DECwest/SDT Agenda

Digital Equipment Corporation
Confidential and Proprietary

David N. Cutler
DECwest Engineering
May 30, 1988

INTERNAL USE ONLY

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

What will be Presented

Introduction
Why are we here?
Problem Statement
Brief Statement of Alternatives

Assumptions and Background

Technical Evaluation of MIPS Hardware and Software Architecture
Hardware
PRISM Software Reliance on Privileged Architecture
Software

Fortran compiler study

Analysis of Alternatives
MIPS only
PRISM only

Both

Recommendations

INTERNAL USE ONLY May 30, 1988 dnc - 1

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Introduction
Problem Statement
Assumptions

INTERNAL USE ONLY May 30, 1988 dnc - 2

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

What do we hope to accomplish today?

e Discuss the MIPS Plan B Proposal.

e Discuss the alternative strategies that might be
pursued.

e Assess the impact on current projects and future
products.

e Formulate a decision or at least a process by which a
decision can be reached.

INTERNAL USE ONLY May 30, 1988 dnc - 3

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Problem Statement

e We are losing a significant business opportunity in
the lowend, high performance, workstation market.

e VAXes are not perceived to be price performance
competitive in this market.

e PRISM offers a price performance competitive archi-
tecture, but will not provide a product in the critical
market window. |

e Therefore, we are considering building workstation
products to attack this market based on the MIPS
microprocessor chips because they are available,
competitive, and offer a time to market advantage.

INTERNAL USE ONLY May 30, 1988 dnc - 4

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Alternative Strategies

e Build our entry workstation products based on MIPS
and continue our investment in PRISM as the long
term solution.

e Build our entry workstation products based on MIPS,
stop the development of the PRISM software and
hardware architecture and switch all development to
MIPS based products.

~ o Continue the execution of the current strategy which
provides an entry workstation based on PRISM chips
and server products for high performance computa-
tion and database/OLTP systems.

INTERNAL USE ONLY May 30, 1988 dnc - 5

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Assumptions and Background

e Enterprise-computing requires a highly compatible
family of systems that address the complete set of
customer requirements.

e The PRISM effort was begun to provide a long term
architecture on which to build a complete line of
compatible systems that exhibit a high degree of
VAX compatiblity and fit into the Digital Computing
Environment.

e The PRISM product line must be phased into Digital’s
business carefully to avoid impingement on the
current VAX business until such time as we have a
complete set of software in place and are able to do
the whole job for the customer.

e The VAX architecture has been a positive and prof-
itable experience for Digital; a well defined architec-
ture with many compatible implementations to protect
customer investment.

e If Digital wants to remain a major innovator in the
- computer industry, we must control our destiny
and have control over our software and hardware
architectures.

INTERNAL USE ONLY May 30, 1988 dnc - 6

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

A Quick
Analysis of the MIPS
Hardware Architecture

INTERNAL USE ONLY May 30, 1988 dnc - 7

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Attractive Features of the
MIPS Hardware Architecture

e It's better than the Sun Sparc architecture.

e There are competitive chip implementations from
several vendors available today.

e MIPSco’s chip plans and semiconductor recruit-
ment promise a steady flow of competitive chip
implementations in the future.

INTERNAL USE ONLY May 30, 1988 dnc - 8

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

BUT

e It was not designed with strong VAX compatibility in
mind and therefore contains several features that are
explicitly incompatible with VAX.

e [t was not designed with the goal of being compatibly
extendable to a 64-bit architecture in the future.

e It was not designed to be able to support high perfor-
mance vector computing.

e It was not designed to allow a single set of software
to run on muitiple generations of implementation
without change.

e It was not designed to have inherent high perfor-
mance multiprocessing support.

INTERNAL USE ONLY May 30, 1988 dnc - 9

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Major Architectural Problems

e The architecture is not well specified in several areas
especially cache coherency and exception processing
(e.g. what happens when the I-stream is written into).

e There is no support for multiprocessing either in
the form of interlocked instructions or processor
identification (i.e. something similar to WHAMI).

e There is no support for vector instructions. Ardent
was able to implement vector capabilities via a copro-
cessor with much difficulty especially with respect to
memory management.

e Floating point capabilities are incompatible with VAX
both computationally as well as value format.

e Memory management capabilities are inadequate for
a 1990’s processor architecture. Execute only and
noexecute protection are not supported even though
they are simple to implement.

INTERNAL USE ONLY May 30, 1988 dnc - 10

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Other Architectural Problems

e Multiply and divide use special hardware registers
to hold their results. This prohibits pipelining and
requires special instructions to move results to
dgeneral registers.

e Integer overflow checking is supported for add and
subtract operations, but not for multiply and divide.

e There are no defined rules for data sharing, atomicity,
or cache coherency.

e Memory mapping does not allow user mode execution
of code contained within the executive. This is
something that has proven very useful in VMS and
Mica.

e The interrupt system is single level with no interrupt
priority. Every Digital architecture has provided
prioritized interrupts because they have been found
to be so useful.

INTERNAL USE ONLY May 30, 1988 dnc - 11

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Other Architectural Problems Cont.

e The various rounding modes of the floating point
coprocessor are programmed via a status and control
register rather than being part of the instruction set.
This is the archaic technology that we abandoned
with the PDP-11/45.

e The floating point coprocessor uses a separate reg-
ister file which causes compilers to manage another
nonhomogeneous resource and causes additional
movement of operands between the general registers
and the floating point registers.

e The result of a floating point comparison operation
is stored in a single bit in the floating status register.
This serializes floating comparison operations and
prevents pipelining. |

e Certain floating point operations require software to
wait a specified number of cycles before attempting
to read the resuit.

INTERNAL USE ONLY May 30, 1988 dnc - 12

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Other Architectural Problems Cont.

e The floating point coprocessor generates interrupts
when an exception is discovered. This either pre-
vents overlap of integer instructions or results in
floating point interrupts at inappropriate times (same
problem we had with the PDP-11/45).

e The mapping of memory is very unusual in that one
quarter of the virtual address space is permanently
mapped to the first 512mb of physical memory. If
done compatibly, this will cause a very inefficient
migration to a large address space.

e There is no architected interval clock, cycle counter,
or any other way in which time or accounting infor-
mation can be implemented. This capability must be
implemented via an external device.

e A dedicated general purpose register is used for
subroutine linkage. This prevents the generation of
optimized procedures linkages for locally compiled
leaf procedures.

e There is no support for ASTs in hardware. Besides
VAX/VMS and Mica even VAX/ULTRIX (nee Berkeley
UN=+X) has found this useful.

INTERNAL USE ONLY May 30, 1988 dnc - 13

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Other Architectural Problems Cont.

e There is no architected software interface to privi-
leged hardware functions.

e The coprocessor architecture forces floating point,
vectors, and interlock operations to be appended to
the processor like a bag on the side rather than being
integrated into the architecture and instruction set.

e Exception/interrupt vectors are fixed in physical
memory which will cause availability problems if that
~ particular memory fails.

e In certain exception cases, continuation of the pro-
gram requires interpretation of the instruction stream
to effect a delayed branch.

e Although the floating point coprocessor is able to
directly pick up instructions from the I-cache bus, it
is not clear additional coprocessors will be able to do
so without causing serious signal integrity problems
or a slowdown in chip speed.

INTERNAL USE ONLY | May 30, 1988 dnc - 14

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Hardware Architecture Conclusions

e The MIPS architecture is well-suited for UN*X based
workstations. It is, however, not adequate to build a
family of system products.

e The MIPS architecture leaves too much unspecified
or ambiguously specified. This will produce both de-
velopment and support problems. (Currently planned
implementation are all slightly incompatible with each
other.)

e Without a major overhaul, the MIPS architecture
would yield a family of prodcuts with weak compat-
ibility, even at the application level (i.e. no binary
compatibility).

e Incompatibility with VAX would cause serious erosion
of the customer base.

INTERNAL USE ONLY May 30, 1988 dnc - 15

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

PRISM Software Dependence
on PRISM Hardware Architectural
Features Not Present in
MIPS Hardware Architecture

INTERNAL USE ONLY May 30, 1988 dnc - 16

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Dependence
on Priviliged Architecture

e PRISM software is designed to take maximum advan-
tage of the PRISM privileged hardware architecture
and expects it to remain absolutely compatible from
implementation to implementation. (Epicode is pro-
vided to make it easy for hardware implementers to
do this.)

e Interlocked instructions - RMAxI/CMPSWxl, for fine
grained parallelism, multiprocessor synchronization,
and support of Digital I/O controllers.

e ASTs - /0 completion, suspend/resume, force exit,
enter context of target thread to obtain system man-
agement and performance information.

e Priority interrupts - software interrupts for scheduling,
ASTs, external entry to system debugger.

e Cycle count register - Performance data collec-
tion (very important in vector code analysis) and
accounting.

INTERNAL USE ONLY May 30, 1988 dnc - 17

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Dependence
on Privilged Architecture Cont.

e FOE, FOR, and FOW bits in TB - provide state of the
art memory protection for proprietary code (execute
only) and greater fault isolation (no execute on data).

e Full memory mapping - enable user mode execution
of code in the system part of address space for
condition handling, instruction emulation (vector
emulation), AST delivery, AST routine to force exit,
thread startup, initial image activation, and raise
condition in target thread.

e Transparent caches with well defined data sharing
rules that don’t force the buffering of all I/0 through
noncached data areas.

e Interprocessor interrupts - thread scheduling, TB
maintenance, AST delivery, system shutdown, ICache
flushes, and system debugger synchronization in
multiprocessor configurations.

INTERNAL USE ONLY May 30, 1988 dnc - 18

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Dependence
on Privilged Architecture Cont.

o Powerfail - the ability to increase availability by riding
through power transients.

e Interval timer - quantum runout, timers, and system
time.

e Multiprocessor console and boot architecture - imple-
mentation independent support of console, processor
self test and configuration, console terminal, restart
parameter block, and boot coordinator.

INTERNAL USE ONLY May 30, 1988 dnc - 19

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

The MIPS Privileged
Architecture Impact

e Three months to fully analyze the MIPS architec-
ture and seek alternate solutions to the privileged
architecture problems.

e Three months to implement privileged architecture
solutions and design changes caused by lack of
capabilities in MIPS hardware architecture.

e Full impact on privileged part of software is six
months and does not include any time to architect
system independent solutions to the above problems
that would prevent the same problem from reoccur-
ring in the next implementation of the MIPS hardware
architecture.

INTERNAL USE ONLY May 30, 1988 dnc - 20

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

A Quick
Analysis of the MIPS
Software Architecture

INTERNAL USE ONLY May 30, 1988 dnc - 21

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Attractive Features of the
MIPS Software Architecture

e State of the art compiler technology.

e Delayed branch filling, common subexpression elim-
ination, code motion, invariant removal from loops,
strength reduction, and code scheduling optimiza-
tions, etc.

e A single code generator shared by several compiler
frontends including C, Fortran, Pascal, ADA, PL/l, and
Cobol.

e Optimized calling conventions for leaf procedures.

o Berkeley based, System V compatible, UN*X imple-
mentation.

e Aill the components exist today.

INTERNAL USE ONLY May 30, 1988 dnc - 22

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

BUT

e Maybe compilers are not so state of the art after
all. No decomposition or vectorization support.
They require an assembler phase as last phase of
compilation (archaic technology but it may help them
with their implementation to implementation hardware
incompatibilities).

e Little evidence of state of the art features such as
code scheduling and loop unrolling in study of
MIPS Fortran compiler (Grove). (A future version
does unrolling; the assembler does simple load and
constraint scheduling.) Digital PRISM ULTRIX V1
compilers will equal or exceed the MIPS compilers.

e The debugging, performance coverage, and language
sensitive editor environment is far from state of the
art and is inferior to that of VAX VMS and what is
planned for PRISM ULTRIX.

e Compiler frontends bought from third parties and not
developed by MIPS which begs the question of their
real quality (e.g. Fortran not 100% VAX compatible as
claimed).

INTERNAL USE ONLY May 30, 1988 dnc - 23

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

More BUTs

e The MIPS UN+X implementation requires big endian
addressing which is incompatible with VAX and will
require byte swapping for network communication
with VAXes (it is not clear how this problem will be
solved).

e The MIPS calling conventions do not adequately sup-
port modern languages such as ADA. Specifically,
frame based condition handling is not provided which
makes it extremely difficult to support a muitilan-
guage environment , let alone structured condition
handling which improves software reliability. |

e The MIPS calling conventions do not take into ac-
count the manipulation of the floating point status
register and use a very peculiar register allocation
scheme (one register fix allocated to the assembler,

~ two others to the operating system!).

e There is no evidence that the MIPS software architec-
ture is designed to support multithreading.

INTERNAL USE ONLY May 30, 1988 dnc - 24

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

And Yet More BUTs

e The MIPS calling conventions are not nearly as
powerful as the PRISM calling standard and do not
allow register frames as well as stack frames for
storing procedure context. They also do not allow
the passing of arguments in registers when external
procedures are called.

e The MIPS software and hardware architectures are
not designed to easily migrate to a 64-bit machine
architecture.

e The MIPS math library is most likely the same poor
quality library that is supplied with most UN*X sys-
tems which is far inferior to the VAX VMS library.

e Mixed language programs have never worked well on
UN:X systems. Although the MIPS conventions show
improvement over other UN*X systems, they are not
as powerful as the VAX VMS conventions. The PRISM
Calling Standard makes further improvements over
the VAX VMS conventions in the areas of strings,
multi-dimensional arrays, and procedure values.

INTERNAL USE ONLY May 30, 1988 dnc - 25

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

While

e The PRISM software and hardware architectures were
designed together to provide maximum VAX VMS
compatibility. Application code can be run on VAX
VMS, Mica, and PRISM ULTRIX by simply recompiling.

e The PRISM software architecture provides for mul-
tithreading and integration with a state of the art
debugger and development environment.

e The PRISM software architecture provides separate
compilation of source modules across all languages.

e The PRISM compilers will do loop unrolling, inline
procedure expansion, vectorization, automatic de-
composition, state of the art register allocation,
sophisticated code scheduling, and interprocedural
‘analysis and optimization across source modules.
(MIPS doesn’t believe in vectors at all.)

e The PRISM software architecture has been designed
to ensure an easy and transparent migration to the
64-bit PRISM architecture.

