level @, IOF) exit from
the handler to assure that the exit takes place prior to the
hardware operation completing and causing re-entry to the handler

at the interrupt level for servicing.

CAL function requests that require more than one hardware opera-
tion should cause the 2nd through Nth operations to be initiated

at the interrupt level during protected exit. A handler should

not cause sitting on a CAL until the entire function is com-

pleted because this prevents optimum usage of central processor
time for the duration of the function. The user cannot do

other thinygs while the hardware operations proceed.

7.2.3 L.OPER Functions

.OPER functions (.FSTAT, .RENAM and .DLETE) are unique in
that they return information in the AC. For device handlers
that wish to utilize this function, the method is as follows:
On completion of .OPER operation, the interrupt
service level of the handler sets the appropriate
close register (Word 3 if Foreground, Word 4 if
Background) to:

1=File not present

'INFORMATION+1=File present (where information
is the device block number).

The information must not = -1

As at the completion of other I/O requests, it sets up to have
the appropriate busy flag (Word 1 if Foreground, Word 2 if Back-

ground) cleared during protected exit.

7.3 FORMAT OF DEVICE HANDLER'S INTERRUPT PROCESSOR

Figure 7-1 contains a detailed flow chart of the interrupt
service routine of a single-user handler. This is the actual
flow chart of the LPA. handler whose listing is appended to

this section for reference.

Interrupt Processor of Device
ilandler in BACKGROUND/FOREGROUND
MONITOR Environment

LPINT

Save AC, PC, L, XM,
in WORD7 of handler.
Save status of PIC in WORDS.

MP

|-

Save contents of .SCOM+35
in WORD33 of handler

non # to .SCOM+35
(on exit, .SCOM+35 is
returned to its saved state)

L~

lentered with memory I
|protect disabled and |
-~ jat hardware level (API
,or PIC) of device

Set location

g to g

Clear Clear flag, enable PIC,
STOP 1/0 DBR to WORD6 of handler
Switch "
Is Process
busy flag Interrupt
2
Y
does
this complete
I/0 reguest
LPEMPT Y
Set up to have BGRD or FGRD
busy flag cleared during -
protected exit routine.
Figure 7-1 Interrupt Service Routine,

7-10

Set up to issue
next IOT in pro-
tected (API and
PIC) exit routine.|

LPNOR

lindicates BGRD or]
_ — —"IFGRD ownership of|
|I/0 request.

Flow Chart

NOTE:

The addrese of
CALL4 is in
.SCOM+54 (1544)
CALL4 initiates
an API (or
pseudo API)
level 4 inter-
rupt with the

level 4 interrupt

processor
controlling
BGRD to FGRD
transitions
and real-
time requests.

LPNOR

lprotected exit for
|interrupt and CAL

Check for device ready
prior to initiating I/0

LPTIO

IRaise to API level @, IOF]

does WORDG6

contain

LPT-6

a DBR

—

restore

.SCOM+35 from
WORD33 of handler

ientries

[this was an |

|]interrupt

Clear BGRD and/or FGRD busy
flag as previously set up.

LPIOT

4

I/0 completed)

execute setup IOT

(IOF if

restore AC DBK

from level @

.

execute WORDS
exit status of

which is the

PIC

{

execute WORDG6
rupt entry,
CAL entry)

(DBR if inter-

same as WORDS5 if

!

’exit via WORD7J

Figure 7-1

(Cont.)

7-11

LPT31 [:;j

Raise to API level @

IOF
NOTE: [Check if this _:
The address of ;Jdevice involvedI
IOBUSY is in _ < {in I/0 busy |
.SCOM+52 (152,). : |situation]
If the FGRD j8b LAC (WORDZ JMS IOBUSY — -
became I/0 bound
on this handler,
IOBUSY will prime
the Monitor to
continue the
FGRD job on the ION
busy CAL. DBK from API level @

W\; LPNOR

Raise to API level @
_______ IOF
I"Call real- [

| time processor!
| with level/ -
| subroutine |~

~
| address in AC | = i
——————— LAC WORD17 JMS REALTP

NOTE:

The address of
REALTP is in
.SCOM+51 (151,). | J
REALTP primes ION

the Monitor to DBK from API level @
honor real-time
requests.

'To determine whether the completed operation is real-time:

a) WORD1lfg must contain a JMP to WORD27 (READ or

WORD3f# (.WRITE or .REALW).

b) and WORD1l7 must be non-@.

Figure 7-1 (Cont.)

7-12

.REALR) or

Pleasc note that interrupt service routines (the
code beginning at LPINT in the LPA. handler) must be set up

to operate with or without API.

7.4 SYSTEM ANNOUNCEMENTS

7.4.1 Errers

All device handler error messages should be terﬁinal; that is,
should terminate the operation of user programs. After the
printing of the error message, the user has the option of
typing CTRL P (to restart his program at the CTRL P restart
address), CTRL T (to return to DDT), CTRL Q (to take a dump
of memory), or CTRL C (to return to the Monitor to load

another jok).

Device handlers that wish to set up an error condition should

use the following coding sequence:

LAC* (.SCOM+66 /POINTER TO ERRORQ
DAC TEMP /SUBROUTINE.
LAC (49@2p0 /RAISE TO API
IsA ‘ /LEVEL f.
I0F
LAW CODE /SEE BELOW.
TMS * TEMP /CALL ERRORQ.
AUXARG XX /AUXILIARY ARGUMENT.
DBK /RETURN HERE.
10N

/CLEAR BUSY FLAG (WORD 1 or WORD 2)
/EXIT HANDLER VIA PROTECTED EXIT.

The first argument, given in the AC to ERRORQ, may be loaded

either by LAW code or by LAC code in the following format:

Code

Bits @-5 are ignored

Bit 6=1 means terminal exroxr
Bit 7=1 means Background error!

Bit 8=1 means Foreqground error?
Bits 9-17 is a 3-digit error code

The auxiliary argument, following the JMS to ERRORQ, will be
printed in the error message as a 6-digit octal number. The

error message will be printed in the form:
.ERR NNN XXXXXX

where NNN = the 3-digit error code

XXXXXX = the 6-digit auxiliary information

The actual printing of the error message and processing of
the error will be donc only after all interrupt processing

has ceased and when control is no longer in the CAL handler.

7.4.2 Recovery from I/0 Device Not Ready Condition

The Background/Foreground monitor system is designed to handle
simultaneously one not-ready condition per job. This is a
limitation but a reasonable one based on Keyboard Monitor

(single-user) experience.

I/0 handlers that can encounter and detect not-ready conditions
must adhere to the following ground rules in their announcement
of the non-terminal error and in their continuation once the

condition has becn corrected.

TBits 7 and -8 may both be set if the error applies to both the
Foreground and the Background jobs.

7-14

Since all I/0 in B/F handlers must be initiated in the common,

protected exit routine of the handler (the code beginning at
ILPNOR in the line printer example), it is there and only there

where not-ready conditions should be checked and handled.!

Prior to executing the desired IOT, check for not-ready with

the code at LPNOR which is as follows:

LPNOR /DO WHATEVER IS NECESSARY
/TO DETERMINE WHETHER
/DEVICE (UNIT) IS READY.

JMP LPRDY /DEVICE READY.

/WITH THE DEVICE (UNIT) NOT READY IT

/1S NOW NECESSARY TO DEFER THE

/DESIRED IOT, ANNOUNCE THE NON-

/TERMINAL ERROR, AND EXIT FROM THE

/HANDLER SET UP TO CONTINUE WHEN

/4R IS8 TYPED ON THE USER'S CONTROL

/TELETYPE.

LAC LPIOT /SAVE DESIRED IOT.

DAC - LPIOTB /

LAC (IOF /EXECUTE IOF IN

DAC LPIOT /PLACE OF IOT.

JMS LPMSG /INITIATE NOT READY MSG.
LPRDY .

Where the code at LPMSG is as follows:

/SUBROUTINE TO CALL A ROUTINE IN THE RESIDENT
/MONITOR TO INITIATE A NOT READY MESSAGE.
/CALLING SEQUENCE:

JMS LPMSG

RETURN WITH LPCTLR NON~-g IF

REQUEST HONORED, OTHERWISE,

LPCTLR IS SET TO @ AND A

TERMINAL ERROR WILL RESULT

NN

!The exception to this is when a handler can only determine not

ready at the interrupt level; that is, after it has issued the
desired IOT and an error flag results.

7-15

LPMSG 2

/DETERMINE WHICH JOB (FGRD OR BGRD)
/IS CURRENTLY MANIPULATING THIS DEVICE.

LAC

DAC

LAC
S&a!1CMA
JMP*
DAC
LAC

DAC
LAC*
DAC

LAC

ISA

IO0OF
JMS *

LPARGL XX
.ASCII
. LOC
LPARG3 g

LPFRA +
LPFRA +
D&M

ION

DBK
JMP *

Where the code at LPFRA is as follows:

LPA, t11
LPARGL
LPCTLR

LPMSG
LPCTLR
UNITNO
LPARG3
(.scomM+64
LPTMP1

(498288

LPTMP1l

/LB/
-1

- /#=FGRD, 1=BGRD

/EXIT IF MESSAGE
/ALREADY REQUESTED
/FOR THIS DEVICE.
/SET4R FLAG.

JUNIT NUMBER (BITS
/@-2) IF APPLICABLE.
/POINTER TO 4R
/OQUEUER IN MONITOR.
/RAISE TO API
/LEVEL @ AND

/TURN OFF PIC..

/GO TO +R QUEUER.
/P=FGRD, 1=BGRD,
/DEVICE NAME

/UNIT NUMBER (BITS @§-2) IF APPLICABLE
299¢@p /FGRDAR SUB AND DEVICE'S API LEVEL
208099 /BGRD4R SUB AND DEVICE'S API LEVEL
LPCTLR /REQUEST NOT HONORED-TERMINAL ERROR.

/PIC ON (RETURN HERE IF HONORED) .
/DEBREAK FROM LV

LPMSG

/SUBROUTINE ENTERED AT API LEVEL 2, PIC OFF.
/WHEN +R IS INPUT FROM KEYBOARD, EVEN IF DEVICE IS

/ONLY CONNECTED TO PIC, AN API HARDWARE

/LEVEL (ﬁ,l,2,0Rg3) MUST HAVE BEEN SPECIFIED.

