-
PRISM SYSTEMS

SRISNM

System Reference Manudadl

dlilglilt/all |

Digital Equipment Corporation
Confidential and Proprietary

Restricted Distribution

SRISM

System Reference Manudl

Digital Equipment Corporaﬂon
Confidential and Proprietary

This Is an unpublished work and is the property of Digital
Equipment Corporation. This work Is confidential and is
maintained as a trade secret. In the event of inadvertent or
deliberate publication, Digital Equipment Corporation will
enforce Its rights In this work under the copyright laws as a
published work. This work, and the Information contained in
It may not be used, copied, or disclosed without the express
written consent of Digital Equipment Corporation.

© 1988 Digltal Equipment Corporation
All Rights Reserved

dlilgliltiall |

This Information shall not be disclosed to non-Digttal Equip-
ment Corporation personnel or generally distributed within
Digital Equipment Corporation. Distribution is restricted to
persons authorized and designated by the responsible Engi-
neer or Manager.

This document shall not be left unafttended. and, when not
In use, shall be stored in a locked storage area.

These restrictions are to be enforced until noted otherwise.

Responsible Engineer/Manager Date
Revision No: 3.0 Document Copy:
Date: 26 April 1988

Restricted Distribution

CONTENTS RESTRICTED DISTRIBUTION Page iii

CONTENTS

CHAPTER 1 INTRODUCTION
1.1 INTRODUCTION 1-1
1.2 DIFFICULTIES IN BUILDING A HIGH PERFORMANCE VAX 1-1
1.3 PRISM ARCHITECTURE OVERVIEW ... 1-3
1.3.1 Instruction Set Characteristics 1-3
1.3.2 Pipelined Processor Model . . . e 1-4
1.4 ADVANTAGES AND DISADVANTAGES OF PRISM 1-5
1.5 VAX COMPATIBILITY e e e 1-6
1.5.1 Compatibility leltatlons . .. 1-7
1.5.2 Why No VAX Compatibility Mode Is Prov;ded . 1-8
1.6 TERMINOLOGY AND CONVENTIONS 1-8
1.6.1 Numbering . e e e e e e 1-8
1.6.2 UNPREDICTABLE And UNDEFINED e e e e e e 1-8
1.6.3 Ranges And Extents 1-9
1.6.4 Must Be Zero (MBZ) e e e e e e e 1-°
1.6.5 Read As Zero (RAZ) e e e e e e e e 1-9
1.6.6 Should Be Zero (SBZ2) 1-9
1.6.7 Ignore (IGN) . . . e e e e 1-9
1.6.8 Figure Drawing Conventlons .. 1-9
CHAPTER 2 BASIC ARCHITECTURE
2.1 ADDRESSING . . « =« « « o« o =« o o o o o o o o = 2-1
2.2 DATA TYPES . . . ¢ ¢« « o o o« o« o« o o o« o « o = 2-1
2.2.1 Byte o e e e e e e e e e e e e e 2-1
2.2.2 Word . . . v . e e e e e e e e e e e e e e 2-2
2.2.3 Longword+« + 4+« 4+ 4 4 4 e 4 o+ e . . 2-3
2.2.4 Quadword o+« v 4 e e e e e e e .. 2-4
2.2.5 F floating « « « « « « « « « « . . 275
2.2.6 G_floating . . e e e e e e e e e e e e ... 276
2.2.7 Data Types Wlth No Hardware Support . 2-7
CHAPTER 3 INSTRUCTION FORMATS
3.1 PRISM REGISTERS e e e e e e e e e 4 e e e . 3-1
3.1.1 Scalar Registers« 3-1
3.1.2 Vector Registers 3-1
3.1.3 Program Counter« 3-2
3.1.4 Cycle Count Register 3-2
3.2 NOTATION e e e e e e e 3-2
3.2.1 Scalar Operand Values e e e e e e 3-2
3.2.2 Operators . . e e e e e e e 3-3
3.3 INSTRUCTION FORMATS e e e . 3-5
3.3.1 Memory Instruction Format e e e 3-5
3.3.2 Branch Instruction Format 3-5
3.3.3 Operate Instruction Format 3-6
3.3.3.1 Masked Vector Arithmetic Operate Instructlon
Format e - . 3-7
3.3.3.2 Masked Vector Memory Operate Instructlon
: Format . e e e e e 3-8
3.3.4 Epicode Instructlon Format e e e 3-9

CONTENTS

CHAPTER 4

[N N S N

4.

NHEHP PR

.3

4

WP

RESTRICTED DISTRIBUTION

INSTRUCTION DESCRIPTIONS

INSTRUCTION SET OVERVIEW AND NOTATION
Subsetting Rules . . e e e e e
Vector Instructions
Instruction Operand Notatzon
Opcode Qualifiers . . .

MEMORY LOAD/STORE INSTRUCTIONS .

-

Compare and Swap Longword, Interlocked .
Compare and Swap Quadword Interlocked .

Load Address .
Load Memory Data lnto Scalar Reglster
Read, Mask, Add Longword, Interlocked
Read, Mask, Add Quadword, Interlocked

Store Scalar Register Data into Memory
Gather Memory Data into Vector Register

Load Memory Data into Vector Register

Scatter Vector Register Data into Memory
Store Vector Register Data into Memory .

INTEGER ARITHMETIC INSTRUCTIONS ., . .
Integer Add« .« .« . .
Integer Signed Compare
Integer Unsigned Compare
Integer Divide
Integer Multiply
Integer Subtract
Vector Integer Add« v e
Vector Integer Signed Compare e .
Vector Integer Unsigned Compare . .
Vector Integer Multiply
Vector Integer Subtract

LOGICAL AND SHIFT INSTRUCTIONS

Logical Functions e e e
Shift Logical
Shift Arithmetic
Rotate
Vector Logical Functlons
Vector Merge . . . e e .
Vector Shift Loglcal e e e e

FLOATING-POINT INSTRUCTIONS

.
. v e
.

D S T}

Literals
Accuracy . . .
Floatlng—P01nt Exceptlons
Floating Add

Floating Compare
Convert F_Floating to G Floatlng
Convert G Floatlng to F Floatlng
Convert Floating to Longword
Convert Longword to Floatlng
Floating Divide
Floating Multiply
Floating Subtract .. .
Vector Floating Add . .

Vector Floating Compare

.

-

-

Vector Convert F_Floating to G Floatlng

Vector Convert G Floatlng to F Floatlng

Vector Convert Floating to Longword .
Vector Convert Longword to Floating .
Vector Floating Divide
Vector Floating Multiply
Vector Floating Subtract

-

Page iv

I Y - G- NN N Y
|

= i
HoooaWbLhs&aNdNDNDR

B B B DD D
1
| o
[

4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-43
4-44
4-45
4-48
4-48
4-51
4-52
4-53
4-54
4-55
4~56
4-57
4-58
4-59
4-60
4-61
4-62
4-64
4-65
4-66
4-67
4-68
4-69
4-70

CONTENTS RESTRICTED DISTRIBUTION Page v

4.6 CONTROL INSTRUCTIONS+ « o o v o 4-Mm1

Conditional Branch 4-72
Fault On Low Bit Clear 4-73
Jump to Subroutine . . e e e e e e e e e . 474
4.7 MISCELLANEOQOUS INSTRUCTIONS e e e e e e e .. 4-T5
Breakpoint . . . e e e ... 4-T6
Drain Instructlon Plpellne e e e e e e e e . 4T
Flush Instruction Cache . . e e e e e . 479
Generate Compressed Iota Vector « o« < . . 4-80
Move Processor Status 4-81
Probe Memory Access . . e+ v« w « « . . . 4-82
Read Cycle Count Reglster .o « « « « « . . 4-83
Read/Write Vector Count Reglster -+« .« . . . 4-84
Read/Write Vector Length Register 4-85
Read/Write Vector Mask Register 4-86
Return from Exception or Interrupt 4-87
Swap AST Enable . . e e e« « e+« 4-89
4.8 PRIVILEGED INSTRUCTIONS e e e e e e e 4-90
BOOT e e e e e e e e .. 491

Compare and Swap Quadword Interlocked,
Physical « « « ¢« « v 4 v v . .. 4-%32
HALT e e v e e e e e . .. 4-03
Load Quadword Physlcal e e e e e e e e e .. 4-94
Move From Processor Register 4-95
Move To Processor Register 4-96
Store Quadword Physical 4-97
Swap Privileged Context 4-98
Swap IPL . . . e e+ 4 e« + « . . . 4-100
Flush Translatlon Buffer e e e e e e e e ... 4-101
Write Cycle Count Register 4-102

CHAPTER 5 MEMORY MANAGEMENT
5.1 INTRODUCTION . . . e v e e e e 5-1
5.2 VIRTUAL ADDRESS SPACE e v e e e 4. 5-2
5.2.1 Virtual Address Format 5-2
5.3 PHYSICAL ADDRESS SPACE« « v v « « « 5-2
5.4 MEMORY MANAGEMENT CONTROL 5-3
5.5 PAGE TABLE ENTRIES 5-3
5.5.1 Changes To Page Table Entrles 5-4
5.6 MEMORY PROTECTION e e e e e e e e 5-5
5.6.1 Processor Modes 5-5
5.6.2 Protection Code 5-5
5.6.3 Access Violation Fault 5-6
5.7 ADDRESS TRANSLATION 5-6
5.8 TRANSLATION BUEFER ¢ « v v 4 « « o o . 5-7
5.9 ADDRESS SPACE NUMBERS 5-8
5.10 MEMORY MANAGEMENT FAULTS e "4 « « + « < b-8
CHAPTER 6 EXCEPTIONS AND INTERRUPTS

6.1 INTRODUCTION . 6-1
6.1.1 Processor Interrupt Prlorlty Level (IPL) . 6-1
6.1.2 Interrupts o .. e 6-1
6.1.3 Exceptions 6-2
6.1.4 Contrast Between Exceptlons And Interrupts 6-3
6.2 PROCESSOR STATE+« « + + .+« . . 6-3
6.3 INTERRUPTS e e e e 6-6
6.3.1 Asynchronous System Trap (AST) - Level 1 . 6-7

CONTENTS

CHAPTER

.

.

D S S S I T .

AN ANNANAANANNTANTNANRANNTANATNNAANNAAANARNAAAANANARNANAC NN ANAARNNANAANAARANTNTANTNARNANC NN

RESTRICTED DISTRIBUTION

Page vi

(e Wep)
11

1 trd OOV OV Oy Oy O &Y Oy
e R = 1
HOOOOWIWW MW~~~

(o2l) We W W e W o ey
!
| o
'

1
o
RCEN)

6-16
6-17
6-17
6-18
6-20
6-21
6-21
6-22

. 6-23

.3.2 Software Interrupts - Levels 1 To 3
.3.2.1 Software Interrupt Summary Register
3.2.2 Software Interrupt Request Register
3.3 Console Interrupts - Level 4 -
3.3.1 Console Receive Control Status
3.3.2 Console Transmit Control Status
3.4 I/0 Device Interrupts - Levels 4 And 5
3.5 Urgent Interrupts - Levels 6 And 7 .
3.5.1 Interval Clock Interrupt - Level 6 .
3.5.1.1 Interval Clock Interrupt Enable . ..
3.5.2 Interprocessor Interrupt - Level 6 .
3.5.2.1 Interprocessor Interrupt Enable Reglster
.3.5.3 Interprocessor Interrupt Request Register
4 . EXCEPTIONS e e e . .
4.1 Arithmetic Traps
.4.2 Data Alignment Fault . .
4.2.1 Scalar Alignment Fault e
4.3 Faults Occurring As The Result Of An

Instruction . . C e e e e e e e
4.3.1 Breakpoint Fault .. . e e .
4.3.2 Fault On Low Bit Clear Fault e e
.4.4 Illegal Operand Fault
4.4.1 Privileged Instruction
4.4.2 Reserved Opcode Fault
4.4.3 Vector Enable . . e e
4.5 Memory Management Faults C e e e . .
4.5.1 Access Violation
4.5.2 Translation Not Valid . ..
4.5.3 Fault On Execute
4.5.4 Fault On Read
4.5.5 Fault On Write . . e e e e e
4.6 Serious System Fallures . ..
4.6.1 Kernel Stack Not Valid Halt e e e .
4.6.2 Machine Check Abort
4.7 Vector Exceptions
4.7.1 Vector Restart Fault .- .
5 SERIALIZATION OF EXCEPTIONS AND INTERRUPTS . .
.6 SYSTEM CONTROL BLOCK (SCB)
7 STACKS . . . e e e e e e e e .
7.1 Stack Wrztablllty e e e e e e e e e
7.2 Stack Residency
7.3 Stack Alignment . . . e e
7.4 Initiate Exception Or Interrupt o e e .
7.5 Epicode Interrupt Arbitration
7.5.1 MTPR AST Request Register . . « o . e
.7.5.2 MTPR Software Interrupt Request Reglster .
7.5.3 Return From Exception Or Interrupt .o
7.5.4 Swap AST Enable
.7.5.5 Swap Interrupt Priority Level .
7.6 Processor State Transition Table

PROCESS STRUCTURE

1 PROCESS DEFINITION . .
2 HARDWARE PRIVILEGED PROCESS CONTEXT
.3 ASYNCHRONOUS SYSTEM TRAPS (AST) . .
3.1 A Software Model For AST Processing ..
4 PROCESS CONTEXT SWITCHING . . e e e e .
4.1 A Software Model For Process Context Switching .

6-24

6-24

6-31

6-39

CONTENTS RESTRICTED DISTRIBUTION Page vii

CHAPTER 8 INTERNAL PROCESSOR REGISTERS
8.1 INTERNAL PROCESSOR REGISTERS 8-1
Address Space Number (ASN) 8-3
AST Enable (ASTEN) . . 8-4
AST Request Register (ASTRR) .. 8-5
AST Summary Register (ASTSR) 8-6
Console Receive Control Status (CRCS) 8-7
Console Receive Data Buffer (CRDB) . 8~-8
Console Transmit Control Status (CTCS) . 8-S
Conscle Transmit Data Buffer . 8-10
Interval Clock Interrupt Enable (ICIE) 8-11
Interprocessor Interrupt Enable (IPIE) 8-12
Interprocessor Interrupt Request (IPIR) 8-13
Machine Check Error Summary Register (MCES) 8-14
Privileged Context Block Base (PCBB) 8-15
Processor Base Register (PRBR) 8-16
Page Table Base Register (PTBR) 8-17
System Control Block Base (SCEB) 8-18
System Identification (SID) 8-19
Software Interrupt Request Reglster (SIRR) 8-20
Software Interrupt Summary Register (SISR) 8-21
System Serial Number (SSN) . . e e e+« . . 8-22
Translation Buffer Check (TBCHK) . .« . . 8-23
Translation Buffer Invalidate Single (TBIS) 8-25
Time Of Year (TOY) e e e e e e e e e 8-26
User Stack Pointer (USP) e e e e e e e e . B=27
Vector Enable Register (VEN) e« « « « « « . . B-28
Who-Am-I (WHAMI) . . . e e e e e e ... B-29
CHAPTER 9 SYSTEM ARCHITECTURE AND PROGRAMMING IMPLICATIONS
9.1 INTRODUCTION . . e e e e e e e e e 9-1
9.2 MEMORY, MULTIPROCESSING, AND INTERPROCESSOR
COMMUNICATION 9-1
9.2.1 The Ordering Of ertes And Interrupts - 9-2
9.2.2 Memory And Shared Data . 9-5
9.2.2.1 Interprocessor Signaling And Data VlSlblllty 9-5
9.2.2.2 Atomicity And Corruption . . . e e e e 9-7
9.2.3 Using Interlocks To Prevent The Corruptlon Of
Shared Data . . . e e e e e . 9-9
9.3 SEPARATION OF PROCEDURE AND DATA 9-12
9.4 TRANSLATION BUFFER, VIRTUAL I AND D CACHES . 9-12
9.5 CACHES AND WRITE- BUFFERS v e e e e e e e e 9-13
. 9.6 STACKS . . . 9-17
9.7 SYNCHRONIZATION BETWEEN VECTOR AND SCALAR MEMORX
ACCESSES e . 9-18
9.7.1 Synchronlzatlon Instructlons 9-18
9.7.2 Required Use Of Memory Synchronlzatlon
Instructions . e e e e e 9-18
CHAPTER 10 EXTENDED PROCESSOR INSTRUCTION CODE
10.1 INTRODUCTION . . e e e e e e e e e e e ... 10-1
10.2 EPICODE ENVIRONMENT .. e e e e« e <« . . 10-1
10.3 EPICODE EFFECTS ON SYSTEM CODE . . e e e 10-2
10.4 SPECIAL FUNCTIONS REQUIRED FOR EPICODE C e e e 10-3

CHAPTER

CHAPTER

APPENDIX A

A1 ENCODING HINTS

A2 FUNCTIONAL GROUP LISTING

A.3 MNEMONIC LISTING

.4 OPCODE LISTING
APPENDIX B PROGRAMMING HINTS

B.1 INTRODUCTION

B.2 INTEGER DIVIDE e

B.3 FAST INTEGER DIVIDE BY FIXED INTEGERS

B.3.1 THE ALGORITHM

11 SYSTEM BOOTSTRAPPING AND CONSOLE

11.1 BOOTSTRAPPING .
11.1.1 Bootstrapping In A Unlprocessor Env1ronment
11.1.1.1 Memory Testing
11.1.1.2 Restart Parameter Block e .
11.1.1.3 Epicode Loadingo
11.1.1.4 Initial Page Tables . . .o
11.1.1.5 Bootstrap Flags . . e
11.1.1.6 Loading Of System Software ..
11.1.1.7 IPR Initialization . . . e .
11.1.1.8 Transfer Of Control To System Software c e .
11.1.2 Powerfail . . e e e e e e e e .
11.1.3 Powerfail Recovery . .
11.1.4" Multiprocessor Bootstrapplng . ..
11.1.4.1 Initial Synchronization
11.1.4.2 Actions Of Bootstrap Master e e . .
11.1.4.3 Actions Of Bootstrap Slaves e e e e e
11.1.4.4 Addition Of A Processor To A Running System
11.1.5 Powerfail In A Multiprocessing System ...
11.2 CONSOLE . . . e e e e e e e
11.2.1 Required Functlonallty
11.2.2 Entering Console Mode
11.2.3 Program Controlled Console I/O
11.3 CONSOLE LANGUAGE e e e .
11.3.1 Control Characters . .
11.3.2 Command Syntax
11.3.3 Commands . . . e e e
BOOT« . .« . . .
CONTINUE
DEPOSIT « « .+- .
EX2AMINE e e e e e e . . .
HALT . . e e e e e e . ..
INITIALIZE e e e e e e . . .
START « « « « v o « . .
TEST « « « « . .
11.3.4 Error Messages
12 I1/0 ARCHITECTURE
12.1 SCOPE . . e e e e e e e e e e . . .
12.2 SYSTEM MEMORY . e .
12.3 PRISM I/0 SPACE AND DEVICE INTERRUPTS .

12.4 GRANULARITY OF I/0 SPACE ACCESSES

INSTRUCTION SET SUMMARY

11-8

11-9

11-9
11-190
11-10
11-11
11-11
11-11
11-12
11-12
11-13
11-13
11-14
11-14
11-14
11-14
11-15
11-15
11-16
11-17
11-18
11-19
11-20
11-24
11-25
11-26
11-27
11-28

12-1
12-1
12-2
12-3

CONTENTS

INDEX

FIGURES

v w
Www

| 2 O S N S N I T |
BWNhFRrae WP

| IR R T A N T N NN N I SN NN NN BN B |
HPHRroo~~NooUbWNRHHERERHERPRPRPOVDOIOUTAEWNRENFHEOOO
NbWNEFEO

o

(=)

MOODOBOODOODO®OODOO-JOOAAAOATAAAATAAOAOOOAATAAATNULTUIL WW WDWwwwdhhdddDDDDD
[}

1
[
FNEREN

8-15

©
I

[}

(o)}

8-17
8-18
8-19

RESTRICTED DISTRIBUTION Page ix

Analysis . . e e e e e
Table For Some Powers Of 10 .o . e
Table For Numbers Between 2 And 255

Byte Format

Word Format

Longword Format

Quadword Format e e e e e e e
F_floating Format

G floatlng Format . . . e e e e
Memory Instruction Format e e e e e e e e
Branch Instruction Format, .
Operate Instruction Format .

Masked Vector Arithmetic Operate Instructlon
Format . . .

Masked Vector Memory Operate Instructlon Format

Epicode Instruction Format .. BN

F_ and G_floating Exception Code Format
Virtual Address Format e e e e e
Page Table Entry
Processor Status e e e e e e e e e e e
Program Counter . . e e e e e
Arithmetic Trap Exceptlon Frame e e e e e
Exception Summary« e e e
Scalar Alignment Fault Exceptlon Frame e
Breakpoint Fault Exception Frame
Fault On Low Bit Clear Fault Exception Frame .
Illegal Operand Fault Exception Frame . . .

Privileged Instruction Fault Exception Frame . .

Reserved Opcode Fault Exception Frame . . .
Vector Enable Fault Exception Frame .

Memory Management Fault Exception Frame .
Machine Check Abort Exception Frame
Vector Restart Frame . . . - . .

System Control Block Vector .

Hardware Privileged Context Block .

Address Space Number Register (ASN) . .

AST Enable Register (ASTEN)

AST Request Register (ASTRR)

AST Summary Register (ASTSR) . .

Console Receive Control Status Reglster (CRCS)
Console Receive Data Buffer Register (CRDB)
Console Transmit Control Status Register (CTCS)
Console Transmit Data Buffer Register (CTDB)
Interval Clock Interrupt Enable Register (ICIE)
Interprocessor Interrupt Enable Register (IPIE)
Interprocessor Interrupt Request Register (IPIR)
Machine Check Error Summary Register (MCES)
Privileged Context Block Base Register (PCBB)
Processor Base Register (PRBR)
Page Table Base Register (PTBR)

System Control Block Base Register (SCBB) . :

System Identification Register (SID) . . .
Software Interrupt Request Register (SIRR) .
Software Interrupt Summary Register (SISR) .

o

A
1
[wre

mu.um
Ut w

1 Lo

ool WWww WWWNNNDNDNN
!

|
BWaaUWNh R VY® aonUoatd WN K

1 GO
| t
HFoOowodoUtbWw

gy

CONTENTS

TABLES

8-20

11-1

11-3
11-4
11-5

] 1
N RN P

WO oo ooy
L}

B
1
N -

RESTRICTED DISTRIBUTION

System Serial Number Register (SSN) .
Translation Buffer Check Register (TBCHK)
Translation Buffer Invalidate Single Register
(TBIS) . . . e e e e
Time of Year Reglster (TOY)

User Stack Pointer (USP) . . .

Vector Enable Register (VEN) .
Who-Am-I Register (WHAMI) o e e e e e e
Restart Parameter Block
Per~-Processor Portion of RPB
Global Flags +. « v v v v v o« « o o .
State Longword . . e .
Initial Virtual Memory Layout <.

System Control Block Vector Assignments
Processor State Transitions

Internal Processor Register (IPR) Summary
TB/Cache Invalidation . . e e e e
When DRAINM (M) Or DRAINV (V)

IPR Initialization . .
Qualifiers for Examine and Dep031t .

Page x

8-22
8-23

8-25

11-8

6-32

11-21

PREFACE RESTRICTED DISTRIBUTION Page xi
26 April 1988

PREFACE

several competitors and new start-ups are introducing simplified
architecture machines and are claiming superior price/performance over
VAX. There are currently about a dozen such companies offering
machines with RISC architecture (e.g. 8SUN, MIPS), vector processing
(e.g., Convex, Scientific Computer Systems), symmetric multiprocessing
(e.g., Encore, Sequent), and fine-grained parallel processing (e.g.,
aAlliant) capabilities.

Most of these competitors are targeting the high end of the VAX
market, which is our most profitable product space. Some are
targeting the low end of our product family where simplified
architectures offer cheaper and faster custom CMOS implementations
than VAX.

Several advanced development and research projects within DIGITAL, and
projects elsewhere in the computer industry, have produced results
substantiating our competitor’s claims and questioning the viability
of the VAX architecture to sustain DIGITAL through the 1990's.

In response to this challenge, a strategic effort has been initiated
within the company to define a new architecture that will complement
our current VAX/VMS and VAX/ULTRIX offerings and provide DIGITAL with
a competitive architecture through the 1990’s and beyond.

The following lists summarize the assumptions, constraints, goals, and
non-goals that have been set for the architecture.

Assumptions:

1. Simplified architectures show promise for reducing complexity
while improving cost/performance and making higher absolute
performance possible when compared with VAX.

2. Vector processing, multiprocessing, and parallel processing
are well enough understood to make them a science (rather
than a black art), and therefore, are essential to attaining
a competitive architecture.

3. Neither DIGITAL nor its customers can afford the resources
necessary to support an open architecture philosophy, but
rather must be able to leverage software investments across
an entire family of compatible products. This implies that
any new architecture must be rigid and not allow the
instruction set or privileged architecture to be changed from
implementation to implementation.

4. The design work that must be performed is similar to the VAX
architectural effort. An architectural document, at the same
level of detail as produced for VAX, must be produced to

guide implementations of the new architecture. It is
required that this document receive wide review within the
technical community and the company in general. When

completed and accepted, the architecture will be placed under
ECO control and managed by a central architecture group.

PREFACE RESTRICTED DISTRIBUTION Page xii
26 April 1988

5. The architecture will be compatibly extended over time, and
will allow subsets. Each extension will be subsettable and
become a permanent part of the architecture which all
implementations must adhere to. Features of the architecture
that are subsetted in a particular implementation must be
emulated transparently in software.

6. VAX compatibility is very important, especially with respect
to the way memory is addressed and data is stored. This can
be achieved with a combination of software and hardware
rather than with just a hardware structure itself.

7. A VMS-like operating system environment can be constructed
with a compatible file system, network, and user interface,
and a functionally compatible set of system services.

8. ULTRIX will be ported to the new architecture and remain
compatible with both the VAX and PDP-11 implementations. An
ongoing effort will be made to ensure that all.
implementations of ULTRIX remain compatible.

9. Any new architecture must £it into the DIGITAL computing
environment and allow connection to local area networks,
systems, and clusters.

10. The architecture will be extended in the future to accomodate
a larger virtual address space.

Architectural Constraints:

1. The architecture must make it possible to efficiently support
VAX data types. This support can be achieved with a
combination of software and hardware.

2. The architecture must support VAX-compatible memory
addressing.

3. The architecture must provide a VAX-compatible interlock
capability so that it is possible to connect VAX processors
and I/0 peripherals to common memory systems.

4. The architecture must support the execution of identical
program images on all implementations.

5. The scalar architecture must provide greater than a factor of
two improvement in cost/performance over a VAX implementation
using the same technology.

Architectural Goals:

1. To make it possible to build machines that are as good or
better than the competition and have higher absolute
performance limits than VAX.

2. To define an architecture that is inherently easier to
implement than VAX and thus allows shorter development
cycles, or alternatively, allows more effort to be expended
on performance while holding the development cycle constant.

PREFACE RESTRICTED DISTRIBUTION Page xiii
. 26 April 1988

3, To make it attractive to implement the architecture without
microcode.

4. To allow for easy pipelining and parallel instruction
execution directly in the architecture, as opposed to
esoteric implementation complexity to gain performance.

5. To provide integral vector processing capabilities.

6. To allow for symmetric multiprocessing as well as other forms
of parallel processing.

7. To provide an extensible architecture with rules for
subsettability.

8. To provide a corporate architecture for the 1990’s that is
more competitive than VAX and provides more inherent growth
capability.

9. To remedy anticipated deficiencies and limitations in the VAX
architecture (e.g., number of general registers, page size,
physical address space, vector processing etc.). .

10. To provide the functional capabilities of the VAX privileged
architecture in a more simplified and easier-to-implement
form.

11. To make it easy for customers to move applications to the new
architecture from VAX.

12. To allow unprivileged VMS and ULTRIX layered products that
are written in a higher-level language to be moved to the new
architecture via recompilation, without 1loss of language
semantics or file and data type compatibility.

13. To allow for the implementation of a security kernel.

PREFACE

' RESTRICTED DISTRIBUTION Page xiv
26 April 1988

Specific Non-Goals:

1.

2.
3

To include a VAX compatibility mode.
To support UNIBUS/QBUS/MASSBUS peripherals.
To translate VAX macrocode transparently and efficiently.

To address non-architectural issues such as the
implementation of fault tolerant systems.

To support D_floating, H_floating, or decimal data types
directly in hardware.

To support efficient handling of unaligned operands.

f;ﬁEFACE RESTRICTED DISTRIBUTION Page xv
REVISION HISTORY 26 April 1988

Revision History:

Revision 3.0, 26 April 1988
1. Minor changes.

Revision 2.0, 24 June 1986
1. No changes

Revision 1.0, 22 December 1985

1. General rewrite and rephrasing of the introduction,
assumptions, architectural constraints, and architectural
goals.

2. Dropped all references and comparisons with RISC
architectures.

3. Added assumption that vector processing, multiprocessing, and
parallelism are essential for a competitive new architecture.

4. Added the assumption that the architecture must allow for
competitive and cost effective chip implementations.

5. Added a goal to provide integral vector processsing
capabilities.

Revision 0.0, July 5, 1985

1. First review distribution.

RESTRICTED DISTRIBUTION

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The difficulty in building cost-effective, high-performance VAX
processors, and the competitive pressure due to recent architectural
developments has motivated the design of the PRISM (Parallel Reduced
Instruction Set Machine) architecture.

The following sections of this introduction describe:

. Why building a high-end VAX is difficult. \

1

2. An overview of the PRISM architecture.

3. The PRISM advantages and disadvantages.

4 ggisﬁonstraints and limitations of VAX compatibility on

5. Terminology and conventions used in this document.

1.2 DIFFICULTIES IN BUILDING A HIGH PERFORMANCE VAX

VAX is a complex architecture with a large number of intra-instruction
and inter-instruction conflicts, which make it difficult to build
cost-effective implementations. '

Intra-instruction conflicts, in both decode and execution, make
pipelining techniques difficult to use. Some examples are:

o The wvariable instruction lengths and complex operand
specifiers require a large amount of instruction decode and
conflict-detection logic. VAX instructions can range from 1
byte to over 50 bytes in length, depending on the operand
specifiers used.

"0 The side effects of autoincrement and autodecrement
specifiers make pipelining, and the coordinated update of
‘multiple register file copies, difficult.

INTRODUCTION RESTRICTED DISTRIBUTION Page 1-2
DIFFICULTIES IN BUILDING A HIGH PERFORMANCE VAX 26 April 1988

© Specifying memory operand requests in the same instruction
that operates on the data either degrades performance
(because the execution unit must wait for the operand) or
increases the cost to buffer the instruction and operands in
order to pipeline the operation. Fetching a memory operand
requires address calculation, address translation, and cache
lookup. This will always be slower than reading a general
register. VAX has insufficient registers in which to load
memory operands prior to operating on the data; 16 are Jjust
not enough, especially when four are dedicated to fixed
functions.

© The indirect specifiers require two memory references to
fetch the operand, making the execution unit wait until the
operand arrives. Alternatively, other architectures allow
these two references to be separated and scheduled.

o Complex branch instructions, such as Branch on Bit (BBx) and
Add Compare and Branch (ACBx), may require several memory
references and execution cycles before the branch decision is
known. These instructions also have the branch displacement
at the end of the instruction requiring several cycles of
specifier decode before the branch destination is known.

o Instructions like POPR and RSB have implied operands and
implied register modification.

o The bit field instructions require special checks to
determine whether the operand is in a register or memory and
then additional checks to determine reserved operands.

© Compound instructions, such as CALL and POLY, encounter
internal conflicts during execution where the hardware must
stall because it has no other work to do. 1In addition, these
instructions must read data operands to determine the
semantics of the instruction.

Inter-instruction conflicts make parallel execution and out-of-order
completion of VAX instructions very difficult. Some examples are:

o Virtually every instruction alters the condition codes, so
the test or compare instruction can never be separated from
the conditional branch instruction with intervening
instructions. This means that in a pipelined implementation
the conditional branch is stalled waiting for the condition
codes from the immediately preceding instruction. Branch
prediction could be implemented, but this further complicates
the design and increases branch latency when the prediction
is wrong.

o The register interlock and bypass logic is complicated by
implied register operands, quadword and octaword register
writes starting at an arbitrary register, and byte and word
write merges into the general registers.

Most of the general functionality in the VAX architecture is
infrequently used. Studies of operand specifier usage have shown that
register, short literal, register deferred, and displacement mode
operand specifiers constitute B85% to 95% of all operand specifiers
used. The bit field instructions can take arbitrary specifiers for

INTRODUCTION RESTRICTED DISTRIBUTION Page 1-3
pDIFFICULTIES IN BUILDING A HIGH PERFORMANCE VAX 26 April 1988

the size and position operands, but in one study over 90% of the size
and position specifiers were short literals. \

1.3 PRISM ARCHITECTURE OVERVIEW
The design of the PRISM architecture was guided by:

o The cost/performance and higher absolute performance
advantages of simplified instruction set architectures.

o Advances in compiler technology. In particular, the ability
to compile procedures inline, better register allocation
algorithms, and instruction scheduling.

o A processor organization model that allows pérallel
instruction execution and out-of-order instruction
completion.

o The ability to implement both chip-level and high-end
machines.

o The declining cost of memory.

PRISM has some of the characteristics of the so-called RISC
architectures but a better comparison would be the CRAY machines.
Below is a brief overview of the PRISM instruction set characteristics
followed by a description of how a pipelined processor might be
implemented.

_1.3.1 Instruction Set Characteristics

o All instructions are 32 bits long and have a regular format.

o There are 64 scalar registers (RO through R63), each 32 bits
wide. RO reads as zero and writes to RO are ignored. Rl is
the current stack pointer and is referred to as SP.

o There are 16 vector registers (V0O through V15), each
containing 64 elements, 64 bits wide. There is a 7-bit
Vector Length register (VL), a 7-bit Vector Count register
(VC), and a 64-bit Vector Mask register (VM).

o All scalar data manipulation 1is between scalar registers,
~with up to two register source operands (one may be an 8-bit
literal) and one register destination operand.

o All vector data manipulation instructions get their source
operands from one or two vector registers and write their
results to a destination vector register.

o All memory reference instructions are of the load/store type
that move data between scalar or vector registers and memory.

o There are no branch condition codes. Branch instructions
test a scalar register value which may be the result of a

INTRODUCTION RESTRICTED DISTRIBUTION Page 1-4
PRISM ARCHITECTURE OVERVIEW » 26 April 1988

previous compare.
© Integer and logical instructions operate on longwords.

© Floating-point instructions operate on G_floating and
F_floating operands.

1.3.2 Pipelined Processor Model

The processor model that guided the architecture definition consists
of multiple pipelined function units, each of which executes a class
of instructions. For example, one function unit for the load/store
instructions, one for shifts, one for floating add/subtract, one for
integer and floating multiply, and one for integer and floating
divide. The multiply and divide units may or may not be pipelined.

The following outline shows one way to organize a Pipelined design of
the PRISM architecture. It should be emphasized that this is only one
model; other implementation models are also possible.

1. 1Instruction fetch - The instruction to execute 1is fetched
from the instruction cache.

2. Instruction decode and issue - The instruction is broken down
into its constituent parts and data-independent control and
address signals are generated. Before an instruction can
begin execution ("issue"), several constraints must be
satisfied:

© All source and destination registers for the instruction
must be free, i.e., there must be no outstanding writes
to a needed register from prior instructions.

o The register write path must be available at the future
cycle in which this instruction will store its result.
Only one result can be stored into the registers per
cycle. All instructions, with the exception of loads,
have a fixed, data-independent execution time. Loads are
predicted on the basis of cache hits.

o The function unit to be used by the instruction during
execution must be free. All units, with the exception of
divide, are pipelined and can accept a new scalar

instruction each machine cycle. The divide unit is
iterative and will accept a new instruction when the
previous divide instruction completes. A vector

instruction reserves the function unit for the duration
of the vector operation.

When a memory load/store instruction experiences a cache
miss, at some point the load/store unit busy flag will
cause subsequent load/store instructions to hold-issue
until the miss completes.

When an instruction does issﬁe, the destination register
‘and write path cycle for the result are reserved.

INTRODUCTION RESTRICTED DISTRIBUTION Page 1-5
PRISM ARCHITECTURE OVERVIEW 26 April 1988

3. Operand setup - All = instruction-independent register
addresses are generated, operands are read and latched, and
data-dependent control signals are generated.

4. Instruction execution - The instruction operands and control
signals are passed to a function unit for execution.

5. Result store - The result from the function unit is stored in
the register files or the cache as necessary.

Although this 1list is sequential, the five activities can be
pipelined. For instance, making control signals data-independent and
instruction formats regular means that more instruction decode and
operand access can be done in parallel, with less logic and greatly
simplified control.

Once an instruction is issued, it may take multiple cycles before the
result of the calculation is available. Meanwhile, in the next cycle
the next instruction can be decoded and, if all its issue conditions
are satisfied, it can be issued. Therefore, instructions are decoded
and issued in I-Stream order but because of the varying execution
times of different operations the results can be stored into the
registers out of I-Stream order. This complicates exception handling
and hardware retry of failing instructions; however, these are rare
events and the substantial performance gain and hardware savings from
out-of-order completion of compiler-scheduled code favors this
trade-off.

The regular nature of the instruction set and implementation result in
a simple set of rules that compilers can use to schedule instructions
and thereby increase performance through parallel instruction
execution.

1.4 ADVANTAGES AND DISADVANTAGES OF PRISM

The characteristics of the PRISM architecture will allow developers to
build processors with substantially more performance than a VAX for

the same hardware cost in the same technology. The reasons for this
are:

1. Fixed-length, quickly decoded instructions.

2. 64 scalar registers to reduce memory references and provide
more temporary registers for compiler instruction scheduling
and procedure use.

3. Parallel instruction execution and out-of-order instruction
completion.

4. No branch condition codes.

5. No complex compound instructions with internal data
dependencies, e.g., CALL/RET, CASE, ACBx, INSV/EXTV, Decimal.
Inline code for complex functions will be better +than VAX
microcode because:

- A compiler can pick the best code based on the knowledge
it has and can eliminate special checks, e.g., string

INTRODUCTION RESTRICTED DISTRIBUTION Page 1-6
ADVANTAGES AND DISADVANTAGES OF PRISM 26 April 1988

gverlap, procedure entry mask, sign of ACBx loop
increment, whether a bit field is in a register or
memory.

- VAX microcode must maintain additional state so that in
the event of an exception or interrupt it can either
backup the instruction or save enough state to continue
using First Part Done.

- VAX microcode must make many reserved operand checks that
add overhead, e.g., size and position operands in bit
field instructions with different checks depending on
whether the bit field is in registers or memory.

6. No microcode is required for instruction decode or execution.

7. A small instruction set emphasizing high frequency
operations. Far less logic is spent on functionality that
does not contribute to performance.

8. A larger branch displacement (22 bits versus 8 bits on VAX)
eliminates double branches for conditional branches.

9. A larger page size (8 Kbytes) improves Translation Buffer
(TB) effectiveness and allows the cache and TB lookup to
occur in parallel.

The disadvantages of the PRISM architecture are:

1. PRISM programs may require 2 to 3 times the code size (in
bytes) over VAX with a corresponding increase in instruction
stream bandwidth. However, this trade-off 1is preferred
because instruction cache miss rates are low and it is easier
to build more instruction stream bandwidth than massive
parallel instruction stream decode.

2. The 8-Kbyte page size will result in more memory
fragmentation. Declining memory costs will help offset this.

3. Unaligned references will be slower because they may be
implemented by macrocode.

4. Context switch time will increase because of the additional
scalar registers that must be saved and restored.

1.5 VAX COMPATIBILITY

The PRISM architecture was constrained in a number of ways to support
our existing VAX customer base. The goal is to make it both possible
and easier for a VAX customer to integrate PRISM with VAX and to move
an application to PRISM rather than to a competitor’s machine. This
goal impacts both the architecture and the system software.

1. The architecture uses VAX data types and allows byte
addressing of memory.

INTRODUCTION RESTRICTED DISTRIBUTION Page 1-7
VAX COMPATIBILITY 26 April 1988

2. The PRISM language compilers will retain their VAX-specific
language semantics, e.g., data types and parameter passing,
thus allowing customers to recompile most VAX programs
without alteration.

1.5.1 Compatibility Limitations

There are some compatibility limitations between PRISM and the VAX
architecture that may require changes to some high-level language
programs in order to run them on PRISM:

1. Floating-point arithmetic - There are no PRISM instructions
to compute D_floating and H_floating results. These
operations can be performed by software emulation.

PRISM has neither VAX POLY nor EMOD instructions. These
instructions keep extra guard bits.

2. Memory protection granularity - PRISM has a page size larger
than VAX. Therefore, VAX programs which rely on 512-byte
protection granularity will not work.

3. Exceptions - Instructions may have been executed after an
instruction that signals an arithmetic exception. Exception
handlers that assume no further instructions have been
executed will not work without changes to make the exception
precise.

4. Dynamic instruction creation - Programs which dynamically
construct and execute VAX instruction sequences and/or
calculate addresses or offsets based on the sizes of VAX
instructions will not work.

5. Instruction atomicity - Programs that rely on the atomicity
of VAX instructions may not work, e.g., a multi-threaded
application (such as an AST routine) in which shared memory
data is guaranteed to be in a consistent state only between
VAX instructions with no other means of synchronization being
used. Any uninterruptable VAX instruction which makes more
than one memory reference, e.g., INCL mem or ADDL3
meml,mem2,mem3, could be used in this way. On PRISM the
operation would require multiple instructions and, depending
on where a thread was interrupted, stale data could be used.

6. Data structures - Code that depends upon VAX architected data
structures such as the VAX PSL or call frames will not work.

7. PRISM supports a multiprocessing model that is different from
VAX. The ordering of writes to memory is not specified by
the PRISM architecture except at interlock boundaries. This
means that shared data must be accessed only after acquiring
a semaphore variable with an interlocked operation.

8. The granularity of sharing in a multiprocessor system is a
longword on PRISM and byte on VAX.

INTRODUCTION RESTRICTED DISTRIBUTION ' Page 1-8
VAX COMPATIBILITY 26 April 1988

1.5.2 Why No VAX Compatibility Mode Is Provided

VAX compatibility mode is not provided in the PRISM architecture (in
the same way that PDP-11 compatibility mode is provided on VAX) for
the following reasons:

1. The complexity of the VAX architecture would make it very
expensive and difficult to provide a VAX compatibility mode
with reasonable performance. VAX requires complex
instruction decode 1logic, special data path support, e.g.,
condition codes, different memory management, and a microcode
control store. This would defeat the purpose of a simplified

architecture.
2. The majority of applications are written in high-level
languages and can be recompiled. If programs are not

recompiled the performance gain from the additional PRISM
scalar registers, vector registers and instruction scheduling
is lost.

3. The desirable software goal is to network PRISM and VAX
processors so customer applications on VAX systems can share
data with applications on PRISM. Customers will already own
VAX systems on which to zrun those applications that they
don’t wish to port to PRISM.

1.6 TERMINOLOGY AND CONVENTIONS
1.6.1 Numbering

All numbers are decimal unless otherwise indicated. Where there 1is
ambiguity, numbers other than decimal are indicated with the name of
the base following the number in parentheses, e.g., FF (hex).

1.6.2 UNPREDICTABLE And UNDEFINED

RESULTS specified as UNPREDICTABLE may vary from moment to moment,
implementation to implementation, and instruction to instruction
within implementations. Software can never depend on results
specified as UNPREDICTABLE.

OPERATIONS specified as UNDEFINED may vary from moment to moment,
implementation to implementation, and instruction to instruction
within implementations. The operation may vary in effect from
nothing, to stopping system operation. UNDEFINED operations must not
cause the processor to hang, i.e., reach an unhalted state from which
there is no transition to a normal state in which the machine executes
instructions.

Note the distinction between result and operation. Non-privileged
software cannot invoke UNDEFINED operations.

INTRODUCTION RESTRICTED DISTRIBUTION Page 1-9
TERMINOLOGY AND CONVENTIONS . 26 April 1988

f1 6.3 Ranges And Extents

Ranges are specified by a pair of numbers separated by a ".." and are
inclusive, e.g., 2 range of integers 0..4 includes the integers 0, 1,

2, 3, and 4.
Extents are specified by a pair of numbers in angle brackets separated

by a colon and are inclusive; e.g., bits <7:3> specify an extent of
bits including bits 7, 6, 5, 4, and 3.

1.6.4 Must Be Zero (MBZ)

Fields specified as Must Be Zero (MBZ) must never be filled by

software with a non-zero value. If the processor encounters a
non-zero value in a field specified as MBZ, an Illegal Operand
exception occurs. See Chapter 6, Exceptions and Interrupts, Section
6.4.4. :

1.6.5 Read As Zero (RAZ)

Fields specified as Read As Zero (RAZ) return a zero when read.

~1.6.6 Should Be Zero (SBZ)

Fields specified as Should Be Zero (SBZ) should be filled by software
with a zero value. These fields may be used at some future time.
Non-zero values in SBZ fields produce UNPREDICTABLE results.

f1.6.7 Ignore (IGN)

Fields specified as Ignore (IGN) are ignored when written.

1.6.8 Figure Drawing Conventions

TFigures_which depict registers or memory follow the convention that
increasing addresses run right to left and top to bottom.

NOTE

\A note on the manual format: At certain points in
the manual, comments on why certain decisions were
made, unresolved issues, etc., are between a pair of
backslashes. These comments provide additional
clarification and will be removed from externally
distributed editions.\

INTRODUCTION RESTRICTED DISTRIBUTION Page 1-10
REVISION HISTORY 26 April 1988

Revision History:

Revision 3.0, 26 April 1988

1. Minor updates to reflect software strategy for PRISM.

Revision 2.0, 24 June 1986
1. Typographical corrections and clarifications.

2. Vector Length register changed from 6 to 7 bits.

Revision 1.0, 22 December 1985

1. Change register width from 64 bits to 32 bits.
2. Remove PC from scalar registers.

3. Specify RO reads zero, writes are ignored.

4. Specify SP mapped to register R1.

5. Add vector registers.

Revision 0.0, 5 July 1985

1. First review distribution.

RESTRICTED DISTRIBUTION

CHAPTER 2

BASIC ARCHITECTURE

2.1 ADDRESSING

The basic addressable unit in PRISM is the 8-bit byte. Virtual
addresses are 32 bits long; hence, the virtual address space is 2**32
(approximately 4.3 billion) bytes. Virtual addresses as seen by the
program are translated into physical memory addresses by the memory
management mechanism described in Chapter 5, Memory Management.

2.2 DATA TYPES
2.2.1 Byte

A byte is eight contiguous bits starting on an addressable byte
boundary. The bits are numbered from right to left, 0 through 7:

Figure 2-1: Byte Format

A byte is specified by its address A. A byte is an 8-bit value. The
byte is only supported in PRISM by zero extended load and store
instructions.

BASIC ARCHITECTURE RESTRICTED DISTRIBUTION
DATA TYPES

2.2.2 Word

Page 2-2
26 April 1988

A word is two contiguous bytes starting on an arbitrary byte boundary.

The bits are numbered from right to left, 0 through 15:

Figure 2-2: Word Format

A word is specified by its address A, the address

of the byte

containing bit 0. A word is a 16-bit value. The word is only
supported in PRISM by zero extended load and store instructions.

NOTE
PRISM implementations are likely to impose a
significant performance penalty on access to word
operands that are not naturally aligned. (A naturally

aligned word has zero as the low-order bit of its

address.)

NOTE

\On many of the VAX implementations unaligned operands
incurred approximately a 2x performance penalty, i.e.,
two memory references instead of one. It is expected
that most PRISM implementations will implement
unaligned accesses via software exceptions with the
operating system providing emulation of the load or

store of the unaligned data. The performance

penalty

may be expected to be up to 100x, depending on the

particular implementation.\

BASIC ARCHITECTURE RESTRICTED DISTRIBUTION Page 2-3
DATA TYPES 26 April 1988

2.2.3 Longword

A longword is four contiguous bytes starting on an arbitrary byte
poundary. The bits are numbered from right to left 0 through 31:

Figure 2-3: Longword Format

A longword is specified by its address A, the address of the byte
containing bit 0. A longword is 32-bit value. When interpreted
arithmetically, a longword is a two’s complement integer with bits of
increasing significance going 0 through 30. Bit 31 is the sign bif.
The value of the integer is in the range
-2,147,483,648..2,147,483,647. For performing addition, subtraction,
multiplication, and comparison, PRISM instructions also provide direct
support for the interpretation of a longword as an unsigned integer
with bits of increasing significance going 0 through 31. The value of
the unsigned integer is in the range 0..4,294,967,295.

NOTE

PRISM implementations are likely to impose a
significant performance penalty when accessing
longword operands that are not naturally aligned. (A
naturally aligned longword has zero as the low-order
two bits of its address.)

BASIC ARCHITECTURE RESTRICTED DISTRIBUTION Page 2-4
DATA TYPES 26 April 1988

2.2.4 Quadword

A quadword is eight contiguous bytes starting on an arbitrary byte
boundary. The bits are numbered from right to left 0 through 63:

3

1 0

e e +

| | :A
e +

| | :A+4
e —————— +

Figure 2-4: Quadword Format

A quadword is specified by its address A, the address of +the byte
containing bit 0. A quadword is a 64-bit value. The quadword is only
supported in PRISM by load and store instructions.

NOTE

PRISM implementations are likely to impose a
significant performance penalty when accessing
quadword operands that are not naturally aligned. (A
naturally aligned quadword has zero as the low-order
three bits of its address.)

BASIC ARCHITECTURE RESTRICTED DISTRIBUTION Page 2-5
DATA TYPES 26 April 1988

2.2.5 F_floating

An F_floating datum is four contiguous bytes starting on an arbitrary
byte “boundary. The bits are labeled from rlght to left 0 through 31.

11

5 4 76 0
e St e Lt +

IS exp | fraction | :A
i fmm +

| fraction | :A+2
it ittt T +

Figure 2-5: F_floating Format

An F_floating datum is specified by its address A, the address of the
byte containing bit 0. The form of an F_floating datum is sign
‘magnitude with bit 15 the sign bit, bits <14:7> an excess 128 binary
exponent, and bits <6:0> and <31:16> a normalized 24-bit fraction with
the redundant most significant fraction bit not represented. Within
the fraction, bits of increasing significance go from 16 through 31
and 0 through 6. The 8-bit exponent field encodes the values 0
through 255. An exponent value of 0, together with a sign bit of O,
is taken to indicate that the F_floating datum has a value of 0. If
the result of a floating point instruction has a value of zero, the
instruction always produces a datum with a sign bit of 0, an exponent
of 0, and all fraction bits of 0. Exponent values of 1..255 indicate
true binary exponents of -127..127. BAn exponent value of 0, together
with a sign bit of 1, is taken as reserved. Floating-point
instructions processing a reserved operand take an Arithmetic
exception (see Chapter 6, Exceptions and Interrupts, Section 6.4.1).
The wvalue of an F floatlng datum is in the approximate range
0.29%10**-38,.1.7*10%*%38, The prec181on of an F_floating datum is
approximately one part in 2**23, i.e., typically 7 decimal digits.

NOTE

PRISM implementations are likely to impose a
significant performance penalty when accessing
F_floating operands that are not naturally aligned.

(A naturally aligned F _floating datum has zero as the
low-order two bits of its address).

BASIC ARCHITECTURE RESTRICTED DISTRIBUTION Page 2-6
DATA TYPES 26 April 1988

2.2.6 G_floating

A G_floating datum is eight contiguous bytes starting on an arbitrary
byte boundary. The bits are labeled from right to left 0 through 63:

11
5 4 4 3 0
Fotm e e e +
S| exp | fract | :A
R pmm———— +
| fraction | A+2
e i T T +
] fraction | :A+4
R it T T Ty, +
| fraction | :A46
o e e +

Figure 2-6: G_floating Format

A G_floating datum is specified by its address A, the address of the
byte containing bit 0. The form of a G_floating datum is sign
magnitude with bit 15 the sign bit, bits <14:4> an excess 1024 binary
exponent, and bits <3:0> and <63:16> a normalized 53-bit fraction with
the redundant most significant fraction bit not’ represented. Within
the fraction, bits of increasing significance go from 48 through 63,
32 through 47, 16 through 31, and 0 through 3. The 1ll-bit exponent
field encodes the wvalues 0 through 2047. An exponent value of 0,
together with a sign bit of 0, is taken to indicate that the
G_floating datum has a value of 0. If the result of a floating point
instruction has a value of zero, the instruction always produces a
datum with a sign bit of 0, an exponent of 0, and all fraction bits of
0. Exponent values of 1..2047 indicate true binary exponents of
-1023..1023. An exponent value of 0, together with a sign bit of 1,
is taken as reserved. Floating-point instructions processing a
reserved operand take an Arithmetic exception (see Chapter &,
Exceptions and Interrupts, Section 6.4.1). The value of a G_floating
datum is in the approximate range 0.56*10**-308..0.9*10%*308. The
precision of a G_floating datum is approximately one part in 2%*52,
i.e., typically 15 decimal digits.

NOTE

PRISM implementations are likely to impose a
significant performance penalty when accessing
G_floating operands that are not naturally aligned.
(A naturally aligned G_floating datum has zero as the
low-order three bits of its address.)

BASIC ARCHITECTURE RESTRICTED DISTRIBUTION Page 2-7
DATA TYPES 26 April 1988
2.2.7 Data Types With No Hardwére-Support
The following VAX data types are not directly supported in PRISM
hardware, (see the VAX Architecture Standard for detailed information
on these data types). :

o0 Octaword

o D_floating

o H _floating

o Variable Length Bit Field

o Character String

o Trailing Numeric String

o Leading Separate Numeric String

o Packed Decimal String

© Queues

BASIC ARCHITECTURE RESTRICTED DISTRIBUTION Page 2-8
REVISION HISTORY 26 April 1988

Revision History:

Revision 3.0, 26 April 1988

1. Dirty zero cannot be produced as a floating point result.

Revision 2.0, 24 June 1986

1. Minor edits.

Revision 1.0, December 22, 1985

1. Removed signed and unsigned descriptions for Byte, Word, and
Quadword. 7

2. Changed formatting as per Rev 1.0 format.

Revision 0.0, July 5, 1985

7 1. First Review Distribution

RESTRICTED DISTRIBUTION

CHAPTER 3

INSTRUCTION FORMATS

3.1 PRISM REGISTERS
3.1.1 Scalar Registers

There are 64 scalar registers (RO through R63), each 32 bits wide. R1
is the stack pointer (SP).

When RO is specified as a reglster source operand, a zero valued
operand is supplied. When RO is specified as a register destination,
the result of the operation is discarded. If an exception is detected
during the execution of an instruction that specifies RO as the
destination, it is UNPREDICTABLE whether . or not the exception is
actually signaled.

Some instructions read and write quadword register operands. Quadword
register operands must be spec;fled in even-odd register pairs. Bits
<31:0> of the quadword are in the even register and bits <63:32> are
in the odd register. If bit <0> of an instruction register field
specifying a quadword operand is not 0, the result of the operation,
including exception signaling, is UNPREDICTABLE.

When RO is specified as a quadword source operand, bits <31:0> are
zero and bits <63:32> are UNPREDICTABLE. When RO is specified as a
quadword destination, bits <31:0> are ignored (IGN) and Dbits <63:32>
(the contents of R1l) are UNPREDICTABLE.

3.1.2 Vector Registers

There are 16 vector registers, V0 through V15. Each vector register
contains 64 elements numbered 0 through 63 and each element is 64 bits
wide. A vector instruction that operates on longword or F floatlng
d§ta reads bits <31:0> of each source element and writes a result in
plts <31:0> of each destination element. Depending on the specific
instruction, bits <63:32> of each destination element may receive bits
<63:32> of one of the source operands, or may be UNPREDICTABLE.

If the same vector register is used as both a source and a destination

" in a Vector Gather (VGATH) instruction, the result of the operation is
‘UNPREDICTABLE,

The 7-bit Vector Length register (VL) controls how many vector
elements are processed. VL is 1loaded before executing a vector
instruction. The value in VL may range from 0 to 64. A value greater

INSTRUCTION FORMATS RESTRICTED DISTRIBUTION Page 3-2
PRISM REGISTERS) ' 26 April 1988

than 64 produces UNPREDICTABLE results. A value of zero means that no
elements are processed. Once loaded, VL specifies the number of
elements processed in all subsequent vector instructions until VL is
loaded with a new value. Elements beyond VL in the destination vector
register are not modified.

The Vector Mask register (VM) has 64 bits, each corresponding to an
element in a vector register. Bit 0 corresponds to vector element 0.

The 7-bit Vector Count register (VC) receives the length of the offset
vector generated by the IOTA instruction.

3.1.3 Program Counter

The Program Counter (PC) is a special register that addresses the
instruction stream. As each instruction is decoded the PC is advanced
to the beginning of the next sequential instruction. This is referred’
to as the "updated PC." Any instruction that uses the value of the PC
will use the updated PC. The PC includes only bits <31:2> with bits
<1:0> treated as RAZ/IGN. This quantity is a longword aligned byte
address. The PC is not mapped to a scalar register, rather it 1is an
implied operand on conditional branch and subroutine Jjump
instructions.

3.1.4 Cycle Count'Register

The Cycle Count register is a 64-bit register that counts processor
cycles. Its resolution is within 128 cycles. It is saved and
restored in the Hardware Process Control Block (see Chapter 7) by the
Swap Process Context Instruction. It can be read with a Read Cycle
Count Register instruction (see page 4-83.). It can be written 1in
kernel mode by the Write Cycle Count Register instruction (see page
4-102.) When the 64-bit count overflows, the counter wraps around to
zero.

3.2 NOTATION

The notation used to describe the operation of each instruction 1is’
given as a sequence of control and assignment statements in an
ALGOL~-like syntax.

3.2.1 Scalar Operand Values

The notations Rav and Rbv are used to denote the wvalues of the two
scalar source operands, Ra and Rb.

Rav refers to the value of the Ra operand. This could be the contents
of scalar register Ra or a zero extended 8-bit literal in the case of
an Operate format instruction. If the instruction calls for a
quadword operand then the contents of the even-odd register pair
designated by Ra is used or again, a zero extended 8-bit literal may
be specified. :

INSTRUCTION FORMATS RESTRICTED DISTRIBUTION Page 3-3
NOTATION 26 April 1988

Rbv refers to the value of the Rb operand. This is the contents of
scalar register Rb. If the instruction calls for a quadword operand
then the contents of the even-odd register pair designated by Rb is
used.

other Expression Operands:

IPR x Contents of Internal Processor Register x

PC Updated PC wvalue

PS Processor Status

QRN Quadword contents of even-odd scalar register n
Rn Contents of scalar register n

vn Vector register n

X[m] Element m of array X

3.2.2 Operators

The following operators are used:

Comment delimiter

+ Addition

- Subtraction

* Signed multiplication
*U Unsigned multiplication
/ Division

<- Replacement

b Bit concatenation

{} : Indicates explicit operator precedence
(x) Contents of memory ;ocation whose address is x
x<m:n> Contents of bit field of x defined by bits
n thru m
ACCESS (x,Y) Accessibility of the location whose address is x

using the access mode y.
AND Logical product

BIT ROTATE (x,y) Left circular shift of the first operand by the
second operand

INSTRUCTION FORMATS RESTRICTED DISTRIBUTION Page 3-4

NOTATION

LEFT_SHIFT(x,y) Logical left shift of first operand by the second

operand
NOT Logical (one’s) complement
OR Logical sum
RELATIONSHIP
LT Less than signed
LTU Less than unsigned
LE Less or equal signed
LEU . Less or equal unsigned
EQ Equal signed and unsigned
NE - Not equal signed and unsigned
GE Greater or equal signed
GEU Greater or equal unsigned
GT Greater signed
GTU Greater unsigned
REM(x,vy) Remainder of x and y, such that X REM y has the

same sign as the dividend x

ARITH SEIFT(x,y) Arithmetic shift right of first operand by the

second operand

RIGHT_SHIFT(x,y) Logical right shift of first operand by the

second operand

SEXT (x) X is sign extended to the required size

TEST (x) Contents of register x tested for branch

XOR

condition true

Logical difference

ZEXT (x) X is zero extended to the required size

The following conventions are used:

1.

Only operands appearing on the left-hand side of a
replacement operator are modified.

No operator precedence is assumed other than that replacement
(<-) has the lowest precedence. Explicit precedence is
indicated by the use of "{}."

All arithmetic, logical, and relational operators are defined
in the context of their operands. For example, "+" applied
to G_floating operands specifies a G_floating add while "+"

26 April 1988

INSTRUCTION FORMATS RESTRICTED DISTRIBUTION Page 3-5
NOTATION 26 April 1988

applied to longword operands indicates an integer add.
Similarly, "LT" is a G floating comparison when applied to
G_floating operands and an integer comparison when applied to
longword operands.

3.3 INSTRUCTION FORMATS

There are four basic PRISM instruction formats. They are:
1. Memory

Branch

Cperate

= W N

Epicode

All instruction formats are 32 bits long with a 6-bit major opcode
field in bits <31:26> of the instruction.

3.3.1 Memory Instruction Format

The Memory format is used to transfer data between scalar registers
and memory, load an effective address, and for subroutine jumps. It
has the following format:

] opcode | Ra | Rb | Memory disp |
e et e bl e D T tmmmm e ——————————— +

Figure 3-1: Memory Instruction Format
There is a 6-bit opcode field, two 6-bit register address fields, Ra
and Rb, and a 14-bit signed displacement field.

The displacement field is a signed byte offset and is added to the
contents of register Rb to form a virtual address. Overflow is
ignored in this calculation.

The virtual address is used as a memory load/store address or a result
value depending on the specific instruction. The virtual address (va)
18 computed as follows:

va <- Rbv + SEXT (Memory_ disp)

f333.2 Branch Instruction Format

“ﬂh? Branch format is used for the conditional branch instructions and

INSTRUCTION FORMATS RESTRICTED DISTRIBUTION Page 3-6
INSTRUCTION FORMATS 26 April 1988

for the PC relative subroutine jumps. It has the following format:

Figure 3-2: Branch Instruction Format

There is a 6-bit opcode field, one 6-bit register address field -(Ra),
and a 20-bit signed displacement field.

The displacement is treated as a signed longword offset. This means
it is shifted left +two bits (to address a longword boundary), sign
extended to 32 bits and added to the updated PC to form the target
virtual address. Overflow is ignored in this calculation. The target
virtual address (va) is computed as follows:

va <- PC + {4*SEXT(Branch_disp)}

1

3.3.3 Operate Instruction Format

The Operate format is used for instructions that perform scalar
register-to-register operations and vector instructions. The Operate
format allows the specification of one destination operand and two
source operands. One of +the source operands can be a literal
constant. The Operate format is shown below for the two cases when
bit <8> of the instruction, the Literal field (L), is 0 and 1.

3 2 2 2 1 11

1 6 5 09 4 3 987 65 0

pommmmmm—— tommm fommmmm e pmmm—————— 4t mm +
| opcode | Ra | Rb | func |0]SBZ]| RC |
tommmmm - tommm fomm e —— pom——————— e et Bt L T T +
fommm e Fmmm———————— Fom——————— t=fmm e ————— +
] opcode | lit | Rb | func |1|1lit| Rc |
pmmm e ———— tomm——————— fomm $omm—————- L L LR by +

Figuie 3-3: Operate Instruction Format

There is a 6-bit opcode field and a 5-bit function field (func).
Unused function encodings produce UNPREDICTABLE but not UNDEFINED
results; i.e., they are not security holes.