INTERNAL USE ONLY May 30, 1988 dnc - 26

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

While Cont.

e The PRISM architecture presents the opportunity for
performance far in excess of the MIPS performance.
This is a combination of hardware and software
architecture.

e The PRISM architecture makes the conversion of the
VAX math library to PRISM easy since the same data
types and rounding modes are provided.

e The PRISM architecture provides the foundation
to build state of the art database and transaction
processing systems.

e The PRISM architecture provides a compatible growth
and migration path for VAX VMS as well as VAX
ULTRIX.

e The PRISM architecture gives Digital an opportunity
to lead the market with the eventual introduction of a
64-bit architecture.

INTERNAL USE ONLY May 30, 1988 dnc - 27

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Software Architecture Conclusions

e MIPS has an impressive set of compilers for their
UN=*X system.

e The MIPS language environment is not state of the art
and lacks several key components required of such
an environment.

e The PRISM software environment will be far superior
to anything MIPS is likely to have in the future and
represents a far more compatible growth path for
current Digital customers.

INTERNAL USE ONLY May 30, 1988 dnc - 28

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Strategy
Alternative Analysis

INTERNAL USE ONLY May 30, 1988 dnc - 29

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

MIPS Only Strategy

Build our entry workstation product based on MIPS, stop
the development of the PRISM software and hardware
architecture, and switch all development to MIPS based
products.

INTERNAL USE ONLY May 30, 1988 dnc - 30

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

MIPS Only - Pros

e Timely introduction of a competitive UN*X based
workstation into the market.

e Early sign up of ISV’s on MIPS provided development
systems.

e Large selection of available good compilers.

e Steady flow of competitive parts from several semi-
conductor vendors.

e Resources working on PRISM can be utilized in MIPS
based products.

INTERNAL USE ONLY May 30, 1988 dnc - 31

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

MIPS Only - Cons

e Architecture unsuitable for a complete family of
compatible products and will be difficult to extend
to 64-bits. Questionable multiprocessing and vector
performance.

e Cheyenne and Glacier products delayed one year
with no promise of increased performance. Shrike
and Osprey will also have to be restarted resulting in
inevitable delay.

e Possible customer perception that Digital has aban-
doned its proprietary architecture and VAX customers
are left with nowhere to migrate.

e No control over hardware or software architecture
unless we buy MIPS.

e No long Vterm competitive advantage - anyone can
produce the same products.

e Long term compatibility problem with VAX.

INTERNAL USE ONLY May 30, 1988 dnc - 32

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

PRISM Only Strategy

Continue the execution of the current strategy which
provides an entry workstation based on PRISM chips and
server products for high performance computation and
database/OLTP systems.

INTERNAL USE ONLY May 30, 1988 dnc - 33

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

PRISM Only - Pros

e Digital proprietary architecture providing the best
base for future system products with strong VAX
compatibility, integrated vector and multiprocessing
support, and extensible to 64-bits.

e Strong compatibility and migration path for VAX
VMS customer base with application transportability
across VAX VMS, PRISM ULTRIX, and Mica.

e Glacier, Cheyenne, Shrike, and Osprey delivered
according to current schedules.

e Truly state of the art compilers and software ar-
chitecture to support database, OLTP, and parallel
processing.

INTERNAL USE ONLY May 30, 1988 dnc - 34

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

PRISM Only - Cons

e No plans for a lower cost workstation that can meet
time to market constraints.

e Not as many compilers available at FRS.

e Dependent on Digital semiconductor design and
manufacturing as sole source of parts.

e Current level of funding inadequate to maintain
competitive flow of chip and software products.

INTERNAL USE ONLY May 30, 1988 dnc - 35

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Do Both Strategy

Build our entry workstation products based on MIPS
chips and continue our investment in PRISM as the long
term solution.

INTERNAL USE ONLY May 30, 1988 dnc - 36

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Do Both - Pros

e Everybody-at Digital is happy except maybe the
financial people!

e MIPS workstation, PRISM servers with a switch to an
all PRISM strategy in one or two generations.

o Get workstation now, proprietary architecture and
VMS compatibility too. |

e Hedge our bets on risky programs, an egg in every
basket.

e Product quality acceptable; MIPS for today’s UN+*X
customers, PRISM for traditional Digital customers.

INTERNAL USE ONLY May 30, 1988 dnc - 37

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Do Both - Cons

e Possible customer perception that MIPS workstation
is a point product. Digital is buying time until PRISM
is ready; don’t commit to Digital workstations.

e Will be difficult to build a single set of point products
and switch to PRISM. Most likely will have to build
full line of MIPS based workstations.

e Not enough resources now; adding another product
family will not get timely application compatibility for
MIPS based products.

o Bewildering array of products, architectures, and
operating systems.

e More pressure on funding for both programs; may
not be able to end up winning in either.

INTERNAL USE ONLY May 30, 1988 dnc - 38

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Recommendations

e Execute the PRISM only strategy and hold it stable
long enough for products to be built, PLEASE.

e IMMEDIATELY staff and fund a PRISM based PVAX
product to complement Shrike and Osprey.

o Fund and staff CMOS Il and CMOS IV PRISM chip
teams NOW for scalar, cache control, and vector
parts.

e Put team together NOW to produce custom Bipolar
chip set - today’s effort is inadequate.

e Consider letting other semiconductor vendors pro-
duce PRISM chips; leverage their design resources
and processes to get parallel development.

e Provide additional directed funding for more compiler
and layered products earlier.

e Consider licensing Mica and Pillar to establish a real
operating system standard that is built on state of
the art principles (we are planning to file upwards of
about 50 patents on Mica).

INTERNAL USE ONLY May 30, 1988 dnc - 39

Jnips

MIPS Computer Systems, Inc.

PERFORMANCE BRIEF
PART 1: CPU BENCHMARKS

MIPS M/120-5, M/1000, M/800 and M/500 Systems
UMIPS-BSD (2.1), UMIPS-V (3.0)

Compiler Release 1.31

Revision History:
Issue 3.2, May 1988

Issue 3.0, October 1987
Issue 2.2, April 1987
Issue 1.0, October 1986
Issue 0, April 1986

Performance Brief 3.2

5.2 LINPACK (LNPK DP and LNPK SP)
5.3 Spice Benchmarks (SPCE 2G6)
5.4 Digital Review (DIG REV)

5.5 Doduc Benchmark (DDUC)
5.6 Whetstone

E.

..

...

..

...
....................................

...

............

...................................

..................................

.............
...............
..
..

..

.. 28
.. 29

............................

...

..

.. 10

... 14

.. 16
.. 16

..

ERU S

.. 30

.. 31

Performance Brief 3.2

1. Introduction

New Features of This Issue

Added to this issue are performance numbers for our new M/120-5 system, and new 1.30 compiler
numbers for a few benchmarks (in particular, fortran blas linpack mflops are now almost equal to
coded blas mflops).

Benchmarking - Caveats and Comments

While no one benchmark can fully characterize overall system performance, the results of a variety of
benchmarks can give some insight into expected real performance. A more important benchmarking
methodology is a side-by-side comparison of two systems running the same real application.

We don’t believe in characterizing a processor with just a single number, but we follow (what seems to
be) standard industry practice of using a mips-rating that essentially describes overall integer perfor-
mance. Thus, we label a 5-mips machine to be one that is about 5X (i.e., anywhere from 4X to 6X!)
faster than a VAX 11/780 (UNIX 4.3BSD, unless we can get Ultrix or VAX/VMS numbers) on
integer performance, since this seems to be how most people intuitively compute mips-ratings. Even
within the same computer family, performance ratios between processors vary widely. For example,
[McInnis 87] characterizes a “6 mips” VAX 8700 as anywhere from 3X to 7X faster than the 11/780.
Floating point speed often varies more than, and scales up slower than integer speed versus the
11/780. In particular, microprocessor FP performance has lagged integer speed.

We try to be as straightforward and detailed as possible, so you can make your own judgements about
the claims here. We include the raw data, so that you can catch any mistakes in data reduction. We
include benchmarks that are popular, but that we don’t believe are very meaningful, and we say so.

This paper analyzes one important aspect of overall computer system performance - user-level CPU
performance.

Performance Summary
Our new 16.7 MHz MIPS M/120-5 (our “12 vax-mips” machine) runs:

e on realistic user-level integer programs:
- about 10-15X faster than the VAX 11/780 (4.3BSD UNIX) on UNIX commands.
- about 1.5-1.8X faster than a Sun-4/200 with SunOS 3.2L

o on realistic FORTRAN floating point tests:
- 9-14X faster than the 11/780 under VAX/VMS
- 1.6 - 2.5X faster than a a VAX 8650 or 8700 under VAX/VMS
- about 2.5X faster than a Sun-4/200 (SunOS 3.2L) on most tests.

This Brief offers comparative data that places MIPS’ computational performance, not at the micropro-
cessor level, but at or above high-end superminis, even on floating point performance. M/120-5s
even act like mini-supers on some tests. We believe these machines are defining a new class of system:
the micro-super: faster than a super-mini, with performance balanced between integer and FP, but at
microprocessor prices. D

If you like our approach, please let us know. If you've got suggestions for improvement, we’d be glad
to look at them, especially if you have more accurate numbers. We are trying to give an accurate pic-
ture, rather than hype meaningless mips- and flops-ratings that have little to do with real perfor-
mance. The next few pages give overall benchmark charts and data, followed by more detailed infor-
mation. '

MIPS Computer Systems does not warrant or represent that the performance data stated in this document
will be achieved by any particular application. (We have to say that, sorry.)

Jmips -1- Performance Brief 3.2

2. Benchmark Summary

‘ 2.1. Choice of Benchmarks

This brief offers both public-domain and MIPS-created benchmarks. We prefer public domain ones,
but some of the most popular ones are inadequate for accurately characterizing performance. In this
section, we give an overview of the importance we attach to the various benchmarks, whose results
are summarized on the next page. '

Dhrystone [DHRY 1.1] and Stanford [STAN INT] are two popular small integer benchmarks. Com-
pared with the fastest VAX 11/780 systems, the M/120-5 is 15-17X faster than the VAX on these
tests, and yet, we rate the M/120-5 as a 12-vax-mips machine. In fact, if we chose different VAX
software to compare against, we could call the M/120-5 17-19 mips, right now. However, our mips-
ratings are derived from the performance of real programs, and we conclude the artificial benchmarks
are not representative. We observe that many vendors claim mips-ratings based on the most favorable
choice of benchmarks ("Dhrystone mips", for example) or performance estimates for machines not

built. If you’re comparing an M/120-5 against such claims, it is a 19-mips machine.

While we present Dhrystone and Stanford, we feel that the performance of large UNIX utilities, such
as grep, yacc, diff, and nroff is a better (but not perfect!) guide to the performance customers will
receive. These four, which make up our [MIPS UNIX] benchmark, demonstrate that performance
ratios are not single numbers, but range here from 10X to 15X faster than the VAX.

Even these UNIX utilities tend to overstate performance relative to large applications, such as CAD
applications. Qur own vax-mips ratings are based on a proprietary set of larger and more stressful
real programs, such as our compiler, assembler, debugger, and various CAD programs.

For floating point, the public domain benchmarks are much better. We’re still careful not to use a
single benchmark to characterize all floating point applications.

The Livermore Fortran kernels [LLNL DP] give insight into both vector and non-vector performance
for scientific applications. Linpack [LNPK DP and LNPK SP] tests vector performance on a single
scientific application, and stresses cache performance. Spice [SPCE 2G6] and Doduc [DDUC] test a
different part of the floating point application spectrum. The codes are large and thus test both
instruction fetch bandwidth and scalar floating point. Digital Review Magazines benchmark [DIG
REV] is a compendium of FORTRAN tests that measure a wide variety of behavior, and seem to
correlate well with some classes of real programs.

2.2. Benchmark Summary Data This section summarizes the most important benchmark results
described in more detail throughout this document. The numbers show performance relative to. the
VAX 11/780, i.e., larger numbers are better/faster.

® A few numbers have been estimated by interpolations from closely-related benchmarks and/or
closely-related machines. The methods are given in great detail in the individual sections.

® Several of the columns represent summaries of multiple benchmarks. For example, the MIPS
UNIX column represents 4 benchmarks, the SPICE 2G6 column 3, and LLNL DP represents 24.

In the Integer section, MIPS UNIX is the most indicative of real performance.

For Floating Point, we especially like LLNL DP (Livermore FORTRAN kernels), but all of
these are useful, non-toy benchmarks.

® In the following table, "Pub mips" gives the manufacturer-published mips-ratings. As in all
tables in this document, the machines are listed in increasing order of performance according to
the benchmarks, in this case, by Integer performance.

® The summary includes only those machines for which we could get measured results on almost
all the benchmarks and good estimates on the the results for the fow missing data items.

® The next few pages contain a summary table and graph.

mips [-2. Performance Brief 3.2

Summary of Benchmark Results
(VAX 11/780 = 1.0, Bigger is Faster)

Integer (C) Floating Point (FORTRAN)

MIPS DHRY STAN |{| LLNL LNPK | LNPK | SPCE DIG DDUC Publ
UNIX 1.1 INT DP DP SP 2G6 REV mips System

1 1 1 1 1 1 1 1 1 1 || vax 11/780%

211 19 | 18| 19| 20| 25| 16 |*5]| =3 2 || Sun-3/160 FPA
*4 41 | 47 || 28 | 33| 34| 24 | % 1.7 4 | Sun-3/260 FPA

ss | 74 | 172 25| a3 | 37| 34| 36| 38 5 || MIPS M/500
*6 so | 6s|| so| 69| 56| *s3 | 46| 52 6 || VAX 8700

84 | 108 | 73 a5 | 79| 64 | 41| 32| 35 | 10 | Sun-4/200

92 | 1.3 | 1.8 | 81| 71| 76 | 66 | 56| 7.3 8 | MIPS M/800
113 | 135 | 141 || 10.8 | 104 | 140 | 80 | 72| 88 | 10 | MIPSM/1000
131 | 156 | 159 | 121 | 15.0 | 160 | 9.7 | 8.6 | 11.3 | 12 | MrPs Ms120-5

VAX 11/780 runs 4.3BSD for MIPS UNIX, Ultrix 2.0 (vcc) for Stanford, VAX/VMS for all others.
Use of 4.3BSD (no global optimizer) probably inflates the MIPS UNIX column by about 10%.