LPFRA
D2&M

LPCTLR

/DO WHATEVER IS NECESSARY
/TO DETERMINE WHETHER DEVICE (UNIT)

/1S READY

/IF STILL NOT READY, CALL LPMSG
/TO CAUSE NOT READY MESSAGE TO BE

/OUTPUT AGAIN.
JMS
JMP
LAC
LPIOTB XX
LPFOUT ION
DBR
JMP*

LPMSG
LPFOUT
LPIOAC

LPFRA

/THE CONTROL R(4R)IN PROGRESS FLAG
/MUST INTTIALLY BE CLEARED IN THE

/STOP 1/0 ROUTINE.
IPCTLR 7}

/CLEAR 4P FLAG

/BYPASS IOT.

/AC FOR IOT IF APPLICABLE.
/DEFERRED IOT .

/PIC ON.

/DEBREAK FROM LEVEL #.

/+R FLAG

7-16

7.5 STOP I/0 TECHNIQUE

In the Background/Foreground Monitor environment, it is
necessary to have some orderly means of stopping I/0 that is
in progress. When a job terminates (.EXIT, 4C, terminal error,
cte.), the Monitor System must assure that all I/0 for that job
is shut down before it removes the associated device handlers

from core. This is accomplished via the following method:

a) Word 34 of every device handler points to the
Foreground STOP I/0 subroutine which is
internal to the handler.

b) Word 35 of every device handler points to the
Background STOP I/0 subroutine which for
single~user handlers can be the same as the
Foreground STOP I/0 routine.

c) When a job terminates, the Monitor calls the
appropriate S10P I/O0 subroutine at Mainstream
level which actually accomplishes the orderly
shut down of I/O.

d) TFor devices that can stop I/0 hardwarcwise,
via an IOT, this plus steps 4, 5, 6, and 9
must be done.
For devices that cannot stop I/0 hardwarewise via an IOT,
the following procedure can be used:
1) Raise to level @ of the API and turn off the
program interrupt to protect against getting

interrupted in mid-decision.

2) Check the R flag. If it is set, clear the
gsoftware flag that will be tested in Step 8

and bypass Step 3. This is done because no
I/0 is under way if this handler is waiting
on a *R.

3)

4)

5)

6)
7)

8)

9)

Check the appropriate busy register (WORD1
oxr WORD2). 1If it is not set, no I/0 is in
progress; therefore, we do not have to wait
for its completion. If it is set, set a
software flag that will be tested in Step 8.

Clear the appropriate busy register (WORD1
or WORD2).

Clear the appropriate .CLOSE register (WORD3
or WORDY4).

Clear the 4R flag (see Section 7.4.2).

Debreak (DBK) from API level @ and turn on
the program interrupt to allow servicing of
hardware flags that may have or will occur.

If the appropriate busy register had been
set, sit in a tight loop testing the
software flag that was set in Step 3 above,

I.E. LAC FLAG
SEA
JMP .-2

FLAG is the STOP I/0 switch that must be
cleared (SET=@) by the interrupt service
routine on all interrupts that are final.
Final means that no other flags will occur

without more I1/0 being initiated via an IOT.

The interrupt service routine must also
make a decision whether or not to initiate

more I/0, When the appropriate busy regis-
ter (WORD1l or WORD2) has been cleared,
(Step 4) this should indicate that no new
I/0 should be started. (See the flow chart
in Section 7.3).

Exit from the STOP I/0 subroutine.

7.6 SEQUENTIAL MULTI-USER DEVICE HANDLER

To accomplish the transition from a single-user device

handler to a sequential multi-user device handler, the follow-

ing procedures must be adhered to:

a)

b)

c)

d)

The device handler must be the "A" version;
that is, LPA., MTA., etc. as the Background/
Foreground Monitor System will only allow "A"
versions to be connected to both jobs simul-
taneously. Also, this shareability must be
specified to the B/F system at generation
time.

The SWAP subroutine (pointed to by WORD@ of
the handler) must set both busy registers
(WORD1 and WORD2) to prevent the Foreground
job from forcing itself in before the Back-
ground job has completed its operation.

This is in addition to and prior to its

normal duties as outlined in 7.2.

There must be two unique stop I/0 subroutines,
one for Foreground (pointed to by WORD34) and
one for Background (pointed to by WORD3S5) .
Before executing the STOP I/0 procedures, both
subroutines must first determine if the I/0
belongs to their respective job. This is done
by testing WORD1ll, (@=Foreground I/0, l=Back-
ground I/0O). They should do nothing if the
other job is in control.

In Step 2 of the stop I/0 Routine, if the 4R
flag is set, the I/O busy routine in the Moni-
tcr (pointed to by .SCOM+52) must be called in
case the Foreground job is I/0 bound on this
device.

Becausce the SWAP subroutine sets both busy
registers (WORD1 and WORD2), the CLEAR BUSY
FLAG routine that sets up to have the flags
cleared during protected exit from the device
handler must always set up to have both flags
cleared. The STOP I/O subroutines should also
clear both busy registers.

7.6.1 .WAITR

When a sequential multi-user device handler is being used by
the Background job, the Foreground job will become I/0 bound

if it attempts to use the same handler.

The .WAITR monitor function affords both the Foreground job
and the Background job a means of determining that the handler
is available before requesting I/0O from and to it. This
feature is only useful when the job has other things which
can be performed while it is waiting for the handler to free
up.
7.7 DEVICE HANDLER LISTING
A listing of the Background/Foreground line printer device
handler (LPA) is given on pages 7-21 through 7-34 of this

section.

1¢-£

-

=

heeea
a2ee1
aeee2
geaes
20004
a8@es
agpe6
page7

200149
80011
pee1?
20013
o2@14
80015
02816
Beo17

aeaza
gep21
pee22
oea23
2eQ24
02825
nav2é6
aeaz7
#8839
20831

>
(]
™

DODVODI DI VWO VDD

DOV TV VODUVODVVD

[y

7p65p1
706502

706566
706526
706546
706601

7066082
736686

706626

P00Ca3

ﬂ G4 AR
IO Lo

1224525
Zeapean
aepean
220000
geaea0
740040
740040
740040

740740
740040
749040
740040
740040
740040
740040
740040

600046
600523
600512
600523
600523
600vaQ
600523
6008512
600167
J49P40

> >

> > > >

> > >»rp» >3 0 > > > >

> P> > P> > >

>V IV VDDV DOD

VAR EDIT

TITLE LPA,

#4 ...

2 DEC &9

/LPA, --~-RACKGROUND,FOREGROUND MONITOR SYSTEM,
/LPA.=LINE PRINTER (
/CALLING SFEQUENCE:

/CAL+,.DAT SLOT (9-17)

/FUNCTION

/N ARGUMENTS,

647)

/NORMAL RETURN
/SKIP ON DONE FLAG -CONNECTED TO INTERRUPT
/CLEAR DONE F_AG, CLEAR PRINTER BUFFER,

LSDF=7p6501
LPCB=786582

LPLi=786566
LPL2=786526
LPLD=706546
LSEF=706681

LPCF=7066022
LPPB=706606

LPLS=7086626

/SET DONE FLAG

HANDLER,

/LOAD PRINTER RUFFER 1 CHAR
/LOAD PRINTER RUFFER 2 CHAR (AC 6-11,

/LOAD PRINTER BUFFER 3 CHAR (AC 2-5,6-11,12-8)

WHERE N 1S A FUNCTION OF FUNCTION,

(AT 12-17)

/SKIP ON ERROR FLAG -NOT CONNECTED TO

/INTERRUPT

/CLEAR DONE FLAG
/CLEAR DONE FLAG, SELECT PRINTER,

/PRINT BUFFER,
7LDAD SPACING BUFFER (AC 15-17),
/SET DONE FLAG

SWAP

+MED=3
.SCON:l@?

.GLOBL LPA,
LPA. JMS

@

@

?

7
LPSHCH XX
LPWRD®6 XX
LPTOUT XX

/START OF DATA REGISTERS,
/FOR SINGLE-USER DEVICES,

LPWD1@ XX

XX
LV2KWC XX
LPSVAC XX
LPWPC XX
LPLBHP XX
LPBCT XX
LPWD17 XX

/END OF DATA REGISTERS,
/BEGINNMT*G OF

LWRITE
LV2FC

JMP
JMP
JMP
JMP
JMF
JMP
JMP
JMP
JMP
XX

FUNCTION DISPATCH TaABLE,

LPIN
LPIGN
LPERR
LPIGN
LPIGN
LPCLOS
LPIGN
LPERR
LPWRT

CLEAR BUFFER,

SET DONE
SPACE

12-17)

FLAG

/FOREGROUND
/BACKGROUND
/FOREGROUND
/BACKGROUND
/10N OR 10F
/10N OR IOF

BUSY REGISTER,
BUSY REGISTER
.CLOSE REGISTER,
.CLOSE REGISTER.

OR DBR

/RETURN POINTER

/JMP FUNCTS
/CAL OWNER

(@=F,1=B)

/.DAT SLOT NUMBER
ZUNIT NUMBER (BITS @-2) CAL ADDRESS (BITS 3-17)

/W14 _
/W15 - LINE
/W16
/W17

/ INIT

BUFFER ADDRESS,

/.0PER - IGNORED.
/.SEEK - ERROR,

/.ENTER - IGNORED,.
/.CLEAR - TIGNORED,
/.CLOSE

/ MTAPE - IGNORED

/.READ (.REALR)

- ERROR

/ WRITE (,REALW)

/.WAIT (,WAITR) PROCESSED COMPLETELY

BY CAL HANDL

¢i-L

LPA,

22P32
28033
R34
02p35
PeR36
ann37

0g49
vega1
nagaz
20043
peo44
26845

22046
an@a47
72050
naegs1
20052
a0e53
@254
a2a55
aeess
aees7
pegé6n
800861
Q62
02263
0o064

20065
20366
pep67
pee7e
BoB71
@ea72
aeB73
o2874
20075
veR76
pag77
a210a@
0v101
aa1@2
g31@23
ve1e4
@ae1es
na126
go1a7
22110
20111
p@112

PAGE

Eeliieolie o i o B VI v}

VDTV D DDO

VDVTVDVDVUVD VOOV TVDID

VDDV DOD UV DVDDDVDUVDOVODVVITVO DD

2

5245172
742547
272531
#22531
RAAA22P
gaprae

1487212
14434
750221
34435
200632
628064

750281
240212
240231
209623
260216
220604
249253
128253
726501
8e035a
200262
240253
600263
208605
040114

120120
220606
940237
108571
200006
540165
741000
6ea1ne
120037
000007
2033
204733
060607
748000
740002
200619
240122
240103
200435
740040
200013
703384

»> » D DP U

VO P> DO

VDVDVDVDV» DVOD DO

VP> VDDV »>P»0DDDDVIV>»0DDVDDODD

LPERR

P
[

LV2HWC
PGECNT
CMA
LPIOAC
(LPLS
LPCOMD
INE,
CMA
LV2HC
LV2FC
(g4
LPA,.+16
(.SCOM+55
LPIN2
LPIN2

T
«+2
LPIN2
i
(LPCB
LPIOT

JmMp
SCCM35 XX
LPST
LPST
LPZERO 4
LPTMP1 @
/.CLOSE LPT ROUTINE
LPCLOS DEM
DZM
CLA!
DAC
LPSPCE LAC
JMP
JINIT LPT ROUT
LPIN CLA!
DAC
DAC
LAC
DAC#
LPIN2 LAC*
DAC
LP57T JMS
LSOF
LPIN
LPWORD LAC
LPHRTB DAC
LP3CHR JMP
LAC
LPCOMD DAC

/., TRAN - ERRQR
/STORAGE FOR ,SCOM+35

/FGRD STOP 1/0 SUBROUTINE

/RGRD STOP 1/0 SUBROUTINE
/HANDLER ID

/FORM FEED,
/INITIALIZE #LINES/PAGE COUNTER

/SET UP T0 DO I/0 DURING
/PROTECTED EXIT.