There are three operand fields, Ra, Rb, and Rc. Each operand field
specifies either a scalar or vector operand as defined by the
instruction. If a vector operand field contains a vector register

number greater than 15, the result of the vector operation is
UNPREDICTABLE. Note that vector register V0 can contain data, unlike
scalar register RO. :

The Ra field specifies a source operand. Scalar operands can specify

INSTRUCTION FORMATS RESTRICTED DISTRIBUTION Page 3-7
INSTRUCTION FORMATS 26 April 1988

a literal or a scalar register using the literal control bit (L) in
the instruction. Vector operands can specify a vector register only.
The result of the vector operation is UNPREDICTABLE if a literal is
specified for a vector operand.

1f L is 0, the Ra field specifies a source register operand. Bits
<7:6> of the instruction Should Be Zero.

If L is 1, an 8-bit zero extended 1literal constant is formed by
combining the Ra field with bits <7:6> of the instruction. The
literal is interpreted as a positive integer between 0 and 255 and is
zero extended to 32 bits (64 Dbits for gquadword operands).
symbolically, the scalar Rav operand is formed as follows,

IF L EQ 1 THEN

Rav <- ZEXT (inst<25:20> || inst<7:6>) !longword

QRav <- ZEXT (inst<25:20> || inst<7:6>) quadword
ELSE

BEGIN

Rav <- Ra {longword

QRav <- QRa 'quadword

END

The Rb field specifies a source operand. Symbolically, the scalar Rbv
operand is formed as follows,

Rbv <- Rb !longword
QRbv <- QRb !quadword

The Rc field specifies a destination operand.

Convert instructions use a subset of the Operate format and perform
register-to-register conversion operations. The Ra operand specifies
the source; the Rb field Should Be Zero.

3.3.3.1 Masked Vector Arithmetic Operate Instruction Format

The Masked Vector Arithmetic Operate format is used for instructions
that perform register-to-register vector operations under the control
of the Vector Mask register. This wvariant of the Operate format
allows the specification of one destination operand and two source
operands.

The Ra field specifies a source scalar or vector operand. The Rb
field contains the Vb sub-field that specifies a source vector
register and the Mask Selector (S) bit. The Rc field contains the Vc
sub-field that specifies the destination vector register and the
Masked Mode enable (M) bit.

The Masked Vector Arithmetic Operate format is shown below for the two
cases when bit <8> of the instruction, the Literal field (L), is 0 and

-

INSTRUCTION FORMATS RESTRICTED DISTRIBUTION Page 3-8

INSTRUCTION FORMATS 26 April 1988
3 22 2111 11
1 6 5 0 987 4 3 987 6543 0
oo e todmfmm pommm————m e R et +
| opcode | Ra IS{0] Vb I func |0|SBZIM|0| ve |
e Fommmmemmm dotmpmm o et D e t +
e e dmtmpmmm———— tommm R atatatat s
| opcode | 1lit [S|0] Vb | func [1]1it|M|0] ve |

e it D totot—— - to———————— it e e +
Figure 3-4: Masked Vector Arithmetic Operate Instruction Format

The M bit controls whether the vector mask register is used to select
which vector elements are operated on. When M is one (zero) masked
mode operation is enabled (disabled). When vector masked mode 1is
enabled, the vector operation is performed on element i if the
corresponding bit in the Vector Mask register (VM<i>) matches the
value of the Mask Selector (S) bit. If VM<i> does not match S, then
the element i vector result is not written and no exception on that
result is signaled. When masked mode is disabled, all elements are
operated upon. The result of the vector operation is UNPREDICTABLE if
M is zero and S is one.

NOTE

The IOTA and VMERGE instructions also use the Masked
Vector Arithmetic Operate format. However, only the S
bit is used; the M bit Should Be Zero. Refer to Page
4-42 and 4-80 for a description of how the S bit is
used. A /0 opcode qualifier specifies that the S bit
is 0. A /1 opcode qualifier specifies that the S bit
is 1. Opcode qualifiers are described in Secticn
4.1.4.

3.3.3.2 Masked Vector Memory Operate Instruction Format

The Masked Vector Memory Operate format is used for instructions that
perform vector load or store operations under the control of the
Vector Mask register. This variant of the Operate format allows the
specification of one destination operand and two source operands.

The Ra field specifies a source scalar or vector operand. The Rb
field specifies a source scalar or vector register. The Rc field
contains the Vc sub-field that specifies the destination wvector
register and the Masked Mode enable (M) bit. Bit <12> of the
instruction in the function field contains the Mask Selector (S) bit.
Note that the location of the S bit for this format is different from
that for the Masked Vector Arithmetic Operate format.

The Masked Vector Memory Operate format is shown below for the two

cases when bit <8> of the instruction, the Literal field (L), is 0 and
1

INSTRUCTION FORMATS RESTRICTED DISTRIBUTION Page 3-89

INSTRUCTION FORMATS 26 April 1988
3 2 2 21 111
1 6 5 09 4 3 2 987 6543 0
o mm e ——— e — e Fmm——————— e et ittt T Tl e +
| opcode | Ra | Rb | func |0|SBZ|M]|OQ] ve |
fomm e ————— o i +-t—t—————- Rt e e +
S
fmmmm—————— tomm e ——— tomm - $-t—tom—m—tmtpm et mm =t
| opcode | 1lit | Rb | func [1]1it|M|O] ve |
fommm e ————— o ———— o e Bk sttt -ttt tm—————- +

Figure 3-5: Masked Vector Memory Operate Instruction Format

The M bit controls whether the vector mask register is used to select
which vector elements are operated on. When M is one (zero) masked
mode operation is enabled (dlsabled) When vector masked mode 1is
enabled, the vector operation is performed on element i if the
corresponding bit in the Vector Mask register (VM<i>) matches the
value of the Mask Selector (S) bit. If VM<i> does not match S, then
the element i vector result is not written and no exception on that
result 1s signaled. When masked mode is disabled, VL elements are
operated upon. The result of the vector operation is UNPREDICTABLE if
M is zeroc and S is one.

3.3.4 Epicode Instruction Format

The Extended Processor Instruction (Epicode) format is used to specify
extended processor functions. It has the following format:

Figure 3-6: Epicode Instruction Format

The 8-bit Epicode function field specifies the operation.

The source and destination operands for Epicode instructions are
supplied in fixed scalar registers that are specified in the
individual instruction descriptions.

An opcode of zero and an Epicode function of zero specify the HALT
instruction. An opcode of zero and Epicode function values between 64
and 127 specify implementation specific epicode instructions.

INSTRUCTION FORMATS RESTRICTED DISTRIBUTION Page 3-10
INSTRUCTION FORMATS ' 26 April 1988

\The Epicode function field can be used to form a hardware dispatch
address. The processor transfers control to a function specific
Epicode routine. Many of the complex instructions that implement the
privileged architecture, e.g., MxPR, REI, etc., are implemented as
Epicode routines. In addition, memory management (TB £ill) and
hardware exception handling (Translation Not Valid fault, arithmetic
trap) may be performed in Epicode. However, Epicode functions may be
implemented in hardware.

Epicode instructions must drain the pipeline so that wuser exceptions
resulting £rom prior instructions will not be reported after entering
the Epicode routine. The signaling of user exceptions has priority
over the execution of the Epicode instruction. See Chapter 10,
Extended Processor Instruction Code, for more details.\

INSTRUCTION FORMATS RESTRICTED DISTRIBUTION Page 3-11
REVISION HISTORY 26 April 1988

Revision History:

Revision 3.0, 26 April 1988

1.
2.
3.

4.

Document implementation specific epicode instructions.
Delete coprocessor support.

Vector instructions with longword results (except logicals)
leave bits <63:32> of destination UNPREDICTABLE.

Add Masked Operate formats.

Revision 2.0, 24 June 1986

1.
2.

3.

Minor clarifications.
Vector length register changed from 6 bits to 7 bits.
For vector instructions that produce 32-bit results, bits

<63:32> of the destination vector register elements receive
different wvalues.

Revision 1.0, 22 December 1985

1.

g4 o o N

10.

11.

Change register width from 64 bits to 32 bits.
Remove PC from scalar registers.

Specify RO reads zero, writes are ignored.
Specify SP mapped to register RI.

Defined quadwords in even-odd register pairs.
Renamed Move format to Memory format.

Changed Operate format to write Rc and use Ra field for
literal.

Eliminated Operate format address calculation.
Eliminated JSR and Convert format descriptions.
Added vector registers, VM, VL, VC.

Added Coprocessor instruction format.

Revision 0.0, 5 July 1985

1.

First review distribution.

RESTRICTED DISTRIBUTION

CHAPTER 4

INSTRUCTION DESCRIPTIONS

4.1 INSTRUCTION SET OVERVIEW AND NOTATION
This chapter describes the instructions implemented by the PRISM
architecture. The instruction set is divided into the following
sections:

1. Memory Load and Store

Integer arithmetic

Logical and Shift

2.
3.
4. Floating-point arithmetic
5. Control

6. Miscellaneous

7.

Privileged

Within each major section, closely related instructions are combined
into groups and described together. The instruction group description
is composed of the following:

o0 The group name.

o The format of each instruction in the group. This gives the
name, access type, and data type of each instruction operand.

o The operation of the instruction.

o Exceptions specific to the instruction.

o The mnemonic and name of each instruction in the group.
o A description of the instruction operation.

o Programming examples and optional notes on the instruction.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-2
INSTRUCTION SET OVERVIEW AND NOTATION 26 April 1988

4.1.1 Subsetting Rules

An instruction that is omitted in a subset implementation of the PRISM
architecture is not performed in either hardware or Epicode. System
software may provide emulation routines for subsetted instructions.

The following four groups of instructions may be omitted as a group in
a subset implementation. Note, if one instruction in a group is
provided then all other instructions in that group must be provided:

1. Integer multiplication.
2 F_ and G_floating.

3. Vectors.

4. Integer division.

The first three groups are hierarchical. If F_ and G_floating are’
supported, then integer multiplication must also be supported. If
vectors are supported, then F_ and G_floating must be supported along
with integer multiplication. The individual instruction descriptions
indicate whether an instruction can be subsetted.

4.1.2 Vector Instructions

The PRISM architecture provides vector instructions for most
arithmetic and data movement operations. There are 16 vector
registers, each 64 elements long. All vector instructions use the
Operate instruction format. Most vector instructions get their source
operands from one or two vector registers and write their results to
another wvector register. There are also vector load and store
instructions to move data between memory and the vector registers.

Generally, two variations of each vector instruction are provided.
One variant operates on data from two vector registers and writes the
result into a destination vector register. The other variant operates
on data from a scalar register and a vector register, writing the
result into a destination vector register.

The instruction descriptions distinguish the two wvariations by
specifying in the first instruction operand position a vector operand
(Va) or a scalar operand (Ra or a literal). This corresponds to the
register field "Ra" in the Operate format instruction. The actual
opcode assignment for each variation is different.

Vector instructions are only executed when Vector Enable (VEN) is set
in the Processor Status (PS). If PS<VEN> is clear, a Vector Enable
exception is generated when a vector instruction is executed. See
Chapter 6, Exceptions and Interrupts, Sections 6.2 and 6.4.4.3.

4.1.3 Instruction Operand Notation

The notation used to describe instruction operands follows from the
operand specifier notation used in the VAX Architecture Standard.
Instruction operands are described as follows:

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-3
INSTRUCTION SET OVERVIEW AND NOTATION

where:

1.

2.

3.

<name>.<access type><data type>

Name specifies the instruction field (Ra, Rb, Rc, or disp)

and

register type of the operand (scalar or vector). It can

be one of the following:

o]

o

disp - The displacement field of the instruction.

Ra - A scalar register operand in the Ra field of the
instruction.
#a - A scalar literal operand in the Ra field of the
instruction.
Rb - A scalar register operand in the Rb field of the
instruction.
Rc - A scalar register operand in the Rc field of the
instruction.
va - A vector register operand in the Ra field of the
instruction.
Vb - A vector register operand in the Rb field of the
instruction.
ve - A vector register operand in the Rc field of the

instruction.

Access type is a letter denoting the operand access type:

(o]

(@)

Q

a - The operand is used in an address calculation to
form an effective address. The data type code that
follows indicates the units of addressability (or scale
factor) applied to this operand when the instruction is
decoded, e.g., ".al" means scale by 4 (longwords) to get
byte units (used in branch displacements), ".ab" means
the operand is already in byte units (used in load/store
instructions).

i - The operand is an 8-bit immediate literal in the
instruction.
r - The operand is read only.

w - The operand is write only.

Data type is‘a letter denoting the data type of the operand:

o

o

o

b - Byte
£ - F_floating

g - G_floating

26 April 1988

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-4

INSTRUCTION SET OVERVIEW AND NOTATION 26 April 1988
o 1 - Longword
o q - Quadword
o w - Word

o x The data type is specified by the instruction

Quadword and G_floating data that are in scalar registers

must be in even-odd register pairs. The even register number
should be specified in the instruction register fields.

4.1.4 Opcode Qualifiers

Some operate format scalar and vector instructions have several

variants. For example, Add F_floating (ADDF) is supported with and
without floating underflow enabled, and with either chopped or VAX
rounding. The different variants of such instructions are denoted by
opcode qualifiers, which consist of a slash (/) followed by a string
of selected qualifiers. Each qualifier is denoted by a single
character as shown below:

o C - Chopped Rounding

o U - Floating Underflow Enable

o VvV - Integer Overflow Enable

o {0,1} - Enable Masked Operation and operate on elements for

~ which vector mask register bit <i> matches this qualifier.
This qualifier is used for instructions that use the Masked
Vector Arithmetic Operate and Masked Vector Memory Operate
formats. When this qualifier is used, the Masked Mode (M)
bit is set (except for VMERGE and IOTA) and the Mask Selector
(S) bit takes on the value of the qualifier. See Sections
3.3.3.1 and 3.3.3.2. The VMERGE and IOTA use this qualifier
to specify the Mask Selector bit, but do not use Masked Mode
(see instruction descriptions on Page 4-42 and 4-80).

o W - Write Intent. This qualifier is used by the VGATH
and VLD instructions. It indicates that the data being read
might be written in the near future. This feature can be
used to optimize write-~-back cache performance in a

multiprocessor system. Memory management does not check for
write accessibility.

The default values are VAX Rounding, Floating Underflow Disabled,
Integer Overflow Disabled, and Masked Operation Disabled.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-5
MEMORY LOAD/STORE INSTRUCTIONS 26 April 1988

4.2 MEMORY LOAD/STORE INSTRUCTIONS
The instructions in this section move data between the scalar
registers and memory, move data between the vector registers and

memory, and perform interlocked operations on shared memory data.

They use the Memory and Epicode instruction formats. The instructions
are summarized below:

Mnemonic Operation
CMPSWLI Compare and Swap Longword, Interlocked
CMPSWQI Compare and Swap Quadword, Interlocked
LDA Load Address
LDB Load Zero Extended Byte
LDW Load Zero Extended Word
LDL Load Longword
LDQ Load Quadword
RMATLI Read, Mask, Add Longword, Interlocked
RMAQT Read, Mask, Add Quadword, Interlocked
STB Store Byte
STW Store Word
STL Store Longword
STQ Store Quadword
VGATHL Vector Gather Longword
VGATHQ Vector Gather Quadword
VLDL Vector Load Longword
VLDQ Vector Load Quadword
VSCATL Vector Scatter Longword
VSCATQ Vector Scatter Quadword
VSTL Vector Store Longword
VSTQ Vector Store Quadword

If Vector Load, Store, Scatter, or Gather are used to access I/0
space, the results are UNPREDICTABLE.

An implementation may allow scalar and vector memory references to
proceed concurrently on the same processor. Software is responsible
for determining when read/write memory data conflicts between scalar

and vector references might produce incorrect results. If such
conflicts exist, software must insert DRAINM instructions (see Page
4-77) to ensure correct operation. Likewise, software 1is also

responsible for determining when read/write memory data conflicts
between multiple vector references might produce incorrect results.
If such conflicts exist, software must insert DRAINV instructions (see
Chapter 9) to ensure correct operation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-6
MEMORY LOAD/STORE INSTRUCTIONS 26 April 1988

Compare and Swap Longword, Interlocked
Format: Epicode format

CMPSWLI
Operation:

! R4 contains address of comparand 1
! R5 contains comparand 2

! R6 contains swap value

! R4<0> receives the swap status

addr <- R4
IF addr<1l:0> NE 0 THEN
{Illegal Operand exception}

{check for ACV, FOR, FOW, TNV and take Memory Management exceptior
tmp <~ (addr) {interlocked} lacquire hardware interlock.

IF tmp EQ R5 THEN
BEGIN
(addr) {interlocked} <- R6 'release hardware interlock
R4 <- R4 OR 1 !set successful compare status
END

ELSE
BEGIN
(addr) {interlocked} <- tmp !release hardware interlock
R5 <- tmp
END

END

Exceptions:

Access Violation
Fault On Read

Fault On Write
Illegal Operand
Translation Not Valid

Opcodes:
CMPSWLI Compare and Swap.Longword, Interlocked
Description:

The longword aligned memory operand, whose virtual address is in R4,
is fetched and compared to R5. If the two operands are equal, R6 is
written to the memory location and a swap status flag (R4<0>) is set.
If the two operands are not equal, the original memory operand is _
written into R5 and the memory location is left unchanged.

This instruction performs an interlocked memory access in that no
other processor or I/0 device can perform an interlocked operation on _
the same operand until the current interlocked operation has
completed.)
If the operand address in R4 is not longword aligned, an Illegal .
Operand exception is signaled. The operation is UNPREDICTABLE if

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-7
MEMORY LOAD/STORE INSTRUCTIONS 26 April 1988

CMPSWLI accesses I/O space. If both Fault On Read and Fault On Write
conditions exist, it is UNPREDICTABLE which is taken.

To make an insertion in an interlocked LIFO queue, the following
instructions would be executed:

lda head, r4 ; get address of queue header
1d1 (r4),xr5 ; get address of first entry
lda entry,xr6 ; get address of queue entry
105$: stl r5, (r6) ; link old first to new first
cmpswli - ; compare and swap longword
blbc r4,108% ; if 1lbc, repeat operation
To remove the entire 1list of queue elements, the following

instructions would be used:

lda head, r4 ; get address of queue header

ld1 (r4) ,x5 get address of first entry’

or r0,x0,r6 set address of new queue entry
106: cmpswli compare and swap longword

blbc r4,108 if lbc, repeat operation

e e N Ne N

If it is desirable to remove a single entry from the front of a queue,
then CMPSWQI must Dbe used and a sequence number must be included to
avoid the problem of reading the address of the first entry in the
queue, reading its 1link to the next entry, and then getting
interrupted in such a way as to allow another reader of the queue to
remove the first two entries in the gqueue and then insert an entry in
the queue which has the same address as the previous first entry in
the queue.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-8
MEMORY LOAD/STORE INSTRUCTIONS 26 April 1988

Compare and Swap Quadword, Interlocked
Format: Epicode format
CMPSWQI
Operation:
! R4 contains address of comparand 1
! QR6 contains comparand 2
! QR8 contains swap value
! R4<0> receives the swap status
addr <- R4
IF addr<2:0> NE 0 THEN
{Illegal Operand exception}
{check for ACV, FOR, FOW, TNV and take Memory Management exception}

tmp <- (addr) {interlocked} tacquire hardware interlock.

IF tmp EQ QR6 THEN

BEGIN
(addr) {interlocked} <- QR8 !release hardware interlock
R4 <- R4 OR'1 Iset successful compare status
END '

ELSE
BEGIN
(addr) {interlocked} <- tmp !release hardware interlock
QR6 <- tmp
END

END

Exceptions:

Access Violation
Fault On Read

Fault On Write
Illegal Operand
Translation Not Valid

Opcodes:

CMPSWQI Compare and Swap Quadword, Interlocked

Description:

The quadword aligned memory operand, whose virtual address is in R4,
is fetched and compared to QR6. If the two operands are equal, QR8 is
written to the memory location and a swap status flag (R4<0>) is set.
If the two operands are not equal, the original memory operand is
written into QR6 and the memory location is left unchanged.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-9
MEMORY LOAD/STORE INSTRUCTIONS 26 April 1988

This instruction performs an interlocked memory access in that no
other processor or I/0 device can perform an interlocked operation on
the same operand until the current interlocked operation has
completed.

If the operand address in R4 1is not quadword aligned an Illegal
operand exception 1is signaled. The operation is UNPREDICTABLE if
CMPSWQI accesses I/O space. If both Fault On Read and Fault On Write
conditions exist, it is UNPREDICTABLE which is taken.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION

MEMORY LOAD/STORE INSTRUCTIONS

Load Address
Format: Memory format

LDA disp.ab(Rb.ab),Ra.wl

Operation:

Ra <- Rbv + SEXT (disp)
Exceptions:

None.
Opcodes:

Lba Load Address

Description:

The virtual address is computed by adding

extended 14-bit displacement. The
register Ra.)

When Rb is RO the signed 14-bit displacement is

Ra.

register

Page 4-10
26 April 1988

the sign

written to

to register

INSTRUCTION pESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-11

Memory LQAD/STORE INSTRUCTIONS 26 April 1988

Load ienory pata into Scalar Register

Format: Memory format

LD disp.ab(Rb.ab),Ra.wx

Operation:

va <- Rbv + SEXT(disp)

Ra <- ZEXT({(va)<7:0>) 'LDB

Ra <~ ZEXT((va)<l1l5:0>) | LDW

Ra <- (va)<31:0> !LDL

QRa <- (va)<63:0> 1LDQ
Exceptions:

Access Violation
Fault On Read

Scalar Alignment
Translation Not Valid

Opcodes :
LDB Load Zero Extended Byte from Memory to Register
LDW Load Zero Extended Word from Memory to Register
LDL Load Longword from Memory to Register
LDQ Load Quadword from Memory to Register Pair
Description

The wvirtual address is computed by adding register Rb to the sign
extended l4-bit displacement. The source operand is fetched from
memory zero extended to a longword for LDB and LDW, and written to
register Ra. '

LDQ fetches a quadword from memory and writes it to the even-odd
pair specified by Ra.

Software _Note:

In Some implementations these instructions may be emulated if the
memory operand is not naturally aligned. This could be on the order
of 100 Flmes slower. Consequently, when compilers can detect this
(e.g. 'a field in a packed record), they should use an inline
multi- instruction sequence to fetch the operand in pieces rather than
incur the emulation overhead.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-12
MEMORY LOAD/STORE INSTRUCTIONS 26 April 1988

Read, Mask, Add Longword Interlocked
Format: Epicode format

RMATI
Operation:

! R4 contains the longword aligned virtual address
! R5 contains the longword mask data

! R6 contains the longword addend data

! R4 receives the longword read data

addr <- R4
IF addr<1l:0> NE 0 THEN
{Illegal Operand exception}

{check for ACV, FOR, FOW, TNV and take Memory Management exceptionj
R4 <- (addr) {interlocked} lacquire haidware interlock.

(addr) {interlocked} <- {R4 AND R5} + R6
lrelease hardware interlock

Exceptions:

Access Violation
Fault On Read

Fault On Write
Illegal Operand
Translation Not Valid

Opcodes:
RMALI Read, Mask, Add Longword, Interlocked
Description:

The longword aligned memory operand, whose virtual address is in R4,
is fetched and written to R4. The memory operand is ANDed with the
mask in R5 and then added to the addend data in R6. The result is
then written to the original memory location.

This instruction performs an interlocked memory access in that no
other processor or I/O device can perform an interlocked operation on
the same operand until the current interlocked operation has
completed. —

If the operand address in R4 1is not longword aligned an Illegal
Operand exception is signaled. The operation is UNPREDICTABLE if
RMALI accesses I/0 space. If both Fault On Read and Fault On Write
conditions exist, it is UNPREDICTABLE which is taken.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-13
MEMORY LOAD/STORE INSTRUCTIONS 26 April 1988

Read, Mask, Add Quadword Interlocked
rormat: Epicode format

RMAQI
Operation:

! R4 contains the quadword aligned virtual address
! QR6 contains the quadword mask data

! QRB contains the quadword addend data

! QR4 receives the quadword read data

addr <- R4
IF addr<2:0> NE 0 THEN
{Illegal Operand exception}

{check for ACV, FOR, FOW, TNV and take Memory Management exception}
QR4 <- (addr) {interlocked} lacquire hardware interlock.

(addr) {interlocked} <- {QR4 AND QR6} + QRS
lrelease hardware interlock

Exceptions:

Access Violation
Fault On Read

Fault On Write
Illegal Operand
Translation Not Valid

Opcodes:
RMAQI Read, Mask, Add Quadword, Interlocked
Description:

The quadword aligned memory operand, whose virtual address is in R4,
is fetched and written to QR4. The memory operand is ANDed with the
mask in QR6 and then added to the addend data in QR8. The result is
then written to the original memory location.

This instruction performs an interlocked memory access in that no
other processor or I/0 device can perform an interlocked operation on
the same operand until the current interlocked operation has
completed.

If the operand address in R4 is not gquadword aligned an 1Illegal
Operand exception is signaled. The operation is UNPREDICTABLE if
RMAQI accesses I/O space. If both Fault On Read and Fault On Write
conditions exist, it is UNPREDICTABLE which is taken.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-14
MEMORY LOAD/STORE INSTRUCTIONS 26 April 1988

Store Scalar Register Data into Memory
Format: Memory format

ST Ra.rx,disp.ab (Rb.ab)
Operation:

va <- Rbv + SEXT (disp)

(va) <- Rav<7:0> !STB

(va) <- Rav<1l5:0> ISTW

(va) <- Rav !STL

(va) <- QRav 1STQ
Exceptions:

Access Violation

Fault On Write ’
Scalar Alignment

Translation Not Vvalid

Opcodes:

STB Store Byte from Register to Memory

STW Store Word from Register to Memory

STL Store Longword from Register to Memory

STQ Store Quadword from Register Pair to Memory
Description:

The virtual address is computed by adding register Rb to the sign
extended 14-bit displacement. The Ra operand is written to memory at
this address.

STQ stores to memory the contents of the even-odd register pair
specified by Ra.

Software Note:

In some implementations these instructions may be emulated if the
memory operand is not naturally aligned. This could be on the order
of 100 times slower. Consequently, when compilers can detect this
(e.qg. a field in a packed record), they should use an inline
multi-instruction sequence to store the operand in pieces rather than
incur the emulation overhead.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-15
MEMORY LOAD/STORE INSTRUCTIONS 26 April 1988

Gather Memory Data into Vector Register
Format: Masked Vector Memory Operate Format

VGATH Ra.rl,Vb.rl,Vc.wx
VGATH #a.ib,Vb.rl,Vc.wx

operation:

FOR i <- 0 TO VL-1
BEGIN
va <- Rav + Vb[i]<31:0>
IF {NOT (masked mode) OR
{masked mode AND {VM<i> EQ selector}}} THEN
BEGIN
IF {va unaligned} THEN
{Vector Alignment exception}

Vel[i] <= (va)<31:0> | VGATHL
Veli] <= (va)<63:0> {VGATHQ
END

END
Exceptions:'

Access Violation
Fault On Read
Translation Not Valid
Vector Alignment
Vector Enable

Opcodeé:

VGATHL Gather Longword Vector from Memory to Vector Register
VGATHQ Gather Quadword Vector from Memory to Vector Register

@uélifiers:
Masked Operations, Write Intent

‘Description:

he.source operand vector is fetched from memory and written to vector
Xégister vc. The length of the vector is specified by the VL
:¥8gister. The virtual address of the vector is computed wusing the
‘base address in Ra and the element offsets in vector register Vb. The
:&ddress of element i (0 LE i LE VL-1) is computed as {Rav + Vb[i]}.
iThe element offset is a signed longword.

!E3‘Write Intent qualifier indicates that the data being read might be
'Titten in the near future. This feature can be used to optimize
Flte-back cache performance in a multiprocessor system. Memory
Agement does not check for write accessibility.

In VGATHL, bits <31:0> of each destination vector element receive the
memory data and bits <63:32> are UNPREDICTABLE. If any vector element

is not naturaliv aligned in memory, a Vector Alignment exception
occurs. . .

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS
MEMORY LOAD/STORE»;NSTRUCTIONS

Notes:

1.

RESTRICTED DISTRIBUTION Page 4-)
26 April 198

gister is used as both a source (Vb) and

If the same vector re ‘
the result of the operation is

a destination (ve),
UNPREDICTABLE.

When a memory management exception occurs, the contents of
the destination vector elements are UNPREDICTABLE.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-17
MEMORY LOAD/STORE INSTRUCTIONS 26 April 1988

Load Memory Data into Vector Register

Format: Masked Vector Memory Operate Format

VLD Ra.rl,Rb.rl,Vc.wx
VLD #a.ib,Rb.rl,Vc.wx
operation:

va <- Rbv
FOR i1 <- 0 TO VL-1
BEGIN
IF {NOT (masked mode) OR
{masked mode AND {VM<i> EQ selector}}} THEN
BEGIN -
IF {va unaligned} THEN
{Vector Alignment exception}

Ve[i] <- (va)<31l:0> IVLDL
Vc[i] <- (va)<63:0> IVLDQ
END
va <- va + Rav !Increment by stride

END
Exceptions:

Access Violation
Fault On Read
Translation Not Valid
Vector Alignment
Vector Enable

Opcodes:
VLDL Load Longword Vector from Memory to Vector Register
VLDQ Load Quadword Vector from Memory to Vector Register
Qualifiers:

Masked Operations, Write Intent
Description:

The source operand vector is fetched from memory and written to vector
register Vec. The length of the vector 1is specified by the VL
register. The virtual address of the vector is computed wusing the
base address in Rb and the stride in Ra. The address of element i
(0 LE i LE VL-1) is computed as {Rbv + {i*Rav}}. The stride is a
Signed longword.

The Write Intent qualifier indicates that the data being read might be
Wr%tten in the near future. This feature can be used to optimize
Write-back cache performance in a multiprocessor system. Memory
Management does not check for write accessibility.

In VIDL, bits <31:0> of each destination vector element receive the
Nemory data and bits <63:32> are UNPREDICTABLE.

'If'the vector operand is not naturally aligned in memory a Vector
Alignment exception occurs.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-18
MEMORY LOAD/STORE INSTRUCTIONS ’ 26 April 1988
These instructions may be omitted in a subset implementation.

Note: When a memory management exception occurs, the contents of the
destination vector elements are UNPREDICTABLE.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-19
MEMORY LOAD/STORE INSTRUCTIONS 26 April 1988

Scatter Vector Register Data into Memory
Format: Masked Vector Memory Operate Format

VSCAT Ra.rl,Vb.rl,Vc.rx
VSCAT #a.ib,Vb.rl,Vc.rx

Operation:

FOR i <- 0 TO VL-1
BEGIN
va <- Rav + Vb[i]<31l:0>
IF {NOT (masked mode) OR
{masked_mode AND {VM<i> EQ selector}}} THEN
BEGIN
IF {va unaligned} THEN
{Vector Alignment exception}

(va) <- Vec[i]<31:0> | VSCATL
(va) <= Vel[i] | VSCATQ
END

END
Exceptions:

Access Violation
Fault On Write
Translation Not Valid
Vector Alignment
Vector Enable

Opcodes:

~ VSCATL Scatter Longword Vector from Vector Register to Memory
VSCATQ Scatter Quadword Vector from Vector Register to Memory

Qualifiers:

Masked Operations
Description:

The source operand vector is read from vector register Vc and written
to memory. The length of the vector is specified by the VL register.
The virtual address of the vector is computed using the base address
in Ra and the element offsets in vector register Vb. The address of
element i (0 LE i LE VL-1) is computed as {Rav + Vb[i]}. The element
offset is a signed longword. :

If.any vector element is not naturally aligned in memory, a Vector
Alignment exception occurs.

An implementation may store the vector elements in parallel;
therefore, the order in which the elements are stored is
UNPREDICTABLE. '

These instructions may be omitted in a subset implementation.

Féﬁés‘ When a memory management exception occurs, the contents of the
destination vector elements are UNPREDICTABLE.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-20
MEMORY LOAD/STORE INSTRUCTIONS 26 April 1988

Store Vector Register Data into Memory

Format: Masked Vector Memory Operate Format

VST Ra.rl,Rb.rl,Ve.rx
VST #a.ib,Rb.rl,Vc.rx
Operation:

va <- Rbv

FOR i <- 0 TO VL-1
BEGIN
IF {NOT (masked _mode) OR
{masked mode AND {VM<i> EQ selector}}} THEN
BEGIN -
IF {va unaligned} THEN
{Vector Alignment exception}

(va) <= Vc[i]<31:0> IVSTL
(va) <- vcl[i] 'VSTQ
END
va <- va + Rav !Increment by stride

END
Exceptions:

Access Violation
Fault On Write
Translation Not Valid
Vector Alignment
Vector Enable

Opcodes:
VSTL Store Longword Vector from Vector Register to Memory
VSTQ Store Quadword Vector from Vector Register to Memory
Qualifiers:

Masked Operations
Description:

The source operand vector is read from vector register Vc and written
to memory. The length of the vector is specified by the VL register.
The virtual address of the vector is computed using the base address
in Rb and the stride in Ra. The address of element i (0 LE i LE VL-1)
is computed as {Rbv + {i*Rav}}. The stride is a signed longword. If
the vector operand is not naturally aligned in memory, a Vector
Alignment exception occurs.

An implementation may store the vector elements in parallel;
therefore, the order in which the elements are stored is
UNPREDICTABLE.

These instructions may be omitted in a subset implementation.

Note: When a memory management exception occurs, the contents of the
destination vector elements are UNPREDICTABLE.

INSTRUCTION DESCRIPTIONS

INTEGER ARITHMETIC INSTRUCTIONS

4.3 INTEGER ARITHMETIC INSTRUCTIONS

RESTRICTED DISTRIBUTION Page 4-21

26 April 1988

The integer arithmetic instructions perform add, subtract, multiply,
divide, and signed and unsigned compare operations.

The integer instructions are summarized below:

Mnemonic Operation

ADD Add Longword

CMPEQ Compare Signed Longword
CMPNE Compare Signed Longword
CMPLT Compare Signed Longword
CMPLE Compare Signed Longword
CMPGT Compare Signed Longword
CMPGE Compare Signed Longword

CMPULT Compare
CMPULE Compare
CMPUGT Compare
CMPUGE Compare

Equal

Not Equal

Less Than

Less Than or Equal
Greater Than

Greater Than or Equal

Unsigned Longword Less Than

Unsigned Longword Less Than or Equal
Unsigned Longword Greater Than

Unsigned Longword Greater Than or Equal

DIV Divide Longword

MULL Multiply Longword and Return Low 32 Product Bits

UMULH Unsigned Multiply Longword and Return High 32
Product Bits

SUB Subtract Longword

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-22

INTEGER ARITHMETIC INSTRUCTIONS 26 April 1988
Mnemonic Operation
VADD Vector Add Longword

VCMPEQ Vector Compare Signed Longword Equal

VCMPNE Vector Compare Signed Longword Not Equal

VCMPLT Vector Compare Signed Longword Less Than

VCMPLE Vector Compare Signed Longword Less Than or Equal
VCMPGT Vector Compare Signed Longword Greater Than

VCMPGE Vector Compare Signed Longword Greater Than or Equal

VCMPULT Vector Compare Unsigned Longword Less Than

VCMPULE Vector Compare Unsigned Longword Less Than or Equal
VCMPUGT Vector Compare Unsigned Longword Greater Than

VCMPUGE Vector Compare Unsigned Longword Greater Than or Equal

VMULL Vector Multiply Longword and Return Low 32 Product Bits
VUMULH Vector Unsigned Multiply Longword and Return High 32
Product Bits

VSUB Vector Subtract Longword

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-23
INTEGER ARITHMETIC INSTRUCTIONS 26 April 1988

Integer Add

Format: Operate format

ADD Ra.rl,Rb.rl,Rc.wl
ADD #a.ib,Rb.rl,Rc.wl
Operation:

Rc <- Rav + Rbv
Exceptions:
Integer Overflow
Opcodes:
ADD Add Longword
Qualifiers:
Integer Overflow Enable
Description:
Register Ra or a literal is added to register Rb and the 32-bit sum is
written to register Rc. On overflow, the least significant 32 bits of
the true result are written to the destination register.
The unsigned compare instructions can be used to generate a carry.

After adding two values, if the sum is less than (unsigned) either one
of the inputs, there was a carry out of the most significant bit.

INSTRUCTION DESCRIPTIONS
INTEGER ARITHMETIC INSTRUCTIONS

Integer Signed Compare

Format: Operate format

cMP
CMP

Operation:

IF Rav SIGNED_RELATION Rbv

RESTRICTED DISTRIBUTION Page 4-24

Ra.rl,Rb.rl,Rc.wl
$2.ib,Rb.rl,Rc.wl

Rc <- 1
ELSE
Rc <- 0
Exceptions:
None
Opcodes:
CMPEQ Compare
CMPNE Compare
CMPLT Compare
CMPLE Compare
CMPGT Compare
CMPGE Compare
Description:

Signed
Signed
Signed
Signed
Signed
Signed

Longword
Longword
Longword
Longword
Longword
Longword

26 April 1988

THEN

Equal

Not Equal

Less Than

Less Than or Equal
Greater Than

Greater Than or Equal

Register Ra or a literal is compared to Register Rb. If the specified
one is written to register Rc; otherwise, zero

relationship

true,

is written to Rc.

INSTRUCTION DESCRIPTIONS

RESTRICTED DISTRIBUTION Page 4-25

INTEGER ARITHMETIC INSTRUCTIONS 26 April 1988

Integer Unsigned Compare

Format: Operate format

Ra.rl,Rb.rl,Rc.wl
#a.ib,Rb.rl,Rc.wl

IF Rav UNSIGNED_ RELATION Rbv THEN

CMP
CMP
operation:
Rc <- 1
ELSE
Rc <- 0
Exceptions:
None
Opcodes:
CMPULT Compare
CMPULE Compare
CMPUGT Compare
CMPUGE Compare
Description:

Unsigned Longword Less Than

Unsigned Longword Less Than or Equal
Unsigned Longword Greater Than
Unsigned Longword Greater Than or Equal

Register Ra or a literal is compared to Register Rb. If the specifiéd

relationship

true,

is written to Rc.

one is written to register Rc; otherwise, zero

INSTRUCTION. DESCRIPTIONS RESTRICTED DISTRIBUTION
INTEGER ARITHMETIC INSTRUCTIONS

Integer Divide

Format: Operate format

DIV Ra.rl,Rb.rl,Rc.wl
DIV #a.ib,Rb.rl,Rc.wl

Operation:
Rc <- Rav / Rbv
Exceptions:

Integer Divide by Zero
Integer Overflow

Opcodes:

DIV Divide Longword
Qualifiers:

Integer Overflow Enable

Description:

Page 4-26
26 April 1988

Register Ra or a literal is divided by register Rb and the quotient is

written to register Rc.

On overflow, the least significant 32 bits of the true

result are

written to the destination register. The quotient result with a zero

divisor is UNPREDICTABLE.

These instructions may be omitted in a subset implementation.

NOTE

The first PRISM chips will not implement DIV.

DIV

will be trapped as a reserved opcode and emulated in

software. DIV may be implemented in hardware a
future implementation. Compilers should avoid using
DIV. 1Instead they should generate in-line code to

perform the divide operation. See Appendix B for a

discussion of how division might be performed. \

.INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-27
INTEGER ARITHMETIC INSTRUCTIONS 26 April 1988

Integer Multiply

rormat: Operate format

MUL
MUL

operation:
tmp
tmp
Rc
Rc

Exceptions:

<=
-~
<=
=

Integer

Opcodes:

MULL

UMULH

Qualifiers:

Integer

Description:

Ra.rl,Rb.rl,Rc.wl
#a.ib,Rb.rl,Rc.wl

Rav * Rbv !Signed multiply for MULL
Rav *U Rbv !Unsigned multiply for UMULH
tmp<31:0> !MULL

tmp<63:32> ! UMULH

Overflow

Multiply Longword and Return Low 32 Product Bits
Unsigned Multiply Longword and Return High 32
Product Bits

Overflow Enable

Register Ra or a literal is multiplied by register Rb and either the
least or most significant 32 bits of the 64-bit product are written to
the destination register. The multiplication is signed for MULL, and
unsigned for UMULH.

MULL writes the least significant 32 product bits.,

On overflow, the least significant 32 bits of the true result are
written to the destination register.

UMULH writes the most significant 32 bits of the unsigned product.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-28
INTEGER ARITHMETIC INSTRUCTIONS 26 april 1988
Integer Subtract

Format: Operate format

SUB Ra.rl,Rb.rl,Rc.wl
~ SUB $#a.ib,Rb.rl,Rc.wl

Operation:
Rc <~ Rbv - Rav
Exceptions:

Integer Overflow

Qpcodes:

SUB Subtract Longword
Qualifiers:

Integer Overflow Enable
Deécription:

Register Ra or a literal is subtracted from register Rb and the 32-bit
difference is written to register Rc. On overflow, the least
significant 32 bits of the true result are written to the destination
register.

The unsigned compare instructions can be used to generate a Dborrow.
If the minuend (Rbv) is less than (unsigned) the subtrahend (Rav),
there will be a borrow.

,INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-29
INTEGER ARITHMETIC INSTRUCTIONS 26 April 1988
vector Integer Add

Format: Masked Vector Arithmetic Operate Format

VADD Va.rl,Vb.rl,Vec.wl
VADD Ra.rl,Vb.rl,Vc.wl
VADD #a.ib,Vb.rl,Vc.wl

operation:
FOR i <- 0 TO VL-1

IF {NOT (masked mode) OR
{masked mode AND {VM<i> EQ selector}}} THEN

BEGIN A

Ve[i]<31:0> <- Va[i]<31:0> + Vb[i]<31:0> !Vector + Vector
Vc{i]<31:0> <= Rav + Vb[1]<31:0> !Scalar + Vector
END

Exceptions:

Integer Overflow
Vector Enable

Opcodes:

VADD Vector Add Longword
Qualifiers:

Integer Overflow Enable, Masked Operations
Description:

A vector operand (in register Va) or a scalar operand (in register Ra
or a literal) is added, element-wise, to vector register Vb and the
32-bit sum is written to vector register Vc. Only bits <31:0> of each
vector element participate in the add operation. Bits <63:32> of the
destination vector elements are UNPREDICTABLE. The 1length of the
vector is specified by the VL register.

If integer overflow is detected, an Integer Overflow exception occurs
when the vector operation completes. On overflow, the least
significant 32 bits of the true result are written to bits <31:0> of
the destination element.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-30
INTEGER ARITHMETIC INSTRUCTIONS 26 April 1988

Vector Integer Signed Compare

Format: Masked Vector Arithmetic Operate Format

VCMP Va.rl,Vb.rl

VCMP Ra.rl,Vb.rl

VCMP #a.ib,Vb.rl
Operation:

FOR i <- 0 TO VL-1
BEGIN
IVector cmp Vector
IF {NOT (masked mode) OR
{masked mode AND {VM<i> EQ selector}}} THEN
IF Va[i]<31:OS*SIGNED_BELATION Vb[1i]<31:0> THEN
VM<i> <- 1
ELSE
VM<i> <- 0
!Scalar cmp Vector
IF {NOT (masked mode) OR
{masked mode AND {VM<i> EQ selector}}} THEN
IF Rav SIGNED RELATION Vb[i]<31:0> THEN
VM<i> <- 17
ELSE
VM<i> <- 0
END

Exceptions:
Vector Enable
Opcbdes:

VCMPEQ Vector Compare Signed Longword Equal

VCMPNE Vector Compare Signed Longword Not Equal

VCMPLT Vector Compare Signed Longword Less Than

VCMPLE Vector Compare Signed Longword Less Than or Equal
VCMPGT Vector Compare Signed Longword Greater Than

VCMPGE Vector Compare Signed Longword Greater Than or Equal

Qualifiers:
Masked Operations
Description:

A vector operand (in register Va) or a scalar operand (in register Ra
or a literal) is compared, element-wise, with vector register Vb. The
length of the vector is specified by the VL register.

In masked mode, the compare operation is performed only on elements
for which VM<i> matches the mask selector bit in the instruction. If
the mask selector bit does not match VM<i>, no comparison is performed
and VM<i> is left unchanged.

If masked mode is not used or if VM<i> matches the mask selector bit
in masked mode, the specified compariscn is performed. If the
specified relationship is true, the Vector Mask bit (VM<i>)
corresponding to the vector element is set to 1. TIf the specified

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-31
INTEGER ARITHMETIC INSTRUCTIONS 26 April 1988

relationship is not true, the Vector Mask bit (VM<i>) corresponding to
the vector element is cleared. VM bits beyond the vector length are
always left unchanged. Oonly bits <31:0> of each vector element
participate in the operation.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-32
INTEGER ARITHMETIC INSTRUCTIONS 26 April 1988

Vector Integer Unsigned Compare

Format: Masked Vector Arithmetic Operate Format

VCMP Va.rl,Vb.rl

VCMP Ra.rl,Vb.rl

VCMP $a.ib,Vb.rl
Operation:

FOR i <- 0 TO VL-1
BEGIN
!Vector cmp Vector
IF {NOT (masked_mode) OR
{masked mode AND {VM<i> EQ selector}}} THEN
IF Va[i]<31:0> UNSIGNED RELATION Vb[i]<31:0> THEN
VM<i> <= 1
ELSE
VM<i> <= 0
!Scalar cmp Vector
IF {NOT (masked mode) OR
{masked mode AND {VM<i> EQ selector}}} THEN
IF Rav UNSIGNED _RELATION Vb[i]<31:0> THEN
VM<i> <- 1
ELSE
VM<i> <= 0
END

Exceptions:
Vector Enable
Opcodes:

VCMPULT Vector Compare Unsigned Longword Less Than

VCMPULE Vector Compare Unsigned Longword Less Than or Equal
VCMPUGT Vector Compare Unsigned Longword Greater Than

VCMPUGE Vector Compare Unsigned Longword Greater Than or Equal

Qualifiers:
Masked Operations
Description:

A vector operand (in register Va) or a scalar operand (in register Ra
or a literal) is compared element-wise, with vector register Vb. The
length of the vector is specified by the VL register.

In masked mode, the compare operation is performed only on elements
for which VM<i> matches the mask selector bit in the instruction. If
the mask selector bit does not match VM<i>, no comparison is performed
and VM<i> is left unchanged.

If masked mode is not used or if VM<i> matches the mask selector bit
in masked mode, the specified comparison is performed. If the
specified relationship is true, the Vector Mask bit (VM<i>)
corresponding to the vector element is set to 1. If the specified
relationship is not true, the Vector Mask bit (VM<i>) corresponding to
the vector element is cleared. VM bits beyond the vector length are

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-33
INTEGER ARITHMETIC INSTRUCTIONS 26 April 1988

always left gnchanged. Only bits <31:0> of each vector element
participate in the operation.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-34
INTEGER ARITHMETIC INSTRUCTIONS 26 April 1988

Vector Integer Multiply
Format: Masked Vector Arithmetic Operate Format

VMUL Va.rl,Vb.rl,Vc.wl
VMUL Ra.rl,Vb.rl,Vc.wl
VMUL #a.ib,Vb.rl,Vc.wl

Operation:

FOR i <~ 0 TO VL-1
IF {NOT(masked_mode) OR
{masked mode AND {VM<i> EQ selector}}} THEN
BEGIN !Vector * Vector
Ve[i] <= {Va[i]<31:0> * Vb[i]<31:0>}<31:0> !VMULL
Ve[i]l <- {Va[i]<31:0> *U Vb[i]<31:0>}<63:32> !VUMULH

!Scalar * Vector

Ve[i] <- {Rav * Vb[i]<31:0>}<31:0> I VMULL
Vcl[i] <~ {Rav *U Vb[i]<31:0>}<63:32> ! VUMULH
END

Exceptions:

Integer Overflow
Vector Enable

Opcodes:

VMULL Vector Multiply Longword

VUMULH Vector Unsigned Multiply Longword and Return

High 32 Product Bits

Qualifiers:

Integer Overflow Enable, Masked Operations
Description:
A vector operand (in register Va) or a scalar operand (in register Ra

or a literal) is multiplied, element-wise, by vector register Vb and
the least or most significant 32 bits of the 64-bit product are

written to vector register Ve. Only bits <31:0> of each vector
element participate in the multiply operation. Bits <63:32> of the
destination vector elements are UNPREDICTABLE. The length of the

vector is specified by the VL register.

If overflow is enabled and integer overflow is detected, an Integer
Overflow exception occurs when the vector operation completes.

VMULL writes the least significant 32 product product bits. On
overflow, the least significant 32 bits of the true result are written
to bits <31:0> of the destination element.

VUMULH writes the most significant 32 bits of the unsigned product.

These instructions may be omitted in-a subset implementation.

{iNsTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-35
. INTEGER ARITHMETIC INSTRUCTIONS 26 April 1988

vector Integer Subtract
Format: Masked Vector Arithmetic Operate Format

VSUB Va.rl,Vb.rl,Vc.wl
VSUB Ra.rl,Vb.rl,vVe.wl
VSUB #a.ib,Vb.rl,ve.wl

operation:
FOR 1 <- 0 TO VL-1

IF {NOT(masked_mode) OR
{masked mode AND {VM<i> EQ selector}}} THEN

BEGIN

Ve[i]<31:0> <~ Va[i]<31:0> - Vb[i]<31:0> !Vector - Vector
Ve[i]<31:0> <- Rav - Vb[i]<31:0> !Scalar - Vector
END .

Exceptions:

Integer Overflow
Vector Enable

Opcodes:

VSUB Vector Subtract Longword
Qualifiers:

Integer Overflow Enable, Masked Operations
Description:

A vector operand in register Vb is subtracted, element-wise, from a
vector operand (in register Va) or a scalar operand (in register Ra or
a literal). The 32-bit difference is written to vector register Vec.
Only bits <31:0> of each vector element participate in the subtract
operation. Bits <63:32> of the destination vector elements are
UNPREDICTARBLE. The length of the vector is specified by the VL
register. :

If overflow is enabled and integer overflow is detected, an Integer
Overflow exception occurs when the vector operation completes. On
overflow, the least significant 32 bits of the true result are written
to bits <31:0> of the destination element.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-36
LOGICAL AND SHIFT INSTRUCTIONS 26 April 1988

4.4 LOGICAL AND SHIFT INSTRUCTIONS

The logical instructions perform longword Boolean operations. The
shift instructions perform 1left and right logical shift, right
arithmetic shift, and rotate operations. These are summarized below:

Mnemonic Operation
AND Logical Product
BIC Logical Product with Complement
OR Logical Sum
ORNOT Logical Sum with Complement
XOR Logical Difference
EQV Logical Equivalence
SLL Shift Left Logical
SRL Shift Right Logical
SRA Shift Right Arithmetic
ROT Rotate
VAND Vector Logical Product
VBIC Vector Logical Product with Complement
VOR Vector Logical Sum
VORNOT Vector Logical Sum with Complement
VMERGE Vector Merge
VXOR Vector Logical Difference
VEQV Vector Logical Equivalence
VSLL Vector Shift Left Logical
VSRL Vector Shift Right Logical

\There is no arithmetic left-shift instruction because, typically,’
where an arithmetic left shift would be used, a logical shift will do.
For multiplying by a small power of two in address computations,
logical 1left shift is acceptable. Arithmetic left shift is more
complicated because it requires overflow detection. Integer multiply
should be used to perform an arithmetic left shift with overflow
checking.

Bit field extracts can be done with two 1logical shifts. Sign
extension can be done with left logical shift and a right arithmetic:
shift. '

There are no quadword to longword shifts because this can be done wifﬁ
a three instruction sequence (SLL, SRL, OR).\

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION
L0GICAL AND SHIFT INSTRUCTIONS

Logical Functions

Format: Operate format

opcode
opcode

operation:

Rc <-
Rc <-
Rc <-
Rc <-
Rc <-
Rc <-

Exceptions:

None

Opcodes:

AND
OR
XOR
BIC
ORNOT
EQV

Description:

These instructions perform the

register Ra
register Rc.

Ra.rl,Rb.rl,Rc.wl
#a.ib,Rb.rl,Rc.wl
Rav AND Rbv 1 AND
Rav OR Rbv 1OR
Rav XOR Rbv 1 XCR
{NOT Rav} AND Rbv IBIC
{NOT Rav} OR Rbv 1 ORNOT
{NOT Rav} XOR Rbv 'EQV
Logical Product
Logical Sum
Logical Difference
Bit Clear
Logical Sum with Complement
Logical Equivalence

designated Boolean

Page 4-37
26 April 1988

function between

or a literal and register Rb. The result is written to

The "NOT" function can be performed by doing an ORNOT with zero (Rb =

RO) .

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-38
LOGICAL AND SHIFT INSTRUCTIONS 26 April 1988
Shift Logical

Format: Operate format

opcode Ra.rl,Rb.rl,Rc.wl
opcode #a.ib,Rb.rl,Rc.wl

Operation:
Rc <- LEFT_SHIFT(Rbv, Rav<4:0>) !SLL
Rc <- RIGHT_SHIFT (Rbv, Rav<4:0>) ! SRL
Exceptions:
None
Opcodes:
SLL Shift Left Logical
SRL Shift Right Logical
Description:

Register Rb is shifted logically left or right 0 to 31 bits by the
count in register Ra or a literal. The result is written to register
Rc. Zero bits are propagated into the vacated bit positions.

Bits <31:5> of the count operand are ignored.

., INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-39
' LOGICAL AND SHIFT INSTRUCTIONS ‘ 26 April 1988

shift Arithmetic

Format: Operate format

SRA Ra.rl,Rb.rl,Rc.wl
SRA #a.ib,Rb.rl,Rc.wl
operation:

Rc <- ARITH SHIFT (Rbv, Rav<4:0>)
Exceptions:

None
Opcodes:

SRA Shift Right Arithmetic
Description:
Register Rb is right shifted arithmetically 0 to 31 bits by the count
in register Ra or a literal. The result is written to register Rc.

The sign bit (Rbv<31>) is propagated into the vacated bit positions.

Bits <31:5> of the count operand are ignored.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-40
LOGICAL AND SHIFT INSTRUCTIONS 26 April 1988

Rotate

Format: Operate format

ROT Ra.rl,Rb.rl,Rc.wl
ROT #a.ib,Rb.rl,Rc.wl
Operation:

Rc <- BIT_RCTATE(va, Rav<4:0>)
Exceptions:

None
Opcodes:

ROT Rotate Bits
Description:

Register Rb is rotated left 0 to 31 bits by the count in register Ra
or literal. The result is written to register Rc.

Bits <31:5> of the count operand are ignored.

INSTRUCTION DESCRIPTIONS

vector Logical Functions

Format:

RESTRICTED DISTRIBUTION
LOGICAL AND SHIFT INSTRUCTIONS

Masked Vector Arithmetic Operate Format

opcode
opcode
opcode

operation:

FOR i

Exceptions:

Opcodes:

Va.rl,Vb.rl,Vc.wl
Ra.rl,Vb.rl,Vec.wl
$a.ib,Vb.rl,Vc.wl

<- 0 TO VL-1
IF {NOT (masked mode)

OR

Page 4-41
26 April 1988

{masked_mode AND {VM<i> EQ selector}}} THEN

BEGIN

! Vector
vel[i]<31l
ve[i]<31:
Ve [i]<31l:
Ve [i]<31l:
Ve [1]<31l:
Ve[i]l<31l:

! Scalar
Vel[i]l<31l:
Ve[i]<31l:
Ve [i]<31l:
Ve[i]<31l:
Ve[i]<31l:
ve[il<31:

Vec[i]<63:
END

Vector Enable

VAND
VOR
VXOR
VBIC
VORNOT
VEQV

Qualifiers:

Masked Operations

Vector
Vector
Vector
Vector
Vector
Vector

op

:0>

0>
0>
0>
0>
0>

op
0>
0>
0>
0>
0>
0>

Vector
<- Va[i]<31:0> AND Vb[i]<31:0>
<= Va[i1]<31:0> OR Vb[i]<31l:0>

<- Va[i1]<31:0> XOR Vb[i]<31:0>

<- {NOT Va[i]<31:0>} AND Vb{i]<31:0>
<- {NOT Vva{i]<31:0>} OR Vb[{1i]1<31:0>
<- {NOT Va[i]<31:0>} XOR Vb[i]<31:0>
Vector

<- Rav AND Vb[i]<31:0>

<- Rav OR Vb[i]<31:0>
<- Rav XOR Vb[i]<31:0>
<= {NOT Rav} AND Vb[i]<31:0>
<- {NOT Rav} OR Vb[i]<31:0>
<- {NOT Rav} XOR Vb[i]<31l:0>

32> <- Vb[i]<63:32>

Logical Product

Logical Sum

Logical Difference

Logical Product with Complement
Logical Sum with Complement
Logical Equivalence

' VAND
!VOR
{ VXOR
IVBIC
| VORNOT
IVEQV

{ VAND
IVOR
IVXOR
IVBIC
!VORNOT
IVEQV

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-~4
LOGICAL AND SHIFT INSTRUCTIONS 26 April 193i

Desgscription:

A vector operand (in register Va) or a scalar operand (in register Ra
or a literal) are combined, element-wise, using the specified Boolean
function, with vector register Vb and the 32-bit result is written to
vector register Vec. Only bits <31:0> of each vector element
participate in the Boolean operation. Bits <63:32> of the destination
vector elements receive bits <63:32> of the Vb elements. The length
of the vector is specified by the VL register.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-43
LOGICAL AND SHIFT INSTRUCTIONS 26 April 1988

Vector Merge
Format: Masked Vector Arithmetic Operate Format
VMERGE Va.rq,Vb.rq, Vc.wq

VMERGE Ra.rq,Vb.rq,Vc.wq
VMERGE #a.ib,Vb.rq,Vec.wg

Operation:
FOR i <- 0 TO VL-1
BEGIN
IF VM<i> EQ S THEN !Vector op Vector
Vel[i] <= vali]
ELSE
' Ve[i] <- Vb[i]
IF VM<i> EQ S THEN !Scalar op Vector
Vc[i] <- Rav
ELSE
Vec[i] <- Vb[i]
END

Exceptions:

Vector Enable
Opcodes:

VMERGE Vector Merge
Qualifiers:

Masked Operations
Description:
A vector operand (in register Va) or a scalar operand (in register Ra
or a literal) are merged, element-wise, with vector register Vb and
the resulting vector is written to vector register Vc. The length of
the vector operation is specified by the VL register.
For each vector element, i, if the corresponding Vector Mask bit
(VM<i>) matches the Mask Selector (8) bit, Va[i] or Rav is written to
the destination vector element Vc[i]. If VM<i> does not match S,
Vb[i] is written to the destination vector element.

Refer to Section 3.3.3.1 for a description of the Mask Selector bit.

This instruction may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION

Page 4-44

LOGICAL AND SHIFT INSTRUCTIONS . 26 April 198g

Vector Shift Logical

Format: Masked Vector Arithmetic Operate Format
opcode Va.rl,Vb.rl,Vc.wl
opcode Ra.rl,Vb.rl,Vc.wl
opcode #a.ib,Vb.rl,Vc.wl

Operation:

FOR i <- 0 TO VL-1
IF {NOT (masked mode) OR

{masked mode AND {VM<i> EQ selector}}} THEN

BEGIN
! shift vector by vector

Vc[i]1<31:0> <~ LEFT_SHIFT (Vb[i]<31:0>, Va[i]<4:0>) !vs
Vc[i]<31:0> <~ RIGHT SHIFT(Vb[i]<31:0>, Va[i]<4:0>) !vg

! shift vector by scalar

Vc[i]<31:0> <- LEFT SHIFT (Vb[i]<31:0>, Rav<4:0>) 1vs
Ve [i]<31:0> <- RIGHT SHIFT(Vb[i]<31:0>, Rav<4:0>) 1vs|
END

Exceptions:

Vector Enable

Opcodes:
VSLL Vector Shift Left Logical
VSRL Vector Shift Right Logical
Qualifiers:

Masked Operations

Description:

Each element in vector register Vb is shifted logically left or right
0 to 31 bits by the count specified by a vector operand (in registen

Va) or a scalar operand (in register Ra or a 1literal). The

shifted

results are written to vector register Vc. 2Zero bits are propagated

into the vacated bit positions. Only bits <4:0> of the count

operand

and bits <31:0> of each Vb element participate in the shift operatiofiy
Bits <63:32> of the destination vector elements are UNPREDICTABLE.

The length of the vector is specified by the VL register.

These instructions may be omitted in a subset implementation.

CcTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-45

INSTRU

FLOATING-POINT INSTRUCTIONS 26 April 1988
4.5 FLOATING—POINT INSTRUCTIONS

pRISM provides instructions for operating on VAX G_floating and
F floating-point operand formats. The floating-point arithmetic
instructions are add, subtract, compare, multiply, and divide. Two
rounding modes are provided: VAX rounding and round toward zero
(chopped) -

All q_floating operands must be in even-odd register pairs or the
result of the operation is UNPREDICTABLE.

pata copversion instructions are provided to convert operands between
G_floating and F_floating and longword integer.

The instructions provided are summarized below:

INSTRUCTION DESCRIPTIONS
FLOATING-POINT INSTRUCTIONS

Mnemonic

ADDF

CMPFEQ
CMPEFNE
CMPFLT
CMPFLE
CMPFGT
CMPFGE

CVTLF
CVTFL

CVTEG
DIVF
MULF
SUBF
ADDG
CMPGEQ
CMPGNE
CMPGLT
CMPGLE
CMPGGT
CMPGGE
CVTGF

CVTLG
CVTGL

DIVG
MULG

SUBG

RESTRICTED DISTRIBUTION

Operation

Add F_floating

Compare
Compare
Compare
Compare
Compare
Compare

Convert
Convert

Convert

F_floating
F_floating
F_floating
F_floating
F_floating
F_floating

Equal

Not Equal

Less Than

Less Than or Equal
Greater Than

Greater Than or Equal

Longword to F_floating

F_floating

F_floating

Divide F_floating

Multiply F_floating

to Longword

to G_floating

Subtract F_floating

Add G_floating

Compare
Compare
Compare
Compare
Compare
Compare

Convert

Convert
Convert

G_floating
G_floating
G_floating
G_floating
G_floating
G_floating

Equal

Not Equal

Less Than

Less Than or Equal
Greater Than

Greater Than or Equal

G_ to F_floating

Longword to G_floating

G_floating

Divide G_floating

to Longword

Multiply G_floating

Subtract G_floating

Page 4-46
26 April 1988

INSTRUCTION DESCRIPTIONS

RESTRICTED DISTRIBUTION

FLOATING-POINT INSTRUCTIONS

VSUBF
VADDG
VCMPGEQ
VCMPGNE
VCMPGLT
VCMPGLE
VCMPGGT
VCMPGGE
VCVTGF

VCVTLG
VCVTGL

VDIVG
VMULG

VSUBG

Vector
Vector
Vector
Vector
Vector
Vector
Vector

Vector
Vector

Vector
Vector
Vector
Vector
Vector
Vector
Vector
Vector
Vector
Vectcr
Vector

Vector

Vector
Vector

Vector
Vector

Vector

Operatlon

Add F_floating

Compare
Compare
Compare
Compare
Compare
Compare

Convert
Convert

Convert

F_floating
F_floating
F_floating
F floatlng
F floatlng
F floatlng

Equal

Not Equal

Less Than

Less Than or Equal
Greater Than

Greater Than or Equal

Longword to F_floating

F_floating

F_floating

Divide F_floating

to Longword

to G_floating

Multiply F_floating

Subtract F_floating

Add G_floating

Compare
Compare
Compare
Compare
Compare
Compare

Convert

Convert
Convert

G_floating
G . _floating
G floatlng
G_. _floating
G _floating
G _floating

Equal

Not Equal

Less Than

Less Than or Equal
Greater Than

Greater Than or Equal

G_ to F_floating

Longword to G_floating

G_floating

Divide G_floating

to Longword

Multiply G_floating

Subtract G_floating

Page 4-47
26 April 1988

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-48
FLOATING-POINT INSTRUCTIONS 26 April 198&

4.5.1 Literals

Literals wused as floating-point operands produce UNPREDICTABLE
results. Literals are allowed in longword convert instructions for
integer source operands.

