PRISM ARCHITECTURE

PRISM:

Parallel
Reduced
Instruction
Set
Machine

Is PRISM RISC"?

- RISC = Reduced Instruction Set Computer
 - IBM 801
 - Berkeley
 - Titan, Safe, Cascade...
- Small Instruction Set
- Instructions in Hardware
- "RISC" compared to VAX?

But... PRISM isn't RISC!

PRISM is:

- Parallel Architecture
- Vectors
- Some "RISC" Concepts
- Some "CISC" Concepts
- Designed for PERFORMANCE

PRISM ARCHITECTURAL GOALS

- High (Absolute) Performance
- 2:1 (or better) Cost/Performance
- VAX Compatibility
- VAX Extension Architecture for 1990's

Why Not Build A Faster VAX?

- Complex (microcoded) instruction set
- Variable length instructions
- Many addressing modes (good & bad)
- 512 byte page size
- Autoincrement & Autodecrement
- Condition codes force synchronization
- Lots of unused functionality

PRISM ARCHITECTURE OVERVIEW

- 32-bit architecture
- 32-bit virtual address space
- 45-bit physical address space
- VAX compatible memory addressing
- VAX compatible data types
- Scalar and vector processing
- Symmetric multiprocessing

SCALAR PROCESSING

- 64 32-bit registers
- 8-, 16-, 32-bit integers/logicals
- 32- and 64-bit F and G Floating
- Parallel instruction execution
- Comprehensive, yet simple, instruction set
- Load/Store memory referencing

VECTOR PROCESSING

- 16 vector registers
- 64 elements per vector register
- 64-bits per vector element
- 32-bit integer/logicals
- 32- and 64-bit F and G Floating
- Single instruction processes entire vector register
- Similar to Cray-2 vector functionality

MEMORY MANAGEMENT

- 32-bit virtual address space
- Basis for relocation, protection and paging
- Execute protection for proprietary code
- 8KB page size for added TB efficiency

PRISM ADVANTAGES

- Fixed length instructions
- Lots of registers
- Parallel execution; out-of-order completion
- No (synchronous) condition codes
- No compound instructions
- No microcode required
- Large pages

CRYSTAL HARDWARE SUMMARY

Crystal Processor

Basics:

- PRISM Architecture
- Air-Cooled, ECL Multiprocessor (1-4)
- Scalar with vector option(s)

Performance:

- 3X equivalent VAX per scalar unit
- 100 + MFLOPS (Peak) per vector option
- Memory Size = 128 to 512 MBytes
- I/O Bandwidth > 50 MBytes/sec

Transfer Costs:

	Proc	Memory	MLP	TC	Markup
Entry Kernel	2	128 MB	\$ 1465K	\$ 169K	8.7X
Max Kernel	4	512 MB	\$ 3733K	\$ 451K	8.3X

Crystal Scalar Unit

Performance through both fast clock cycle and parallelism

- High speed ECL gate arrays 15nS cycle
- Retire an instruction each cycle
- Four independent function units
- Fully pipelined multiply and add
- Separate instruction and data caches
- Data cache is writeback

Crystal Vector Option

Architecture and fast clock cycle provide very high throughput

- Sixteen multiported vector registers
- Four autonomous function units
- Fully pipelined multiply and add
- 132 Mflops peak performance
- 2 board addition to Scalar processor

Crystal Memory System

Parallelism used to achieve very high performance

- 1-2 + Gigabytes/Second
- MultiLevel cache hierarchy
- Main memory is 32 way interleaved
- Memory size 128 to 512 MBytes

Crystal I/O System

Multiple Channels and Independent Processors used to achieve high bandwidth

- VAXBI allows standard DEC devices
- I/O Processors off-load main CPU
- VAX as IOP allows BCA
- Memory on IOP maximizes BI bandwidth
- Eight VAXBIs provide 64Mbytes/sec

PRISM/VMS Software Summary

PRISM/VMS GOALS

- Quality
- Robustness, Extendability, and Maintainability
- New Functionality
- VMS Compatibility
- Schedule
- Performance

SOFTWARE SUMMARY

- Very similar to VAX/VMS
- ULTRIX
- Cluster Support
- Symmetrical MP
- Vector Support
- Multitasking

SOFTWARE SUMMARY - CONT.