/SET UP FOR FORM FEED ON INTERRUPT FROM LPCB.
/52 (DECIMAL)---RETURN
/STANDARD LINE BUFfFER SIZE TO USER.
/ - ONCE ONLY CODE.

/.SETUP - THESE 6 REGISTERS ARE OVERLAYED.

/COMMON EXIT SEQUENCE FOR CAL LEVEL
/AND INTERRUPT LEVEL ENTRIES,

/
/
LPNOR

LPTIO

LPT.6

LPFCLR
LPBCLR

LPIOT

JMS
LAC=
DAC
JMS
LAC
SAD
SKP
JMP
JMS+#
LPA,
SCOM
LAC
DAC=
NOP
NOP
LAC
DAC
DAC
LAC
XX
LAC
DBK

LPNRDY
(.SCOM+54
LPTMP1
LPRAIS
LPWRD6
LPDBR

LPT.6
LPTHMP1

+7

35
SCOM35
(.SCOM+35

(NOP

LPFCLR
LPBCLR
LPIOAC

LPSVAC

/CHECK IF DEVICE READY,

/ADDRESS

/0F CALL4

/RAISE TO API LEVEL @, TURN PIC OFF,

/INTERRUPT
/CAL

/PC

/RESTORE IN INTERRUPT

/HANDLER FLAG, _

/NOP IF FGRD BUSY FLAG NOT TO BE CLEARED
/NOP IF BGRD BUSY FLAG NOT TO BE CLEARED
/RESET

/SWITCHES.

/AC FOR 10T
/10F OR 10T
/RESTORE AC.
/FROM LEVEL @,

¢l-4

LPA,

82122
#2121
22122
22123
@124
73125
Z4126
e2127
a213e

gae1zx1
22132
#2133
28134
69135
20136
83137
22142
PB141
pa14?2
22143
paL44
02145
BR146
nB146
146
#2147
1509

Aa151
pa152
22153

ae154
A2155
ve156
ve1s57
ae168
82161
AR162
82163

>
[ve]

1 g 01

P VR VIS Ol s I s I 3

VOV DDODV VOO0 0DOND OD

D v\

VWV D UDD OO

[As

3

470725
429706
479114
400117
529207
27¢700
705621
622127
2¢:011@
243163
206574
247110
180121
6528120

gera2p0e
228556
749201
626131
248554
298011
249144
228611
249237
128571
128037
7492449
46240
2ee7aa

aeaaga
2P@154
208154

140556

1e9576
6208131

Jegnae
142556
706601
60R1K2
10@131
620164
200435
740049

DXV VDD VDIFP>0 VO ITD

> r»pr DDDVDDDOLCOIND» D>

D 0

X 2

»0 00U >P> O >

LPNRDY

/SUBROUTINE TO call & ROUTINE IN THE RESIDENT MONITOR TO
/INITIATE a NOT READY REQUEST,

XCT LPA L +5
XCT LPa,+g
ch .+‘
XCT .+t
JME &

2

LSEF

JMP s LPNRDY
LAC LPIOT
DAC LPIOTB
LAC LPIOF
DsC LPIQT
JMS LPMSG
JMP® |BNRDY

LPA,+7

/CALLING SEQUENCE:

/
/
/

/
LPMSG

LPARG1

/

/SUBROUTINE FENTERED
/1S ASSOCIATED

/
LPFRA

LP10OTB

JMS LPMSG

/SAVE

XOT.

/10N OR I0OF

/10N OR IOF OR DRR

/RETURN POINTER

/DEVICE READY,

/EFFECTIVELY DEFER 10T,

JINITIATE NOT READY REQUEST,

RETURN WITH LPCTLR NON-g IF REQUEST

HONOREDS @ OTHERWISE,
4

LAC LPCTLR
SZAICMA

JMPa LPMSG
DAC LPCTLR
LAC LPA.+11
DAC LPARG1
LAC# (.SCOM+64
DAC LPTMP1
JMS LPRAIS
JMS= LPTMP1
XX

JASCIT /LP/

.Loc -1

@

LPFRA+220870
LPFRA+200008

DM LPCTLR
JNS LPLOWR
JMPe LPMSG

WITH
@
[1F- LPCTLR
LSEF
JMe . *3
JMS LPMSG
JMP LPIOTB+1
LAC LPIOAC
XX

AT APl LEVEL 2,
LINE PRINTER,

PIC

/tR FLAG,

/AVOID DUPLICATE CALL.

s CDD 4 Al DCANV
F e 7 ARutCARU]

REAHECTCH

LR A oA~ L I = & Y

/SET tR IN PROGRESS FLAG,

/8=FGRD, 1=BGRD

/POINTER TO tR QUEUER

/70 API LEVEL 8.
/GO 1O +R QUEUER
/@=FGRD, 1=BGRD

/UNIT NUMBER

PIC OFF

/RETURN ADDRESS AT LEVEL 2

/SAME FOR RGRD
/TERMINAL ERROR,
/P1C ON, DEBREAK

OFF, WHEN

/CLEAR *R FLAG

REQUEST NOT
FROM LV @

+tR FROM KEYBOARD

/NOT READY CONDITION

/NOT CORRECTED.
/AC FOR 107

/EXECUTE SAVED 10T,

HONORED

he-£

LFPA,

8v164
30165
20166

28167
31179
28171
wa172
23173
82174
ae175
22176
20177
AQ200
20201
310202
3a2n3
raz2e4
aa2e5
pQ206
agazez
agz21a
722211

00212
00213
20214
@0215
#0216
ge217
20220
92221
20222
00223
90224
20225
08226
00227
80230
A0231
08232
02233
@8234
20235
6@236
20237

PAGE

T T 0

VOV VUVDVDTDDOVDIDVDODDTI VD

DV VUVDVDVVUDUDODUDVOUIDIT D

4

7207242
723344
622154

753471
Rap4sn
20g0n14
540612
620176
765007
600513
220215
500613
840014
140212
449715
449015
149031
77777@
249212
777775
D4aP62
l14p06@

777778
D4pgR16
2@p614
249304
440450
609235
777000
349214
340014
741300
600301
220a15
B40055
44p0215
220715
403056
449115
777773
240450
777772
240057
200056

20 >

DOV VP> VD VDDONVDODIDP>»0V V0>

DVOP»> D0V DVDVDODVDDVDD>V0>0D0D0DDD0 >

LPDBR

/WRITE
LPWRT

LPOK

LPTSTR

LPCONV

LPGETS
LPGET6

1OA

/THIS ROUTINE GETS THE

/NEXT 7-BIT ASCI1 CHAR,

/FROM THE 5/7 LINE BUFFER (USER'S AREA)

/1T RETURNS WITH IT RIGHT

/JUSTIFIED IN AN OTHERWISE

/CLEAR AC,

/LP5CH MUST BE SET 710

/777777 BEFORE THE INITIAL

/CALL TO LPCONV, LPWPC TO WPCc INCLUDING HEADER,
/LPLBRHP TO 1ST DATA WORD IN L.B,{(USER'S AREA)

Law 17770 /INITIALIZATION

DAC LP8CT /FOR

LAC (SAD LPCTAB /CONTROL CHAR,

DAC LPVTST /SCANNING,
1SZ LP5CH. /MODIFIED FOR HOR, TAB,
JMP LPGETS /THIS 5/7 PAIR NOT EXHAUSTED.
LAW 170208@

TAD LPWPC

DAC LPWPC /SKIP ON NON 9,

SNA!SPA

JMP LPEND /WORD PAIRS EXHAUSTED
LAC# LPLBHP /PICK UP NEXT

DAC LPS7T /WORD PAIR

1SZ LPLBHP

LAC# LPLBHP
DAC LP57T+1

ISZ LPLBHP

Law 17773 /RESET CHAR, COUNTER
DAC LPsCH /FOR THIS WORD PAIR
LAW 17770

DAC LPS57T+2 /GO THROUGH SHIFT LOOP 7 1/2

LAC LP57T+1

NRk /FROM LEVEL 2
JMP & LPFRA
LPT ROUTINE,
CLA!CMA
DAC LPBCH /INIT BEFORE CALL TO ,LPCONYV
LAC LPA,+14 /DATA MODE BITS 15-17
SAN (2
JMP LPOK /10PS ASCII1
LAw 5007 /1LLEGAL DATA MODE.
JMP LPERB&+1
LACs LPLBHP /WPC
AND (377087
DAC LPWPC
DZM LV2KWC
ISZ LPLBHP /MOVE L.B. POINTER (IN USER'S
1S2 LPLBHP /AREA) TO 1ST DATA WORD,
DZEM LV2FC /10PS ASCI! MODg NO FORM CONTROL
LAW 17770 JINITIALTZE SWITCHKH AT LPCONV
DAC LPCONV
LAW 17775 /3 CHAR, COUNTER FOR
DAC LP3CHR /7376 WORD,
DZM LPWORD /CLEAR DATA WORD,