* Although it is nontrivial to gather full set of numbers, it is important to avoid holes in benchmark
tables, as it is too easy to be misleading. Thus, we had to make reasoned guesses at these numbers.
The MIPS UNIX values for VAX 8700 and Sun-3/260 were taken from the Published mips-ratings,
which are consistent (+/- 10%) with experience with these machines. DIG REV and DDUC were
guessed by noting that most machines do somewhat better on DIG REV than on SPCE, and than a
Sun-3/260 is usually 1.5X faster than a Sun-3/160 on floating-point benchmarks.

Benchmark Descriptions:

MIPS UNIX '
MIPS UNIX benchmarks: grep, diff, yacc, nroff, same 4.2BSD C source compiled and run on all
machines. The summary number is the geometric mean of the 4 relative performance numbers.

DHRY 1.1

Dhrystone 1.1, any optimization except inlining.
STAN INT

Stanford Integer.

LLNL DP
Lawrence Livermore Fortran Kernels, 64-bit. The summary number is the given as the relative per-
formance based on the geometric mean, i.e., the "middle” of the 3 means.

LNPK DP _
Linpack Double Precision, FORTRAN.

LNPK SP
Linpack Single Precision, FORTRAN.

SPCE 2G6

Spice 2G6, 3 public-domain circuits, for which the geometric mean is shown.
DIG REV

Digital Review magazine, combination of 33 benchmarks.

DDOC
Doduc Monte Carlo benchmark.

The charts on the next page shows several machine combinations.

Jnips -3.- Performance Brief 3.2

| Gan)
[gOns

Performance Summary Charts

M|ZO~5‘17J°°° @ !"7 MH}))
YK B T -cecte (‘6&*%”;
(K& D-cecne L1FZ7)

Coche wiss \De-"“\x"l 5 C,yleof (l w-—*">

® 12 v Ps

write time Y cycles
I word el
looas ORAM:s
—_— e

warkshon: e000@ l&7MP2
32KE T -cete oy ,gls)
KB P —ceele
Cache M3 pemelly Lo | wed Y cycles

VER'S Fae 3 cyeles (L (s pose mesd‘vf)

op-\%,uo\ 24 st re;f—;[((6c7¢(—0, (X 1) 470L&3>
1O0ans DﬁA—m;

12 NuPs

o anshe S
M) jooo
Kre00 [5.0 Mtz 9.7 Vogs
Uikl T cotle
M KLB O—cce o
Caghe a/'ss pe_AJ-L, a9 ., q ()
write Hmz € cpdes Same bank
Y cyele differet bank
| word et
— gcC S
K}oc)o——b «yed solAian s

e e G Dot (1075 F L x5)
bUKB T —ceche , bURB D-cw= .

o 'H~, Sor 16 wed reffll 12+ 16 = 2€ cycles
Cacle ™SS Pcv\t-

wrile kne £ redem, L pegc mede

JnIps e e i -4- Performance Brief 3.2

3. Methodology
Tested Configurations

When we report measured results, rather than numbers published elsewhere, the configurations were
as shown below. These system configurations do not necessarily reflect optimal configurations, but
rather the in-house systems to which we had repeatable access. While we think that the VAX-11/780
configuration is fairly representative of typical “real world” configurations. Also, newer Suns have
faster (16.7MHz) 68881s, and Sun sells a Weitek-based FPA board that provides substantially better
performance than the MC68881. When we’ve had the faster results available, we’ve quoted them in
place of our own system’s numbers.

DEC VAX-11/780

Main Memory:
Floating Point:

Operating System:

Sun-3/160M
CPU:

Main Memory:
Floating Point:

Operating System:

MIPS M/500
CPU:

Floating Point:
Main Memory:

Operating System:

MIPS M/800
CPU:

Floating Point:
Main Memory:

Operating System:

MIPS M/1000
CPU:

Floating Point:
Main Memory:

Operating System:

MIPS M/120-5
CPU:

Floating Point:
Main Memory:

Operating System:

Jnips

8 Mbytes
Configured with FPA board.

4.3 BSD UNIX.

(16.67 MHz MC68020)

8 Mbytes

12.5 MHz MC68881 coprocessor (compiled -f68881).
SunOS 3.2 (4.2BSD)

8MHz R2000, in R2300 CPU board, 16K I-cache, 8K D-cache
R2010 FPA chip (8MHz)

8 Mbytes (2 R2350 memory boards)

UMIPS-BSD 2.1 (4.3BSD UNIX with NFS)

12.5 MHz R2000, in R2600 CPU board, 64K I-cache, 64K D-cache
R2010 FPA chip (12.5MHz)

8 Mbytes (2 R2350 memory boards)

UMIPS-BSD 2.1

15 MHz R2000, in R2600 CPU board, 64K I-cache, 64K D-cache
R2010 FPA chip (15 MHz)

16 Mbytes (4 R2350 memory boards)

UMIPS-BSD 2.1

16.7 MHz R2000, 64K I-cache, 64K D-cache
R2010 FPA chip (16.7 MHz)

16 Mbytes (2 memory boards)

UMIPS-V.3 3.0

Performance Brief 3.2

Test Conditions
All programs were compiled with -O (optimize), unless otherwise noted.

C is used for all benchmarks except Whetstone, LINPACK, Doduc, Spice 2g.6, Hspice, and the
Livermore Fortran Kernels, which use FORTRAN. When possible, we’ve obtained numbers for
VAX/VMS, and use them in place of UNIX numbers. The MIPS compilers are version 1.21 or 1.31.

User time was measured for all benchmarks using the /bin/time command.

Systems were tested in normal multi-user development environment, with load factor <0.2 (as meas-
ured by uprime command). Note that this occasionally makes them run longer, due to slight interfer-
ence from background daemons and clock handling, even on an otherwise empty system. Bench-
marks were run at least 3 times and averaged. The intent is to show numbers that can be reproduced
on live systems.

MIPS R2300, R2600, and R2800 CPU Boards and M120-5 system

The MIPS R2300 VME CPU board is based on the 8 MHz (125 ns cycle time) version of the MIPS
R2000 CPU chip. The R2300 also includes the MIPS R2010 Floating Point Accelerator chip, a 16
Kbyte instruction cache, an 8 Kbyte data cache, and a four-stage write buffer.

The MIPS R2600 CPU board is similar to the R2300, but runs at 12.5MHz (80ns cycle time), and has
larger caches (64KB each for instruction and data).

The R2800 CPU board has the same cache size as the R2600, but runs at 15MHz (67ns cycle).

All 3 boards are 3-high, 3-deep FEurocard format, i.e., 366.7mm high by 280mm deep. The
R2600/R2800 core CPU complex [CPU, FPA, write buffers, latches, and caches] is a 6" square.

The M120-5 system has a small plug-in cpu card with a R2000, R2010, 64KB of instruction cache,
64KB of data cache, the 4-deep R2020 write buffer, and a fast memory system interface, all running at
16.7MHz.

MIPS R2010 FPA Chip
The R2010 has the following cycle counts:
Single Double

Operation Precision Precision
Add, Subtract 2 cycles 2 cycles
Multiply 4 cycles 5 cycles
Divide 12 cycles 19 cycles

This yields 250ns for an Add @ 8 MHz, 160ns @ 12.5MHz or 120ns @ 16.7 MHz. In addition, the
R2010 overlaps operations extensively, i.e., load and store can be overlapped with arithmetic, while
multiply, divide, and add are mostly independent.

MIPS offers 3 levels of floating point: kernel software emulation, R2360 board, and R2010 chip, which
all use identical object code, i.e., no compiler options or differing libraries. R2010 performance is typi-
cally 2-3X that with the R2360 board, just the opposite of many micro systems, whose single-chip
FPAs are much slower than board-level designs.

mins e e -6- Performance Brief 3.2

Peak Performance Numbers

We don’t believe these mean much, but people ask. Note that VAX-Relative and Peak mips are not
the same!

Rated Peak (Burst) Peak DP
System VAX-Mips Mips MegaFlops
M/500 5 8.0 4.0
M/800 8 12.5 6.25
M/1000 10 15.0 7.5
M/120-5 12 16.7 8.3

How to Interpret the Numbers

Times (or rates, such as for Dhrystones, Whetstones, and LINPACK KFlops) are shown for the VAX
11/780. Other machines’ times or rates are shown, and their relative performance ("Rel.” column)
normalized to the 11/780 treated as 1.0. VAX/VMS is used whenever possible as the base.

Compilers and Operating Systems

Unless otherwise specified, The M-series benchmark numbers use Release 1.21 of the MIPS compilers
and UMIPS-BSD 2.1. The latter is 4.3BSD UNIX port, with NFS, compiled at optimization level
-02, with a modest amount of tuning.

UMIPS-V 3.0 is a System V, Release 3.0 port, with TCP/IP, NFS, a Berkeley Fast File System, and
other Berkeley features. Most user-level programs run at about the same speed on UMIPS-BSD and
UMIPS-V.

Optimization Levels

Unless otherwise specified, all benchmarks were compiled -O, i.e., with optimization. UMIPS com-
pilers call this level -O2, and it includes global intra-procedural optimization. In a few cases, we
show numbers for -O3 and -O4 optimization levels, which do inter-procedural register allocation and
procedure merging. -O3 is now generally available.

Simulation Process

Although we no longer cite simulated numbers, a few notes on our process are worthwhile, because
simulation and performance analysis are very important to us.

MIPS has developed a sophisticated simulation environment to help predict CPU Board performance
in compute-bound applications. While simulations can never predict the exact performance that will
eventually be measured on actual systems, our simulations usually come within a few percent, as can
be seen by comparisons of simulations (in earlier Briefs) and currently available actual results.

The simulation process begins by using our optimizing compiler system to generate MIPS object code.
This code is run through PIXIE, which instruments the code with counters. Executing the code yields
cycle count information and a memory reference trace. The reference trace is then run through an
extensive cache/TLB simulator giving a degradation factor which is applied to the cycle count. Time
(in seconds) for the benchmark resuits from converting the degraded cycle count into elapsed time
based on the CPU clock frequency.

We often use these detailed results to understand odd program behavior, to analyze the realism of a
benchmark (see Dhrystone, for example), to tune our software, and to design new systems.

Now, let’s look at the benchmarks. Each section title includes the (CODE NAME) that relates it
back to the earlier Summary, if it is included there.

Jnips -7- Performance Brief 3.2

4. Integer Benchmarks
4.1. MIPS UNIX Benchmarks (MIPS UNIX)

The MIPS UNIX Benchmarks described below are fairly typical of nontrivial UNIX programs. This
benchmark suite provides the opportunity to execute the same code across several different machines,
in contrast to the compilers and linkers for each machine, which have substantially different code.
User time is shown; kernel time is typically 10-15% of the user time (on the 780), so these are good
indications of integer/character compute-intensive programs. The first 3 benchmarks were running
too fast to be meaningful ‘on our faster machines, so we modified the input files to get larger times.
The grep and nroff benchmarks are still too fast for accurate benchmarking. The VAX 8600 ran con-
sistently around 3.8X faster than the 11/780 on these tests, but we sold it, so it has dropped out as
we’ve changed benchmarks. These benchmarks contain UNIX source code, and are thus not gen-
erally distributable.

For better statistical properties, we now report the Geometric Mean of the Relative performance
numbers, because it does not ignore the performance contributions of the shorter benchmarks.

Note: the Geometric Mean of N numbers is the Nth root of the product of those numbers. It is
necessarily used in place of the arithmetic mean when computing the mean of performance ratios, or
of benchmarks whose runtimes are quite different. See [Fleming 86] for a detailed discussion.

MIPS UNIX Benchmarks Results

grep diff yacc nroff Geom System

Secs Rel. Secs Rel. Secs Rel. Secs Rel. Mean

11.2 1.0 246.4 1.0 101.1 1.0 18.8 1.0 1.0 11/780 4.3BSD
5.6 2.0 105.3 2.3 48.1 2.1 9.0 21 2.1 Sun-3/160M
24 4.7 35.8 6.9 19.5 5.2 33 5.7 5.5 MIPS M/500
1.6 7.0 251 9.7 11.8 8.6 22 8.6 8.4 Sun-4/200 -03
1.6 7.0 21.6 114 11.2 9.0 1.9 9.9 9.2 MIPS M/800
1.3 8.6 18.0 13.7 9.3 10.9 1.5 12.5 11.3 MIPS M/1000
1.1 10.2 15.7 15.7 8.0 12.6 1.3 14.5 13.1 MIPS M/120-5

*
These numbers derived as shown on next page.
Benchmark Descriptions

grep Regular expression pattern matcher. : -
grep DATAN grepinput >grepoutput, where grepinput is the spice2G6 source, 575,500 bytes,
18,323 lines, and DATAN occurs 3 times.

diff File comparison.
diff f1 £2, where {1 is the spice2G6 source, and f2 is the same, but with one line changed and 2
others switched.

yacc “‘yet another compiler compiler”. General purpose parser generator.
' yacc yaccinput, where yaccinput is a 1372-line ADA grammar (due to Fischer, Fisher, and
Charles). (This requires BSD-sized table limits).

nroff UNIX document processor.
nroff file, where file is 700 lines long.

jg.

Performance Brief 3.2

Note: in order to assure "apples-to-apples" comparisons, we moved the same copies of the (4.2BSD)
sources for these to the various machines, compiled them there, and ran them, to avoid surprises
from different binary versions of commands resident on these machines. Thus, this method tests the
performance of compiler code generation, libraries, and CPU, not of algorithmic tunings that may
have uncontrollably appeared in the delivered releases. For example, grep has many variants.