4.5.2 Accuracy

Using VAX rounding, PRISM generates floating-point results with an
error bound of 1/2 Least Significant Bit (LSB) for all floating-point
instructions.

General comments on the accuracy of the PRISM floating~point
instruction set are presented here.

An instruction is defined to be exact if its result, extended on the
right by an infinite sequence of zeros, is identical to that of an
infinite-precision calculation involving the same operands. The
a priori accuracy of the operands is thus ignored. For all arithmetic
operations, except DIV, a zero operand implies that the instruction is
exact. The same statement holds for DIV if the zero operand is the
dividend. But if it is the divisor, division is undefined, the result
is UNPREDICTABLE, and the operation causes an Arithmetic exception.

For non-zero floating-point operands, the fractional factor is binary
normalized with 24 or 53 bits for single (F_floating) or double
precision (G_Floating), respectively.

\For ADD, SUB, MUL, and DIV, an overflow bit, on the left, and two
guard bits, on the right, are necessary and sufficient to guarantee
return of a rounded result identical to the corresponding
infinite-precision operation rounded to the specified word length.
Thus with two guard bits, a rounded result has an error bound of 1/2
LSB.\

Note that an arithmetic result is exact if no non-zero bits are lost
in chopping the infinite-precision result to the data length to be
stored. Chopping is defined to mean that the 24 (F_floating) or 53
(G_floating) high-order bits of the normalized result fraction are
stored; the rest of the bits are discarded. The first bit lost in
chopping is referred to as the "rounding" bit. The value of a rounded
result is related to the chopped result as follows:

1. If the rounding bit is 1, the rounded result is the chopped
result incremented by an LSB.

2. If the rounding bit is 0, the rounded and chopped results are
identical.

All PRISM processors implement rounding so as to produce results
identical to the results produced by the following algorithm. After
normalization, add a 1 to the rounding bit, and propagate the carry,
if it occurs. Note that re-normalization may be required after
rounding takes place. The following statements summarize the
relations among chopped, rounded, and true (infinite-precision)
results:

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-49

FLOATING-POINT INSTRUCTIONS

(o]

(e]

If a stored result is exact:

rounded value = chopped value = true value.
If a stored result is not exact, its magnitude is always:
1. Less than that of the true result for chopping.

2. Less than that of the true result for rounding if the
rounding bit is 0.

3. Greater than that of the true result for rounding if the
rounding bit is 1.

one overflow bit and two guard bits are adequate to guarantee accuracy
of rounded ADD, SUB, MUL, or DIV, provided that the algorithms are

properly chosen:

Q

ADD or SUB: Note, first, that ADD or SUB may result in
propagation of a carry, and hence the overflow bit is
necessary. Second, if in ADD or SUB there is a one-bit 1loss
of significance with an alignment shift of two or more bits,
the first guard bit is needed for the LSB of the normalized
result, and the second is then the rounding bit. Therefore,
the three bits are necessary. A number of constraints must
be observed in selection of the algorithms for the basic
operations, in order for these three bits to be sufficient to
guarantee an error bound of 1/2 LSB for unbiased rounding:

1. 1If the alignment shift does not exceed two, there are no

constraints, because no bits can be lost.

2. If the alignment shift exceeds two (or however many guard
bits are wused, say g GE 2), no negations may be made
after the alignment shift takes place.

3. If the above constraint is observed, the error bound for
a rounded result is 1/2 LSB. If, however, a negation
follows the alignment shift, the error bound will be:

(1/2)*(1 + 2**(-g + 2))LSB

This is because a "borrow" will be lost on an implicit
subtraction, if non-zero bits were lost in the alignment
shift. Note: The error bound is 1 LSB if the constraint

is ignored and there are only two guard bits (g = 2).

4. The constraint on no negations after the alignment shift
may be replaced by keeping track of non-zero bits lost
during the alignment shift, and then negating by one’s
complement if any "ones" were lost, and Dby two's
complement if none were lost. 1If this is done, the error
bound will be 1/2 LSB.

26 April 1988

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-50

FLOATING-POINT INSTRUCTIONS 26 April 1988
© MUL:
1. The product of two normalized binary fractions can be as

small as 1/4, and must be less than one. The overflow
bit is not needed for MUL, but the first guard bit will
be necessary for normalization if the product is less
than 1/2, and, in this case, the second guard bit is the’
rounding bit.

2. The first constraint on MUL is that the product Dbe
generated from the least to the most significant bit.
Low order bits, in positions to the right of the second
guard bit, may be discarded, but ONLY AFTER they have
made their contribution to carries which could propagate
into the guard bits or beyond.

3. For the same reasons as for ADD or SUB, if low order bits
of the product have been discarded, no negations can be
made after generating the product.

o DIV:

1. For standard algorithms it 1is necessary that the
remainder be generated exactly at each step; the overflow
and two guard bits are adequate for this purpose. The
register receiving the quotient must have a guard bit for
the rounding bit, and the quotient must be developed to
include the rounding bit.

2. The Newton-Raphson quadratic convergence algorithms,
which might make good use of high-speed multiplication
logic, require a number of guard bits equal to twice the
number of bits desired in the result if the correctness
of the rounding bit is to be guaranteed.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-51
FLOATING-POINT INSTRUCTIONS 26 April 1988

4.5.3 Floating-Point Exceptions

All floating-point exceptions are traps; see Chapter 6, Exceptions and
Interrupts, Section 6.4.1. The floating-point operation completes by
writing a reserved operand (see Chapter 2, Sections 2.2.5 and 2.2.6)
with the exception type encoded in it. The figure below illustrates
this: .

11

5 4 7 6 4 3 0
R e R pmm————- +

|11 0 | xxxxx| ETYPE | :A
R o $omm———— +

| KXXXXXKXXXXXXXXXXXXXXXXXXXXXXXXX]| :A+2
e et e e e +

11

5 4 4 3 0

e e pomm————— +

1] 0 | ETYPE | :A
e e e L L L L L P Pt fom————— +

| KXXXXXXAXXXXXXXXXXXXXXXXXXXXXXX | :1A+2
R T e L e +

| KXXXXXXXXXXXXAXXXXXXXXXXXXXXXXX| :1A+4
Tt +

| XXXAXXKXXXXXKXXXXXXXXKXXXXKXXXXXXKXX | :A+6
e et ks +

Figure 4-1: F_ and G_floating Exception Code Format

The sign, bit <15>, is 1 and the exponent (bits <14:7> for F_floating
and bits <14:4> for G_floating) is zero. The exception type (ETYPE)
is encoded in bits <3:0>, so as to correspond to bits <3:0> in the
exception summary (see Chapter 6, Exceptions and Interrupts, Figure
6-4, Page 6-14). If multiple exceptions occur (i.e. reserved operand

divided by zero), multiple bits may be set in the ETYPE field.

The state of all other bits in the result (denoted by an "x") are
UNPREDICTABLE.

If the Floating Underflow exception is suppressed by the instruction,
a zero result is written to the destination register and no Underflow
exception is signaled. Floating Overflow, Floating Reserved Operand,
and Floating Divide by Zero are always enabled.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-52
FLOATING-POINT INSTRUCTIONS 26 April 1988

Floating Add

Format: Operate format

ADD Ra.rx,Rb.rx,Rc.wx
Operation:
Rc <- Rav + Rbv 'F_floating
QRc <- QRav + QRbv !G_floating
Exceptions:

Floating Overflow

Floating Reserved Operand

Floating Underflow
Opcodes:

ADDF Add F_Floating
ADDG Add G_Floating

Qualifiers:

Floating Underflow Enable, Chopped
Description:
Register Ra (QRa) is added to register Rb (QRb) and the sum is written
to register Rc (QRc). If Floating Underflow is disabled, zero is
written to the destination register Rc (QRc) when an exponent

underflow occurs.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-53
FLOATING-POINT INSTRUCTIONS 26 April 1988
Floating Compare

Fermat: Operate format

~

CMP Ra.rx,Rb.rx,Rc.wl
Operation:
IF Rav SIGNED_BELATION Rbvy THEN !F_floating
Rc <- 1 .
ELSE
Rc <- 0
IF QRav SIGNED_RELATION QRbv THEN !G_floating
Re <- 1
ELSE
Rc <= 0
Exceptions:

Floating Reserved Operand
Opcodes:

CMPFEQ Compare F_floating Equal

CMPFNE Compare F_floating Not Equal

CMPFLT Compare F_floating Less Than

CMPFLE Compare F_floating Less Than or Equal
CMPFGT Compare F floatlng Greater Than

CMPFGE Compare F floatlng Greater Than or Equal

CMPGEQ Compare G_floating Equal

CMPGNE Compare G . _floating Not Equal

CMPGLT Compare G _floating Less Than

CMPGLE Compare G _floating Less Than or Equal
CMPGGT Compare G_floating Greater Than

CMPGGE Compare G_floating Greater Than or Equal

Description:

The two F_ or G _floating operands in Ra (QRa) and Rb (QRb) are
compared.” If ~the specified relationship is true, one is written to
register Rc; otherwise, zero is written to Rc. Rc is UNPREDICTABLE if

the source operand in Ra (QRa) or Rb (QRb) is a floating reserved
operand.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-54
FLOATING-POINT INSTRUCTIONS 26 April 1988

Convert F_Floating to G _Floating
Format: Operate format
cvT Ra.rf,Rc.wg
Operation:
QRc <- {conversion of Rav}
Exceptions:
Floating Reserved Operand
Opcodes:
CVTFG Convert F_floating to G_floating
Description:
The F_floating source operand in register Ra is converted to a
G_floating result and written to register QRc. No rounding is
required because there are more fraction bits in a G_floating operand

than in an F_floating operand.

This instruction may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-55
FLOATING-POINT INSTRUCTIONS 26 April 1988
Convert G_Floating to F_Floating
Format: Operate format

cvT Ra.rg,Rc.wf
Operation:

Rc <- {conversion of QRav}
Exceptions:

Floating Overflow

Floating Reserved Operand

Floating Underflow
Opcodes:

CVTGF Convert G_floating to F_floating
Qualifiers:

Floating Underflow Enable, Chopped
Description:
The G_floating source operand in register QRa 1is rounded to an
F_floating result and written to register Rc. If Floating Underflow
is disabled, zero is written to the destination register Rc when an

exponent underflow occurs.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-56
FLOATING-POINT INSTRUCTIONS 26 April 1988

Convert Floating to Longword

Format: Operate format

CvVT Ra.rx,Rc.wl
Operation:
Rc <- {conversion of Rav} ' !F_floating
Rc <= {conversion of QRav} !G_floating
Exceptions:

Integer Overflow
Floating Reserved Operand

Opcodes:
CVIFL Convert F_floating to Longword
CVTGL Convert G_floating to Longword
Qualifiers:
Chopped
Description:

The F_ or G_floating operand in register Ra (QRa) is converted to a
longword and written to register Rc. Rc is UNPREDICTABLE if the
source operand in Ra (QRa) is a floating reserved operand.

On overflow, the least significant 32 bits of the true result are
written to the destination register.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION ru‘ﬁ ;;gg
FLOATING-POINT INSTRUCTIONS 26 Apv

Convert Longword to Floating

Format: Operate format

cvT Ra.rl,Rc.wx
CVT #a.ib,Rc.wx
Operation:
Rc <~ {conversion of Rav} IF_floating
QRc <- {conversion of Rav} IG_floating
Exceptions:
None
Opcodes:

CVTLF Convert Longword to F_floating
CVTLG Convert Longword to G_floating

Qualifiers:
Chopped ICVTLF only
Description:
The longword operand in register Ra or a literal is converted Lo 20 F_
or G floating result and written to register Rc (QRc) . No rounding 1s

required on CVTLG because the result is exact.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-58
FLOATING-POINT INSTRUCTIONS 26 April 1988

Floating Divide

Format: Operate format

DIV Ra.rx,Rb.rx,Rc.wx
Operation:
Rc <- Rav / Rbv !F_floating
QRc <- QRav / QRbv !G_floating
Exceptions: |

Floating Divide by Zero
Floating Overflow
Floating Reserved Operand
Floating Underflow

Opcodes:

DIVF Divide F_floating

DIVG Divide G_floating
Qualifiers:

Floating Underflow Enable, Chopped
Description:

The dividend in register Ra (QRa) is divided by the divisor in
register Rb (QRb), and the quotient is written to register Rc (QRc).
If Floating Underflow is disabled, zero is written to the destination
register Rc (QRc) when an exponent underflow occurs.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION

FLOATING-POINT INSTRUCTIONS

Floating Multiply
Féimat: Operate format

MUL Ra.rx,Rb.rx,Rc.wx
Operation:

Rc <- Rbv * Rav
QRc <- QRbv * QRav

Exceptions:
Floating Overflow

Floating Reserved Operand
Floating Underflow

Opcodes:
MULF Multiply F_floating
MULG Multiply G_floating
Qualifiers:

'F_floating
!G_floating

Floating Underflow Enable, Chopped

Description:

Page 4-59
26 April 1988

The multiplicand in register Rb (QRb) is‘multiplied by the multiplier
in register Ra (QRa), and the product is written to register Rc (QRc).

If Floating Underflow is disabled, zero is written to the
register Rc (QRc) when an exponent underflow occurs.

destination

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-60
FLOATING-POINT INSTRUCTIONS 26 April 1988

Floating Subtract

Format: Operate format

SUB Ra.rx,Rb.rx,Rc.wx
Operation:
Rc <- Rav - Rbv !F_floating
QRc <- QRav - QRbv !G_floating
Exceptions:

Floating Overflow

Floating Reserved Operand

Floating Underflow
Opcodes:

SUBF Subtract F_floating
SUBG Subtract G_floating

Qualifiers:

Floating Underflow Enable, Chopped
Description:
The subtrahend operand in register Rb (QRb) is subtracted from the
minuend operand in register Ra (QRa), and the difference is written to
register Rc (QRc). If Floating Underflow is disabled, zero is written
to the destination register Rc (QRc) when an exponent underflow
occurs. :

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-61
FLOATING-POINT INSTRUCTIONS 26 April 1988

Vector Floating Add

Format: Masked Vector Arithmetic Operate Format

VADD Va.rx,Vb.rx,Vc.wx
VADD Ra.rx,Vb.rx,Vc.wx
Operation:

FOR i <- 0 TO VL-1
IF {NOT (masked mode) OR
{masked mode AND {VM<i> EQ selector}}} THEN

BEGIN
!VADDF
Vel[i] <- Va[i]<31:0> + Vb[i]<31:0> !Vector + Vector
Vec[i] <= Rav + Vb[i]<31:0> {Scalar + Vector
{VADDG
Ve[i] <= Vva[i] + Vb[i] {Vector + Vector
Ve[i] <~ QRav + Vb[i] IScalar + Vector
END

Exceptions:
Floating Overflow
Floating Reserved Operand
Floating Underflow
Vector Enable

Opcodes:

VADDF Vector Add F_Floating
VADDG Vector Add G_Floating

Qualifiers:

Masked Operationsg, Floating Underflow Enable, Chopped
Description:
A vector operand (in register Va) or a scalar operand (in register Ra
or QRa) is added, element-wise, to vector register Vb and the sum is
written to vector register Vc. The length of the vector is specified

by the VL register.

In VADDF, only bits <31:0> of each vector element participate in the

operation. Bits <63:32> of the destination vector elements are
UNPREDICTABLE. If an exception is detected, it occurs when the vector
operation completes. If Floating Underflow is disabled, zero is

written to the destination element when an exponent underflow occurs.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-62
FLOATING-POINT INSTRUCTIONS

Vector Floating Compare

Format: Masked Vector Arithmetic Operate Format

VCMP
VCMP

Operation:

Va.rx,Vb.rx
Ra.rx,Vb.rx

FOR i <- 0 TO VL-1

Exceptions:

BEGIN
IVCMPF Vector cmp Vector
IF {NOT (masked mode) OR .
{masked_mode AND {VM<i> EQ selector}}} THEN
IF Va[i]<31:0> SIGNED_RELATION Vb[i]<31:0> THEN
VM <- 1
ELSE
VM<i> <- 0
I'VCMPF Scalar cmp Vector
IF {NOT (masked mode) OR
{masked mode AND {VM<i> EQ selector}}} THEN
IF Rav SIGNED RELATION Vb[i]<31:0> THEN
vM<i> <- 17
ELSE
VM<i> <- 0
{VCMPG Vector cmp Vector
IF {NOT (masked mode) OR .
{masked mode AND {VM<i> EQ selector}}} THEN
IF Va[i] SIGNED RELATION Vb[i] THEN
VM<i> <- 1 7
ELSE
VM<i> <= 0
!VCMPG Scalar cmp Vector
IF {NOT(masked mode) OR
{masked mode AND {VM<i> EQ selector}}} THEN
IF QRav SIGNED_RELATION Vb[i] THEN
VM<i> <=1
ELSE
VM<i> <= 0
END

Floating Reserved Operand
Vector Enable

26 April 1988

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-63
FLOATING-POINT INSTRUCTIONS 26 April 1988

Opcodes:

VCMPFEQ Vector Compare F_floating Equal

VCMPFNE Vector Compare F_floating Not Equal

VCMPFLT Vector Compare F floatlng Less Than

VCMPFLE Vector Compare F_floating Less Than or Equal
VCMPFGT Vector Compare F floatlng Greater Than

VCMPFGE Vector Compare F_floating Greater Than or Equal

VCMPGEQ Vector Compare G_floating Equal

VCMPGNE Vector Compare G _floating Not Equal

VCMPGLT Vector Compare G _floating Less Than

VCMPGLE Vector Compare G . _floating Less Than or Equal
VCMPGGT Vector Compare G_floating Greater Than

VCMPGGE Vector Compare G_floating Greater Than or Equal

Qualifiers:
Masked Operations
Description:

A vector operand (in register Va) or a scalar operand (in register Ra
or QRa) is compared, element-wise, with vector register Vb. The
length of the vector is specified by the VL register.

In masked mode, the compare operation is performed only on elements
for which VM<i> matches the mask selector bit in the instruction. 1If
the mask selector bit does not match VM<i>, no comparison is performed
and VM<i> is left unchanged.

If masked mode is not used or if VM<i> matches the mask selector bit
in masked mode, the specified comparison is performed. If the
specified relationship is true, the Vector Mask bit (VM<i>)
corresponding to the vector element is set to 1. If the specified
relationship is not true, the Vector Mask bit (VM<i>) corresponding to
the wvector element is cleared. VM bits beyond the vector length are
always left unchanged.

In VCMPFx, only bits <31:0> of each vector element part1c1pate in the
operatlon VM<i> is UNPREDICTABLE if a reserved operand is detected
in va{il], Vb[i], or Rav (Qrav). If an exception 1is detected, it
occurs when the vector operation completes.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-64
FLOATING-POINT INSTRUCTIONS 26 April 1988
Vector Convert F_Floating to G_Floating
Format: Masked Vector Arithmetic Operate Format

VCVT Vb.rf,Vc.wg
Operation:

FOR i <- 0 TO VL-1

IF {NOT (masked mode) OR

{masked_mode AND {VM<i> EQ selector}}} THEN
BEGIN

" Vecl[i] <- {(conversion of Vb[i]<31:0>}
END
Exceptions:

Floating Reserved Operand
Vector Enable

Opcodes:
VCVTIEG Vector Convert F_floating to G_floating
Qualifiers:

Masked Operations

Description:

The F_floating vector elements in vector register Vb are converted to
G_floating results and written to vector register Vc. No rounding is
required because all F_floating fraction bits fit within a G_floating
fraction. The length of the vector is specified by the VL register.

If an exception is detected, it occurs when the vector operation
completes.

This instruction may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-65
FLOATING-POINT INSTRUCTIONS 26 April 1988
Vector Convert G _Floating to F_Floating
Format: Masked Vector Arithmetic Operate Format
vCvT Vb.rg,Vc.wf
Operation:
FOR i <- 0 TO VL-1
IF {NOT (masked mode) OR
{masked mode AND {VM<i> EQ selector}}} THEN
BEGIN .
Ve[i] <~ {conversion of Vb[i]}
END
Exceptions:
Floating Overflow
Floating Reserved Operand
Floating Underflow
Vector Enable
Opcodes:

VCVTGF Vector Convert G_floating to F_floating

Qualifiers:

Masked Operations, Floating Underflow Enable, Chopped
Description:

The G_floating vector elements in vector register Vb are converted to
F_floating results and written to bits <31:0> of vector register Vc.
Bits <63:32> of the destination vector elements are UNPREDICTABLE.
The length of the vector is specified by the VL register. If Floating
Underflow is disabled, zero is written to the destination vector
element when an exponent underflow occurs.

If an exception is detected, it occurs when the veétor operation
completes.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-66
FLOATING-POINT INSTRUCTIONS 26 April 1988
Vector Convert Floating to Longword
Format: Masked Vector Arithmetic Ope;ate Format
- vCvT Vb.rx,Ve.wl
Operation:
FOR i <- 0 TO VL-1

IF {NOT(masked_mode) OR
{masked_mode AND {VM<i> EQ selector}}} THEN

BEGIN :
Ve[i] <~ {conversion of Vb[i]} {VCVTGL

Vc[i] <~ {conversion of Vb[i]<31:0>) {'VCVTFL
END .

Exceptions:
Floating Reserved Operand

Integer Overflow
Vector Enable

Opcodes:
VCVTFL Vector Convert F_floating to Longword
VCVTGL Vector Convert G_floating to Longword
Qualifiers:
Masked Operations, Chopped
Description:

The F_ or G_floating vector elements in vector register Vb are
converted to longwords and written to bits <31:0> of the vector
register Vc. Bits <63:32> of the destination vector elements are
UNPREDICTABLE. Vc[i] is UNPREDICTABLE if the source operand in Vb[i]
is a floating reserved operand. The length of the vector is specified
by the VL register.

If an exception is detected, it occurs when the vector operation
completes. On overflow, the least significant 32 bits of the true
result are written to the destination vector element.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION
FLOATING-POINT INSTRUCTIONS

vector Convert Longword to Floating

Format: Masked Vector Arithmetic Operate Format

VvCVT

Operation:

Vb.rl,Vc.wx

FOR i <~ 0 TO VL-1

IF

Exceptions:
Vector
Opcodes:

VCVTLF
VCVTLG

Qualifiers:

Masked
Masked

Description:

{NOT (masked mode) OR

Page 4-67
26 April 1988

{masked mode AND {VM<i> EQ selector}}} THEN

BEGIN
Vel[i] <- {conversion of Vb[i]<31:0>}
END

Enable

Vector Convert Longword to F_floating
Vector Convert Longword to G_floating

Operations, Chopped IVCVTLF
Operations IVCVTLG

The longword integer vector elements in register Vb are
F_ or G_floating results and written to vector register Vc. 1In
VCVTLF, only bits <31:0> of each vector element participate in the
operation. Bits <63:32> of the destination vector

UNPREDICTABLE.

No rounding is required on VCVTLG because

converted to

elements are
the result

is exact. The length of the vector is specified by the VL register.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-68
FLOATING-POINT INSTRUCTIONS 26 April 19838

Vector Floating Divide

Format: Masked Vector Arithmetic Operate Format

VDIV Va.rx,Vb.rx,Vc.wx
VDIV Ra.rx,Vb.rx,Vc.wx
Operation:

FOR i <- 0 TO VL-1
IF {NOT (masked mode) OR
{masked_mode AND {VM<i> EQ selector}}} THEN

BEGIN
IVDIVF
Vel[i] <= Vva[i]<31:0> / Vb[i]<31l:0> !Vector / Vector
Vc[i] <= Rav / Vb([i1]<31:0> !Scalar / Vector
IVDIVG
Vel[i] <= val[i] / Vb[i] IVector / Vector
Vci] <= QRav / Vb[i] !Scalar / Vector
END

Exceptions:

Floating Divide by Zero
Floating Overflow
Floating Reserved Operand
Floating Underflow
Vector Enable

Opcodes:

VDIVF Vector Divide F_floating

VDIVG Vector Divide G _floating
Qualifiers:

Masked Operations, Floating Underflow Enable, Chopped
Description:

A vector operand (in register Va) or a scalar operand (ln register Ra
or OQRa) is d1v1ded, element-wise, by a vector operand in register Vb
and the quotient is written to vector register Vc. The length of the
vector is specified by the VL register.

In VDIVF, only bits <31:0> of each vector element participate in the
operation. Bits <63:32> of the destination vector elements are
UNPREDICTAELE.

If an exception is detected, it occurs when the vector operation
completes. If Floating Underflow is disabled, zero is written to the
destination vector element when an exponent underflow occurs.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-69
FLOATING-POINT INSTRUCTIONS 26 April 1988

vector Floating Multiply

Format: Masked Vector Arithmetic Operate Format

VMUL Va.rx,Vb.rx,Vc.wx
VMUL Ra.rx,Vb.rx,Vc.wx
Operation:

FOR i <- 0 TO VL-1
IF (NOT (masked mode) OR
{masked mode AND {VM<i> EQ selector}}} THEN

BEGIN
! VMULF
Ve[i] <- Vva[i]<31:0> * Vb[i]<31:0> !Vector * Vector
Ve[i] <- Rav * Vb[1]<31:0> !Scalar * Vector
I VMULG
Ve[i] <- va[i] * Vb[i] 'Vector * Vector
Ve[i] <- QrRav * Vb[i] tScalar * Vector
END

Exceptions:
Floating Overflow
Floating Reserved Operand
Floating Underflow
Vector Enable

Opcodes:

VMULF Vector Multiply F_floating
VMULG Vector Multiply G floatlng

Qualifiers:

Masked Operations, Floating Underflow Enable, Chopped
Description:
The multiplicand in vector register Vb is multiplied, element-wise, by
the multiplier vector operand (in reglster Va) or a scalar operand (in
register Ra or QRa), and the product is written to vector register Vc.

The length of the vector is specified by the VL register.

In VMULF, only bits <31:0> of each vector element participate in the

operation. Bits <63:32> of the destination vector elements are
UNPREDICTABLE. If an exception is detected, it occurs when the vector
operation completes. If Floating Underflow is disabled, zero is

written to the destination vector element when an exponent underflow
occurs.

These instructions‘may pe omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-70
FLOATING-POINT INSTRUCTIONS 26 April 1988

Vector Floating Subtract

Format: Masked Vector Arithmetic Operate Format

VSUB Va.rx,Vb.rx,Vc.wx
VSUB Ra.rx,Vb.rx,Vc.wx
Operation:

FOR i <~ 0 TO VL-1
IF (NOT (masked _mode) OR
{masked mode AND {VM<i> EQ selector}}} THEN

" BEGIN
! VSUBF
Vel[i] <= va[i]<31:0> - Vb[1i]<31:0> !Vector - Vector
Vc[i] <= Rav - Vb([i]<31:0> tScalar - Vector
IVSUBG
Vel[i] <~ va[i] - Vb([il] |Vector - Vector
Vec[i] <- QRav - Vb[i] 'Scalar - Vector
END

Exceptions:
Floating Overflow
Floating Reserved Operand
Floating Underflow
Vector Enable

Opcodes:

VSUBF Vector Subtract F_floating
VSUBG Vector Subtract G_floating

Qualifiers:

Masked Operations, Floating Underflow Enable, Chopped
Description:
A vector operand in register Vb is subtracted, element-wise, from a
vector operand (in register Va) or a scalar operand (in register Ra or
QrRa). The difference is written to vector register Vc. The length of

the vector is specified by the VL register.

In VSUBF, only bits <31:0> of each vector element participate in the

operation. Bits <63:32> of the destination vector elements are
UNPREDICTABLE. If an exception is detected, it occurs when the vector
operation completes. If Floating Underflow is disabled, zero is

written to the destination element when an exponent underflow occurs.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS
CONTROL INSTRUCTIONS

4.6 CONTROL INSTRUCTIONS

RESTRICTED DISTRIBUTION Page 4-71

26 April 1988

PRISM provides eight conditional branch instructions, a Fault On Bit

instruction,

Mnemonic

BEQ
BNE
BLT
BLE
BGT
BGE
BLBS
BLBC

FLBC

JSR

Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch

if
if
if
if
if
if
if
if

Operation

Register
Register
Register
Register
Register
Register
Register
Register

and a Jump To Subroutine instruction.

Equal to Zero

Not Equal to Zero

Less Than Zero

Less Than or Equal to Zero

Greater
Greater
Low Bit
Low Bit

Fault On Low Bit Clear

Jump to Subroutine

Than Zero

Than or Equal to Zero
is Set

is Clear

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-72
CONTROL INSTRUCTIONS 26 April 1988
Conditional Branch

~ Format: Branch format

~

Bxx Ra.rl,disp.al

Operation:

va <- PC + {4*SEXT(disp)}
IF TEST(Rav) THEN

PC <- va
Exceptions:
None
Opcodes:
BEQ Branch if Register Equal to Zexo
BNE Branch if Register Not Equal to Zero
BLT Branch if Register Less Than Zero
BLE Branch if Register Less Than or equal to Zero
BGT Branch if Register Greater Than 2Zero
BGE Branch if Register Greater Than or Equal to Zero
BLBS Branch if Register Low Bit is Set
BLBC Branch if Register Low Bit is Clear
Description:

Register Ra is tested. If the specified relationship is true, the PC
is loaded with the target virtual address; otherwise, execution
continues with the next sequential instruction.

The displacement is treated as a signed longword offset. This means
it is shifted left two bits (to address a longword boundary), sign
extended to 32 bits, and added to the updated PC to form the target
virtual address.

The conditional branch instructions are PC-relative only. The 20-bit
signed displacement gives a forward/backward branch distance of
+/- 512K instructions.

The test is on the longword integer interpretation of the register
contents. To test floating data, first compare the data with zero
using CMPF or CMPG, and then branch on the result of the compare.

PC-relative unconditional branches can be performed by
"BEQ RO,target”.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-73
CONTROL INSTRUCTIONS 26 April 1988
Fault On Low Bit Clear
Formgt: Branch format

FLBC Ra.rl,disp.al
Operation:

IF Rav<(0> EQ 0 THEN
{FLBC exception}

Exceptions:

Fault On Low Bit Clear
Opcodes:

FLBC Fault On Low Bit Clear
Description:
Bit <0> of Register Ra is tested. If it is zero, a Fault On Low Bit
Clear exception is generated (see Chapter 6, Exceptiqns and
Interrupts, Section 6.4.3.2; otherwise, execution continues with the

next sequential instruction.

The displacement field of this instruction may be used by software to
code exception type information.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-74
CONTROL INSTRUCTIONS 26 April 1988

Jump to Subroutine

Format: Branch or Memory Format

JSR Ra.wl,disp.al !Branch format
JSR Ra.wl, (Rb.ab) !Memory format
Operation:
va <- PC + {4*SEXT(disp)} !Branch format
va <~ Rbv AND {NOT 3} !Memory format
Ra <~ PC
PC <~ va
Exceptions:
None
Opcodes:
JSR Jump to Subroutine
Description:

The PC of the instruction following the JSR instruction (the updated
PC) 1is written to register Ra, followed by loading the PC with the
target wvirtual address.

The JSR instruction has two formats: Branch and Memory.

In the Branch format, the displacement is treated as a signed longword
offset. This means it is shifted left two bits (to address a longword
boundary), sign extended to 32 bits, and added to the updated PC to
form the target virtual address.

In the Memory format, the new PC is supplied from register Rb and the
displacement field Should Be Zero. The low two bits of the target
address are ignored.

An unconditional jump can be performed by "JSR RO, target".

Co-routine linkage can be performed by specifying the same register in
both the Ra and Rb operands.

INSTRUCTION DESCRIPTIONS

RESTRICTED DISTRIBUTION
MISCELLANEOUS INSTRUCTIONS ‘

Page 4-75
26 April 1988

4.7 MISCELLANEOUS INSTRUCTIONS

PRISM provides the following miscellaneous instructions:

Mnemonic Operation

BPT Breakpoint

DRAIN Drain Instruction Pipeline

DRAINM Drain Memory activity

DRAINV Drain Vector Memory activity

IFLUSH Flush I-Stream Cache

IOTA Generate Compressed Iota Vector
MOVPS Move Processor Status

PROBER Probe Read Access

PROBEW Probe Write Access

RDCC Read Cycle Count Register

RDVC Read Vector Count Register

RDVL Read Vector Length Register

RDVMH Read Vector Mask Register, High Part
RDVML Read Vector Mask Register, Low Part
REI Return from Exception or Interrupt
SWASTEN Swap AST Enable

WRVC Write Vector Count Register

WRVL Write Vector Length Register

WRVMH Write Vector Mask Register, High Part
WRVML Write Vector Mask Register, Low Part

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-76
MISCELLANEQUS INSTRUCTIONS 26 April 1988
Breakpoint
Format: Epicode format

BPT
Operation:

{push current PC and PS on Kernel stack}

{push R5 and R4 on Kernel stack}

R4 <- Breakpoint SCB vector

{Change Mode to Kernel}

{dispatch through Breakpoint SCB vector}
Exceptions:

Kernel Stack Not VvValid

Opcodes:
BPT Breakpoint
Description:
This instruction is provided for program debugging. It switches to

Kernel mode and pushes the current PC, PS, R5, and R4 on the Kernel
stack. It then copies the address in the Breakpoint SCB vector into
R4 and dispatches to that address. See Chapter 6, Exceptions and
Interrupts, Section 6.4.3.1.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-77
MISCELLANEOUS INSTRUCTIONS 26 April 1988

Drain Instruction Pipeline
Format:iOperate Format

"DRAIN
DRAINM
DRAINV

Operation:

{Stall instruction issuing until all |DRAIN
prior instructions are guaranteed to
complete without incurring exceptions.}

{Stall instruction issuing until all prior !DRAINM
vector and scalar load/stores have passed

memory management checks and all pending cache
invalidates/updates have been processed by the

scalar and vector caches.

Stall all future vector and scalar load/store

instruction issuing until all memory

references have been completed.}

If {multiple vector load/store paths to memory} THEN
{Stall instruction issuing until all prior !DRAINV
vector load/stores have passed
memory management checks.
Stall future vector load/store instruction
issuing until all vector memory references
have been completed.}

Exceptions:
None
Opcodes:

DRAIN Drain Instruction Pipeline
DRAINM Drain Memory Pipeline
DRAINV Drain Vector Memory Pipeline

Description:

The DRAIN instruction allows software to guarantee that, in a
pipelined implementation, all previous instructions will complete
without incurring exceptions before any more instructions are issued.
For example, it should be used before changing an exception handler to
ensure that all exceptions on previous instructions are processed in
the current exception-handling environment.

The DRAIN instruction is not issued until all previous instructions
are guaranteed to complete without exceptions. If an exception

occurs, the continuation PC in the exception stack frame points to the
DRAIN instruction.

The DRAINM instruction allows software to guarantee that, in an
implementation allowing concurrent scalar/vector or vector/vector
memory references, all previous memory references will not incur
memory management exceptions after the DRAINM issues and also that all
pPrior memory reads and writes have completed before any more

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-78
MISCELLANEOUS INSTRUCTIONS 26 April 1988

load/store instructions are issued. DRAINM also ensures that all
pending cache invalidates/updates have been processed by the scalar
and vector caches.

DRAINM should be used in the following cases when there 1is a
possibility that the scalar and vector instructions could reference
the same memory location:

© A scalar store followed by a vector load or store.
© A scalar load followed by a vector store.
© A vector store followed by a scalar load or store.
0 A vector load followed by a scalar store.

DRAINM can alsoc be used between vector loads and wvector stores that
access the same memory location. However, DRAINV provides a more
efficient means for synchronizing between vector load/stores.

DRAINV should be used between vector 1loads and vector stores that
access overlapping memory locations without any intervening operations
that would prevent them from being executed concurrently in an
implementation that has multiple vector load/store paths to memory.
DRAINV can be implemented as a no-op in an implementation with a
single vector load/store path to memory.

DRAINV also ensures that all pending cache invalidates/updates have
been processed by the vector cache.

Chapter 9 specifies the rules for the synchronization between vector
and scalar memory accesses.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-79
MISCELLANEQUS INSTRUCTIONS 26 April 1988
Flush Instruction Cache
Format: Epicode format

IFLUSH
Operation:

{Invalidate instruction prefetch and instruction cache}
Exceptions:

None
Opcodes:

IFLUSH Flush Instruction Cache
Description:
An IFLUSH instruction must be executed when software or I/0 devices
write into the instruction stream. An implementation may contain an
instruction cache that does not track either processor or I/0 writes
into the instruction stream. The instruction cache and any prefetched

instructions are invalidated by an IFLUSH instruction.

The cache coherency and sharing rules are described in Chapter 9,
System Architecture and Programming Implications.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-80
MISCELLANEQOUS INSTRUCTIONS 26 April 1988

Generate Compressed Iota Vector
Format: Masked Vector Arithmetic Operate Format

IOTA Ra.rl,Vc.wl

I0TA #$a.ib,Vc.wl
Operation:
3 <=0
tmp <- 0
FCR i <- 0 TO VL-1
BEGIN
IF VM<i> EQ § THEN
BEGIN
Ve [j1<31:0> <- tmp
j<-3+1
END
tmp <- tmp + Rav
END
vVC <- j !return vector count
Exceptions:

_Vector Enable
Opcodes:

IOTA Generate Compressed Iota Vector
Description: |

IOTA constructs a vector of offsets for use by the vector
gather/scatter instructions VGATH and VSCAT.

IOTA first generates an iota vector of 1length VL wusing the stride
operand in register Ra (or a literal). An iota vector is a vector
whose first element is zero and whose subsequent elements are spaced
by the stride increment. That is:

0*Rav, 1l*Rav, 2*Rav, 3*Rav, ..., {VL-1}*Rav
The stride 1is a signed longword. Overflow is ignored in this
calculation. The iota vector is then compressed using the contents of
the Vector Mask register (VM). Elements of the iota vector for which

the corresponding Vector Mask Register bit matches the Mask Selector
(S) bit are written to contiguous elements of the destination wvector
register, Vc. Bits <63:32> of the destination vector elements are
UNPREDICTABLE. The number of elements written to Vc is returned in
the Vector Count register (VC) for use as a vector length in
subsequent operations. The values of the elements in the destination
vector register between the new value of VC and VL are UNPREDICTABLE.

Refer to Section 3.3.3.1 for a description of the Mask Selector bit.

This instruction may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-81
MISCELLANEOUS INSTRUCTIONS 26 April 1988
Move Processor Status
Format: Epicode format
MOVPS
Operation:
R4 <- PS
Exceptions:
None
Opcodes:
MOVPS Move Processor Status
Description:
MOVPS writes the Processor Status (PS) to register R4. The Processor

Status 1is described in Chapter 6, Exceptions and Interrupts, Section
6.2.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-82
MISCELLANEOUS INSTRUCTIONS ’ 26 April 1988

Probe Memory Access
Format: Epicode format
PROBE
Operation:
R4 contains the base address
R5 contains the signed offset
R6 contains the processor mode
R7 receives the completion status

Bit <0> <~ 1 if success, 0 if failure
Bit <31:1> <- 0

o= tam team sem e s

first <- R4

last <~ R4+4R5)

probe mode <- MAXU(R6<0>, PS<CM>)

IF ACCESS(first, probe_mode) AND ACCESS (last, probe_mode) THEN
R7 <- 1

ELSE
R7 <= 0

Exceptions:
Translation Not Valid
Opcodes:

PROBER Probe for Read Access
PROBEW Probe for Write Access

Description:

PROBE checks the read or write accessibility of the first and last
byte specified by the base address and the signed offset; the bytes in
between are not checked. System software must check all pages between
the two bytes if they are to be accessed. If both bytes are
accessible, PROBE returns one in R7; otherwise, PROBE returns zero.
The Fault On Read and Fault On Write PTE bits are not checked. A
Translation Not Valid exception is signaled only if the first level
PTE is invalid.

The protection is checked against the less privileged of the modes
specified by R6<0> and the Current Mode (PS<CM>). See Chapter §,
Exceptions and Interrupts, Section 6.2 for processor mode encodings.

PROBE is only intended to check a single datum for accessibility. It
does not check all intervening pages because this could result in
excessive interrupt latency.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-83
MISCELLANEOUS INSTRUCTIONS 26 April 1988
Read Cycle Count Register
Format: Epicode Format
RDCC
Operation:
QR4 <- CCR
Exceptions:
None -
Opcodes:
RDCC Read Cycle Count Register
Description:

RDCC reads the 64-bit Cycle Count register and writes it to registers
R4 and RS.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-84
MISCELLANEOUS INSTRUCTIONS 26 April 1988
Read/Write Vector Count Register
Format: Operate Format

RDVC Rc.wl

WRVC Ra.rl
WRVC #a.1ib

Operation:
Rc <- ZEXT (VC) IRDVC
VC <- Rav<6:0> 'WRVC
Exceptions:

Vector Enable
Opcodes:

RDVC Read Vector Count Register
WRVC Write Vector Count Register

Description:

RDVC reads the 7-bit Vector Count register and writes it zero extended
to register Rc.

WRVC writes Rav<6:0> to the Vector Count register.

The Vector Count register is also written as a result of executing the
IOTA instruction.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-85
MISCELLANEQOUS INSTRUCTIONS 26 April 1988

Read/Write Vector Length Register

Format: Operate Format

RDVL Rc.wl
WRVL Ra.rl
WRVL #a.ib
Operation:
Rc <= ZEXT (VL) IRDVL
VL <- Rav<6:0> |WRVL
Exceptions:

Vector Enable

Opcodes:
RDVL Read Vector Length Register
WRVL Write Vector Length Register
Description:

RDVL reads the 7-bit Vector Length register and writes it
extended to register Rc.

Zero

WRVL writes Rav<6:0> to the Vector Length register. Writing a value

greater than 64 produces UNPREDICTABLE results.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION
MISCELLANEOUS INSTRUCTIONS

Read/Write Vector Mask Register

Format: Operate Format

RDVM Rc.wl
WRVM Ra.rl
WRVM #a.ib
Operation:
Rc <- VM<63:32> RDVMH
Rc <~ VM<31l:0> 'RDVML
VM<63:32> <- Rav { WRVMH
VM<31:0> <~ Rav | WRVML
Exceptions:

Vector Enable

Opcodes:

RDVMH
RDVML
WRVMH
WRVML

Description:

Read Vector Mask Register, High Part
Read Vector Mask Register, Low Part

Write Vector Mask Register, High Part
Write Vector Mask Register, Low Part

Page 4-86
26 April 1988

RDVM reads the high or low 32 bits of the 64-bit Vector Mask register
and writes them to register Rc.

WRVM writes the high or low 32 bits of the 64-bit Vector Mask register
from register Ra or a literal.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION
MISCELLANEOUS INSTRUCTIONS

Return from Exception or Interrupt
Format : Epicode format

REI
Operation:

IF SP<2:0> NE 0 THEN
{Illegal Operand exception}

tmpl <- (SP) 'pick up saved PS
tmp2 <- (SP+4) lpick up saved PC

IF PS<CM> NE 0 THEN
BEGIN
IF {tmpl<CM> EQ 0} OR
{tmpi<vMM> NE 0} OR
{tmpl<MBZ> NE 0} OR
{tmpl<IPL> NE 0} THEN
{Illegal Operand exception}

tmpl<VEN> <~ tmpl<VEN> AND PS<VEN>
END '

IF tmpl<VRF> EQ 1 THEN
BEGIN
tmpl<VRE> <- 0
tmp2 <- (SCBB + Vector Restart Fault offset)
END

SP <- SP + 8
IPR_SP[PS<CM>] <- SP
SP <- IPR_SP[tmpl<CM>] !switch stack

PC <- tmp2 AND {NOT 3}
PS <~ tmpl

{check for pending ASTs or interrupts}
Exceptions:

Access Violation

Fault on Read

Illegal Operand

Kernel Stack Not Valid

Translation Not Valid
Opcodes:

REI Return from Exception or Interrupt

Page 4-87
26 April 1988

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-88
MISCELLANEOUS INSTRUCTIONS 26 April 1988

Description:

The PS and PC are popped from the current stack and held in temporary
PS and PC registers. The new PS is checked for wvalidity and
consistency. If <VRF> is set in the new PS then REI will initiate a
vector restart fault by dispatching through the vector restart fault
vector in the SCB. See Chapter 6, Exceptions and Interrupts, Section
6.4.7.1 for details. The current stack pointer is saved and a new
stack pointer is selected according to the new PS<CM> field. A check
is made to determine if an AST or interrupt is pending (see Chapter 6,
Exceptions and Interrupts, Section 6.7.5).

If the enabling conditions are present for an interrupt at the
completion of this instruction, the interrupt occurs before the next
instruction.

Notes:

1. \This instruction differs from the VAX REI instruction in
that instruction lookahead in the processor is NOT
re-initialized. Also, there is no interrupt stack and in
Kernel mode the checks are eliminated.\

2. The low two bits of the new PC are ignored.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-89
MISCELLANEOUS INSTRUCTIONS 26 April 1988
Swap AST Enable
Format: Epicode format
SWASTEN
Operation:
tmp <- R4<0>
R4 <- ZEXT (ASTEN<PS<CM>>)
ASTEN<PS<CM>> <~ tmp
{check for pending ASTs}
Exceptions:
None
Opcodes:
SWASTEN Swap AST Enable for Current Mode
Description:
SWASTEN swaps the AST enable bit for the current mode. The new state
for the enable bit is supplied in register R4<0> and previous state of

the enable bit is returned, zero extended, in R4.

A check is made to determine if an AST is pending (see Chapter 6,
Exceptions and Interrupts, Section 6.7.5.4).

If the enabling conditions are present for an interrupt at the
completion of this instruction, the interrupt occurs before the next
instruction.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-90
PRIVILEGED INSTRUCTIONS 26 April 1988

4.8 PRIVILEGED INSTRUCTIONS

Pribileged instructions are allowed in Kernel mode only; otherwise, a
Privileged 1Instruction exception occurs. The following privileged
instructions are provided:

Mnemonic Operation

BOOT Boot Processor

CMPSWQIP Compare and Swap Quadword, Interlocked, Physical
HALT Halt Processor

LDQP Load Quadword Physical

MFPR Move From Processor Register
MTPR Move To Processor Register
STQP Store Quadword Physical
SWPCTX Swap Privileged Context
SWIPL Swap IPL

TBFLUSH Flush Translation Buffer

WRCC Write Cycle Count Register

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-91
PRIVILEGED INSTRUCTIONS 26 April 1988
Boot
Format: Epicode format

BOOT
Operation:

IF PS<CM> NE 0 THEN

{privileged instruction exception}

ELSE ,
{boot}
Exceptions:

Privileged Instruction
Opcodes:

BOOT Boot Processor

Description:

The BOOT instruction initiates a bootstrap sequence. See Chapter 11,
System Bootstrapping and Console, Section 11.2.2.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-92
PRIVILEGED INSTRUCTIONS 26 April 1988

Compare and Swap Quadword, Interlocked, Physical
Format: Epicode format

CMPSWQIP
Operation:

! QR4 contains address of comparand 1

! QR6 contains comparand 2
! OQR8 contains swap value
t

R4<0> receives the swap status

IF PS<CM> NE (0 THEN
{privileged instruction exception}
addr <- QR4 AND {NOT 7}

tmp <- (addr) {interlocked} tacquire hardware interlock.

IF tmp EQ QR6 THEN
BEGIN
(addr) {interlocked} <- QR8 !release hardware interlock
R4 <- addr<31:0> OR 1 tset successful compare status
END

ELSE
BEGIN
(addr) {interlocked} <- tmp !release hardware interlock
QR6 <~ tmp
END

END

Exceptions:

Machine Check
Privileged Instruction

Opcodes:
CMPSWQIP Compare and Swap Quadword, Interlocked, Physical
Description:

The quadword aligned memory operand, whose physical address is in QR4,
is fetched and compared to QR6. The low 3 bits of the operand address
in QR4 are ignored. If the two operands are equal, QR8 is written to
the memory location and a swap status flag (R4<0>) is set. If the two
operands are not equal, the original memory operand is written into
QR6 and the memory location is left unchanged.

This instruction performs an interlocked memory access in that no
other processor or I/0 device can perform an interlocked operation on
the same operand until the current interlocked operation has
completed.

The operation is UNDEFINED if CMPSWQIP accesses I/O space. A
reference to non-existent memory causes a Machine Check exception.
Unimplemented physical address bits are SBZ; the operation is
UNDEFINED if any of these bits are set.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-93
PRIVILEGED INSTRUCTIONS 26 April 1988

Halt

Format : Epicode format
HALT

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

CASE {halt_action} OF

halt: {halt}
restart/halt: {restart/halt}
restart/boot/halt: {restart/boot/halt}
boot/halt: {boot/halt}
END
Exceptions:

Privileged Instruction

Opcodes:

HALT Halt Processor
Description:
The HALT instruction stops normal instruction processing, and
depending on the HALT action setting, the processor may either enter
console mode or the restart sequence. See Chapter 11, System

Bootstrapping and Console, Section 11.2.2.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-94
PRIVILEGED INSTRUCTIONS 26 April 1988
Load Quadword Physical
Format: Epicode format

LDQP
Operation:

! QR4 contains the quadword aligned physical address
! QR6 receives the data from memory

IF PS<CM> NE 0 then
{Privileged Instruction exception}

addr <- QR4 AND {NOT 7}
QR6 <- (addr)<63:0>

Exceptions:

Privileged Instruction
Opcodes:

LDQP Load Quadword Physical
Description:

The quadword aligned memory operand, whose physical address is in QR4,
is fetched and written to QRS.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-95
PRIVILEGED INSTRUCTIONS 26 April 1988
Move From Processor Register
Format: Epicode format

MFPR IPR Name
Operation:

IF PS<CM> NE (0 THEN
{privileged instruction exception}

{result <- IPR specific function}

! IPR specific results are returned in R4, R5, and RG.
Exceptions:

Privileged Instruction
Opcodes:

MFPR Move From Processor Register
Description:
The internal processor register specified by the Epicode function
field is written to the IPR-specific scalar register(s). Processor
registers are implemented such that any side effects that may happen
as a result of reading the register (e.g. an interrupt request is
cleared) are guaranteed to occur exactly once.

See Chapter 8, Internal Processor Registers, for a description of each
IPR.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-96
PRIVILEGED INSTRUCTIONS 26 April 1988
Move To Processor Register
Format: Epicgde format

MTPR IPR_ Name
Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

! R4 and R5 contain IPR specific source operands
{IPR <- result of IPR specific function}
Exceptions:
Privileged Instruction
Opcodes:
MTPR Move To Processor Register
Description: |
The IPR-specific source operands in scalar registers R4 and R5 are
written to the internal processor register specified by the Epicode
function field. The effect of loading a processor register is

guaranteed to be active on the next instruction.

See Chapter 8, Internal Processor Registers, for a description of each
IPR.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-97
PRIVILEGED INSTRUCTIONS 26 April 1988
Store Quadword Physical
Format: Epicode format

STQP
Operation:

! QR4 contains the quadword aligned physical address
! QR6 contains the data to be written

IF PS<CM> NE 0 then
{Privileged Instruction exception}

addr <- QR4 AND {NOT 7}
(addr) <- QR6

Exceptions:

Privileged Instruction
Opcodes:

STQP Store Quadword Physical
Description:

The quadword contents of QR6 are written to the memory location, whose
physical address is in QR4.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-98
PRIVILEGED INSTRUCTIONS : 26 April 1988

Swap Privileged Context
Format: Epicode format
SWPCTX
Operation:
! QR4 contains the physical address of the new HWPCB.

IF PS<CM> NE 0 THEN
{privileged instruction exception}

! Store 0ld HWPCB contents

(IPR_PCBB + HWPCB KSP) <- SP
IF {internal registers for stack pointers} THEN
(IPR_PCBB + HWPCB _USP) <- IPR USP

(IPR_PCBB + HWPCB _ASTSR) <- IPR ASTSR
(IPR PCBB + HWPCE . _ASTEN) <- IPR ASTEN
(IPR PCBB + HWPCB _CCR) <- IPR CCR

! Load new HWPCB contents

IPR PCBB <- QR4 AND ({NOT 7}

IF {if ASN’s not implemented in virtual instruction cache}
THEN{flush instruction cache}

IF {ASNs not implemented in TB} THEN
IF {IPR PTBR NE (IPR PCBB + HWPCB PTBR)} THEN
{invalidate trans. buffer entries with PTE<ASM> EQ 0}
ELSE
IPR_ASN <- (IPR_PCBB + HWPCB_ASN)

SP <- (IPR_PCBB + HWPCB_KSP)

IF {internal registers for stack pointers} THEN
IPR_USP <- (IPR_PCBB + HWPCB_USP)

IPR PTBR <~ (IPR PCEB + HWPCB _PTBR)

IPR ASTSR <- (IPR PCBB + HWPCB . _ASTSR)

IPR _ASTEN <- (IPR PCBB + HWPCB . _ASTEN)

IPR CCR <~ (IPR PCBB + HWPCB CCR)
Exceptions:

Machine Check
Privileged Instruction

Opcodes:

SWPCTX Swap Privileged Context

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-99
PRIVILEGED INSTRUCTIONS 26 April 1988

Description:

The SWPCTX instruction returns ownership of the current Hardware
Privileged Context Block (HWPCB) to the operating system and passes
ownership of the new HWPCB to the processor.

SWPCTX saves the privileged context from the internal processor
registers into the HWPCB specified by the physical address in the PCBB
internal processor register. It then 1loads the privileged context
from the new HWPCB specified by the physical address in QR4. Note
that the actual sequence of the save and restore operation is not
specified so any overlap of the current and new HWPCB storage areas
produces UNDEFINED results.

The privileged context includes the two stack pointers, the Page Table
Base Register (PTBR), the Address Space Number (ASN), the AST enable
and summary registers, and the Cycle Count Register. However, PTBR is
never saved in the HWPCB and it is UNPREDICTABLE whether or not ASN is
saved. These values cannot be changed for a running process. The
process scalar and vector registers are saved and restored by the
operating system. See Chapter 7, Process Structure, Figure 7-1, for
the HWPCB format.

Any change to the current HWPCB while the processor has ownership
results in UNDEFINED operation. All the values in the current HWPCB
can be read through IPRs.

If the enabling conditions are present for an interrupt at the
completion of this instruction, the interrupt occurs before the next
instruction.

Epicode sets up the PCBB at boot time to point to the HWPCB storage
area in the Restart Parameter Block (RPB). See Chapter 11, System
Bootstrapping and Console.

The operation is UNDEFINED if SWPCTX accesses I/O space.

A reference to non-existent memory causes a Machine Check exception.
Unimplemented physical address bits are SB2Z. The operation is
UNDEFINED if any of these bits are set.

Notes:

Processors may keep a copy of each of the per-process stack pointers
in internal registers. In those processors, SWPCTX stores the
internal registers into the HWPCB. Processors that do not keep a copy
of the stack pointers in internal registers, keep only the stack
pointer for the current processor mode in SP and switch this with the
HWPCB contents whenever the current processor mode changes.

\For performance reasons, it is strongly recommended that the TB and
Virtual 1Instruction Cache not be flushed if the old and new PTER are
the same and ASNs are not implemented.\

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-100
PRIVILEGED INSTRUCTIONS 26 April 1988
Swap IPL
Format: Epicode format

SWIPL
Operation:

IF PS<CM> NE 0 THEN ‘

{privileged instruction exception}

tmp <- R4<2:0>

R4 <- ZEXT (PS<IPL>)

PS<IPL> <~ tmp

{check for pending ASTs or interrupts}
Exceptions:

Privileged Instruction
Opcodes:

SWIPL Swap Processor IPL level

Description:

SWIPL swaps the processor IPL level. The new IPL level is supplied in
register R4<2:0> and the previous IPL level is returned in R4.

A check is made to determine if an AST or interrupt is pending (see
Chapter 6, Exceptions and Interrupts, Section 6.7.5).

If the enabling conditions are present for an interrupt at the
completion of this instruction, the interrupt occurs before the next
instruction.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-101
PRIVILEGED INSTRUCTIONS 26 April 1988
Flush Translation Buffer
Format: Epicode format

TBFLUSH
Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception} -

{Invalidate all translation buffer entries}
Exceptions:
Privileged Instruction
Opcodes:
TBFLUSH Flush Translation Buffer
Description:
The TBFLUSH instruction is used to invalidate all TB entries and flush

virtual data caches. To invalidate a single TB entry, use the
MTPR TBIS instruction.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION

PRIVILEGED INSTRUCTIONS

Write Cycle Count Register
Format: Epicode format
WRCC
Operation:
IF PS<CM> NE 0 THEN
{privileged instruction exception}
ELSE
CCR <- QR4
Exceptions:
Privileged Instruction
Opcodes:
WRCC Write Cycle Count Register

Description:

Page 4-102
26 April 1988

WRCC writes the quadword in registers R4 and R5 into the 64-bit Cycle

Count register.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-103
REVISION HISTORY 26 April 1988

Revision History:

Revision 3.0, 26 April 1988

1. Change source operand of vector convert source operand from Va
to Vb to match VAX vectors.

2. Add Write Intent option for VLD and VGATH.

3. Add BOOT instruction.

4. Add CMPSWLI, CMPSWQI, CMPSWQIP.

5. Add VMERGE and IOTA variants that operate on clear mask bits.
6. Delete BUGCHK, RMAQIP.

7. Add RMALI as a non-privileged instruction.

8. Add WRCC, RDCC instructions.

9. Add LDQP, STQP.
10. Eliminate coprocessor support.

11. Contents of destination vector elements are UNPREDICTABLE when
a vector memory management exception occurs.

12. Vector loads/stores to I/O space are UNPREDICTABLE.
13. Change behavior of VCMP in masked mode.
14. Add masked mode for VLD, VST, VGATH, VSCAT.

15. Vc[1]<63:32> is UNPREDICTABLE for all instructions with
longword result, except for logicals.

16. Remove Vector Integer Divide.

17. sPecify result of CMPF, CMPG, CVTFL, CVTGL, VCVTFL, VCVTGL
with floating reserved operand as source.

18. Clarify that strides and offsets can be positive, negative, or
zero.

19. Add masked operate format.
20. Revise DRAIN/DRAINM.

21. Change mnemonics to use opcode qualifiers.

Revision 2.0, 24 June 1986.
1. Simplified subsetting rules.

2. Changed VLDL and VGATHL to =zero bits <63:32> of the
destination vector element.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-104

REVISION HISTORY . 26 April 1988
3. Clarified parallelism allowed between scalar and vector memory
references in VLDx, VGATHx, VSTx, and VSCATx instructions.

4. Removed MULH.

5. Copy bits <63:32> of Vb elements to Vc elements for vector
Boolean operations rather than making them UNPREDICTABLE.

6. 2ero bits <63:32> of Vc elements for 32 bit integer add,
subtract and shift vector operations rather than making them
UNPREDICTABLE.

7. Added unsigned integer vector compare, VCMPUx.

8. Removed remainder instructions, REM and VREM.

9. Added vector unsigned multiply instruction, VUMULH.

10. Changed FOB to Fault on Low Bit Clear, FLBC.

11. Changed DRAIN from Epicode format to operate format.

12. Added DRAINM instruction to serialize vector and scalar memory
references.

13. Changed PROBE to use a one bit mode operand.

14. Changed REI:

- Test for a non-zero PS<VMM> bit.

- Dispatch to the Vector Restart Fault exception handler if
PS<VRF> is set.

- Removed Illegal Operand test on <VEN> and <VRF>.

15. Changed SWPCTX to not invalidate <the <translation buffer or
virtual instruction cache when the old and new PTBR addresses
are the same. Removed ESP and SSP save and restore.

16. Removed literal operand form from COPWR instruction.

17. Changed all the subtract instructions, except scalar longword
subtract (SUB and SUBV), so the Ra operand is the minuend and
the Rb operand is the subtrahend. This provides the
operation, scalar minus vector. SUB and SUBV were left
unchanged because the a-operand provides the literal and these
operations are performed in a hardware unit separate from the
other subtract operations.

18. Changed all the divide instructions so the Ra operand is the

dividend and the Rb operand is the divisor. This provides the
operation, scalar divided by vector. All divides were changed
because on some implementations the divide hardware will be
shared by all divide instructions.

Revision 1.0, 22 December 1985

1.

Changed register width from 64 bits to 32 bits.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-105

REVISION HISTORY 26 April 1988
2. Changed Epicode parameter registers to R4-RS.
3. Changed instruction descriptions to use instruction fields.
4. Changed MOVx mnemonics to LD/ST.
5. Changed REI to match new privileged architecture.
6. Changed Unbiased rounding to VAX rounding.
7. Added RMAQI, Read, Mask, Add Quadword, Interlocked.
8. Added RMAQIP, Read, Mask, Add Quadword, Interlocked, Physical.
9. Added SWIPL, Swap IPL.
10. Added SWASTEN, Swap AST enable.
11. Added SWPCTX, Swap Privileged Context.
12. Added FOB, Fault On Low Bit Set.
13. Added UMULH, Unsigned 32-bit Multiply, Return High bits.
14, Added F_Floating operations.
15. Added floating-point exception error result.
16. Added vector registers and vector instructions.
17. Added Coprocessor instructions.
18. Eliminated sign extended byte and word loads.
19. Eliminated operate format locads and stores.
20. Eliminated Compare address instructions.
21. Eliminated ADDRC, Add and Return Carry.
22. Eliminated SUBRB, Subtract and Return Borrow.
23. Eliminated CMPUEQ, CMPUNE, Compare Unsigned Equality
24. Eliminated Convert Quad to Long,Word,Byte instructions.
25. Eliminated Directed roundings to Plus and Minus Infinity.
26. Eliminated Queue instructions.
27. Eliminated Change Mode instructions.
28. Eliminated USRCHK, User Check.
29. Eliminated Quadword parameter from BUGCHK.
30. Eliminated PROBEPx, Probe Previous Mode Read/Write.
31. Eliminated INTON/INTOFF.

INSTRUCTION DESCRIPTIONS RESTRICTED DISTRIBUTION Page 4-106

REVISION HISTORY 26 April 1988
32. Eliminated RDSP/WRTSP, Read and Write Stack Pointer.
33. Eliminated SWIS, SWKS, Switch to Interrupt/Kernel stack.
34. Eliminated PREFETCH.
35. Eliminated MOVCNT, MOVCYT, Move Count/Cycle Time.

Revision 0.0, 5 July 1985

1.

First Review Distribution

RESTRICTED DISTRIBUTION

CHAPTER 5

MEMORY MANAGEMENT

5.1 INTRODUCTION

Memory management consists of the hardware and software which control
the allocation and wuse of physical memory. Typically, in a
multiprogramming system, several processes may reside in physical
memory at the same time; see Chapter 7, Process Structure. PRISM uses
memory protection and multiple address spaces to ensure that one
process will not affect other processes or the operating system.

To further improve software reliability, two processor modes provide
memory access control for privileged (kernel mode) and non-privileged
(user mode) software. Protection is specified at the individual page
level for data and instruction access. A page may be inaccessible or
may have different accessibility for each processor mode.
Accessibility can be read-only, read/write, or no access. Accessible
pages can be restricted to have only data or instruction access.

A program uses virtual addresses to access its data and instructions.
However, before these virtual addresses can be used to access memory,
they must be translated into physical addresses. Memory management
software maintains tables of mapping information (page tables) that
keep track of where each virtual page is located in physical memory.
The processor utilizes this mapping information when it translates
virtual addresses to physical addresses.

Therefore, memory management provides both memory prdtection and
memory mapping mechanisms. The PRISM memory management architecture
is designed to meet several goals:

o Provide a large address space for instructions and data.

o Allow programs to run on hardware with physical memory
smaller than the virtual memory used.

o Provide convenient and efficient sharing of instructions and
data.

o Allow sparse use of a large address space without excessive
page table overhead.

o Contribute to software reliability.

o Provide independent execute, read and . write access
protection.

MEMORY MANAGEMENT RESTRICTED DISTRIBUTION Page 5-2
INTRODUCTION 26 April 1988

o Provide an efficient mechanism for controlled entry to
privileged operating system functions.