- PILLAR Systems Implementation Language
- Layered Languages:
 - Vectorizing FORTRAN
 - BLISS
 - Pascal
 - **–** C

VMS COMPATIBILITY

At user interfaces and at VAX/VMS interfaces:

- System services via compatibility layer
- Disk and Magtape structures
- DCL and utilities
- DECnet and remote terminal support
- Clusters
- Languages, RTL, and debugger
- Layered Products

PRISM COMPETITION SUMMARY

Competition

- IBM
- Technology Leaders
- Others

High Technology Companies

- Convex (C-1)
- Alliant (FX/1 and FX/8)
- Scientific Computer Systems (SCS)
- Elxsi (System 6400)
- Floating Point Systems (FPS-164 and FPS-264)
- Market Share for These & Other High Technology Companies
 - . 4% FY85 (\$625K-1.6M Priceband)
 - . 2% FY85 (\$1.6M + Priceband)

Product Comparison Summary

	Crystal	IBM	Convex	Alliant	Amdahl	Cray
Model	1-4	3090	C-1	FX/8	5890	2
#	CPUs	200&400			300&600)
# Proc	1-4	2,4	5	1-8	2,4	4
VUPs	30-100	21-38	10	3.5-26	30-54	120*
Cost per VUP	\$20K	\$183K- \$188K	\$52K	\$39K	\$170K- \$172K	\$147K*
MFLOPS	100 + -200 +	100 -200	60	94		1600
System Price	\$571K- \$2.15M	\$3.9M- \$7.2M	\$515K	\$270K- \$1.0M	\$5.1M- \$9.3M	\$17.6M
VP	Yes	Yes**	Yes	Yes	No	Yes

^{*} Estimated

** Attached Vector Processor

Please note: Crystal systems (which FRS in FY89) are compared to currently shipping competitive systems.

Alliant FX/8

- Price/Performance
 - . 3.5-26 VUPs \$39K per VUP (1-8 Processors)
 - . 94 MFLOPS
 - . \$270K-1.0M Systems
- 1-8 Processors
- Vector Processing
- Compiler Technology (Decomposing, Vectorizing)
- Full Fortran Support for Vector Hardware Parallelism

Crystal and Alliant Product Comparisons

	Crystal	Alliant
# of Processors	1-4	1-8*
Processor Bits	32	32/64
Cycle Time	15ns	170ns
Cache	64-256K	64-128K
System Memory	64-512MB	8-64MB
Memory Speed	800MB	188 MB
I/O Architecture	IOP	IOP
Vector Processor	Yes	Yes

^{*1-8} Computational and 12 Interactive Processors

Convex C-1

- Price/Performance
 - . 10 VUPs \$52K per VUP
 - . 60 MFLOPS
 - . Entry System \$515K
- 5 Processors
- Vector Processing

Crystal and Convex Product Comparisons

	Crystal	Convex
# of Processors	1-4	5*
Processor Bits	32	32/64
Cycle Time	15ns	50ns
Cache	64-256K	64K
System Memory	64-512MB	4-128MB
Memory Speed	800MB	80MB
I/O Architecture	IOP	IOP
I/O Bandwidth	64-100MB	80MB
Vector Processor	Yes	Yes

^{*} With True Parallelism

Cray-1 and 2

Cray-1

- . Entry System \$8.8M
- . 250 MFLOPS
- . 64 Processor Bits
- . 12.5ns Cycle Time
- . 24 Channels

• Cray-2

- . 4 Processors
- . Entry System \$17.6M
- . 1600 MFLOPS
- . 64 Processor Bits
- . 4.1ns Cycle Time
- . 40 Channels

Crystal and IBM Product Comparisons

	Crystal	IBM 3090
# of Processors	1-4	2,4
Processor Bits	32	32
Cycle Time	15ns	18.5ns
Cache	64-256K	64-256K
System Memory	64-512MB	64-256MB
I/O Architecture	IOP	Channels
I/O Bandwidth	64-100MB	96-288MB
Vector Processor	Yes	Yes

MAKING A SUCCESS OF PRISM

DECwest Engineering January 16, 1986 #1

PRODUCT POSITIONING

MARKET

- High performance
- Scientific computation
- Engineering
- Research

• With AQUARIUS

- Crystal = high end scientific, computational
- Aquarius = high end commercial, MIS

With ARGONAUT

- Dual processor entry above Argonaut
- Argonaut = mid-range VAX processor

DECwest Engineering January 16, 1986 #2

CONCERNS

- Software schedules tight
- Too much (?) to do now
- FY89 will be here tomorrow
- Software will be gating item

HOW DO WE SUCCEED? - CONT.

- Deliver minimal, but key layered software:
 - Best Vectorizing FORTRAN (period)
 - Supporting tools (LSE, MMS, CMS, PCS, etc.)
 - Sell performance use the iron!

HOW DO WE SUCCEED?

- Keep our focus narrow:
 - Scientific computing
 - Member of VAX family
 - Top Fortune companies

HOW DO WE SUCCEED? - CONT.

- Catch up with VAX over several years
 - Schedule layered product introductions
 - Complementary offerings (product families)