Note that the granularity here is at the edge of UNIX timing, i.e., tenths of seconds make differences,
especially on the faster machines. The performance ratios seen here seem typical of large UNIX com-
mands on MIPS systems.

Finally, note that this benchmark set is running versus 4.3BSD, not versus Ultrix 2.0 with vcc. Hence,
the relative performance numbers are inflated somewhat relative to VAX/VMS or VAX-Ultrix
numbers. From other experience, we’d guess that subtracting 10% from most of the computed mips-
ratings would give a good estimate of the Ultrix 2.0 (vcc)-relative mips-ratings.

_m_ips -9. Performance Brief 3.2

4.2. Dhrystone (DHRY 1.1)

Dhrystone is a synthetic programming benchmark that measures processor and compiler efficiency in
executing a “typical” benchmark. The “typical” benchmark was constructed by Reinhold P. Weicker
from measured statistics of “real” programs [Weicker 84]. Dhrystone does not use floating point, 170,
or operating system calls, and contains little code that could be optimized by vector processors.

The original Dhrystone benchmark, written in Ada, was re-written in C and posted to Usenet by Rick
Richardson [Richardson 86]. The Dhrystone results shown below are measured in Dhrystones /
second, using the 1.1 version of the benchmark.

We include Dhrystone because it is popular. MIPS systems do extremely well on it. However, com-
parisons of systems based on Dhrystone and especially, only on Dhrystone, are unreliable and should be

avoided. More details are given at the end of this section.

Please be careful to differentiate between results based on the 1.1 and 1.0 versions of Dhrystone.
According to [Richardson 87], 1.1 cleans up a bug, and is the correct version to use, even though
results for a given machine are typically about 15% less for 1.1 than with 1.0. Dhrystone 2.0 now
exists, and we will report its results in future briefs.

Advice for running Dhrystone has changed over time with regard to optimization. It used to ask that
people turn off optimizers that were more than peephole optimizers, because the benchmark con-
tained a modest amount of "dead" code that optimizers were eliminating. (This is one of the things
that Dhrystone 2.0 attempts to fix.) However, it turned out that many people were submitting optim-
ized results, often unlabeled, confusing everyone. Currently, any numbers can be submitted, as long
as they’re appropriately labeled, except that procedure inlining (done by only a few very advanced
compilers) must be avoided. .

We continue to include a range of numbers to show the difference optimization technology makes on
this particular benchmark, and to provide a range for comparison when others’ cited Dhrystone
figures are not clearly defined by optimization levels. For example, -O3 does interprocedural register
allocation, and -O4 does procedure inlining, and we know -O4 is beyond the spirit of the benchmark.
Hence, we now cite the -O3 numbers. We're not sure what the Sun-4’s -Q3 level does, but we do
not believe that it does inlining either.

In the table below, it is interesting to compare the performance of the two Ultrix compilers. Also,
examination of the MIPS and Sun-4 numbers shows the performance gained by the high-powered
optimizers available on these machines.

The numbers are ordered in what we think is the overall integer performance of the processors.

mips e -10- Performance Brief 3.2

Dhrystone Benchmark Results - Optimization Effects

No Opt -0 .03 -04
NoReg Regs NoReg Regs Regs Regs
Dhry’s Dhry’s Dhry’s Dhry’s Dhry’s Dhry’s
/Sec /Sec /Sec /Sec /Sec /Sec System
1,442 1,474 1,559 1,571 DEC VAX 11/780, 4.3BSD
2,800 3,025 3,030 3,325 Sun-3/160M
4,896 5,130 - 5,154 5,235 DEC VAX 8600, Ultrix 1.2
8,800 10,200 12,300 12,300 13,000 14,200 MIPS M/500
8,000 8,000 8,700 8,700 DEC VAX 8550, Ultrix 2.0 cc
9,600 9,600 9,600 9,700 DEC VAX 8550, Ultrix 2.0 vcc
10,550 12,750 17,700 17,700 19,000 Sun-4/200, SunOS 3.2L
12,800 15,300 18,500 18,500 19,800 21,300 MIPS M/800
15,100 18,300 22,000 22,000 23,700 25,000 MIPS M/1000
18,700 21,500 25,800 25,800 27,400 29,200 MIPS M/120-5
ANips -11- Performance Brief 3.2

Some other published numbers of interest include the following, all of which are taken from [Richard-
son 87], unless otherwise noted. Items marked * are those that we know (or have good reason to
believe) use optimizing compilers. These are the “register” versions of the numbers, i.e., the highest
ones reported by people.

Dhrystone Benchmark Results

Dhry’s
/Sec ’ Rel. System
1571 0.9 VAX 11/780, 4.3BSD [in-house]
1757 1.0 VAX 11/780, VAX/VMS 4.2 [Intergraph 86]*
3325 1.9 Sun-3/160, SunOS 3.2 [in-house]
3856 2.2 Pyramid 98X, OSx 3.1, CLE 3.2.0
4433 2.5 MASSCOMP MC-5700, 16.7MHz 68020, RTU 3.1*
4716 2.7 Celerity 1230, 4.2BSD, v3.2
6374 3.6 Sun-3/260, 25MHz 68020, SunOS 3.2
6423 3.7 VAX 8600, 4.3BSD
6440 3.7 IBM 4381-2, UTS V, cc 1.11
6896 39 Intergraph InterPro 32C, SYSV R3 3.0.0, Greenhills, -O*
7109 4.0 ‘ Apollo DN4000 -O
7142 4.1 Sun-3/200 [Sun 87] *
7249 42 Convex C-1 XP 6.0, vc 1.1
7409 42 VAX 8600, VAX/VMS in [Intergraph 86]*
7655 4.4 Alliant FX/8 [Multiflow]
8300 4.7 DG MV20000-1 and MV15000-20 [Stahlman 87]
8309 4.7 InterPro-32C,30MHz Clipper,Green Hills[Intergraph 86]*
9436 54 Convergent Server PC, 20MHz 80386, GreenHills*
9920 56 HP 9000/840S [HP 87]
10416 59 VAX 8550, VAX/VMS 4.5, cc 2.2*
10787 6.1 VAX 8650, VAX/VMS, [Intergraph 86]*
11215 6.4 HP 9000/840, HP-UX, full optimization*
12639 7.2 HP 9000/825S [HP 87)*
13000 7.4 MIPS M/500, SMHz R2000, - O3*
13157 7.5 HP 825SRX [Sun 87]*
14195 8.1 Multiflow Trace 7/200 [Multiflow]
14820 8.4 CRAY 1S
15007 8.5 . IBM 3081, UTS SVR2.5, cc 1.5
15576 8.9 HP 9000/850S [HP 87]
18530 10.5 CRAY X-MP
19000 10.8 Sun-4/200* [Sun 87] :
19800 11.3 MIPS M/800, 12.5MHz R2000, -0O3*
23700 13.5 MIPS M/1000, 15MHz R2000, -O3*
27400 15.6 MIPS M/120-5, 16.7MHz R2000, -O3*
28846 16.4 Amdahl 5860, UTS-V, cc1.22
31250 17.8 IBM 3090/200
43668 24.9 Amdahl 5890/300E, cc -O

dnips -12- Performance Brief 3.2

Numbers in [HP 87] were often lower than those reported for the same machines elsewhere. We
suspect HP was being conservative on optimization.

Unusual Dhrystone Attributes

We’ve calibrated this benchmark against many more realistic ones, and we believe that its results must
be treated with care, because the detailed program statistics are unusual in' some ways. It has an
unusually low number of instructions per function call (35-40 on our machines), where most C pro-
grams fall in in the 50-60 range or higher. Stated another way, Dhrystone does more function calls
than usual, which especially penalizes the DEC VAX, making this a favored benchmark for inflating
one’s "VAX-mips" rating. Any machine with a lean function call sequence looks a little better on
Dhrystone that it does on others.

The dynamic nesting depth of function calls inside the timed part of Dhrystone is low (3-4). This
means that most register-window RISC machines would never even once overflow/underflow their
register windows and be required to save/restore registers.

This is not to say fast function calls or register windows are bad (they’re not!), merely that this bench-
mark overstates their performance effects. ~

Dhrystone can spend 30-40% of the time in the strcpy function, copying atypically long (30-character)
strings, which happen to be alignable on word boundaries. More realistic programs don’t spend this
much time in this sort of code, and when they do, they handle more shorter strings: 6 characters
would be much more typical.

On our machines, Dhrystone uses 0-offset addressing for 50% of memory data references (dynamic).
Most real programs use O-offsets 10-15% of the time. This, and the previous effect, make some
machines look better on Dhrystone than they would on more typical programs.

Of course, Dhrystone is a fairly small benchmark, and thus fits into almost any reasonable instruction
cache.

In conclusion, Dhrystone gives some indication of user-level integer performance, but is susceptible
to surprises when comparing amongst architectures that differ strongly. Unfortunately, the industry
seems to lack a good set of widely-available integer benchmarks that are as representative as are some
of the popular floating point ones. ‘

_m_ips - 13- Performance Brief 3.2

4.3. Stanford Small Integer Benchmarks (STAN INT)

The Computer Systems Laboratory at Stanford University, has collected a set of programs to compare
the performance of various systems. These benchmarks are popular in some circles as they are small
enough to simulate, and are responsive to compiler optimizations.

It is well known that small benchmarks can be misleading. We would net claim that the M/1000 per-
formance is 19 times that of a VAX-11/780 based on these benchmarks. If you see claims that
machine X is up to N times a VAX on some (unspecified) benchmarks, these benchmarks are prob-
ably the sort they’re talking about.

Stanford Small Integer Benchmark Results

Perm | Tower | Queen | Intmm | Puzzle | Quick | Bubble | Tree Aggr | Rel.
Secs | Secs Secs Secs Secs Secs | Secs Secs || Secs” Perf+ Svstem
234 2.30 .94 1.67| 11.23| 1.12 1511 2.72| 3.08 .84 | VAX 11/780 é.3BSD
2.60 1.0 | VAX 11/780
g2 1.07 50 93 5.53 58 971 1.05] 1.42 1.8 || Sun-3/160M [ours]
.63 .63 27 73 2.96 31 441 .69 .86 3.0 (| VAX 8600 Ultrix1.2
.28 .35 A7 42 2.2 18 251 35 .50 5.2 || VAX 8550 gt
.28 35 13 15 .88 13 A7 .50 .40 6.5 || VAX 8550
65 4.7 || Sun-3/200 [Sun 87]
.18 .24 A5 23 1.15 a7 A9 34 .36 7.2 || MIPS M/5600
a1 a7 .09 .26 .62 .10 A3 .75 37 7.3 | Sun-4/200 -O3
J12 .16 J1 13 .61 10 A2 22 22| 11.8 || MIPS M/800
.10 13 .10 A1 51 .08 Jd0¢ .17 18| 14.1 | MIPS M/1000
.09 12 .07 .09 .48 .07 091 .16 16 | 15.9 || MIPS M/120-5

* As weighted by the Stanford Benchmark Suite
Ratios of the Aggregate times

@ Estimated VAX 11/780 Ultrix 2.0 vec -O time. We get this by 3.08 * (.40+.02)/.50 = 2.60, i.e.,
using the VAX 8550 numbers to estimate the effect of optimization. The ".02" is a guess that
optimization helps the 8550 a little more than it does the 11/780, because the former’s cache is big
enough to hold the whole program and data, whereas the latter’s does not. Another way to put it
is that the 8550 is not cache-missing very much, and so optimization pays off more in removing
what’s left, whereas the 11/780 will cache-miss more, and the nature of these particular tests is
that the optimizations won’t fix cache-misses. (None of this is very scientific, but it’s probably
within 10%!)

Ultrix 2.0 cc -O

Ultrix 2.0 vec -O. The quick and bubble tests actually had errors; however, the times were in
line with expectations (these two optimize well), so we used them. All 8550 numbers thanks to
Greg Paviov (ames!harvard!hscvax!pavlov, of Ambherst, NY).

The Sun numbers are from [Sun 87]. The published Sun-4/200 number is .356, for SunOS 3.2L
software, i.e., it is slightly faster than the M/500.

+

mips R : -14.- Performance Brief 3.2

Benchmark Descriptions

Perm
Towers

Queen

Intmm

Puzzle

Quick
Bubble

Tree

Computes permutations of 7 elements 5 times. Heavy use of arrays and procedure calls.
Solves Towers of Hanoi for fourteen disks. Heavy use of recursive procedures.

Solves the eight queens problem fifty times. Extensive use of both loops and recursion with
backtracking.

Multiplies two 40x40 integer matrices. Entirely limited by integer multiply time.

Forest Baskett’s program solves a Soma Cube type problém. Heavy use of small, tight
loops.

Performs a quick sort of 5000 elements. Tests recursion and array indexing.
Reads a file and does a bubble sort of 500 elements. Heavy use of array manipulation.

Performs binary tree sort of 5000 items. Heavy use of pointers, dynamic data structures.

Note that the Stanford Floating Point benchmarks are given in a later section.

-15- Performance Brief 3.2

5. Floating Point Benchmarks
5.1. Livermore Fortran Kernels (LLNL DP)

Lawrence Livermore National Labs’ workload is dominated by large scientific calculations that are
largely vectorizable. The workload is primarily served by expensive supercomputers. This benchmark
was designed for evaluation of such machines, although it has been run on a wide variety of hardware,
including workstations and PCs [McMahon86).

The Livermore Fortran Kernels are 24 pieces of code abstracted from the applications at Lawrence
Livermore Labs. These kernels are embedded in a large, carefully engineered benchmark driver. The
driver runs the kernels multiple times on different data sets, checks for correct results, verifies timing
accuracy, reports execution rates for all 24 kernels, and summarizes the results with several statistics.

