To: Distribution From: Dave Cutler

Date: 28 May 1985 Dileep Bhandarkar
Wayne Cardoza
pave Orbits
Rich Witek

subject: Architecture Review

— - —— —— —— T — — — — — " - - - S e G w—

A strategic effort has begun within the company to define a new
architecture for the 1990s that will complement our current VAX/VMS
offering.

To this end, a small group has been chartered by engineering

management to define and draft an architectural standard for this new

family of machines. The intent is to run the architectural process as
we did for the VAX, and to solicit and encourage various people to

contribute. The architecture standard will be widely reviewed.

Below is the initial set of goals and constraints the architectural
group has set for the new architecture. We would like you to review
these goals and provide feedback in the form of a written response.

It is important to undertake this effort, and have the proper goalset.

In the future, you will also be asked to review the architecture
document. We welcome your input and comments.

Assumptions

The following major assumptions have been made for this architectural
effort:

1. There will be one, and only one, architecture across all
implementations.

2. The architecture is not restricted to be a RISC architecture.
It is a non-VAX architecture that will be an upward extension
of the VAX/VMS family. '

3. The aspects of VAX that make it hard to build fast machines
quickly and easily will be changed. :

- 4. This is a "from scratch" effort. The VAX System Reference
’ Manual~will be used as the starting point. : :

5. This is a strategic effort within the company. Théte 'is a
high-level of commitment to implement this architecture and
provide the necessary resources.

6. An implementation may use microcode. (That 1is, there no
constraint against the use of microcode.)

Page 2

This design work is similar to the the VAX architectural
effort; we are not going to produce anything stopgap.

An architectural document will be produced as soon as
possible. 1t will be reviewed by a larger group and then by
the corporation.

It is expected that it will take around three months to
define the architecture.

It is assumed that an operating system environment will be
constructed that has a compatible file system, network, and
user interface with VMS. It is also assumed that the system
can be clustered with VMS.

It is assumed that ULTRIX will Dbe ported to this
architecture.

The major goals are:

10.

L 11l.

12.

13.

To minimize the software investment over time.

To allow VMS layered products to be moved to the new
architecture.

To allow faster, more cost effective machines to be built.
To allow shorter development cycles.

To allow for parallelism in instruction execution.

To allow for Symmetric Multiprocessing (SMP).

To have a "pipelineable" orientation.

To be "subsettable."

To be the new corporate architecture for 1990s.

To fix anticipated deficiencies and limitations in VAX, €.g.,
limited physical .and virtual address size.

To 'support the. Digital I/O interconnect strategy.

To provide floating point accuracy greater than oriﬁequal to
VAX. L

To ensure that high-level language programs produce the same
results as they would on a VAX.

Page 3

Non-Goals

Non-goals are:
1. To include VAX-compatibility mocde.
2. To support Unibus/Qbus/Massbus peripherals.

3. To translate VAX macrocode transparently and efficiently.

Constraints

The architecture is constrained by the following:
1. It must support VAX-compatible data types.

2. It must support VAX-compatible memory addressing (byte
addressability).

3. It must be compatible with the way VAX handles interlocked
I/0 queues.

4. It must be able to execute the same executable image on every
implementation.

5. It must provide at least twice the per formance/cost of a
particular VAX implementation, using the same technology.

Posted: Tue 28-May-1985 15:03 PDST
To: @ART

t1digitalt! Interoffice Memorandunmnm

To: List Date: 30 May 1985
From: Richard Grove
" Dept: Technical Languages
DTN : 381-2082 Loc.: ZKO02-3/N30
Enet: Orphan::Grove
File: RBGO066 Rev.: 1

Subj: DECwest Trip Report: Technical Summary

CAUTION

The NONVAX program discussed here is a major
strategic undertaking; all information about the
program is COMPANY CONFIDENTIAL.

Please limit the distribution of this report.

Many of the topics mentioned here are still wunder
discussion and all will be subject to a
wide-ranging formal corporate review. This report
is a snapshot taken in mid-May.