TIMES,

q-£

LPA,

v2242
G4l
wiag4
ne243
@wZp44
70245
Y246
pR247
6e25¢
09251
20252
7253
23254

2255

20256
pe2s57
pe26@
Na261
20262
#0263
20264
ga265
Ba266

20267
2a279
pe271
00272
€8273
P0274
80275
80276
ae277
82370

pA301
26302
80303

na3e4
20325
ge3né
ap3e7
88310
23311
#2312
22313
aB314
a0315

PR316
aB317
20320

el
»
D

n

DWWV V HDDOD DD VDTV DODUVDLD DT I

MUV DTVDVDITVTVD DD

pel

T x

VDV VD DDV VY

Pelps]

£

5

7LPTAP
442¢57
67245
508615
6727257
PARTDA
2¢ 2755
74712
B4 755
620237
54615
620212
342357
741132
6NR3B4
340616
741187
340617
34@627
520621
24¢269
448262
620273

4403212
B4R435
208622
620264
742218
742018
742010
508616
Pagren
6268212

20pe23
papge1?
62A332

740047
600316
442394
442316
600304
5473446
60@3@21
540447
629321
60@212

208715
049031
608212

o - o] VD00 >0 00

o]

VXDV

0 0

WHDVDODDD» DU DDDIDPe UHODOD >

RAL
1S#
JMP
AND
JMP
DAC
LAC
RAL
DAC
JMP
LPCON1 SAD
JMP
TAD
SPA
JMP
TAD
SPa
TAD
TAD
LPCON2 AND
XOR
152
JMP

157
DAC
LAC
JMP
LPCON3 RTL
RTL
RTL
AND
DAC
JMP

LP57T+2

¢

(177 /GOT CHARACTER,
LPCON1

LP57T+1

LP57T

LPS7T
LPGETS

(177

LPCONV /DELETE RUBOUTS,
LPM4Q /-49

LPVTST /CHAR, <4@---CONTROL CHAR,
(777782 /=100

(40
(129 /148-176 MAPPED INTO 108-136
(77 /6=-B1T TRIMMED,
LPWORD /CONSTRUCT 3/6 WORD,
LP3CHR /3 CHARACTER COUNTER,
LPCON3

/DATA WORD COMPLETE.
LV2WC /INDEX DATA WORD COUNT
LPIOAC
(LPLD
LPCOMD

/SHIFT CHARS., LEFT

(7777086 /IN CASE LINK WAS ON,
LPWORD
LPCONY /GET NEXT CHAR,

/END OF CHARACTER STRING OR CARR, RETURN (10PS ASCII)

LPEND LAC
DAC
JMP

(47
LV2uC
LPHT3 /PAD LAST WORD WITH SPACES,

/CONTROL CHARACTER ROUTINE, - CHAR, IN AC,

LPVTST XX
JMP
157
1SZ
JMP
SAD
JMP
SAD
JMP
JMP
/COMPUTE FORM
/IN LV2FC
LPFORM LAC
DAC
‘ JMP
/CONVERT HOR.

/SAD LPCTAB~SAD LPCTAB+7

LPFORM /VERTICAL FORM CONTROL CHAR,
LPVTST /SAD LPCTAB+N=-SAD LPCTAB+N+1
LP8CT

LPVTST

LPCTAB+12

LPEND /CARRIAGE RETURN,

LPCTAB+11

LPHT /HORTZONTAL TAB,

LPCONYV /DELETE MEANINGLESS CHAR,
CONTROL CODE AND PLACE

LP8CT

LV2FC /..3.H, IN D.B,

LPCONYV

TAB TO N SPACES, WHERE N IS THE NUMBER

9¢-L

LPA,

22321
nn322
22323
22324
2@325
6A326
092327
na330
88331
8332
20333
70334
B335
08336
AB337
20342
02341
Qan3az

00343
AR344
28345
28346
P0347
20350
20351
#2352
P3353
Bp354
28355
BO356
02357
20360
9361
0362
BB363
07364
Bn365
20366
na367
2e37@
en371
pa372
a9373
20374
ae375
BB376
88377
22409
0401

3@402
20403
02404

PAGE

DWVWOVDVDOVDDDLD VXL VDO DD

T XU D

VOV DDV VDV DDOVDTVDODODODODOVOVDD VDD DV VOO D

6

220017
7447212
349012
340624
34067
340625
742300
62A326
348425
Bagrel
208626
24p21?
766240
449061
600263
777774
P4p212
600212

B437%13
220236
d40¢07
200372
620361
6363343
24P 13
280352
040097
1483502
700314
750109
77774¢
349372
@425
228627
P40233
7582021
pep6eaz
220359
740200
1608636
706692
700642
280165
B4QeRs6
149555
2eena1
340002
741220
6027451

209212
741200
6@p451

D V> DDVDP>DVDVOD» DVOUP>»DT

U>» DDVDD VP> DP>VDVP>D VDD > V0 VTDUVDIDND

>

/NECESSARY T0 HAVE THE NEXT CHAR, IN COLUMN 11,21,31,41,51..

LPRT LAC LV2HC
CLL!RAL
Tall LVZHC
TAD (4
TAD LP3ICHR
TAD (777766
SMA!SZA
JMP -2
TAD LPOVRP
DAC LPHRTB
LAC (JMP LPHT2
NAC LPCCRV
LAW 40
1SZ LPHRTB
JMP LPCONZ
LAW 1777@
DAC LPCONV
JMP LPCONV
/INTERRUPT HANDLER,
LPPIC DAC LPSVAC
LAC# LPZERO
DAC LPTOQUT
LAC LPION
JMP LPSTON
LPINT JMP LPPIC
DAC LPSvAC
LAC LPINT
"DAC LPTOUT
DZM LPINT
10RS
SMAICLA
LAW 17748
TAD LPION
DAC LPSWCH
LAC# (,SCOM+35
DAC SCOM35
CLA!CMA
DAC#® (,SCOM+35
LAC LPINT
SZA
DZEM#
LPCF
LPION 10N
LAC LPDBR
DAC LPWRDS
DZM LPSTPS
LAC LPA.+1
TAD LPA,+2
SNA
JMP LPEMPT

LPHT3

LPHT2

LPM4p

LPSTON

LPZERO

/DATA WwORD COQUNT
/X2
/X3

/CURRENT wORD CHAR, COUNTER,
/-1a (DECIMAL)}

/SAVE AC

/SAVE PC, L, EM, MP

/P1C ENTRY,
/AP1 ENTRY, SAVE AC,
/PC, L, EM, MP

/6=APl ENTRY
/READ 1/0 STATUS

/PIC OFF -- BUILD IOF
/PIC ON -~ [ION

/PIC ENTRY
/CLEAR LPT DONE FLAG
/ENABLE PIC

2111,

/CLEAR STQOP 1/0 SWITCH

/D0 NOT CONTINUE I/0 IF

/BOTH BUSY FLAGS ARE

/INITIATE MORE QUTPUT IF APPROPRIATE,

LAC LV2WC
SNa
JMP LPEMPT

LPTOK

2

LC-L

F1405
Vw426
GBr407
Pd440
22411
22412
27413
27414
27415
20416
32417
Ba420
20421
00422

-82423

26424
29425
80426
aa427

00430
20431
2p432
82433
20434

#0435

20436
20437
20440
73441
20442
27443
P0444
#0445
20446
80447
20450

20451

Bn4s2
82453
20454
#4455
@2456
nR4s7

PAGE

T XH D 0D TV DOVDVDDVD VDTV DVDD VOVDDDOD DL T

X

DLV DDV VDDV DY

palivsiiviie s o B o]

7

74117
60p412
547627
600413
6BR2N7
140E1°?
777726
341434
740201
20@731
543425
6R@4302
500637
543630
14p434
B43435
777776
453731
600044

149¢12
447434
208631
6AaA64
papeee

peanan

777752
777761
777762
777753
777763
777764
777760
777754
777755
777751
PReRaN

122476

229632
240037
1098571
200633
120237
108576

>0 20 VO VD V» DVDVDVDVIVDOU> 0> DDUVDD >

>

> P> > P> D> P> P> >

Pl

DOVVO DD

SPA

JMP LPCLSE
SAN (52 /BUFFER FULL,
JMP LPSPPR
JMP LPTSTR
LPCLSE NZM LVOWC

LPSPPR LAW 17

786 ' /1S PAGE FULL?

TAD PGECNT

SZAICM

A /YES - FORM FEED

LAC LV2FC
SAD LPOVRP
JMP LPOVER /OVERPRINT,

AND (7
SAD (7

DM PGECNT /INIT #LINES/PAGE CNT

LPVMOV DAC LP

10AC /VERT. SPACING BEFORE PRINTING

LPOVRP LAW 17776
DAC LV2FC
JMP LPSPCE

/WORD COUNT EXHAUSTED.

LPOVER DZM LV2KC

1SZ PGECNT /INCREMENT #LINES/PAGE CNT
LAC (LPPRBR /PRINT BUFFER,
JMP LPCOMD
PGECNT [JINITIALIZED TO @ WHEN AT TOQOP OF FORM
/INCREMENTED BY 1 UNTIL 58(1@) LINES
/ HAVE BEEN OUTPUT OR FORM FEED IS ENCOUNTERED
LPIOAC @ .
sTABLE OF ASCII CONTROL CHAR'S SCANNED BY LPT IN [OPS ASCII MODE
LPCTAB 777752 /LF-EVERY LINE B . ---12
777761 /DC1~EVERY 2ND LINE 1 ---21
777762 /DC2-EVERY 3RD LINE 2 --=22
777753 /VT-EVERY 6TH LINE 3 ---13
777763 /DC3-EVERY 1@TH LINE 4 ---23
777764 /DC4-EVERY 20TH LINE 5 ---24
777768 /DLE-OVER PRINT 6 -———20
777754 /FF-TOP ON NEXT FORM 7 ---14
777755 /CR ~—=15
777751 /HT --=11
LP5CH @ /577 COUNTER

/SET UP SWITCH IN EXIT ROUTINE TO
/CLEAR FOREGROUND OR BACKGROUND BUSY REGISTER AS
/A FUNCTION OF WORD11, AND PLACE IOF IN LPT

/10T REGISTER SO
LPEMPT JMS
/1S THIS DEVICE
LPT31 LACH
DAC
JMS
LAC
JUMS =
JMS

THAT NO NEW 1/0 WILL BE STARTED.