5.2 VIRTUAL ADDRESS SPACE

A virtual address is a 32-bit unsigned integer which specifies a byte
location within the wvirtual address space. The programmer sees a
linear array of 4,294,967,296 bytes. The virtual address space is
broken into pages, which are the units of relocation, sharing, and
protection. The page size is 8 Kbytes. Future implementations of
PRISM may use page sizes ranging up to 64 Kbytes. System software
should, therefore, allocate regions with differing protection on
64-Kbyte wvirtual address boundaries to ensure image compatibility
across all PRISM implementations.

Memory management provides the mechanism to map the active part of the
virtual address space to the available physical address space. The
operating system controls the virtual-to-physical address mapping
tables, and saves the inactive (but used) parts of the virtual address
space on external storage media.

The operating system must be mapped into the same part of the address
space for every process.

5.2.1 Virtual Address Format

The PRISM processor generates a 32-bit virtual address for each
instruction and operand in memory. The virtual address consists of
two segment number fields, and a Byte Within Page field.

3 22 11

1 32 32 0
| Segl_Number | Seg2_Number | Byte Within Page |
Frm Frmmm e e e e e +

Figure 5-1: Virtual Address Format

The segment number fields, bits <31:13> of a virtual address, specify
the wvirtual page to be referenced. The Byte Within Page field, bits
<12:0> of a virtual address, specifies the byte offset within the
page. A page contains 8 Kbytes.

5.3 PHYSICAL ADDRESS SPACE

Physical addresses are, at most, 45 bits. A processor may choose to
implement a smaller physical address space by not implementing some
number of high-order bits. The most significant implemented physical
address bit selects memory space when it is 0, and I/0O space when it
is 1. For example, in a 30-bit physical address space, bit <29>
selects memory or I/0O space.

MEMORY MANAGEMENT RESTRICTED DISTRIBUTION Page 5-3
MEMORY MANAGEMENT CONTROL 26 April 1988

5.4 MEMORY MANAGEMENT CONTROL

Memory management is always enabled when the processor is not running
Epicode. At processor initjialization time, the processor executes
Epicode with memory management disabled.

5.5 PAGE TABLE ENTRIES

The processor uses a quadword Page Table Entry (PTE) to translate
virtual addresses to physical addresses. A PTE contains hardware and
software control information and the physical Page Frame Number.

3 11
1 3 2 9876543210
B ittt kb b it S +=t-t=t=t—d=t=t-t=-+
| l |[A|F|F|F|UJU[IKI|K]| |
| PFN<18:0> | RSVD |S|O|O|O|W|R|W|R|V]| :A
| | IMIE|W|RIE|E|E|E]| |
e e = tom————— +-t=t=t-t=t—t=t=t-+
! ! |
| Reserved for Software | PEFN<31:19> | :A+4
| I !
e L L L L L PP PP PP L Bt e it L L L +
Figure 5-2: Page Table Entry
Fields in the page table entry are interpreted‘as follows:
Bits Description
0 Valid (V) - Indicates the validity of the ASM, FOE, FOW, FOR

bits and the PFN field. When V is set, the ASM, FOE, FOW, FOR
bits and the PFN fields are valid for use by hardware. When V
is clear, the PFN field is reserved for use by software. The
V bit does not affect the validity of KRE, KWE, URE, and UWE.

1 Kernel Read Enable (KRE) - This bit enable reads from kernel
mode. If this bit is a 0 and a LOAD or instruction fetch is
attempted while in kernel mode, an Access Violation occurs.
This bit is valid even when V=0.

2 Kernel Write Enable (KWE) - This bit enables writes from
kernel mode. If this bit is a 0 and a STORE is attempted
while in kernel mode, an Access Violation occurs. This bit is
valid even when V=0.

3 User Read Enable (URE) - This bit enables reads from user

' mode. If this bit is a 0 and a LOAD or instruction fetch is
attempted while in user mode, an Access Violation occurs.
This bit is valid even when V=0,

4 User Write Enable (UWE) - This bit enables writes from user
mode. If this bit is a 0 and a STORE is attempted while in
user mode, an Access Violation occurs. This bit is valid even
when V=0,

MEMORY MANAGEMENT RESTRICTED DISTRIBUTION Page 5-4
PAGE TABLE ENTRIES 26 April 1988

NOTE
If a write enable bit is set and the

corresponding read enable bit is not, the
operation of the processor is UNDEFINED.

5 Fault On Read (FOR) - When set, a Fault On Read exception
occurs on an attempt to read any location in the page.

6 Fault On Write (FOW) - When set, a Fault On Write exception
occurs on an attempt to write any location in the page.

7 Fault On Execute (FOE) - When set, a Fault On Execute
exception occurs on an attempt to execute an instruction in
the page.

8 Address Space Match (ASM) - When set, this PTE matches all.
Address Space Numbers. ASM must only be set for a virtual

page if that page is shared among all processes in the system.
If ASM is set in some but not all processes, the address
mapping is UNPREDICTABLE.

12:9 Reserved for future use by DIGITAL.
12:10 Reserved for future use by DIGITAL.

44:13 Page Frame Number (PFN) - The PFN field always points to a
page Dboundary. If V is set, the PFN is concatenated with the
Byte Within Page bits of the virtual address to obtain the
physical address, see Section 5.7. If V is clear, this field
may be used by software.

63:45 Reserved for software.

5.5.1 Changes To Page Table Entries

The operating system changes PTEs as part of its memory management
functions. For example, the operating system may set or clear the
valid bit, change the PFN field as pages are moved to and from
external storage media, or modify the software bits. The processor
hardware never changes PTEs.

Software must guarantee that each PTE is always consistent within
itself. Changing a PTE one field at a time may give incorrect system
operation, e.g., setting PTE<V> with one instruction before
establishing PTE<PFN> with another. Execution of an interrupt service
routine between the two instructions could use an address that would
map using the inconsistent PTE. Software can solve this problem by
building a complete new PTE in an even-odd register pair and then
moving the new PTE to the page table using a Store Quadword
instruction (STQ or STQP).

Multiprocessing makes the problem more complicated. Another processor
could be reading (or even changing) the same PTE that the first
processor is changing. Such concurrent access must produce consistent
results. Software must either use the Read Mask and Add Quadword
Interlocked (RMAQI) instruction, or use some other form of software

MEMORY MANAGEMENT RESTRICTED DISTRIBUTION Page 5-5
PAGE TABLE ENTRIES 26 April 1988

synchronization to modify PTEs that are already wvalid. Once a
processor has modified a wvalid PTE, it is possible that other
processors in a multiprocessor system may have old copies of that PTE
in their Translation Buffer. Software must inform other processors of
changes to PTEs via the interprocessor interrupt mechanism and an
associated software protocol. Since page table entries are shared
data structures, modifications to them must follow the rules for
shared data specified in Chapter 9.

5.6 MEMORY PROTECTION
Memory protection is the function of validating whether a particular
type of access 1is allowed to a specific page from a particular
processor mode. Access to each page is controlled by a protection
code that specifies, for each processor mode, whether read or write
references are allowed.

The processor uses the following to determine whether an intended
access is allowed:

o The virtual address, which is used to index page tables.

o The intended access type (fead data, write data, or
instruction fetch).

o The current processor mode from the Processor Status.
If the access is allowed and the address can be mapped (the Page Table
Entry is valid), the result is the physical address corresponding to
the specified virtual address.

For protection checks, the intended access is Read for data loads and
instruction fetch, and Write for data stores.

If an operand is an address operand, then no reference is made to

memory. Hence, the page need not be accessible nor map to a physical
page. ‘

5.6.1 Processor Modes
There are 2 processor modes:
o Kernel
o User
The processor mode of a running process is stored in the Current Mode

bit of the Processor Status (PS); see Chapter 6, Exceptions and
Interrupts, Section 6.2.

5.6.2 Protection Code

Every page in the virtual address space is protected according to its

MEMORY MANAGEMENT RESTRICTED DISTRIBUTION Page 5-6
MEMORY PROTECTION 26 April 1988

use. A program may be prevented from reading, or writing portions of
its address space. Associated with each page is a protection code
that describes the accessibility of the page for each processor mode.
The code allows a choice of read or write protection for each
processor mode.

© Each mode’s access can be read/write, read-only, or
no-access.

© Read and write accessibility are specified independently.
© The protection of each mode can be specified independently.

The protection code is specified by 4 bits in the PTE, see Section
5.5.

The PRISM architecture allows a page to be designated as execute only
by setting the read enable bit for the processor mode and by setting
the fault on read and write bits in the PTE.

5.6.3 Access Violation Fault

An Access Violation fault occurs if an illegal access is attempted, as

determined by the current processor mode and the page’s protection
field.

5.7 ADDRESS TRANSLATION

Address translation is performed by accessing entries in a two-level
page table structure. The Page Table Base Register (PTBR) contains
the physical Page Frame Number of the first-level page table. If part
of any page table resides in I/O space, or in nonexistent memory, the
operation of the processor is UNDEFINED.

The Page Table Base Register contains the physical Page Frame Number
of the highest-level (Segment 1) page table. Bits <31:23> of the
virtual address are used to index into the first-level page table to
obtain the physical Page Frame Number of the base of the second-level
(Segment 2) page table. Bits <22:13> of the virtual address are used
to index into the second level page table to obtain the physical Page
Frame Number (PFN) of the page being referenced. The PFN 1is
concatenated with virtual address bits <12:0> to obtain the physical
address of the location being accessed.

If the first-level PTE is valid, the protection bits are ignored; the
protection code in the second-level PTE is used to determine
accessibility. If a first-level PTE is invalid, an Access Violation
occurs if the PTE<KRE> equals zero. An Access Violation on a
first-level PTE implies that all lower-level page tables mapped by
that PTE do not exist.

\Note that this mapping scheme does not require multiple contiguous
physical pages. There are no length registers. Two pages (16 Kbytes)
map 8 Mbytes of virtual address space; 513 pages (approximately 4
Mbytes) map the entire 4-Gbyte address space.\

MEMORY MANAGEMENT RESTRICTED DISTRIBUTION Page 5-7
ADDRESS TRANSLATION 26 April 1988

The algorithm to generate a physical address from a virtual address is
shqown below:

segl_pte <- ({PTBR * 8192} + {8 * VA<31:23>}) !Read Physical
IF segl_pte<Vv> EQ 0 THEN
IF segl*pte<KRE> EQ 0 THEN
{initiate Access Violation fault}
ELSE
{initiate Translation Not Valid fault)

seg2_pte <- ({segl_ pte<PFN> * 8192} + {8 * VA<22:13>}) !Read Physical
IF {{{seg2_pte<UWE> EQ 0} AND {write access} AND {PS<CM> EQ 1}} OR
{{seg2_pte<URE> EQ 0} AND {read or execute access}
AND {PS<CM> EQ 1}} OR
{{seg2_pte<KWE> EQ 0} AND {write access} AND {PS<CM> EQ 0}} OR
{{seg2_pte<KRE> EQ 0} AND {read or execute access}
AND {PS<CM> EQ 0}}}
THEN
{initiate Access Violation fault}
ELSE
IF segZ*pte<V> EQ 0 THEN
{initiate Translation Not Valid fault}

IF {seg2 pte<FOW> EQ 1} AND {write access} THEN
{initiate Fault On Write fault}

IF {seg2_pte<FOR> EQ 1} AND {read access} THEN
{initiate Fault On Read fault}

IF {seg2 pte<FOE> EQ 1} AND {execute access} THEN
{initiate Fault On Execute fault}

Physical_ Address <- {ség2_pte<PFN> * 8192} OR VA<12:0>

5.8 TRANSLATION BUFFER

In order to save actual memory references when repeatedly referencing
the same pages, a hardware implementation may include a translation
buffer to remember successful virtual address translations and page
states.

When the process context is changed, a new value is 1loaded into the
Address Space Number (ASN) internal processor register with a Swap
Privileged Context instruction (SWPCTX); see Chapter 4, Instruction
Descriptions, Page 4-98 and Chapter 7, Process Structure. This causes
address translations for pages with PTE<ASM> clear to be invalidated
on a processor that does not implement address space numbers.
Additionally, when the software changes any part (except for the
Software field) of a wvalid Page Table Entry, it must also move a
virtual address within the corresponding page to the Translation
Buffer Invalidate Single (TBIS) internal processor register with the
MTPR instruction; see Chapter 8, Internal Processor Registers, Page
8-25.

\Some implementations may invalidate the entire Translation Buffer on
an MTPR to TBIS. In general, implementations may invalidate more than
the required translations in the TB.\

MEMORY MANAGEMENT RESTRICTED DISTRIBUTION Page 5-8
TRANSLATION BUFFER 26 April 1988

The entire Translation Buffer can be invalidated by executing a
Translation Buffer Flush instruction (TBFLUSH); see Chapter 4,
Instruction Descriptions, Page 4-101.

The Translation Buffer must not store invalid PTEs. Therefore, the
software is not required to invalidate Translation Buffer entries when
making changes for PTEs that are already invalid.

The TBCHK internal processor register is available for interrogating
the presence of a wvalid translation in the Translation Buffer; see
Chapter 8, Internal Processor Registers, Page 8-23.

\Hardware implementors should be aware that a single, direct mapped TB
has a potential problem when a load/store instruction and its data map
to the same TB location. If TB misses are handled in Epicode, there
could be an endless loop unless the instruction is held in an
instruction buffer or a translated physical PC is maintained by the
hardware.\

5.9 ADDRESS SPACE NUMBERS

The PRISM architecture allows a processor to optionally implement
16-bit address space numbers (process tags) to reduce the need for
invalidation of cached address translations for process specific
addresses when a context switch occurs. The address space number for
the current process is loaded by software in the Address Space Number
(ASN) internal processor register with a Swap Privileged Context
instruction. ASNs are processor specific and the hardware makes no
attempt to maintain coherency across multiple processors. In a
multiprocessor system, software is responsible for ensuring the
consistency of TB entries for processes that might be rescheduled on
different processors.

\There are several possible ways of using ASNs. There are several
complications in a multiprocessor system. Consider the case where a
process that executed on processor-1 is rescheduled on processor-2.
If a page is deleted or its protection is changed, the TB in

processor-1 has stale data. One solution would be to send an
interprocessor interrupt to all the processors on which this process
could have run and cause them to invalidate the changed PTE. This

results in significant overhead in a system with several processors.
Another solution would be to have software invalidate all TB entries
for a process on a new processor before it can begin execution, if the
process executed on another processor during its previous execution.
This ensures the deletion of possibly stale TB entries on the new
processor. |\

5.10 MEMORY MANAGEMENT FAULTS
Five types of faults are associated with memory access and protection:
o Access Violation

o Fault On Read

MEMORY MANAGEMENT RESTRICTED DISTRIBUTION Page 5-9
MEMORY MANAGEMENT FAULTS 26 April 1988

o Fault On Write
o Fault On Execute

o Translation Not Valid

See Chapter 6, Exceptions and Interrupts, for a detailed description
of these faults.

An Access Violation (ACV) fault is taken when the protection field of
the second-level PTE that maps the data indicates that the intended
page reference would be illegal in the specified processor mode. An
Access Violation fault is also taken if the KRE bit is zero in an
invalid first level PTE.

A Fault On Read (FOR) fault occurs when a read is attempted with
PTE<FOR> set. A Fault On Write (FOW) fault occurs when a write is
attempted with PTE<FOW> set. A Fault On Execute (FOE) fault occuts
when instruction execution is attempted with PTE<FOE> set.

A Translation Not Valid (TNV) fault is taken when a read or write
reference 1is attempted through an invalid PTE in a first- or
second-level page table.

Note that these five faults have distinct <wectors in the System
Control Block. The Access Violation fault takes precedence over
Translation Not Valid, and Fault On Read/Write/Execute. Translation
Not Valid, and Fault On Read/Write/Execute are mutually exclusive.
Fault On Read and Fault On Write can occur simultaneously in the
RMAQI, RMALI, CMPSWLI, and CMPSWQI instructions, in which case the
order that the exceptions are taken in is UNPREDICTABLE.

MEMORY MANAGEMENT RESTRICTED DISTRIBUTION Page 5-10
REVISION HISTORY 26 April 1988
Revision History:

-Revision 3.0, 26 April 1988.

1. Eliminate DCV.

2 Clarify ASM,.

3. Change access mode to processor mode.

4

Clarify address translation algorithm to show execute access.

Revision 2.0, 24 June 1986.

1. Reduce processor modes to kernel and user only.
2. Eliminate indirect PTE’s.

3. Eliminate execute protection.

4.

Change protection to independent read and write enables for
user and kernel modes.

5. Change PTE format to reduce TB fill time.

Revision 1.0, 22 December 1985.
1. Change virtual address to 32 bits.

2. Simplify PTE format. Eliﬁinate M, and COM in favor of Fault
On Read/Write/Execute. Eliminate skip bits in PTE.

. Eliminate system space.

3

4. Change page size to 8 Kbytes .
5 Change protection changevboundary to 64 Kbytes
6

. Move exception frames to Chapter 6.

Revision 0.0, Initial Release, 5 July 1985.

RESTRICTED DISTRIBUTION

CHAPTER 6

EXCEPTIONS AND INTERRUPTS

6.1 INTRODUCTION

At certain times during the operation of a system, events within the
system require the execution of software outside the explicit flow of
control. When such an event occurs, the processor forces a change in
control flow from that indicated by the current instruction stream.

Some of the events are relevant primarily to the currently executing
process, and normally invoke software in the context of the current
process. The notification of such events is termed an exception.

Other events are primarily relevant to other processes, or to the
system as a whole, and are therefore serviced in a system-wide
context. The notification for these events is termed an interrupt.

Some interrupts are of such urgency that they require high-priority
service, while others must be synchronized with independent events.
To meet these needs, the processor has priority 1logic that grants
interrupt service to the highest priority event at any point in time.

6.1.1 Processor Interrupt Priority Level (IPL)

The processor has eight Interrupt Priority Levels (IPL’s) divided into
four software levels (numbered 0 to 3), and four hardware levels
(numbered 4 to 7). User applications and most operating system
software run at IPL 0, which may be thought of as process level.
Higher numbered interrupt levels have higher priority; i.e., any
request at an interrupt level higher than the processor’s current IPL
will interrupt immediately, but requests at lower or equal levels are
deferred.

Interrupt levels 0 to 3 exist solely for use by software. No hardware
event can request an interrupt on these levels. Conversely, interrupt
levels 4 to 7 exist solely for wuse by hardware. Software cannot
request an interrupt at any of these levels.

6.1.2 Interrupts

The processor arbitrates interrupt requests according to priority.
When the priority of an interrupt request is higher than the current
processor IPL, the processor will raise the IPL and service the

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-2

INTRODUCTION 26 April 1988
interrupt request. The interrupt service routine is entered at the
IPL of the interrupting source and does not usually change the IPL set
by the processor. Interrupt requests can come from I/0 Devices,

memory controllers, other processors, or the processor itself.

The priority level of one processor does not affect the priority level
of other processors. Thus, in a multiprocessor system, interrupt
levels alone cannot be used to synchronize access to shared resources.
Even the <warious wurgent interrupts, including those exceptions that
run at IPL 7, do so on only one processor.

Synchronization with other processors in a multiprocessor system
involves a combination of raising the IPL and executing an
interlocking instruction sequence. Raising the 1IPL prevents the
synchronization sequence itself from being interrupted on a single
processor, while the interlock sequence guarantees mutual exclusion
with other processors.

6.1.3 Exceptions

Most exception service routines execute at the current processor IPL
in response to exception conditions caused by software. Serious
system failures such as a machine check, however, raise the IPL to the
highest level (7) to minimize processor interruption until the problem
is corrected. Exception service routines are usually coded to avoid
exceptions; however, nested exceptions can occur. All exceptions are
handled in kernel mode.

There are three types of exceptions:

o A fault is an exception condition that occurs during an
instruction and leaves the registers and memory in a
consistent state such that elimination of the fault condition
and subsequent re-execution of the instruction will give
correct results. Faults are not guaranteed to leave the
machine in exactly the same state it was in immediately prior
to the fault, but rather in a state such that the instruction
can be correctly executed if the fault condition is removed.

o An abort is an exception condition <that occurs during an
instruction and potentially leaves the registers and memory
in an indeterminate state such that the instruction cannot
necessarily be correctly restarted, completed, simulated, or
undone.

o A trap is an exception condition that occurs at the
completion of the operation that caused the exception. Since
several instructions may be in various stages of execution at
any point in time, it is possible for multiple traps to occur
simultaneously. The next instruction address that is
reported on traps is that of the next instruction that would
have issued if the trapping condition had not occurred. This
is not necessarily the address of the instruction immediately
following the one encountering the trap condition.
Therefore, in general, it is difficult to fix up results and
continue program execution at the point of the trap.
Software can force a trap to be continued more easily without
the need for complicated fix-up code. This is accomplished

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-3
INTRODUCTION 26 April 1988

by placing a Drain (DRAIN) instruction immediately after the
instruction whose possible trap is to be made continuable;
see Chapter 4, Instruction Descriptions, Page 4-77.

For example:

MULG R4,R6,R8
DRAIN

In this example, no further instructions are allowed to issue wuntil
the MULG has completed and any possible trap has been initiated.

6.1.4 Contrast Between Exceptions And Interrupts

Generally, exceptions and interrupts are similar. However, there are
four important differences:

1. An exception condition is caused by the execution of an
instruction while an interrupt is caused by some activity in
the system that may be independent of any instruction.

2. The IPL of the processor is wusually not changed when the
processor initiates an exception, while the IPL is always
raised when an interrupt is initiated.

3. Exceptions are always initiated immediately, no matter what
the processor IPL is, while interrupts are deferred until the
processor IPL drops below the IPL of the requesting source.

4. Some exceptions can be selectively disabled by selecting
instructions that do not check for exception conditions. If
an exception condition occurs when checking is disabled, the
exception will not occur on a subsequent instruction that
does check such conditions. If an interrupt request occurs
while the processor IPL is equal to or greater than that of
the interrupting source, the condition will eventually
initiate an interrupt if the interrupt request is still
present and the processor IPL is lowered below that of the
interrupting source.

6.2 PROCESSOR STATE

Processor state consists of a longword called the Processor Status
(PS) and a longword containing the Program Counter (PC), which is the
32-bit wvirtual address of the next instruction.

When either an exception or interrupt is initiated, the current
processor state must be preserved. This 1is accomplished by
automatically pushing the PC, followed by the PS, on the Kernel stack.
Subsequently, instruction execution can be continued at the point of
the exception or interrupt by executing a Return from Exception or
Interrupt (REI) instruction; see Chapter 4, Instruction Descriptions,
Page 4-87.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-4
PROCESSOR STATE 26 April 1988

\Initiation of an exception or interrupt causes the PC, followed by
the PS, to be pushed on the Kernel stack. This is opposite to VAX
which pushes PSL followed by PC. We want to allow for the possibility
of future machines being 64-bits with a 32-bit compatibility mode.
Pushing PS last allows Epicode to test a mode bit in the PS and
determine the format of the PS and PC that were pushed on the stack.)\

Process context such as the mapping information is not saved or
restored on each interrupt or exception. Instead, it is saved and
restored when process context switching is performed. Other processor
status is changed even less frequently; see Chapter 7, Process
Structure.

The PS can be explicitly stored with the Move Processor Status (MOVPS)
instruction; see Chapter 4, Instruction Descriptions, Page 4-81. The
PC can be explicitly stored with the Jump to Subroutine (JSR)
instruction. All branching instructions also load a new value into
the PC; see Chapter 4, Instruction Descriptions, Pages 4-74 and 4-72.

The terms current PS and saved PS are used to distinguish between this
status information when it is stored internal to the processor and
when copies of it are materialized in memory.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-5

PROCESSOR STATE 26 April 1988
3
1 76 43210
e e e +=t—t+-+-+
| l [VIvVIV] |
| MBZ | IPL |E|R|M|C]
| | IN|F|M|M]|
e +-=-=- +-t—t-t-+

Figure 6-1: Processor Status

Bits Description

0 Current Mode (CM). The proéessor mode of the currently
executing process as follows:

0 - Kernel

1l - User
1 Virtual Machine Monitor (VMM) - When set, the processor is
executing in a wvirtual machine monitor. When clear, the

processor is running in either real or virtual machine mode.

\This bit is only meaningful when running with epicode that
implements virtual machine capabilities.\

2 Vector Restart Frame (VRF) - This bit can only be set in a PS
~which has been saved during the initiation of an exception.
When set, a vector restart frame has been pushed on the stack
prior to the saved PS and PC.

3 Vector Enable (VEN) - This bit controls whether vector
instructions can be executed. When this bit is set, vector
instructions execute normally. When this bit is clear, an
attempt to issue a vector instruction causes a Vector Enable

fault.

6:4 Interrupt Priority Level (IPL) - The current processor
priority, in the range 0 to 7. :

31:7 Reserved to DIGITAL, MBZ.

At bootstrap, the initial value of PS5 is set to 70 (hex). VRF, VEN,

VMM, and CM are clear and IPL is 7.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-6

PROCESSOR STATE 26 April 1988
3

1 210

T ittt L LR +---4+

| | T |

| Instruction Virtual Address I G |

| | N |

et e e e R L L L P L e e +o-—4

Figure 6-2: Program Counter

All instructions are aligned on longword boundaries and, therefore,
hardware can assume zero for the two low-order PC bits.

6.3 INTERRUPTS

In some implementations, several instructions may be in various stages,
of execution simultaneously. Before the processor can service an
interrupt request, all active instructions must be allowed to complete
without exception (e.g., an exception could occur in a currently
active instruction, in which case the exception would be initiated
before the interrupt).

The following events will cause an interrupt:
o Asynchronous System Trap (AST) =~ IPL 1.
o Software interrupts - IPL 1 to 3.
o Console interrupts -~ IPL 4.
o I/O Device interrupts ~ IPL 4 and 5.
o 1 ms Interval Clock interrupt - IPL 6.
o Interprocessor interrupt -~ IPL 6.
o Power Recovery interrupt ~ IPL 7.
o Machine Check exception/interrupt ~ IPL 7.

Each interrupt source has a separate vector location (offset) within
the System Control Block (SCB); see Section 6.6. The vector location
for architecturally defined interrupts is fixed by the architecture.
The vector location contains 2 longwords. The first longword contains
the virtual address of the interrupt service routine. The second
longword contains a interrupt service routine parameter.

When an interrupt is serviced, the PC, PS, R5, and R4 are pushed on
the Kernel stack, the contents of the first longword in the SCB vector
location are copied into R4 and the PC, the contents of the second
longword in the SCB vector location are copied intc R5, and
instruction execution is initiated in Kernel Mode.

In order to reduce interrupt overhead, no memory mapping information
is changed when an interrupt occurs. Therefore, the instructions,
data, and the contents of the interrupt vector for the interrupt
service routine must be present in every process at the same virtual
address. ‘

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-7
INTERRUPTS 26 April 1988

Interrupt service routines should follow the discipline of not
lowering IPL below their initial level. Lowering IPL in this way
could result in a delay in the processing of more urgent interrupts at
an intermediate level.

Kernel Mode software may need to raise and lower IPL during certain
instruction sequences that must synchronize with possible interrupt
conditions (e.g., Power Recovery). This can be accomplished by
specifying the desired IPL and executing a Swap IPL instruction
(SWIPL) or by executing an REI instruction that restores a PS that
contains the desired 1IPL; see Chapter 4, Instruction Descriptions,
Pages 4-100 and 4-87.

6.3.1 Asynchronous System Trap (AST) - Level 1

Asynchronous System Traps are a means of notifying a process of events
that are not synchronized with its execution, but which must be dealt
with in the context of the process. An Asynchronous System Trap 1is
initiated when an REI instruction restores a PS with a Current Mode
that is less privileged than or equal to a mode for which an AST 1is
pending and not disabled; see Chapter 7, Process Structure, Section
7.3.

6.3.2 Software Interrupts - Levels 1 To 3
6.3.2.1 Software Interrupt Summary Register

The architecture provides three priority interrupt levels for use by
software (level 0 is also available for use by software but interrupts
can never occur at this level). The Software Interrupt Summary
Register (SISR) stores a mask of pending software interrupts. Bit
positions in this mask which contain a 1 correspond to the levels on
which software interrupts are pending.

When the processor IPL drops below that of the highest requested
software interrupt, a software interrupt is initiated and the
corresponding bit in the SISR is cleared.

The SISR is a read-only internal processor register which may be read
by Kernel Mode software by executing a Move From Processor Register
instruction specifying SISR (MFPR SISR); see Chapter 8, Internal
Processor Registers, Section 8.1.

6.3.2.2 Software Interrupt Request Register

The Software Interrupt Request Register (SIRR) is a write-only
internal processor register used for making software interrupt
requests.

Kernel Mode software may request a software interrupt at a particular
level by executing a Move To Processor Register instruction specifying
SIRR (MTPR SIRR); see Chapter 8, Internal Processor Registers, Section
8.1.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-8
INTERRUPTS 26 April 1988

If the requested interrupt level is greater than the current IPL, the
interrupt will occur before the execution of the next instruction.
If, however, the requested level is equal to or less than the current
processor IPL, the interrupt request will be recorded in the Software
Interrupt Summary Register (SISR) and deferred until the processor IPL
drops to the appropriate level.

Note that no indication is given if there is already a request at the
specified 1level. Therefore, the respective interrupt service routine
must not assume that there is a one-to-one correspondence between
interrupts requested and interrupts generated. A valid protocol for
generating this correspondence is:

1. The requester places information in a control block and then
inserts the control block in a queue associated with the
respective software interrupt level.

2., The requester uses MTPR SIRR to request an interrupt at the
appropriate level.

3. The interrupt service routine attempts to remove a control
block from the request queue. If there are no control blocks
in the queue, the interrupt is dismissed with an REI.

4. If a valid contreol block is removed from the queue, the
requested service is performed and Step 3 is repeated.

6.3.3 Console Interrupts - Level 4

NOTE

\A common console architecture for uniprocessor and
multiprocessor systems is currently being defined.
The Console architecture is to subject to change.\

Console interrupts are requested, if enabled, as characters are
received from and transmitted to the console terminal.

6.3.3.1 Console Receive Control Status

The Console Receive Control Status register (CRCS) is a read/write
internal processor register used to enable and disable console receive
interrupts. Console receive interrupts are used to synchronize the
input of characters from the console terminal.

CRCS may be read by Kernel Mode software by executing a Move From
Processor Register instruction specifying CRCS (MFPR CRCS). Kernel
Mode software may write CRCS by executing a Move To Processor Register
instruction specifying CRCS (MTPR CRCS). See Chapter 8, Internal
Processor Registers, Section 8.1.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-9
INTERRUPTS ' 26 April 1988

6.3.3.2 Console Transmit Control Status

The Console Transmit Control Status register (CTCS) is a read/write
internal processor register used to enable and disable console
transmit interrupts. Console transmit interrupts are used to
synchronize the output of characters to the console terminal.

CTCS may be read by Kernel Mode software by executing a Move From
Processor Register instruction specifying CTCS (MFPR CTCS). Kernel
Mode software may write CTCS by executing a Move To Processor Register
instruction specifying CTCS (MTPR CTCS). See Chapter 8, Internal
Processor Registers, Section 8.1.

6.3.4 I/O Device Interrupts - Levels 4 And 5
The architecture provides two priority levels for use by I/O Devices.

I/0 Device interrupts are requested when a completion, attention, or
error condition is present in an I/0 Device and the respective
interrupt is enabled.

6.3.5 Urgent Interrupts - Levels 6 And 7

The architecture provides two priority levels for use by urgent
conditions including serious errors (e.qg., Machine Check),
interprocessor interrupts, interval timer interrupts, and Power
Recovery. Interrupts on these levels are initiated by the processor
upon detection of certain conditions. Some of these conditions are
not interrupts. For example, Machine Check is usually an exception
but it runs at a high priority level.

Interrupt Level 7 is reserved for those conditions that must lock out
all processing until handled. This includes the hardware "disaster"
Machine Check and Power Recovery; See Section 6.4.6.2.

The Power Recovery interrupt is generated when power is restored after
a power failure. The power-down sequence is handled totally in
Epicode. After having saved volatile machine state in memory (e.g.,
scalar registers, vector registers, Epicode registers, writeback cache
data, etc.), Epicode gracefully stops system operation in an
implementation-dependent manner. When power is restored the system
enters a restart-sequence. At the end of the sequence, if successful,
a Power Recovery interrupt is initiated; see Chapter 11, System
Bootstrapping and Console, Section 11.1.3.

Even though the power-down sequence is handled totally in Epicode, it
will not be initiated until the processor IPL drops below 7. Thus
critical code sequences can block the power-down sequence by raising
the IPL to 7. Software, however, must take extra care not to lock out
the power-down sequence for an extended period of time.

\The time interwval is TBS.\

Interrupt level 6 is reserved for interprocessor and interval timer
interrupt requests.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-10
INTERRUPTS 26 April 1988

6.3.5.1 Interval Clock Interrupt - Level 6

The lms Interval Clock requests an interrupt every millisecond if
clock interrupts are enabled.

6.3.5.1.1 1Interval Clock Interrupt Enable

The Interval Clock Interrupt Enable register (ICIE) is a read/write
internal processor register used to enable and disable Interval Clock
interrupts. '

ICIE may be read by Kernel Mode software by executing a Move From
Processor Register instruction specifying ICIE (MFPR ICIE). Kernel
Mode software may write ICIE by executing a Move To Processor Register
instruction specifying ICIE (MTPR ICIE). See Chapter 8, Internal
Processor Registers, Section 8.1.

6.3.5.2 Interprocessor Interrupt - Level 6

Interprocessor interrupts are provided to enable operating system
software running on one processor to interrupt activity on another
processor and cause operating system dependent actions to be
performed.

If the target processor is the same as the current processor, whether
or not an interprocessor interrupt is initiated is UNPREDICTABLE.

6.3.5.2.1 Interprocessor Interrupt Enable Register

The Interprocessor Interrupt Enable register (IPIE) is a read/write
internal processor register used to enable and disable interprocessor
interrupts. Interprocessor interrupts are used in multiprocessing
systems to notify other processors of state changes. When
interprocessor interrupts are enabled, a processor can receive
interrupts from other processors. Writes to this register may be
ignored in a uniprocessor system.

The IPIE may be read by Kernel Mode software by executing a Move From
Processor Register instruction specifying IPIE (MFPR IPIE). Kernel
Mode software may write IPIE by executing a Move To Processor Register
instruction specifying IPIE (MTPR IPIE); see Chapter 8, Internal
Processor Registers, Section 8.1, Page 8-12.

Explicit state is not provided by the architecture for software to
directly determine whether there was an outstanding interprocessor
interrupt when powerfail occurred. It is the responsibility of
software to leave sufficient information in memory so that it may
determine the proper action on power-up. One such method would be for
software to maintain an action or request queue for each processor.
On power-up, software would examine the action/request queue for each
processor and if the queue is not empty, request an interprocessor
interrupt with the respective processor as the target.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-11
INTERRUPTS 26 April 1988

6.3.5.3 Interprocessor Interrupt Request Register

The Interprocessor Interrupt Request Register (IPIR) is a write-only
internal processor register used for making a request to interrupt a
specific processor. -

Kernel Mode software may request to interrupt a particular processor
by executing a Move To Processor Register instruction specifying IPIR
(MTPR IPIR); see Chapter 8, 1Internal Processor Registers, Section
8.1,, Page 8-13.

Note that, like software interrupts, no indication is given as to
whether there is already an interprocessor interrupt pending when one
is requested. Therefore, the interprocessor interrupt service routine
must not assume there 1is a one-tco-one correspondence between
interrupts requested and interrupts generated. A wvalid protocol
similar to the one for software interrupts for generating this
correspondence 1is:
1. The requester places information in a control block and then
inserts the control block 1in a queue associated with the
target processor.

2. The requester uses MTPR IPIR to request an interprocessor
interrupt on the target processor.

3. The interprocessor interrupt service routine on the target
processor attempts to remove a control block from its request
queue. If there are no control blocks remaining, the
interrupt is dismissed with an REI.

4. If a valid control block is removed from the queue, the
specified action is performed and Step 3 is repeated.

6.4 EXCEPTIONS
Exceptions can be grouped into seven categories:

1. Arithmetic traps

2. Data Alignment fault

3 Faults occurring as a consequence of an instruction

4. Memory management faults

5. Serious system failures

6. Vector exceptions
Each exception has a separate vector 1location (offset) within the
System Control Block (SCB); see Section 6.6 Dbelow. The vector
location contains 2 longwords. The first 1longword contains the
virtual address of the exception service routine. The second longword

contains a exception service routine parameter.

When initiating an exception, various parameters are pushed on the

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-12

EXCEPTIONS 26 April 1988
Kernel stack. These parameters represent information that is
necessary to process the respective exception. An even number of

longwords is always pushed. Minimally, this consists of the processor
state (PC and PS), R5, and R4, but can also include such things as
virtual addresses and instruction values. If the number of parameters
is not an even number of longwords, then a zero longword is pushed tc
ensure that the stack remains quadword aligned; see Section 6.4.4.
After the parameters are pushed on the Kernel stack, the contents of
the first longword in the SCB vector location are copied into R4 and
the PC, the contents of the second longword in the SCB vector location

are copied into R5, and instruction execution is initiated in Kernel
Mode.

6.4.1 Arithmetic Traps

An arithmetic trap is an exception that occurs as the result of
performing an arithmetic or conversion operation. In general, it is
difficult to fix up results and continue from this type of exception.
Software can, however, force an arithmetic trap to be continued more
easily by placing a DRAIN instruction immediately following an
instruction that can cause an arithmetic trap.

If scalar register RO is specified as the destination of an operation
that can cause an arithmetic trap, it is UNPREDICTABLE whether the
trap will actually occur, even if the operation would definitely
produce an exceptional result.

If a floating reserved operand is specified in an F_ or G_floating
operation, then a floating reserved operand with ETYPE<FRS> set is
reported for that operation. The one exception to this rule is F_ and
G_floating division. For this case, if both a true zero divisor (not
a floating reserved divisor) and a floating reserved dividend are
specified, it is UNPREDICTABLE whether a floating reserved operand
with ETYPE<FRS> set or a floating divide by zero with ETYPE<FDZ> set
is reported.

In general it is permissible for an implementation to use a forwarded
or bypassed result in a subsequent instruction, even if the result is
exceptional. A floating exceptional result is always a reserved
operand with the exception type encoded in the ETYPE field. An
integer exceptional result is the low 32-bits of the true result.

Exceptional results can be forwarded to the address calculation for
load and store instructions (scalar and vector), to the address
calculation for jump to subroutine instructions, as the source data
for a store instruction (scalar and vector), or as the source data for
a conditional branch instruction. This can result in the generation
of an inappropriate address, the storing of exceptional results in
memory, or an unintended branch. If such an occurrence is possible,
software should use a combination of range checking and DRAIN
instructions to precisely isolate such programming errors.

Arithmetic traps are initiated in Kernel Mode and push the following
information on the Kernel stack:

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-13

EXCEPTIONS 26 April 1988
3 11
1 6 5 0
et ettt et it +
l |
| Exception Summary | :Sp
! |
it ettt e L L L L L E L LT +
	Vector Register
Zero	Write Mask for
	Registers V0 - V15
ittt oo e +

| » Scalar Register |
| Write Mask for |
| , Registers RO - R31 |

| ' Scalar Register |
| Write Mask for |
| _ Registers R32 - R63 |

e +
| |
I R4 [
! I
e e e e m e +
I I
I R5 !
I |
e T et EE L L L PP L LR PPt +

B T e ettt T R +
| Virtual |
| Address of Next |
| Instruction 1
e e e it L +

Figure 6-3: Arithmetic Trap Exception Frame

When an arithmetic exception condition is detected, several
instructions may be in various stages of execution. These
instructions are allowed to complete before the arithmetic exception
can be initiated. Some of these instructions may themselves cause
further arithmetic exceptions. Thus it is possible for several
arithmetic exceptions to occur simultaneously.

The Exception Summary parameter records the various types of
arithmetic exceptions that can occur together.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-14
EXCEPTIONS 26 April 1988

3

1 6543210
T T R R r—
[|III|F|F|F|F|
| Zero |[OID|O|R|D|U|
I IVIZIVIS|Z|N]
e T D e et Dt o S

Figure 6-4: Exception Summary
Bit Description

0 Floating Underflow (FUN) - An F_ or G_floating arithmetic or
conversion operation underflowed the destination exponent.

1 Floating Divide by Zero (FD2Z) - An attempt was made to perform
an F_ or G_floating divide operation with a divisor of zero.

2 Floating Reserved Operand (FRS) - An attempt was made to
perform an F_ or G_floating arithmetic, conversion, or
comparison operation, and one or more of the operand wvalues
were reserved. '

3 Floating Overflow (FOV) - An F_ or G_floating arithmetic or
conversion operation overflowed the destination exponent.

4 Integer Divide by Zero (IDZ) - An attempt was made to perform
an integer divide operation with a divisor of zero.

5 Integer Overflow (IOV) - An integer arithmetic operation or a
conversion from F_ or G_floating to integer overflowed the
destination precision.

The Vector Register Write Mask parameter records which vector
registers were written with one or more elements containing
exceptional results. There is a one-to-one correspondence between
bits in the Vector Register Write Mask longword and the vector
register numbers. The mask records, starting at bit 0 and proceeding
right to left to bit 15, which of the vector registers V0 through V15
were written with one or more elements containing an exceptional
result.

The Scalar Register Write Mask parameters record which scalar

registers were written with exceptional results. There is a
one-to-one correspondence between bits in the Scalar Register Write
Mask longwords and the scalar register numbers. Thus the first

longword records, starting at bit 0 and proceeding right to 1left,
which of the scalar registers RO through R31 received an exceptional
result. The second longword records the same information, again
starting at bit 0 and proceeding right to left, for scalar registers
R32 through R63. When the exceptional value is a quadword, the bits
corresponding to the register numbers of the low and high parts of the
result are both set in the appropriate longword mask.

The actual exceptional walue written to the destination register
depends on the operation being performed and the type of exception:

o For Integer Overflow the low order 32-bits of the true result
are written to the destination register.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-15
EXCEPTIONS 26 April 1988

© The exceptional result written to the destination register
for an Integer Divide by Zero is UNPREDICTABLE.

© The result of a floating comparison or conversion from
floating to integer is UNPREDICTABLE if any of the floating
operands are reserved.

o All floating exceptional values are encoded as reserved
operands with an exception type inserted in the low bits of
the word containing the exponent; see Chapter 4, Instruction
Descriptions, Page 4-51.

6.4.2 Data Alignment Fault

All data must be naturally aligned or an alignment fault may be
generated. Natural alignment means that data bytes are on byte
boundaries, data words are on word boundaries, data longwords are on
longword boundaries, and data quadwords are on quadword boundaries.

6.4.2.1 Scalar Alignment Fault

A Scalar Alignment fault may be generated when an attempt is made to
load or store a word, longword, or quadword to/from a scalar register
using an address that does not have the natural alignment of the
particular data reference.

Scalar Alignment faults are initiated in the Kernel Mode and push the
following information on the Kernel Mode stack:

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 5-16

EXCEPTIONS 26 April 1988
3

1 0

o e e e e e e +

| Virtual |

] Address of | :SP

| Reference I

F o e e e e +

o e e e e e e +
I I
I R4 |
I [

e e e e +
| I
I RS I
I I
e +

R R et i e +
| Virtual I
I Address of Faulting |
] Instruction |
s e e e e e e +

Figure 6-5: Scalar Alignment Fault Exception Frame

The faulting instruction is pushed on the stack so that emulation
software can determine the register operands and opcode value. This
would not be possible if the instruction was contained in a page that
was executable, but not readable.

An implementation may elect to implement scalar data alignment in
hardware or Epicode, or force the operating system, or possibly the
user (for non~DIGITAL operating system software) to emulate the
specified operation by handling this exception.

Emulation software, whether Epicode, an operating system, user code,
or hardware may write partial results to memory without probing to
make sure all writes will succeed when dealing with wunaligned store
operations.

If a memory management exception condition occurs while reading or

writing part of the unaligned data, the appropriate memory management
fault is generated.

Software should avoid data misalignment whenever possible since the
emulation performance penalty may be as large as 100 to 1.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-17
EXCEPTIONS 26 April 1988

§.4.3 Faults Occurring As The Result Of An Instruction

6§.4.3.1 Breakpoint Fault

A Breakpoint fault is an exception that occurs when a Breakpoint (BPT)
instruction is executed; see Chapter 4, Instruction Descriptions, Page
4-76. Breakpoint faults are intended for use by debuggers and can be

used to place breakpoints in a program.

A Breakpoint fault is initiated in Kernel Mode and pushes the
following information on the Kernel stack:

3 -

1 0
e ettt e e e e +
| |
| R4 |
[|
o e e e +
| |
| R5 |
l |
e +
f |
| Processor Status (PS) | :SP
| |
e e e e +
| Virtual |
| Address of BPT I
| Instruction |

IR e e +

Figure 6-6: Breakpoint Fault Exception Frame

Breakpoint faults are initiated in Kernel Mode so that system
debuggers can capture breakpoint faults that occur while the user is
executing system code.

6.4.3.2 Fault On Low Bit Clear Fault

A Fault On Low Bit Clear fault is an exception that occurs when a
Fault on Low Bit Clear (FLBC) instruction is executed and the low
order bit of the specified scalar register is clear; see Chapter 4,
Instruction Descriptions, Page 4-73.

Fault On Low Bit Clear faults are initiated in the Kernel Mode and
push the following information on the Kernel Mode stack:

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-18

EXCEPTIONS 26 April 1988
3

1 0

e T T L L T +

| I

! Zero | :8p

| |

e e N et e e +

i Faulting Instruction |

e T T T e e E L P L e +
| I
I R4 |
I I
T e L e P e P e P e e e e e +
| I
| R5 I
I I
T e L E L L L B PP L LD PR L PR +

B e R ittt L L L L L +
| Virtual |
| Address of FLBC |
| Instruction |
B ittt e E L L LD LB L L L L PR L P L L +

Figure 6-7: Fault On Low Bit Clear Fault Exception Frame

The faulting instruction is pushed on the stack so that software can
determine the exact cause of the fault by examining the information
encoded in the displacement field. This would not be possible if the
instruction was contained in a page that was executable, but not
readable.

6.4.4 Illegal Operand Fault

An Illegal Operand fault occurs when an attempt is made to execute an
Epicode instruction with operand values that are illegal or reserved
for future use by DIGITAL.

Illegal Operand faults are initiated in the Kernel Mode and push the
following information on the Kernel Mode stack:

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-19

EXCEPTIONS 26 April 1988
3

1 0

et e e e e D D Ll +

| |

| Zero | :8P

I I

e e e e e ——— +

| Faulting Instruction |

e et +
l I
l R4 l
l [
e e — +
| |
| R5 |
I {
T e e L L L T e P e e e e et +

| Processor Status (PS) |

ettt T Tttt +
I Virtual |
| Address of Faulting |
| Instruction |
e ——— e — - +

Figure 6-8: Illegal Operand Fault Exception Frame
Illegal operands include:

o An interlock address that is not 1longword aligned (RMALI,
CMPSWLI)

o0 2An interlock address that is not quadword aligned (RMAQI,
CMPSWQT)

© An invalid combination of bits in the PS restored by REI
O Unaligned user stack on an REI.

The faulting instruction is pushed on the stack so that software can
determine the exact cause of the fault. This would not be possible if
the instruction was contained in a page that was executable, but not
readable. :

All stacks are required to be quadword aligned. It is the
responsibility of software to ensure that the initial values for stack
pointers are quadword aligned and that subsequent adjustments to the
stack pointers are made in quadword increments.

Epicode pops information from the source stack during an REI
instruction. Epicode always pops an even number of longwords from the
subject stack, thus preserving quadword alignment.

\Quadword alignment is maintained to ensure that a 64-bit architecture
can compatibly handle exceptions, interrupts, and the REI instruction.
It is also advantageous for Epicode to be able to wuse quadword
instructions to construct exception frames and to read the PS and PC

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-20
EXCEPTIONS 26 April 1988

from the stack on an REI.\

An Illegal Operand fault occurs during the execution of an REI
instruction when Epicode attempts to remove the processor state from
the User stack and the stack is not quadword aligned.

An unaligned Kernel stack causes a Kernel Stack Not Valid halt; see
Section 6.4.6.1.

6.4.4.1 Privileged Instruction

A Privileged Instruction fault is an exception that occurs when an
attempt is made to execute a privileged instruction while the current
mode is User. Privileged operations can only be executed in Kernel
Mode.

Privileged Instruction faults are initiated in the Kernel Mode and
push the following information on the Kernel Mode stack:

3

1 0
e e +
| |
| Zero | :8P
[I
o e e e e e e e ——————— +
I) |
| Faulting Instruction

I I
T T et e e e L L e P e e e e e +
| |
| R4 |
i I
L e e e el +
| I
| R5 |
| |
R e e e D L et +
| |
| Processor Status (PS) |
| I
e et D et atnele bl bl bt +
| - Virtual N
| Address of Privileged

| Instruction |
e e - +

Figure 6-9: Privileged Instruction Fault Exception Frame

The faulting instruction is pushed on the stack so that software can
determine the exact cause of the fault. This would noct be possible if
the instruction was contained in a page that was executable, but not
readable.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-21
EXCEPTIONS 26 April 1988

6.4.4.2 Reserved Opcode Fault
A Reserved Opcode fault is an exception that occurs when an attempt is
made to execute an opcode that is reserved to DIGITAL or a subsetted

opcode that requires emulation on the host implementation.

Reserved Opcode faults are initiated in the Kernel Mode and push the
following information on the Kernel Mode stack:

3
1 0
e e — - +
| I
| Zero | :SP
l |
e e e e e m e — e — e —————— = - +
| |
| Faulting Instruction |
! |
e e e mm—— o e - +
| |
| R4 |
| [
T ettt bt T T +
i |
| R5 |
| |
e m e m—m———m e +
| : |
| Processor Status (PS)]
| |
e e —m——————— - +
I Virtual !
| Address of Reserved |
| Instruction I
e L P PR et T e L L L L L L L e +

Figure 6-10: Reserved Opcode Fault Exception Frame

The faulting instruction is pushed on the stack so that software can
determine the exact cause of the fault. This would not be possible if
the instruction was contained in a page that was executable, but not
readable.

6.4.4.3 Vector Enable

A Vector Enable fault is generated if an attempt is made to execute a
vector instruction when vector instructions are disabled (PS<VEN> is
clear), even if a vector processor is not present.

Vector Enable faults are initiated in Kernel Mode and push the
following information on the Kernel stack:

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-22

EXCEPTIONS 26 April 1988
3

1 0

D Rl R i T T T T T T —— +

[I

| Zero | :SP

| |

R bl Ty ey Sy RSy gy g +

| Faulting Instruction _ |

T L +
I |
| R4 I
| l
e +
| I
| RS I
| I
e T TSR +

e bt i e Tt +
| Virtual |
| Address of Vector |
| Instruction |
R Rt e e T +

Figure 6-11: Vector Enable Fault Exception Frame

Vector Enable faults can be used to avoid unnecessary saving and
restoring of vector registers during context switches without
introducing security holes (i.e. passing information from one process
to another via the vector registers).

6.4.5 Memory Management Faults

Memory management faults occur when a virtual address translation
encounters an exception condition. This can occur as the result of
instruction fetch or during a scalar load or store operation.

Memory management faults are generated in Kernel Mode and push the
following information on the Kernel stack:

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-23

EXCEPTIONS 26 April 1988
3

1 10

P T T T T T S e e e e e e e e e e e +-+

| Related |

| Virtual Address in | :SP
I Page |

e e e +=+

I IR]

| Zero 171

! IWi

T e e e e e +-+

I l

| R4 |

! |

P T e e e e e e e o +

I I

I R5 I

l l

T e e e e e e e +

F o e e e e e e e e e +
| Virtual |
I Address of Faulting |
| Instruction |
Fr e e e +

Figure 6-12: Memory Management Fault Exception Frame

The first parameter is a virtual address in the page encountering the
fault condition, but not necessarily the exact virtual address.

The second parameter indicates whether the reference was a read (0) or
a write (1).

The virtual address of the faulting instruction is the virtual address
of the scalar 1load or store instruction that encountered the fault
condition.

Chapter 5, Memory Management, describes the memory management
architecture of PRISM in more detail.

6.4.5.1 Access Violatiocn

An Access Violation fault is an exception indicating that an attempted
access to a virtual address was not allowed in the current mode.

Access violations usually indicate program errors, but in some cases,
such as automatic stack expansion, can mean implicit operating system
functions.

Access Violation faults take precedence over Translation Not Valid,
Fault On Read, Fault On Write, and Fault On Execute faults.

Access violations take precedence over Translation Not Valid faults
for two important reasons:

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-24
EXCEPTIONS 26 April 1988

1. A malicious user could degrade system performance by causing
spurious page faults to pages for which no access is allowed.

2. The page fault rate on inaccessible pages could be used as a
low bandwidth timing channel to pass critical information and
compromise system integrity.

6.4.5.2 Translation Not Valid

A Translation Not Valid fault is an exception that indicates that an
attempted access was made to a virtual address whose Page Table Entry
(PTE) was not wvalid.

Software may use Translation Not Valid faults to implement virtual
memory capabilities.

6.4.5.3 Fault On Execute

A Fault On Execute fault is an exception that indicates that an
attempted instruction stream access was made to a virtual address
whose Page Table Entry (PTE) had the Fault On Execute bit set.

Software may use Fault On Execute faults to implement processor mode
changes and protected entry to Kernel Mode, and for collecting page
usage statistics.

6.4.5.4 Fault On Read

A Fault On Read fault is an exception that indicates that an attempted
read access was made to a virtual address whose Page Table Entry (PTE)
had the Fault On Read bit set.

Software may use Fault On Read faults to implement watchpoints and for
collecting page usage statistics.

6.4.5.5 Fault On Write

A Fault On Write fault is an exception <that indicates that an
attempted write access was made to a virtual address whose Page Table
Entry (PTE) had the Fault On Write bit set.

Software may use Fault On Write faults to maintain modified page
information, to implement copy on write and watchpoint capabilities,
and for collecting page usage statistics.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-25
EXCEPTIONS 26 April 1988

6.4.6 Serious System Failures
6.4.6.1 Kernel Stack Not Valid Halt

A Kernel Stack Not Valid halt is an exception that indicates that the
Kernel stack was not valid, was unaligned, or a memory error occurred
when Epicode attempted to push parameter information during the
initiation of an interrupt or exception. Immediately upon detecting
this condition the processor enters the restart sequence; see Chapter
11, System Bootstrapping and Console, Section 11.2.2.

6.4.6.2 Machine Check Abort

A Machine Check abort indicates that the processor detected an
internal machine error. Common machine check conditions are cache
parity errors and internal bus errors. .
Machine Check aborts raise IPL to 7 and are initiated in Kernel Mode.
The following informatiocn is pushed on the Kernel stack:

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-26

EXCEPTIONS 26 April 19838
3

1 0

A e e e +

| Number |

I of | :8P
| Bytes Pushed |

o e e +=+-4+

! |T|R]

| IN|T|

| {DIY]

e e T ittt T e e LT +-+-+

| |

| If IND =1 |

| |

+ +

| |

| Quadword Physical Address of Machine Check Logout Area |

I |

o e e e +

if IND = 0
An even number of
implementation
specific
longwords

e e e e e e +
1 Virtual |
I Address of Next I
| Instruction |
ittt ittt +

Figure 6-13: Machine Check Abort Exception Frame

Implementation-specific information is either pushed on the stack as
longwords or stored in a machine check logout area. An even number of
informational longwords are pushed in order to keep the stack gquadword
aligned. A longword containing a retry (RTY) and indirect (IND) flags
followed by the number of parameter bytes are then pushed. The number
of parameter bytes does not include the processor state (PS and EC),
R4 and R5, but does include the count and flags longwords.

Software must decide, on an implementation-specific basis, depending
on the parameters provided, if operations should be aborted. If retry

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-27
EXCEPTIONS 26 April 1988

is possible, Epicode is responsible for taking the appropriate action
pefore setting the RTY flag. If RTY is 1, the error is recoverable
and the instruction can be retried.

Epicode sets an internal machine check 1in progress flag before
initiating the machine check exception. This flag is cleared by the
operating system machine check handler by writing a 1 to the MCES IPR
(see Page 8-14) before it exits. If a second Machine Check is
detected while machine check in progress is set, a Double Error abort
is generated and the processor enters the restart sequence; see
Chapter 11, System Bootstrapping and Console.

6.4.7 Vector Exceptions

Vector instructions perform arithmetic, logical, comparison, and
load/store operations on vector registers which consist of more than
one element; see Chapter 4, Instruction Descriptions. If an

arithmetic exception condition 4is encountered during a vector
operation, it is not reported until the entire vector has been
processed. Memory management and alignment exceptions, however, must
be reported before the vector operation completes and sufficient state
must be saved so the appropriate vector load/store operation can be
restarted by software after the exception condition has been
corrected.

Several vector and/or scalar operations may be in progress
simultaneously, and therefore it is possible to incur more than one
memory management, alignment, and/or arithmetic exception condition
concurrently.

A vector restart frame is pushed on the Kernel stack for each vector
related memory management or alignment exception condition. If an
arithmetic exception condition is concurrently present, then exception
information for the arithmetic exception is pushed after having pushed
the requisite number of vector restart frames.

The following information is pushed on the Kernel stack for each
vector restart frame:

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-28

EXCEPTIONS 26 April 1988
3

1 32 0

el ettt $omm—- +

I | [

| Zero |ETYPE| :SP

| | |

o e $-———- +

o e e e +
I Related I
] Virtual Address in |
I Page |
e e +
I Vector [
| |
I Instruction |
e e e e e e +
| |
! R4 |
| I
e e e e e +
| l
I R5 I
I |
R et e et ettt TP E +

| Processor Status (PS) |

e e e +
| virtual |
| Address of Next |
| Instruction |
e bttt L T TPy +

Figure 6-14: Vector Restart Frame

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-28

EXCEPTIONS 26 April 1988
Bits Description
2:0 Exception Type (ETYPE) - The type of exception described by

this vector restart frame. Exception types are:

- Access Violation

- Fault On Read

- Fault On Write
Translation Not Valid
- Vector Alignment

- Instruction Pending

nbdbWNhRLO
[}

Instruction pending refers to any vector operations that were
issued and either not actually started or suspended before
completion in a manner that allows them to be restarted from
the beginning.

The information pushed on the Kernel stack for an arithmetic exception
is described in Section 6.4.1.

If more than one exception frame is pushed on the Kernel stack (i.e.
more than one vector restart frame or a vector restart frame and an
arithmetic frame), then the current PC followed by the current PS 1is
pushed for each frame. The first exception frame is pushed with the
Vector Restart Frame (VRF) bit clear in the saved PS. Subsequent
exception frames are pushed with Vector Restart Frame (VRF) set in the
saved PS.

If an arithmetic exception frame has been pushed on the Kernel stack,
then an arithmetic trap is initiated. If no arithmetic exception
frame has been pushed on the Kernel stack, then a vector memory access
trap is initiated. Both these exceptions are generated in Kernel
Mcde.

It is the responsibility of operating system software to process
vector memory access traps and complete the corresponding vector
load/store instruction as necessary. It is envisioned that operating
system software will copy the exception information from the Kernel
stack to the previous mode stack (if the previous mode was Kernel,
then no copy need take place) and then reflect the exception to a
handler in the previous mode. The handler can examine the Exception
Type (ETYPE) and take whatever action is appropriate. For example, a
Translation Not Valid exception could be handled by first executing a
scalar load/store instruction that referenced the related virtual
address and then either re-executing the offending instruction (must
put all scalar - operands back in the original registers) or suitably
building or dispatching to a vector instruction that will accomplish
the desired load or store operation.

\A vector load or store instruction can require up to 131 pages of
memory to be resident in order to complete the instruction. One page
is required to hold the instruction, and up to 64 pages may be
required to hold the vector data. This in turn can require up to 66
page table pages (one segment 1 page table page, 64 segment 2 page
table pages for the vector data, and one segment 2 page table page for
the instruction). Therefore, operating system software must guarantee
a minimum available working set size of 131 pages for programs that
use vector instructions.\

After having processed a vector memory access trap, software should

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-30
EXCEPTIONS 26 April 1988

remove the exception parameters from the stack and execute an REI
instruction. If the REI encounters a PS with Vector Restart Frame
(VRF) set, then a vector restart fault is initiated: see Section
6.4.7.1. Note that attempting to continue after an arithmetic trap in
which the PS has VRF set will also initiate a vector restart fault.

6.4.7.1 Vector Restart Fault

Execution of an REI instruction with Vector Restart Frame (VRF) set in
the PS specified by the current stack pointer, causes a vector restart
fault to be initiated. The exception is initiated by popping the
saved PS and PC from the Current Mode stack, restoring the saved PS
and loading the PC with the contents of the vector restart fault
vector in the SCB. This is possible since the vector restart frames
were originally pushed on the Kernel stack with an identical PC and a
PS differing only in whether the Vector Restart Frame (VRF) bit was
set or clear.

6.5 SERIALIZATION OF EXCEPTIONS AND INTERRUPTS

It is a goal of the architecture to allow and promote parallel
instruction execution. This means that at any point in time there may
be several instructions in wvarious stages of execution. When an
exception or interrupt condition is detected, all active instructions
must be completed before the exception or interrupt can actually be
initiated.

In order to accomplish this, instruction issuing is stopped until all
instructions in progress have completed. At this point it is possible
for multiple exception and interrupt events to be present in which
case arithmetic traps take precedence over vector access traps, which
take precedence over all other faults, which take precedence over
interrupts.

Thus the priority of initiation is:
1. Arithmetic traps
2. Vector access traps
3. All other exce?fions (faults)
4. Highest priority interrupt

If an arithmetic trap and a fault condition are both present, any
machine state that may have been altered by the fault condition must
be sufficiently restored before the arithmetic trap is initiated.
Generally, no state may have been altered, but some implementations
may need to ensure that subsequent scalar register writes after a
memory management fault are backed up or not allowed to occur.

If an exception and an interrupt condition are both present, the
exception is initiated. The interrupt will be initiated when
conditions permit. This may be on the first instruction of the
exception service routine if the exception did not raise IPL (e.g.,
Machine Check) .

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-31
SERIALIZATION OF EXCEPTIONS AND INTERRUPTS 26 April 1988

In cases where multiple exceptions are possible in a single
instruction (e.g., Data Alignment and Translation Not Valid), the
order in which the exceptions are detected is UNPREDICTABLE.

6.6 SYSTEM CONTROL BLOCK (SCB)

The System Control Block (SCB) 1is a quadword aligned region of
physically contiguous memory containing vectors by which exceptions
and interrupts are dispatched to the appropriate service routines.
The address of the SCB is held in an internal processor register and
may be loaded by executing a Move To Processor Register instruction
specifying the System Control Block Base (MTPR SCBB); See Chapter 8,
Internal Processor Registers, Section 8.1.

A vector is a quadword in the SCB that is examined by Epicode when an
excepticon or interrupt is initiated.” A unique vector is defined for
each interrupt and exception.

3

1 210
et e e e E L P P PP e +---+
Virtual	S
Address of	B
Service Routine	2
o e e e e ——————— +---+	
:	
Service Routine Parameter	
R ettt bt +

Figﬁre 6-15: System Control Block Vector

If Epicode reads a service routine address for which bits <1:0> are
not zero, the resultant operation is UNDEFINED.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-32
SYSTEM CONTROL BLOCK (SCB) 26 April 1988

Table 6-1: System Control Block Vector Assignments

D - — - - T G - ———— - — T = G W e D S W = v s e e o

Vector Name Type Longwords Notes

(hex) Stacked

00 Unused Reserved to DIGITAL.
08 Machine Check Abort * Implementation

specific numpber of
longwords pushed on

stack.