1 GENERAL

This memo summarizes my visit to DECwest Engineering May 13-16. The
purpose of my visit was to meet with Dave Cutler and Don MacLaren and
to begin work on software architecture issues for the NONVAX family of
high-performance machines. The meeting was very successful. There is
a substantial consensus on technical issues and approaches. We
outlined the software architecture documents that need to be produced

and we started work on some of the technical content. We agreed on an
informal process for getting more people involved in the technical

work.

The new architecture project has no official name or codeword, so I
have used the name NONVAX in this report.

The hardware and software products that are ‘- being ‘designed c¢an be
briefly described as "2 non-VAX architecture that will:be an upward

extension of the VAX/VMS family". The initial product will be
oriented toward the scientific/technical computational market. The

operating system will have a compatible file system, network, and user

interface with VMS. NONVAX systems will also be able to be clustered
with VAX/VMS systems.

DECwest Trip Report: Technical Summary Page 2
GENERAL

The system should provide higher-level languages that are compatible
with VAX. Key languages for the FCS product are FORTRAN, and perhaps

C or Pascal. BLISS will be needed for porting VMS layered produgts
and a new systems implementation language will be used for writing
most of the NONVAX operating system. We expect that there will be
strong demand for the other VMS languages, and that all will be ported
soon after FCS.

In general, Dave expects that DECwest will produce:
1. A NONVAX hardware emulator and the first NONVAX product
2. Operating system
3. File system and RMS
4. DECnet
5. Linker and some utilities

6. System implementation language, most likely based on the ELN
Pascal language and compiler _

There was agreement that SpitBrook would produce:

1. FORTRAN compiler

2. BLISS compiler to be used in porting various VMS layered
roducts to NONVAX. While the operating system will not use
LISS, it will be an important implementation language for

many products.

3. RTL

4. DEBUG

5. Additional compilers and layered products for future releases

2 SCHEDULE

The project has no schedule yet, but the following dates and
timescales are being discussed:

o On the order of 3 years to FCS, 2.5 years to Field Test
o July 1985 - publish NONVAX architecture SRM, first draft
o Summer 1985 - review/revise/approve SRM

o Fall 1985 - begin detailed design of operating system. This
effort is expected to proceed like the original VMS design.
The first 6 months will be devoted to design of the operating

- system and documenting that design 1in a Working Design
- Document. ' ~ A B :

o March 1986 - First version of Implementation Language
cross-compiler available to operating system group.

DECwest Trip Report: Technical Summary Page 3
HARDWARE ARCHITECTURE

3 HARDWARE ARCHITECTURE

The NONVAX hardware architecture team was meeting at DECwest and Don
MacLaren and I spent one day talking with them about various language
issues. The hardware architecture team consists of:

Dave Cutler ‘

Dileep Bhandarkar (VAX architecture, LTN)

Wayne Cardoza (VMS)

Dave Orbits (SAFE, MRO)

Rich Witek (Chips, HLO)

00000

The hardware architecture team is making good progress. They expect
to produce a complete draft of the SRM by late June or early July.
The draft SRM will be widely distributed and reviewed within DEC, Jjust
as the original VAX SRM.

Attachment 2 is the architecture team's statement of goals and
constraints.

3.1 Architecture Characteristics

This section enumerates a number of key characteristics of the
hardware architecture that 1is being defined and comments on some of
the software implications.

o NONVAX has a simple instruction set architecture that is

intended to facilitate high-speed implementations and
pipelining.

Each instruction is 32 bits long and there are a small number
of instruction formats.

o NONVAX supports VAX datatypes, memory layouts, and byte
addressability. These are the key attributes required in
order to produce high-fidelity VAX-compatible compilers for
NONVAX. The floating point format is the same scrambled VAX
representation, and bytes and bits within a 1longword are
numbered and addressed like a VAX.

~o NONVAX has 64 registers, each is 64 bits wide. The machine
is a Load/Store machine. That 1is, only Load and Store
instructions can reference memory operands. All arithmetic
and. logical operations are performed on values contained in
the registers. 'In short, it looks a good deal :like a CDC
6600. A

The current NONVAX design is strongly influenced by the SAFE
design that has been done in Marlboro. The NONVAX 1s much
more like SAFE than RISC machines such as TITAN or HR32.