CLFLAG
INVOLVED IN 1/0 BUSY SITUATION,
(.SCOM+52 /ADDRESS OF
LPTMP1 /170 BUSY TESTER
LPRATIS /RAISE TO LEVEL @ AND TURN OFF PIC
(LPA,
LPTMP1
LPLOWR

/
/ROUTINE TO DETERMINE IF THIS 1/0

/WAS A REAL TIME

REQUEST OR NOT,

8-/

VA4 RA
d2461
JA462
22463
2v464
R:465
2r4a66
22467
23470
2A471
22472
22473
A2474
00475

28476
na4a77
easae
24501
a85¢2
22503
aase4
38505
agsns
a05@a7
pes51@
#2511

Bas12
23513
82514
29515
20516
ad517
ves52a
88521
@e522

ABs523
28524

43525
2a526
aes?27
82534

98531

O
»
s

MDODUVUDV DD TOLDDDHOIT T

DVDVVDDDIT NV DVDO

V0DDVVDOOVDH DD

Pl

T DL

X

m

3

2e0r17
741223
600¢65
202634
540712
741¢092
600265
220635
240237
140571
280217
120237
128576
608765

oopear
208574
g4@110
200411
740200
60257
200543
048102
62@476
2008544
242103
620476

aeas512
765086
240037
200013
240566
200011
740200
200636
240037
128557

100476
620265

peannn
420005
703304
628525

woerge

VD VVOVDDVD VOOV DVDDP»> N

DDODDOVODOD> D00 >

0 D0 VD0V P>0D00 0> 0

0> >

LAl
SN&
JMP
LAC
SAD
SKR
JMe
LAC#*
DAC
JMS
LAC
JMS=#
Jns
JMP

/SUBROUTINE TO SET UP CLEARING OF THE -

LPWD17
LPNOR
(JMP LWRITE
LPWD10

LPNOR
(.SCOM+51
LPTMP1
LPRAIS
LPWD17
LPTMP1
LPLOWR
LPNOR

/NOW @ IF REAL TIME,
/NCT [REALW

/JMP FUNCTION

7/ .REALW

/NOT REAL TIME REQUEST,
/ADDR, OF

/REAL TIME PROCESSOR

/APPROPRIATE BUSY FLAG (AT PROTECTED EXIT TIME)

/AND NULL (IOF) LINE PRINTER 10T

/REGISTER.,

CLFLAG [
LAC
DAC
LAC
SZaA
JMP
LAC
DAC
JMP =
LAC
DaC
JMP &

/

LPERR=,

LPER26 LAW
DAC
LAC
DAC
LAC
SZA
LAC
X0OR
JMS

/

LPIGN JMS
JMP

/THIS SUBROUTINE IS EXECUTED BY THE
/CAL HANDLER VIA WORD @ OF THIS I/0
/HANDLER JUST PRIOR TO GIVING CONTROL
/T0 THE HANDLER AT THE APPROPRIATE
JENTRY IN THF FUNCTION DISPATCH TABLE.

SKWAP [

XCT

DBK

JMP e
/STOP 1/0 SURROUTINE
LPSTP [

LPIOF
LPICQT
LPA,.+11

o+
LPFBSY
LPFCLR
CLFLAG
LPBBSY
LPBCLR
CLFLAG

5086
LPTMP1
LPSVAC
LPTAUX
LPA,+11

(3000
LPTMP1
LPTERR

CLFLAG
LPNOR

LPA.+5

SWAP

/10F

/WORD 11 OF LIVE REGS,
/@=FGRD, 1=BGRD

/FOREGROUND
/BACKGROUND
/ILLEGAL- FUNCTIONS

/BGRD

/CLEAR BUSY FLAG

/10N OR I0F
/FROM LEVEL @

6~/

LPA,

42532
V9533
22534
12535
27536
99537
20540
22541
29542
P0543
80544
19545
20546
29547
20550
24551
80552
#n553
na554
2555
20556

aas5s7
28560
09561
B@562
A9563
pa564
@0565
28566
#8567
2057@

20571
20572
20573
82574
22575

aA576
nas77
Ba6na
naeal

aa6e?
20603
AA6n4
AR6RS
paees
gae6o7

PAGE

TVVHDVDV VOO LTDODLOVDOODDDHODIT LU

VD DVVDVDVDDIOD VDT

Pl s i ol s LAV D!WD

TV VDIV

9

1ea871
202554
750227
638542
200731
342742
752247
747501
24.555
14¢2@1
1487072
142733
140704
148556
129576
288555
740200
600551
6208531
neaean
pagana

rarpa
240564
220637
048037
108571
740040
12p@37
740242
108576
620557

popeae
200640
785584
7000202
620571

aearan
703304
700042
620576
aagepe
706626
aaBe6a
Bpad155
706502
200154

- Pe135

P O00V> DVODUVLIVD DI > D0 >N 2

0> > 0> DU V> VT D>

»» > > >3 0P» > >

sl [T
L7
LT
al 17T
«L]T
«LIT

LPCLER
LPFBSY
LPBBSY

LPSTPS
LPCTLR
/
/

JUMS
LAC
SZaiCLA
JMP
LAC
TAD
SZalCLA
CMA
DAC
NZM
DZEM
DZM
NZM
DZM
JMS
LAC
SZA
JMP
JMP 4

@
4]

LPRATIS
LPCTLR

LPCLER
LPA,+1
LPA,+2

LPSTPS
LPA.+1
LPA,+2
LPA.+3
LPA,+4
LPCTLR
LPLOWR
LPSTPS

=2
LPSTP

/PROTECT
/D0 NOT HANG IF
st+R IN PROGRESS,

s1F 1,0 IS UNDER WaY SET
/STOP SWITCH, '

/CLEAR 1,0 BUSY SWITCHES,
/CLEAR CLOSE SWITCHES,
/tR FLAG

/ALLOW INTERRUPTS,
/WAIT UNTILL I/0 IS DONE,

/STOP 1,0 SWITCH,
/+R IN PROGRESS IF NON-8,

/SUBROUTINE TO CAUSE OUTPUTTING OF ERROR MESSAGE.

LPTERR

LPTLAW

LPTAUX

/

/SUBROUTINE TO RAISE TO API LEVEL @
/AND TURN OFF PIC.

LPRAIS

LPIOF

/SUBROUTINE TO DEBREAK FROM API LEVEL 2

%]

DAC
LAC=
DAC
JMS
XX

JMS#
XX

JMS
JMP 2

[4]

LAC
ISa
10F
JMP &

/AND TURN ON PIC.

LPLOWR

4}

NBK
10N
JMP 2
LEND

LPTLAN
(.SCOM+66
LPTMP1
LPRAIS
LPTMP1

LPLOWR
LPTERR

(4008200

LPRAIS

LPLOWR

/LAW CODE

/RAISE TO API LEVEL @ AND TURN OF
/LAW CODE

PIC.

0¢-L

LPA,

A61@
24611
24612
?2613
P8614
2615
24616
245617
24620
B2621
AB622
80623
624
22625
nRa626
24627
83639
82631
p8632
@2633
P2634
33635
02636
22637
00640

PAGE

DDV DVDVDVDOVDTLDVDDIOIDTVLYIUV DD TV IODDDUDU DO

1@

742220
aen1aa
Broveaz2

377022 .

547436
@ea177
777727
200740
pegi1an
oeee77
746546
a2ar47
wagea4d
777766
688335
2eR250
praea7
706606
208152
peoraae
6ApR3A
200151
223000
Pea166
420209

P> PP DU r»OrP>»PDr» »>»»0PFP>rrP

#IT
T
#L 1T
sl IT
#L1IT
L I7T
#L 1T
#LIT
w17
L IT
#LIT
L IT
L IT
#L1IT
s IT
L IT
#LIT
2L IT
#L 17T
«LIT
#LIT
#LIT
«LIT
#«LIT
#LIT

NO ERROR LINES

1¢-L

LPaA,

CLELACG
LPaR%"
LPa,
LPRRSY
LPECLK
LPCB
LPCF
LPCLER
LPCLOS
LPCLSE
LPCOMD
LPCONV
LPCONT
LPCONZ
LPCON3
LPCTAR
LPCTLR
LPDBR
LPEMPT
LPEND
LPERR
LPERR6
LPFBSY
LPFCLR
LPFORM
LPFRA
LPGETS
LPGETS6
LPHRTR
LPHT
LPHTZ2
LPHT3
LPIGN
LPIN
LPINT
LPIN2
LPIOAC
LPIOF
LPION
LPIOT
LPIOTB
LPLBHP
LPLD
LPLOWR
LPLS
LPL1
LPL2
LPMSG
LPM4Q
LPNOR
LPNRDY
LPOK
LPOVER
LPOVRP
LPPB

PAGE

20476
2P144
22800
20544
#7103

706502

786672
PR542
20040
Pr412
00064
20212
08252
#0263
20273
22436
BAS56
02165
20451
Pe3¢1

282512
#8512
08543
Pe102
20316
Pe154
30235
20237
PoB61
28321
22335
20332
20523
Pap46
20350
00053
28435
20574
20372
00110
60163
22015

706546
20576

706626

706566

786526
20131
20357
20065
22120
20176
20430
90425

706686

11

P D XTVDVD VDIV U DV VXTIV DO TCIODDIVIDDIDDITDDDNIDUUDDDIDVDIVIODT» >0V VUV O

ee-L

LPA,

LPPIC

LPRAIS
LPSPCE
LPSPPR
LPSTON
LPSTP

LPSTPS
LPSVAC
LPSHCH
LPTAUX
LPTERR
LPTIO

LPTLAW
LPTMP1
LPTOK

LPTQUT
LPTSTR
LPT.é

LPT31

LPVMOV
LPVTST
LPWD1@

. LPWD17

LPWORD
LPWPC
LPWRD6
LPHWRT
LPZERQ
LP3CHR
LPSCH
LP57T
LP8CT
LSOF
LSEF
LV2FC
LV2KC
LWRITE
PGECNT
SCOM35
SHAP
.MED
.SCOM

PAGE

80343
08571
20044
28413
00361
87531
80555
20013
60005
20566
08557
70070
00564
¥e837
00402
oeee7
ge207
20100
80452
20424
22304
0e010
20017
20060
80014
00006
20167
20036
20062
02450
20055
220816
706501
706601
20031
20012
20830
00434
00033
00525
000003
200100

12

b)ﬁmﬂmnm>b'ﬂIJI)D:UDD:U}J;U:O;DIJIJnWIU:O:UIJIUTUIDEZUI'UEIJTUDE

£e-/

LPA,

LPA,
LMED
LPSWC
LPWRD6
LPTOUT
LPWD1A
LV2KWC
LPSVAC
LPWPC
LPLBHP
LPacT
LPWD17
LWRITE
LV2FC

SCOM35-

LPZERO
LPTMP1
LPCLOS
LPSPCE
LPIN
LPIN2
LP57T
LPWORD
LPHRTB
LP3CHR
LPCOMD
LPNOR
LPTIO
LPT.6
.SCOM
LPFCLR
LPBCLR
LPIOT
LPNRDY
LPMSG
LPARG1
LPFRA
LPIOTB
LPDBR
LPHWRT
LPOK
LPTSTR
LPCONYV
LPGETS
LPGETS
LPCON1
LPCON2
LPCONZ
LPEND
LPVTST
LPFORM
LPHT
LPHT3
LPHT2
LPPIC

v
=
D
[As}

[aN]
3
N

~
A NN
Nt~ O AT AT

.