10 Fault On Bit Fault 6 Faulting instruction
pushed on stack.

18 Vector Enable Fault 6

20 Scalar Alignment Fault 6 Faulting instruction
and virtual address of
reference pushed on
stack.

28 Access Violation Fault 6 Virtual address and
type of reference
pushed on stack.

30 Translation Not Valid Fault 6 Virtual address and
type of reference
pushed on stack.

38 Fault On Read Fault 6 Virtual address and
type of reference
pushed on stack.

40 Fault On Write Fault 6 Virtual address and
type of reference
pushed on stack.

48 Fault On Execute Fault) Virtual address and
type of reference
pushed on stack.

50 Arithmetic Trap Trap' 8 Exception summary and
vector and scalar
register write masks
pushed on stack.

58 Vector Access Trap 12 Vector Load/store

information is pushed
on stack.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-33
SYSTEM CONTROL BLOCK (SCB) 26 April 1988

Table 6-1: System Control Block Vector Assignments (Continued)

— - - - - = - - S V= W s Ve = - S e e e e G e S W T S G e M G e S G S S S o e e e s w m w w ew =

Vector Name Type Longwords Notes

(hex) Stacked

60 Vector Restart Fault 12 Vector restart frame
previously pushed on
stack.

68 Software Level 1 Int 4 IPL is raised to 1.

70 Software Level 2 Int 4 IPL is raised to 2.

78 Software Level 3 Int 4 IPL is raised to 3.

80 AST Interrupt Int 4 IPL is raised to 1.

88 Privileged Instruction Fault 6 Faulting instruction
pushed on stack.

90 Illegal Operand Fault 6 Faulting instruction
pushed on stack.

98 Unused Reserved to DIGITAL.

100-D8 Bus/Memory Errors Int * Reserved to DIGITAL.
Implementation

specific number of
longwords pushed on

stack.
EQ Breakpoint Fault 4
E8 Unused Reserved to DIGITAL.
FO Reserved Opcode Fault 6 Faulting instruction

pushed on stack.

F8 Power Recovery Int 4 IPL is raised to 7.
100 Interprocessor Int Int 4 IPL is raised to 6.
108-178 Unused Reserved to DIGITAL.
180 Interval‘Clock Int 4 IPL is raised to 6.
188-1E8 Unused Reserved to DIGITAL.
1F0 Console Receive Int 4 IPL is raised to 4.
1F8 Console Transmit Int 4 IPL is raised to 4.
200-7F8 Unused Reserved to DIGITAL.
800-FF8 1/0 Devices Int 4 I/0 Device specific

interrupt vectors.
IPL raised to 4 or 5.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-34
STACKS 26 April 1988

6.7 STACKS

At any point in time, the processor is in one of two modes (Kernel or
User) . There is a stack pointer associated with each mode. When the
processor changes from one of these modes to another, SP (Rl) is saved
in an Epicode-dependent location for the old state (Epicode may save
privileged context in internal registers or in the process privileged
context area; see Chapter 7, Process Structure, Section 7.2), and the
new SP is loaded from an Epicode-dependent location.

The Current Mode (CM) field of PS specifies which of the two
architecturally defined stack pointers 1is currently in use, as
follows:

Mode Stack
0 Kernel (KSP)
1 User (USP)

6.7.1 Stack Writability

In response to various exceptions and interrupts, Epicode pushes
information on the Kernel stack. Epicode may write this information
without first probing to ensure that all such writes to the Kernel
stack will succeed. If a memory management exception occurs while
pushing information, a Kernel Stack Not Valid abort occurs.

6.7.2 Stack Residency

The User stack does not need to be resident. Software running in
Kernel Mode can bring in or allocate stack pages as Translation Not
Valid faults occur. However, since this activity 1is taklng place in
Kernel Mode, the Kernel stack must be resident.

Translation Not Valid, Access Violation, Fault On Read, and Fault On
Write faults occurring on Kernel Mode references to the Kernel stack
are considered serious system failures from which recovery is not
possible. If any of these faults occur, the processor enters the
restart sequence; see Chapter 11, System Bootstrapping and Console.

It is not necessary for the Kernel stack to be resident for processes
other than the current one, but it must be resident before the process
is selected to run by operating system software.

6.7.3 Stack Alignment

All stacks must be quadword aligned. It is the responsibility of
software to ensure that stacks are quadword aligned.

Epicode pushes parameters on the Kernel stack in response to
exceptions and interrupts. All information pushed is a multiple of
quadwords. Thus, if the initial value of a stack pointer is quadword
aligned and all adjustments to the respective stack pointer leave it
quadword aligned, the stack will remain quadword aligned.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-35
STACKS 26 April 1988

6.7.4 Initiate Exception Or Interrupt

Exceptions and interrupts are initiated by Epicode with interrupts
disabled. When an exception or interrupt is initiated, the associated
SCB vector is read to determine the address of the service routine.
Epicode then attempts to push the PC followed by the PS, R5, and R4
and in the case of exceptions, other parameters if required, on the
Kernel stack. During the attempt to push this information, several
exceptions can occur. These are:

o Stack Alignment

o Translation Not Valid

o Access Violation

o Fault On Write
If any of the above exceptions occur, a Kernel Stack Not Valid abort
is initiated and the processor enters the restart sequence; see
Chapter 11, System Bootstrapping and Console.
After the parameters are pushed on the Kernel stack, the contents of
the first longword in the SCB vector location are copied into R4 and
the PC, the contents of the second longword in the SCB vector location

are copied into R5, and instruction execution is initiated in Kernel
Mode.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-36
STACKS 26 April 1988

Instruction Issue Model
check_for_ exception_or_ interrupt:

IF NOT {exception or interrupt pending} THEN
BEGIN
{fetch next instruction}
{decode and execute instruction}
END
ELSE
BEGIN
{wait for instructions in progress to complete}
IPR_SP[PS<CM>] <- SP
new_sp <- KSP
IF new_sp<2:0> NE 0 THEN
{initiate Kernel stack not valid halt}
IF {exception pending} THEN
BEGIN
{back up implementation specific state if necessary}
IF {vector exception} AND {NOT {machine check}} THEN

BEGIN

new_ipl <- PS<IPL>

tmp <- PS

FOR i <- 1 TO {number of vector exceptions}
BEGIN

PUSH (PC, tmp)
PUSH(RS5, R4)
PUSH (instruction([i], related_address[i])
PUSH(stride[i] or scalar<63:32>,
initial_base[i] or scalar<31:0>)

PUSH(vector mask_hi[i], vector_mask lo[il])
PUSH (vector . length[z], exception_type[i])
tmp<VRE> <- 1
END

IF {arithmetic exception} THEN
BEGIN
PUSH (PC, tmp)
PUSH(R5, RA4)
PUSH(write mask R63 R32, write_mask R31_RO)
PUSH (write_Mask V15 VO, summary)
vector <- {arithmetic exception SCB offset)
END

ELSE
vector_offset <-{vector memory access exception SCB offset}

END

ELSE

BEGIN

IF {machine check} THEN
new_ipl <- 7

ELSE
new_ipl <- PS<IPL>

PUSH(PC, PS)

PUSH(RS, R4)

FOR i <- {number of parameters} / 2 TO 1 BY - 1
BEGIN
PUSH (parameter[{i * 2 } + 1], parameter([i * 2])
END

IF {{number of parameters} MOD 2} EQ 1 THEN
PUSH (parameter[1], 0)

vector offset <- {exception SCB offset}

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-37
STACKS 26 April 1988

END
END
ELSE
BEGIN
new_ipl <- {interrupt source IPL}
PUSH (PC, PS)
PUSH(R5, R4)
vector_offset <- {interrupt SCB offset}
END
PS<CM> <- 0
PS<IPL> <=- new_ipl
SP <~ new_sp
PC <- (SCBB + vector offset)
R5 <- (SCBB + vector offset + 4)
R4 <- EC -
END
GOTO check for_ exception_or_ interrupt

PROCEDURE PUSH(first, last)

BEGIN

IF ACCESS (new_sp - 8, 0) THEN
BEGIN
(new_sp - 4) <- first
(new_sp - 8) <- last
new_sp <- new_sp - 8
RETURN
END

ELSE
{initiate Kernel stack not wvalid halt}

END

6.7.5 Epicode Interrupt Arbitration

It is envisioned that most, if not all, implementations will provide
hardware to check for pending interrupts. This includes software and
AST interrupts as well as those caused by the console terminal,
Interval Clock, I/O Devices, interprocessor interrupts, and powerfail.

Certain implementations, however, may find it more cost effective to
implement parts of the interrupt arbitration in Epicode. The console
terminal, 1Interval Clock, 1I/O Device interrupts, interprocessor
interrupts, and. powerfail must be monitored by hardware, and when
proper enabling conditions are present, cause an interrupt to be
initiated. Software and AST interrupts, however, can be implemented
totally in Epicode.

The following sections describe the Epicode instructions that require
special checks to implement these capabilities. 1In all cases, the
interrupt is initiated before the execution of the next instruction.
In a system that implements interrupts totally in hardware, an
identical behavior must be provided.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-38
STACKS 26 April 1988

6.7.5.1 MTPR AST Request Register

Writing the ASTRR internal processor register (see Chapter 8, Internal
Processor Registers, Section 8.1) requests an AST for one of the two
processor modes. This may request an AST on a formerly inactive level
and thus cause an AST interrupt.

The logic required to check for this condition is:

ASTSR<mode> <- 1
IF ASTEN<O> AND ASTSR<0> AND (PS<IPL> EQ 0} THEN
{initiate AST interrupt at IPL 1}

6.7.5.2 MTPR Software Interrupt Request Register

Writing the SIRR internal processor register (see Chapter 8, Internal
Processor Registers, Section 8.1) requests a software interrupt at one
of the four software interrupt levels. This may cause a formerly
inactive level to cause a software interrupt.

The logic required to check for this condition is:

SISR<level> <- 1
IF level GT PS<IPL> THEN
{initiate software interrupt at IPL level}

€.7.5.3 Return From Exception Or Interrupt

The Return from Exception or Interrupt instruction (see Chapter ¢4,
Instruction Descriptions, Page 4-87) writes both the Current Mode and
IPL fields of the PS; see Section 6.2. This may enable a formerly
disabled AST or software interrupt to occur.

The logic required to check for this condition is:

PS<CM> <- (SP)<CM>
PS<IPL> <~ (SP)<IPL>
IF RIGHT_SHIFT(SISR, PS<IPL> + 1) NE 0 THEN
{initiate software interrupt at IPL of high bit set in SISR}
tmp <- NOT LEFT_SHIFT (10 (bin), PS<CM>)
IF {{tmp AND ASTEN AND ASTSR}<1:0> NE 0} AND {PS<IPL> EQ 0} THEN
{initiate AST interrupt at IPL 1}

6.7.5.4 Swap AST Enable

Swapping the AST enable state for the Current Mode results in writing
the ASTEN internal processor register (see Chapter 8, 1Internal
Processor Registers, Section 8.1). This may enable a formerly
disabled AST to cause an AST interrupt.

The logic required to check for this condition is:

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-39
STACKS 26 April 1988

tmp <- R4<0>

R4 <- ZEXT (ASTEN<PS<CM>>)

ASTEN<PS<CM>> <~ tmp

IF ASTEN<PS<CM>> AND ASTSR<PS<CM>> AND {PS<IPL> EQ 0}
{initiate AST interrupt at IPL 1}

6.7.5.5 Swap Interrupt Priority Level

Swapping the Interrupt Priority Level (IPL) writes the IPL field of
the Processor Status (PS); see Section 6.2. This may enable a
formerly disabled AST or software interrupt to occur. ‘

The logic required to check for this condition is:

tmp <- R4<2:0>
R4 <~ ZEXT (PS<IPL>)
PS<IPL> <- tmp
IF RIGHT_SHIFT (SISR, PS<IPL> + 1) NE 0 THEN
{initiate software interrupt at IPL of high bit set in SISR}
IF ASTEN<Q> AND ASTSR<0> AND (PS<IPL> EQ 0} THEN
{initiate AST interrupt at IPL 1}

6.7.6 Processor State Transition Table
Table 6-2: Processor State Transitions

Final State

Initial User Kernel Kernel Program
State IPL=0 IPL=0 IPL>0 Halt
fomm————- fommm———— fmmmm———— Fm—————— +
USER | | | Int | |
IPL=0 | |] Exc¢ | Exc | NP |
| | | SWASTEN | |
Fomm———— tmm————— tmmm———— Fom————— +
KERNEL | |] REI | |
IPL=0 | REI* | | SWIPL | HALT |
| | | Int | |
| I | Exc | I
I I | MTPR* | |
| | | SWASTEN | |
tomm——— tommm—— tom————— tomm————— +
KERNEL I | I l |
IPL>0 | REI* | REI* | | HALT |
| | SWIPL* | | I
fm—————- tm—————— tommm———— o ——— +
ol - An REI that increases mode or lowers IPL, or a SWIPL

that lowers IPL, or a MTPR ASTRR or MTPR ASTEN, can
cause an interrupt request at IPL 1.

Exc - State change caused by an exception.
Int - State change caused by an interrupt.

NP - State not possible.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-40
REVISION HISTORY 26 April 1988

Revision History:

Revision 3.0, 26 April 1988

1.
2.

10.

Push faulting instruction on stack for vector enable fault.

Allow vector restart frame to include any unexecuted vector
instruction.

Remove Stack Alignment abort.

Remove Bug Check fault.

Add retry bit and indirect bit to machine check frame.
Clarify forwarding of exceptional results.

All exceptions go to Kernel mode.

Revise SCB vector éssignments to make console and IP interrupt
vector offsets match VAX SCB offsets.

Make SCB vectors quadwords containing service routine address
and parameter.

Push R5 and R4 on kernel stack on exceptions and interrupts.
Copy SCB vector into R4. Copy service routine parameter into

Revision 2.0, 24 Jun 1986

1.

2.

10.

Minor edits and clarifications for revision 2.0,
Change references to I/0 Port Controllers to I/O Devices.

Change PS to contain one bit for mode and delete all
references to Supervisor and Executive modes.

Rename the Vector Exception Frame (VEF) bit in the PS to the
Vector Restart Frame (VRF) bit.

Change the interval clock interval from 10ms to 1lms and change
the interrupt priority from 5 to 6.

Clarify floating reserved operand exceptions and the use of
forwarded exceptional values.

Delete vector alignment abort exceptions, they are now covered
by new exceptions called Vector Restart and Vector Memory
Access.

Change Fault On Bit fault to Fault On Low Bit Clear Fault.

Change the privileged instruction fault frame to include the
privileged instruction.

Change memory management exceptions to apply only to scalar
load and store instructions. Vector memory management and
alignment exceptions are covered by Vector Memory Access and

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-41
REVISION HISTCRY 26 April 1988

Restart exceptions.

11. Delete all references to the Supervisor and Executive mode
stacks.

12. Delete the vector alignment SCB vector and replace with the
vector restart exception vector.

13. Change instruction issue model to conform to the new Vector
Restart and Vector Memory Access exceptions.

14. Change state transition table to include only Kernel and User
Modes. -

Revision 1.0, 22 December 1985

1. General rewrite of chapter to better organize information and
to reflect the change from a 64- to a 32-bit architecture.

2. Change the number of IPLs from 32 to §.

3. Removal of all types of traps except arithmetic traps. There
is now only one kind of trap.

4. Renamed PSQ to PS and PC.

5. Previous mode, interrupt stack, and interrupt disable were
removed from the PS to simplify the privileged architecture.

6. Added vector fault to the definition of PS for saved copies of

PS. This bit is similar in functionality to First Part Done
(FPD) on VAX,.

7. Added vector enable to the definition of PS. This bit enables
the use of vector instructions and enables optimization of the
saving and restoring of vector registers for processes that do
not use them without introducing security holes.

8. Added Vector Enable fault.

9. Changed PS to a longword and PC to a longword.

10. Added I/0 Port Controller interrupts as part of adding the I/O
architecture.

11. Removed much information that was duplicated in other places
and inserted a reference to the proper definition.

12. Revised arithmetic traps to reflect the agreed wupon handling
at the August 23 technical review.

13. Added Fault On Bit fault and dropped User Check trap.

14. Added Fault On Read, Fault On Write, and Fault On Execute
faults as part of the simplification of memory management.

15. Dropped the separate fault for emulated instructions and
combined with reserved opcode.

EXCEPTIONS AND INTERRUPTS RESTRICTED DISTRIBUTION Page 6-42
REVISION HISTORY 26 April 1988
16. Change Bug Check trap to fault.

17. Added vector exception information and an explanation of how
vector arithmetic and memory management faults are handled.

18. Grossly simplified serialization rules.

19. Added section on instruction issue and how it pertains to
exceptions and interrupts.

20. Added section on Epicode interrupt arbitration for
instructions that alter the state such that an AST or software
interrupt may be generated.

21. Updated state transition table to reflect simplified
privileged architecture.

Revision 0.0, July 5, 1985

l. First review distribution.

RESTRICTED DISTRIBUTION

CHAPTER 7

PROCESS STRUCTURE

7.1 PROCESS DEFINITION
A process is the basic entity that is scheduled for execution by the
processor. A process represents a single thread of execution and
consists of an address space and both hardware and software context.
The hardware context of a process is defined by:

o 64 scalar registers

o 16 vector registers

o Vector Length register (VL)

o Vector Count register (VC)

o Vector Mask register (VM)

o Processor Status (PS)

o Program Counter (PC)

o 2 stack pointers

o Asynchronous System Trap Enable register (ASTEN)

o Asynchronous System Trap Summary Registerk(ASTSR)

o Process Page Table Base Register (PTBR)

o Address Space Number (ASN)

o Cycle Count Register (CCR)

The software context of a process is defined by operating system
software and is system dependent.

A process may share the same address space with other processes or
have an address space of its own. There is, however, no separate
address space for system software, and therefore, the operating system
must be mapped into the address space of each process at identical
virtual addresses; see Chapter 5, Memory Management.

In order for a process to execute, its hardware context must be loaded
into the scalar registers, vector registers, and internal processor

PROCESS STRUCTURE RESTRICTED DISTRIBUTION Page 7-2
PROCESS DEFINITION 26 April 1988

registers. While a process is executing, 1its hardware context 1is
continuously wupdated. When a process 1is not being executed, its
hardware context is stored in memory.

Saving the hardware context of the current process in memory, followed
by loading the hardware context for a new process, is termed context
switching. Context switching occurs as one process after another is
scheduled by the operating system for execution.

7.2 HARDWARE PRIVILEGED PROCESS CONTEXT

The hardware context of a process is defined by a privileged part
which is context switched with the Swap Privileged Context instruction
(SWPCTX) (see Chapter 4, Instruction Descriptions, Page 4-98) and a
nonprivileged part which is context switched by operating system
software.

When a process is not executing, its privileged context is stored in a
quadword aligned memory structure called the Hardware Privileged
Context Block (HWPCB).

3 11
1 6 5 4 3210
e R L L L L P e EE L L LT tom—to——t
[. |
| Kernel Stack Pointer (KSP) | :HWPCB
| |
et i R L T e e R e
| |
| User Stack Pointer (USP) | +4
| !
R L e ittt e T
| . | | | |
| Address Space Number (ASN) | SB2 |AST|AST| +8
! | | EN| SR]
e e e e e L D L L DL DR $m=mt-——t
| |
| Page Table Base Register (PTBR) | +12
! |
e e e +
| _ !
! Cycle Count Register <31:0> |
l !
et et i +
1 , l
| Cycle Count Register <63:32> |
| f
e D ettt ettt ittt T T +

Figure 7-1: Hardware Privileged Context Block

The Hardware Privileged Context Block (HWPCB) for the current process
is specified by the Privileged Context Block Base register (PCBB); see
Chapter 8, Internal Processor Registers, Page 8-15.

If ASNs are not implemented, the ASN field of the HWPCB Should Be Zero
(SBZ) . »

PROCESS STRUCTURE RESTRICTED DISTRIBUTION Page 7-3
HARDWARE PRIVILEGED PROCESS CONTEXT 26 April 1988

The Swap Privileged Context instruction (SWPCTX) saves the privileged
context of the current process into the HWPCB specified by PCBB, loads
a new value into PCBB, and then loads the privileged context of the
new process into the appropriate hardware registers.

The new value loaded into PCBB, as well as the contents of the
Privileged Context Block, must satisfy certain constraints or an
UNDEFINED operation results:

1. The physical address 1loaded into PCBB must be quadword
aligned, and describe six contiguous longwords that are
neither in I/O space nor in non-existent memory.

2. The value of PTBR must be the Page Frame Number of an
existent page that is neither in 1I/0 space nor in
non-existent memory.

It is the responsibility of the operating system to save and load the
nonprivileged part of the hardware context.

The SWPCTX instruction returns ownership of the current HWPCB to
operating system software and passes ownership of the new EWPCB from
the operating system to the processor. Any attempt to read or write a
HWPCB while ownership resides with the processor has UNPREDICTABLE
results.

7.3 ASYNCHRONOUS SYSTEM TRAPS (AST)

Asynchronous System Traps (ASTs) are a means of notifying a process of
events that are not synchronized with its execution, but which must be
dealt with in the context of the process with minimum delay.

Asynchronous System Traps (ASTs) interrupt process execution and are
controlled by the AST Enable (ASTEN) and AST Summary (ASTSR) internal
processor registers; see Chapter 8, Internal Processor Registers,
Pages 8-4 and 8-6.)

The AST Enable register (ASTEN) contains an enable bit for each of the
two processor modes. When the bit corresponding to a processor mode
is set, ASTs for that mode are enabled. The AST enable bit for a
processor mode may be changed by executing a Swap AST Enable
instruction (SWASTEN); see Chapter 4, Instruction Descriptions, Page
4-89.

The AST Summary Register (ASTSR) contains a pending bit for each of
the two processor modes. When the bit corresponding to a processor
mode is set, an AST is pending for that mode. The AST pending bit for
a processor mode may be set by requesting an AST for the respective
mode.

Kernel mode software may request an AST for a particular processor
mode by executing a Move To Processor Register instruction specifying
ASTRR (MTPR ASTRR); see Chapter 8, Internal Processor Registers, Page
8-5. R

Hardware or Epicode monitors the state of ASTEN, ASTSR, PS<CM>, and
PS<IPL>. If PS<IPL> is zero, and there is an AST pending and enabled

PROCESS STRUCTURE RESTRICTED DISTRIBUTION Page 7-4
ASYNCHRONOUS SYSTEM TRAPS (AST) 26 April 1988

for a processor mode that is less than or equal to PS<CM> (i.e. an
equal or more privileged processor mode), an AST interrupt is
initiated at IPL 1. ASTs that are pending and enabled for a less
privileged processor mode are not allowed to interrupt execution in a
more privileged processor mode.

7.3.1 A Software Model For AST Processing

It is intended that ASTs represent a single level of interrupt for
each of the two processor modes. Therefore, operating system software
should not allow nested ASTsS to occur within a single mode. One way
to accomplish this is for operating system software to keep track of
the processor modes for which an AST is currently in progress and not
request further ASTs for these processor modes until processing of the
respective ASTs has been completed. '

In the following discussion it is assumed that the operating system
maintains a per process mask that contains one bit for each of the
processor modes for which an AST is currently active. When an AST is
delivered to a particular processor mode, the corresponding bit in the
active mask is set. Later, when AST processing is completed, the
operating system clears the respective bit and checks if any ASTs have
been queued at the particular level but not requested.

The operating system must also keep track of the processor mode which
is to receive an AST when the event associated with the AST is
completed. Typically, such an event is the completion of an
asynchronous 1I/0 request or the expiration of a timer. The simplest
way to do this is to construct an AST control block when the original
request is received and record. in the control block the processor mode
and address of the AST routine that is to be executed.

A simple model for uniprocessor AST delivery:

1. The completion of an event for which an AST has been
requested causes operating system software to place an AST
control block in a queue associated with the target process.
The AST queue 1is ordered by processor mode with more
privileged entries at the front of the queue.

2. 1If the target process is currently executing and an AST is
not currently in progress for the specified processor mode,
an AST is requested for the corresponding processor mode by
executing a MTPR ASTRR instruction. If the target process is
not currently executing and an AST is not currently in
progress for the specified processor mode, an AST is
requested by setting the bit corresponding to the specified
processor mode in the saved ASTSR of the target process.

3. Hardware or Epicode monitors the state of ASTEN, ASTSR,
PS<CM>, and PS<IPL>. 1If PS<IPL> is zero and there is an AST
pending and enabled for an processor mode that is 1less than
or equal to PS<CM> (i.e. an equal or more privileged
processor mode), an AST interrupt is initiated at IPL 1.

4. The AST delivery interrupt service routine is entered at IPL
1 in Kernel mode and attempts to remove an AST control block
from the process AST queue. The AST queue must be scanned

PROCESS STRUCTURE RESTRICTED DISTRIBUTION Page 7-5
ASYNCHRONOUS SYSTEM TRAPS (AST) 26 April 1988

from the front, looking for an entry that specifies a
processor mode that is less than or equal to the current mode
of the saved PS (a processor mode that is equal to or more
privileged than the previous processor mode) and for which
ASTs are enabled and not active (i.e. there is not already
an AST in progress for the mode). If an appropriate entry is
located, then it is removed from the gqueue and the bit
corresponding to the destination processor mode is set in the
active mask. An appropriate PS and PC are constructed on the
Kernel stack and an REI is executed which begins execution of
the AST routine. If an appropriate AST control block cannot

be located, the AST interrupt is simply dismissed. (It 1is
possible for this condition to arise in the special case
where an AST interrupt is initiated, clearing the

corresponding pending bit in ASTSR, and before operating
system software sets the appropriate bit in the active mask,
another AST for the same processor mode is requested.)

5. At the conclusion of processing an AST, the AST routine calls
the operating system to exit from the AST. The operating
system clears the appropriate bit in the active mask and
checks to see if another AST has been queued for the
specified processor mode. If another AST has been queued, an
AST is requested by executing an MTPR ASTRR specifying the
appropriate processor mode.

7.4 PROCESS CONTEXT SWITCHING

Process context switching occurs as one process after another is
scheduled for execution by operating system software. Context
switching requires the hardware context of one process to be saved in
memory followed by the loading of the hardware context for another
process into the hardware registers.

The privileged hardware context is swapped with the Swap Privileged
Context instruction (SWPCTX). Other hardware context must be saved
and restored by operating system software.

The sequence in which process context is changed 1is important since
the SWPCTX instruction changes the environment in which the context
switching software itself is executing. Also, although not enforced
by hardware, it is advisable to execute the actual context switching
software in an environment which cannot be context switched (i.e. at
an IPL high enough that rescheduling cannot occur).

The SWPCTX instruction is the only method provided for loading certain
internal processor registers. The SWPCTX instruction always saves the
privileged context of the old process and loads the privileged context
of a new process. Therefore, a valid HWPCB must be available to save
the privileged context of the old process as well as load the
privileged context of the new process.

At system initialization, a valid HWPCB is constructed in the Restart
Parameter Block (RPB) for each processor; see Chapter 11, System
Bootstrapping and Console, Section 11.1.1.2. Thereafter, it is the
responsibility of operating system software to ensure a valid HWPCB
when executing a SWPCTX instruction.

PROCESS STRUCTURE RESTRICTED DISTRIBUTION Page 7-6
PROCESS CONTEXT SWITCHING 26 April 1988

7.4.1 A Software Model For Process Context Switching

The following context switching code represents a model by which

operating system software can switch context from one process to
another.

Certain assumptions are made regarding the entry and exit conditions
cof this code. At entry it is assumed that the code is executing in
Kernel mode at IPL 2 and that the continuation PC and PS have already
been saved on the Kernel stack. At exit, the execution of the new
process is to be continued by an REI instruction.

swap_process_context:

sub ¥4*4,sp, sp ; allocate room to save registers

stg r4,8 (sp) ; save scalar registers R4 and RS

stgq r2, (sp) ; save scalar registers R2 and R3

mfpr prbr ; read processor base register into R4,

1d1 prb$l_swpcb(r4),r2 ; get address of current software PCB

stq r6,swpcb$l_r6 (r2) ; save scalar registers R6 and R7

stq r8, swpcb$l r8(r2) ; save scalar registers R8 and R9

stq rl0,swpcb$1l rl0(r2) ; save scalar registers R10 and R11

stq r58,swpcb$l_r58 (r2) ; save scalar registers R58 and R59

stq r60,swpcb$l_r60(r2) ; save scalar registers R60 and R61

stg r62,swpcb$l r62(r2) ; save scalar registers R62 and R63

1d1 16 (sp),r4 ; get saved PS

srl #ps$v ven,r4,r3 ; shift PS<VEN> to low bit

blbc r3,103 ;7 if low bit clear, not using vectors

rdvc r4 ; read vector count register

rdvl r5 ; read vector length register

stqg rd,swpcb$l vc(r2) ;7 save vector count and length registers

rdvml r4 ; read low half of vector mask register

rdvmh r5 ; read high half of vector mask register

stg r4,swpcb$l _vml(r2) ; save vector mask register

add #64,r0,r4 ; set vector length to 64 elements

wrvl r4 ;

lda swpcb$q _v0(r2),r2 ;i get base address of vector save area

vstg #8,r2,v0 ; save vector register V0

lda 64*8 (r2) ,r2 ; get address of next vector save area

vstqg #8,r2,v1 ; save vector register V1

lda 64*8 (r2),r2 ;7 get address of next vector save area
4

vstqg #8,r2,v2 save vector register V2

lda 64*8 (r2),r2 ; get address of next vector save area
vstg #8,r2,v13 ; save vector register V13
lda 64*%8 (r2) ,r2 ; get address of next vector save area
vstqg #8,r2,v14 ; save vector register V14
lda 64*8 (x2),r2 ; get address of next vector save area
vstg #8,r2,v15 ; save vector register V15

’

Execute operating system dependent code to select new process.

Exit with:

PROCESS STRUCTURE
PROCESS CONTEXT SWITCHING

~e

we N N N N

RESTRICTED DISTRIBUTION Page 7-7

26 April 1988

R2 - address of new process software PCB.

mfpr prbr ; read processor base register

stl r2,prb$l _swpcb(r4) ; set address of new software PCB

ldg swpcb$q _hwpcb (r2) ,r4 ; get physical address of hardware PCB
swpctx ; swap privileged context

l6(sp),r4d

The privileged context has been swapped at this point and thus
a new address space is in effect as is a new Kernel stack pointer
and saved PC and PS.

141 ; get saved PS

srl #ps$v ven,r4,r3 ; shift PS<VEN> to low bit

blbc r3,20% ; if low bit clear, not using vectors
or #1,x0,r4

mtpr ven ; enable vector instructions)
add $64,r0,r4 ; set vector length to 64 elements
wrvl r4 ;

lda swpcb$q v0(xr2),r3 ; get base address of vector save area
vldg #8,r3,v0 ; load wvector register VO

lda 64*8(r3),r3 ; get address of next vector save area
vldg #8,r3,v1 ; load vector register V1

lda 64*8 (r3),r3 ; get address of next vector save area
vldg #8,r3,v2 ; load vector register V2

lda 64*8 (r3),r3 ; get address of next vector save area
vldg #8,r3,v13 ; load vector register V13

lda 64*8 (r3),r3 ; get address of next vector save area
vldg #8,r3,v14 ; load vector register V14

lda 64*8 (r3),r3 ; get address of next vector save area
vldg #8,r3,v15 ; load vector register V15

ldg swpcb$l vc(r2),r4 ; get saved vector count and length
wrve r4 ; write vector count register

wrvl r5 ; write vector length register

ldg swpcb$l wvml(r2),r4 ; get saved vector mask

wrvml r4 ; write low half of vector mask register
wrvmh r5 ; write high half of vector mask register
1dg - swpcb$l r6(r2),r6 ; load scalar registers R6 and R7

ldg swpcb$l r8(r2),r8 ; load scalar registers R8 and RS9

ldg swpcb$l rl0(r2),rl0 ; load scalar registers R10 and Rll
1dg swpcb$l r58(r2),r58 ; load scalar registers R58 and R59
ldg swpcb$l r60(r2),r60 ; load scalar registers R60 and R61
ldg swpcb$l r62(r2),r62 ; load scalar registers R62 and R63
l1dg (sp) ,x2 ; load scalar registers R2 and R3

ldg 8 (sp),r4 ; load scalar registers R4 and RS

add #4*4,sp, sp ; deallocate register save area

rei ; resume process execution

PROCESS STRUCTURE RESTRICTED DISTRIBUTION Page 7-8
REVISION HISTORY 26 April 1988
Revision History:

Revision 3.0, 26 April 1988

1. Add Cycle Count Register to HWPCB.

Revision 2.0, 24 Jun 1986

1. Change format of HWPCB to contain only the Kernel and User
stack pointers. Reduce the size of the ASTEN and ASTSR fields
in the HWPCB from four to two bits.

2. Remove all references to four access modes and replace with
references to two access modes.

3. Change context switch code to explicitly set the vector length
register to 64 elements.

Revision 1.0, 22 December 1985

1. Chapter rewritten to reflect simplified privileged
architecture.

2. Removed all explicit assumptions about how operating system
software uses the hardware process structure.

3. Removed references to PSW, ASTLVL, and the interrupt stack.

4. Added new definition of hardware context and defined the
Hardware Privileged Context Block (HWPCB).

5. Revised the AST section and added a software model of AST
processing.

6. Deleted the section on Process Structure Interrupts.

7. Combined the sections on saving and 1loading process context
into a single section on swapping context.

Revision 0.0, July 5, 1985

l. First review distribution.

RESTRICTED DISTRIBUTION

CHAPTER 8

INTERNAL PROCESSOR REGISTERS

8.1 INTERNAL PROCESSOR REGISTERS

This chapter describes the PRISM Internal Processor Registers (IPRs).
These registers are read and written with Move From Processor Register
(MFPR) and Move To Processor Register (MTPR) instructions; see Chapter
4, Instruction Descriptions, Pages 4-95 and 4-96.

These instructions accept input operands from, and write results to,
the scalar registers R4, R5, and R6. Prior to execution of an
MTPR/MFPR, required input operands must be 1loaded into scalar
registers R4 and R5. 1In certain cases no input operands are required.
MFPR returns the IPR contents in one or more of the scalar registers
R4, R5, and R6.

Internal Processor Registers may or may not be implemented as actual
hardware registers. An implementation may choose any combination of
Epicode and hardware to produce the architecturally specified
functionality.

Internal Processor Registers are only accessible from Kernel mode.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-2
IPR Summary 26 April 1988

Table 8-1: Internal Processor Register (IPR) Summary

. e M R MR S R D e - S e Y e - - — W . D M SR D M W S S D MR A MR M . e e . — — E S e S w Gm e e

Register Name Mnemonic Access R4 RS R6
Address Space Number ASN R number
AST Enable ASTEN R/W nmask
AST Request Register ASTRR W mode
AST Summary Register ASTSR R mask
Console Receive Ctrl. Status CRCS R/W enable
Console Receive Data Buffer CRDB R char
Console Transmit Ctrl. Status CTCs R/W enable
Console Transmit Data Buffer CTDB W char
Interval Clock Int. Enable ICIE R/W enable
Interprocessor Int. Enable IPIE R/W enable
Interprocessor Int. Request IPIR W number
Machine Check Error Summary MCES R/W value
Privileged Context Block Base PCBB R address address
Processor Base Register PRBR R/W wvalue
Page Table Base Register PTBR R frame
System Control Block Base SCBB R/W address address
System Identification SID R ident value
Software Int. Request Register SIRR W level
Software Int. Summary Register SISR R mask
System Serial Number SSN R serial
Trans. Buffer Check TBCHK R number address status
Trans. Buffer Invalidate Single TBIS W number address
Time Of Year TOY R/W time
User Stack Pointer usp R/W address
Vector Enable VEN W value
Who-Am-I WHAMI R number
NOTE

\A common console architecture for wuniprocessor and
multiprocessor systems is currently being defined.
The Console registers are to subject to change.\

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-3
Address Space Number (ASN) 26 April 1988
Address Space Number (ASN)
Access:

Read
Operation:

R4 <- ZEXT (ASN<15:0>)

Value at System Initialization:

Zero -

Format:

3 11

1 6 5 0

e e e e et e e +

i | I

] RAZ | Address Space Number | :R4
| l [
e e L L L L L o e - +

Figure 8-1: Address Space Number Register (ASN)

Description:

Address Space Numbers (ASNs) are used to further qualify Translation
Buffer references; see Chapter 5, Memory Management. The current ASN
may be read by executing an MFPR instruction specifying ASN.

As processes are scheduled for execution, the ASN for the next process
to execute 1is loaded using the Swap Privileged Context (SWPCTX)
instruction; see Chapter 4, Instruction Descriptions, Page 4-98 and
Chapter 7, Process Structure.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-4
AST Enable (ASTEN) 26 April 1988

AST Enable (ASTEN)

Access:
Read/Write

Operation:
R4 <- ZEXT (ASTEN<1:0>) {Read
ASTEN<1:0> <- R4<1:0> IWrite

Value at System Initialization:

Zero

Format:

3

1 210
e et et L it +=+=+
| IUIK]|
| IGN/RAZ |E|JE| :R4
| IN|N]|
i i it ittt R ==+

Figure 8-2: AST Enable Register (ASTEN)

Description: '

The AST Enable register records the AST enable state for each
processor mode: Kernel (KEN) and User (UEN). The current AST enable
state may be read and written by executing MFPR and MTPR instructions
that specify ASTEN.

\ASTEN is not present in the VAX architecture. It was added to the
PRISM architecture to allow software (especially nonprivileged
software) to enable and disable ASTs efficiently for the current mode
via the SWASTEN instruction. It 4is anticipated that, with
multitasking, it will become extremely important to be able to enable
and disable ASTs in an efficient manner in shareable runtime support
routines.\

As processes are scheduled for execution, the state of AST Enable for
the next process to execute is loaded using the Swap Privileged
Context (SWPCTX) instruction. The Swap AST Enable (SWASTEN)
instruction can be wused to change the enable state for the current
processor mode; See Chapter 4, Instruction Descriptions, Pages 4-98
and 4-89, and Chapter 7, Process Structure.

INTERNAL PROCESSCR REGISTERS RESTRICTED DISTRIBUTION Page 8-5
AST Request Register (ASTRR) 26 April 1988
AST Request Register (ASTRR)
Access:

Write
Operation:

ASTRR <- R4<0>
value at System Initialization:

Not Applicable

Format:
3
1 10
e e e — s s ————— oo +~-+
| IM]
| IGN ' |O] :R4
| ID|
m e — e = +-
Figure 8-3: AST Request Register (ASTRR)
Description:

An AST may be requested for a particular processor mode by executing
an MTPR instruction that specifies ASTRR as its destination.
Processor mode encodings are those used in the Processor Status (PS);
see Chapter 6, Exceptions and Interrupts, Section 6.2.

An MTPR ASTRR sets the bit corresponding to the specified processor
mode in the AST Summary Register; see Page 8-6. If proper enabling
conditions are present, an AST interrupt is initiated prior to issuing
the next instruction; see Chapter 6, Exceptions and Interrupts,
Section 6.7.5. :

INZ.:..AL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page B8-6
AST Summary Register (ASTSR) 26 April 1988

AST Summary Register (ASTSR)
Access:

Read
Operation:

R4 <- ZEXT (ASTSR<1:0>)

Value at System Initialization:

Zero

Format:

3

1 210
it ettt +=4-+
| [UIK]|
| RAZ |P|P| :R4
I DD
e e et e L Pt +=t=

Figure 8-4: AST Summary Register (ASTSR)

Description:

The AST Summary Register records the AST pending state for each
processor mode: Kernel (KPD) and User (UPD). The current AST pending
state may be read by executing an MFPR instruction specifying ASTSR.

As processes are scheduled for execution, the pending AST state for
the next process to execute is loaded wusing the Swap Privileged
Context (SWPCTX) instruction; see Chapter 4, Instruction Descriptions,
Page 4-98 and Chapter 7, Process Structure.

MTPR ASTRR requests an AST at a particular processor mode and sets the
corresponding pending bit in ASTSR; see Page 8-5.

When the processor IPL is 0, and proper enabling conditions are
present, an AST interrupt is initiated at IPL 1 and the corresponding
processor mode bit in ASTSR is cleared; see Chapter 6, Exceptions and
Interrupts, Section 6.7.5.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-7
Console Receive Control Status (CRCS) 26 April 1988

Console Receive Control Status (CRCS)

Access:
Read/Write

Operation:
R4 <- CRCS ! Read
CRCS<0> <- R4<0> ! Write

Value at System Initialization:

Zero
Format:
33
10 10
e e —————— === - +-4+
IR| (.
1D} IGN/RAZ {I] :R4
Y [E|
o e - e — m e e ——— - — +-~+

Figure 8-5: Console Receive Control Status Register (CRCS)
Description:

The Console Receive Control Status register provides access to console
input status and controls whether interrupts are generated when
characters are received from the console terminal; see Chapter 11,
System Bootstrapping and Console, Section 11.2.

The Console Receive Control Status register may be read and written by
executing MFPR and MTPR instructions that specify CRCS. When CRCS is
written, 1 enables console receive interrupts and 0 disables
interrupts; see Chapter 6, Exceptions and Interrupts, Section 6.3.3.1.
Reading CRCS returns the current interrupt enable (IE) status and
whether a character is ready (RDY) to be read from the Console Receive
Data Buffer (CRDB), see Page 8-8.

Character ready (RDY) is set when a character is received from the

console. If interrupts are enabled (IE set) when RDY is set, a
console receive interrupt is latched and will be generated when
conditions permit. If RDY is cleared (e.g. during the receipt of

another character) before the interrupt is initiated, then it 1is
UNPREDICTABLE whether the interrupt will actually be taken. However,
if RDY is again set, another interrupt will Dbe latched. If IE 1is
cleared after an interrupt has been latched but before it has been
initiated, then the latched request is cleared and the interrupt will
not be taken. When the state of interrupt enable (IE) transitions
from disabled (0) to enabled (1) and a character is available (RDY 1is
set), it is UNPREDICTABLE whether a console receive interrupt is
generated.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-8
Console Receive Data Buffer (CRDB) 26 April 1988

Console Receive Data Buffer (CRDB)

Access:

Read
Operation:

R4 <- CRDB

Value at System Initialization:

Undefined

Format:

33

10 8 7 0
e D e R e e e e +

|E| I I

|IR] RAZ | Character | :R4
IR| I I

i e ettt L T Ty Rttt L PP +

Figure 8-6: Console Receive Data Buffer Register (CRDB)
Description:

The Console Receive Data Buffer register allows characters to be read
from the console by executing an MFPR instruction specifying CRDB; see
Chapter 11, System Bootstrapping and Console, Section 11.2.

CRDB may be read when a character is ready for input (CRCS<RDY> is
set); see Page 8-7. If CRDB is read when a character is not ready for
input (CRCS<RDY> is clear), the result is UNPREDICTABLE.

Reading CRDB returns an error indication (ERR) and an 8-bit ASCII
character. ERR 1is set if an error, such as data overrun or loss of
carrier, is detected while the character is being received.

Reading CRDB clears CRCS<RDY>.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-9
Console Transmit Control Status (CTCS) 26 April 1988

Console Transmit Control Status (CTCS)

Access:
Read/Write

Operation:
R4 <- CTCS ! Read
CTCS<0> <- R4<0> ! Write

Value at System Initialization:

10000000 (hex)

Format

33

10 10
bl D adnbt e it bt it RO +-+

ID] |1

|01 IGN/RAZ 1Il :R4
IN| |E|
Lt D i e R etttk +-+

Figure 8-7: Console Transmit Control Status Register (CTCS)

Description:

The Console Transmit Control Status register provides access to
console output status and controls whether interrupts are generated
when characters have been transmitted to the console; see Chapter 11,
System Bootstrapping and Console, Section 11.2.

The Console Transmit Control Status register may be read and written
by executing MFPR and MTPR instructions that specify CTCS. When CTCS
is written, 1 enables console transmit interrupts and 0 disables
interrupts; see Chapter 6, Exceptions and Interrupts, Section 6.3.3.2.
Reading CTCS returns the current interrupt enable (IE) status and
whether a character can be transmitted (DON) to the Console Transmit
Data Buffer (CTDB); see Page 8-10. Character done (DON) is cleared
when a character is written to CTDB and set when the character has
been transmitted to the console. If interrupts are enabled (IE set)
when DON 1is set, a console transmit interrupt is latched and will be

generated when conditions permit. 1If DCN is cleared (e.q. another
character is written to CTDB) before the interrupt is initiated, it is
UNPREDICTABLE whether the interrupt will actually be taken. However,

if DON is again set, another interrupt will be latched. If IE is
cleared after an interrupt has been latched but before it has been
initiated, then the latched request is cleared and the interrupt will
not be taken.

When the state of interrupt enable transitions from disabled (0) to
enabled (1) and a character has finished transmission (DON is set), it
is UNPREDICTABLE whether a console transmit interrupt is generated.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-10
Console Transmit Data Buffer (CTDB) 26 April 1988
Console Transmit Data Buffer (CTDB)
Access:

Write
Operation:

CTDB <~ R4<7:0>
Value at System Initia;ization:

Not Applicable

Format:
3
1 8 7 0 3
L fomm +
! | |
| IGN | Character | R4
I I I
D el e e L Lt Rt et +

Figure 8-8: Console Transmit Data Buffer Register (CTDB)
Description:

The Console Transmit Data Buffer register allows B-bit ASCII
characters to be written to the console by executing an MTPR
instruction specifying CTDB; see Chapter 11, System Bootstrapping and
Console, Section 11.2.

CTDB may be written when any previously written characters have been
transmitted (CTCS<DON> is set); see Page 8-9. If CTDB is written when
a character is currently being transmitted (CTCS<DON> is c¢lear), the
result is UNPREDICTABLE.

Writing CTDB clears CTCS<DON>.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-11
Interval Clock Interrupt Enable (ICIE) 26 April 1988

Interval Clock Interrupt Enable (ICIE)

Access:
Read/Write

Operation:
R4 <- ZEXT (ICIE<0>) ! Read
ICIE <- R4<0> ! Write

Value at System Initialization:

Zero
Format:
3 Ll
1 10
e bttt bttt b e e +-+
| .
] IGN/RAZ Il :R4
! IE|
fmmm e m e e eSS — oo oe oSS SS——————es +-+

Figure 8-9: Interval Clock Interrupt Enable Register (ICIE)
Description:

The Interval Clock provides the capability to regularly interrupt the
processor at 1 millisecond intervals. The interval clock has an
accuracy of .0025% or better (approximately 65 seconds per month) .
The Interval Clock Enable register controls whether clock interrupts
are enabled or disabled.

The Interval Clock Interrupt Enable register may be read and written
by executing MFPR and MTPR instructions that specify ICIE. When ICIE
is written, 1 enables clock interrupts and 0 disables interrupts.
After enabling Interval Clock interrupts, the first interrupt may
occur in less than 1 millisecond.

Interval Clock interrupts are initiated at IPL 6; see Chapter 6,
Exceptions and Interrupts, Section 6.3.5.1.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-12
Interprocessor Interrupt Enable (IPIE) 26 April 1988

Interprocessor Interrupt Enable (IPIE)

Access:
Read/Write
Operation:
R4 <- ZEXT(IPIE<0>) ! Read

IPIE <=~ R4<0> ! Write

Value at System Initialization:

Zero

Format:

3

1 10
i i D e e Lt TP +~-+

I I

] IGN/RAZ 1I] :R4
I |E|
e il L i T T +-+

Figure 8-10: Interprocessor Interrupt Enable Register (IPIE)

Description:

The PRISM architecture provides the capability for one processor to
interrupt another processor via an IPR; see Page 8-13. The
Interprocessor Interrupt Enable register controls whether

interprocessor interrupts are enabled or disabled.

The Interprocessor Interrupt Enable register may be read and written
by executing MFPR and MTPR instructions that specify IPIE. When IPIE
is written, 1 enables interprocessor interrupts and 0 disables
interrupts. :

An interprocessor interrupt is initiated when interprocessor
interrupts are enabled, an interprocessor interrupt request has been
received from another processor, and the current IPL is less than 6.

Interprocessor interrupts are initiated at IPL 6; see Chapter 6,
Exceptions and Interrupts, Section 6.3.5.2.1.

The value returned in bit <0>, when this register is read on a
uniprocessor, is UNPREDICTABLE.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-13
Interprocessor Interrupt Request (IPIR) 26 April 1988

Interprocessor Interrupt Request (IPIR)

Access:

Write
Operation:
‘ IPIR <- R4

value at System Initialization:

Not applicable

Format:
3
1 0
D +
| |
| Processor Number | :R4
| |
o e e e e e - — e e m———— oo +

Figure 8-11: Interprocessor Interrupt Request Register (IPIR)
Description:

An interprocessor interrupt can be requested on a specified processor
by executing an MTPR instruction specifying IPIR. The interrupt
request is recorded on the target processor and is initiated when
proper enabling conditions are present; see Page 8-12.

If the target processor is the same as the current processor, whether
or not an interprocessor interrupt is initiated is UNPREDICTABLE.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-14
Machine Check Error Summary Register (MCES) 26 April 1988

Machine Check Error Summary Register (MCES)

Access:
Read/Write

Operation:
R4 <- MCES ! Read
if {R4<0> EQ 1} then MCES<0> <- 0 ! Write

Value at System Initialization:

Zero

Format:

3

1l 10
bttt ettt e e L P T +-+

| M|

| Reserved ICl :R4
| 1P|

o e e e e e e m e —— e ———— +-+

Figure 8-12: Machine Check Error Summary Register (MCES)
Description:
Machine Check in Progress (MCP) is set by the hardware when a machine
check occurs. Writing a 1 to this bit clears it. The MCP bit is
cleared by the operating system machine check handler before it exits.
Reserved bits may be used to report implementation-specific errors.

This IPR is used to detect double machine checks.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-15
Privileged Context Block Base (PCBB) 26 April 1988
Privileged Context Block Base (PCBB)
Access:

Read
Operation:

QR4 <- ZEXT (PCBB)
Value at System Initialization:

See Chapter 11, System Bootstrapping and Consocle.

Format:
3 11
1 3 2 0
fom e e m———— e mm——ememm - fommmmmmmmmm e — e +
| _ |
| Physical Address<31:0> | R4
! I
e e L L L LD b DL b D et bl e D Bl Dbttty +
l | |
| RAZ | Physical Address<44:32>} :R5
| I |
fmmmm e ———m - o +

Figure 8-13: Privileged Context Block Base Register (PCBB)
Description:

The Privileged Context Block Base register contains the physical
address of the privileged context block for the current process. It
may be read by executing an MFPR instruction specifying PCBB.

PCBB is written by the Swap Privileged Context (SWPCTX) instruction;
see Chapter 4, Instruction Descriptions, Page 4-98 and Chapter 7,
Process Structure.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-16
Processor Base Register (PRER) 26 April 10988

Processor Base Register (PRBR)

Access:
Read/Write

Operation:
R4 <- PRBR ! Read
PRBR <- R4 ! Write

Value at System Initialization:

Undefined

Format:

3

1 0
mm e e +
I I
| Operating System Dependent Value | :R4
| I
Rt ettt et il et +

Figure 8-14: Processor Base Register (PRBR)

Description:

In a multiprocessor system, it is desirable for the operating system
to be able to locate a processor-specific data structure in a simple
and straightforward manner. The Processor Base Register provides a
longword of operating system-dependent state that can be read and
written via MFPR and MTPR instructions that specify PRER.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-17
pPage Table Base Register (PTBR) 26 April 1988

Page Table Base Register (PTBR)

Access:

Read
Operation:

R4 <- PTBR

value at System Initialization:

See Chapter 11, System Bootstrapping and Console

Format:
3 .
1 0
R it b et e E TP P +
| |
| Page Frame Number | :R4
| |
o e e +
Figure 8-15: Page Table Base Register (PTBR)
Description:

The Page Table Base Register contains the page frame number of the
first-level page table for the current process. It may be read by
executing an MFPR instruction specifying PTBR; see Chapter 5, Memory
Management.

As processes are scheduled for execution, the PTBR for the next
process to execute is loaded wusing the Swap Privileged Context
(SWPCTX) instruction; see Chapter 4, Instruction Descriptions, Page
4-98 and Chapter 7, Process Structure.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-18
System Control Block Base (SCBB) 26 April 1988

System Control Block Base (SCBB)

Access:
Read/Write

Operation:
QR4 <- ZEXT (SCBB) ! Read
SCBB <- QR4 ! Write

Value at System Initialization:

Undefined
Format:
3 11
1 32 0
D et Tt R et +
l |
| Physical Address<31:0> | :R4
I ' |
o e et i +
[l |
! IGN/RAZ | Physical Address<44:32>| :R5
I I |
o e e e e R +
Figure 8-16: System Control Block Base Register (SCBB)
Description:

The System Control Block Base register holds the physical address of
the System Control Block which is used to dispatch exceptions and
interrupts and may be read and written by executing MFPR and MTPR
instructions that specify SCBB; see Chapter 6, Exceptions and
Interrupts, Section 6.6.

When SCBB is written, the specified physical address must be the
quadword aligned address of a contiguous 8 Kbyte block which is
neither in I/O space nor non-existent memory. Otherwise, UNDEFINED
operation will result.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-19
system Identification (SID) 26 April 1988

system Identification (SID)
Access:
Read
Operation:
QR4 <- SID
vValue at System Initialization:

System Identification

Format: .

3 2 2 11

1 4 3 6 5 8 7 0
e fomm e e B L Lt Dl fomm - +

| I | l |

| Processor | Hardware | Epicode | System | R4
| Type | Revision | Revision | Type]
fmmmmmm— fmmmmmm— e fmmmmmm e e +

| I

| Implementation Dependent Data | :R5
| I
et +

Figure 8-17: System Identification Register (SID)

Description:

The System Identification register provides information about the
processor type, hardware and Epicode revision levels, system type, and
implementation dependent information.

The System Identification register may be read by executing an MFPR
instruction specifying SID.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-20
Software Interrupt Request Register (SIRR) 26 April 1988
Software Interrupt Request Register (SIRR)
Access:

Write
Operation:

SIRR <- R4<1:0>
Value at System Initialization:

Not applicable

Format:

3

1 210

P e +-==+

| | L |
| IGN | V | :R4
| | L |
e il D et T T ==t

Figure 8-18: Software Interrupt Request Register (SIRR)
Description:

A software interrupt may be requested for a particular Interrupt
Priority Level (IPL) by executing an MTPR instruction specifying SIRR.
Software interrupts may be requested at levels 0, 1, 2, and 3
(requests at level 0 are ignored).

An MTPR SIRR sets the bit corresponding to the specified interrupt
level in the Software Interrupt Summary Register; see Page 8-21. If
proper enabling conditions are present, a software interrupt 1is
initiated prior to issuing the next instruction; see Chapter 6,
Exceptions and Interrupts, Sections 6.3.2 and 6.7.5.

INTERNAIL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-21
Software Interrupt Summary Register (SISR) 26 April 1988
Software Interrupt Summary Register (SISR)
Access:

Read
Operation:

R4 <~ ZEXT(SISR<3:0>)

Value at System Initialization:

Zero

Format:

3

1 4 3210
e Tt Rt e btk d bbb +=+=t=t=-+

| ITIII|ITIIR]

| RAZ IRIRIR|A] :R4
| 13121112]
e e — o s —mo oo oo - - +-t=t=+-+

Figure 8-19: Software Interrupt Summary Register (SISR)

Description:

The Software Interrupt Summary Register records the interrupt pending
state for each of the interrupt levels 1, 2, and 3. The current
interrupt pending state may be read by executing an MFPR instruction
specifying SISR.

MTPR SIRR requests an interrupt at a particular interrupt level and
sets the corresponding pending bit in SISR; see Page 8-20.

When the processor IPL falls below the level of a pending request, an
interrupt is initiated and the corresponding bit in SISR is cleared;
see Chapter 6, Exceptions and Interrupts, Sections 6.3.2 and 6.7.5.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-22
System Serial Number (SSN) 26 April 1988
System Serial Number (SSN)
Access:
Read
Operation:
IF {implemented} THEN
R4 <- SSN
ELSE
R4 <- 0

Value at System Initialization:

System serial number or zero

Format:

3

1 0
e e — e +

| |

] Serial Number | :R4
| I
e +

Figure 8-20: System Serial Number Register (SSN)

Description:

The System Serial Number register provides access to the system serial
number by executing an MFPR instruction specifying SSN.

Implementation of serial numbers is optional. If implemented, the
serial number is returned. Otherwise, zero is returned (zero is an
invalid serial number).

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-23
Translation Buffer Check (TBCHK) 26 April 1988

Translation Buffer Check (TBCHK)

Access:

Read
Operation:

R6 <- 0

IF {implemented} THEN

R6<0> <- {entry in TB using R4<15:0>, RS5}
ELSE

R6<31> <- 1

Value at System Initialization:

Correct results are always returned

Format:

3 11

1 6 5 0
fommm e - trmm e e e - +

| l |

| IGN | Address Space Number | :R4
| | I
et it Tt bt D e e e L e L L e e +

| |

| Virtual Address | :R5
| I

o e e e — e — - - +

33

10 10

B e et T e it +-+

I P

M| RAZ IR| :R6
P S|

D bkttt e D et Rtttk e -+

Figure 8-21: Translation Buffer Check Register (TBCHK)
Description:

The Translation Buffer Check register provides the capability to
determine if a virtual address is present in the Translation Buffer by
executing an MFPR instruction specifying TBCHK; see Chapter 5, Memory
Management.

A virtual address and Address Space Number (ASN) are specified as
input (if ASNs are not implemented, ASN is ignored). The virtual
address can be any address within the desired page. The value read
contains an indication of whether the function is implemented and
whether the virtual address is present in the Translation Buffer.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-24
Translation Buffer Check (TBCHK) 26 April 1988

If the function is not implemented, a value is returned with bit <31>
set and bit <0> clear. Otherwise, a value is returned with bit <31>
clear and bit <0> indicates whether the virtual address is present (1)
or absent (0) in the Translation Buffer,

The TBCHK register can be used by system software for working set
management.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-25
Translation Buffer Invalidate Single (TBIS) 26 April 1988
Translation Buffer Invalidate Single (TBIS)
Access:

Write
Operation:

{Invalidate single TB entry using R4<15:0>, R5}
Value at System Initialization:

Not applicable

Format:
3 11
1 6 5 0
it T e it +
| | |
! IGN | Address Space Number | :R4
| I |
e it e o itk it i +
I ; |
| Virtual Address I :R5
I |
o e e - +

Figure 8-22: Translation Buffer 1Invalidate Single Register
(TBIS)

Description:

The Translation Buffer Invalidate Single register provides the
capability to invalidate a single entry in the Translation Buffer by
executing an MTPR instruction specifying TBIS; see Chapter 5, Memory
Management.

A virtual address and Address Space Number (ASN) are specified as
input (if ASNs are not implemented, ASN is ignored). The virtual
address can be any address within the desired page.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-26
Time Of Year (TCY) 26 April 1988

Time Of Year (TOY)

Access:
Read/Write

Operation:
R4 <- TOY ! Read
TOY <- R4 ! Write

Value at System Initialization:

Correct time or invalid time indication

Format:
3
1 0
bbbt +
| |
| Time of Year] :R4
| I
o e e —m——————e-——- +
Figure 8-23: Time of Year Register (TOY)
Degcription:

The Time Of Year register provides the capability to read and write
the current time from a battery backed-up source by executing MFPR and
MTPR instructions that specify TOY. Access to this register may be
very slow (e.g., many milliseconds).

The Time-of-Year clock consists of one longword register. The
register forms an unsigned 32-bit binary counter that is driven by a
precision clock source with at least .0025% accuracy (approximately 65
seconds per month). The least significant bit of the counter
represents a resolution of 10 milliseconds. Thus the counter cycles
to 0 after approximately 497 days.

The counter has an optional battery back-up power supply sufficient
for at least 100 hours of operation, and the clock does not gain or
lose any ticks during transition to or from standby power. The
battery is recharged automatically. If the battery has failed, so
that the time is not accurate, then the register is <c¢leared wupon
powerup. The register stays at 0 until the software writes a non-zero
value into it. It counts only when it contains a non-zero value.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-27
User Stack Pointer 26 April 1988

User Stack Pointer (USP)

Access:
Read/Write

Operation:
R4 <- USP ! Read
USP <- R4 ! Write

Value at System Initialization:

Undefined

Format:

3

1 0
et it e it +
| |
| Stack Address | R4
| |
e e e e e e — e +

Figure 8-24: User Stack Pointer (USP)

Description:

This register allows the stack pointer for User mode (USP) to be read
and written wvia MFPR and MTPR instructions that specify USP.

The current stack pointer may be read and written directly by
specifying scalar register SP (R1l).

No internal processor register is provided to read and write the
Kernel stack pointer. MxPR instructions can only be executed from
Kernel mode, and while in Kernel mode, the current (Kernel mode) stack
pointer can be directly read and written.

As processes are scheduled for execution, the two stack pointers forx
the next process to execute are loaded using the Swap Privileged
Context (SWPCTX) instruction; see Chapter 4, Instruction Descriptions,
Page 4-98 and Chapter 7, Process Structure.

- INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-28
Vector Enable Register (VEN) 26 April 1988
Vector Enable Register (VEN)

Access:
Write
Operation:
| PS<VEN> <- R4<0>
Value at System Initialization:

Not Applicable

Format:
3
1 10
to e e e e e e e e e +-+
| |
I IGN | | :R4
| I
Fo e e e e e e +=+
Figure 8-25: Vector Enable Register (VEN)
Description:

This register is used to set or clear the Vector Enable bit in the
Processor Status (PS<VEN>); see Chapter 6, Exceptions and Interrupts,
Section 6.2. The VEN register can be read with a MOVPS instruction.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-29
Who-Am-I (WHAMI) 26 April 1988

Who-Am-I (WHAMI)
Access:
Read
Operation:
R4 <- WHAMI
vValue at System Initialization:

Processor number

Format:
3
1 0
e e m e~ —— +
I I
] Processor Number | :R4
| I
et +
Figure 8-26: Who-Am-I Register (WHAMI)
Description:

The Who~-Am-I register provides the capability to read the current
processor number by executing an MFPR instruction specifying WHAMI.
The processor number returned is in the range 0 to the number of
processors in the configuration minus 1.

The current processor number is useful in a multiprocessing system to
index arrays that store per processor information. Such information
is operating system dependent.

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION Page 8-30
REVISION HISTORY

Revision History:

Revision 3.0, 26 April 1988

1.
2.

Make ASTEN read/write.

Add Machine Check in Progress register.
Delete CCYCR as an IPR.

Rename Processor ID to System ID.

Add Vector Enable IPR.

Change TOY clock to be a 32-bit binary counter with 10 ms
resolution.

Revision 2.0, 24 June 1986.

1.

6.

7.

Change number of stack pointers to 2 and delete ESP and SSP
internal processor registers.

Delete TBIASN internal processor register.
Add Cycle Count Register (CCYCR) internal processor register.

Change interval timer interval to 1lms and to interrupt at IPL
6.

Change ASTEN, ASTRR, and ASTSR to supply bits for Kernel and
User mode.

Clarify console receive and transmit interrupts.

Clarify range of process number returned by WHAMI.

Revision 1.0, 22 December 1985

1.

Removed the following Internal Process Registers:
. ISP - Interrupt Stack Pointer

KSP - Kernel Stack Pointer

PBR - Process Page Table Base Register

SBR - System Page Table Base Register

IPL Interrupt Priority Level

a U0 s W N

ASTLVL - AST Level
7. ASNSIZ - Address Space Number Size
8. PME - Performance Monitor Enable

9. PAGSIZ - Page Size

26 April 1988

INTERNAL PROCESSOR REGISTERS RESTRICTED DISTRIBUTION
REVISION HISTORY

2.

10. BOOTFLAGS - Bootstrap Flags

Added the following Internal Processor Registers:
1. CRCS - Console Receive Control Status

2. CRDB - Console Receive Data buffer

3. CTCS - Cconsole Transmit Control Status

4, CTDB - Console Transmit Data Buffer

5. PTBR - Page Table Base Register

6. PCBB - Privileged Context Block Base

7. ASTRR - AST Request Register

8. ASTSR - AST Summary Register

9. ASTEN - AST Enable Register

Page 8-31

26 April 1988

Changed the following Internal Processor Register names:

1. ICCS changed to ICIE
2. CPUSN changed to PRSN

3. CPUBR changed to PRBR

Changed parameter registers to R4, R5, R6.
Changes to reflect new 32 bit register sizes.
PTBR changed from address to page frame number.
Added system type to SID.