DECwest Trip Report: Technical Summary Page 4
HARDWARE ARCHITECTURE

o The major departure from VAX datatypes 1is that NONVAX
addresses are 48 bits. The standard semiconductor metrics

(i.e. one address bit every 2 years) indicate that VAX K will
run out of physical and virtual address bits sometime in the

1990's. The architecture team is convinced that NONVAX must
provide more address bits.

The 48-bit address space is "flat". That is there are no
visible segments, and address arithmetic propagates carries
through 48 bits (across page and segment boundaries).

The design of the page tables and the operating system is
intended to support very large sparse address spaces at a
very low cost in physical memory for segment and page tables.
For example, it is deemed reasonable to allocate 32Mb for a
task stack and to isolate that stack by a 32Mb guard region
of unallocated memory. ‘

Larger addresses will be the most painful problem in
providing vAaX-compatible higher 1level 1languages. Data
structures that contain pointers will have to allow a_ larger
field, and so the structure layouts cannot be identi af
between VAX and NONVAX. In languages that have real pointer
types (e.g. Ada, Pascal, PL/I), most of this can be hidden
by the compiler. FORTRAN programmers that manipulate
pointers using the 3%LOC function and 32-bit integers won't be
so fortunate.

o The page size will be much larger than VAX, probably at least

16Kb. There is also talk of having the architecture specify
a minimum (16Kb) and maximum (512Kb) page size rather than a
single fixed page size. In order to port images between

different implementations, the software would have to make
the smallest unit of virtual allocation and protection be the

maximum page size (512Kb).

The larger page size is desirable because it will provide
more untranslated address bits to be used by direct-map
caches, and there will be less overhead for managing pages in
the operating system. The larger page size is undesirable
because the allocation granularity is larger and there will
be more breakage when allocating small chunks that have
different protection attributes.

o) 'The\NONVAXNhardware does not support unaligned _data . access..

That is, INTEGER*4 quantities must be aligned on a longword .

boundary, REAL*8 on a quadword boundary, etc. ‘'.The 'NONVAX

operating system will handle alignment faults andfquietlg fix
up non-aligned references, much as MicroVAX emulates string

and decimal instructions. However, this emualation will
incur a substantial performance penalty; on the order of 100
times slower than a properly aligned reference. Because the
performance hit is so large, we expect that compilers will
provide an optional "natural boundary" alignment when laying

DECwest Trip Report: Technical Summary Page 5
HARDWARE ARCHITECTURE

out records and data structures. The compilers will also
provide the VAX "pack to the nearest byte" layout. Both VAX

and NONVAX compilers should provide both layouts, and should
provide a reporting option to identify misaligned items.

o NONVAX is a "base register" machine. Since all instructions
are 32 bits 1long and addresses are 48 bits long, you can't
include a full address in a single instruction. Thus unlike
the PDP-10, PDP-11, and VAX you must use base-displacement
addressing to reference memory operands. As another
consequence, the calling conventions define the format of a
linkage section and when you call a procedure you must
provide a pointer to the called procedure's linkage section
as an argument.

Load/store instructions have a signed 14-bit displacement
field, so the displacement range is +-8K bytes from the base
address. Jump-class instructions (JSR, conditional and
unconditional branches) have a 20-bit displacement in
longword units which provides +-2Mb displacements. Compilers
won't need Jump/Branch resolution since 2Mb of code in a
single object module seems like plenty (at 1least for the
first release). :

o There are Load/Store instructions to 1load bytes, words,
longwords, and quadwords. For short quantities, you can
sign-extend or zero-extend as you _load the value into a
64-bit register. All integer and logical operations operate
on 64-bit register values. There are convert instructions to

convert a 64-bit value to a byte/word/longword and check for
overflow. . '

o The instruction set is much simpler than the VAX. This means
that the following classes of VAX instructions are NOT
provided:

- There are no string instructions.
- There are no packed decimal instructions.