-~

. Ry

LS IS RS B S RS N
Bt IEOh I G I B S B)

~

o>

#aee:3
pR214
agg1s
22eié
82217
T ERE
gAAaz1
geel3s
20e@36
agas7
a4
2a@44
geaas
aRa53
agess
2Qe¢e
peael
200¢€2
2a864
A0265
aea7e
agiae
Qa2¢1¢0
api1e2
0123
2e11@
pe12@
2R131
20144
22154
22163
20165
ar167
}ei7eé
ag2e7
paz212
an235
@237
ae252
AR262T
@e273
aa3vi
PR3P 4
Be31s
20321
80332
80335
2e343

Py

AN

DXL ODVHOUVDDUVDVODODDIDIDDVDIUDOD VDDV DODITIDIDDDVDOLONDNDNVIDDIHDODDLO.00L D L U

he-L

LPA,

LPINT
LPMae
LPSTON
LPION
LPTOK
LPCLSE
LPSPPR
LPVMOV
LPOVRP
LPOVER
PGECNT
LPIOAC
LPCTAS
LP5CH
LPEMPT
LPT31.
CLFLAG
LPERR
LPER@SG
LPIGN
SHAP
LPSTP
LPCLER
LPFBSY
LPBBSY
LPSTPS
LPCTLR
LPTERR
LPTLAW
LPTAUX
LPRAIS
LPIOF
LPLOWR
LSDF
LPCB
LPL?2
LPLD
LPL1
LSEF
LPCF
LPPR
LPLS

PAGE

27354
230357
27361
22372
ag402
24412
20413
2@424
22425
20430
28434
20435
22436
Be450
#3451
98452
20476
nRa512
2@512
30523
2e525
#@531
aae542
A543
@0544
Aad555
en556
00557
2p564
PB566
2@571
22574
ae576
786501
706502
726526
786546
706566
786601
786602
706606
786626

14

>rr>r>>>pP P UVDNTODIODDIDDIDINDDIDIDIDIIVDODDITITDDODIVDIODDDIT VDI

SECTION 8

SYSTEM GENERATION

The system utility program .SGEN, used to tailor a

Background/Foreground tape to operate in different hard-

ware configurations, is not available at this time.

APPENDIX I

.SCOM REGISTERS

The function of the .SCOM (System COMmunication) Registers
is to provide, among the various program elements of the
Background/Foreground Monitér System, an easily accessible
set of registers which contain communication pointers, data

words, and program flags indicating the state of the system.

The .SCOM table begins at location lﬂﬂé within the Resident
Monitor. Location lﬁﬂ is referred to as .SCOM or .SCOM +

and the (N.+ 1)th register is referred to as .SCOM + N.

Each .SCOM register has a special meaning and format. At
present, there are about 1158 such registers. Slots at the

end will be allotted for future expansion as needed.

REGISTER DEFINITIONS: The following list indicates the

contents of each .SCOM register. Those which are fixed at
assembly or system(generation time and never changed are
marked by (F). Some .SCOM registers must have a Foreground
value and a Background value. Therefore, their contents must
be swapped from one to the other, depending upon which job
has control. They are flagged by (S). Some .SCOM registers
have been reserved for future software. If their contents
(format) ace as yet unspecified, they will be flagged with

(U).

.SCOM + f# (F) Pointer to the highest register in core
(37777, 57777, or 77777).

.SCOM + 1

.SCOM + 2 (s)

.SCOM + 3 (8)

.SCOM + 4
(F)
(F)
(F)
(u)
(F)
(F)

(a) Address just above the Resident Monitor
when the Non-resident Monitor has been loaded
for Foreground.

(b) Address just above the Foreground job
when the Resident Monitor has loaded the Non-
resident Monitor in the Background. 1If the
system program PIP is called, this will be
the first location of its .DEV table.

(c) For DDT in the Background this points
to the start of its symbol table.

(a) Same as (a) for .SCOM + 1.

(b) Normally used by user and system pro-
grams to indicate the first (lowest) location
in free core.

(c¢) For DDT in the Background this points to
the first location after the symbol table,
which is also the first Location of free core.

Normally used by user and system programs .
to indicate the last (highest) location in
free core. For the Foreground, this is also
the highest location allocated to the Fore-
ground job.

Bits indicate machine configuration:

Bit @ @§=No API; l1l=API

Bit 1! g=No EAE; 1=EAE

Bits 2-5 g (Reserved and unused)

Bit 62 @#=7-channel MAGtape
1=9-channel MAGtape

Bit 7 #=Bank Mode (PDP-9)

Bits 8-13 Unassigned

Bit 14 l1=Background/Foreground

Bits 15-17 Drum size for RM@9=
#=No drum

1=32K (RMf93)
2=65K (RM@IB)
3=131K (RM@9C)
4=262K (RM@Z9D)
5=524K (RM@IE)

1The presence or lack of EAE is determined dynamically by the

Resident Monitor.

27/9-channel default operation may be set by Foreground Keyboard

command .

.SCOM + 5

.SCOM + 6

.SCOM + 7

.SCcoM + 1@ (S)

.SCOM + 11 (F)

.SCOM + 12 (F)

(a) Initially this points to RESINT, the
address of the initialization section in
RESMON. The paper tape bootstrap loader
transfers control indirectly through this
location. .

(b) When calling the System Loader to
bring in a system program, the Non-resident
Monitor stores here the code number of the
program to be loaded.

(c) When running a system program, its
start address is stored here.

(a) When the Non-resident Monitor calls
the System lLoader to load user programs,
bits @ - 2 indicate which command was
,given to the Monitor:

$LOAD, $GLOAD, $DDT, or $DDTNS.

Bit g = 1 if $DDT or $DDTNS (DDT load)
Bit 1 = g if SLOAD; Bit 1 = 1 if SGLOAD
Bit 2 = @ if $DDT; Bit 2 = 1 if S$DDTNS

(b) When the user programs have been
loaded, the start address of the main
program is stored here. The load command
code bits (#f~2) remain as in (a).

The interrupted PC plus L,XM,MP are saved
here for DDT in the Background when CTRL T
has been typed.

The interrupted PC plus L,XM,MP are saved
here after a NORMAL CTRL P has been typed
and honored.

Bootstrap restart instruction.

Pointer to the 339 Pushdown list within
the Resident Monitor.

.SCOM + 13 (F) Pointer to the .IOIN! table in the Resi-
dent Monitor.

.SCOM + 14 (F) Pointer to the .MUD? table in the Resi-
dent Monitor.

.SCOM + 15 (F) Pointer to the .BFTAB? table in RESMON.

.SCOM + 16 (F) Pointer to .DATF"%, Foreground .DAT slot
¥, in the Resident Monitor.

.SCOM + 17 (F) Pointer to .DATBY, Background .DAT slot
#, in the Resident Monitor.

.SCoM + 2¢ (U) Reserved for PDP-15.

.SCOM + 21 MAGtape status register.

.SCOM + 22 Reserved for MAGtape handler.

.SCOM + 23 (F) Twos complement size of the Monitor's transfer

vector table (used by system generator).

.SCOM + 24 (F) Pointer to the Monitor's transfer vector
table (used by System Generator).

! IOIN is the table which indicates which I/0 devices are in core,
which units on each device are spoken for, and which job (Background
or Foreground) owns them.

2 MUD is a table listing all available multi-unit device handlers,
with pertinsnt information about those handlers.

3.BFTAB is a buffer table containing pointers to and the sizes of
all external I/0 buffers that were set up by the loaders.

“_DATF is the Device Assignment Table for Foreground.
.DATB is the Device Assignment Table for Background.

.SCOM + 25 (a) Prior to loading the Foreground job,
the amount of free core requested by the S$SFCORE
command is stored here. If no $FCORE command
is given, the default assumption is 2 registers.

(b) After the Foreground job has been loaded,
this register contains a pointer to the regis-
ter immediately above the Foreground core area.

.SCOM + 26 (S) Contains @ if Foreground is in control and 1
if Background is in control.

.SCOM + 27 (F) Pointer to IOT Skip literal table in the
Monitor (used by System Generator).

.SCOM + 38 (F) Pointer to PI Skip Chain.

.SCOM + 31 (a) The Software Memory Protect Bound set
from .SCOM + 25 after the System Loader has
loaded the Foreground job.

(b) Set to point just above the Background
I/0 handlers and I/0 buffers after the Back-
ground job has been loaded.

.SCOM + 32 (a) Pointer to the Hardware Memory Protect
Bound (or where it should be set). Contents
(.SCOM + 32)= contents (.SCOM + 31).

.SCOM + 33 Background Program Counter, including L ,XM,MP.
.SCOM + 34 (F) Address of the resident teletype handler (TTA).
.SCOM + 35 Interrupt Service Flag. Non-f indicates that

control is in some interrupt service routine.

.SCOM + 36 (F) Bits to tell the teletype handler which units
are model 33 (specific bit = @) and which
model 35 (specific bit = 1). Bit @ corresponds

to unit @; bit 1 to unit 1; and so on.

.SCOM + 37 (F}

.SCOM + 4p

.SCOM + 41

.SCOM + 42

.SCOM + 43
.SCOM + 44

.SCOM + 45

Pointer to CALER. Used to detect attempt
to re-enter CAL handler and to trap CAL¥*
instructions.

CAL Flag. Non-fg if control is in the CAL
handler (indication necessary for interrupt
servicing).

"Who's running in the Background" Flag.
Bit g = 1 if a Loader is running.

