INTEROFFICE MEMORANDUM

R o
o

- o=
[WH

- =
\

- o=
[w?
-
o
o
- am
-

4 o= =t

FROM: Leslie Klein
DATE: July 1, 1988
DEPT: Technical Languages
and Environments
LOC: 2ZK2-3/N30 EXT: 381-2055
NODE: TLE::KLEIN

TO: Ken Hobday Jim Totton
Al Simons Don MacLaren
Rich Grove Benn Schreiber
Dick Wilson John Gilbert
Jeff Rudy Bev Schultz
Tom Harris Evan Suits
Scott Davis Chip Nylander
Dave Cutler Bill Keating
Celeste LaRock Dena Yancey
Bob Travis BR:ll Tames

SUBJECT: June 30, 1988 Woods Meeting - Results and Action Items

Thank you for your participation in the June 30 woods meeting.
The following is an overview of results and of the action items.
If you own an action item, please let me know whether the due '
date is reasonable or not and feel free to propose a different
one. You’ll get a copy of the slides via internal mail within
the next couple of weeks. ‘

1 SUMMARY OF DECISIONS
We reached the following global decisions:

1. We will support Dave Cutler’s Dual Environment proposal
for the OSF operating system development strategy.

2. The GEM compiler strateqgy as presented by Rich Grove was
ratified, with reservations around the priority to be
attached to VAX GEM work (an action item on this appears
below).

3. We will work from the strength of the PRISM software
architectural work done to date, fixing the key pieces
that were machine dependent or that need reevaluation in
light of OSF (e.g. calling standard, debugger, ...).

Page 2

2 GOALS

1 heard some good program goals expressed. This may not be the
complete list, but I’d like to capture them here:

1. We must sell in heterogeneous environments (mixed
vendors and mixed
VAX/RISC-of-the-month/other-Digital-platforms).

2. We need to make our software more portable and set
concise portability goals.

3. We would still like people to buy our (Digital’s)
hardware.

4. We need to identify our points of control -- the
features of our software offering that show our added
value and that make our hardware the hardware of choice.
(e.g. don’'t go for "lowest common denominator" in the
name of portability -- OK and probably desirable to have
extra capabilities on strategic platforms)

After the meeting, Chip Nylander gave me a sythesis of the
strategies we’re going after that I believe is very helpful:

1. We want to develop a software strategy that is
responsive to the hardware requirements of the
corporation as they evolve and change, and which
insulates us to some degree from the shifting tides of
hardware strategy.

2. We want to consciously position our interfaces and
architectures into two "boxes" or "toolkits" -- the
"universally portable"”, and the "proprietary but
portable as sensible and required to strategic DEC
platforms", and then concsciously position each product
against one or the other of these toolkits.

3. We are free to migrate things from the "portable but DEC
proprietary" toolkit to the "universal" toolkit over
time as we decide to drive standards.

4. The "DEC proprietary" toolkit is one of the basis for
added value, and one of the basis for being able to
deploy our layered products on all the platforms that
are or become important to the corporation.

5. We will have to have some control of the underlying
operating environment (operating system) where the "DEC
toolkit" is provided, in order to implement such
capabilities as structured condition handling and record
management with reliability and integrity.

Page 3

3 ACTION ITEMS LIST

o OWNERS: Don MacLaren, Chip Nylander, Calling Standard
Team ,
DELIVERABLE: Position paper
DUE DATE: August 1, 1988
ISSUE: What does it take to make the calling standard
machine independent (if possible) and what are the
tradeoffs? What would we alter in the current
MICA/PRISM calling standard in order to achieve or
partially achieve this?

0 OWNER: Jim Totton
DELIVERABLE: Position paper
DUE DATE: July 12, 1988

ISSUE: What does IEEE FP mean for a MICA server in a
VMS environment?

o OWNER: Bill Keating
DELIVERABLE: Announcement
DUE DATE: July 15, 1988

ACTION: Identify someone in SDT to own gathering OSF
information and requirements.