Eliminated zero default in ASN parameters.
Corrected accuracy of timer and clock.

Removed - duplicate material and added pointers
chapters.

Revision 0.0, July 5, 1985

1.

First review distribution.

to

other

RESTRICTED DISTRIBUTION

CHAPTER 9

SYSTEM ARCHITECTURE AND PROGRAMMING IMPLICATIONS

9.1 INTRODUCTION

Portions of the PRISM architecture have implications for programming
and the system structure of implementations. Architectural
implications considered in the following sections are:

o Data shariné and synchronization
o Separation of procedures and data
o Translation Buffers

© Caches

o Stacks

To meet the requirements of the PRISM architecture, software and
hardware implementors must take these issues into consideration.

9.2 MEMORY, MULTIPROCESSING, AND INTERPROCESSOR COMMUNICATION

A PRISM system comprises one or more PRISM processors and one or more
I/0 devices which all share a common memory. The PRISM architecture
specifies how these elements communicate with each other. It
specifies how data is shared between the processors and I/0 devices
and how the processors and I/O devices signal each other. It includes
rules for the ordering of write operations and interrupts and for
mutual exclusion-to avoid data corruption by simultaneous reads and
writes from multiple processors.

Many contemporary I/0O devices really behave 1like any other PRISM
pProcessor in an MP system in that they communicate control information
through a shared data structure in memory. This type of I/O device is
termed a "smart" I/0 device. "Simple" I/0 devices have no shared
control structure in memory and are typically controlled by writing
several device CSRs to describe a transfer and a "GO" bit in the
device to initiate it.

"Smart" I/0 devices are really part of the PRISM MP processor set and
must wuse the same method of synchronizing with a PRISM processor as
two or more PRISM processors use to synchronize with each other. When
the term "processor” is used without qualification, it refers to both

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-2
MEMORY, MULTIPROCESSING, AND INTERPROCESSOR COMMUNICATION 26 April 1988

PRISM processors and "smart" I/O devices.

9.2.1 The Ordering Of Writes And Interrupts -

PRISM systems use the ordering of events as the mechanism which
programs and hardware devices running in parallel can use to
coordinate their operations. There is no method in a PRISM system for
two or more processors or I/0 devices to coordinate based on some time
standard held in common. The coordination is primarily based on the
ordering of interlocked operations.

This section specifies how programs and hardware devices in a
multiprocessing system see the effects of data written from different
processors or I/O devices. The rules apply to both memory-space and
I/O-space references unless otherwise stated. A write takes effect
for some observer when that observer, running in some processor or I/QO
device, can issue a read which returns the updated wvalue.

1. When only cne processor or I/0 device is doing both the
reading and writing to memory, a read returns the value of
the most recent write to the same location. The wvalue read
from a memory-space location never written is UNPREDICTABLE.

2. When a single processor or I/0 device makes a series of
non-interlocked writes to different locations in memory,
other observers may see the writes take effect in any order.

For example, a program in one processor writes into location
X and later writes into location Y; a second program in
another processor reads location Y and then reads location X.
Depending on the relative timing of the two programs, the
second program may read old X and old ¥, new X and old Y, new
X and new Y, or o0ld X and new Y.

3. When a single processor makes a seriegs of I/0 space
references (reads or writesg) to the same I/0 device via the
same bus or bus adaptor, the references are made in the same
order as the program initiated them.

4. A processor write to I/0 space provides no guarantee that its
previous memory writes are visible to the I/O device should
the device access PRISM memory. To provide such a guarantee,
an interlocked instruction must be executed before the device
references memory. This is described in more detail later in
the chapter. ’

5. When two or more processors or I/0 devices each write
(without a synchronizing signal, see the next section), the
observed order of the writes 1is UNPREDICTABLE and the
observed final value is UNPREDICTABLE. Observers in
different processors or I/0 devices may see the writes take
effect in different orders and the observed order of writes
may differ from trial to trial. In addition, since there 1is
no synchronizing signal between the processors, there is no
way for the processors to determine when the final values
become vwvalid. Also, in the absence of a synchronizing
signal, an observer is not guaranteed to have a coherent view
of memory and therefore may not see the final value.

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-3
MEMORY, MULTIPROCESSING, AND INTERPROCESSOR COMMUNICATION 26 April 1988

For example, consider two programs in two processors, P0 and
Pl, each writing to 1its own variable and reading from the
other’s variable. The programs are not synchronized.

PO P1
writes X writes Y
reads Y reads X

Each processor can read either the new or old copy of the

other’s variable. Which 1is read depends on unpredictable
timing. There are four combinations, all of which can occur:
PO reads Pl reads
new Y new X
old ¥ new X
new Y old X
old ¥ old X
Note particularly the last combination: both programs can
read the o0ld value of the other’s wvariable and come to
different conclusions about the write order. PO will

conclude that X was written but not ¥; Pl will conclude that
Y was written but not X.

In Dekker’s mutual exclusion algorithm [Dijkstra E.W.(1965):

Co-operating sequential processes; in "Programming
Languages," F. Genuys (Ed.); Academic Press, New York, pp.
43-112.], the 1lock variables are the X and Y above. The

algorithm relies on processors having the same view of the
lock wvariables, and therefore it will not work on PRISM
systems. For mutual exclusion, the PRISM architecture
requires that interlocked instructions be used.

6. When two or more processors each make interlocked writes to
the same physical address, different observers using
interlocked accesses see the interlocked writes take effect
in the same order. If the interlocking references map to
different physical addresses, the observed write order is as
if they were not interlocked, and rule 5 applies.

Consider the rule 5 example modified by adding interlocked

instructions.
PO Pl
writes X writes Y
RMAQI on J RMAQT on K
reads Y reads X

If J and K reference the same physical location, then either
PO or Pl will read a new value. The two RMAQI instructions
are ordered relative to each other although which one
executes first is unpredictable. If P0’s RMAQI occurs before
P1l’s RMAQI, then P0’s new value of X will be read by P1,
although PO may still read either the old or the new value of
Y. If Pl’s RMAQI occurs before P0’'s RMAQI, then Pl’s new
value of Y will be read by PO, although Pl may still read
either the old or the new wvalue of X.

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-4
MEMORY, MULTIPROCESSING, AND INTERPROCESSOR COMMUNICATION 26 April 1988

If J and K reference different physical locations, then the
example is identical to that for rule 5: it is possible for
both PO and Pl to read old values.

7. When a processor writes and then requests an interrupt of a
target processor, it is UNPREDICTABLE whether the write takes
effect in the target before or after the target initiates the

interrupt.
8. "Simple" I/0 devices operate under the following rules:
1. No caching of memory data for the "simple" device 1is
allowed. This does not prohibit prefetching output data

or write buffering input data during a single I/0
transfer operation.

2. On the PRISM processor - Before software writes to an I/O
space CSR on the "simple" device that causes the device
to access memory, all prior memory writes must be made
visible to the "simple" device. To accomplish this,
software must execute an interlocked instruction on a
common control variable before it writes to I/O space,
causing the device to access memory.

3. On the "simple" I/0 device - Before the device signals an
interrupt, all of its prior memory writes must be made
visible to the PRISM processors. To accomplish this, I/O
adapters and I/0 devices must ensure that all prior
memory writes by the device have "completed" either
before the device interrupt is signalled to a PRISM
processor or before the requested interrupt vector is
delivered to the PRISM processor. In this context,
"completed" means that all of the I/O device writes to
memory are guaranteed to be visible to any processor once
it performs an interlocked operation on a common control
variable.

For example, on some implementations "completing" an I/O
write to memory ensures that any necessary write updates
or invalidates have been distributed to other caches 1in
the system. But it does not mean that those caches have
processed the updates or invalidates yet. In addition,
software on the PRISM processor responding to the
interrupt must execute an interlocked instruction on a
common control variable before it attempts to read memory
data. This ensures that any updates or invalidates that
are pending at the PRISM processor’s cache are processed.

4. The PRISM architecture makes no guarantees about data
visibility between two PRISM processors when a "simple"
I/0 device is used as a signaling mechanism between the
PRISM processors. Interlocked instructions must be
executed on a common control variable for this
communication to work.

For example, PRISM processor PO writes memory, starts
I1/0, the 1I/O completes and signals PRISM processor Pl
with an interrupt, and P1 then references memory. No
guarantees are made about the ability of Pl to see P0’s
memory writes. In order for this to work, PO and Pl must

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-5
MEMORY, MULTIPROCESSING, AND INTERPROCESSOR COMMUNICATION 26 April 1988

execute interlocked operations on a common control
variable. Typically, scftware on PO would execute an
interlocked operation before writing the device CSRs in
order to acquire control of the resource. To service the
interrupt, software on Pl would execute an interlocked
operation on the same control variable thereby ensuring
data visibility between PRISM processors.

9.2.2 Memory And Shared Data

It is the intent of the PRISM architecture that access to shared
memory data be synchronized using interlocked instructions. The
interlocked instructions accomplish two things. First, they provide, a
means for implementing mutual exclusion by ensuring that one and only
one processor can access the interlock control variable at a time,
preventing multiple simultaneous accesses from corrupting the control
variable. And second, they provide the mechanism the hardware uses to
make modified data visible to other processors and "smart" I/O
devices. :

NOTE

\In the VAX architecture, many instructions provide
noninterruptable read-modify-write sequences to memory
variables. In the VAX, most of the data sharing is
more an issue for hardware implementors and a few
system programmers. Most programmers never regard
data sharing as an issue. In the PRISM architecture,
programmers will have to pay more attention to
synchronizing access to shared data. One of the major
areas this may show up in is AST routines. In the
VAX, a programmer can use an ADDLZ to wupdate a
variable shared between a "MAIN" routine and an AST
routine if running on a single processor. In the
PRISM architecture, a programmer will have to deal
with AST routines as if they could be run on different
processors. \

9.2.2.1 Interprocessor Signaling And Data Visibility

A program must issue an interlocked instruction to memory space as the
signal to ensure that all observers can read the signal itself and all
the previously-written shared data. If a program does not issue this
signal, it is UNPREDICTABLE whether another observer will read the old
or new shared data.

The normal interlocked software mechanism for handling shared data
accomplishes the required interprocessor signaling. This signaling
mechanism 1is outlined below: (One way to acquire and release
ownership of the software control variable is described in Section
9.2.3, Page 9-11.)

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-6
MEMORY, MULTIPROCESSING, AND INTERPROCESSOR COMMUNICATION 26 April 1988

{Acquire ownership of software control- (1)
variable using an interlocked instruction}

{Issue DRAINM instruction if reading any (2)
memory data with a vector instruction}

. Read and/or write shared data (3)
using non-interlocked instructions

{Issue DRAINM instruction if any memory data (4)
was written with a vector instruction}

{Release ownership of software control- (5)
variable using an interlocked instruction}

Notes -

1. A user of shared data first acquires ownership of the memory
area containing the shared data by performing an interlocked
cperation on the same control variable that is used by other
users of the shared data. In addition to synchronizing
access to the shared data, this interlocked instruction
guarantees that the user has a coherent view of the shared
data using scalar memory reference instructions. For
example, on some implementations it ensures that all write
updates or invalidates that are pending at the processor’s
scalar cache are processed before the interlock operation is
performed. Note that this only affects the scalar processor
cache and thus only ensures a coherent view of memory as seen
by scalar memory reference instructions.

2. 1If the user is going to read shared memory data with vector
instructions, software must insert a DRAINM instruction after
the interlock instruction and before the first vector load or
gather instruction to ensure a coherent view of shared data
using vector memory reference instructions. For example, on
some implementations the DRAINM would ensure that all write
updates or invalidates that are pending at the vector cache
are processed before a subsequent vector instruction attempts
to reference the data.

3. At this point the user has a coherent view of memory and can
read or write the shared data using the normal scalar and
vector load/store instructions.

4. If the user wrote shared memory data with vector
instructions, software must insert a DRAINM instruction after
the last vector store or scatter instruction and before the
interlock instruction to ensure that all vector store
instructions have finished executing and their writes have
"completed". See the next item for a definition of
"completed".

5. The user releases ownership of the shared data by performing
another interlocked operation on the control variable. The
interlocked operation updates the control variable and forces

AﬁCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 8-7
MEMORY, MULTIPROCESSING, AND INTERPROCESSOR COMMUNICATION 26 April 1988

all previous scalar writes by this user to be "completed".
In this context, "completed" means that all previous writes
by this processor are guaranteed to be visible to the next
processor that performs an interlocked operation on the same
control variable for the purpose of acquiring access to
shared data. For example, on some implementations it ensures
that any necessary write updates or invalidates have been
distributed to other caches in the system. But it does not
mean that those caches have processed the updates or
invalidates yet.

NOTE
\Implementation note: some hardware scheme must be
implemented to ensure that the signals listed above
produce the correct software effect. This 1is a

particular concern when write-buffers or write-back
caches are involved. Draining a write-buffer or cache
before the signal is sent will work. Implementing a
"snoopy" write-buffer or cache, which monitors and
responds to requests from other processors or I/0
devices, can also work. Other hardware schemes are
possible.\

The preceeding description is based on a mutual exclusion or critical
section viewpoint. Another model consists of problem decomposition or
data partitioning in which a problem is split among multiple
processors. An example would be a loop in which each processor does a

different set of iterations. 1In this case, the work assignments (loop
iterations) would be acquired through the use of interlocked
instructions, such as RMAQI, and each processor would work on

different data elements so there is no real data sharing between the
processors. However, after all the loop iterations are completed it
is necessary for the processors to synchronize on a common control
variable if subsequent execution requires a processor’s results to be
visible to any other processor.

There are two functions involving the console that are also
interprocessor signals.

1. Processor entry to console mode as the result of a HALT (from
kernel mode or from the front console panel) or an €rror
halt. The processor is making a major state change after
which it is no longer a cooperating member of the system. \
A possible hardware implementation is to drain all internal
buffering when either signal occurs. \

2. Any console function that changes shared memory state (e.g.
deposit) .

9.2.2.2 Atomicity And Corruption

A common memory allows data to be shared among the processors and I/O
devices of a PRISM system. Multiple simultaneous accesses may cause
some data to become "corrupted" while other "atomic" .accesses keep the

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-8
MEMORY, MULTIPROCESSING, AND INTERPROCESSOR COMMUNICATION 26 April 1988

data intact. The following two definitions precisely describe
atomicity and corruption:

© Atomicity =-- The access of a shared datum in memory by one
processor or I/O device is classified as atomic (indivisible)
or non-atomic (divisible) with respect to an access of the
same datum by another processor or I/0 device. A memory
access is atomic when any other memory access to the same
datum may occur before or after but not during the first
access. A memory access is non-atomic when another memory
access to the same datum may occur before, during, or after
the first access.

o Corruption -- A shared datum accessed from memory
non~-atomically can become corrupted: the datum when written
can become any byte-wise combination of all the data that is
concurrently being written to it; and when read, the value of
the datum may be any byte-wise combination of 1its original
value with any new values that are concurrently being written
to it.

Corruption can occur in two ways: from the non~-atomic access
of two or more writers, in which case the corrupted value
will remain in the memory location wuntil some program
reinitializes it; or from the non-atomic accesses of a single
writer and one or more readers, in which case only the read
accesses may be corrupted, and subsequent read accesses may
return an uncorrupted value. A datum (or its vwvalue) cannot
become corrupted if it is not shared, if it is always read
and written by atomic accesses, or if it is accessed by
multiple readers and no writers.

To support shared data, a PRISM system meets these requirements:

1. The memory ensures that the granularity of access for
independent modification by any processor or I/O device is
the longword. This does not imply a maximum reference size
of one longword but only that independent modifying accesses
to adjacent longwords produce the same results regardless of
the order of execution. Systems may choose to do masked
writes (less than longword) in the <cache by reading the
needed longword from memory, merging it in the cache, and
then writing the longword back to memory, thereby only
supporting longword writes to the main memory system.

For example, suppose locations Q0 and 4 contain the walues 5

and 6. Suppose one processor executes BYTE STORE of a 6 to
location 0 and another executes BYTE STORE of a 7 to location
4. Then, regardless of the order of execution, including

effectively simultaneous execution, the final contents of
locations 0 and 4 must be 6 and 7.

As a second example, suppose locations 0 and 1 <contain the
values 5 and 6. Suppose one processor does a BYTE STORE of a
6 in memory at location 0. Also, suppose a second processor
does a BYTE STORE of a 7 in memory at location 1. After both
processors finish execution of the sequences the results are
UNPREDICTABLE. Locations 0 and 1 may contain 6 and 7, or 6
and 6, or 5 and 7.

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-9
MEMORY, MULTIPROCESSING, AND INTERPROCESSOR COMMUNICATION 26 April 1988

NOTE

\A system may also build a VAX-style memory
system with masked writes to the main memory.
The longword granularity of sharing is being
included to allow simpler and cheaper systems
to be built. But since some PRISM systems
may use a common memory system with a given
VAX implementation we are not going to
disallow reusing the existing memory
subsystems.\

2. When executing an instruction, a PRISM processor always reads
and writes certain instruction operands from memory by atomic
accesses. These operands, termed atomic operands, are the
following: an aligned longword, and an aligned quadword. An
atomic operand is the only kind of shared datum for which a
PRISM processor inherently provides atomic memory access.

For example, if an implementation designed a PRISM memory
system that only provided longword access, it must guarantee
that aligned quadwords are read and written atomically to
prevent a quadword datum from being corrupted if one
processor is performing a store quadword operation while
another processor is simultaneously performing a load
quadword operation on the same location.

3. A processor is not required to provide atomic memory access
for any other operands. This includes, but is not limited to
the following: a byte, a word, any datum that 1is not
naturally aligned (such as an unaligned 1longword or
quadword), the HWPCB saved and restored by the Swap
Privileged Context instruction, or the group of elements
comprising the data referenced by a vector 1load, vector
store, vector gather or vector scatter operation.

9.2.3 Using Interlocks To Prevent The Corruption Of Shared Data

PRISM processors do not provide atomic memory access to all data. To
prevent the corruption of data accessed non-atomically, readers and
writers must access them in a mutually exclusive manner -- there must
be either only one writer or any number of readers to shared data at
any one time. Failure to wuse mutual exclusion when multiple
processors or I/0 devices are reading or writing with non-atomic
accesses may produce UNPREDICTABLE results.

Five interlock instructions are provided for mutual exclusion methods
that test and set a memory-resident control variable, such as a lock
or semaphore, through hardware-implemented atomic memory accesses:
CMPSWLI, CMPSWQI, CMPSWQIP, RMALI, and RMAQI. A control variable is a
bit string in shared memory whose value indicates whether access to
the associated shared data is allowed. Software, by using interlock
instructions, sets a control variable to any of the various values
which indicate whether the shared data is accessible or inaccessible
to other processors and I/0 devices.

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-10
MEMORY, MULTIPROCESSING, AND INTERPROCESSOR COMMUNICATION 26 April 1988

CMPSWLI, CMPSWQI, and CMPSWQIP perform a compare and swap operation on
a virtual longword-aligned, wvirtual quadword-aligned, or physical
quadword-aligned control variable respectively. RMALI and RMAQT
perform a read, mask and add operation on a longword-aligned or
quadword-aligned control variable respectively.

Each of these instructions accesses a control variable using an atomic
sequence of operations termed an interlocked sequence. A processor
wishing to begin this sequence requests access to the interlock grain,
which is an implementation-dependent region of physical memory
containing the control variable. When the access has been granted,
the interlocked sequence starts and the interlock grain is locked
(made inaccessible) to the interlocked sequences of all other

processors or I1/0 devices. When the sequence is completed, the
interlock grain is unlocked making it accessible to the interlocked
sequences of other processors and I/0 devices. Thus, any two

interlocked sequences performed on the same interlock grain are always
atomic with respect to each other -- that is, they will always
interlock. Note that interlocking occurs at the 1level of physical
memory, and only when control variables map to the same interlock
grain will actual interlocking be guaranteed. The size of the
interlock grain is implementation dependent, therefore to ensure
correct operation software must use a common interlock control
variable, beginning at the same Dbyte address for all users of the
shared data, and not rely on the interlock grain size of a given
implementation.

The following apply to interlocks:

1. Non-interlocked instructions are not necessarily blocked from
reading or writing a locked memory region; whether or not
they are blocked is implementation dependent.

2. Memory hardware within a PRISM system determines the size of
an interlock grain. An interlock grain may vary in size from
a byte to all of memory and may even be discontiguous -- for
example, every 2**16th byte may be locked. The interlock
grain need only include the first byte of the control
variable. Therefore, memory hardware need only ensure that
interlocked sequences interlock when the starting byte
addresses of their control variables map to the same byte in
physical memory. It is UNPREDICTABLE whether interlocked
sequences will interlock if they reference control variables
with different starting-byte physical addresses.

For example, suppose a programmer chooses to use a quadword

in the following way: The low longword will be a counter
accessed with RMAQI, and the high 1longword will contain a
one-bit lock accessed with RMALI,. Then, even though the

control variable for the RMAQI is the entire quadword, the
programmer must not expect that the RMALI to the upper
longword will interlock with the RMAQI to the quadword since
only byte 0 of the gquadword need be locked for the RMAQI and
byte 4 for the RMALI.

3. It is possible in PRISM implementations that interlocked
sequences on two different control variables will
unintentionally interlock because both control variables lie
within the same interlock grain. For example, if the size of
the interlock grain for a given PRISM processor

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-11
MEMORY, MULTIPROCESSING, AND INTERPROCESSOR COMMUNICATION 26 April 1988

implementation is one page (8192 bytes), then an interlocked
sequence performed on a control variable within a page will
lock out all other interlocked sequences which are performed
on the same page. Software must not rely on such
implementation specific interlock sequences.

4. A processor may read more bytes than necessary when reading a
control wvariable for an interlocked sequence, but it only
writes back the following: for RMALI and CMPSWLI, the
aligned 1longword that contains the contreol variable; and for
RMAQI, CMPSWQI and CMPSWQIP, the aligned quadword that
contains the control variable.

5. Software must not place data that it will write by
non-interlocked instructions within a range of bytes that is
written back when a control wvariable is modified. This 1is
because the write may occur while an interlocked sequence is
being performed on the control variable. In this case, the
data may be overwritten during the sequence when the control
variable is modified. Thus, it is UNPREDICTABLE whether a
non-interlocked instruction updates any byte contained within
a range of bytes that is written when a control wvariable is
modified.

In particular, software may not change an interlock control
variable with a PRISM "store" instruction. For example, if a
second processor tested the interlock contrecl variable using
a RMAQI or RMALI instruction with an addend of zero and a
mask of all ones and the lock owner’s store occurred between
the RMAxI read and write, the state of the lock would remain
unchanged.

6. For performance reasons, software should avoid looping with
an interlocked instruction when waiting for access to shared
data. Recall that non-interlocked instructions are not
necessarily blocked from reading control variables in a
locked interlock grain. On most PRISM processors, checking
for the availability of shared data is most efficiently done
with non-interlocked instructions. If the non-interlocked
instruction indicates the shared datum is available, then an
interlocked instruction can confirm the result; otherwise,
the program can continue looping on the non~-interlocked
instruction or do something else. Note that another
processor can gain control of the data in the time between
the non-interlocked and interlocked checks for data
availability.

Testing a lock control variable with a non-interlocked
instruction is more efficient in an MP system because several
processors may be trying to acquire the 1lock and once the
processors have loaded the control variable into their
individual caches they can test the control variable without
impacting the memory system by continually locking and
unlocking the interlock grain. Once the owner of the lock
control wvariable releases the lock, hardware guarantees that
all other processor caches will eventually see the update or
invalidate produced by the owner.

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-12
MEMORY, MULTIPROCESSING, AND INTERPROCESSOR COMMUNICATION 26 April 1988

The following code example illustrates this:

10$: ornot $1,r0,r5 ; mask for rmali
or $#1,0,6 ; addend for rmali
lda ctlvar,rd ; get address of control variable
rmali ; read, mask, add longword

blbc r4,30$% if lbc, we have ownership

20%: 1d1 ctlvar, r4 ; get control variable
blbs r4,20$; wait for lock to clear
beg r0,108 ; retry the lock

308%:

9.3 SEPARATION OF PROCEDURE AND DATA

The PRISM architecture encourages separation of procedure
(instructions), read-only data, and writable data. PRISM procedures
may NOT write data that is to be subsequently executed as an
instruction without an intervening IFLUSH instruction. 1If no IFLUSH
occurs between a procedure writing data and a subsequent attempt to
execute that data as instructions, the results are UNPREDICTABLE.

9.4 TRANSLATION BUFFER, VIRTUAL I AND D CACHES

A system may choose to include a Translation Buffer (TB), a Virtual
Instruction Cache (Virtual I Cache), or a Virtual Data Cache (Virtual
D Cache). The contents of these caches and/or translation buffers may
become invalid, depending upon what operating system activity is being
performed. The following table shows what needs to be invalidated for
given operating system functions.

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-13
TRANSLATION BUFFER, VIRTUAL I AND D CACHES 26 April 1988

Table 9-1: TB/Cache Invalidation

—— e B - - — - e - e . - = Y S e e W e R A M A —

Virtual Virtual

OS Function TB I Cache D Cache
Remove from Working Set Invalidate - Invalidate
Delete virtual address Invalidate Invalidate Invalidate
Change
PTE<READ_EROT>,
PTE<FOE> Invalidate Invalidate
Change
PTE<PROT>,
PTE<FOR>, PTE<FOW> Invalidate Invalidate
Change I-Stream - Invalidate -
(e.g. processor writes)
I/0 writes new I-Stream - Invalidate -

Assumptions on the above table:
o The D Cache watches I/O and processor writes.

© The I Cache does not watch I/0 or processor writes.

Note the Translation Buffer Invalidate instructions (TBFLUSH, MTPR
TBIS) only operate on a Translation Buffer and Virtual D Cache, while
the IFLUSH instructions only operate on the Virtual I Cache.

9.5 CACHES AND WRITE-BUFFERS

A hardware implementation may include mechanisms to reduce memory
access time by making local copies of recently used or expected to be
used memory contents or by buffering writes to complete at a later
time. Caches and write-buffers are examples of these mechanisms. A
cache must be implemented in such a way that its existence is
transparent to software (except for timing and error
reporting/control/recovery and modification to the I-stream). For
example, software does not have to worry about flushing caches before
or after I/0 transfers.

The following requirements must be met by all cache/write-buffer

implementations. All processors and I/O peripherals must provide a
coherent view of memory consistent with the rules described in the
previous sections for PRISM processors, "smart" I/0 devices and

"simple" I/O devices.

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-14
CACHES AND WRITE-BUFFERS 26 April 1988

1. Caches that buffer write data must be able to detect a later
write from a "simple" 1I/0 device and invalidate or update
their write.

2. A processor must guarantee that all of its previous writes
are visible to all other processors and "smart" I/0 devices
before the write of an interlocked read-modify-write is
performed. These writes are only guaranteed to be visible to
those other processors or "smart” I/O devices after they
perform an interlocked operation on the same control-variable
for the purpose of aquiring access to the shared data.

3. A processor must guarantee that a data store to a location
followed by a data locad from the same location must read the
updated wvalue. :

4. A processor must guarantee that all of its previous writes
are visible to all other processors and I/0 devices before a,
HALT instruction completes. A processor must guarantee that
its caches are coherent with the rest of the system before
continuing from a HALT.

5. A processor must guarantee that across a powerfail/recovery
sequence that the memory system remains coherent. Data can
not be lost that was written by the processor before the
powerfail and the cache must be in a valid state before
nermal instruction processing is continued after power is
restored.

NOTE

The SWPCTX instruction does not flush pending writes.
Therefore, the operating system must perform an
interlocked operation to a common lock variable after
saving the process state to ensure that all of a
process’s state is visible to all other processors in
a multiprocessor system before the process can be
continued on a different processor.

There are many different ways to implement caches. Three different
ways currently being used at DIGITAL are write-through, write-back,
and write-buffers with a write-through cache. Each method has

different problems meeting the PRISM requirements for a cache. The
notes following each requirement explain what that requirement means
to different implementations. '

1. Processor writes to memory followed by a peripheral output
transfer must output the updated data.

© Write-through - In a system with a write-through cache
the memory is written as soon as any write is done so the
cache need not be able to present its data in place of
the memory system.

© Write-back - In a system with a write-back cache the
cache must watch the memory bus and have a mechanism for
presenting the correct data when an I/0 device accesses a

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-15
CACHES AND WRITE-BUFFERS

location that it has cached.

o Write-buffer - In a system with a write-buffer the
write-buffer must either watch the memory bus and have a
mechanism for presenting the correct data when an 1I/0
device accesses a location that it has buffered or it
must purge its contents on all interlocked sequences.

Completing a peripheral input transfer followed by the
program reading of the memory must read the input value.

© Write-through - In a system with a write-through cache
the cache must watch the memory bus and have a mechanism
for either updating or invalidating locations that are
written by an I/O device or another processor.

o Write-back - In a system with a write-back cache the
cache must watch the memory bus and have a mechanism for
either wupdating or invalidating locations that are

written by an I/0 device or another processor.

o Write-buffer - In a system with a write-buffer the
write-buffer must either watch the memory bus and have a
mechanism for invalidating pending writes when an 1I/O
device writes a location that it has buffered or it must
purge its contents on all interlocked sequences.

A write followed by a HALT on the same processor, followed by
a read on another processor, must read the updated wvalue.

o Write-through - In a multiprocessor system with a
write~-through cache the memory is written as soon as any
write is done so there are no additional requirements.

o Write-back - In a multiprocessor system with a write-back
cache, the cache must either continue to watch the memory
bus for reads and present the correct data when the other
processor accesses a location that it has cached or the
cache must propagate all dirty locations to memory before
completing execution of a HALT.

o Write-buffer - In a multiprocessor system with
write-buffer all buffered writes must be written to
memory before completing execution of a HALT.

A HALT on one processor, followed by a write on a second
processor, followed by a continue on the first processor,
followed by a read on the first processor, must read the
updated value.

o Write-through - In a multiprocessor system with a
write-through cache, the cache must either continue to
watch the memory bus for writes to locations it has
cached, or the cache must invalidate all entries before
continuing execution from the HALT.

26 April 1988

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-16
CACHES AND WRITE-BUFFERS 26 April 1988

0o Write-back - In a multiprocessor system with a write-back
cache, the cache must either continue to watch the memory
bus for writes to locations it has cached, or the cache
must invalidate all entries before continuing execution
from the HALT.

o0 Write-buffer - In a multiprocessor system with
write-buffer all buffered writes must be written to
memory before completing execution of a HALT.

5. A write followed by a power failure, followed by restoration
of power, followed by a read, must read the updated value
provided that the duration of the power failure does not
exceed the maximum non-volatile period of the main memory.

0 Write-through - In a system with a write-through cache
the cache power supply must be backed up or the cache
must be invalidated on restoration of power.

¢ Write-back - In a system with a write-back cache either
the cache power supply must be backed up or the cache
must be written back to main memory on powerfail and the
cache invalidated on restoration of power.

o Write-buffer - In a system with a write-buffer either the
write-buffer power supply must Dbe backed up or the
write-buffer must be written back to main memory on
powerfail and the write-buffer initialized to empty on
restoration of power.

NOTE

An implementation may choose not to provide
powerfail recovery.

6. In multiprocessor systems, access to memory data shared
between processors must be interlocked by software executing
one of the interlocked instructions on a common control
variable. A cache or write-buffer must ensure that all
previous writes from the issuing processor are visible to all
users of the memory system before the interlocked sequence
completes. Alternatively, a cache or write buffer must make
all previous writes visible to the memory system and the
memory system must ensure that these writes are made visible
to all users before they acquire ownership of the shared data
by executing an interlocked instruction on the common control
variable. The order of writes to memory may be different
from the original order of writes by the processor.

0 Write-through - In a system with a write-through cache
the memory is written as soon as any write is done and
other caches that may have a stale copy of the data must
either remain coherent with the memory or become coherent
as part of the interlocked operation.

0 Write-back - In a system with a write-back cache it must
either remain coherent with all the other caches or

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-17
CACHES AND WRITE-BUFFERS 26 April 1988

become coherent as part of the interlocked operation.

0 Write-buffer - In a system with a write-buffer the
write-buffer must purge all its pending writes before the
interlocked operation completes.

NOTE

\In a multiprocessor system with caches, the
interlocked instructions must cause the data
being accessed to be coherent across all
processors sharing it. This implies some
form of global locking at some granularity.
The simplest could be a single global lock
that is required to perform any interlocked

operation. For performance reasons an
implementor may choose to have more locks .
that interlock access to a subset of all
memory. \

A control variable must be acquired with an interlocked
instruction before entering a critical section that accesses
shared data. A control variable may be tested with either
interlocked or non-interlocked instructions. However, a
control variable must be acquired and released with an
interlocked instruction only.

7. Access to I/O space must not be cached or buffered.
Interlocked access to I/0 space addresses gives UNPREDICTABLE
results.

8. A cache may prefetch instructions or data. A memory
management exception condition cannot be taken until the
prefetched data is referenced.

NOTE

\If the granularity of access to memory is
larger than the request and there is a
hardware error (e.g. uncorrected read error,
bus parity error, etc.) in part of the
requested data (but not the part being
accessed), it is wvalid to report the error as
-including the valid part. \

9. Processor initialization must leave the cache and/or
write-buffer either empty or wvalid.

9.6 STACKS

To provide support for exception handling, and emulation of missing
instructions on subset implementations, the PRISM architecture
reserves the right to modify the next 256 quadwords (2048 bytes) of
the stack, given normal access checks allow access. These are the

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-18
STACKS 26 April 1988

bytes in the range from -1(SP)..-2048(SP). Programs should not store
data in this area.

9.7 SYNCHRONIZATION BETWEEN VECTOR AND'SCALAR MEMORY ACCESSES

A PRISM processor may contain both a vector unit and a scalar unit
each of which can independently access memory. Since the vector unit
may access memory concurrently with the scalar unit, the architecture
provides methods to synchronize the two units. Software is
responsible for determining when read/write memory data conflicts
between scalar and vector references might produce incorrect results,
and inserting memory synchronization instructions to ensure correct
operation.

9.7.1 Synchronization Instructions

DRAINM should be used for synchronizing scalar and vector memory
references. DRAINM stalls all instructions from issuing until all
previously issued scalar and vector 1load/store instructions are
guaranteed to complete without encountering memory management
exceptions. It also stops the issuing of subsequent scalar and vector
load/store instructions until all outstanding memory accesses have
been completed.

The architecture also allows for the implementation of multiple vector
load/store paths to memory. Using DRAINM for scalar/vector memory
synchronization ensures correct operation, but it does more than is
needed. If it is known that memory access synchronization is needed
only Dbetween multiple vector load/store instructions, DRAINV is
sufficient. If an implementation provides multiple vector load/store
paths to memory, DRAINV stalls all instructions from issuing until all
previously issued vector load/store instructions are guaranteed to
complete without encountering memory management exceptions. It also
stalls the issuing of subsequent vector load/store instructions until
all pending vector load/store instructions with possible conflicting
memory accesses complete. DRAINV does not have any synchronizing
effect between scalar and vector load/store instructions. \ DRAINV
can be a no-op 1instruction in an implementation that has a single
vector load/store path to memory. \

9.7.2 Required Use Of Memory Synchronization Instructions

Table 9-2 shows for all possible pairs of vector or scalar reads and
writes to a common memory location, whether the DRAINM instruction or
the DRAINV instruction must be issued after the first reference and
before the second. Since DRAINM also includes the DRAINV function,
DRAINM can always be used instead of DRAINV.

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-19
SYNCHRONIZATION BETWEEN VECTOR AND SCALAR MEMORY ACCESSES 26 April 1988

Table 5-2: When DRAINM (M) Or DRAINV (V)

Is Required Between Instructicns That Reference The Same
Memory Location

First Reference Scalar Scalar Vector Vector
Second Reference Scalar Vector Scalar Vector

Operation Sequence

- = - — . o - = e - o v e . e A = m e e e e e e T e = = e e . = e - - - - - - -

Read No (1,2) No (1) No (1) No (1)
Read
Read No (2) M (3) M v (5)
Write
Write No (2) M (4) M v
Read
Write No (2) M (4) M v
Write
Key: 1 - DRAINM or DRAINV is never required between two read
accesses to a memory location.
2 - DRAINM is never required between two accesses by the scalar

unit to a memory location.

3 - DRAINM ensures that the read completes before the vector
store operation is issued.

4 - DRAINM 1is required to ensure that the write is made
visible to the vector unit before the vector memory reference
is issued.

5 - The rules for the required use of DRAINV are described
elsewhere in this section.

In general, these rules apply to any sequence of instructions that
access a common memory location, no matter how many other vector or
scalar instructions are issued between the first instruction that
accesses the common location and the second instruction that accesses
the same location. For example, the code sequence shown below depicts
a vector load followed by a scalar write to the same memory location.
Between these two instructions are other scalar/vector instructions
that do not access the common memory location. A DRAINM instruction
must be executed sometime after the wvector read and before the scalar
write to the common location.

VLDL, #4, R6, VO

other scalar/vector instructions
that do not access data loaded by VLDL

DRAINM
STL RO, 4 (R6)

In the following examples, however, data dependencies between two
vector memory access instructions to common memory ensure correct
order of memory access without DRAINV:

example 1: VLDL $#4, R6, VO
VSTL #4, R6, VO

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-2C
SYNCHRONIZATION BETWEEN VECTOR AND SCALAR MEMORY ACCESSES 26 April 1988

example 2: VLDL $#4, R6, VO
VSUB RO, VO, V1
VSTL 44, R6, V1
example 3: VLDQ #8, R6, VO
VLDQ #8, R7, V1

VADDG R8, V0, V2
VVMULG V2, V1, V3
VSTQ #8, R6, V3

example 4: VLDL $#4, R6, VO
VCMPFEGT RO, VO ;writes VMR
VLDL/1 $4, R7, V1
VLDL/0 $4, R8, V2
VMERGE/0 V2, v1i, V3
VSTL $4, R6, V3

Thus when both of the following conditions are satisfied, DRAINV 1is
not required:

1. There is a read/write pair of vector memory access
instructions that touch identical memory in the same order.
(For VLD/VST instructions the base and stride operands must
be identical and for VGATH/VSCAT instructions the base and
32-bit offsets must be identical.)

2. There is a data dependency between this read/write pair. If
the operation involving that dependency is somehow recognized
as not required, the information can not be used by hardware
to optimize (and perhaps no-op) the operation. Several
examples follow:

VLDL $#4, R6, VO
VMULL RO, VO, V1
VSTL $#4, R6, V1

If the vector unit notices that the scalar multiplier is RO
(zero), it could just clear V1 and start storing V1 before

the loading of V0 finishes. In that case, V0 would not
necessarily contain the correct data at the end of the
sequence.

VGATHL R6, V2, VO
VMERGE/0 V0, V1, V1 and VMR is all ones
VSCATL R6, V2, V1

If the vector unit notices that the VMERGE operation is
merely copying V1 to itself, it could skip the VMERGE and
start storing V1 before <the 1loading of Vo finishes.
Depending on the wvalues of V2 elements, V0 may contain
incorrect data at the end of the sequence.

Since both of the above conditions are not satisfied in the following
code sequence, a DRAINV instruction is required after the vector read
and before the vector write to the common memory location:

VILDL/1 #4, R6, VO
VCMPLT #0, V1
DRAINV

VSTL/1 #4, R6, V1

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-21
SYNCHRONIZATION BETWEEN VECTOR AND SCALAR MEMORY ACCESSES 26 April 1988

If the DRAINV is not included, V0 could contain incorrect data at the
end of the sequence. Without DRAINV, there is no guarantee that the
storing of V1 will start after the loading of V0 is finished.

only DRAINM guarantees that the memory operations of the vector and
scalar units are synchronized. Writes to I/O space, changes in access
mode, machine checks, interprocessor interrupts, execution of a HALT,
REI, or interlocked instruction do not make the results of vector
instructions that write to memory visible to the scalar unit, 1I/O
subsystem, or other processors. Execution of a DRAINM instruction
must precede any of these mechanisms to ensure synchronization of all
system components.

DRAINM is required:

o After a vector instruction that stores to memory and before a
peripheral (I/0) data transfer of the stored location is
initiated to ensure that the value stored will be transferred
to the output device.

o After a vector instruction that stores to memory and before
an interlocked instruction that releases ownership of the
shared memory data to another processor.

o After an interlocked instruction that acquires ownership of
shared memory data from another processor and before a vector
instruction is initiated that that reads the shared data.

o After a vector instruction that stores to memory and Dbefore
the associated scalar unit can execute a HALT. This ensures
that a read or modify by another processor will access the
updated memory value.

o Before the vector unit state is saved as a result of power
failure. A read or modify of the same memory must read the
updated value (provided that the duration of the power
failure does not exceed the maximum non-volatile period of
the main memory) .

o Before a context switch. Software 1is responsible for
ensuring that the vector unit has completed all its memory
accesses before performing a context switch.

NOTE

Note that the rules described in this section only
deal with data coherency between the scalar and vector
units within the same processor. In a multiprocessor
system, the interprocessor signaling rules described
in 9.2.2.1 apply. To guarantee that vector writes are
made visible to other processors in a system, software
must execute a DRAINM (to make vector writes visible
to the scalar unit in the same processor) followed by
an interlocked instruction (to make all writes visible
to other processors).

ARCHITECTURE AND PROG IMPLICATIONS RESTRICTED DISTRIBUTION Page 9-22
REVISION HISTORY 26 April 1988

Revision History:

Revision 3.0, 26 April 1988
1. Change granularity of sharing to longword.
2. Clarify rules for sharing data.

3. Add rules for scalar/vector synchronization.

Revision 2.0, 24 June 1986
1. Remove distinction between IPROT and DPROT in table 9-1.
2. Remove reference to TBIASN IPR.

3. Corrected range of access allowed beyond end of stack.

Revision 1.0, December 22, 1985

1. General rewrite to reflect change from byte granularity of
access for independent modification to quadword or less
granularity of access for independent modification.

2. Expanded Translation Buffer invalidation rules.

3. Expanded cache rules to cover write-buffers.

4. Corrected range of access allowed beyond end of stack.
Revision 0.0, July 5, 1985

1. First Review Distribution

RESTRICTED DISTRIBUTION

CHAPTER 10

EXTENDED PROCESSOR INSTRUCTION CODE

10.1 INTRODUCTION

In a family of machines both users and operating system implementors
require functions to be implemented consistently. When functions
conform to a common interface, the code that uses those functions can
be used on several different implementations without modification.

These functions range from the binary encoding of the instruction and

data, to the exception mechanisms and synchronization primitives.
Some of these functions can be cost effectively implemented in
hardware, but others are impractical to implement directly in
hardware. These functions include low-level hardware support
functions such as Translation Buffer miss fill routines, interrupt
acknowledge, and vector dispatch. It also includes support for

privileged and atomic operations that require long instructiocn
sequences such as Return from Exception or Interrupt (REI).

In the VAX, these functions are generally provided by microcode. This
is not seen as a problem because the VAX architecture lends itself to
a microcoded implementation.

One of the PRISM goals is that microcode will not be necessary for
practical implementation. However it is still desirable to provide an
architected interface to these functions that will be consistent

across the entire family of machines. The Extended Processor
Instruction code (Epicode) provides a mechanism to implement these
functions without resorting to a microcoded machine. Hardware

development groups provide and maintain the Epicode for a given
implementation.

NOTE

\The hardware development groups provide and maintain
the Epicode for a given implementation. The Epicode
may be in ROM or loaded into RAM from some sort of a
console load device. Many of the same trade-offs
exist for Epicode that exist for VAX microcode around
patching, locading, and booting.\

10.2 EPICODE ENVIRONMENT

Epicode runs in an environment with privileges enabled, and I-stream

EXTENDED PROCESSOR INSTRUCTION CODE RESTRICTED DISTRIBUTION Page 10-2
EPICODE ENVIRONMENT 26 April 1988

mapping and interrupts disabled. The enabling of privileges allows
all functions of the machine to be controlled. Disabling of I-stream
mapping allows Epicode to be used to support the memory management

functions (e.g. Translation Buffer miss routines cannot be run via
mapped memory). Epicode also needs to make both virtual and physical
D-stream references. Disabling interrupts allows the system to

provide multi-instruction sequences as atomic operations (e.g.
RMAQI) .

The PRISM architecture allows these functions to be implemented in
standard machine code resident in main memory. Epicode is written in
standard machine code with some implementation specific extensions to
provide access to the "real hardware." Epicode can be used to
implement the following functions:

o Instructions that require complex sequencing as an atomic
operation (e.g. RETI)

o Instructions that require interlocked memory access (e.g.
RMAQT)

o Privileged instructions (e.g. MxPR)

o Memory management control functions (e.g. TB miss routines,
ACV/TNV dispatch routines)

o Interrupt and exception dispatch routines
o Power-up initialization and booting
o Console functions

o Emulation of instructions with no hardware support (e.g. an
implementation may chose to do MULL via a multiply step
function in the integer ALU)

o Support for unaligned memory operands

A PRISM implementation can make various design trade-offs based on the
hardware technology being used to implement the machine. The Epicode
will then be used to hide these differences from the system software.

For example, in a MOS VLSI implementation, a small (16 entry) fully
associative TB may be the right match to the media given that chip
area is a costly resource. In an ECL version, a large (1024 entry)
direct-mapped TB may be used because it will use RAM chips and does
not have fast associative memories available. This difference would
be handled by implementation-specific versions of the epicode on the
two systems, both providing transparent TB miss service routines. The
operating system code would not need to know there were any
differences.

10.3 EPICODE EFFECTS ON SYSTEM CODE

Epicode will have one minor effect on system code. Because Epicode
may be resident in main memory and maintain privileged data structures
in main memory, the operating system code that allocates physical

EXTENDED PROCESSOR INSTRUCTION CODE RESTRICTED DISTRIBUTION Page 10-3
EPICODE EFFECTS ON SYSTEM CODE 26 April 1988

memory cannot use all of physical memory. The amount of memory
Epicode will require will be small, so the loss to the system is
negligible.

10.4 SPECIAL FUNCTIONS REQUIRED FOR EPICODE

Epicode uses the PRISM instruction set for most of its operations.
There are a small number of additional functions needed to implement
the Epicode. There are five opcodes reserved to implement Epicode
functions (i.e. EPIRESO, EPIRES1l, EPIRES2, EPIRES3 and EPIRES4).
These instructions produce a Reserved Opcode fault if executed while
not in the Epicode environment.

o Epicode needs a hardware mechanism to transition the machine
from the Epicode environment to the non-Epicode environment.

This instruction loads the PC, enables interrupts, enables
mapping, and disables Epicode privileges in a single
instruction.

o Epicode needs a set of instructions to access the hardware
control registers (i.e. a hardware MxPR).

o Epicode needs a mechanism to save the current state of the
machine and dispatch into Epicode.

A PRISM implementation may also choose to provide additional functions
to simplify or improve performance of some Epicode functions. The
following are some examples:

o A PRISM implementation may include a READ/WRITE virtual
function that allows Epicode to perform mapped memory
accesses using the mapping hardware rather than providing the
virtual-to-physical translation in Epicode routines. Epicode
may provide a special function to do PHYSICAL READsS/WRITES
and have the PRISM LOADs/STOREs continue to operate on
virtual address in the Epicode environment.

o A PRISM implementation may include hardware assists for
various functions, for example, saving the virtual address of
a reference on a memory management error rather than having
to generate it by simulating the effective address
calculation in Epicode.

o A PRISM implementation may include private registers so it
can function without having to save and restore the native
general registers.

EXTENDED PROCESSOR INSTRUCTION CODE RESTRICTED DISTRIBUTION Page 10-4
REVISION HISTORY 26 April 1988

Revision History:

Revision 3.0, 26 April 1988

1. Minor edits.

Revision 2.0, 24 June 1986

1. Minor edits

Revision 1.0, December 22, 1985

1. General edits to make it clear that Epicode can be done in any
way that works well for a given implementation.

Revision 0.0, July 5, 1985

1. First Review Distribution

RESTRICTED DISTRIBUTION

CHAPTER 11

SYSTEM BOOTSTRAPPING AND CONSOLE

This chapter describes system bootstrapping and required console
functionality.

NOTE

/This chapter is not yet complete and will evolve as
the hardware and software design progresses. A common
console architecture for uniprocessor and
multiprocessor systems is currently being defined and
is likely to have a major impact on this chapter. /

11.1 BOOTSTRAPPING

This section describes PRISM bootstrapping. Topics covered include
responsibilities of the console, the initial state seen by system
software, and powerfail recovery. Bootstrapping is discussed in both
a multiprocessor and uniprocessor environment.

Many of the actions described below are the responsibility of the
console. This does not imply that a separate console processor is
required. Rather, it is expected that console functionality will be
implemented in Epicode running in the PRISM processor. Thus, anywhere
the console is referred to in this chapter, it is meant that the
function must be provided, not that a console processor exists.

11.1.1 Bootstrapping In A Uniprocessor Environment

This section describes a cold start in a wuniprocessor environment.
Powerfail recovery and multiprocessor bootstrapping are described in
Sections 11.1.3 and 11.1.4.

The following steps occur in the bootstrap sequence.

1. Test memory for bootstrapping

2. Build the Restart Parameter Block (RPB)

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-2
BOOTSTRAPPING 26 April 1988

3. Load Epicode

4. 1Initialize the page table
5 Load system software

6. Initialize processor IPRs
7

. Transfer control to system software

Note that these steps may be performed in a different order on
different implementations of the PRISM architecture. The final state
seen by system software is defined, but the implementation-dependent
procedure is not.

11.1.1.1 Memory Testing

In general, memory sizing and testing is the responsibility of system
software. The exception to this is the memory needed to set up the
initial environment for system software as described below. This
includes the memory for Epicode, the RPB, rage tables, and system
software. It is the responsibility of the console to find the lowest
addressable good memory for these purposes.

11.1.1.2 Restart Parameter Block

The Restart Parameter Block is the primary mechanism for passing data
between the console and system software. It is also critical in
powerfail recovery. The consocle is responsible for setting up a page
aligned RPB in the first good memory that can be found. UNDEFINED
operation will result if the RPB memory is reused by system software
for any other purpose.

An area is reserved in the RPB for each processor. The per-processor
areas immediately follow the main portion of the RPB in the same page
and any necessary contiguous pages. Each per-processor area must be
quadword aligned. A field in the RPB specifies the number of
processor slots.

A state longword for each processor is included in the per-processor
area. It contains several flags used to either control bootstrapping
or record progress. This longword can only be modified with
interlocked instructions to guarantee proper synchronization in
multiprocessor systems.

The RPB, including all per-processor areas, is initialized at this
time. Other than the fields listed below, the initialization wvalue is
zero:

o Physical address of RPB

o Version number

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-3
BOOTSTRAPPING 26 April 1988

o Number of processor slots

o Physical address of per-processor area

o Physical address of checksum area

o Checksum

o Page size

0 ASN size

o Number of physical address bits

A checksum area must be created for use during powerfail. This area
exists only to help guarantee that a valid RPB can be located. This
area can be anywhere that is accessible to all processors, includipg

at the end of the RPB. It can contain any data that does not change.
(zero data is not recommended because it increases the probability of
locating a spurious RPB.)

Note that the RPB does not contain a save area for vector registers.
Instead, there is only a pointer to this area. It is the
responsibility of system software to allocate a page aligned B8-Kbyte
vector register save area for each processor.

The length of the RPB can be calculated by software based on the
version number and the number of slots.

The number of per-processor RPB areas is at least equal to the number
of the highest numbered existing processor plus one. (processor
numbers are zero-based) Areas corresponding to nonexisting processors
are zeroed. An implementation may choose to create more per-processor
areas than are necessary.

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-4

BOOTSTRAPPING 26 April 1988
3
1 0
D ettt e L L b +
| | :RPB
+ Physical Address of RPB +
| | +4
o e e e +
| RPB Version Number | +8
B bt ettt bt e T +
| Number of Processor Slots | +12
ittt e e L P +
| Global Flags | +16
o e e ——— - +
| Reserved | +20
B il L D T +
| | +24
+ Physical Address of Per-Processor Area of RPB +
| | +28
e ittt i +
| | +32
+ Physical Address of Checksum Area +
| | +36
e e e e e e - +
| Checksum | +40
it T e E L L L Lt +
I Page Size | +44
ot e e e —— e — - +
I ASN Size (0 or 16) | +48
it et e T +
] Number of Physical Address Bits | +52
it +
| Bootstrap Master ID | +56
e ettt T +
| Length of Available Epicode Memory | +60
et e LT +
| | +64
+ Physical Address of Available Epicode Memory +
! | +68
o e e +
| Bootstrap Options |
B et e e e L L L e L DL L P T +
] LBN Bootstrap Data |
o e e e +
| |
+ System Device +
l I
o e e e e e e e e +
| |
+ System Software Filename +
| I
B Rt ittt et P PP +
] Network Bootstrap |
o e e e e e e +

Figure 11-1: Restart Parameter Block

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-5

BOOTSTRAPPING 26 April 1988
31 0

R ettt e L T T +

| State Longword | :SLOT
o e e e - +

| Reserved | +4

o e e e e e +

| Epicode Length | +8

e it ottt +

| Epicode Scratch Space Length | +12
e e e - +

| | +16
+ Epicode Physical Address +

| | +20
o e e e +

| | +24
+ Epiccde Scratch Space Physical Address +

I | +28
bt et +

[| +32
+ Restart SCBB +

| | +36
e it i T +

| | +40
+ Restart PCEB +

| | +44
e e e e e e e +

| Restart IPIE | +48
e ket +

| Restart SISR v | +52
e e e +

] Restart ICIE | +56
o e e e - +

| Restart PRBR | +60
o e e e e ——————— +

| Restart R2 | +64
| : l

| Restart R63 | +308
e e e +

| Restart PC | +312
e e - +

| Restart PS | +316
R it ittt e T T +

| Restart VC | +320
Ao e e e +

| Restart VL | +324
D il ittt +

| Restart VML | +328
o e e e e e m +

| Restart VMH | +332
o e e +

] | +336
+ Physical Address of Vector Register Save Area +

] | +340
e e e ———————————————— +

! HWPCB For Use During Bootstrap and Powerfail | +344
o e e e e e e +

Figure 11-2: Per-Processor Portion of RPB

BOOTSTRAPPING AND CONSOLE
BOOTSTRAPPING

RESTRICTED DISTRIBUTION

Figure 11-3: Global Flégs

Page 11-6
26 April 1988

Fields in the global flags longword are interpreted as follows:

Bits Description

1 Auto Reboot (AR) - This bit is set if an autoreboot 1is 1in
progress. This bit is set by epicode and remains set
until the next reboot.

3 11

1 109876543210
o e t=t—d-t—t-t-t-t—t-t-+-+
I |IP|HIC|S|S|E|S|P|P|R|B|
| Zero |PJEJTIRIE|JL|T|S|S|I|I}

I [1 18l I | ICICIS|P|P|
o e e +=t=t=t=t=t-t-t=t-t-4-+
Figure 11-4: State Longword

Fields in the state longword are interpreted as follows:

Bits Description

0 Bootstrap in Progress (BIP) - The processor 1is currently
bootstrapping. This bit is set by Epicode and cleared by
system software.

1 Restart in Progress (RIP) -~ The processor 1is currently
restarting after powerfail. This bit is set by Epicode and
cleared by system software.

2 Powerfail Sequence Started (PSS) - Epicode has entered
powerfail processing. This bit is set and cleared by Epicode.

3 Powerfail Sequence Completed (PSC) - Epicode has completed
powerfail processing. This bit is set and cleared by Epicode.

4 Self-Test Complete (STC) - Any self-test functions have been
completed during bootstrapping or powerfail restart. This bit
is set by Epicode.

5 Epicode Loaded (EL) - Epicode loading is complete. This bit
is set by Epicode.

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-7

BOOTSTRAPPING ‘ 26 April 1988

6 Software Enabled (SE) - This bit is set and cleared by system
software and enables this processor for multiprocessor system
operation. (Note that the boot master is always enabled.)

7 Slave Request (SR) - A slave processor is ready to Dbootstrap
in a multiprocessor system. This bit is set Dby slave

processor Epicode and cleared by system software.

8 Control Transferred to System Software (CTS) -~ Epicode has
transferred control to system software during bootstrapping.
This bit is set by Epicode.

9 Hardware Enabled (HE) - This bit indicates that the -CPU is
available for use by PRISM software. It is set by the console
and may differ from the processor present based on self-test,
other diagnostics, or console commands which explicitly make a
CPU unavailable.

10 Processor Present (PP)- This bit indicates that the CPU is
physically present in the configuration. It is set by the
console.

11.1.1.3 Epicode Loading

Epicode may be loaded into the next available good memory and its
address and length are recorded in the per-processor slot of the RFPB.

The Epicode is always page aligned. The Epicode source and its
loading mechanism is implementation-specific. The source may be a
special console device, a system device, or any other

implementation-specific source.

If control must be transferred to Epicode at this point, it is done in
an implementation-specific manner.

Certain assumptions are made about the state of the system when
Epicode is to be loaded or is to gain control if it is in ROM. First,
it must be possible to access a bootstrap device. This may be ROM,
mass storage, or a communication line. This is necessary to load
either Epicode, controller microcode, or system software. Note that
this does not have to be the device which contains the system
software. BAnother device, perhaps one dedicated to console functions,
may contain the necessary Epicode and controller microcode. Second,
the I/0 devices need not contain microcode to support their full
functionality. .They need only be capable of the primitive operations
necessary to read the full microcode from disk.

11.1.1.4 1Initial Page Tables

All system software runs in a virtual memory environment. Thus, it is
the responsibility of the console to set up initial page tables.
These are located in the next available good memory. These page
tables map four regions of virtual memory:

1. The page tables themselves

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-8
BOOTSTRAPP ING 26 April 1988
2. The Restart Parameter Block (RPB)
3. The I/0O registers for the boot device
4. 256 Kbytes of good memory for use by system software

The virtual memory is laid out in the 32-bit virtual address space as
shown below:

e e L e e L L LR Rt bl +

| | FFBFEOQOO

8 KB | level 1 and 2 page tables | FFBFFFFF
e e - +

| | FFC00000

256 KB | 256 KB of gocd memory | FFC3FFFF
ittt et +

| | FFC40000

64 KB | boot device registers | FFCAFFFF
fmmm e m—m - +

| | FFC50000

64 KB | RPB | FFCSFFFF
B bttt e L D Dl b Dt +

Figure 11-5: Initial Virtual Memory Layout

The initial virtual memory layout was selected so that a single page
of memory serves as both a level 1 and level 2 page table. This page
is mapped as the last level 1 page table entry and points to itself.
Thus it appears at address FFBFE000. The unused second half of the
level 1 page table page is then available for use in the level 2 page
table and maps the rest of the initial address space.

All pages have Kernel read/write, user no access protection with all
fault bits (FOR, FOW, FOE) clear.

11.1.1.5 Bootstrap Flags

The console sets the Bootstrap-in-Progress (BIP) flag in the RPB state
longword whenever a cold (not powerfail recovery) bootstrap is done.
System software 1is responsible for <clearing the flag at the
appropriate time. This should be done after system software is
capable of handling powerfail recovery.

\The Bootstrap-in-Progress (BIP) and Restart-in-Progress (RIP) flags
exist only in the RPB. They do not exist in an IPR as is the case in
a VAX. The RPB is sufficient since it 1is accessible to Dboth the
console and the system software.\

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-9
BOOTSTRAPPING 26 April 1988

11.1.1.6 Loading Of System Software

The console is responsible for loading system software into the 256
Kbytes of good memory. This software is expected to be a bootstrap
which is responsible for loading other system software. However, it
may be diagnostics or other special purpose software, see Section 11.3
below.

11.1.1.7 IPR Initialization

Before control is transferred to system software, certain IPRs must be
initialized as shown in the following table:

Table 11-1: IPR Initialization

Mnemonic Register Name Initialized State
ASN Address Space Number zero

ASTEN AST Enable disabled

ASTSR AST Summary zero

CRCS Console Receive Status disabled

CTCS Console Transmit Status disabled

ICIE Interval Clock Int Enable disabled

IPIE Interprocessor Int Enable disabled

PCBB Privileged Context Block RPB HWPCB

PTER Page Table Base Register bootstrap page table PFN
SISR Software Interrupt Summary zero

The contents of all other IPRs are UNPREDICTABLE.

11.1.1.8 Transfer Of Control To System Software

At this point there is a conceptual change from console control to
normal Epicode since the PRISM system is now running in its normal
mode rather than bootstrapping. There may or may not be an actual
change of control. Depending on implementation details of a PRISM
processor, normal Epicode may have gained control at any point Dbefore
this.

When the console. has completed the actions described above, control is
transferred to system software in Kernel mode at IPL 7 with virtual
memory management enabled. The Hardware Privileged Context Block
(HWPCB) in the RPB is already initialized and is active. System
software is loaded into the lowest portion of the 256-Kbyte region
reserved for this purpose and control is transferred to its first
byte. All pages have Kernel read/write, user no access protection
with all fault bits (FOR, FOW, FOE) clear.

The Kernel stack pointer (SP) is initialized to point to the top of
the 256-Kbyte region of good memory (address FFC40000). All other
scalar and vector register contents are undefined.

All bootstrap information 1is passed from the console to system
software in the RPB. This includes:

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-10
BOOTSTRAPP ING 26 April 1988

0 System device name

© System software file name

© Bootstrap options

© Logical Block Number (LBN) bootstrap data if appropriate

© Network bootstrap data if appropriate

The rest of the bootstrap process is the responsibility of system
software. ~

11.1.2 Powerfail

When powerfail is detected, control is transferred to Epicode in an
implementation-specific manner. If the Restart-in-Progress (RIP) or
Bootstrap-in-Progress (BIP) flag is set in the RPB per-processor state
longword, no powerfail processing is possible and Epicode takes no
action. Otherwise, Epicode sets the Powerfail Sequence Started (PSS)
flag in the per-processor state longword in the RPB and then saves all
volatile processor state in a combination of the per-processor portion
of the RPB and Epicode private storage. Vector registers are saved if
system software has allocated a save area and recorded its address in
the RPB even if the Vector Enable bit is not set in the Processor
Status (PS<VEN>). System software does not have the opportunity to
take any action until powerfail recovery. After Epicode completes all
powerfail processing, the Powerfail Sequence Complete (PSC) flag 1in
the per-processor state longword in the RPB is set.

11.1.3 Powerfail Recovery

Powerfail recovery occurs if memory is preserved by battery backup
during an interruption of power to the processor and the halt action
setting is restart. After determining that memory was backed up and
the halt action setting is restart, the console locates the RPB and
examines the per-processor RPB state longword flags to determine that
powerfail was completed (PSC set) and that restart or bootstrapping
was not in progress (BIP and RIP clear). If these conditions are not
met, the processor either halts or starts a cold bootstrap.

The RPB is found by a search of memory looking for the distinctive
signature of the RPB as described below. If the search fails, the
Processor either halts or starts a cold bootstrap.

1. Search for a page of memory that contains its physical
address in the first two longwords. If none is found, the
search for an RPB has failed.

2. Get the physical address of the checksum area from the
potential RPB. If it is not a valid physical address, or if
it is zero, return to Step 1. The check for =zero 1is
necessary to ensure that a page of zeros does not pass the
test for a valid RPE.

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-11
BOOTSTRAPPING 26 April 1988

3. Calculate the 32-bit twos complement sum (ignoring overflows)
of the 31 1longwords in the checksum area. If the sum does
not match the checksum in the potential RPB, return to Step
1.