Bits 1-17:
17777 = Non-resident Monitor
= user program or DDT
1 = EDIT
2 = MACRO
3 = PIP
4 = F4
5 = SGEN
6 = DUMP
7 = UPDATE
10 = CONV
11 = MACROA
12 = F4A
13 = EXECUTE
14 = CHAIN
15 = PATCH

Level 5 (API, Foreground) busy register.

Zero indicates level 5 non-busy. Non-zero
indicates that Foreground level 5 is idle
waiting for some I/0 to complete. Set non-f@
with the initial address of the device handler
doing the I/0. If the device is teletype,

the unit number + 4g@@@F is stored here instead.

Same as .SCOM + 42 for Foreground level 6.
Same as .SCOM + 42 for Foreground level 7.

Same as .SCOM + 42 for Foreground Mainstream
level.

.SCOM + 46 Foreground level 5 I/O satisfied flag.
: Zero indicates that level 5, which was I/0
bound, can be started up again.

.SCOM + 47 Same as .SCOM + 46 for level 6.

.SCOM + 58 Same as .SCOM + 46 for level 7.

.SCOM + 51 (F) Pointer to REALTP! in the Resident Monitor.
.SCOM + 52 (F) Pointer to IOBUSY? in the Resident Monitor.
.SCOM + 53 (F) Pointer to LV4Q? in the Resident Monitor.
.SCOM + 54 (F) Pointer to CALL4" in the Resident Monitor.
.SCOM + 55 (F) Pointer to .SETUP® in the Resident Monitor.
.SCOM + 56 (F) Pointer to GETBUF® in the Resident Monitor.

IREALTP is a subroutine to process real-time requests.

2I0BUSY is a subroutine to check for I/0 busy termination.

*1L,V40 queue is a list of I/0 handlers which are waiting to com-
plete their interrupt service processing at API level 4.

“CALL4 is a subroutine to initiate an API level 4 request.

5.8ETUP is the routine initially called by all I/0 handlers
to set up skips in the PI skip chain or API channel registers. .

®GETBUF is a routine called by the I/O handlers which assigns
buffer areas to the handlers via .BFTAB.

.5COM + 57

.SCOM + 68

.SCOM + 61
.SCOM + 62

.SCOM + 63

.SCOM + 64 (F)

.SCOM + 65

.SCOM + 66 (F)

.SCOM + 67 (F)

.SCOM + 78 (F)

If non-@, a pointer to the entry point of
the last Mainstream Foreground real-time
subroutine in the chain of subroutines to
be run when Foreground Mainstream gets con-
trol.)

Pointer to the entry point + 1l of the first
subroutine in the chain of Foreground Main-~-
stream real-time routines to be run when
Foreground Mainstream gets control.

Same as .SCOM + 57 for Background.

Same as .SCOM + 6§ for Background.

Argument for API instruction ISA when inter-
rupts at API software levels are to be re-
quested.

Pointer to CR.QR! in the Resident Monitor.

Set non-#, while a Foreground user program is
running, to indicate that the resident buffer
may not be used by the Foreground. The resi-
dent buffer must be available to the Background,
which presumably changes jobs more often, for
use by the Monitor and the Loaders.

Pointer to ERRORQ? in the Resident Monitor.

Pointer to Foreground control character table
in TTA.

Pointer to Background control character table
in TTA.

ICR.QR is a routine called by I/O handlers to initiate a device-

not-ready request.

ERRORQ is a routine called to enter information in the Foreground
and/or Background error queues and to set the error flags in

.SCOM + 71.

.SCOM + 71

.SCOM + 72

.SCOM + 73

.SCOM + 74

.SCOM + 75

.SCOM + 76

.SCOM + 77

.SCOM + 198

.SCoOM + 141

(F)

(F)

(F)

(F)

(F)

Error flag. The following conditions exist
if the respective bit = 1:

- Background error

1 - Foreground error

2 - Background terminal error

3 ~ Foreground terminal error

Pointer to the Foreground error processing
subroutine plus the 20@@@F bit to turn on
extend memory after a DBR.

Same as .SCOM + 72 for Background error
subroutine.

Saved argument for Foreground error routine
ISA instruction.

Contains JMS5 IGNORE, a call to a dummy inter-
rupt service routine, used during error proces-
sing.

Twos complement count of the number of tele-
types on the machine.

$SHARE Flag (to allow Background to share
Foreground I/0 bulk storage units. Non-
zero indicates that SHARING is allowed.

Pointer to ENTERQ! in the Resident Monitor.
Will contain f, instead, if ENTERQ routine
not assembled into the Monitor.

If set non-zero by the Foreground keyboard
command, $MPOFF, Background enters EXEC
mode. The memory protect boundary register
is zeroed to allow Background to modify and
transfer to any location in core. Background
IOT's will still trap to the Monitor but the
IOT's will be executed.

IENTERQ is a subroutine which makes entries in the API queue.

4
1
o

. 3COM

.SCOM

.SCOM

-.5COM

.SCOM

.SCOM
.SCOM
.SCOM

.SCoOM
.SCOM
.SCOM

.SCOM

+ + +

192

193

124

145

126

197
119
111

112
113
114

115

(v)

()

(U)

(F)

(F)

(F)

Unused
Unused
Unused

Twos complement size of the PI skip chain.
(Used by System Generator).

Pointer to the register immediately above
the Resident Monitor (set by the Non-resident
Monitor after it has built the .MUD table).

Used to store the file directory entry
block of the XCT file to be EXECUTE'4d

in the Foreground.

Used to store the file directory entry
block of the XCT file to be EXECUTE'4
in the Background.

Maximum number of teletypes allowed, which
is a function of an assembly parameter in the
Monitor (Used by System Generator).

APPENDIX II

ERRORS

ERROR HANDLING IN BACKGROUND/FOREGROUND

The processing of errors detected by the Resident Monitor,
1/0 handlers, the Linking Loader and the System Loader has
been changed in the Background/Foreground System from the way

they are treated in the Keyboard and I/0 Monitor Systems.

The most significant change is the introduction of terminal

and non-terminal errors. A terminal error stops execution of the

job associated with the error. This causes all I/0 handlers
assigned to that job to be ¢called to stop I/O0 that may be in
progress and all Monitor queues to be cleared of entries for

that job (Background, Foreground or both).

A non-~terminal error is one that does not necessarily
warrant aborting the operation of the offending job. A non-
terminal error message is entered into a queue for the approp-
riate job and is printed on the appropriate control teletype
when that unit is free. While the printing of non-terminal
error messages 1s pending or in progress, operation of the of-
fending job is suspended. This restriction does not apply to

I/0 handlers, which may continue interrupt processing.

The format for error messages generated by the Resident

Monitor, I/0 handlers and the Loaders is:

.ERR HNNN XXXXXX

Ir-1

where NNN = error code
XXXXXX = auxiliary information

These errors are tabulated on pages 2-4,-5,-6 and-7.

Errors detected by the FORTRAN Object Time System (OTS) are
formatted as follows:

.OTS NN

where NN = error code

OTS errors are listed on page 2-8.

CONTINUATION AFTER ERROR

.0OTS errors are terminal errors. After OTS has printed
the error message, it exits to the Monitor. Therefore, after
an .0OTS error the user does not have the option of restarting

his program.

Non-terminal .ERR errors do not terminate the operation of
user programs. Continuation, following the printing of the error

message, is automatic.

Terminal .ERR errors terminate the 6peration of user programs.
After the printing of the error message, the user has the option
of typing CTRL P (to restart his program at the CTRL P restart
address), CTRL T\(to return to DDT), CTRL Q (to take

a dump of memory), or CTRL C (to return to the Monitor to

I1-2

load another job). If the error occurred while control was
in the Non-resident Monitor or in a Loader, the user does not
have the options indicated above. The Monitor will automatically

be reloaded.
ERROR CALL

Routines that wish to set up an error condition, I/0 device

handlers for example, should use the following coding sequence:

LAC* (.SCOM + 66 /POINTER TO ERRORQ

DAC TEMP /SUBROUTINE.

LAC (4p02pp /RAISE TO API

Isa - /LEVEL f.

IOF

LAW CODE /SEE BELOW.

JMS * TEMP /CALL ERRORQ.
AUXARG XX /AUXILIARY ARGUMENT.

DBK /RETURN HERE.

ION

The calling program must be operating with memory protect

disabled in order to be able to issue IOT's.

The first argument, given in the AC to ERRORQ, may be

loaded either by LAW code or by LAC code in the following format:

Bits @-5 are ignored

Bit 6 = @ means non-terminal error
Bit 6 = 1 means terminal error

Code Bit 7 = 1 means Background error both bits (7 and 8)
Bit 8 = 1 means Foreground error may be set to 1
Bits 9-17 is a 3-digit error code

To avoid the possibility of future conflicts, user programs

and device handlers should utilize codes 6@0¢ - 777.

II-3

The auxiliary argument, following the JMS to ERRORQ,
will be printed in the error message as a 6-digit octal number.

The error wmessage will be printed in the form:
.ERR NNN XXXXXX

where NNN = the 3-digit error code
XXXXXX = the 6-digit auxiliary information

The actual printing of the error message and processing
of the error will be done only after all interrupt processing

has ceased and when control is no longer in the CAL handler.

BACKGROUND/FOREGROUND MONITOR ERRORS (.ERR)

The following abbreviations are used below in describing

the auxiliary information:

L - bit @ is the status of the link
XM- bit 1 is the status of extend memory

MP- bit 2 is the status of memory protect
CAL ALDR = bits 3-17 contain the address of the CAL in error.

AUXILIARY

ERROR NO. ERROR INFORMATION TERMINAL
o009 ILLEGAL CAL FUNCTION L, XM, MP, CAL ADDR YES
281 CcAL! ILLEGAL L, XM, MP, CAL ADDR YES
222 .DAT SLOT ERROR (ecrroneous L, XM, MP, CAL ADDR YES

.DAT slot number or .DAT

slot not tied to an I/0

handler)
203 ILLEGAL INTERRUPT L, XM, MP, PC YES

IThe auxiliary information, depending on the source of the error,
is sometimes UNIT #, CAL ADDR.

