

PLACES TO EAT IN MAYNARD

1. Code the following instructions:

DZM	1723	141723		
LAC	<i>5</i> 0	200050		
TAD®	12	360012		
LAW	301	760301		- , ,
CLA*	17	CAN'T do	OPERATE	Instruction

2. Decode the following instructions:

3. List the Memory Reference instructions that can alter normal program sequencing.

4. What will be in the following registers after doing an Examine Next operation?

→AR PC	UNCHANGED WORD FROM	Conv M	Nomory		
MA AC	Aldruss of Unchanged	Location BUCAUSE	Bramino	Examining	NOT RUNNING

5. Auto-Indexing can only be used with Memory Reference instructions.

True (/	False	
Hue .	i dise	

PDP-9 MAINTENANCE

1.	When all inputs	to an R11	l are negative,	its output will be	e O volis.
					agamentoniku Damonikudi k ylona
	/w/-3v				

2. What is the minimum delay through a B310 tapped delay?

3. What controlling flip flops would have to be set to transfer the contents of the AC to the AR?

4. Print KCØ9#17. Address Mixer 2 (B169 module at B-6). Input pin H is fied to gnd. What effect will inputs either positive or negative on pin F have on the output?

Will always be -3

5 KCØ9#19-3.	The SAO	F/F is a	Control	Memory	F/F.
X					
True	re alle Sales de l'Ausga	False			

6. Print KCØ9#14. Function called CI 17. Write a logical expression for CI 17 to be true.

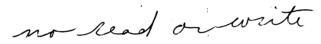
7. The following program has been run. What are the contents of the AC, 700, and 150?

600	LAC	700				** ** *
601	AND	702				
602	DAC	700	C(AC) = 00	4000	701
603	JMS	150	C(70	10) = 6.04		(0)
604	HLT		•	manasant.	000	(8)
150	TAD *	601	C(150) =	604	(8)
151	XCT	602				(0)
152	HLT				a de la companya de l	
700	124056					
702	016000					

8. Print KCØ9#1. The MB contains 357162; the following conditions exist: SUB is set, CMPL and CI 17 are present, MQI is set. What will be the octal result in the MQ?

357162 Sub + CMPL cause Complereversel of States of 17 does not effect.

1.	The	last	memory	location	iņ	an	8K	PDF-9	is	1	7	2	22	7	 3) °
															 ~,


2. The total time required to complete three sequential main memory cycles is:

Α.	3.0.//sec
(B.	3.025/Lsec
Ca	3.075 usec
O.	3.25//secip
	A

3. MC #3. The CP has access to memory, MB 17 is (0), and AM 17 is (1). The voltage on the output of the mixer producing MBS 17 is positive (gnd).

True *	F	alse	
Angenia Propositi a Maria Carina		COMPANIA A PROPERTY	CONTRACTOR

- 4. If the SM flip flop is reset, and a CLK is generated (input to MC#2), will the memory logic produce a SYNC CLK (MC #2) and do an MAJam?
- 5. The SM Flip flop is set, and a CLK signal is applied to MC#2. The Digit Write Sink flip flop can not be reset. How will this effect the memory cycle?

- 6. The determining factor for Digit Current during the write partian of a memory cycle is:
 - A. The word read from memory
 - B. The contents of the MA.
 - C. The Word current.
 - D. The contents of the MB.

1.	The CMA contains 24/8), the IR contains 10010. If the logic producing REP failed.
	and generated REP at this time, what would be the next Control Memory location to
	be cycled?

2 。	Any Control Memory location that sets the Con	. F/F when cycled,	will be followed in	188ns
	by a CLR pseudo-cycle.			

[rue	False
control control de como de fina actual.	A SALES AND ADDRESS OF THE PARTY OF THE PART

- → 3. KC09 #17. G210 at D-4. Given the following inputs, what will be the selected output? HV (-), JV(-), HU(-), HS(+), HT(-), HD (-), HE (+), JU (+), JS (+), JT (+), JD (+), JE (+)
 - A. CMP-7
 - B. CMG-7
 - C. CMP-6
 - D. CMG-6
 - 4. The Register Display can not display the contents of the selected register when the computer is running due to the speed at which the registers contents is changing.

- 5. How would an operator normally keep track of the locations in memory that are being deposited into, when manually loading data via the console switches?
- 6. How many times will the computer perform the instruction in location 201?