- There are no variable bitfield instructions. Field
extraction and insertion are performed by loading a
quadword into a register and using SHIFT, ROTATE, AND,
and OR instructions. Accessing a bit within a packed bit

\array.will involve separating the 'bit index into a byte
offset 'and bit within byte, fetching the byte, and then
shifting and masking to isolate the bit.) '

- In the current proposal, the only floating type with full
hardware support 1is G-floating. There are CVTFG and
CVTGF instructions so you can do an F-floating VAX
operation by converting both F operands to G, performing
a G operation specifying chopping, and converting the

result back to F to get the correctly rounded VAX F-float

DECwest Trip Report: Technical Summary Page 6
HARDWARE ARCHITECTURE

result. Note that you must perform these converts after
EVERY F operation in order to get the same results that
VAX does. If you keep temps in G format, you get
floating results like the C 1language where all
intermediate calculations are done in double precision.

There has been an active debate about providing more
support for F-floating, a full set of F-floating
operations. It does not seem desirable to have a machine
where single precision is slower than double precision.

- There 1is no hardware support for D-floating or
H-floating.

There is concern about whether customers will accept a
NONVAX that does not efficiently support D-floating;

there was a lot of resistance to the G-only MicroVAX I.

Initial estimates suggest that NONVAX software can
probably perform H-floating operations in times that are

similar to the VAX warm-microcode approach on machines
like VENUS and Nautilus.

We expect that the software will provide a CISRTL _(Complex
Instruction Set RTL) of highly tuned low-overhead subroutilnes

to perform operations equivalent to many of the missing VAX
instructions (strings, decimal, D-float, H-float, etc). The
architecture team expects that these "micro code in macro
code" routines should provide performance on string

operations that is comparable to what VAX microcode delivers.

o NONVAX does not have exception enables (e.g. integer

overflow) in the Processor Status word. Rather, enables and
rounding mode are encoded directly into the instructions.

Thus there are two integer add instructions: ADD (no
overflow signaled) and ADDV (add and check for overflow), and
similarly for other instructions.

All arithmetic exceptions are faults; the PC is backed up to
the faulting instruction and no result is stored.

o NONVAX does not have condition codes. The compare
instructions produce a boolean result (0 or 1) in a general
register, and you use a branch on: low bit instruction to
actyally branch on the .result of the comparison.. This
improves branching performance because the compilér can
schedule the comparison so that the booleah. result is
available when the branch is executed. There is also a set
of (integer) compare against 0 and jump instructions.

o NONVAX provides Execute-only protection on pages. Thus code
generators cannot put literals in the code section.

DECwest Trip Report: Technical Summary Page 7
HARDWARE ARCHITECTURE

o NONVAX provides a BPT instruction, but there is no T-bit. 1In
order to execute an instruction that has been replaced by a
breakpoint, the debugger will have to decode and interpret
the instruction. The simple fixed-format instruction set
should make this a reasonable approach.

o The hardware is designed to support symmetric
multi-processing and the operating system will support
multiple threads of execution within a single process
(address space). The Run-Time Library will have to be fully
reentrant; AST-reentrancy is not sufficient. All compilers

should (at 1least optionally) generate fully reentrant code
and calling sequences.

4 SOFTWARE ARCHITECTURE

Don MacLaren and I enumerated a number of specifications that will
define the software architecture. These cover familiar topics from
VAX such as data types, calling conventions, run—-time. environment
structure, object language, debug symbol table, etc.

We expect that the software architecture process for NONVAX will be
much 1like the VAXS/VAXL process. Initial proposals for new designs
will be prepared by small working groups and reviewed by a larger
group representing many languages and products. Stable specifications
will be updated by an ECO process. We plan to collect all
specifications for the software architecture in a multi-volume
notebook set. An outline for the notebook set is included as
Attachment 1 of this trip report.

We worked on calling conventions in detail and came up with Rev 0 of
the calling conventions. We will be presenting this proposal to
groups in DECwest and. SpitBrook and then writing up a first draft.