I1-4

AUXILIARY

ERROR NO. ERROR INFORMATION TERMINAL
gga MORE THAN ONE DEVICE .ASCII /XX/ : YES
NOT READY XX = DEVICE NAME

@95 : ILLEGAL .SETUP RETURN ADDRESS FROM YES
. .SETUP (ADDRESS IN
CALLING DEVICE HANDLER)

goe6 ILLEGAL HANDLER FUNCTION L, XM, MP, CAL ADDR! YES
g7 ILLEGAL DATA MODE or L, XM, MP, CAL ADDR! YES
SUBFUNCTION CODE
g1g FILE STILL ACTIVE UNIT #, CAL ADDR YES
211 SEEK/ENTER NOT EXECUTED UNIT #, CAL ADDR YES
g12 UNRECOVERABLE DECTAPE STATUS REGISTER B YES
ERROR (Bits 0-1) AND UNIT
(Bits 15-17)
#13 : FILE NOT FOUND UNIT #, CAL ADDR YES
714 - DIRECTORY FULL UNIT #, CAL ADDR YES
g15 DECTAPE FULL UNIT #, CAL ADDR YES
#le OUTPUT BUFFER OVERFLOW UNIT #, CAL ADDR YES
217 TOO MANY FILES FOR HANDLER UNIT #, CAL ADDR YES
g2g DISK FAILURE DISK STATUS REGISTER YES
g21 ILLEGAL DISK ADDRESS UNIT #, CAL ADDR YES
722 TWO OUTPUT FILES ON ONE UNIT %, CAL ADDR YES
UNIT
923 ILLEGAL WORD COUNT L, XM, MP, CAL ADDR YES

(Either the word count was
positive or the starting
address plus the absolute
value of the word count
cxceeded existing memory)

"he auxiliary information, depending on the source of the error,
is sometimes UNIT #, CAL ADDR.

II-5

AUXILIARY

ERROR NO. ERROR INFORMATION TERMINAL

p27 ILLEGAL DISK UNIT UNIT #, CAL ADDR YES

231 NON-EXISTENT MEMORY L, XM, MP, PC YES
REFERENCE

232 MEMORY PROTECT VIOLA- L, XM, Mp, pC! YES
TION

233 MEMORY PARITY ERROR L, XM, MP, PC YES

236 BACKGROUND MEMORY PRO- L, XM, Mp, CAL ADDR YES

TECT VIOLATION ATTEMPT
VIA CAL ARGUMENT

259 .TIMER REQUEST ADDRESS OF REAL TIME NO
CANNOT FIT IN CLOCK SUBROUTINE THAT WAS
QUEUE OR BACKGROUND TO GET CONTROL ON COM-
REQUEST REMOVED TO PLETION OF INTERVAL
MAKE ROOM FOR FGRD
REQUEST S

@52 MAINSTREAM REAL TIME PRIORITY LEVEL/SUB- NO

REQUEST IGNORED BECAUSE ROUTINE ENTRY POINT
ROUTINE IS ALREADY

ENTERED
253 APIQ OVERFLOW ENTRY THAT WOULD NOT NO
FIT (PRIORITY LEVEL/
SUBROUTINE ENTRY POINT)
#55 NO BUFFERS AVAILABLE RETURN ADDRESS FROM YES
GETBUF (ADDRESS 1IN
CALLING DEVICE HAND-
LER)
#56 ILLEGAL .ERROR CAL? L, XM, MP, CAL ADDR YES
#57 ILLEGAL .EXIT CAL L, XM, MP, CAL ADDR YES
269 .INIT NOT EXECUTED CAL ADDR YES
g6l TOO MANY NON-TERMINAL NUMBER OF ERRORS NO
ERRORS DISCARDED
200 ILLEGAL TELETYPE UNIT L, XM ,MP, CAL ADDR YES

'If a memorv protect violation occurs because of a Background JMP
instruction, the PC is the effective address rather than the loca-
tion of the JMP.

’A special error call to the Monitor (CAL code 16) is available
for use only by the Loaders.

I1I-6

LOADER ERRORS (.ERR)

All Loader errors are terminal. The auxiliary informa-

tion which is printed is irrelevant.

199 NO ROOM IN CORE FOR PROGRAM SEGMENT

121 PROGRAM AND SYMBOL TABLE OVERLAP

192 .BFTAB OVERFLOW

193 .IOIN TABLE OVERFLOW

194 SFILES COUNT OVERFLOW

145 PARITY ERROR, CHECKSUM ERROR, OR BUFFER OVERFLOW
196, ILLEGAL LOADER CODE (Bad input data)

197 COMMON BLOCK SIZE ERROR'?

1198 MISSING GLOBAL(S)

111 ILLEGAL .DAT SLOT NUMBER

112 .DAT SLOT CONTENTS = #

113 SAME DEVICE - DIFFERENT HANDLERS?

114 ILLEGAL HANDLER CODE (Illegal .DAT slot contents)
115 ABSOLUTE PROGRAM ERROR®

116 FOREGROUND CAN'T USE UNIT # ON SYSTEM DEVICE"
117 NO ROOM TO BUILD .EXIT LIST

129 XCT FILE OVERLAYS EXECUTE

121 XCT FILE OVERLAYS THE MONITOR

122 XCT FILE OVERLAYS THE SYMBOL TABLE

123 XCT FILE NOT BUILT FOR THIS CONFIGURATION ®

'COMMON Block size declared differently when Block size previously
fixed in BLOCKDATA subprogram.

“Only one version of a device handler may be in corc. .DAT slot
requested a different handler for a device when another handler
for that device was alrcady in core.

5An absolute .LOC program may not be loaded once relocatable
programs have been loaded. Absolute and relocatable

.LOC in same program is illegal.

“$SHARE command was not given.

SConfiguration word in "XCT" file indicates if it was built to
run on a PDP-9 or PDP-15 and Background or Foreground.

IT-7

OBJECT TIME SYSTEM ERRORS (.OTS)

All .0TS errors are terminal and no auxiliary information

is printed:

g-4 UNUSED

5 ILLEGAL REAL SQUARE ROOT ARGUMENT

6 ILLEGAL DOUBLE SQUARE ROOT ARGUMENT
7 ILLEGAL INDEX IN COMPUTED GOTO

1g ILLEGAL I/O DEVICE NUMBER

11 ILLEGAL INPUT DATA

12 ILLEGAL FORMAT STATEMENT

13 ILLEGAL REAL LOGARITHMIC ARGUMENT
14 ILLEGAL DOUBLE LOGARITHMIC ARGUMENT

I1-8

APPENIDIX IIT

TELETYPE HARDWARE CHARACTERISTICS

SYSTEM REQUIREMENTS AND OPTIONS

The multi-unit teletype handler assumes that the teletype

configuration consists of:

a. A Model 33 or Model 35KSR console teletype,

b. from 1 to 4 LT19A or LT09A multi-station teletype
controls, and

c. from 1 to 1610 Model 33 or Model 35KSR teletypes
interfaced to the LT19A or LT09A controls.
The console teletype has its own set of IOTs, operates
as half-duplex and is connected to the PIC (Program Interrupt

Control). It cannot be connected to the API.

LT09A multi-station teletype controls can handle from 1
to 5 teletype lines and is connected only to the PIC. The
LT19A is identical to the LT09A except that if a machine has
APT it will operate at API level 3, using channel registers 74
and 75.

Teletypes connected to LT09 or LT12 controls are operated
in full-duplex mode, which reguires the software to echo charac-

ters input from the Keyboard back to the teleprinter.

LT09/LT19 IOTs

Whether LT09 or LT19 is used, the IOT's associated with a

particular teletype unit are the same. The following tables list

I1I-1

the device and subdevice codes associated with each teleprinter
and keyboard and indicate the logical unit numbers which the
teletype handler associates with them. The console teletype,
which is not connected to the LT09/LT19 controls, is defined to

be logical unit #.

TABLE 1: 1l to 5 units; 1 LTO9A or LTI1GSA
UNIT PRINTER KEYBOARD LOGICAL
__CODE CODE UNIT
LT09A/ 1 XX400X ’ XX410X 1
LT19A 2 XX402X XX412X 2
#1 3 XX404X XX414X 3
4 XX406X XX416X 4
5 XX420X XX430X 5
TABLE 2: 6 to 10 units; 2 LT09A's or LT19A's
UNIT PRINTER KEYBOARD LOGICAL
CODE CODE UNIT ¢
LT09A/ 1 XX400X XX410X 1
I.T19A 2 XX402X XX412X 2
$1 3 XX404X XX414X 3
4 XX406X XX416X 4
5 XX440X XX450X 11
LT09A/ 1 XX420X XX430X 5
LT19A 2 XX422X XX432X 6
#2 3 XX424X XX434X 7
4 XX426X XX436X% 10
5 XX442X XX452X 12
TABLE 3: 11 to 15 Units; 3 LT09A's or LT19A's
UNIT PRINTER KEYBOARD LOGICAL
_# _CODE CODE UNIT #
LTO0%A/ 1 XX400X XX410X 1
LT19A 2 XX402X XX412X 2
#1 3 XX404X XX414X 3
4 XX406X XX416X 4
5 XX460X XX470X 15

IT1I-2

TABLE 3:

11 to 15 units; 3 LTO9A's or LT19A's

(cont'd)

UNIT PRINTER KEYBOARD LOGICAL

_CODE __CODE UNIT
LT092/ 1 XX420X XX430X 5
LT19A 2 XX422X XX432X 6
#2 3 XX424X% XX434X 7
4 XX426X% XX436X 10
5 XX462X XX472X 16
LT09A/ 1 XX440X XX450X 11
LT19A 2 XX442X XX452X 12
#3 3 XX444X XXA454X 13
4 XX446X XX456X 14
5 XX464X XX474X 17

TABLE 4: 16 units; 4 LTO9A's or LT19A's
UNIT PRINTER KEYBOARD LOGICAL
CODE CODE UNIT

LT09A/ 1 Unused Unused -
LT19A 2 Unused Unused =
#4 3 Unused Unused -
4 Unused Unused -
5 XX466X XXA476X 20

(The setup for the first three controls would be as in

TELETYPES

In the Background/Foreground System, teletype

are presumed to have certain hardware characteristics:

Model 33: No horizontal tabbing mechanism

No vertical tabbing mechanism
No form feed mechanism

Model 35: Has all three of the above.

ITI-3

Table 3).

models

The teletypes are assumed to be KSR (Keyboard

Send/Receive) units. ASR (Automatic Send/Receive) teletypes

may be used; however, their paper tape input and output

capability cannot he used. The system will not support

Model 37 teletypes.

I11-4

	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	8-01
	8-02
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	II-01
	II-02
	II-03
	II-04
	II-05
	II-06
	II-07
	II-08
	III-01
	III-02
	III-03
	III-04