Unlike many other benchmarks, there is no attempt to distill the benchmark results down to a single
number. Instead all 24 kernel rates, measured in mfiops (million floating point operations per second)
are presented individually for three different vector lengths (a total of 72 results). The minimum and
maximum rates define the performance range of the hardware. Various statistics of the 24 or 72 rates,
such as the harmonic, geometric, and arithmetic means give insight into general behavior. Any one of
these statistics might suffice for comparisons of scalar machines, but multiple statistics are necessary
for comparisons involving machines with vector or parallel features. These machines have unbai-
anced, bimodal performance, and a single statistic is insufficient characterization. McMahon asserts:

“When the computer performance range is very large the net Mfilops rate of many Fortran programs

and workloads will be in the sub-range between the equi-weighted harmonic and arithmetic means

depending on the degree of code parallelism and optimization. More accurate estimates of cpu work-
load rates depend on assigning appropriate weights for each kernel.

McMahon’s analysis goes on to suggest that the harmonic mean corresponds to approximately 40%
vectorization, the geometric mean to approximately 70% vectorization, and the arithmetic mean to
90%+ vectorization. These three statistics can be interpreted as different benchmarks that each
characterize certain applications. For example, there is fair agreement between the kernels’ harmonic
mean and Spice performance. LINPACK, on the other hand, is better characterized by the geometric
mean. '

On the next two pages are shown a summary of results from McMahon’s report, followed by the com-
plete M/120-5 results. (Given the volume of data, we've only done this on M/120-5s.)

On the next two charts, note that the M/120-5:
® Strictly outperforms high-end superminis in the list.

® On applications characterized by the harmonic mean, it is faster than the 2 minisupers in vector
mode, and is even a healthy fraction of supercomputer performance (40% of a Cray-1!).

® On applications characterized by the geometric mean, it is +-10% of the performance of the
minisupers.

On those characterized by the arithmetic mean, it offers 45-70% of minisuper performance.

Only for highly-vectorizable code does the M/120-5 fall well behind the minisupers. Falls far
behind the minisupers only for extremely vectorizable code.

The complete M/120-5 data shows that MIPS performance is insensitive to vector length. The
minimum to maximum variation is also small for this benchmark. Both characteristics are typical of
scalar machines with mature compilers. Performance of vector and parallel machines, on the other
hand, may span two orders of magnitude on this benchmark, or more, depending on the kernel and
the vector length.

mips G - 16 - Performance Brief 3.2

64- Bit Livermore FORTRAN Kernels
MegaFlops, L = 167, Sorted by Geometric Mean

Harm. Geom. Arith. Rel.* ||

Min Mean Mean Mean || Max Geom. Svstem

.05 12 A2 A3 24 7 VAX 780 w/FPA 4.3BSD {77 [ours]

.06 .16 17 18 .28 1.0 VAX 780 w/FPA VMS 4.1

1 .30 33 37 87 1.9 SUN 3/160 w/FPA

.20 42 .46 .50 1.42 2.5 MIPS M/500

17 43 48 53 1.13 2.8 SUN 3/260 w/FPA [our numbers]

.29 .58 .64 .70 1.21 3.8 Alliant FX/1 FX 2.0.2 Scalar

.38 72 77 83 1.57 4.5 SUN 4/200 w/FPA [Hough 87]

.39 .94 1.00 1.04 1.64 59 VAX 8700 w/FPA VMS 4.1

.10 .76 "~ 1.06 1.50 523 6.2 Alliant FX/1 FX 2.0.2 Vector

33 92 1.06 1.20 2.88 6.2 Convex C-1 F77 V2.1 Scalar

52 1.09 1.19 1.30 2.74 7.0 ELXSI 6420 EMBOS F77 MP=1
- .51 1.26 1.37 1.48 2.70 8.1 MIPS M/800, £771.21

.61 1.51 1.65 1.78 3.24 9.7 MIPS M/1000, £771.21

.65 1.63 1.83 2.03 3.50 10.8 MIPS M/1000, £771.30

Jd1 1.06 1.94 3.33 12.79 11.4 Convex C-1 F77 V2.1 Vector

.80 1.84 2.06 2.27 3.89 12.1 MIPS M/120-5, f771.31

28 1.24 2.32 5.11 29.20 13.7 Alliant FX/8 FX 2.0.2 MP=8*Vec
1.51 4.93 5.86 7.00 17.43 34.5 Cray-1S CFT 1.4 scalar
1.23 4.74 6.09 7.67 21.64 35.8 FPS 264 SJE APFTN64
3.43 9.29 10.68 12.15 25.89 62.8 Cray-XMP/1 COS CFT77.12 scalar
0.97 6.47 11.94 22.20 82.05 70.2 Cray-1S CFT 1.4 vector
4.47 11.35 13.08 15.20 45.07 76.9 NEC SX-2 SX0S1.21 F77/S8X24 scalar
1.47 12.33 24.84 50.18 188 146 Cray-XMP/1 COS CFT77.12 vector
4.47 19.07 43.94 140 1042 258 NEC SX-2 SX0OS81.21 F77/SX24 vector

* Relative Performance, as ratio of the Geometric Mean numbers. This is a simplistic attempt to
extract a single figure-of-merit. We admit this goes against the grain of this benchmark.

.m_ipS -17- Performance Brief 3.2

32-Bit Livermore FORTRAN Kernels
MegaFlops, L = 167, Sorted by Geometric Mean

Harm. Geom. Arith. Rel.*
Min Mean Mean Mean Max Geom. System
.05 .18 .20 23 48 i VAX 780 4.3BSD 77 [ours]
.10 .28 30 32 58 1.0 VAX 780 w/FPA VMS 4.1
.19 .46 .50 56 1.26 1.7 SUN 3/160 w/FPA
30 .65 71 77 1.55 24 SUN 3/260 w/FPA [ours]
30 .66 74 .83 1.60 2.5 Alliant FX/1 FX 2.0.2 Scalar
.10 .60 90 1.31 4.23 3.0 Alliant FX/1 FX 2.0.2 Vector
.40 .97 1.05 1.14 2.08 3.5 MIPS M/500
55 1.04 1.12 1.20 221 3.7 SUN 4/200 w/FPA [Hough 87]
.36 1.11 1.27 1.42 3.61 4.2 Convex C-1 F77 V2.1 Scalar
46 1.26 1.36 1.45 2.41 4.5 VAX 8700 w/FPA VMS 4.1
.68 1.31 1.46 1.61 3.19 4.9 ELXSI 6420 EMBOS F77 MP=1
.93 2.02 2.19 2.36 3.96 7.3 MIPS M/1000, £771.21
.94 2.29 2.57 2.81 4.48 8.6 MIPS M/1000, £771.30
.28 1.30 2.47 5.59 33.52 8.2 Alliant FX/8 FX 2.0.2 MP=8*Vec
A2 1.27 2.73 5.44 23.60 9.1 Convex C-1 F77 V2.1 Vector
1.05 2.58 2.89 - 3.15 5.01 9.6 MIPS M/120- 5, £771.31

The next table gives the complete M/120-5 output, in the form used by McMahon.

-18 -

Performance Brief 3.2

Livermore FORTRAN Kernels - Complete MIPS M/120-5 Output

Vendor MIPS MIPS MIPS MIPS | MIPS MIPS MIPS MIPS
Model M/120-5 M/120-5 M/120-5 M/120-5 M/120-5 M/120-5 M/120-5 M/120-5
OSystem V.33.0V.33.0V.33.0V.33.0|[V.33.0V.33.0V.33.0V.33.0
Compiler 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31
OptLevel o2 o2 o2 o2 o2 o2 - 02 o2
Samples 72 24 24 24 72 24 24 24
WordSize 64 64 64 64 32 32 32 32
. DO Span 167 19 90 471 167 19 90 471
Year 1988 1988 1988 1988 1988 1988 1988 1988
Kernel = = ce-ceee cemecce mmmmme memmes | memeen temeee emeeee mmee
1 2.8800 2.8800 2.9535 2.9459 3.9122 3.9122 3.9142 3.8487

2 2.2009 2.2009 2.5339 2.5451 3.6809 3.6809 3.6518 2.9828

3 2.8506 2.8506 2.9680 2.9677 4.1781 4.1781 4.0510 3.8582

4 1.8240 1.8240 2.6133 2.9772 3.5978 3.5978 3.1571 2.2205

5 2.0083 2.0083 2.0533 2.0438 3.2797 3.2797 3.2766 3.1695

6 1.3938 1.3938 1.9006 1.9267 3.0934 3.0934 2.8727 1.9807

7 3.8400 3.8400 3.8885 3.8846 5.0121 5.0121 4.9773 4.9192

8 3.5009 3.5009 3.5273 3.5325 4.6659 4.6659 4.6961 4.6136

9 3.5529 3.5529 3.5801 3.5833 4.4751 4.4751 4.4476 4.3809

10 1.4000 1.4000 1.4017 1.4071 2.8119 2.8119 2.8116 2.8000

11 1.4250 1.4250 1.4749 1.4808 2.7811 - 2.7811 2.6947 2.4806

12 1.4410 1.4410 1.4760 1.5000 2.7827 2.7827 2.7007 2.6127

13 0.8034 0.8034 0.8515 0.8684 1.0682 1.0682 1.0604 1.0510

14 1.3824 1.3824 1.3555 0.9176 1.5660 1.5660 1.9144 1.8807

15 1.0735 1.0735 1.0452 1.0476 1.4139 1.4139 1.4085 1.4494

16 1.5332 1.5332 1.4803 1.5143 1.6219 1.6219 1.6097 1.6585

17 2.6562 2.6562 2.5389 2.5452 3.2781 3.2781 3.2841 3.4185

18 3.2112 3.2112 3.1598 3.1598 4.5896 4.5896 4.6200 4.4800

19 2.8224 2.8224 2.9124 2.8772 3.5246 3.5246 3.5479 3.4005

20 3.3757 3.3757 3.3471 2.6667 4.5008 4.5008 4.5147 4.5298

21 2.0880 2.0880 2.2436 2.2955 3.5501 3.5501 3.4517 3.1764

22 1.5131 1.5131 1.5228 1.5196 2.1875 2.1875 2.1782 2.1454

23 3.1670 3.1670 3.3730 3.3600 4.3913 4.3913 4.4064 4.1833

24 0.9238 0.9238 0.9283 0.9396 1.0874 1.0874 1.1057 1.0631
Standard Dev. 0.9189 0.9157 0.9180 0.9208 1.1609 1.1514 1.1537 1.1741
Median Dev. 1.1275 1.1205 1.0009 1.0429 1.3376 1.4080 1.3476 1.229%4
Maximum Rate 3.8885* 3.8400 3.8885 3.8846 5.0121* 4.9192 4.9773 5.0121
Average Rate 2.2670* 2.2028 2.2971 2.2711 3.1465* 3.0127 3.1814 3.2104
Geometric Mean 2.0628* 2.0030 2.0943 2.0608 2.8840* 2.7590 2.9219 2.9371
Median Rate 2.2222 2.0481 2.3887 2.4203 3.2766 3.0762 3.2804 3.4022
Harmonic Mean 1.8545* 1.8070 1.8856 1.8420 2.5773* 2.4784 2.6135 2.6092
Minimum Rate 0.8034* 0.8034 0.8515 0.8684 1.0510* 1.0510 1.0604 1.0682
Maximum Ratio 1.0000 0.9875 1.0000 0.9989 1.0000 0.9814 0.9930 1.0000
Average Ratio 1.0000 0.9716 1.0132 1.0018 1.0000 0.9574 1.0110 1.0203
Geometric Ratio 1.0000 0.9710 1.0152 0.9990 1.0000 0.9566 1.0131 1.0184
Harmonic Mean 1.0000 0.9743 1.0167 0.9932 1.0000 0.9616 1.0140 1.0123
Minimum Rate 1.0000 1.0000 1.0598 1.0809 1.0000 1.0000 1.0089 1.0163

* These are the numbers brought forward into the summary section.

Jnips -19- Performance Brief 3.2

5.2. LINPACK (LNPK DP and LNPK SP)

The LINPACK benchmark has become one of the most widely used single benchmarks to predict
relative performance in scientific and engineering environments. The benchmark is considered a good
one because it measures the overall performance of the hardware and compiler in a straight forward
manner, on a computation typical of some kinds of work. LINPACK is a linear equations package
that particularly emphasizes floating point addition and multiplication. The usual LINPACK bench-
mark measures the time required to solve a 100x100 system of linear equations using the LINPACK
package. LINPACK results are measured in MFlops, millions of floating point operations per second.
All numbers are from [Dongarra 87], unless otherwise noted.

The LINPACK benchmark is so large that the data does not entirely fit into the data cache of most
CPUs, including ours. Consequently, for many cached computer systems, the LINPACK benchmark
is as much a memory system benchmark as it is a floating point benchmark. Today’s caches, how-
ever, are on the brink of being able to hold the entire working data of the benchmark. This should
be taken into account when comparing results between machines with different cache sizes.

The effect of caching is readily apparent even .on two slightly different runs on the same machine.
The LINPACK benchmark operates on 100x100 submatrix of both a 201x200 matrix and a 200x200
matrix. Usually the two results are close and the higher is used. However, for the M/120-5 the FOR-
TRAN results are 1.7 and 2.1 mfiops for leading dimension 200 and 201 respectively. Modifying the
benchmark to use a 202x200 array gives 2.3 mflops. Other array sizes give still other results.

Why should this sensitivity exist? Using a submatrix of a larger matrix spreads out the data so that it
is no longer sequential. After 100 doublewords of data, 101 or 100 doublewords are unused. The
cache is therefore only half used until the data reaches the end. The way in which the data wraps
back around and overlays either the used or unused cache locations determines how much of the
cache is used in solving the problem. As it turns out, leading dimensions 200, 201, and 202 result in
56%, 85%, and 97% of a 64Kb data cache being used respectively. Following Dongarra’s report, we
use the leading dimension 201 results, which is a median result. This effect is not as pronounced on
other machines (including the M/500) because their data caches are either much smaller or much
larger, or because their floating point is slow enough to dominate memory access. Only the combina-
tion of a cache close to the LINPACK problem size and fast floating point reveals the effect.