We discussed goals and constraints for VAX compatibility. Our general

goal 1is that user programs written in higher-level languages such as
pascal or FORTRAN should run without change on the NONVAX and produce
similar results. In some cases it may be necessary to make changes in
programs. For example, a FORTRAN program that manipulates addresses
in INTEGER*4 variables won't work on a machine with 48-bit pointers.
It should be possible to modify such programs so that the modified'

_source can bq compiled to work correctly on both machines.

NONVAX dompilers wili use the same set of default typés that VAX

compilers do. That 1is, in FORTRAN or Pascal, "integer" wi11 mean a
32-bit signed longword, "real" will mean 32-bit F-floating, -and

"double" will mean 64-bit floating (G-floating or D-floating depending
on the compiler's /G_FLOATING switch). Since INTEGER*8 will be an

important type on NONVAX, we expect that we will also have to provide
INTEGER*8 in VAX compilers.

DECwest Trip Report: Technical Summary Page 8
SOFTWARE ARCHITECTURE

We expect that VAX and NONVAX will coexist (in clusters and networks)

for a

relatively long time, sO it is very important to do a good job

on compatibility issues.

5 CALLING STANDARD

‘The NONVAX calling standard must preserve a number of key attributes
of the VAX calling standard, including:

o

(o]

o

Mixed language programming.

Use of procedure calls as the primary interface to all
services and subsystems.

NONVAX must preserve the "programmer's view" of procedure

calls as seen on VAX from the perspective of a higher level
language.

NONVAX will provide by value, by reference, and by descriptor
mechanisms for argument transmission and the caller will have
the same degree of control as on VAX.

NONVAX will provide a condition handling mechanism that is
functionally equivalent to VAX. '

The NONVAX calling standard will add a number of new attributes:

o

There will be greater emphasis on performance of procedure
calls.

NONVAX will provide "lighweight" procedures whose performance
is similar to JSB linkage on VAX. Lightweight procedures
will be invoked using the standard calling sequence, SO this
is purely an optimization performed by the compiler based on
the complexity and requirements of the called procedure.

The standard NONVAX procedure call will pass the first 4
arguments in registers; procedures with 4 or fewer arguments
won't use an argument list in memory.

All descriptor formats must be modified to accomodate 48-bit
addresses. Some improvements in descriptor design are
plagned. - For example, it seems desirable to _provide only
non-contiguous = array descriptors; this will improve
communication between FORTRAN and Pascal or PL/I%.

All parametric procedures will be passed as bouhdi procedure
values rather than as entry point addresses.

The NONVAX calling standard must make effective use of the
much larger number of registers. Registers RO-R15 will be

scratch registers and need not be preserved. Interprocedural

DECwest Trip Report: Technical Summary Page 9
CALLING STANDARD

analysis (in a mixed language environment) will tailor
linkages to reduce call overhead.

I will be distributing a draft of the NONVAX calling standard for
review and comment.

6 DEVELOPING THE SOFTWARE ARCHITECTURE

Don MacLaren will be visiting SpitBrook June 11-14 to continue work on

the software architecture. I will serve as host and will organize a
number of technical meetings. The primary topics for discussion are:

1. NONVAX software architecture

A general discussion of the overall software architecture,

the specifications that need to be written, and architectural
process.

2. NONVAX calling standard

Discussion and review of the first draft of the NONVAX
calling standard.

3. System Implementation Language (SIL) requirements

As noted above, current thinking is that the NONVAX systems
implementation language will be based on the ELN Pascal
compiler and language. The operating system group has a goal
of writing "almost all" of the operating system in a
higher-level language. They estimate that there will be 10K
to 20K of very low level kernel code written in Macro, and
all the rest in the SIL.

All of the RTL, including the math library, will be written

in the SIL. The SIL must provide facilities for exploiting
all features of the hardware architecture.

The SIL effort has a number of constraints, with schedule
being the most pressing. With less than a year to develop an
initial version, we can't plan to design and implement the
ultimate SIL.