4. A valid RPB has been found.

If all tests pass, the console transfers control to the Epicode

restart routine in an implementation-specific manner. Epicode
properly restores internal processor registers and the contents of the
HWPCB. After setting the Restart-in-Progress (RIP) flag and clearing

the Powerfail Sequence Started (PSS) and Completed (PSC) flags in the
per-processor state longword, Epicode initiates a Powerfail Recovery
interrupt to transfer control to system software. When the Powerfail
Recovery interrupt 1is initiated, PC and PS (saved in the RPB) are
pushed onto the Kernel stack. System software 1is responsible for
restoring all other scalar and vector registers. Note that no Epicode
or system software is loaded during a restart.

11.1.4 Multiprocessor Bootstrapping

Multiprocessor bootstrapping differs from uniprocessor bootstrapping
primarily in areas relating to synchronization between processors.
Obviously, in a shared memory system, processors cannot independently
load and start system software.

11.1.4.1 1Initial Synchronization

In a multiprocessor system, the console must be capable of some
primitive operations before Epicode is loaded into memory. These are
necessary to synchronize with other processors in the system as
described below.

Before continuing the bootstrap process a master processor must be
chosen to control bootstrapping. This can be done in any fashion that
guarantees choosing exactly one master.

To provide one example of choosing a master, the presence of a
register which can be accessed with interlocked instructions is
assumed. Note that this is only an example; any workable mechanism,
including a predefined master, can be used. An interlocked sequence
must be done to see if the interlocked register is clear. If the
register is clear, it is loaded with a flag (1) to indicate that a
processor is in control of bootstrapping. If the register is already
set, there must be a mechanism to loop waiting for an interprocessor
interrupt. This can be Epicode in ROM or any other
implementation-specific mechanism.

11.1.4.2 Actions Of Bootstrap Master

The first processor to gain control is referred to as the Dbootstrap
master. (In the example, this was the first processor to gain the
interlock.) It is the responsibility of this processor to control

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-12
BOOTSTRAPPING 26 April 1888

bootstrapping and allow all other processors to proceed only at the
appropriate time. The bootstrap master allocates an RPB and writes
its ID into the RPB. It then proceeds with the normal uniprocessor
bootstrap. When bootstrapping is complete, system software sets
Software Enabled (SE) flags in the RPB per-processor state longwords
to indicate which other processors are enabled. At this time, it
requests interprocessor interrupts to these processors.

Note that processor IDs are determined in an implementation specific
manner. The only requirement is that they are small, unique numbers.
If the numbers are not small, excessive memory may be required for
unused per-processor RPB slots.

11.1.4.3 Actions Of Bootstrap Slaves

Bootstrapping processors other than the bootstrap master are referred
to as Dbootstrap slaves. After failing to become master, a slave
remains in console mode and polls for interprocessor interrupts. When
an interprocessor interrupt is received, the bootstrap slave must
locate the RPB and then check its state longword to ensure that it is
enabled. If Epicode memory is required, the slave loads the Epicode
length field in the RPB slot. If Epicode scratch space is required,
the slave 1loads the Epicode scratch space length field in the RPB
slot. Regardless of the need for memory, the slave then sets the
Slave Request (SR) bit in its state word and initiates an interrupt to
the bootstrap master. The slave now waits for an interrupt to
indicate that memory has been allocated and the address returned in
the RPB. Epicode is then loaded by the slave (possibly different
Epicode than that loaded by the master). If no memory was required,
the slave simply continues with the bootstrap process at this point.
The master clears the Slave Request bit before initiating the second
interrupt to the slave.

All processors should be prepared to load Epicode on any B8-Kbyte
boundary. This is to allow packing of Epicode in large pages in the
future. An RPB cell is used to keep track of available memory.

Note that system software in the bootstrap master is responsible for
allocating the Epicode memory for the slaves. The master should wait
a "reasonable" period of time for a memory request from each slave.
Slaves that do not respond are disabled. Explicit operator action is
then required to enable additional slaves at a later time. (This 1is
described in the next section.)

Once Epicode is locaded and control transferred to Epicode, the proper
environment must be established for system software. This is done by
loading the powerfail restart IPRs and registers from the
per-processor portion of the RPB and then transferring control to the
address specified in the PC field of the RPB. System software in the
master 1is responsible for initializing the RPB fields containing the
IPRs and registers.

11.1.4.4 Addition Cf A Processor To A Running System

Once bootstrapping is complete, system software is no longer expecting
requests for Epicode memcry from bootstrapping processors. Thus, the

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-13
BOOTSTRAPPING 26 April 1988

RPB is not examined when interprocessor interrupts are received. In
order to add a new processor, system software must provide an operator
function to request that the bootstrap sequence be completed for any
new processor.

Note that this section only suggests a mechanism for adding processors

to running systems. System software may be designed to wuse
alternative methods.

11.1.5 Powerfail In A Multiprocessing System

Powerfail processing is identical in multiprocesscr and uniprocessor
systems. Epicode saves state without any communication with other
processors.

Powerfail recovery proceeds almost exactly as in a uniprocessor

system. Epicode determines if powerfail was not successfully
completed (PSC clear) or if restart or bootstrapping was in progress
(RIP or BIP set). If so, further checks are done as described below.

In the normal case, Epicode restores state and initiates a powerfail
recovery interrupt Jjust as in a uniprocessor system. It is the
responsibility of system software to coordinate recovery in a
multiprocessor system. The multiprocessor system software has the
context to determine if it is necessary to wait for some other
processor or if this processor should be rebooted. It is responsible
for all further powerfail recovery synchronization.

If a processor cannot complete normal powerfail recovery, further
checks are needed to distinguish between cases where a cold bootstrap
must be initiated and those where the processor must enter slave mode
waiting for an interrupt from another processor. The processor must
examine all per-processor RPB slots looking for a processor which is
either running (PSS, PSC, RIP, and BIP clear, and HE and SE set) or
has successfully completed powerfail processing (PSC set). If one is
found, the processor enters slave mode and waits for an interrupt from
the running or powerfailed processor. Note that this is exactly the
state a slave enters after failing to become a master on cold
bootstrap. If no processors are running or have successfully
completed powerfail, a cold bootstrap is initiated. This procedure is
necessary to guarantee that a processor which failed to complete
powerfail processing cannot interfere with powerfail recovery of the
rest of the system by becoming a master and performing a cold

bootstrap. Very unlikely cases do exist where all processors can
hang. In particular, if the master/slave interlock is not cleared, it
may be impossible to select the new master. However, this is

considered more acceptable than an unsynchronized bootstrap.

This procedure is independent of whether or not all processors
powerfailed.

11.2 CONSOLE

This section describes the PRISM console functionality.
Implementation-specific considerations such as diagnostic functions
are not discussed.

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-14
CONSOLE 26 Aapril 1988

A console terminal is connected to each PRISM processor. More
information on communication with console terminals can be found in
Chapter 8, Internal Processor Registers.

11.2.1 Required Functionality

All PRISM systems must provide console functionality to perform all of
the functions described as console responsibility in the bootstrapping
portion of this chapter. These include testing part of memory,
loading Epicode, setting up a system software environment, loading
system software, and handling powerfail recovery. Note that all of
these functions are expected to be done with special Epicode executed
in the PRISM processor.

11.2.2 Entering Console Mode

The PRISM processor can be put in console mode as follows:

1. Console terminal BREAK key

2. HALT instruction, Kernel Stack Not Valid, or a Double Machine
Check Error

In all cases, the console is now ready to accept commands.

The result of a HALT instruction, Kernel Stack Not Valid, or a Double
Machine Check Error depends on the current setting of the
implementation-dependent halt action. This may be either halt,
restart/halt, boot/halt, or restart/boot/halt. The multiple action
settings specify secondary or tertiary actions to be taken after a
failure. For example, restart/halt indicates that if restart fails,
the processor should halt.

If enabled, the BREAK key on the console terminal will always cause
the PRISM processor to enter console mode.

11.2.3 Program Controlled Console I/O

Program controlled console I/O is necessary to allow system software
to communicate with the operator during the bootstrap process. More
information on communication with console terminals can be found in
Chapter 8, Internal Processor Registers.

11.3 CONSOLE LANGUAGE

The PRISM console interprets commands typed on the console terminal
and controls the operation of the PRISM processor.

Through the console terminal, an operator can boot the operating
system, or a field service engineer can maintain the system. When the

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-15
CONSOLE LANGUAGE 26 April 1988

processor is halted, the operator controls the system through the
console command language. When the processor is in console mode, the
operator is prompted for input with the string "Pn>>>" where n is the
processor number.

It may be possible for the operator to put the system in an

inconsistent state through the use of the console commands. For
example, it may be possible to use the console to set bits in MBZ
fields, or to set conflicting control bits. The operation of the

processor in such a state is UNDEFINED.

11.3.1 Control Characters

In console I/0 mode, several characters have special meanings.

o Carriage Return - Ends a command line. A null line
terminated by a carriage return is treated as a valid, null
command. Carriage return is echoed as carriage return, line
feed.

o RUBOUT - When the operator types RUBOUT, the console ignores
the entire line and prompts for another command.

o CTRL/U - When the operator types CTRL/U the console ignores
the entire line and prompts for another command. If CTRL/U
is typed on an empty 1line, it is echoed, and otherwise
ignored. The console prompts for another command.

o CTRL/S - Stops output to the console terminal until CTRL/Q is
typed. Additional input between CTRL/S and CTRL/Q 1is
ignored. Additional CTRL/Ss before the CTRL/Q are ignored.
CTRL/S and CTRL/Q are not echoed.

o CTRL/Q ~- Resumes output stopped by CTRL/S. Additional
CTRL/Qs are ignored. CTRL/S and CTRL/Q are not echoed.

o BREAK - If the console is in console I/0 mode, BREAK is
ignored. If the console is in program I1I/0 mode and BREAK is
disabled, BREAK is passed to the operating system 1like any
other character. If the conscle is in program I/0 mode and
BREAK is enabled, BREAK causes the processor to enter console
I/0 mode.

11.3.2 Command Syntax

All commands are abbreviated to a single character. Multiple adjacent
spaces and tabs are treated as a single space by the console. Leading
and trailing spaces and tabs are ignored. Illegal characters are
ignored and echoed as BEL (ASCII code 7).

Command qualifiers must appear immediately after the command keyword
without intervening spaces.

All numbers (addresses, data, counts) are in hexadecimal. (Note,

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-16
CONSOLE LANGUAGE 26 April 1988

though, that symbolic 1register names include decimal digits.) Hex
digits are 0 through 9, and A through F. The console does not
distinguish between upper and lower case. Both are accepted.

11.3.3 Commands
Processor control commands:
© HALT
¢ INITIALIZE
o START
o CONTINUE

¢ BOOT

Data transfer commands:
o EXAMINE

o DEPOSIT

Console control commands:

o TEST

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-17
CONSOLE LANGUAGE 26 April 1988
BOOT
Format:
B [<qualifier list>] [<device:>] [<filename>]
Qualifiers:
o /<data> - This allows a console user to specify the
bootstrap options parameter.

o /S - The console loads the bootstrap program and prompts
for further console commands.

o /L:n - The console loads a one block boctstrap program
from logical block number n.
Description:

The device specification format is consistent with the PRISM system
software naming conventions.

The console initializes the processor, and loads a file and starts the
system bootstrap program running; see Section 11.1 above. The default
device and filename are implementation-dependent. The console
searches through an implementation-dependent default search list.

The information supplied in this command is stored in the RFB.

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-18
CONSOLE LANGUAGE 26 April 1988

CONTINUE
Format:
C
Qualifiers:
/ALL - Continue all processors in a multiprocessor system.
Description:
The processor begins instruction execution at the address currently

contained in the Program Counter. Processor initialization is not
performed. The console enters program I/0O mode.

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-19
CONSOLE LANGUAGE 26 April 1988
DEPOSIT
Format:

D [<qualifier list>] <address> <data>
Qualifiers:

See Table 11-2 in the description of the EXAMINE command.
Description:
Deposits the data into the address specified. If no address space or
data size qualifiers are specified, the defaults are the last address
space and data size used in a DEPOSIT or EXAMINE command. On each
entry to console mode, the default address space is virtual memory,
the default data size is longword, and the default address is zero.
If the specified data is larger than the destination data size, the
console truncates the data to the least significant digits typed. If

the specified data is smaller than the data size to be deposited, it
is zero extended. ’

Examples:

D/P/B/N:200 0 0 Clears the first 512 bytes of physical memory.

D/V/L/N:4 1234 5 Deposits "5" into 4 longwords in virtual
memory.

D/R/N:8 R2 FFFFFFFF Loads general registers R2 through R9 with
FFFFFFFF.

D/N:200 - O Clears 512 locations starting at the previous

' address.

D/I KSP 1234FACE Deposits 1234FACE into the Kernel Stack Pointer.

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-20
CONSOLE LANGUAGE 26 April 1988
EXAMINE
Format:
E [<qualifier list>] <address> [additional parameters]
Qualifiers:
See Table 11-2
Response:
<tab><address space identifier> <address> <data>
The address space identifier can be:
o I - Internal Processor Register.
© P - Physical memory. Note that when virtual memory is
examined, the address space and address in the response
are the translated physical address.
© R - Register.

© M - Machine-dependent address space.

Description:

Examines the contents of the specified address. If no address is
specified, "+" is assumed.

Examining an IPR does not write into the scalar registers that would
be written if an MFPR to the IPR were executed. The response the
data.

TBCHK requires the ASN to be specified as an additional parameter.
Examples:
The response to E/I WHAMI on processor 3 is:
I WHAMI 00000003
The response to E/V 1234564 is:
P Q0000FE3C 01739102

Where the virtual address 1234564 maps to the physical address FE3C
and the contents of that location are 01739102.

The response to E/P FE3C is:

P OOO0OFE3C 01739102

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-21
CONSOLE LANGUAGE 26 April 1988

- — - — - ——

/B

/R

/I

Table 11-2: Qualifiers for Examine and Deposit

- A G n - A = = . e S - W e e S G S M ML e G M M e e M G W e e e A e

The data size is longword.
The data size is quadword.

The address space is virtual memory. No access and

protection checking occurs. If the virtual address

cannot be translated due an invalid PTE, the console
issues a "?TNV" error message.

The address space is physical memory. If an attempt
is made to reference a non-existent memory location,
The console issues a "?NXM" error message.

The address space is registers. These are the scalar
and vector registers.

The following symbolic addresses can be used for
either Examine or Deposit commands:

sp - Current Mode Stack Pointer (scalar
register R1).

Rn - Scalar Register ‘n’. The register number
is in decimal and in the range 0-63.

vn[m] - Vector Register 'n’, element 'm’. The

register number is decimal and in the
range 0-15; the element number is
decimal and in the range 0-63.

The address space is internal registers. These are the
vector control registers, internal processor registers,
Program Counter, and Processor Status.

The following symbolic addresses can be used for
either Examine or Deposit commands:

PS - Processor Status.

PC - Program Counter.

vC - Vector Count.

VL - Vector Length.

vM - Vector Mask.

ASTEN - AST Enable.

CRCS - Console Receive Control Status.
CTCS - Console Transmit Control Status.
ICIE - Interval Clock Interrupt Enable.
CCR - Cycle Count Register.

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-22

CONSOLE LANGUAGE 26 April 1988
Table 11-2: Qualifiers for Examine and Deposit (Continued)
Qualifier Meaning
IPIE - Interprocessor Interrupt Enable.
KSP - Kernel Stack Pointer.
PRBR - Processor Base Register.
SCBB - System Control Block Base.
TOY - Time Of Year.
UsSp - User Stack Pointer.
The following symbeolic addresses can be used for the
Examine command only:
ALL - All IPR’s listed below, except TBCHK.
ASN - Address Space Number.
ASTSR - AST Summary Register.
CRDB - Console Receive Data Buffer.
PCBB - Privileged Context Block Base.
SSN - System Serial Number.
PTBR - Page Table Base Register.
SID - System Identification.
SISR - Software Interrupt Summary Register.
TBCHK -~ Translation Buffer Check.
WHAMI - Who-Am-I.
The following symbolic addresses can be used for the
Deposit command only:
ASTRR - AST Request Register.
CTDB - Console Transmit Data Buffer.
IPIR - Interprocessor Interrupt Request.
SIRR - Software Interrupt Request Register.
TBIS - Translation Buffer Invalidate Single.
/M (Optional) The address space is machine dependent.

/N:<count>

The address is the first of a range. The

console examines or deposits the specified number of
addresses starting at the first address. If the
first address is the symbolic address "-", the
succeeding addresses are at still larger addresses.
The symbolic address specifies only the starting
address, not the direction of succession,

This qualifier may be used only for memory and register
address spaces. Operation is UNDEFINED if it is used
for internal registers.

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-23
CONSOLE LANGUAGE 26 April 1988

Table 11-2: Qualifiers for Examine and Deposit (Continued)

- ——— Y . - . S A s T G W e S e S S W R S M e A S - e S TS AR G D b e D S W W e S e

—— - S v - - - - - - - - WR e WS R e e v M M W e W G e S . e = W e M S A e e @ em e

The address parameter may also be one of the following symbolic
addresses:

"+’ - The location immediately following the last
location referenced in an examine or deposit.
For references to physical or virtual memory
spaces, the location referenced is the last
address, plus the size of the last reference
(1 for byte, 2 for word, 4 for longword, and 8

for quadword). For other address spaces, the
address is the last addressed referenced,
plus 1.

This variant may be used only for memory and
register address spaces. Operation is UNDEFINED
if it is used for internal registers.

-’ - The location immediately preceding the last
location referenced in an examine or deposit.
For references to physical or virtual memory
spaces, the location referenced is the last
address minus the size of this reference (1
for byte 2 for word, 4 for longword, and 8
for cquadword). For other address spaces, the
address is the last addressed referenced
minus 1.

This variant may be used only for memory and
register address spaces. Operation is UNDEFINED
if it is used for internal registers.

/%’ - The location last referenced in an examine or
deposit.

'R’ - The location addressed by the last location
referenced in an examine or deposit.

- —— i ——— - —— — —— . - - G W= . G R G S S e am . . e -GS S S A e S S G e A e e W N e WS ww e e e

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-24
CONSOLE LANGUAGE 26 April 1988

HALT
Format:
H
Qualifiers:
/ALL - Halt all processors in a multiprocessor system.
Description:

The processor halts at the address currently contained in the Program
Counter.

BOOTSTRAPPING AND CONSQLE RESTRICTED DISTRIBUTION Page 11-25
CONSOLE LANGUAGE 26 April 1988

INITIALIZE
Format:
I
Qualifiers:
None
Description:

A processor initialization is performed; see Section 11.1.1.7 for
initial register contents.

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-26
CONSOLE LANGUAGE 26 April 1988

START
Format: .
S [<address>]
Qualifiers:
None
Description:
The console starts instruction execution at the specified address.
The default address is implementation dependent. 1Instructions are

executed from virtual memory. The START command is equivalent to a
DEPOSIT to PC, followed by a CONTINUE. No INITIALIZE is performed.

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION Page 11-27
CONSOLE LANGUAGE 26 April 1988

TEST
Format:
T [<qualifier list>]
Qualifiers:
Implementation-dependent
Description:

The PRISM processor executes a self test. All qualifiers are
optional.

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION

Page 11-28
CONSOLE LANGUAGE

26 April 1988
11.3.4 Error Messages

The following are the console error messages:

© BEL - Illegal characters are ignored and are echoed as BEL.

© ?NXM - Non-existent memory.

© ?TNV - Translation Not Valid.

BOOTSTRAPPING AND CONSOLE RESTRICTED DISTRIBUTION
REVISION HISTORY

Revision

History:

Revision 3.0, 26 April 1988

1.

2.

Revision

w N

o w ™o ~J o

Change Examine and Deposit of IPR’s to not
registers.

Minor changes to RPB.

2.0, 24 June 1986

New initial address space layout.

Clarify initial address space protection.
Add CYCCR.

Allow load from any logical block.

Restrict use of range and +,- parameters in
Deposit.

Remove references to execute protection.
Add check for zero in RPB search.

SP is initialized on boot.

Page 11-2%

26 April 1988

use

Split registers into internal and scalar or vector.

Minor editorial changes.

Revision 1.0, 22 December 1985

1.

Initial review version.

scalar

Examine and

RESTRICTED DISTRIBUTION

CHAPTER 12

I/0 ARCHITECTURE

12.1 SCOPE

This chapter specifies requirements on hardware and software
implementors which ensure compatibility between PRISM processors,
memory, and I/O subsystems.

Common to all implementations of the I/O subsystem is the fact that
communications between the PRISM processors and the I/0
processors/devices take place via the following mechanisms:

1. Reads/writes of locations in shared system memory.
2. Reads/writes of locations in PRISM I/O space.

3. Interrupts.

The I/0O architecture specifies a number of requirements relevant to
these mechanisms. I/0 processors, buses, and I/0 devices are
collectively referred to as I/O devices in the remainder of this
chapter. I/0 devices are accessible to PRISM processors in the I/O
portion of PRISM physical address space. Some I1/0 devices may be
directly programmed by reads and writes from the PRISM processor to
control registers in the I/O device. Other I/O devices may transfer
data directly from/to PRISM system memory.

12.2 SYSTEM MEMORY

The requirements regarding system memory concern visibility and
accessibility of system memory and with virtual memory translation by
I1/0 devices:

1. All system memory must be visible and accessible to all
processors all of the time.

2. All system memory must be accessible from all I/0 devices.
However, it does not have to be all visible all of the time.
For example, bus maps are allowed. Therefore, I1/0 devices
may need map registers to be set appropriately before they
can access any given memory location.

3. Direct memory access I/O devices must provide a way to
gather/scatter segments of a transfer to/from physical

I/0 ARCHITECTURE RESTRICTED DISTRIBUTION Page 12-2

SYSTEM MEMORY 26 April 1988
memory. This can be via map registers (e.g. MBA), I/0O bus
map registers (e.g. UBA), or command/mapping control lists
(e.g. BCa).

4. 1I/0 devices may request interlocked access to system memory.
5. 1I/0 devices are not allowed to interpret PRISM page tables.

6. Software must guarantee that all I/0 buffers are quadword
aligned.

7. 1I/0 devices are allowed to read only the integral number of
quadwords containing the buffer to be written from system
memory to an I/0 device. If the I/O device supports a
transfer granularity of less than a quadword (e.g. magtape),
a partial write of the last quadword to the I/0 device may
occur.

8. Writes from an I/O device to system memory may specify any
byte count, but the remainder, if any, of the final quadword
is UNPREDICTABLE.

9. Any buffered/non-buffered datapath provided by a bus map or
bus adapter must be totally transparent to software.

12.3 PRISM I/0 SPACE AND DEVICE INTERRUPTS

Every PRISM system must conform to certain requirements regarding
accessibility of I/0 devices and interrupt delivery and service:

1. A processor that can be interrupted by an I/0 device must
have access to that device’s I/O registers.

2. It is preferred that all I/O devices be accessible from all
processors, and I/O device interrupts be serviced by any
processor.

3. Interrupts from a specific I/0 device may be delivered to a
single processor. In this case, the interrupting I/0 device
must be accessible from the interrupted processor.

4. An I/O device may direct an interrupt request to more than
one processor. In this case, hardware must guarantee that
the device interrupt is visible to software on exactly one
processor.

5. 1I/0 devices are allowed but not required to cause a system to
enter the bootstrap sequence.

6. Processors are not required to be capable of initiating
read-pause-write cycles. I/0 devices or I/O buses that
require such cycles are therefore not supported.

7. I/0 devices are not requ1red to be able to address all of
PRISM I/0 space.

I/0 ARCHITECTURE RESTRICTED DISTRIBUTION Page 12-3
GRANULARITY OF I/0 SPACE ACCESSES 26 April 1988

12.4 GRANULARITY OF I/O SPACE ACCESSES

The physical address of an I/O register must be an integral multiple
of the register size in bytes (which must be a power of 2); i.e. all
registers must be aligned on natural boundaries. References using a
length attribute other than the length of the register, or to
unaligned addresses, produces UNPREDICTABLE results. For example, a
byte reference to a word-length register will not necessarily respond
by supplying or modifying the byte addressed.

I/0 ARCHITECTURE RESTRICTED DISTRIBUTION Page 12-4
REVISION HISTORY 26 April 1988

Revision History:
Revisgsion 3.0, 26 April 1988.

1. Add granularity of I/O accesses.

Revision 2.0, 24 June 1986

1. Initial review version.

RESTRICTED DISTRIBUTION

APPENDIX A

INSTRUCTION SET SUMMARY

This appendix summarizes the instruction mnemonics and their opcode
and function code fields in hex. There are three listings:

o Functional group listing - Groups related instructions
together.

o Mnemonic listing - Lists the instructions sorted by mnemonic.

o Opcode listing - Lists the instructions sorted by opcode and
function code.

A.l1 ENCODING HINTS

The instruction encoding was designed so that it would simplify
instruction-issue logic. The following comments and equations may be
helpful in understanding the encoding that was chosen. In the
following, the term OPCODE is used for instruction bits <31:26> and
FUNC is used for instruction bits <13:9>.

1. All scalar load and store instructions have OPCODE<5:3> equal
to 111 (bin). OPCODE<2> is a 0 for load and a 1 for store.
OPCODE<1:0> specifies the data size (0 for byte, 1 for word 2
for longword, and 3 for gquadword).

2. All floating-point instructions encode floating underflow
enable in FUNC<3> (0 for wunderflow disabled and 1 for
underflow enabled).

3. All floating-point instructions encode floating rounding mode
in FUNC<2> (0 for round toward zero and 1 for VAX rounding) .

4. All vector instructions use FUNC<4> to determine whether the
Ra field selects a scalar or a vector register (0 for scalar
Ra and 1 for vector Ra).

INSTRUCTION SET SUMMARY RESTRICTED DISTRIBUTION Page A-2
FUNCTIONAL GROUP LISTING 26 April 1988

A.2 FUNCTIONAL GROUP LISTING

Opcode Function

Mnemonic " (hex) Code (hex)
LDB d(rb) ,ra 38 -
LDW d(rb),ra 39 -
LDL d(rb), ra 3a -
LDQ ' d(rb),ra 3B -
STB ra,d(rb) 3C -
STW ra,d(rb) 3D -
STL ra,d(rb) 3E -
STQ ra,d(rb) 3F -
VLDL ra,rb,ve 30 00
VLDQ ra,rb,vec 30 01
VLDL/W ra,rb,ve 30 02
VLDQ/W ra,rb,vc 30 03
VSTL ra,rb,vc 30 04
VSTQ ra,rb,vc 30 05
VGATHL ra,vb,vc 31 00
VGATHQ ra,vb,vc 31 c1
VGATHL/W ra,vb,ve 31 02
VGATHQ/W ra,vb,vc 31 03
VSCATL ra,vb,vc 31 04
VSCATQ ra,vb,vc 31 05
RDVL rc 32 00
RDVC rc 32 01
RDVML rc 32 02
RDVMH rc 32 03
WRVL ra 33 o]¢]
WRVC ra 33 01
WRVML ra 33 02
WRVMH ra 33 03
EPIRES3 36 -
EPIRES4 37 -
BEQ ra,dest 20 -
BNE ra,dest 21 -
BGT ra,dest 22 -
BLE ra,dest 23 -
BGE ra,dest 24 -
BLT ra,dest 25 -
BLBC ra,dest 26 -
BLBS ra,dest 27 -
JSR ra,dest 28 -
JSR ra, (rb) 29 00
FLBC ra 2A -
EPIRESO 2D

EPIRES1 2E -

INSTRUCTION SET SUMMARY
FUNCTIONAL GROUP LISTING

EPIRES2
ADD
ADD/V

SUB
SUB/V

CMPEQ
CMPNE
CMPGT
CMPLE
CMPGE
CMPLT
CMPUGT
CMPULE
CMPUGE
CMPULT

SLL
SRL
SRA
ROT
AND
BIC
OR
ORNOT
XOR
EQV

LDA

CVTFL
CVTFL/C
CVTLF
CVTLF/C

CVTEG
CVTLG

CVTGL
CVTGL/C
CVTGF
CVTGF/C
CVTGF/U
CVTGF/CU

ADDG
ADDG/C
ADDG/U
ADDG/CU
SUBG
SUBG/C
SUBG/U
SUBG/CU

ADDF
ADDF/C
ADDF/U
ADDF/CU
SUBF

ra,rb, rc
ra,rb, rc
ra,rb,rc
ra,rb, rc

ra,rb, rc
ra,rb, rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc

ra,rb, rc
ra,rb,rc
ra,rb, rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc

d(rb) ,ra

ra,rc
ra,rc
ra,rc
ra,rc

ra,rc
ra, rc

ra,rc
ra,rc
ra,rc
ra,rc
ra,rc
ra,rc

ra,rb,xrc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc

ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc

RESTRICTED DISTRIBUTION

Page A-3

26 April 1988

INSTRUCTION SET SUMMARY
FUNCTIONAL GROUP LISTING

SUBF/C
SUBF/U
SUBF/CU

CMPGEQ
CMPGNE
CMPGGT
CMPGLE
CMPGGE
CMPGLT

CMPFEQ
CMPFNE
CMPFGT
CMPFLE
CMPFGE
CMPFLT

DIVG
DIVG/C
DIVG/U
DIVG/CU

DIVF
DIVF/C
DIVF/U
DIVF/CU
DIV
DIV/V
MULG
MULG/C
MULG/U
MULG/CU

MULF
MULF/C
MULF /U
MULF/CU
MULL

MULL/V
UMULH

VMERGE
VMERGE
I0TA

VADD
VADD/V
VSUB
VSUB/V
VADD
VADD/V
VSUB
VSUB/V

VCMPEQ
VCMPNE
VCMPGT
VCMPLE

ra,rb, rc
ra,rb, rc
ra,rb, rc

ra,rb, rc
ra,rb,rc
ra,rb, rc
ra,rb,rc
ra,rb, rc
ra,rb,rc

ra,rb, rc
ra,rb,rc
ra,rb, rc
ra,rb, rc
ra,rb,rc
ra,rb,rc

ra,rb, rc
ra,rb,rc
ra,rb, rc
ra,rb, rc

ra,rb,rc
ra,rb, rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc

ra,rb, rc
ra,rb,rc
ra,rb, rc
ra,rb, rc

ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb, rc

ra,vb,vc
va,vb, vc
ra,ve

ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
va,vb,vc
va,vb,vc
va,vb,vc
va,vb, ve

ra,vb
ra,vb
ra,vb
ra,vb

RESTRICTED DISTRIBUTION

Page A-4

26 April 1988

01
0D
09

INSTRUCTION SET SUMMARY
FUNCTIONAL GROUP LISTING

VCMPGE
VCMPLT
VCMPUGT
VCMPULE
VCMPUGE
VCMPULT
VCMPEQ
VCMPNE
VCMPGT
VCMPLE
VCMPGE
VCMPLT
VCMPUGT
VCMPULE
VCMPUGE
VCMPULT

VSLL
VSRL
VAND
VBIC
VOR
VORNOT
VXOR
VEQV
VSLL
VSRL
VAND
VBIC
VOR
VORNOT
VXOR
VEQV

VCVTFL
VCVTFL/C
VCVTLF
VCVTLF/C
VCVTEG
VCVTLG

VCVTGL
VCVTGL/C
VCVTGF
VCVTGE/C
VCVTGE/U-
VCVTGE/CU

VADDG
VADDG/C
VADDG/U
VADDG/CU
VSUBG
VSUBG/C
VSUBG/U
VSUBG/CU
VADDG
VADDG/C
VADDG/U
VADDG/CU

ra,vb
ra,vb
ra,vb
ra,vb
ra,vb
ra,vb
va,vb
va,vb
va,vb
va,vb
va,vb
va,vb
va,vb
va,vb
va,vb
va,vb

ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb, vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
va,vb,ve
va,vb,vec
va,vb,vc
va,vb,vc
va,vb,vc
va,vb,vc
va,vb,vc
va,vb,vc

vb,ve
vb,ve
vb,ve
vb,ve
vb, ve
vb,vc

vb,ve
vb,vc
vb,ve
vb,vc
vb,ve
vb,vc

ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,ve
ra,vb,ve
va,vb,vc
va,vb,vc
va,vb,vc
va,vb,vc

RESTRICTED DISTRIBUTION

Page A-5

26 April 1988

04
05
oa
0B
0oc
1))
10
11
12
13
14
15
1a
1B
1C
1D

INSTRUCTION SET SUMMARY
FUNCTIONAL GROUP LISTING

VSUBG
VSUBG/C
VSUBG/U
VSUBG/CU

VADDF
VADDF/C
VADDF/U
VADDF/CU
VSUBF
VSUBF/C
VSUBF/U
VSUBF/CU
VADDF
VADDE/C
VADDF /U
VADDF/CU
VSUBF
VSUBF/C
VSUBF/U
VSUBF/CU

VCMPGEQ
VCMPGNE
VCMPGGT
VCMPGLE
VCMPGGE
VCMPGLT
VCMPGEQ
VCMPGNE
VCMPGGT
VCMPGLE
VCMPGGE
VCMPGLT

VCMPFEQ
VCMPFNE
VCMPFGT
VCMPFLE
VCMPFGE
VCMPFLT
VCMPFEQ
VCMPFNE
VCMPFGT
VCMPFLE
VCMPFGE
VCMPFLT

VDIVG
VDIVG/C
VDIVG/U
VDIVG/CU
VDIVG
VDIVG/C
VDIVG/U
VDIVG/CU

VDIVE
VDIVF/C
VDIVF/U

va,vb,ve
va,vb,vc
va,vb,vc
va,vb,vec

ra,vb,vc
ra,vb,vc
ra,vb,ve
ra,vb,vec
ra,vb,vc
ra,vb,ve
ra,vb,vc
ra,vb,vc
va,vb,vc
va,vb,vc
va,vb, vc
va,vb, vc
va,vb,vc
va,vb,vc
va,vb,vc
va,vb,vc

ra,vb
ra,vb
ra,vb
ra,vb
ra,vb
ra,vb
va,vb
va,vb
va,vb
va,vb
va,vb
va,vb

ra,vb
ra,vb
ra,vb
ra,vb
ra,vb
ra,vb
va,vb
va,vb
va,vb
va,vb
va,vb
va,vb

ra,vb,ve
ra,vb,ve
ra,vb,ve
ra,vb,vc
va,vb,vc
va,vb,ve
va,vb,vc
va,vb,vec

ra,vb,vc
ra,vb,vec
ra,vb,vc

RESTRICTED DISTRIBUTION

Page A-6

26 April 1988

15
11
iD
19

INSTRUCTION SET SUMMARY
FUNCTIONAL GROUP LISTING

VDIVF/CU
VDIVF
VDIVF/C
VDIVF/U
VDIVF/CU

VMULG
VMULG/C
VMULG/U
VMULG/CU
VMULG
VMULG/C
VMULG/U
VMULG/CU

VMULF
VMULF/C
VMULF /U
VMULF /CU
VMULF
VMULF/C
VMULF/U
VMULF/CU
VMULL
VMULL/V
VUMULH
VMULL
VMULL/V
VUMULH

DRAIN
DRATINM
DRAINV

HALT
BOOT
REI
BPT
IFLUSH
MOVPS

PROBER
PROBEW

SWASTEN

SWIPL
SWPCTX
RMAQI
CMPSWQI
RMALI

CMPSWLI
CMPSWQIP

LDQP
STQP

RDCC

ra,vb,vc
va,vb, ve
va,vb,vc
va,vb,vc
va,vb,vc

ra,vb,vec
ra,vb,vc
ra,vb,vc
ra,vb,vc
va,vb,ve
va,vb,ve
va,vb,vc
va,vb,ve

ra,vb,vc
ra,vb, vc
ra,vb,ve
ra,vb,ve
va,vb,ve
va,vb,ve
va,vb,vc
va,vb,vc
ra,vb,vec
ra,vb,ve
ra,vb,vc
va,vb,vc
va,vb,vc
va,vb,ve

RESTRICTED DISTRIBUTION

Page A-7

26 April 1988

08
14
10
1C
18

04

INSTRUCTION SET SUMMARY
FUNCTIONAL GROUP LISTING

WRCC
TBFLUSH

MFPR
MTPR

MFPR
MFPR
MEFPR
MTPR

MTPR
MEFPR
MTPR
MFPR
MTPR
MEFPR

MEPR
MTPR
MFPR
MTPR

MFPR
MFPR
MTPR

MTPR
MFPR
MTPR

MFPR
MTPR
MFPR
MFPR
MFPR

MFPR
MTPR
MFPR
MFPR
MTPR
MTPR

MTPR

MEFPR
MTPR

reserved
reserved
reserved
reserved
reserved

Usp
Usp

PTBR
PCBB
SCBB
SCBB

ASTRR
ASTSR
ASTEN
ASTEN
SIRR
SISR

ICIE
ICIE
TOY
TOY

ASN
TBCHK
TBIS

IPIR
IPIE
IPIE

PRBR
PRBR
WHAMI
SID
SSN

CRCS
CRCs
CRDB
CTCsS
CTCS
CTDB

MCES
MCES

RESTRICTED DISTRIBUTION

Page A-8
26 April 1988

DC
8C

00
00

INSTRUCTION SET SUMMARY
MNEMONIC LISTING

Mnemonic

ADD
ADD/V
ADDF
ADDF/C
ADDF/CU
ADDF/U
ADDG
ADDG/C
ADDG/CU
ADDG/U
AND

BEQ

BGE

BGT

BIC
BLBC
BLBS
BLE

BLT

BNE
BOOT
BPT
CMPEQ
CMPFEQ
CMPFGE
CMPEFGT
CMPFLE
CMPFLT
CMPENE
CMPGE
CMPGEQ
CMPGGE
CMPGGT
CMPGLE
CMPGLT
CMPGNE
CMPGT
CMPLE
CMPLT
CMPNE
CMPSWLI
CMPSWQI
CMPSWQIP
CMPUGE
CMPUGT
CMPULE
CMPULT
CVTFG
CVTFL
CVTFL/C
CVTGF
CVTGF/C
CVTGF/CU

A.3 MNEMONIC LISTING

ra,rb,rc
ra,rb,rc
ra,rb, rc
ra,rb,rc
ra,rb, rc
ra,rb,rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb,rc
ra,rb, rc
ra,dest
ra,dest
ra,dest
ra,rb,rc
ra,dest
ra,dest
ra,dest
ra,dest
ra,dest

ra,rb,rc
ra,rb, rc
ra,rb, rc
ra,rb,rc
ra,rb,rc
ra,rb, rc
ra,rb,rc
ra,rb, rc
ra,rb, rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb, rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc

ra,rb,rc
ra,rb, rc
ra,rb,rc
ra,rb, rc
ra,rc
ra,rc
ra,xc
ra,rc
ra,rc
ra,rcC

RESTRICTED DISTRIBUTION

Opcode
(hex)

Page A-9

26 April 1988

Function

Code (hex)

INSTRUCTION SET SUMMARY
MNEMONIC LISTING

CVTGF/U
CVTGL
CVTGL/C
CVTLF
CVTLF/C
CVTLG
DIV
DIV/V
DIVF
DIVF/C
DIVF/CU
DIVF/U
DIVG
DIVG/C
DIVG/CU
DIVG/U
DRAIN
DRAINM
DRAINV
EPIRESO
EPIRES1
EPIRES2
EPIRES3
EPIRES4
EQV
FLBC
HALT
IFLUSH
IOTA
JSR
JSR
LDA
1DB
1DL
LDQ
LDQP
LDW
MFPR
MFPR
MFPR
MFPR
MFPR
MFPR
MFPR
MFPR
MFPR
MFPR
MFPR
MFPR
MFPR
MFPR
MFPR
MFPR
MFPR
MFPR
MFPR
MFPR
MOVPS
MTPR
MTPR

ra, rc
ra,rc
ra,rc
ra,rc
ra,rc
ra,rc
ra,rb,rc
ra,rb,rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb,rc
ra,rb,rc
ra,rb, rc
ra,rb, rc

ra,rb,rc
ra

ra,vc
ra, (rb)

ra,dest

d(rb) ,ra
d(rb),ra
d(rb),ra
d(rb), ra

d(rb),ra
ASN
ASTEN
ASTSR
CRCS
CRDB
CTCS
ICIE
IPIE
MCES
PCBB
PRBR
PTBR
SCBB
SID
SISR
SSN
TBCHK
TOY

- USP

WHAMI

ASTEN
ASTRR

RESTRICTED DISTRIBUTION

Page A-10
26 April 1988

INSTRUCTION SET SUMMARY
MNEMONIC LISTING

MTPR
MTPR
MTPR
MTPR
MTPR
MTPR
MTPR
MTPR
MTPR
MTPR
MTPR
MTPR
MTPR
MTPR
MULF
MULF/C
MULF/CU
MULF/U
MULG
MULG/C
MULG/CU
MULG/U
MULL
MULL/V
OR
ORNOT
PROBER
PROBEW
RDCC
RDVC
RDVL
RDVMH
RDVML
REI
RMALI
RMAQT
ROT

SLL

SRA

SRL

STB

STL

STQ
STQP
STW

SUB
SUB/V
SUBF
SUBF/C
SUBF/CU
SUBF/U
SUBG
SUBG/C
SUBG/CU
SUBG/U
SWASTEN
SWIPL
SWPCTX
TBFLUSH
UMULH

CRCS
CTCS
CTDRB
ICIE
IPIE
IPIR
MCES
PRBR
SCBB
SIRR
TBIS

TOY

Usp

VEN
ra,xb, rc
ra,rb,rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc

rc
rc
rc
rce

ra,rb,rc
ra,rb, rc
ra,rb, rc
ra,rb,rc
ra,d(rb)
ra,d(rb)
ra,d(rb)

ra,d(rb)
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb, rc
ra,rb, rc
ra,rb,rc
ra,rb, rc

ra,rb,rc

RESTRICTED DISTRIBUTION

Page A-1ll

26 April 1988

87
99
9a
8B
92
91
9C
93
86
8A
8F
8C
83
9B
04
00
08
oc
04
00
08

INSTRUCTION SET SUMMARY
MNEMONIC LISTING

VADD
VADD
VADD/V
VADD/V
VADDF
VADDF
VADDF/C
VADDF/C
VADDF/CU
VADDF/CU
VADDF/U
VADDF/U
VADDG
VADDG
VADDG/C
VADDG/C
VADDG/CU
VADDG/CU
VADDG/U
VADDG/U
VAND
VAND
VBIC
VBIC
VCMPEQ
VCMPEQ
VCMPFEQ
VCMPFEQ
VCMPFGE
VCMPFGE
VCMPFGT
VCMPFGT
VCMPFLE
VCMPFLE
VCMPFLT
VCMPFLT
VCMPFNE
VCMPFNE
VCMPGE
VCMPGE
VCMPGEQ
VCMPGEQ
VCMPGGE
VCMPGGE
VCMPGGT
VCMPGGT
VCMPGLE
VCMPGLE
VCMPGLT
VCMPGLT
VCMPGNE
VCMPGNE
VCMPGT
VCMPGT
VCMPLE
VCMPLE
VCMPLT
VCMPLT
VCMPNE
VCMPNE

ra,vb,vc
va,vb,ve
ra,vb,vc
va,vb,vc
ra,vb, vc
va,vb, vc
ra,vb,vc
va,vb,ve
ra,vb,vc
va,vb,vec
ra,vb,ve
va,vb, vc
ra,vb,vc
va,vb, vc
ra,vb,vc
va,vb,vc
ra,vb,vc
va,vb,vc
ra,vb,vc
va,vb,ve
ra,vb,vc
va,vb,vc
ra,vb,vc
va,vb,vc
ra,vb
va,vb
ra,vb
va,vb
ra,vb
va,vb
ra,vb
va,vb
ra,vb
va,vb
ra,vb
va,vb
ra,vb .
va,vb
ra,vb
va,vb
ra,vb
va,vb
ra,vb
va,vb
ra,vb
va,vb
ra,vb
va, vb
ra,vb
va,vb
ra,vb
va,vb
ra,vb
va,vb
ra,vb
va,vb
ra,vb
va,vb

‘ra,vb

va,vb

RESTRICTED DISTRIBUTION

Page A-12

26 April 1988

00

INSTRUCTION SET SUMMARY
MNEMONIC LISTING

VCMPUGE
VCMPUGE
VCMPUGT
VCMPUGT
VCMPULE
VCMPULE
VCMPULT
VCMPULT
VCVTEG
VCVTFL
VCVTFL/C
VCVTGF
VCVTGF/C
VCVTGF/CU
VCVTGF/U
VCVTGL
VCVTGL/C
VCVTLF
VCVTLF/C
VCVTLG
VDIVF
VDIVF
VDIVE/C
VDIVF/C
VDIVF/CU
VDIVF/CU
VDIVF/U
VDIVF/U
VDIVG
VDIVG
VDIVG/C
VDIVG/C
VDIVG/CU
VDIVG/CU
VDIVG/U
VDIVG/U
VEQV
VEQV
VGATHL
VGATHL/W
VGATHQ
VGATHQ/W
VLDL
VLDL/W
VLDQ
VLDQ/W
VMERGE
VMERGE
VMULF
VMULF
VMULF/C
VMULF/C
VMULF /CU
VMULF/CU
VMULF/U
VMULF/U
VMULG
VMULG
VMULG/C
VMULG/C

ra,vb
va,vb
ra,vb
va,vb
ra,vb
va,vb
ra,vb
va,vb
vb, ve
vb,ve
vb, vc
vb, vc
vb,ve
vb, ve
vb,ve
vb,ve
vb, ve
vbh,ve
vb,vc
vb, vc
ra,vb,vc
va,vb,vc
ra,vb,vc
va,vb,vc
ra,vb,ve
va,vb,vc
ra,vb,vc
va,vb,vc
ra,vb,vc
va,vb,vc
ra,vb,vc
va,vb,vc
ra,vb,vc
va,vb,vc
ra,vb,vc
va,vb,vc
ra,vb,vc
va,vb,vc
ra, vb, vc
ra,vb,vc
ra,vb,vc
ra,vb,ve
ra,rb,vc
ra,rb,vc
ra,rb,vc
ra,rb,vc
ra,vb,vc
va, vb,vc
ra,vb,vc
va,vb,vc
ra,vb,vc
va,vb,vc
ra,vb,vc
va,vb,vc
ra,vb,ve
va,vb,vc
ra,vb,ve
va,vb,vc
ra,vb,vec
va,vb,ve

RESTRICTED DISTRIBUTION

Page A-13

26 April 1988

0cC
1C
[0)-%
1A
0B
1B
0D
1D
12
14
10
15
11
19

INSTRUCTION SET SUMMARY
MNEMONIC LISTING

VMULG/CU
VMULG/CU
VMULG/U
VMULG/U
VMULL
VMULL
VMULL/V
VMULL/V
VOR

VOR
VORNOT
VORNOT
VSCATL
VSCATQ
VSLL
VSLL
VSRL
VSRL
VSTL
VSTQ
VSUB
VSUB
VSUB/V
VSUB/V
VSUBF
VSUBF
VSUBF/C
VSUBF/C
VSUBF/CU
VSUBF/CU
VSUBF/U
VSUBF/U
VSUBG
VSUBG
VSUBG/C
VSUBG/C
VSUBG/CU
VSUBG/CU
VSUBG/U
VSUBG/U
VUMULH
VUMULH
VXOR
VXOR
WRCC
WRVC
WRVL
WRVMH
WRVML
XOR
reserved
reserved
reserved
reserved
reserved

ra,vb,vc
va,vb, vc
ra,vb,vc
va,vb,ve
ra,vb,vc
va,vb, vc
ra,vb,vc
va,vb,vc
ra,vb,vc
va,vb,vc
ra,vb, vc
va,vb,ve
ra,vb,ve
ra,vb,vec
ra,vb,vc
va,vb, vc
ra,vb,vc
va,vb, vc
ra,rb,vc
ra,rb,vc
ra,vb,vc
va,vb,ve
ra,vb,vc
va,vb,vc
ra,vb,vc
va,vb,vc
ra,vb,vc
va,vb,vc
ra,vb,vc
va,vb,ve
ra,vb,vc
va,vb,vc
ra,vb,vc
va,vb,vc
ra,vb,vc
va,vb, vc
ra,vb,vc
va,vb,ve
ra,vb,vc
va,vb,vc
ra,vb,vc
va,vb, vc
ra,vb,vc
va,vb,vc

ra
ra
ra
ra
ra,rb,rc

RESTRICTED DISTRIBUTION

Page A-14

26 April 1988

08
18
0C
1C
02
12
oA
1A
01

INSTRUCTION SET SUMMARY RESTRICTED DISTRIBUTION Page A-15
OPCODE LISTING 26 April 1988

A.4 OPCODE LISTING

Opcode Function

Mnemonic (hex) Code (hex)
HALT 00 00
BOOT 00 01
REI - 00 02
BPT : 00 03
SWASTEN 00 05
SWIPL 00 06
SWPCTX 00 07
TBELUSH 00 08
PROBER 00 oA
PROBEW 00 0B
RDCC 00 0C
WRCC 00 0D
IFLUSH 00 31
MOVPS 00 32
RMAQI 00 38
CMPSWQI 00 39
RMALI 00 3A
CMPSWLI 00 3B
CMPSWQIP 00 3C
LDQP 00 3D
STQP 00 3E
MTPR USP 00 83
MTPR SCEB 00 86
MTPR ASTRR 00 87
MTPR ASTEN 00 89
MTPR SIRR 00 8A
MTPR ICIE 00 8B
MTPR TOY 00 8C
MTPR TBIS 00 8F
MTPR IPIR 00 91
MTPR IPIE 00 92
MTPR PRBR Q0 93
MTPR CRCS 00 97
MTPR CTCS 00 99
MTPR CTDB 00 9A
MTPR VEN 00 9B
MTPR MCES 00 9C
MFPR usP 00 C3
MFPR . PTBR 00 C4
MFPR PCBB 00 Cc5
MFPR SCBB 00 ceé
MFPR ASTSR 00 c8
MFPR ASTEN 00 (03°)
MFPR SISR 00 ca
MEFPR ICIE 00 CB
MFPR TOY 00 CcC
MFPR ASN 00 CD
MFPR TBCHK 00 CE
MEPR IPIE 00 D2
MEPR PRBR 00 D3
MFPR WHAMI) 00 D4
MFPR SID 00 D5

MFPR SSN 00 D6

INSTRUCTION SET SUMMARY
OPCODE LISTING

MFPR
MFPR
MFPR
MFPR
ADD
ADD/V
SUB
SUB/V
CMPEQ
CMPNE
CMPGT
CMPLE
CMPGE
CMPLT
CMPUGT
CMPULE
CMPUGE
CMPULT
AND

OR

XOR

SLL

SRL

SRA
ROT

BIC
ORNOT
EQV
1LDA
CVTFL/C
CVTLF/C
CVTFL
CVTLF
CVTGL/C
CVTGF/C
CVTGL
CVTGF
CVTGF/CU
CVTGF/U
CVTFG
CVTLG
ADDG/C
SUBG/C
ADDG
SUBG
ADDG/CU
SUBG/CU
ADDG/U
SUBG/U
ADDF/C
SUBF/C
ADDF
SUBF
ADDF/CU
SUBF/CU
ADDF/U
SUBF/U
CMPGEQ
CMPGNE
CMPGGT

CRCS
CRDB
CTCS
MCES
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb,rc
ra,rb, rc
ra,rb,rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb,rc
ra,rb,rc
ra,rb, rc
ra,rb, rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb,rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb,rc
d(rb),ra
ra,rc
ra,rc
ra,rc
ra,rc
ra,rc
ra,rc
ra,rc
ra,rc
ra,rc
ra,rc
ra,rc
ra,xc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb,rc
ra,rb,rc
ra,rb, rc

RESTRICTED DISTRIBUTION

Page A-16

26 April 1988

D7
D8

INSTRUCTION SET SUMMARY
OPCODE LISTING

CMPGLE
CMPGGE
CMPGLT
CMPFEQ
CMPFNE
CMPFGT
CMPFLE
CMPFGE
CMPFLT
DIVG/C
DIVG
DIVG/CU
DIVG/U
DIVF/C
DIV
DIVF
DIVF/CU
DIV/V
DIVE/U
MULG/C
MULG
MULG/CU
MULG/U
MULF/C
MULL
UMULH
MULF
MULF/CU
MULL/V
MULF/U
VMERGE
IOTA
VMERGE
VADD
VSUB
VADD/V
VSUB/V
VADD
VSUB
VADD/V
VSUB/V
VCMPEQ
VCMPNE
VCMPGT
VCMPLE
VCMPGE
VCMPLT
VCMPUGT
VCMPULE
VCMPUGE
VCMPULT
VCMPEQ
VCMPNE
VCMPGT
VCMPLE
VCMPGE
VCMPLT
VCMPUGT
VCMPULE
VCMPUGE

ra,rb, rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb, rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb,rc
ra,rb, rc
ra,rb,rc
ra,vb,vc
ra,vc
va,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
va,vb,vc
va,vb,vec
va,vb,ve
va,vb,ve
ra,vb
ra,vb
ra,vb
ra,vb
ra,vb
ra,vb
ra,vb
ra,vb
ra,vb
ra,vb
va,vb
va,vb
va,vb
va,vb
va,vb
va,vb
va,vb
va,vb
va,vb

RESTRICTED DISTRIBUTION

Page A-17
26 April 1988

INSTRUCTION SET SUMMARY
OPCODE LISTING

VCMPULT
VAND
VOR
VXOR
VSLL
VSRL
VBIC
VORNOT
VEQV
VAND
VOR
VXOR
VSLL
VSRL
VBIC
VORNOT
VEQV
reserved
reserved
VCVTGL/C
VCVTGF/C
VCVTGL
VCVTGF
VCVTGF/CU
VCVTGFE/U
VCVTFL/C
VCVTLEF/C
VCVTFG
VCVTLG
VCVTFL
VCVTLF
VADDG/C
VSUBG/C
VADDG
VSUBG
VADDG/CU
VSUBG/CU
VADDG/U
VSUBG/U
VADDG/C
VSUBG/C
VADDG
VSUBG
VADDG/CU
VSUBG/CU
VADDG/U
VSUBG/U
VADDF/C
VSUBF/C
VADDF
VSUBF
VADDF/CU
VSUBF/CU
VADDF /U
VSUBF/U
VADDE/C
VSUBF/C
VADDF
VSUBF
VADDF/CU

va,vb

ra,vb, vc
ra,vb,vc
ra,vb, vc
ra,vb,vc
ra,vb,vc
ra,vb, vc
ra,vb,vc
ra,vb,vc
va,vb,vc
va,vb,vc
va,vb,vc
va,vb,ve
va,vb,vce
va,vb,vc
va,vb, vc
va,vb,vc

vb,ve

vb, vc

vb,vc

vb, vc

vb, vec

vb, vc

vb,vec

vb, vc

vb,vc

vb, ve

vb, ve

vb,ve

ra,vb, vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
va,vb,ve
va,vb, vc
va,vb,vc
va,vb,vc
va,vb,vc
va,vb,vec
va,vb,vc
va,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,ve
va,vb,vc
va,vb,vc
va,vb,vc
va,vb,vc
va,vb,vc

RESTRICTED DISTRIBUTION

Page A-18

26 April 1988

INSTRUCTION SET SUMMARY
OPCODE LISTING

VSUBF/CU
VADDF /U
VSUBF/U
VCMPGEQ
VCMPGNE
VCMPGGT
VCMPGLE
VCMPGGE
VCMPGLT
VCMPGEQ
VCMPGNE
VCMPGGT
VCMPGLE
VCMPGGE
VCMPGLT
VCMPFEQ
VCMPFNE
VCMPFGT
VCMPFLE
VCMPFGE
VCMPFLT
VCMPFEQ
VCMPFNE
VCMPFGT
VCMPFLE
VCMPFGE
VCMPFLT
VDIVG/C
VDIVG
VDIVG/CU
VDIVG/U
VDIVG/C
VDIVG
VDIVG/CU
VDIVG/U
VDIVF/C
VDIVFE
VDIVE/CU
VDIVF/U
VDIVE/C
VDIVE
VDIVF/CU
VDIVF/U
VMULG/C
VMULG

VMULG/CU.

VMULG/U
VMULG/C
VMULG
VMULG/CU
VMULG/U
VMULF/C
VMULL
VUMULH
VMULF
VMULF/CU
VMULL/V
VMULF/U
VMULF/C
VMULL

va,vb,ve
va,vb,vec
va,vb,vc
ra,vb
ra,vb
ra,vb
ra,vb
ra,vb
ra,vb
va,vb
va,vb
va,vb
va,vb
va,vb
va,vb
ra,vb
ra,vb
ra,vb
ra,vb
ra,vb
ra,vb
va,vb
va,vb
va,vb
va,vb
va,vb
va,vb
ra,vb,vc
ra,vb, vc
ra,vb,vc
ra,vb,vc
va,vb,vc
va,vb,vc
va,vb,ve
va,vb,vc
ra,vb,vc
ra,vb,ve
ra,vb,vc
ra,vb,vec
va,vb,vec
va,vb,vc
va,vb,vc
va,vb,vec
ra,vb,vc
ra,vb,vc
ra,vb,vec
ra,vb,vc
va,vb,vc
va,vb,vc
va,vb,vc
va,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb, vc
ra,vb,vc
ra,vb,vc
va,vb,vec
va,vb,vec

RESTRICTED DISTRIBUTION

Page A-19

26 April 1988

19
1C
1D
00
01
02

INSTRUCTION SET SUMMARY
OPCODE LISTING

VUMULH
VMULF
VMULF/CU
VMULL/V
VMULF /U
BEQ

BNE

BGT

BLE

BGE

BLT

BLBC
BLBS

JSR

JSR

FLBC
DRAIN
DRAINM
DRAINV
reserved
EPIRESO
EPIRES1
EPIRES2
VLDL
VLDQ
VLDL/W
VLDQ/W
VSTL
VSTQ
VGATEL
VGATHQ
VGATHEL/W
VGATHQ/W
VSCATL
VSCATQ
RDVL
RDVC
RDVML
RDVMH
WRVL
WRVC
WRVML
WRVMH
reserved
reserved
EPIRES3
EPIRES4
LDB

LDW

LDL

LDQ

STB

STW

STL

STQ

va,vb, vc
va,vb,vc
va,vb,vc
va,vb,vc
va,vb,ve
ra,dest
ra,dest
ra,dest
ra,dest
ra,dest
ra,dest
ra,dest
ra,dest
ra,dest
ra, (rb)
ra

ra,rb,vc
ra,rb,vc
ra,rb,vc
ra,rb,vc
ra,rb,vc
ra,rb,ve
ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc
ra,vb,vc

ra,vb,vc
rc
rc
rc
rc
ra
ra
ra
ra
d(rb),ra
d(rb), ra
d(rb) ,ra
d(rb),ra
ra,d(rb)
ra,d(rb)
ra,d (rb)

ra,d(rb)

RESTRICTED DISTRIBUTION

Page A-20

26 April 1988

13
14
18
1A
icC

INSTRUCTION SET SUMMARY RESTRICTED DISTRIBUTION Page A-21
REVISION HISTORY 26 April 1988

Revision History:
Revision 3.0, 26 April 1988

1. Change opcode assignments for converts.

2. Change mnemonics to use opcode qualifiers.

Revision 2.0, 24 June 1986

1. Split MULx and DIVx into different opcodes.
2. Move LDA to keep MULG/MULF in even-odd pair.
3. Add in new DRAIN instructions.

4. Add in VCMPUxx.

5. Add in CYCCR IPR.

6. Change FOB to FLBC.

7. Remove the MULH, REM, and VREM instructions.
8. Remove the ESP, SSP, and TBIASN IPRs.

Revision 1.0, December 22, 1985

1. Total rework for 32 bit system.

Revision 0.0, July 5, 1985

1. First Review Distribution

RESTRICTED DISTRIBUTION

APPENDIX B

PROGRAMMING HINTS

B.1 INTRODUCTION
This appendix documents programming techniques for wusing the PRISM

instruction set efficiently to perform operations that are not
supported directly by the PRISM architecture.

B.2 INTEGER DIVIDE

On a machine that does not implement integer divide, division can be
performed by using G_floating divide as shown below.

r4 = dividend
r5 = divisor
r6 = quotient

Divide without overflow checking:

add #1, r5, ré6 ;check divisor and
beq ré6, 108 ;branch if divisor is -1
cvtlg r4, r6 ;jconvert divisor to G_floating
cvtlg r5, r8 ;convert divisor to G_floating
divg/c r6, r8, ré ;divide
cvtgl/c r6, ré ;convert to longword
beqg r0, 208 ;done
108: sub r4, r0, ré6 ;negate dividend

20$:

Divide with overflow checking enabled:

add $#1, r5, ré ;check divisor and
beqg r6, 10$;branch if divisor is -1
cvtlg r4, ré6 ;convert divisor to G_floating
cvtlg r5, r8 ;convert divisor to G_floating
divg/c r6, r8, ré6 ;divide
cvtgl/c r6, ré ;jconvert to longword
begq r0, 208 ;done
10$: sub/v r4, r0, ré ;negate dividend

20$:

PROGRAMMING HINTS RESTRICTED DISTRIBUTION Page B-2
FAST INTEGER DIVIDE BY FIXED INTEGERS 26 April 1988
B.3 FAST INTEGER DIVIDE BY FIXED INTEGERS

This section presents a new algorithm for the exact quotient Q of the
signed or unsigned integer division X/K. The algorithm uses one 32
bit approximate reciprocal, an unsigned multiply (UMULH), and a shift.
This algorithm is faster than the general case described in the
previous section. However, it requires a table containing an
approximate reciprocal, and a shift amount.

A set of approximate reciprocals and shift amounts for K=2..255, 10,

10**2, 10**3, 10**6, and 10**9 is given. A simple recipe is given for
generating other table entries.

B.3.1 THE ALGORITHM
Handling signed inputs:
The recipe: If the original inputs X and K are signed, then:

if X and K have opposite signs, complement (2’s) the negative
one, and then complement the final result.

if X and KX are both negative, complement both before
proceeding.

Note that the 2’s complement of -2**31 yields the right (unsigned)
value for the magnitude of that number so there is no need to detect
and special case this particular X.
Notation and description of algorithm:
Let K >= 2 and 0<= X <= 2**32-1. Let

a = 1/K
Let A denote an approximation of a with 32 significant bits, such that

A >= a.

An approximation I to the desired final result, Q = floor(X/K), can be
obtained by computing

I

floor (A*X) ; (*)
The choice of A, shown below, will guarantee that I equals Q.

An exact computation of the quantity floor (A*X), using a UMULH and a
shift, will be shown later.

First, some notation: Define
S(a) = the number of leading zeros to the right of the binary
point in the binary expansion of a=1/K. S(a) will be
referred to as the "shift" S.

Put N =32 + S

PROGRAMMING HINTS RESTRICTED DISTRIBUTION Page B-3
FAST INTEGER DIVIDE BY FIXED INTEGERS 26 April 1988
Let J be the smallest 32 bit (unsigned) integer satisfying
J*K >= 2**N, or J/2**N >= 1/K
Such a J can always be found and in fact an easy way to get J
is to "round up" the appropriate bit field in the binary
expansion of 1/K. See the example below.
Now define the approximation A by
A i= J/2**N = (0.J)*2%*(-5) (**)
where (0.J) denotes the binary fraction J/2**32. Clearly
A >= a .

Thus A satisfies A >= a = 1/K, and is the best one-sided approximation
to 1/K of the given form (32 bit J, denominator 2**N)

The algorithm is simple: UMULH X by J, and right logical shift by S.
It 1is clear from the right hand side of (**) that this computes I in
equation (*) correctly. The theoretical results summarized in the
next section simply state that I = Q.

The example below is intended to help clarify the notation.

Example 1:

K=10: a = 1/K = .000 1100 1100 1100 1100 1100 1100 1100 1l1...
(binary)

S =3; J

CCCCCCCD (hex)
Thus, with say X = FF (hex),

UMULH of J,X is 000000CC (hex),
and right shifting by S = 3 yields Q0=00000019, which is correct.
In actual PRISM code (for K=10) the algorithm A looks like this:
I = floor (X*.CCCCCCCD*2** (-3)),

so, assuming X (poéitive, or else unsigned) is in R1l0:

INV10: .LONG ~XCCCCCCCD
LDL INV10,R11

UMULH R10,R11,R11

SRL #3,R11,R11

B.3.2 Analysis

This section simply states the main result, and gives an example to
illustrate the sharpness of the inequality. The result is stated in
terms of n significant bit approximants A to 1/K; n=32 for PRISM.