The LINPACK benchmark is easily vectorized, and thus vector machines perform relatively better
here than on benchmarks such as Doduc. However, the 100x100 system is usually not large enough
for vector machines to achieve their peak performance.

The LINPACK package calls on a set of general-purpose utility routines called BLAS -- Basic Linear
Algebra Subroutines -- to do most of the actual computation. A FORTRAN version of the BLAS is
available, and the appropriate routines are included in the benchmark. However, vendors often pro-
vide hand-coded versions of the BLAS as a library package. Thus LINPACK results are usually cited
in two forms: FORTRAN BLAS and Coded BLAS. The FORTRAN BLAS actually come in two
forms as well, depending on whether the loops are 4X unrolled in the FORTRAN source (the usual)
or whether the unrolling is undone to facilitate recognition of the loop as a vector instruction.
According to the ground rules of the benchmark, either may be used when citing FORTRAN BLAS
results, although it is typical to note rolled loops with the annotation “(Rolled BLAS).”

For our own numbers, we’ve corrected a few to follow Dongarra more closely than we have in the
past. LINPACK output produces quite a few MFlops numbers, and we’ve. tended to use the fourth
one in each group, which uses more iterations, and thus is more immune to clock randomness. .
Dongarra uses the highest MFlops number that appears, then rounds to two digits. ’

Note that relative ordering even within families is not particularly consistent, illustrating the extreme
sensitivity of these benchmarks to memory system design.

mips S -20- Performance Brief 3.2

100x100 LINPACK Results - FORTRAN and Coded BLAS
From [Dongarra 87], Unless Noted Otherwise

DpP DP sp SP
Fortran Coded Fortran Coded System
.10 .10 A1 a1 Sun-3/160, 16.7MHz (Rolled BLAS)"™
A1 A1 13 q1 Sun-3/260,25MHz 68020+20MHz 68881 (Rolled BLAS)
14 - - - Apollo DN4000, 25MHz (68020 + 68881) [ENEWS 87]
14 - 24 - VAX 11/780, 4.3BSD, LLL Fortran [ours]
14 17 25 34 VAX 11/780, VAX/VMS
.20 - .24 - 80386+80387, 20MHz, 64K cache, GreenHills
20 .23 .40 51 VAX 11/785, VAX/VMS
29 .49 45 69 Intergraph IP-32C,30Mz Clipper{Intergraph 86]
.30 - - - IBM RT PC, optional FPA [IBM 8&7]
33 - 57 - OPUS 300PM, Greenhills, 30MHz Clipper
.36 .59 S1 72 Celerity C1230, 4.2BSD {77
38 - .67 - 80386+Weitek 1167,20MHz,64K cache, GreenHﬂls
A1 41 62 62 || Sun-3/160, Weitek FPA (Rolled BLAS)"
A4S .54 .60 74 HP9000 Model 840S [HP 87]
46 .46 .86 .86 Sun-3/260, Weitek FPA (Rolled BLAS)
47 .81 .69 1.30 Gould PN9000
49 .66 .84 1.20 VAX 8600, VAX/VMS 4.5
49 .54 .62 .68 HP 9000/825S [HP 87]
57 72 .86 .87 HP9000 Model 850S [HP 87}
.60 72 .93 1.2 MIPS M/500, £771.21
.61 - .84 - DG MV20000-I, MV15000-20 [Stahlman, 87]
.65 .76 .80 .96 VAX 8500, VAX/VMS
.70 .96 1.3 1.9 VAX 8650, VAX/VMS
78 - 11 - IBM 9370-90, VS FORT 1.3.0
97 1.1 1.4 1.7 VAX 8550/8700/83800, VAX/VMS
1.0 1.3 1.9 3.6 MIPS M/800, £771.21
1.1 1.1 1.6 1.6 SUN 4/200 (Rolled BLAS)
1.2 1.7 13 1.6 ELXSI 6420
1.2 1.6* 2.3* 43 MIPS M/1000, £771.21
1.5 1.5 3.5 4.3 MIPS M/1000, £771.30
1.6 2.0 1.6 2.0 Alliant FX-1 (1 CE)
21 - 2.4 - IBM 3081K H enhanced opt=3
2.1 2.2 4.0 4.3 MIPS M/120-5, £771.31
3.0 3.3 43 4.9 CONVEX C-1/XP, Fort 2.0 (Rolled BLAS)
6.0 - - - Multiflow Trace 7/200 Fortran 1.4 (Rolled BLAS)
7.0 11.0 7.6 9.8 Alliant FX-8, 8 CEs, FX Fortran, v2.0.1.9
12 23 n.a. n.a. CRAY 1S CFT (Rolled BLAS)
39 57 n.a. n.a. CRAY X-MP CFT (Roiled BLAS)
43 - 44 - NEC SX-2, Fortran 77/SX (Rolled BLAS)

+ The Sun FORTRAN Rolled BLAS code appears to be optimal, so we used the same numbers for
Coded BLAS. The 4X unrolled numbers for Sun-4/200 are .86 (DP) and 1.25 (SP) [Hough 87].

* These numbers are as reported by Dongarra. We prefer the typical results, which are slightly lower,
viz. 1.2, 1.5, 2.2, and 4.3.

Jmips - 21- Performance Brief 3.2

100x100 LINPACK Results - FORTRAN and Coded BLAS
VAX/VMS Relative Performance
For A Subset of the Systems

Rel. Rel. Rel. Rel.
DP DP sp sp
Fortran Coded Fortran Coded System ‘
8 .6 S 3 Sun-3/260,25MHz 68020+20MHz 68881 (Rolled)

1.0 1.0 1.0 1.0 VAX 11/780, VAX/VMS
1.4 - 1.0 - 80386+80387, 20MHz, 64K cache, GreenHills
2.0 2.9 1.8 2.0 Intergraph IP-32C,30Mz Clipper[Intergraph 86]
2.7 - 2.7 - 80386+ Weitek 1167,20MHz,64K cache, GreenHills
2.9 24 25 1.8 Sun-3/160, Weitek FPA (Rolled BLAS)
33 2.7 34 2.5 Sun-3/260, Weitek FPA (Rolled BLAS)
3.5 3.9 3.4 3.5 VAX 8600, VAX/VMS 4.5
4.1 4.2 34 2.6 HP9000 Model 850S [HP 87]
4.3 4.2 3.7 3.5 N_]IPS M/500, £771.21
6.9 6.6 5.6 5.0 VAX 8550/8700/8800, VAX/VMS
7.1 7.6 7.6 10.6 MIPS M/800, £771.21
7.9 6.5 6.4 4.7 SUN 4/200 (Rolled BLAS)
8.6 9.0 9.2 12.6 MIPS M/1000, £771.21

104 9.0 14.0 12.6 MIPS M/1000, £771.30

11.4 11.8 6.4 5.9 Alliant FX-1 (1 CE)

15.0 12.9 16.0 14.1 MIPS M/120-5, £771.31

214 194 17.2 14.4 CONVEX C-1/XP, Fort 2.0 (Rolled BLAS)

50 65 30 28.8 Alliant FX-8, 8 CEs, FX Fortran, v2.0.1.9

307 - 176 - NEC SX-2, Fortran 77/SX (Rolled BLAS)

-22.

Performance Brief 3.2

5.3. Spice Benchmarks (SPCE 2G6)

Spice [UCB 87] is a general-purpose circuit simulator written at U.C. Berkeley. Spice and its deriva-
tives are widely used in the semiconductor industry. It is a valuable benchmark because it shares
many characteristics with other real-world programs that are not represented in popular small bench-
marks. It uses both integer and floating-point computation heavily. The floating-point calculations
are not vector oriented, as in LINPACK. Also, the program itself is very large and therefore tests
both instruction and data cache performance.

We have chosen to benchmark Spice version 2g.6 because of its general availability. This is one of
the later and more popular Fortran versions of Spice distributed by Berkeley. We felt that the circuits
distributed with the Berkeley distribution for testing and benchmarking were not sufficiently large and
modern to serve as benchmarks. In previous version of this brief, we presented results on circuits we
felt were representative, but which contained proprietary data. This time, we gathered and produced
appropriate benchmark circuits that can be distributed, and have since been posted as public domain
on Usenet. The Spice group at Berkeley found these circuits to be up-to-date and good candidates
for Spice benchmarking. In the table below, "Geom Mean" is the geometric mean of the 3 "Rel."
columns.

Spice2G6 Benchmarks Results

digsr bipole comparator Geom
Secs | Rel. Sees | Rel. Secs Rel. Mean || System
1354.0 | 0.60 || 439.6 | 0.68 || 460.3 0.63 .6 VAX 11/780 4.3BSD, £77 V2.0
993.5 | 0.81 || 394.3 | 0.76 || 366.9 0.80 8 Microvax-II Ultrix 1.1, fortrel
901.9 | 0.90 || 285.1 1.0 328.6 0.89 9 SUN 3/160 SunOS 3.2 f77 -O -{68881
848.0 | 0.95 || 312.6 | 0.96 || 302.9 0.96 1.0 VAX 11/780 4.3BSD, fortrel -opt
808.1 1.0 299.1 1.0 201.7 1.0 1.0 VAX 11/780 VMS 4.4 /optimize
744.8 | 1.1 || 221.7 | 1.3 | 266.0 1.1 1.2 SUN 3/260 SunOS 3.2 {77 -O -f68881
506.5 | 1.6 || 170.0 | 1.8 | 189.1 1.5 1.6 SUN 3/160 SunOS 3.2 f77 -O -ffpa
361.2 | 2.2 || 112.0 | 2.7 || 1294 2.3 2.4 SUN 3/260 SunOS 3.2 77 -O -ffpa
296.5 2.7 73.4 | 4.1 83.0 3.5 34 MIPS M/500 +
2259 | 3.6 63.7 | 4.7 73.4 4.0 4.1 SUN 4/200 £77 -O3 -Qoption as -Ff0
- - - - - - 53 VAX 8700 (estimate)
136.5 5.9 42.6 7.0 41.4 7.0 6.6 MIPS M/800
125.5 | 6.4 3951 7.6 39.3 7.4 71 AMDAHL 470V7 VMSP FORTVS4.1
114.3 7.1 35.4 8.4 34.5 8.5 8.0 MIPS M/1000
92.4 | 8.7 28.5 | 10.5 29.7 9.8 9.7 MIPS M/120-5 3
48.0 | 16.8 12.5 | 23.9 17.5 16.7 18.9 FPS 20/64 VSPICE (2g6 derivative)

+ Sun numbers are from [Hough 87], who notes that the Sun-4 number was beta software, and that
a few modules did not optimize.

Benchmark descriptions:

digsr CMOS 9 bit Dynamic shift register with parallel load capability, i.e., SISO (Serial Input
Serial Output) and PISO (Parallel Input Serial Output), widely used in microprocessors.
Clock period is 10 ns. Channel length = 2 um, Gate Oxide = 400 Angstrom. Uses MOS

LEVEL=2.
bipole Schottky TTL edge-triggered register used as a synchronizer.
comparator

Analog CMOS auto-zeroed comparator, composed of Input, Differential Amplifier and
Latch. Input signal is 10 microvolts. Channel Length = 3 um, Gate Oxide = 500 Angstrom.
Uses MOS LEVEL=3. Each part is connected by capacitive coupling, which is often used
for the offset cancellation. (Sometimes called Toronto, in honor of its source).

o

Jnips -23.- Performance Brief 3.2

Hspice is a commercial version of Spice offered by Meta-Software, which recently published bench-
mark results for a variety of machines [Meta-software 87]. (Note that the M/800 number cited there
was before the UMIPS-BSD 2.1 and 77 1.21 releases, and the numbers have improved). The VAX
8700 Spice number (5.3X) was estimated by using the Hspice numbers below for §700 and M/800, and
the M/800 Spice number: '

(5.5: 8700 Hspice) / (6.9: M/800 Hspice) X (6.6: M/800 Spice) yields 5.3X.

This section indicates that the performance ratios seem to hold for at least one important commercial
version as well.

Hspice Benchmarks Results
HSPICE-8601K

ST230
Secs Rel. System
166.5 .6 VAX 11/780, 4.2BSD
92.2 1.0 VAX 11/780 VMS
91.5 1.0 Microvax-II VMS
29.2 3.2 ELXSI 6400
29.1 3.2 Alliant FX/1
253 3.6 HyperSPICE (EDGE)
16.8 5.5 VAX 8700 VvMS
16.3 5.7 IBM 4381-12
13.4 6.9 MIPS M/800 [ours]
11.3 8.2 MIPS M/1000 [ours]
8.7 10.6 MIPS M/120-5 [ours]
3.27 28.2 IBM 3090
2.71 34.0 CRAY-1S

Again, as in the less-vectorizable Livermore Kemnels, the M/120-5 performs about 30% as fast as a
CRAY-1S.

.!Ilips e -24. Performance Brief 3.2

5.4. Digital Review (DIG REYV)

The Digital Review magazine benchmark [DR 87] is a 3300-line FORTRAN program that includes 33
separate tests, mostly floating-point, some integer. The magazine reports the times for all tests, and
summarizes them with the geometric mean seconds shown below. All numbers below are from [DR
87], except the M/500 and M/800 figures. Note that Digital Review gives relative performance using
the microVax II as a basis for comparison (mVUPS). For consistency with the rest of this perfor-
mance brief, we use the VAX 11/780, which significantly affects the ratios.

Digital Review Benchmarks Results

Secs Rel. System
9.17 . 0.7 VAXstation II/GPX, VMS 4.5
6.75 1.0 VAX 11/780, VMS [DEC]
2.90 ‘ 2.3 VAXstation 3200
2.32 2.9 VAX 8600, VMS 4.5
2.09 3.2 Sun-4/200, SunOS 3.2L
1.86 3.6 MIPS M/500, £771.21 [ours]
1.584 4.2 VAX 8650
1.480 4.6 Alliant FX/8, 1 CE
1.469 4.6 VAX 8700
1.200 5.6 MIPS M/800, £771.21 [ours]
1.193 57 ELXSI 6420
990 6.8 MIPS M/1000, £771.21*
.940 7.2 MIPS M/1000, £771.30 [ours]
783 8.6 MIPS M/120-5 [ours]
0.487 18.8 Convex C-1XP

* The actual run number was .99, which [DR 87] reported as 1.00.