-The goal of this session is to.haie an open but disciplined

brainstorming session on the requirements- for a new systems T

implementation language. All participants must agree to
avoid language chauvinism and religious fanaticism and focus
on requirements. '

We assume there will be two primary implementation language

s.
BLISS-64 and a new NONVAX implementation language qerlvea
from ELN Pascal. The focus o this discussion will be

requirements for the new language; we may also discuss BLISS

DECwest Trip Report: Technical Summary Page 10
DEVELOPING THE SOFTWARE ARCHITECTURE

extensions to support VAX-NONVAX portability.
DEBUG and PCA

Symbol table requirements and design for DEBUG and PCA.

RTL and multitasking

A goal of the NONVAX software architecture 1is to provide
support for multiple threads of execution within a single
process (address space). This will provide facilities 1like
tasking in Ada and VAXELN.

[end of RBG066 .RNO]

Page 1

SOFTWARE ARCHICTECTURE SPECIFICATIONS RELATED TO LANGUAGES

Don MacLaren -- 20-May-1985

This is an initial outline of specifications needed in this area with
commentary on the purpose of some of them. 1It's based on notes from a

discussion with Rich Grove, but I have added some additional material.

We have divided the specs into three "books", with the first book

being the one of current interest. There is overlap between the
material included here and what one finds 1in operating system
documentation.

NOTE: This is a preliminary outline of a set of working documents.
Nothing is approved; everything is subject to change.

1 »THE EXECUTION ENVIRONMENT

This book, together with the hardware architecture book, describes the
runtime environment in which compiled programs execute -- excluding
operating system characteristics that have little effect on compiled
code. Because the instruction set contains no high-level instructions

such as the VAX call, some of the material here would fall in the VAX
hardware manual.

1.1 Data Types

This section describes all data types recognized in the hardware
architecture. Recognition doesn't imply comprehensive support.
However it does mean that treatment of the data type will be covered
in the <calling standard and that the debugger will understand the
type.

Alignment and structure mapping are covered.

1.2 Stack Structure And Register Conventions

Covers stack frames, LP, SP, FP, exception handling and unwinding.
1.3 The Calling Standard ' B

1. Linkage conventions including linkage section related to calling.

2. Argument lists: registers vs. memory, optional, variable-length,
etc.

Page 2

3. sStandard and Variant Argument pPassing Conventions By Data Type.

4, By-value arguments -- a true thorn bush for those that don't fit
in a register.

5. Descriptors.

6. Returning Function Values.

1.4 Tasking
1.5 AST's

In particular, an explanation of the Dbest ways to make code AST
reentrant or non-AST-interruptible.

1.6 Status Codes And Error Messages

This to include a more contemporary fao capability.

1.7 CIS Specifications

Specifications for standard complex instruction sequences. This
covers sequences for things like MOVC, but it is not restricted to
analouges of the VAX instructions.

How such sequences fit into the system must also be explained.

1.8 Miscellaneous Issues

1. One-time initilization in programs.
2. Same thing in tasks?

3. Effecﬁ-of hardware exception treatment when reflected to the level .
-~ - of a typical language.) ‘ _ :

1.9 Compatibility

Significant differences from VAX/VMS and how to deal with them.

Page 3

2 COMPILER INTERFACES

This book describes various substantial structures that are the
compilers' interfaces to other system tools. The title was chosen in
desperation.) :

The architectural specifications in this book are open; they will be
made available to users. :

1. The Object Language.
2. Debug Symbol Table.
3. CDD interface.

4. Librarian interface.

5. Diagnostics Output Records. This is what the language-sensitive
editors read to help a user correct his source program. :

6. Definition Modules. One of these modules contains definitions of
data structures and procedure entries. The form is acceptable to
all the compilers.

7. 1Information Output Records. These give additional information
about a compilation, its usage of symbols, etc.

Items 6 and 7 are new, at least relative to our VMS environment.

Their inclusion is aimed at supporting improved programming
environments.

3 INTERNAL COMPILER ARCHITECTURE

This book describes the common structure of compilers that wuse the
common back end. It is the basis for the development of the initial
set of product compilers. ‘

This is not likely to be a public document.