PROGRAMMING HINTS RESTRICTED DISTRIBUTION Page B-4
FAST INTEGER DIVIDE BY FIXED INTEGERS 26 April 1988
Theorem l: Let a=1/K have the binary expansion

a = 0.(S leading zeros)d(1l)d(2)...d(n)d(n+l)...

Let, the unsigned, n significant bit integer J, and the approximant A
be defined by:

A = J/2**(n+8) = (ceiling(2**(n+S)*a))/2**(n+S)
That is, use n+S bits to define A, rounding up ("towards +infinity")
if any of d(n+l)... are nonzero, SO0 A >= a. (For algorithmic
purposes, if d(1l)...d(n) are all 1 and rounding up occurs, A is
encoded by reducing S by 1 and putting 4d(1)=1, d(2)=...=d(n)=0.)
Then, for integer X with 0 <= X < 2**n,

floor (A*X) = floor(a*X), that is, I = Q.

Proof: Since Q = floor(a*X), there is an integer t such that
a*xX = Q + t/K, with 0 <= t <= K-1
Also, I = floor (A*X) can be written as follows:
I = floor(a*X + (A-a)*X), or,
I= floor(Q + t/K + (A-a)*X)
Thus, I equals Q so long as
(A-a) *X < 1/K, or,
X < (1/K)/ (a-a). (***)
Define the modified remainder R by
R = J*K - 2** (n+S).
Now, can be rewritten (A-a) as
(A-a) = J/2**(n+S) - 1/K = R/ (K*2**(n+8)) .

If R=0, then A=a, and I=Q is trivially satisfied for any X. Also, by
the definition of A and J,

0 <= R <= K-1.

Substituting in (***), it can be concluded that have I equals Q
whenever

X < 2**(n+S) /R (*x*x*),
and the smallest (worst case) upper bound provided by (***¥*) is
X < 2**(n+S)/ (K-1).
To complete the proof, it will be shown that

2**S5/ (K-1) <=1

PROGRAMMING HINTS RESTRICTED DISTRIBUTION Page B-5
FAST INTEGER DIVIDE BY FIXED INTEGERS 26 April 1988

For this last inequality, note that any K >= 2, for which 1/K has S
leading zeros, satisfies

2*%*3 4+ 1 <= K <= 2**(S+1) .
The left hand inequality shows that
2**3 <= K - 1.
This completes the proof of Theorem 1.
The following example shows that in general the upper bound on X above
cannot be improved upon. Let K=5 and take n=6. Thus,
A=2** (~-2)*(,110100). With X=63, I equals Q as it should. However,
X=64=2**n yields I=13, whereas Q=64/5=12.
For fixed n and a specific K, the upper bound on X for which I=Q can
be 2**n or more, provided the the modified remainder R is small.
However, for arbitrary K, the bound in theorem 1 above has been shown

to be sharp.

To summarize: taking n=32 in theorem 1, the algorithm works for the
full range of 32 bit X, 0 <= X < 2**32,

B.3.3 Table For Some Powers Of 10:

Perhaps the only special cases of obvious importance are K=10, 10**2,
10**3, 10**6, and 10**9. Appropriate tables are given below.

Table for some Powers of 10 (J in hex; K, S in decimal):

K J s
10%*1 CCCCCCCD 3
10%**2 51EB851F 5
10%*3 10624DD3 6
10%*6 431BDE83 12
10%*9 44B82FAL 28
Examples:
With K=10%**6, X=7FFFFFFF (hex), I = 863 (hex) = 2147 = Q. With
K=10**6, =FFFFFFFF (hex), I = 10C6 (hex) = 4294 = Q.

B.3.4 Table For Numbers Between 2 And 255

The table is for K=2..255. The entries for K a power of 2 are for
completeness only (one shift and no UMULE will do). All entries are
in hex. The remainder R is J*K-2**(32+S). Only J and S are actually
needed to carry out the algorithm.

PROGRAMMING HINTS RESTRICTED DISTRIBUTION

Page B-6
FAST INTEGER DIVIDE BY FIXED INTEGERS

26 April 1988

K
00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000009
0000000A
0000000B
0000000C
0000000D
0000000E
0000000F
00000010
00000011
00000012
00000013
00000014
00000015
00000016
00000017
00000018
00000019
0000001a
0000001B
0c00001C
0000001D
0000001E
0000001F
00000020
00000021
00000022
00000023
00000024
00000025
00000026
00000027
00000028
00000029
0000002A
0000002B
0000002C
0000002D
0000002E
0000002F
00000030
00000031
00000032
00000033
00000034
00000035
00000036
00000037
00000038
00000038
0000003A
0000003B
0000003C

J
80000000
AAAAAAAR
40000000
CCCCCCep
AAAAAMAB
92492493
20000000
38E38E39
CCCCCCCD
BAZ2EBBA3
AAAARAAAB
4EC4EC4F
92492493
88888889
10000000
FOFOFOF1
38E38E39
6BCA1AF3
CCCCcceD
30C30C31
BA2EBBA3
B21642C9
AAAAAAAB
51EB8S5S1F
4EC4EC4F
4BDA12F7
92492493
8D3DCBO09
88888889
84210843
08000000
3EQFB83E1l
FOFOFOF1
EAQOEAQEB
38E38E39
DD67C8A7
6BCAlAF3
D20D20D3
CCCCCCCD
C7CEOQOCTD
30C30C31
2FAOBES3
BA2EBBA3
B60B60B7
B21642CH
AE4C415D
AAAAAAAR
5397829D
51EB851F
AQA0AOAL
4EC4EC4F
4D4873ED
4BDA12F7
094F2095
92492493
8FB823EF
8D3DCBOY
22B63CBF
88888889

S
00000000
00000001
00000000
00000002
00000002
00000002
00000000
00000001
00000003
00000003
00000003
00000002
00000003
00000003
00000000
00000004
00000002
00000003
00000004
00000002
00000004
00000004
00000004
00000003
00000003
00000003
00000004
00000004
00000004
00000004
00000000
00000003
00000005
00000005
00000003
00000005
00000004
00000005
00000005
00000005
00000003
00000003
00000005
00000005
00000005
00000005
00000005
00000004
00000004
00000005
00000004
00000004
00000004
00000001
00000005
00000005
00000005
00000003
00000005

R
00000000
00000001
00000000
¢0000001
00000002
00000005
00000000
00000004
00000002
00000001
00000004
00000006
0000000A
00000007
00000000
00000001
00000008
00000012
00000004
00000014
00000002
0000000F
00000008
0000000E
0000000C
0000001A
00000014
00000005
0000000E
0000001D
00000000
00000004
00000002
00000021
00000010
00000023
00000024
00000025
00000008
00000005
00000028
00000004
00000004
00000028
0000001E
00000013
00000010
0000001A
0000001C
00000013
00000018
00000022
00000034
00000030
00000028
00000037
0000000A
00000014
0000001C

PROGRAMMING HINTS RESTRICTED DISTRIBUTION

Page B-7
FAST INTEGER DIVIDE BY FIXED INTEGERS

26 April 1988

0000003D
0000003E
0000003F
00000040
00000041
00000042
00000043
00000044
00000045
00000046
00000047
00000048
00000049
0000004Aa
0000004B
0000004C
0000004D
0000004E
0000004F
00000050
00000051
00000052
00000053
00000054
00000055
00000056
00000057
00000058
00000059
0000005A
0000005B
0000005C
0000005D
0000005E
0000005F
00000060
00000061
00000062
00000063
00000064
00000065
00000066
00000067
00000068
00000069
0000006A
0000006B
0000006C
0000006D
0000006E
0000006F
00000070
00000071
00000072
00000073
00000074
00000075
00000076
00000077
00000078

4325C53F
84210843
82082083
04000000
FCOFCOFD
3EQOFB83El
07244C6B
FOFOFOF1
76B981DB
EAQOEAQEB
E6C2B449
38E38E39
EQ70381D
DD67C8A7
1B4E81B5
6BCAlAF3
3531DEC1
D20D20D3
CF6474A9
CCCCCCCD
CA4587E7
C7CEQC7D
3159721F
30C30C31
cocococe
2FAOBES83
2F149903
BAZES8BA3
B81702E1
B60B60B7
B40B40B5
B21642C9
BO2COBO3
AE4C415D
AC769185
AAAAAAAB
151D0O7EB
5397829D
A57EB503
51EB851F
288DFO0CB
AQAOAOQAl
13E22CBD
4EC4ECAF
9C09C09D
4D4873ED
4CBF8D29
4BDA12F7
964FDA6D
094F2095
939A85C5
92492493
487EDEGS
8FB823EF
473C1lAB7
8D3DCBOY
gcoscoseo
22B63CBF
44D72045
88888889

00000004
00000005
00000005
00000000
00000006
00000004
00000001
00000006
00000005
00000006
00000006
00000004
00000006
00000006
00000003
00000005
00000004
00000006
00000006
00000006
00000006
00000006
00000004
00000004
00000006
00000004
00000004
00000006
00000006
00000006
00000006
00000006
00000006
00000006
00000006
00000006
00000003
00000005
00000006
00000005
00000004
00000006
00000003
00000005
00000006
00000005
00000005
00000005
00000006
00000002
00000006
00000006
00000005
00000006
00000005
00000006
00000006
00000004
00000005
00000006

00000006
0000003
0000003D
00000000
0000003D
00000008
00000020
00000004
0000000E
00000042
0000003F
00000020
00000045
00000046
00000038
00000048
00000034
0000004A
00000027
00000010
00000017
0000000A
00000034
00000050
00000015
00000008
00000014
00000008
00000039
00000056
00000057
0000003C
00000017
00000026
00000058
00000020
00000058
00000034
00000029
00000038
0000005C
00000026
00000058
00000030
00000065
00000044
00000046
00000068
00000069
00000060
0000006B
00000050
0000006a
0000006E
0000006A
00000014
00000071
00000028
00000026
00000038

PROGRAMMING HINTS RESTRICTED DISTRIBUTION

Page B-8
FAST INTEGER DIVIDE BY FIXED INTEGERS

26 April 1988

00000078
00000072
0000007B
0000007C
cQ300C7D
0000007E
0000007F
00000080
00000081
00000082
00000083
00000084
00000085
00000086
00000087
00000088
00000089
0000008A
0000008B
0000008C
0000008D
0000008E
0000008F
00000090
00000081
00000092
00000093
00000094
00000095
00000096
00000097
00000098
00000099
0000009A
0000009B
0000009C
0000009D
0000009E
0000009F
000000A0
000000A1
000000A2
000000A3
000000A4
000000A5
000000A6
000000A7
000000A8
000000A9
000000AA
000000AB
000000AC
000000AD
000000AE
000000AF
000000BO
000000B1
000000B2
000000B3
000000B4

043B3D5B
4325C53F
214D0215
£§4210843
10624DD3
82082083
81020409
02000000
OFEO3F81
FCOFCOFD
FA232CF3
3EOF83El
F6603D9%9
07A44C6B
F2B9D649
FOFOFQOF1
077975B9
76B981DB
75DED953
EAOEAQEB
3A196B1F
E6C2B449
E525982B
38E38E39
E1FC780F
E070381D
DEE95C4D
DD67C8A7
DBEB61EF
1B4E81B5
36406C81
6BCA1AF3
D62B80D7
3531DEC1
D3680D37
D20D20D3
342DA7F3
CF6474A9
19C2D14F
CCCCCCCD
CB8727C1
CA4587E7
C907DA4F
C7CEOC7D
634C0635
3159721F
621BY97C3
30C30C31
60F25DEB
c0cococ1
BFAQ2FE?
2FAOBES3
17AD2209
2F149903
5D9F7391
BA2ES8BA3
B92143FB
B81702E1
B70FBB5B
B60B60B7

00000001
00000005
00000004
00000006
0C0G0003
00000006
00000006
00000000
00000003
00000007
00000007
00000005
00000007
00000002
00000007
00000007
00000002
00000006
00000006
00000007
00000005
00000007
00000007
00000005
00000007
00000007
00000007
00000007
00000007
00000004
00000005
00000006
00000007
00000005
00000007
00000007
00000005
00000007
00000004
00000007
00000007
00000007
00000007
00000007
00000006
00000005
00000006
00000005

00000006

00000007
00000007
00000005
00000004
00000005
00000006
00000007
00000007
00000007
00000007
00000007

00000060
0000000C
0000005C
00000074
0o0000C38
0000007A
00000077
00000000
00000010
00000072
00000059
00000010
0000007D
00000040
0000007F
00000008
00000020
0000001C
00000022
00000084
0000004C
0000007E
00000005
00000040
0000007F
oooo0008aAa
00000037
oogoo0o08C
0000001B
00000070
0000005C
00000090
0000007F
00000068
0000004D
00000094
0000001C
0000004E
00000088
00000020
00000061
0000002E
0000004D
00000014
00000052
00000068
0000006A
000000A0
00000046
00000022
000000A3
00000010
000000AS8
00000028
0000003E
00000010
0000008B
00000072
000000A1
000000AC

PROGRAMMING HINTS

000000F1
000000F2
00000O0F3
000000F4
0000COFS
0000CGOF®6
000000F7
000000F8
000000F9
000000FA
000000FB
000000FC
000000FD
000000FE
000000QFF

10FEF011
043B3D5SB
86D90545
4325CS53F
42DF9BRE1

214D0215

84A9F9CY
84210843
83993053
10624DD3
828CBFBF
82082083
81848DA9
81020409
80808081

RESTRICTED DISTRIBUTION
FAST INTEGER DIVIDE BY FIXED INTEGERS

00000004
00000002
00000007
00000006
00000006
00000005
00000007
00000007
00000007
00000004
00000007
00000007
00000007
00000007
00000007

00000008
000000CO
0000007F
00000018
ocooooca
000000BE8
000000EF
000000ES8
000000BB
00000070
00000045
000000F4
00000005
00COO0CEE
0000007F

Page B-10
26 April 1988

PROGRAMMING HINTS RESTRICTED DISTRIBUTION Page B-1l1l
REVISION HISTORY 26 April 1988
Revision History:

Revision 3.0, 26 April 1988.

1. Initial distribution.

INDEX
RESTRICTED DISTRIBUTION

BOOT (Boot Processor), 4-91
BOOT console command, 11-17
Bootstrap in Progress (BIP) bit,
11-6, 11-8
Bootstrap master
See Bootstrapping, master
processor
Bootstrap slave
See Bootstrapping, slave
processors
Bootstrapping
See also Restart Parameter
Block
adding a processor, 11-12
BOOT command, 11-17
console
and powerfail, 11-10
and RPB, 11-2
command syntax, 11-15
commands, 11-16 to 11-28
control characters, 11-15
definition, 11l-1
finding memory, 11-2
functionality, 11-13 to 11-14
language, 11-14 to 11-15
loading system software, 11-9
page tables, 11-7
flags, 11-8
Global Flags, 11-6
initial page tables, 11-7 to
11-8
initializing IPRs, 11-9
master processor, 11-11, 11-13
memory testing, 11-2
multiprocessor environment,
11-11 to 11-13
Processor Status, 6-5
program controlled console I/0,
11-14
restart action, 11-10
ROM, 11-7
slave processors, 11-12, 11-13
State Longword, 1l1l-6 to 11-7
summary of steps, 11-1
transfer control, 11-9 to 11-10
uniprocessor environment, 11-1
to 11-10
BPT (Breakpoint), 4-76, 6-17
Branch condition codes, 1-3, 1-5
Branch instruction format, 3-5 to
3-6, 4-74
Branch instructions
See also Control instructions
description of, 4-72
summary of, 4-71

Page Index-2
26 April 1988

test, 1-3, 4-72
BREAK, 11-14, 11-15
Breakpoint exception
description, 6-17
exception frame, 6-17
Breakpoint instruction, 4-76,
6-17
Breakpoint SCB vector,
Byte, 2-1
Byte Within Page field, 5-2

4-76

Cache

and IFLUSH instruction, 4-79,
9-13

data, 9-13

description, 9-13

implementation methods,
9-17

implementation requirements,
9-13 to 9-17

9-~14 to

instruction, 9-13
invalidation, 9-12 to 9-13
prefetch, $%-17
TBFLUSH instruction, 4-101,
9-13
CCR

See Cycle Count Register
Character done (DON), 8-9, 8-10
Character ready (RDY), 8-7, 8-8
Character string, 2-7
Chopping, 4-48
CMPEQ (Compare Signed Longword
Equal), 4-24

CMPFEQ (Compare F_floating Equal),
4-53

CMPFGE (Compare F_floating
Greater Than or Egqual),

CMPFGT (Compare F_floating
Greater Than), 4-53

CMPFLE (Compare F_floating Less
Than or Equal), 4-53

CMPFLT (Compare F_floating Less
Than), 4-53

CMPFNE (Compare F_floating Not
Equal), 4-53

CMPGE (Compare Signed Longword
Greater Than or Equal), 4-24

CMPGEQ (Compare G_floating Equal),
4-53

CMPGGE (Compare G_floating
Greater Than or Equal),

CMPGGT (Compare G_floating
Greater Than), 4-53

CMPGLE (Compare G_floating Less
Than or Equal), 4-53

4-53

4-53

INDEX
RESTRICTED DISTRIBUTION

CMPGLT (Compare G floating Less
Than), 4-53
CMPGNE (Compare G_floating Not
Equal), 4-53
CMPGT (Compare Signed Longword
Greater Than), 4-24
CMPLE (Compare Signed Longword
Less Than or Equal), 4-24
CMPLT (Compare Signed Longword
Less Than), 4-24
CMPNE (Compare Signed Longword
Not Equal), 4-24
CMPSWLI (Compare and Swap
Longword, Interlocked),
9-9, 9-11
CMPSWQI (Compare and Swap
Quadword, Interlocked),
9-9, 9-11
CMPSWQIP (Compare and Swap
Quadword, Interlocked,
Physical), 4-92, 9-9, 9-11
CMPUGE (Compare Unsigned Longword
Greater Than or Equal), 4-25
CMPUGT (Compare Unsigned Longword
Greater Than), 4-25
CMPULE (Compare Unsigned Longword
Less Than or Equal), 4-25
CMPULT (Compare Unsigned Longword
Less Than), 4-25
Compare and Swap Longword,
Interlocked instruction,
9-9, 9-11
Compare and Swap Quadword,
Interlocked instruction,
9-9, ¢%-11
Compare and Swap Quadword,
Interlocked, Physical
instruction, 4-92, 9-9,
Compilers, 1-5, 1-7
Conditional Branch instructions,
4-72
Console
See Bootstrapping,
Console commands
BOOT, 11-17
command syntax,
CONTINUE, 11-18
control characters,
CTRL/Q, 11-15
CTRL/S, 11-15
CTRL/U, 11-15
DEPOSIT, 11-19
EXAMINE, 11-20 to 11-23
HALT, 11-24
INITIALIZE,

4-6,

4-9,

4-6,

4-9,

9-11

console

11-15

11-15

11-25

Page Index-3
26 April 1988

keywords, 11-16 to 11-28
START, 11-26
TEST, 11-27
Console interrupts, 6-8 to 6-9
Console mode, 4-93, 11-14, 11-15
Console Receive Control Status
(CRCS) register, 6-8, 8-7,
11-9
Console Receive Data Buffer
(CRDB) register, 8-8
Console terminal, 11-14
Console Transmit Control Status
(CTCS) register, 6-9, 8-9,
11-9
Console Transmit Data Buffer

(CTDB) register, 8-10

Context switch, 1-6, 4-98 to 4-99,
5-7, 5-8, 6-4, 7-2, 7-5 to
7-7

See also SWPCTX
CONTINUE console command,
Control characters, 11-15
Control instructions

descriptions of, 4-71 to 4-74

summary of, 4-71
Control Transferred to System

11-18

Software (CTS) bit, 11-7
Conventions
figure drawing, 1-9
used in PRISM SRM, 1-8 to 1-9

Convert F_Floating to G_Floating
instruction, 4-54
Convert Floating to Longword
instructions, 4-56
Convert G_Floating to F_Floating
instructions, 4-55
Convert instruction format, 3-7
Convert Longword to Floating
instructions, 4-57
corruption, 9-8
CRCS
See Console Receive Control
Status (CRCS) register
CRDB
See Console Receive Data Buffer
(CRDB) register
CTCsS
See Console Transmit Control
Status (CTCS) register
CTDB
See Console Transmit Data
Buffer (CTDB) register
CTRL/Q console command, 11-15
CTRL/S console command, 11-15
CTRL/U console command, 11-15

INDEX Page Index-4

RESTRICTED DISTRIBUTION 26 April 1988

CVTFG (Convert F_floating to and user exceptions, 3-10
G_floating), 4-54 console functionality, 11-13 to

CVTFL (Convert F_floating to 11-14
Longword), 4-56 effect on system code, 10-2

CVTGF (Convert G_floating to environment, 10-1 to 10-2
F_fleocating), 4-55 functions of, 10-1, 10-2

CVTGL (Convert G_floating to interrupt arbitration, 6-37 to
Longword), 4-56 6-39

CVTLF (Convert Longword to loading of, 11-7, 11-12
F_floating), 4-57 optional functions, 10-3

CVTLG (Convert Longword to reserved opcodes, 10-3
G_floating), 4-57 restart routine, 11-11

Cycle Count Register special functions required,

description, 3-2 10-3

Cycle count register, 4-83, 4-102 Epicode Loaded (EL) bit, 11-6
EQV (Logical Equivalence), 4-37

D_floating data type, 2-7 EXAMINE console command, 11-20
Data Alignment fault Exception handling, 1-5, 4-77
See Exceptions, Data Alignment Exception stack frame
Data sharing, 9-1 to 9-12, 9-16 Arithmetic trap, 6-12 to 6-13
Data type Breakpoint, 6-17
byte, 2-1 Fault On Low Bit Clear, 6-18
D_floating, 2-7 Illegal Operand, 6-19
F_floating, 2-5 Machine Check, 6-26
G_floating, 2-6 Memory management, 6-23
H_floating, 2- Privileged Instruction, 6-20
in operand specifier notation, Reserved Opcode, 6-21
4-3 Scalar Alignment, 6-16
longword, 2-3 Vector, 6-29
no hardware support for, 2-7 Vector Enable, 6-22
quadword, 2-4 Vector restart frame, 6-28 to
word, 2-2 6-29
DEPOSIT console command, 11-19 Exceptions
Displacement field, 3-5, 3-6, 4-3 See also specific exceptions
DIV (Divide Longword), 4-26 abort, 6-2
DIVF (Divide F_floating), 4-58 Access Violation, 5-6, 6-23 to
DIVG (Divide G_floating), 4-58 6-24
DON Arithmetic trap
See Character done and floating-point
DRAIN (Drain Instruction instructions, 2-6
Pipeline), 4-77, 6-12 definition of, 6-2 to 6-3
Drain Instruction Pipeline description, 6-12 to 6-15
instruction, 4-77, 6-12 exception frame, 6-12 to 6-13
DRAINM (Drain Memory Pipeline), Exception Summary parameter,
4-77 6-13 to 6-14
DRAINV (Drain Vector Memory Scalar Register Write Mask
Pipeline), 4-77 parameter, 6-14
Vector Register Write Mask
Epicode instruction format, 3-9 parameter, 6-14
to 3-10 as result of an instruction,
Epicode instructions ‘ 6-16 to 6-18
and power-down, 6-9 Breakpoint, 6-17
and powerfail, 11-10, 11-13 contrast with interrupts, 6-3
and RPB, 11-7 data alignment fault, 6-15

and State Longword, 11-6 definition of, 6-1

INDEX
RESTRICTED DISTRIBUTION

descriptions of,
6-11 to 6-30

fault, 6-2

Fault On Execute, 5-9,

Fault On Low Bit Clear,
6-17 to 6-18

Fault On Read, 5-9,

Fault On Write, 5-9,

6-2 to 6-3,
6-24
4-73,

6-24
6-24

Floating Divide by Zero, 4-58,
4-68

Floating Overflow, 4-52, 4-55,
4-58, 4-59, 4-60, 4-61,
4-65, 4-68, 4-69, 4-70

Floating Reserved Operand, 4-52,
4-53, 4-54, 4-55, 4-5¢,
4-58, 4-59, 4-60, 4-61,
4-62, 4-64, 4-65, 4-66,
4-68, 4-69, 4-70

Floating Underflow, 4-52, 4-55,
4-58, 4-59, 4-60, 4-61,
4-65, 4-68, 4-69, 4-70

floating-point, 4-51

Illegal Operand
description, 6-18 to 6-22
exception frame, 6-19
Integer Divide by Zero, 4-26
integer overflow
See Arithmetic trap
Kernel Stack Not Valid, 6-25
list of, 6-11
Machine Check, 6-25 to 6-27
Memory management
and prefetch, 9-17
description, 6-22 to 6-24
exception frame, 6-23
summary of, 5-8 to 5-9

precedence, 5-9, 6-23, 6-30
Privileged Instruction, 4-30,
6-20

Reserved Opcode, 6-21

Scalar Alignment, 6-15 to 6-16

serialization of, 6-30 to 6-31

serious system failures, 6-25
to 6-27

System Control Block vectors,

5-9, 6-11, -6-31 to 6-33
Translation Not Valid, 4-82,
5-9, 6-24
trap, 6-2
types of, 6-2 to 6-3
Vector
description, 6-27 to 6-30

memory access trap, 6-29
restart fault, 6-30

restart frame, 6-28 to 6-29

Page Index-5
26 April 1988

Vector Enable, 4-2, 6-21 to
6-22
Extended Processor Instruction
code

See Epicode instructions

F_floating data type, 2-5
Fault On Execute (FOE) exception,
5-9%, 6-24
Fault on Execute bit
See PTE, Fault On Execute bit
Fault On Low Bit Clear exception
description, 6-17 to 6-18
exception frame, 6-18
FLBC (Fault On Low Bit Clear)

instruction, 4-73
FLBC (Fault on Low Bit Clear)
instruction, 6-17
Fault On Low Bit Clear
instruction, 4-73, 6-17
Fault On Read
exception definition, 6-24
(FOR), 5-9
memory management exception,
4-11, 4-14
vector memory access exception,
4-15, 4-17
Fault on Read bit
See PTE, Fault On Read bit
Fault On Write
exception definition, 6-24
(FOW) bit, 5-9
vector memory access exception,
4-19, 4-20
Fault on Write bit
See PTE, Fault On Write bit

Faults
See Exceptions
Figure drawing conventions, 1-9
FLBC (Fault On Low Bit Clear),
4-73
FLBC (Fault on Low Bit Clear),
6-17
Floating Add instructions, 4-52
Floating Compare instructions,
4-53
Floating Divide by Zero
arithmetic exception,
4-68
arithmetic trap definition,
6-12
Floating Divide instructions,
4-58
Floating Multiply instructions,
4-59

4_58,

INDEX
RESTRICTED DISTRIBUTION

Floating Overflow
arithmetic exception, 4-52,
4-55, 4-58, 4-59, 4-60,
4-61, 4-65, 4-68, 4-69,
4-70
arithmetic trap definition,
6-12
Floating Reserved Operand
arithmetic exception, 4-52,
4-53, 4-54, 4-55, 4-56¢,
4-58, 4-59, 4-60, 4-61,
4-62, 4-64, 4-65, 4-66,
4-68, 4-69, 4-70
arithmetic trap definition,
6-12
Floating Subtract instructions,
4-60
Floating Underflow
arithmetic exception, 4-52,
4-55, 4-58, 4-59, 4-60,
4-61, 4-65, 4-68, 4-69,
4-70
arithmetic trap definition,
6-12
Floating-point accuracy, 4-48 to
4-50
Floating-point exceptions
description of, 4-51
Floating-point instructions
arithmetic exception, 2-5, 2-6
chopping, 4-48
D and H, 1-7
descriptions of, 4-45 to 4-70
G and F, 1-4
guard bits, 4-48, 4-49 to 4-50
overflow bit, 4-48, 4-49 to
4-50
relation among chopped,
rounded, and true, 4-48
rounding bit, 4-48 to 4-50
rounding modes, 4-45
summary of, 4-46 to 4-47
Flush Instruction Cache

instruction, 4-79, 9-12, 9-13
Flush Translation Buffer
instruction, 4-101, 5-8, 9-13

Function field
in Epicode instructions, 3-9 to
3-10
in Operate instructions, 3-6
Function units, 1-4

G_floating data type, 2-6

Page Index-6
26 April 1988

Gather Memory Data into Vector
Register instructions, 3-1,
4-15

Generate Compressed Iota Vector
instructior.,, 4-80

Global rlags, 1l1-6

See also Restart Parameter
T Block
Guard bits, 4-48, 4-49 to 4-50

H floating data type, 2-7

HALT (Halt Processor), 3-9, 4-93,
9-14, 9-15, 11-14

HALT action setting, 11-14

HALT action switch, 4-93

HALT console command, 11-24

Halt instruction, 3-9, 4-91, 4-93,
9-14, 9-15, 11-14

Hardware Enabled (HE) bit, 11-7

Hardware implementation notes,
5-8, 9-13, 10-1

Hardware Privileged Context Block,
4-98, 7-2 to 7-3, 7-5

HWPCB

See Hardware Privileged Context
Block

I/0 Architecture
device interrupts, 12-2
Granularity of I/O space
accesses, 12-2
I/0 space, 12-2
scope, 12-1
system memory, 12-1
I/0 Device
interrupts, 6-9

I/0 device - "simple", 9-1, 9-4,
9-13, 9-14

I/0 device - "smart", 9-1, 9-5,
9-13

I/0 Port Controller
registers, 11-8
I/0 space, 4-7, 4-9, 4-12, 4-13,
4-92, 5-2, 7-3, 9-2, 9-4,
9-15, 9-17
ICIE
See Interval Clock Interrupt
Enable (ICIE) register
IFLUSH (Flush Instruction Cache),
4-79, 9-12, 9-13
IGN
See Ignore
Ignore, 1-9
Illegal Operand exceptions
See Exceptions, Illegal Operand

INDEX
RESTRICTED DISTRIBUTION

INITIALIZE console command, 11-25
Instruction cache
See Cache
Instruction formats
Branch, 3-5 to 3-6, 4-74
Convert, 3-7
Epicode, 3-9 to 3-10
Masked Vector Arithmetic
Operate, 3-7 to 3-8
Masked Vector Memory Operate,
3-8 to 3-9
Memory, 3-5, 4-74
Operate, 3-6 to 3-7, 4-2
summary of, 3-5
Instructicon issue, 1-4 to 1-5
Instruction issue model, 6-36 to
6-37
Instruction notation, 3-2
Instruction set
overview and notation, 4-1 to
4-4
summary of characteristics, 1-3
to 1-4
Instructions
control, 4-71 to 4-74
floating-point, 4-45 to 4-70
integer arithmetic, 4-21 to
4-35
logical and shift, 4-36 to 4-44
memory load/store, 4-5 to 4-19
miscellaneous, 4-75 to 4-89
operand notation, 4-2 to 4-4
privileged, 4-90 to 4-101
vector, 4-2
Integer Add instructions, 4-23
Integer arithmetic instructions
descriptions of, 4-21 to 4-35
summary of, 4-21 to 4-22
Integer Divide by Zero
arithmetic exception, 4-26
arithmetic trap definition,
6-12
Integer Divide instructions, 4-26
Integer exceptions

See Exceptions, Arithmetic trap

Integer Multiply. instructions,
4-27
Integer Overflow
arithmetic exception, 4-23,
4-26, 4-27, 4-28, 4-29,
4-34, 4-35, 4-56, 4-66
arithmetic trap definition,
6-12
Integer Signed Compare
instructions, 4-24

Page Index-7
26 April 1988

Integer Subtract instructions,
4-28
Integer Unsigned Compare
instructions, 4-25
Interlocked memory access
See Memory access, interlocked
Internal Processor Registers
See also Processor Status
See also Program Counter
Address Space Number (ASN), 5-8,
8-3, 11-9
and SWPCTX instruction, 4-99
AST Enable (ASTEN), 6-38, 7-3,
8-4, 11-9
AST Request Register (ASTRR},
6-38, B-5
AST Summary Register (ASTSR),
7-3, 8-6, 11-9
Console Receive Control Status’
(CRCS), 6-8, 8-7, 11-9
Console Receive Data Buffer
(CRDB), 8-8
Console Transmit Control Status
(cTCcs), 6-9, 8-9%, 11-9
Console Transmit Data Buffer
(CTDB), 8-10
initialization, 11-9
Interprocessor Interrupt Enable
(IPIE), 6-10, 8-12, 11-9
Interprocessor Interrupt
Request (IPIR), 6-11, 8-13
Interval Clock Interrupt Enable
(ICIE), 6-10, 8-11, 11-9
Kernel mode, 8-1
Machine Check Error Summary
Register (MCES), 8-~14
MFPR instruction, 4-95, 8-1
MTPR instruction, 4-96, 68-1
Page Table Base Register (PTBR),
5-6, 8-17, 11-9
Privileged Context Block Base
(PCBB), 4-99, 7-2, 8-15,
11-9
Processor Base Register (PRER),
8-16, 11-9
Software Interrupt Request
Register (SIRR), 6-7, 6-38,
8-20
Software Interrupt Summary
Register (SISR), 6-7, B-21,
11-9
Stack pointer registers, 11-9
summary of, 8-1 to 8-2
System Control Block Base
(ScCeB), 8-18, 11-9

INDEX
RESTRICTED DISTRIBUTION

System Identification (SID),
8-19
System Serial Number (SSN),
8-22
Time Of Year (T0Y,, 8-26
Translation Buffer Check
(TBCHK), 5-8, 8-23 to 8-24
Translation Buffer Invalidate
Single (TBIS), 5-7, 8-25
User Stack Pointer, 8-27
Vector Enable Register (VEN),
8-28
Who-Am~-I (WHAMI), 8-29
Interprocessor Interrupt Enable
(IPIE) register, 6-10, 8-12,
11-9
Interprocessor Interrupt Request
(IPIR) register, 6-11, 8-13
Interprocessor interrupts, 6-10
to 6-11, 8-12, 11-11, 11-12
Interrupt Priority Level
and SWIPL instruction, 4-100,
6-39
description of, 6-1
field in Processor Status
register, 6-5
in multiprocessor system, 6-2
list of, 6-6
when changed, 6-3
Interrupts
See also Asynchronous System
T Trap
See also Machine Check
console, 6-8 to 6-9
contrast with exceptions, 6-3
definition of, 6-1
descriptions of, 6-1 to 6-2,
6-6 to 6-11
Epicode arbitration, 6-37 to
6-39
I/0 Device, 6-9
interprocessor, 6-10 to 6-11,
8-12, 11-11, 11-12
Interval Clock, 6-10, 8-11
list of, 6-6
Power Recovery, 6-9, 11-11,
11-13
serialization of, 6-30 to 6-31
software generated, 6-7 to 6-8
System Control Block vectors,
6-6, 6-31 to 6-33
urgent, 6-9 to 6-11
Interval Clock Interrupt Enable
(ICIE) register, 6-10, 8-11,
11-9

Page Index-8
26 April 1988

Interval Clock interrupts, 6-10,
8-11
IOTA (Generate Compressed Iota
Vector), 4-80, 4-84
IPIE
See Interprocessor Interrupt
Enable (IPIE) register
IPIR
See Interprocessor Interrupt
Request (IPIR) register
IPL
See Interrupt Priority Level
IPRs :
See Internal Processor
Registers

JSR (Jump to Subroutine), 4-74
Jump to Subroutine instruction,
4-74

Kernel Mode
privileged instructions, 6-20
Kernel mode
See also Processor modes
and Internal Processor
Registers, §-1
for Breakpoint instruction,
4-76
Machine Check, 6-25
privileged instructions, 4-90
Kernel Mode stack
Fault On Low Bit Clear
exception frame, 6-18
Illegal Operand exception frame,
6-19
Privileged Instruction
exception frame, 6-20
Reserved Opcode exception frame,
6-21
Scalar Alignment exception
frame, 6-16
Kernel Read Enable bit
See PTE, Kernel Read Enable bit
Kernel stack
See also Stack
alignment, 6-20
Arithmetic trap exception frame,
6-12 to 6-13
Breakpoint exception frame,
6-17
for Breakpoint instruction,
4-76
Machine Check exception frame,
6-26

INDEX
RESTRICTED DISTRIBUTION

Memory management exception
frame, 6-23
Not Valid exception,
pointer, 8-27
residency, 6-34
Vector Enable exception frame,
6-22
Vector restart frame,
6-29
Kernel Stack Not Valid exception,
6-25
Kernel Write Enable bit
See PTE, Kernel Write Enable
bit

6-25

6-28 to

L
See Literal control bit, 3-7
LDA (Load Address), 4-10
LDB (Load Zero Extended Byte from
Memory to Register), 4-11
IDL (Load Longword from Memory to
Register), 4-11
LDQ (Load Quadword from Memory to
Register Pairs), 4-11
(Load Quadword Physical),
4-95
LDW (Load Zero Extended Word from
Memory to Register), 4-11
Leading separate numeric string,
2-7
Literal
as floating-point operand, 4-48
as source operand, 1-3, 3-2,
3-6, 3-7, 4-3, 4-48
field, 3-6, 3-7, 3-8
Literal control bit, 3-7
Load Address instructions, 4-10
Load Memory Data into Scalar
Register instructions, 4-11
Load Memory Data into Vector
Register instructions, 4-17
Load Quadword Physical
instruction, 4-95
Logical and shift instructions
descriptions of, 4-36 to 4-44
summary of, 4-36
Logical Functions instructions,
4-37
Longword
format, 2-3
signed integer, 2-3
unsigned integer, 2-3

LDQP

Machine Check

description, 6-25 to 6-27

Page Index-9
26 April 1988

exception frame, 6-26
interrupt level, 6-9, 6-25
non-existent memory, 4-99

Machine Check Error Summary
Register (MCES), 8-14
Masked Vector Arithmetic Operate
instruction format, 3-7 to
3-8
Masked Vector Memory Operate
instruction format, 3-8 to
3-9
MBZ
See Must Be Zero
MCES
See Machine Check Error Summary
Register (MCES)
Memory access
See also Cache
control, 5-1
criteria, 5-5
interlocked,
4-13,
9-5,

4-6, 4-9, 4-12,
4-92, 9-2, 9-3, 9-
9-14, 9-17

protection, 5-5 to 5-6
Memory costs, 1-3, 1-6
Memory instruction format, 3-5,
4-74
Memory load/store instructions
cache miss, 1-4
descriptions of, 4-5 to 4-19
purpose of, 1-3
summary of, 4-5
Memory management
and Epicode, 10-2
definition of, 5-1
enabled, 5-3
exception, 4-11, 4-14
See Also Exceptions, Memory
management
PRISM goals, 5-1 to 5-2
Memory protection
See Memory access, protection
MFPR (Move From Processor
Register), 4-95, 8-1
Miscellaneous instructions
descriptions of, 4-75 to 4-89
summary of, 4-75
Move From Processor Register

4,

instruction, 4-95, 8-1
Move Processor Status instruction,
4-81, 6-4

Move To Processor Register
instruction, 4-96, 5-7, 8-1
MOVPS (Move Processor Status),
" 4-81, 6-4

INDEX
RESTRICTED DISTRIBUTION

MTPR (Move To Processor Register),
4-96, 5-7, 8-1
MULF (Multiply F_floating), 4-59
MULG (Multiply G_floating), 4-59
MULL (Multiply Longword and
Return Low 32 Product Bits),
4-27
Multiprocessing
See also Interprocessor
interrupts
adding a processor, 11-12
and Address Space Numbers, 5-8
and caches, 9-15, 9-17
and PTEs, 5-4
and Translation Buffer entries,
5-8
bootstrapping, 11-11 to 11-13
interlocked memory access, 4-6,
4-9, 4-12, 4-13, 4-92, 9-2,
9-3, 9-4, 9-5, 9-14, 9-17
Interrupt Priority Levels, 6-2
master processor, 11-11, 11-13
powerfail, 11-13
Processor Base Register (PRBR),
8-16
slave processors, 11-12,
Software Enabled (SE) bit,
WHAMI register, 8-29
Must Be Zero, 1-9

11-13
11-7

non-atomic access, 9-8
NOT logical function, 4-37

Octaword, 2-7

Opcode field, 3-5

Opcode Qualifiers
Chopped Rounding, 4-4
Enable Masked Operation, 4-4
Floating Underflow Enable, 4-4
Integer Overflow Enable, 4-4
Write Intent, 4-4

Opcode qualifiers, 4-4

Operand fields, 3-6
See also Register fields

Operate instruction format, 3-6

to 3-7, 4-2

Operating system
and hardware context, 7-3
AST processing, 7-4 to 7-5

context switching model, 7-6 to
7-1

hardware context, 7-5

software context, 7-1

transfer control to, 11-9 to

11-10

Page Index-10
26 April 1988

Operator precedence, 3-4
Operators, 3-3 to 3-4
OR (Logical Sum), 4-37
ORNOT (Logical Sum with
Complement), 4-37

Packed decimal string, 2-7
Page

definition of, 5-2

protection, 5-1, 5-5,

5-6

size, 1-6, 5-2
Page Frame Number

See PTE, Page Frame Number
Page table, 5-1, 11-7 to 11-8
Page Table Base Register (PTBR),

5-6, 8-17, 11-9

Page Table Entry

See PTE
PC

See Program Counter
PCBB

See Privileged Context Block

Base (PCBB) register

5-5 to

PFN

See PTE, Page Frame Number
Physical address, 5-2
Physical address space, 5-2
Pipelined processor model, 1-4 to

1-5
Power Recovery interrupt, 6-9,
11-11, 11-13

Powerfail, 9-14, 9-16, 11-2,
11-10 to 11-11, 11-13
Powerfail Sequence Completed
(PSC) bit, 11-6, 11-10
Powerfail Sequence Started (PSS)
bit, 11-6, 11-10
PRBR
See Processor Base Register
(PRBR)
Prefetch, 9-17
PRISM
advantages, 1-5 to 1-6
code size of programs,
comparison with RISC,
compatibility with VAX,
1-8
design guidelines,
disadvantages, 1-6
meaning of acronym, 1-1
memory management goals, 5-1 to
5-2
overview,
processor model,

1-6
1-3
1-6 to

1-3

1-3 to 1-5
1-4 to 1-5

INDEX
RESTRICTED DISTRIBUTION

separation of procedure and
data, 9-12
software emulation of
instructions, 1-7, 4-2
subset implementations, 4-2
Privileged Context Block Base
(PCBB) register, 4-99, 7-2,
8-15, 11-9
Privileged Instruction exception
description, 6-20
exception frame, 6-20
occurrence of, 4-90
Privileged instructions
descriptions of, 4-90 to 4-101
summary of, 4-90
Probe Memory Access instructions,
4-82
PROBER (Probe for Read Access),
4-82
PROBEW (Probe for Write Access),
4-82
Process
address space, 7-1
context switching, 7-2, 7-5 to
7-7
context switching model, 7-6 to
7-7
definition, 7-1 to 7-2
hardware context, 7-1, 7-2
hardware privileged context,
7-2 to 7-3
software context, 7-1
Process tag
See Address Space Number (ASN)
Processor Base Register (PRBR),
g-16, 11-9
Processor modes
AST enable bit, 4-89, 7-3
AST pending bit, 7-3
defined, 5-1, 5-5
protection codes, 5-5, 5-3 to
5-6
Processor Present (PP) bit, 11-7
Processor state
definition of, 6-3
preserving during exception or
interrupt, 6-3
transition table, 6-39 to 6-40
Processor Status
and MOVPS instruction, 4-81,
6-4

as part of processor state, 6-3

at bootstrap, 6-5
Current Mode field, 5-5, 6-5,
6-34

Page Index-11
26 April 1988

current versus saved, 6-4
description, 6-4 to 6-5
Interrupt Priority Level field,
6-5
reserved to DIGITAL field, 6-5
Vector Enable bit, 4-2, 6-5,
11-10
Vector Restart Frame bit, 6-5
Virtual Machine Monitor bit,
6-5
Program Counter
and JSR instruction, 4-74, 6-4
as part of processor state, 6-3
description, 3-2, 6-5
with branch instructions, 4-72
PS
See Processor Status
PTBR
See Page Table Base Register
PTE
Address Space Match (ASM) bit,
5-4, 5-7
and multiprocessing, 5-4
changes to, 5-4 to 5-5
defined, 5-3 to 5-4
Fault On Execute (FOE) bit, 5-4,
5-9, 6-24
Fault On Read (FOR) bit, 4-82,
5-4, 5-9, 6-24
Fault On Write
(FOW) bit, 5-9
Fault On Write (FOW) bit, 4-82,
5-4, 6-24
first-level, 5-6, 5-9
indirect, 5-9
Kernel Read Enable (KRE) bit,
5-3
Kernel Write Enable (KWE) bit,
5-3
Page Frame Number (PFN), 5-3,
5-4, 5-6, 8-17
protection codes, 5-5, 5-5 to
5-6
Reserved for DIGITAL field, 5-4
Reserved for software field,
5-4
second-level, 5-6, 5-9
User Read Enable (URE) bit, 5-3
User Write Enable (UWE) bit,
5-3
valid bit, 5-3

Quadword, 2-4
Quadword shift instructions, 4-36
Queues, 2-7

INDEX
RESTRICTED DISTRIBUTION

RAZ
See Read As Zero
RDCC (Read Cycle Count Register),
4-83
RDVC (Read Vector Count Register),
4-84
RDVL (Read Vector Length
Register), 4-85
RDVMH (Read Vector Mask Register,
High Part), 4-86
RDVML (Read Vector Mask Register,
Low Part), 4-86
RDY ‘
See Character ready
Read As Zero, 1-9
Read Cycle Count Register
instruction, 4-83
Read, Mask, Add Longword,
Interlocked instruction,
9-9, %-10, 9-11, 9-12
Read, Mask, Add Quadword,
Interlocked instruction,
5-4, 5-9, 9-7, 9-9, 9-10,
9-11
Read/Write Vector Count Register
instructions, 4-84
Read/Write Vector Length Register
instructions, 4-85
Read/Write Vector Mask Register
instructions, 4-86
Registers
See also Internal Processor
Registers
See also Processor Status
See also Program Counter
cycle count, 4-83, 4-102

4-12,

4-13,

even-odd pairs, 3-1, 3-2, 4-4,
4-45, 5-4

RO, 1-3, 3-1, 3-6, 6-12

R1l, 1-3, 3-1, 8-27

R4, 4-89, 4-96, 4-100, 8-1

R5, 4-96, 8-1

R6, 4-82, 8-1

R7, 4-82

scalar, 1-3, 1-5, 3-1

v0, 3-6

vector, 1-3, 3-1 to 3-2, 4-2,
11-3

Vector Count, 1-3, 3-2

vector count, 4-80, 4-84

Vector Length, 1-3, 3-1

Page Index-12
26 April 1988

vector length,
4-20, 4-29,
4-34, 4-35,
4-44, 4-s61,
4-65, 4-€6, 4-67,
4-69, 4-70, 4-85
Vector Mask, 1-3, 3-2
vector mask, 4-30, 4-32,
4-80, 4-86
REI (Return from Exception or
Interrupt), 4-87, 6-3, 6-38
Reserved Opcode exception
description, 6-21
exception frame, 6-21
Restart in Progress (RIP) bit,
11-6
Restart Parameter Block, 4-99,
7-5, 11-2 to 11-7, 11-9
Return from Exception or
Interrupt instruction,
to 4-88, 6-3, 6-38
Revision history, 1-10, 2-8, 3-11,
4-103, 5-10, 6-41 to 6-43,
7-8, 8-30 to 8-31, 9-22, 10-4,
11-29, 12-4, a-21, B-11
RMALI (Read, Mask, Add Longword,
Interlocked), 4-12, 9%-9, 9-10,
9-11, 9-12
RMAQI (Read, Mask, Add Quadword,
Interlocked), 4-13, 5-4, 5-9,
9-7, 9-9, 9-10, 9-11
ROM, 11-7
ROT (Rotate Bits), 4-40
Rotate instructions, 4-40
Rounding bit, 4-48 to 4-50
Rounding modes, 4-45
RPB
See Restart Parameter Block

4-15,
4-30,
4-42,
4-63,

4-17,
4-32,
4-43,
4-64,
4-68,

4-19,

4-63,

4-87

SBZ
See Should Be Zero
Scalar Alignment exception
description, 6-15 to 6-16
exception frame, 6-16
software emulation of,
Scalar operands, 3-2, 3-7
Scalar registers
See Registers, scalar
Scatter Vector Register Data into
Memory instructions, 4-19
SCBB .
See System Control Block Base
(SCBB) register
Security, 3-6
Segment number field,

6-16

5-2

INDEX
RESTRICTED DISTRIBUTION

Self Test Complete (STC) bit,
11-6
Serious system failures
See Exceptions, serious system
failures
Sshift Arithmetic instructions,
4-39
Shift Logical instructions,
Should Be Zero, 1-9
SID
See System Identification (SID)
Sign extension, 4-36
SIRR
See Software
Register

4-38

Interrupt Request
(SIRR)
SISR
See Software
Register
Slave Request
11-12
SLL (Shift Left Logical),
Software emulation
of instructions, 1-7, 4-2
of Scalar Alignment exception,
6-16
Software Enabled (SE) bit,
11-12
Software Interrupt Request
Register (SIRR), 6-7,
8-20
Software Interrupt Summary
Register (SISR), 6-7,
11-9

Interrupt Summary
(SISR)
(SR) bit, 11-7,

4-38

11-7,
6-38,

8-21,

SP
See Stack Pointer
SRA (Shift Right Arithmetic),
4-39
SRL (Shift Right Logical), 4-38
SSN -
See System Serial Number (SSN)
register
Stack
See also Kernel Mode stack
See also Kernel stack
alignment, 6-19, 6-34
initiate exceptlon or interrupt,
6-35
instruction issue model,
to 6-37
parameters pushed for
exceptions, 6-12
programming implications,
residency, 6-34
saving processor state,
switching between, 4-88

6-36

9-17
6-3

Page Index-13
26 April 1988

writability, 6-34

Stack pointer, 1-3, 3-1,
4-99, 6-34, 7-2, 8-27

Stack pointer registers, 11-9

START console command, 11-26

State Longword, 11-6 to 11-7

See also Restart Parameter

4-88,

Block
STB (Store Byte from Register to
Memory), 4-14

STL (Store Longword from Register
to Memory), 4-14

Store Quadword Physical
instruction, 4-98

Store Scalar Register Data into
Memory instructions, 4- -14

Store Vector Register Data into

Memory instructions, 4-20

(Store Quadword from Register

Pairs to Memory), 4-14

STQ (Store Quadword from Register
to Memory), 5-4

STQP (Store Quadword Physical),

STQ

4-98
STW (Store Word from Register to
Memory), 4-14

SUB (Subtract Longword), 4-28

SUBF (Subtract F_floating), 4-60

SUBG (Subtract G floatlng), 4-60

Swap AST Enable instruction, 4-89,
6-38, 7-3

Swap IPL instruction, 4-100,

Swap Privileged Context

6-39

instruction, 4-98 to 4-99,
5-7, 5-8, 7-3, 7-5, 8-17,
9-14

SWASTEN (Swap AST Enable for
Current Mode), 4-89, 6-38,
7-3

SWIPL (Swap Processor IPL), 4-100,
6-39

SWPCTX (Swap Privileged Context),
4-98, 5-7, 5-8, 7-3, 7-5,
8-17, 9-14

Synchronization, 9-1 to 9-12,
11-11

System Control Block
and exceptions, 6-11
and interrupts, 6-6
description, 6-31
vectors, 5-9, 6-11,

6-33
System Control Block Base (SCBB)
register, 8-18, 11-9

6-31 to

INDEX
RESTRICTED DISTRIBUTION

System Identification (SID)
register, 8-19

System Serial Number (SSN)
register, 8-22

TB

See Translation Buffer
TBCHK

See Translation Buffer Check

T (TBCHK) register
TBFLUSH (Flush Translation

Buffer), 4-101, 5-8, 9-13

TBIS

See Translation Buffer

T Invalidate Single (TBIS)

register

Terminology, 1-8 to 1-9
TEST console command, 11-27
Time Of Year (TOY) register,
NV

See Translation Not Valid

T exception

8-26

TOY
See Time Of Year (TOY) register
Trailing numeric string, 2-7
Translation Buffer
See also Translation Buffer
— Check (TBCHK) register
See also Translation Buffer
Invalidate Single (TBIS)

register
defined, 5-7 to 5-8
invalidation, 5-8, 9-12 to 9-13
TBFLUSH instruction, 4-101, 5-8,
9-13

Translation Buffer Check (TBCHK)
register, 5-8, 8-23 to 8-24
Translation Buffer Invalidate
Single (TBIS) register, 5-7,
8-25
Translation Not Valid
exception definition, 6-24
memory management exception,
4-11, 4-14
vector memory access exception,
4-15, 4-17, 4-19, 4-20
Translation Not Valld exception,
4-82, 5-9

UMULH (Unsigned Multlply Longword
and Return High 32), 4-27
Unconditional branches, 4-72

Unconditional jump, 4-74
Undefined, 1-8, 4-92, 4-99, 5-6,
6-31, 7-3, 8-18, 11-2, 11-15

Page Index-14
26 April 1988

UNPREDICTABLE, 4-80, 5-9, 6-10,
8-12, 8-13

Unpredictable, 1-8, 1-9, 3-1, 3-6,
3-7, 4-7, 4-9, 4-12, 4-13,
4-13, 4-16, 4-17, 4-19, 4-20,
4-26, 4-29, 4-34, 4-35, 4-44,
4-45, 4-48, 4-51, 4-53, 4-56,
4-61, 4-63, 4-65, 4-66, 4-67,
4-68, 4-69, 4-70, 4-85, 4-99,
6-12, 6-15, 7-3, 8-7, 8-8,
8-9, 8-10, 9-2, 9-4, 9-5, 9-8,
9-9, %-10, 9-11, 9-12, 9-17

unpredictable, 4-18

User mode

See Processor modes, defined
User Read Enable bit

See PTE, User Read Enable bit
User Stack Pointer, 8-27
User Write Enable bit

See PTE, User Write Enable bit

VADD (Vector Add Longword), 4-29
VADDF (Vector Add F _Floating),
4-61
VADDG (Vector Add G_Floating),
4-61
Valid bit
See PTE, valid bit
VAND (Vector Logical Product),
4-41
Variable length bit field, 2-7
VaXx
architecture, 1-1,
branch instructions,
condition codes, 1-2
data sharing, 9-5
difficulty in building, 1-1 to
1-3
instructions, 1-1
memory operand fetch,
microcode, 1-6, 10-1
operand specifier usage, 1-3
pipelining, 1-1
PRISM compatibility with, 1-6
to 1-8
REI compared with PRISM REI,
4-88
unaligned operands, 2-2
VBIC (Vector Logical Product with
Complement), 4-41

1-2
1-2

1-2

vC
See Vector Count register
VCMPEQ (Vector Compare Signed
Longword Equal), 4-30

INDEX
RESTRICTED DISTRIBUTION

VCMPFEQ (Vector Compare
F_floating Equal),

VCMPEGE (Vector Compare
F_floating Greater Than or
Equal), 4-63

VCMPFGT (Vector Compare
F_floating Greater Than),
4-63

VCMPFLE (Vector Compare
F_floating Less Than or
Equal), 4-63

VCMPFLT (Vector Compare
F_floating Less Than),

VCMPFNE (Vector Compare
F_floating Not Equal), 4-63

VCMPGE (Vector Compare Signed
Longword Greater Than or
Equal), 4-30

VCMPGEQ (Vector Compare
G_floating Equal),

VCMPGGE (Vector Compare
G_floating Greater Than or
Equal), 4-63

VCMPGGT (Vector Compare
G_floating Greater Than),
4-63

VCMPGLE (Vector Compare
G_floating Less Than or
Equal), 4-63

VCMPGLT (Vector Compare
G_floating Less Than),

VCMPGNE (Vector Compare
G_floating Not Equal), 4-63

VCMPGT (Vector Compare Signed
Longword Greater Than), 4-30

VCMPLE (Vector Compare Signed
Longword Less Than cor Equal),
4-30

VCMPLT (Vector Compare Signed
Longword Less Than), 4-30

VCMPNE (Vector Compare Signed
Longword Not Equal), 4-30

VCMPUGE (Vector Compare Unsigned
Longword Greater Than or
Equal), 4-32

VCMPUGT (Vector Compare Unsigned
Longword Greater Than), 4-32

VCMPULE (Vector Compare Unsigned
Longword Less Than or Equal),
4-32

VCMPULT (Vector Compare Unsigned
Longword Less Than), 4-32

VCVTEG (Vector Convert F_floating
to G_floating), 4-64

4-63

4-63

4-63

4-63

Page Index-15
26 April 1988

VCVTFL (Vector Convert F_floating
to Longword), 4-66
VCVTGF (Vector Convert G_floating
to F_floating), 4-65
VCVTGL (Vector Convert G_floating
to Longword), 4-66
VCVTLF (Vector Convert Longword
to F_floating), 4-67
VCVTLG (Vector Convert Longword
to G_floating), 4-67
VDIVF (Vector Divide F_floating),
4-68
VDIVG (Vector Divide G_floating),
4-68
Vector Alignment
vector memory access exception,
4-15, 4-17, 4-19, 4-20
Vector Convert F_Floating to
G_Floating instruction, 4-64
Vector Convert Floating to
Longword instructions, 4-66
Vector Convert G_Floating to
F_Floating instructions, 4-65
Vector Convert Longword to
Floating instructions, 4-67
Vector Count register, 1-3, 3-2
Vector count register, 4-80, 4-84
Vector Enable bit, 4-2, 6-5,
11-10
Vector Enable exception
description, 6-21 to 6-22
exception frame, 6-22
occurrence of, 4-2
Vector Enable Register (VEN),
8-28
Vector exceptions
See Exceptions, Vector
Vector Floating Add instructions,
4-61
Vector Floating Compare
instructions, 4-62 to 4-63
Vector Floating Divide
instructions, 4-68
Vector Floating Multiply
instructions, 4-69
Vector Floating Subtract
instructions, 4-70
Vector instructions, 4-2
Vector Integer Add instructions,
4-29
Vector Integer Multiply, 4-34
Vector Integer Signed Compare
instructions, 4-30
Vector Integer Subtract
instructions, 4-35

INDEX
RESTRICTED DISTRIBUTION

Vector Integer Unsigned Compare
instructions, 4-32
Vector Length register,
Vector length register,
4-17, 4-19, 4-29,
4-32, 4-34, 4-35,
4-44, 4-61, 4-63,
4-66, 4-67, 4-68,
4-85
Vector Logical Functions
instructions, 4-41
Vector mask bit, 4-30, 4-32,
4-63
Vector Mask register,
Vector mask register,
4-63, 4-80, 4-86
Vector Memory Access Exception,
4-15, 4-17, 4-19, 4-20
Vector Merge instruction,
Vector operands, 3-7
Vector registers
See Registers, vector
Vector Shift Logical instructions,
4-44
VEN
See Vector Enable bit
See Vector Enable Register
(VEN)
VEQV (Vector Logical Equivalence),
4-41
VGATHL (Gather Longword Vector
from Memory to Vector
Register), 4-15
VGATHQ (Gather Quadword Vector
from Memory to Vector
Register), 4-15
Virtual address
description,
format, 5-2
in branch instructions,
in memory load/store
instructions, 3-5
translation, 2-1, 5-1,
to 5-7
translation algorithm, 5-7
Virtual address space, 5-2,
VL
See Vector Length register
VvIDL (Load Longword Vector from
Memory to Vector Register),
4-17
VLDQ (Load Quadword Vector from
Memory to Vector Register),
4-17

1-3,
4-15,
4-29, 4-30,
4-42, 4-43,
4-64, 4-65,
4-69, 4-70,

3-1

3-2
4-32,

1-3,
4-30,

4-43

2-1

3-6
5-3, 5-6

11-8

M

4-43,

Page Index-16
26 April 1988

See Vector Mask register

VMERGE (Vector Merge), 4-43

VMULF (Vector Multiply
F_floating), 4-69

VMULG Jector Multiply
G_Zloazing), 4-69

VMULL™ (Vector Multiply Longword),
4-34

VOR (Vector Logical Sum), 4-41

VORNOT (Vector Logical Sum with
Complement), 4-41

VSCATL (Scatter Longword Vector
from Vector Register to
Memory), 4-19

VSCATQ (Scatter Quadword Vector
from Vector Register to

Memory), 4-19

VSLL (Vector Shift Left Logical),
4-44

VSRL (Vector Shift Right Logical),
4-44

VSTL (Store LongwordAVector from
Vector Register in Memory),
4-20

VSTQ (Store Quadword Vector from
Vector Register in Memory),
4-20

VSUB (Vector Subtract Longword),
4-35

VSUBF (Vector Subtract
F_floating), 4-70

VSUBG (Vector Subtract
G_floating), 4-70

VUMULH (Vector Unsigned Multiply
Longword and Return High 32
Product Bits), 4-34

VXOR (Vector Logical Difference),
4-41

WHAMI
See Who-Am-I (WHAMI) register
Who-Am-I (WHAMI) register, 8-29
Word, 2-2
WRCC (Write Cycle Count Register),
4-102
Write Cycle Count Register
instruction, 4-102
Write-back cache
See Cache, implementation
methods
Write-buffer
description, 9-13
implementation methods,
9-17

9-14 to

INDEX
RESTRICTED DISTRIBUTION

implementation requirements,
9-13 to %8-17
Write-through cache
See also Write-buffer
See Cache, implementation
methods
WRVC (Write Vector Count
Register), 4-84

Page Index-17
26 April 1988

WRVL (Write Vector Length
Register), 4-85

WRVMH (Write Vector Mask
Register, High Part), 4-86

WRVML (Write Vector Mask
Register, Low Part), 4-86

XOR (Logical Difference), 4-37

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	04-001
	04-002
	04-003
	04-004
	04-005
	04-006
	04-007
	04-008
	04-009
	04-010
	04-011
	04-012
	04-013
	04-014
	04-015
	04-016
	04-017
	04-018
	04-019
	04-020
	04-021
	04-022
	04-023
	04-024
	04-025
	04-026
	04-027
	04-028
	04-029
	04-030
	04-031
	04-032
	04-033
	04-034
	04-035
	04-036
	04-037
	04-038
	04-039
	04-040
	04-041
	04-042
	04-043
	04-044
	04-045
	04-046
	04-047
	04-048
	04-049
	04-050
	04-051
	04-052
	04-053
	04-054
	04-055
	04-056
	04-057
	04-058
	04-059
	04-060
	04-061
	04-062
	04-063
	04-064
	04-065
	04-066
	04-067
	04-068
	04-069
	04-070
	04-071
	04-072
	04-073
	04-074
	04-075
	04-076
	04-077
	04-078
	04-079
	04-080
	04-081
	04-082
	04-083
	04-084
	04-085
	04-086
	04-087
	04-088
	04-089
	04-090
	04-091
	04-092
	04-093
	04-094
	04-095
	04-096
	04-097
	04-098
	04-099
	04-100
	04-101
	04-102
	04-103
	04-104
	04-105
	04-106
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	12-01
	12-02
	12-03
	12-04
	a-01
	a-02
	a-03
	a-04
	a-05
	a-06
	a-07
	a-08
	a-09
	a-10
	a-11
	a-12
	a-13
	a-14
	a-15
	a-16
	a-17
	a-18
	a-19
	a-20
	a-21
	b-01
	b-02
	b-03
	b-04
	b-05
	b-06
	b-07
	b-08
	b-10
	b-11
	idx-02
	idx-03
	idx-04
	idx-05
	idx-06
	idx-07
	idx-08
	idx-09
	idx-10
	idx-11
	idx-12
	idx-13
	idx-14
	idx-15
	idx-16
	idx-17