Jnips -25- Performance Brief 3.2

5.5. Doduc Benchmark (DDUC)

This benchmark [Doduc 86] is a 5300-line FORTRAN program that simulates aspects of nuclear reac-
tors, has little vectorizable code, and is thought to be representative of Monte-Carlo simulations. It
uses mostly double precision floating point, and is often viewed as a “nasty’” benchmark, i.e., it
breaks things, and makes machines underperform their usual VAX-mips ratings.

This simulation iterates until certain conditions are met. The number of bits in the floating point for-
mat, the rounding algorithm, and the accuracy of math libraries on different machines will all affect
the number of iterations. More accurate machines do not necessarily require fewer iterations. There-
fore runtimes on this benchmark only grossly reflect machine performance, and only gross comparis-
ons are possible.

Performance is given as a number R normalized to 100 for an IBM 370/168-3 or 170 for an IBM
3033-U, [R = 48671/(cpu time in seconds)], so that larger R’s are better.

In order of increasing performance, following are numbers for various machines. All are from
[Doduc 87] unless otherwise specified.

ANnips e - 26- Performance Brief 3.2

Double Precision Doduc Benchmark Results

DoDuc R Relative
Factor Perf. System
17 0.7 Sun-3/110, 16.7MHz
19 0.7 Intel 80386+80387, 16MHz, iRMX
22 0.8 Sun-3/260, 25MHz 68020, 20MHz 68881
26 1.0 VAX 11/780, VMS
33 1.3 Fairchild Clipper, 30MHz, Green Hills
43 1.7 Sun-3/260, 25MHz, Weitek FPA
48 1.8 Celerity C1260
50 1.9 CCI Power 6/32
53 2.0 Edge 1
64 2.5 Harris HCX-7
85 : 3.3 Alliant FX/1
88 34 MIPS M/500, £771.21 -O2, runs 553 seconds
90 3.5 IBM 4381-2
90 3.5 Sun-4/200 [Hough 1987], SunOS 3.2L, runs 540 seconds
91 3.5 DEC VAX 8600, VAX/VMS
97 3.7 ELXSI 6400
99 3.8 DG MV/20000
100 3.8 MIPS M/500, £771.21 -O3, runs 488 seconds
101 3.9 Alliant FX/8
113 43 FPSystems 164
119 4.6 Gould 32/8750
129 5.0 DEC VAX 8650
136 52 DEC VAX 8700, VAX/VMS
150 5.7 Amdahl 470 V8, VM/UTS
178 6.8 MIPS M/800, £77 -O2, runs 273 secs
181 7.0 IBM 3081-G, F4H ext, opt=2
190 7.3 MIPS M/800, £771.21 -O3, runs 256 secs
218 8.4 MIPS M/1000, £771.21 -O2, runs 223 secs
229 8.8 MIPS M/1000, £771.21 -O3, runs 213 secs
236 9.1 IBM 3081-K
259 10.0 M120-5, UMIPS V.3 3.0, f77 1.31 -O2
295 11.3 M120-5, UMIPS V.3 3.0, f77 1.31 - O3
475 18.3 Amdahl 5860
714 27.5 IBM 3090-200, scalar mode
1080 41.6 Cray X/MP [for perspective: we have a long way to go yet!]

As can be seen here, the MIPS systems act like large superminis, leaving a large gap between them
and even quite competent microprocessor implementations.

Jnips -27- Performance Brief 3.2

5.6. Whetstone

Whetstone is a synthetic mix of floating

point and integer arithmetic, function calls, array indexing,

conditional jumps, and transcendental functions [Curnow 76]. Whetstone has been carefully arranged
to defeat vectorizing and many compiler optimizations. It is less memory intensive than LINPACK:
caches are actually useful. Thus, it and LINPACK correlate with different kinds of applications.

Whetstone results are measured in KWips, thousands of Whetstone interpreter instructions per
second. In this case, some of our numbers actually went down, although compiled code has generally
improved. First, the accuracy of several library routines was improved, at a slight cost in perfor-
mance. Second, on machines this fast, relatively few clock ticks are actually counted, and UNIX tim-
ing includes some variance. We’ve been running many runs and averaging. We’ve now increased the
loop counts from 10 to 1000 to increase the total running time to the point where the variance is
reduced. This changed the benchmark slightly. Our experiences show some general uncertainty about
the numbers reported by anybody: we’ve heard that various different source programs are being used.

Whetstone Benchmark Results

:

DP DpP SP Sp
KWips Rel. Kwips Rel. System
410 0.5 500 0.4 VAX 11/780, 4.3BSD, 77 [ours]
715 0.9 1,083 0.9 VAX 11/780, LLL compiler [ours]
830 1.0 1,250 1.0 VAX 11/780 VAX/VMS [Intergraph 86]
960 1.2 1,040 | 0.8 | Sun-3/160, 68881 [Intergraph 86]
1,110 1.3 1,670 1.3 VAX 11/785, VAX/VMS [Intergraph 86]
1,230 1.5 1,250 1.0 Sun-3/260, 25MHz 68020, 20MHz 68881
1,400 1.7 1,600 1.3 IBM RT PC, optional FPA [IBM 87]
1,730 2.1 1,860 1.5 Intel 80386+80387, 20MHz, 64K cache, GreenHills
1,740 2.1 2,980 2.4 Intergraph InterPro-32C,30MHz Clipper{Intergraph86]
1,744 2.1 2,170 1.7 Apollo DN4000, 25MHz 68020, 25MHz 68881 [ENEWS 87]
1,860 2.2 2,400 1.9 Sun-3/160, FPA
2,092 2.5 3,115 2.5 HP 9000/840S [HP 87]
2,433 2.9 3,521 2.8 HP 9000/825S [HP 87]
2,590 3.1 4,170 3.3 Intel 80386+ Weitek 1167, 20MHz, Green Hills
2,600 3.1 3,400 2.7 Sun-3/260, Weitek FPA [measured elsewhere]
2,670 3.2 4,590 3.7 VAX 8600, VAX/VMS [Intergraph 86]
2,907 3.5 4,202 3.4 HP 9000 Model 850S [HP 87]
3,540 4.3 5,290 4.2 Sun-4/200 (reported secondhand, not confirmed)
3,950 4.8 6,670 53 VAX 8700, VAX/VMS, Pascal(?) [McInnis, 1987]
4,000 4.8 6,900 5.5 VAX 8650, VAX/VMS [Intergraph 86]
4,120 5.0 4,930 3.9 Alliant FX/8 (1 CE) [Alliant 86]
4,200 51 - - Convex C-1 XP [Multiflow]
4,220 5.1 5,430 4.3 MIPS M/500
6,930 8.0 8,570 6.9 MIPS M/800
7,960 9.6 10,280 8.2 MIPS M/1000
9,100 11.0 11,400 9.1 MIPS M/120-5
12,605 15 - - Multiflow Trace 7/200 [Multiflow]
25,000 30 - - IBM 3090-200 [Multiflow]
35,000 42 - - Cray X-MP/12
-28- Performance Brief 3.2

5.7. Stanford Floating Point Benchmarks

The following two benchmarks from the Stanford Benchmark Suite emphasize floating point perfor-
mance. They exemplify that class of programs that use tight loops and a high proportion of actual FP
code, unlike, for example Linpack, which depends as much on the speed of accessing main memory
as on FP performance itself. These benchmarks are also quite responsive to good optimizing compiler
technology. The ratios here are much higher than usual. First, the code is very susceptible to high-
quality optimization. Second, the code uses a high proportion of floating-point code, on which we do
well. Third, the comparison is with the 4.3BSD UNIX C compiler, which does not perform global
optimization, unlike the LLL-FORTRAN compiler or VAX/VMS FORTRAN. We’d guess that use
of VAX/VMS C would improve the VAX 11/780 time by nearly a factor of two (see the-Doduc
4.3BSD versus VMS comparison, for example.) This would drop the relative performance ratios back
where they belong. :

Stanford Floating Point Benchmark Results

FFT Matrix Mult Aggregate Rel.

Secs Secs Secs Perf. System

3.97 231 5.52 1.0 VAX 11/780

3.12 2.14 3.41 1.6 Sun-3/160M"
57 30 .72 7.7 Sun-4/200 -O3
34 .26 .59 9.4 MIPS M/500
.20 13 ‘ 37 14.9 MIPS M/800
17 A2 .29 19.0 MIPS M/1000
12 .08 .24 23.0 MIPS M/120-5

* As weighted by the Stanford Benchmark Suite
(includes some contribution from the integer results)

Performance would be substantially improved with the respective FPA boards. Also, recall that the
in-house Sun has only a 12.5MHz 68881, so it’s slower than the more recent Suns would be.

Benchmark Descriptions

FFT Computes a 256-point Fast Fourier Transform (FFT) twenty times.

Matrix Multiply Multiplies two 40x40 single-precision matrices.

Jnips -29. Performance Brief 3.2

6. Acknowledgements

Some people have noted that they seldom believe the numbers that come from corporations unless
accompanied by names of people who take responsibility for the numbers. Many people at MIPS
have contributed to this document, which was originally created by Web Augustine. Particular contri-
butors to this issue include Mark Johnson (much Spice work, including creation of public-domain
Spice benchmarks), and especially Earl Killian (a great deal of work in various areas, ‘particularly
floating-point). Final responsibility for the numbers in this Brief is taken by the editor, John Mashey.

We thank David Hough of Sun Microsystems, who kindly supplied numbers for some of the Sun
configurations, even fixing a few of our numbers that were incorrectly high, and who has also offered
good comments on joint efforts looking for higher-quality benchmarks.

We also thank CIiff Purkiser of Intel, who posted the Intel 80386 Whetstone and LINPACK numbers
on Usenet.

We also thank Greg Pavlov, who ran hordes of Stanford and Dhrystone benchmarks for us on a VAX
8550, Ultrix 2.0 system.

E.

-30- Performance Brief 3.2

7. References
[Alliant 86]
Alliant Computer Systems Corp, "FX/Series Product Summary”, October 1986.
[Curnow 76]
Curnow, H. J., and Wichman, B. A., “A Synthetic Benchmark”, Computing Journal, Vol. 19,
No. 1, February 1976, pp. 43-49.
[Doduc 87]
Doduc, N., FORTRAN Central Processor Time Benchmark, Framentec, June 1986, Version 13.

Newer numbers were received 03/17/87, and we used them where different.
E-mail: seismo!mcvax!ftcsun3!ndoduc

[Dongarra 87]
Dongarra, J., “Performance of Various Computers Using Standard Linear Equations in a Fortran
Environment”, Argonne National Laboratory, August 10, 1987.

[Dongarra 87b] _
Dongarra, J., Marin, J., Worlton, J., "Computer Benchmarking: paths and pitfalls", IEEE Spec-
trum, July 1987, 38-43. :

[DR 87]
"A New Twist: Vectors in Parallel", June 29, 1987, "The M/1000: VA X 8800 Power for Price of a
MicroVAX II", August 24, 1987, and "VAXstation 3200 Benchmarks: CVAX Eclipses Micro-
VAX II", September 14, 1987. Digital Review, One Park Ave., NY, NY 10016.

[ENEWS 87]

Electronic News, “Apollo Cuts Prices on Low-End Stations”, J uly 6, 1987, p. 16.

[Fleming 86] .
Fleming, P.J. and Wallace, J.J.,“How Not to Lie With Statistics: The Correct Way to Summarize
Benchmark Results”, Communications of the ACM, Vol. 29, No. 3, March 1986, 218-221.

[HP 87]

Hewlett Packard, “HP 9000 Series 800 Performance Brief”, 5954-9903, 5/87. (A comprehensive
40-page characterization of 825S, 840S, 850S).

[Hough 86,1]
Hough, D., “Weitek 1164/5 Floating Point Accelerators”, Usenet, January 1986.
[Hough 86,2]
Hough, D., “Benchmarking and the 68020 Cache”, Usenet, January 1986.
[Hough 86,3] . ,
Hough, D., “Floating-Point Programmer’s Guide for the Sun Workstation”, Sun Microsystems,
September 1986. [an excellent document, including a good set of references on IEEE floating

point, especially on micros, and good notes on benchmarking hazards]. Sun-3/260 Spice
numbers are from later mail.

[Hough 87]
Hough, D., “Sun-4 Floating-Point Performance’’, Usener, 08/04/87.
[IBM 87]
IBM, “IBM RT Personal Computer (RT PC) New Models, Features, and Software Overview,
February 17, 1987.
[Intergraph 86]
Intergraph Corporation, “Benchmarks for the InterPro 32C”, December 1986.
[Meta-Software 87)
Meta-Software, “HSPICE Performance Benchmarks”, June 1987. 50 Curtner Avenue, Suite 16,
Campbell, CA 95008.
[McInnis 87]
MclInnis, D., Kusik, R., Bhandarkar, D., “VAX 8800 System Overview”, Proc. IEEE

_m;!s -31- Performance Brief 3.2

COMPCON, March 1987, San Francisco, 316-321.

[McMahon 86]
“The Livermore Fortran Kernels: A Computer Test of the Numerical Performance Range”,
December 1986, Lawrence Livermore National Labs.

[MIPS 87]
MIPS Computer Systems, "A Sun-4 Benchmark Analysis”, and "RISC System Benchmark Com-
parison: Sun-4 vs MIPS", July 23, 1987.

[Purkiser 87]
Purkiser, C., “Whetstone and LINPACK Numbers”, Usener, March 1987.

[Richardson 87]
Richardson, R., “9/20/87 Dhrystone Benchmark Results”, Usenet, Sept. 1987.
Rick publishes the source several times a year. E-mail address: ...!seismo!uunet!pcrat!rick

[Serlin 87a]
Serlin, O., “MIPS, DHRYSTONES, AND OTHER TALES”, Reprinted with revisions from
SUPERMICRO Newsletter, April 1986, ITOM International, P.O. Box 1450, Los Altos, CA
94023.
Analyses on the perils of simplistic benchmark measures.