200	LAC	205
201	DAC≎	16
202	ISZ	206
203	JMP	201
204	HLT	
205	632 000	
206	<i>777 717</i>	
16	401 606	

1. When doing a TAD *12 instruction, when will the AUT INX flip flop be reset?	
TI resets when cycling 24 after Last digit in IR goes	, Z
2. If the ADR = Ø SAVE flip flop can not be set, would this effect the proper operation of the SAD instruction?	
3. Write a logical expression that describes ADD overflow (ADOF).	
$(copp \cdot cop1) + (coop \cdot cool)$	
4. Control Memory location 63 when cycled fails to set the MBI flip flop. This will not effect normal operation of the instruction.	
True False	
Car conventional contraction (see Acres Care Care Care Care Care Care Care Care	
5. What EM location must be cycled to get address 20, when performing a CAL instruction?	
24	
6. The computer executes the instruction 300 100. The AC contains 400 146 and location 10 contains 643 277.	Ю
What will be the result in the AC/ Will there be end around carry? Will ADD overflow exist?	
What will be the sign of the result? What will the LINK contain?	
7. When performing the instruction JMP 500, IRI is set when CML 12 is cycled. When will reset?	RI
74 cycles clear does not reset IRI	

9. What instructions would fail to function correctly if CML 23 failed to set the CJIT flip flop?

8. Write a logical expression to describe when the IR will make up the last 4 bits of the CM address.

CA/ + JMS

1.	What instruction/s could fail to operate properly if the AC SIGN flip flop could not be set?					
2.	2. Could a negative 12436 ₍₈₎ be instruction? If yes, what wo	loaded i uld be th	into the AC ne octal cod	in two's complement form using a LAW e?		
3.				onjunction with the Single Instruction ntinuously perform the same instruction.		
	True	False	DESCRIPTION OF THE SAME TO A SAME THE SAME TO A SAME THE			
4 。	address 177 is set on the Addr	The following program is in memory. Single Step Switch is up, Key 10 Reset is activated, address 177 is set on the Address Switches and Start Key is activated. What will be in the PC, MB, MA, and &C when the computer halts?				
	177 DZ 200 CLC 201 HLT		1.00	PC MB MA AC		

9. What will be in the AC after the following program has been run?

1010	LAC	1010
1011	AND_	263
1012	XO K O	16
1013	HLT	
16	000 262	
263	741 041	

540,041,

The following program is stored in the computer. The operator does an IO Reset, puts address 500 on the Address Switches, and activates the Start Key. What will be the contents of the Link and Accumulator when the computer Halts?

- a) L(1), AC 740674
- b) L(1), AC 701356
- c) L(0), AC 441373
- d) LØ), AC 740673

				111
	500	LAC 601	200601	000041
	501	XOR 602	240602	740040
	502	DZM 510	140510	
	503	DAC 21	040021	
	504	JMS 530 _	100530	
	≯ 505	ISZ 10	440010	500071
		1		2000//
	506	XCT 532	400532	7/10/77
/	507	TAD 501	340501	7/0673
1		777777 000000		
V	517	740 040		
	530	000000 505		
1	≥ 531	AND 601 000040	500601	
	-532	ADD * 10 04006/	320010	
- 1	533	SAD 501	540501	
	534	JMP 531	600531	
	_ 53 5	JMP - 530	620530	
_			***************************************	
	10	0005 02% <		
	20	000000		
	21	746040 740040		
	€ •• ₹	A LEWINGLESS CO. C. C. C. C. C.		
	601	000041		
	602	740001		
	~	* ** * * * * * * * * * * * * * * * * *		

PDP-9 Homework Sheet #1 - ANSWERS

- 1. 141 723 200 050 360 012 760 301 Illegal Instruction
- 2. JMS * 10266 AND * 1234 LAW 132 CLA OAS HLT or LAS HLT
- 3. CAL, JMS, JMP ISZ and SAD if conditions aremet XCT can if it executes one of the instructions that are listed
- 4. AR The address of the location that was examined PC Unchanged
 MB The word from memory
 MA The address of the location that was examined AC Unchanged
- 5. True

PDP-9 Homework Sheet #2 - ANSWERS

- l. Øv
- 2. 27,5 NS
- 3. ACO, ARI
- 4. None
- 5. False
- 6. +1(1) v [PCO (1) ·SKIP (1)] v [ADRL · AXS (1)] v [CJIT(1) · ISZ] v {SAO (1) · [DCH INX + AUT INX (1)] }.
- 7. C(AC) = 004 000 C (700) = 004 000 C (150) = 000 604
- 8. 357 162

PDP-9 Homework Sheet #3 - ANSWERS

- 1. 17777 (8)
- 2. B
- 3. True
- 4. Yes
- 5. Memory cycle will not take place (No read or write).
- б. **D**

PDP-9 Homework Sheet #4 - ANSWERS

- 1. 71
- 2. False
- 3. C
- 4. False RUN must be restate use the REPT CLK.
- 5. Monitor the AR on the REgister Display
- 6. 49 times

PDP-9 Homework Sheet #6 - ANSWERS

- 1. When cycling CML 24
- 2. No
- 3. (CO ØØ * TOØI) + (COØØ * COØ1)
- 4. False
- 5. 24
- 6. AC = 243 446
 There will be end around carry
 There will be ADD overflow
 Positive result
 LINK will be set
- 7. When cycling CML 74
- 8. $\left[\text{CMAØ} (1) + \text{REP} \right] \cdot \text{CMAl}(1)$
- 9. CAL, JMS

PDP-9 Homework Sheet #7 - ANSWERS

- 1. SMA, SPA
- 2. Yes 765 342
- 3. False
- 4. DE 00200 MB 140 010 MA 00177 AC 000 000