[Serlin 87b]
Serlin, O., SUPERMICRO #69, July 31, 1987. pp. 1-2.
Offers good list of attributes customers should demand of vendor benchmarking.

[Stahlman 87]
Stahlman, M., 'The Myth of Price/performance”, Sanford C. Bernstein & Co, Inc, NY, NY,
March 17, 1987.

[Sun 86]
SUN Microsystems, “The SUN-3 Family: A Hardware Overview”, August 1986.

[Sun 87]
SUN Microsystems, SUN-4 Product Introduction Material, July 7, 1987.

[UCB 87]
U. C. Berkeley, CAD/IC group, “SPICE2G.6”, March 1987. Contact: Cindy Manly, EECS/ERL
Industrial Liason Program, 479 Cory Hall, University of California, Berkeley, CA 94720.

[Weicker 84]
Weicker, R. P., “Dhrystone: A Synthetic Systems Programming Benchmark”, Communications of
the ACM, Vol. 27, No. 10, October 1984, pp. 1013-1030.

UNIX is a Registered Trademark of AT&T. DEC, VAX, Ultrix, and VAX/VMS are trademarks of
Digital Equipment Corp. Sun-3, Sun-4 are Trademarks on Sun Microsystems. Many others are
trademarks of their respective companies.

mips L -32- Performance Brief 3.2

From: TLE: : DECWET: : CUTLER "02-Jun-1988 0803" 2-JUN-1988 11:23
To: PIPE: :KEATING, TLE: : GROVE, TLE: : NYLANDER, KISWA: :HEINEN, GILBERT, ORBITS
Subij: Yesterday'’s meeting

Thank you for speaking out yesterday at the summit meeting. I think we
managed to get 3 points across:

1. to switch to MIPS would not provide the same family of products
with a high degree of VAX compatibility

2. that a switch to MIPS would case at least a year schedule slip

3. engineering as a whole is not for the MIPS proposal
Appanrently this will all be hashed over again at the executive committee
meeting. Jack is supposed to let me know the outcome of that meeting today -
sometime he slips a day.
I will let you know hwat I know as soon as I know it!
The down side on all this is that Ken wants to do the MIPS proposal, Jack
does not. I belive Ken will win and we will be in the MIPS workstation

business. We’ll see.

d

From: TLE: :GROVE 25-MAY-1988 12:55
To: NYLANDER
Subj: MIPS correspondence w Dave 1/3

From: DECWET: : CUTLER 25-MAY-1988 11:10
To: TLE: :GROVE

CcC:

Subj: register allocation

I have a MIPS architecture book that was published by Prentis Hall and
describes both the hardware architecture and some of the software architecture.

It appears that they require an assembly phase in all compilations. Did you
find this to be true? (real state of the art huh).

There is an explanation of register allocation that looks very funny. There
is one register that is dedicated to the assembler. It is register 1. There
are also two other registers that are dedicated to the operating system
kernel. I think these were 26 and 27. Did you find any evidence to support
this?

There is also a dscription of stack frames and register save areas and the
such. They do not have frame based condition handling. They do no include

the floating point status register as part of the frame context. By the

way did you know that the floating point coprocessor is alla the PDP-11/457
The rounding modes are selected by a status register rather than being part
of the instructions. Prodcuing a math library would indeed be fun - switching
back and forth between rounding modes. And exceptions are interrupts which
has the problem of receiving the exception when you are in the wrong context
(i.e. just after an interrupt of system call).

I'm not impressed with the architecture.

d

From: TLE: : GROVE 25-MAY-1988 12:56
To: NYLANDER
Subj: MIPS correspondence w Dave 2/3

From: TLE: :GROVE 25-MAY-1988 11:46
To: DECWET: : CUTLER

CC: GROVE

Subj: MIPS assembler and register allocation

Yes, the compiler(s) produce an assembler source file; and the assembly
phase is a standard part of the compiler block diagram. They do this
for a couple of reasons:

1. It’'s a UNIX system, and UNIX compilers always produce assembly code.
2. Acccording to the assembler manual, it’s a fairly "smart" assembler.

The assembler has built into it the knowledge of pipeline conflicts
and scheduling rules. MIPS doesn’t do resource interlocks, so
someone has to insert NOPs if a delay is needed before using

the result of the previous instruction.

MIPS also isn’t committed to binary compatibility between
successive implementations. Perhaps the assembler interface
helps to provide a more compatible interface.

The assembler also has built into it a lot of macro instructions
that may in fact expand to several real machine instructions.
For example, there is an assembler pseudo-op LA (load address).
You can give this an arbitrary address expression or constant
and it will produce the code to load the address. That load
might be LDL displaced using the global pointer register

or it could be loading an address constant from somewhere else.

So, I would guess Rl is reserved so the assembler has a scratch
register for some of its multi-instruction sequences.

I think the assembler probably does some peephole optimizations
as well. The compiled code contained things like:
1s jmp 1$

3. Apparently they also do code scheduling in the assembler.
The assembler has some Reorder/Noreorder directives.
It doesn’t seem to me the assembler could be expected to do
a very good job on scheduling, because I don’t think it would
have a very good data dependency model. It would be real hard
to do a sophisticated (and correct!) job of reordering loads
and stores at that level.

Bob Supnik claimed they could do a sufficiently scheduling
job given the particular characteristics of the pipeline.
Still with processors and caches getting faster and main
memory relatively slower, load scheduling seems important.

Of course, it was a little hard to figure out what the assembler had done
because we didn’t find a way to get a listing of the result. (UNIX isn’t
big on listings). So we weren’t able to evaluate just what kinds of
scheduling transformations they had done. The table of contents for the
assembler manual listed an Appendix C on "reordering rules and constraints",

but the appendix was non-existent.

Hope this is of some help. If there is anything else we can do
(technically, politically, etc) to help keep the PRISM program
moving full speed ahead, please let me know!!!!

Rich

From: TLE: : GROVE 25-MAY-1988 09:28
To: KLEIN,NYLANDER,NM%$THESPN: :DAVIS
Subj: Dileep’s analysis of mipsco vs prism

From: DECEAT: : BHANDARKAR "24-May-1988 1729" 24-MAY-1988 17:31
To: @DISS$:PRISM,MIST: : SHORT

CC:

Subj: prism vs mipsco

et s N s et 5
ld} i g] i}t]|all] Interoffice Memorandum
s R S e T S Rt 2

Date: 24 May 1988
To: Bill Strecker From: Dileep Bhandarkar
Dept: Mid Range Systems
Technical Director
Ext: 293-5350
Loc: BXBl-1/E1l1l
ENET: DECEAT: :BHANDARKAR

cc: Dick Angel, Dave Cutler, Bill Demmer, Sam Fuller, Roger Heinen,
Bill Keating, Dom LaCava, Cathy Learoyd, Dom McInnis, Jack Smith, Bob
Supnik

Subject: My thoughts on our PRISM Strategy

Over the last 3 years I have had the opportunity to talk to several
customers about their computing requirements, especially as they related
to the price performance of VAXes. While several customers were very
complimentary about our single consistent architecture, they did express
interest in other architectures if there was a significant (at 1least a
factor of 2) price/performance advantage. Our PRISM strategy is based
on the belief that it will become increasingly difficult for wus to
compete with just VAXes against RISC based products from HP, Sun, and
other system integrators of SPARC, MC88000, or MIPSCO chips. Our
customer needs can be served best with an approach based on PRISM rather
than commodity RISC chips.

1 THREE TYPES OF CUSTOMERS
Our customer base can be divided into 3 major categories:

1. VAX/VMS zealots who are extremely happy with the development
environment under VAX/VMS and have very little interest in
anything else. They don’t particularly like UNIX, but find the
price/performance of RISC machines to be a cause for concern.
Such customers often ask, "Can you put VMS on a RISC machine?".
To many of these customers, VMS means DCL, DECnet, system
services, file formats, and their favorite layered products and
utilities. Most of them do not write assembler code, but do
share binary files across different machines. These customers
are willing to consider companies like Convex that claim to be
compatible with VMS Fortran and offer DCL and EDT.

2. UNIX bigots who want Unix because they think that it will make
them vendor independent. Ironically, they also want us to
support VMS features (e.g. clusters, or a particular set of

Digital Equipment Corporation **** FOR INTERNAL USE ONLY * %k k

-

Digital Equipment Corporation Page 2
**%% FOR INTERNAL USE ONLY *%%% 24 May 1988

VMS layered products) under Ultrix. Many VMS wusers are
considering UNIX because they are afraid to get tied down to a
single vendor.

3. Fence sitters who don’t have a strong preference but will use
some factor such as price/performance, or software
functionality to make a decision. If all things are equal,
they would probably choose Unix because it gives them a feeling
of vendor independence.

2 MEETING THE NEEDS OF CUSTOMERS

The needs of each type of customer are different. We can meet
their needs with a set of VAX and PRISM products that provide 2
excellent Digital alternatives.

2.1 VAX Zealots

These customers are obviously happy with VMS. The best solution
for them is to continue to build newer faster VAXes. When other
machines with better price/performance become available, these customers
will consider moving bounded applications to the new machines,
especially if the new machines can be integrated relatively seamlessly
into their existing environment. Such is the case with many VAX
customers who have bought SUN or Apollo workstations for their CAD
frontends, and Convex minisupercompouters for their backend compute
servers. Loyal VAX customers are likely to feel betrayed when we offer
PRISM based workstations that offer twice the performance of their VAX
equivalents at the same price. This may lead them to conclude (and
rightfully so) that RISC machines have much better price/performance.
They will start re-evaluating their commitment to VAX and VMS. Even
though they might 1like VMS, they will examine other alternatives.
Ideally, they would prefer a VMS like environment over Unix. However,
if the only thing we provide on PRISM is Unix, I would expect that these
customers will consider Unix platforms from other vendors too.

We can keep these customers on our PRISM platform by providing VMS
functionality under MICA. Obviously, we cannot port all or even most
VMS layered products instantaneously. We need a phased strategy for
moving layered products in groups to MICA. The members of each group
would consist of products that work together (e.g. CMS and MMS) and
form the nucleus for the needs of a particular market. Obviously, some
basic set should be ported over at FRS (e.g. DCL, TPU, LSE, PCA, etc).
Over time, more and more VAX users will migrate to PRISM. Users who
still want VAX binary compatibility will continue to buy VAXes.

Our current PRISM plan does not call for a non-Ultrix user interface at
FRS. I believe that we are making a big mistake and will cause some
number of customers to go to other vendors machines instead of staying

Digital Equipment Corporation Page 3
x%x%%* FOR INTERNAL USE ONLY **x% 24 May 1988

with VAX/VMS or moving to PRISM/Ultrix.

2.2 Unix Bigots

For not entirely rational reasons, a lot of users want Unix. We
should give them world class Unix with competitive price/performance as
per our current strategy. To make our Unix more attractive that other
vendors, we should migrate selected VMS layered products to
PRISM/Ultrix. Our current implementation strategy for PRISM/MICA and
PRISM/ULTRIX is based on a common software architecture. The VAX data
type compatibility of PRISM and similarity of privileged architecture is
a major factor that makes the common software architecture possible.
The availability of VMS layered products under Ultrix will make our
offering superior to other Unix offerings. We can make it easy for
people to move from standard Unix to PRISM/ULTRIX and provide them a
richer environment.

2.3 Fence Sitters

The fence sitters will have a choice between VAX/VMS with the
richest software environment and broadest range of compatible systems at
some price premium, PRISM/MICA systems with limited VAX functionality
but better price/performance, and PRISM/Ultrix with Unix compliance and
proprietary extensions. The three choices can be mixed in a network
environment and will offer data type and source code compatibility.

3 PRISM VS MIPSCO

There are several aspects of the PRISM architecture that make it
possible to support a VAX/VMS like environment on it. The most basic
one is its data type compatibility (integer and floating point). PRISM
also has mechanisms for operating on interlocked VAX queues that are
used by our I/0 adapters. The privileged architecture of PRISM is
modeled after VAX. The PRISM vector architecture and VAX vector
architecture provide identical features, allowing the sharing of common
chips and compilation strategies.

MIPSCO has none of the above. A MIPSCO based strategy would lock us
into the standard UNIX software domain and make it exteremely difficult
to port existing VMS layered products to it. In addition, MIPSCO is not
committed to full binary compatibility among its different chips.
MIPSCO does not provide hardware synchronization for resource conflicts
between instructions. MIPSCO does have a large number of semiconductor
vendors lined up to produce their chips. Our CMOS parts appear to be
competitive, but we lack custom bipolar expertise. There are 2 possible
solutions to this problem. We can pay an outside semiconductor vendor a
premium price (and large non-recurring engineering expenses) for a
proprietary part just for our use or we can license semiconductor

‘Digital Equipment Corporation Page 4
%%% FOR INTERNAL USE ONLY **%*x 24 May 1988

manufacturers for bipolar implementations to be sold on the open market.
Such an approach would provide us with state of the art bipolar chips
that meet our architectural desires. Making our architecture public is
much better than embracing someone else’s public architecture. 1
believe that semiconductor vendors would be very receptive to building
our chips if we let them sell those chips on the open market.

Wwhile a MIPSCO based product line may help bring in First Customer Ship
dates by a couple of months, it will serve to defocus our PRISM
strategy, contend for scarce resources in the company, confuse our
product message in the short term and possible dilute our long-term
strategy.

4 CONCLUSIONS

A PRISM based strategy allows us to migrate our installed VAX/VMS
customer base in a controlled way to PRISM when they are ready to move.
It also allows us to be a leader in the Unix marketplace. The common
software architecture allows us to build from our existing VMS layered
product set and evolve to two cost effective platforms without
duplication of work.

We are basically on the right strategic path with PRISM. Let'’s exercise
some discipline and execute our plan without what now appears to be an
annual destabilization. Where there are holes in our current plan,
let’s strengthen them with additional complementary resources instead of
embarking on a redundant parallel effort.