0 OWNER: Scott Davis
DELIVERABLE: Position Paper
DUE DATE: August 1, 1988
ACTION: Scott is the SDT driver relative to our higher
level architectures and their positioning relative to
OSF (calling standard, ARUS, RPC, ...) and relative to
external standards (PCTE, POSIX, ...).

0 OWNERS: Bill Keating and Scott Davis
DELIVERABLE: Announcement
DUE DATE: July 15, 1988

ACTION: 1Identify someone in SDT to own APA
(Applications Portability Architecture).

Page 4

OWNER: Leslie Klein

DELIVERABLE: Position paper

DUE DATE: July 15, 1988

ACTION: Peruse agreement with that new RISC third party
relative to support for their making "VAX compatible
languages". Decide what level and type of participation
SDT should have here.

OWNERS: Leslie Klein and Chip Nylander

DELIVERABLE: Position paper

DUE DATE: August 1, 1988

ACTION: Determine priority and timing of VAX GEM --
esp. with reference to importance of vectorization to
VAX C (Liz Freburger will help here).

OWNERS: Jim Totton and Leslie Klein

DELIVERABLE: Proposal

DUE DATE: July 22, 1988

ACTION: Develop a proposal back to NAC describing
relationship of DDL to RPC with respect to stub
compilers.

OWNER: Jim Totton

DELIVERABLE: Proposal

DUE DATE: July 22, 1988

ISSUE: Should VAX ULTRIX DECwindows components be
retargeted to PMAX? (Needs to "penetrate the fog"
around PMAX OS, incl. big-endian versus little-endian.)
OWNER: Bill Keating

DELIVERABLE: Written status statement

ACTION: Needs to get the top-level strategic decisions
on VAX ULTRIX futures -- esp. as to which members of
the VAX hardware family will be supported vector
support, MP support.

_OWNER: Ken Hobday

DELIVERABLE: Position paper

DUE DATE: July 22, 1988

Page 5

1ISSUE: Do we want to drive our model of condition
handling into OSF?

OWNER: Chip Nylander

DELIVERABLE: Position paper

DUE DATE: July 15, 1988

ACTION: Document why we need GEM compilers for that
third party RISC vendor's machine. Also needs to reword
the "straw horse" proposal from his presentation to

match Dave Cutler’s Dual Environments model.

OWNERS: Al Simons, Ken Hobday, Jim Totton, Chip
Nylander

DELIVERABLE: Position paper
DUE DATE: August 8, 1988

ISSUE: ARUS - can we make it meet Keating'’s
requirements/expectations?

OWNER: Chip Nylander

DUE DATE: ASAP

ACTION: Get that third party RISC vendor’'s SRM and any
other available materials (XOPEN standard, ...) that
will help us in.doing our new architectural work and
compiler back end retargetting.

OWNER: Leslie Klein

DUE DATE: August 10, 1988

DELIVERABLE: Position paper

ISSUE: Who is the group that is going to support the
MIPS/UNIX language products?

OWNER: Leslie Klein (temporarily!)

DELIVERABLE: Proposal

DUE DATE: August 8, 1988

ACTION: Define portability tactics (operational plans)
OWNER: SDT

DELIVERABLE: New Phase 0/1 plans for pual Environment
approach

ACTION: Follow Dave Cutler’s "Get project back on
track" recommendations--

GET agreement on OSF implementation and product
strategy and its relationship to the jelly bean
UN*X.

Assess current status and changes required by MIPS
architecture and decide upon strategy.

Define hardware platforms, OSF product, and layered
product deliverables.

Revise plans and set new schedules

Page 6

Page 7

AGENDA - JUNE 30, 1988

8:30-8:50 -~ Bill Keating
Overview, goal-settipg

8:50-9:10

Chip Nylander

CALLING STANDARD: How does this map to MIPS? Is
this what we want on MIPS/MICA and MIPS/UNIX?

9:10-9:25 - Al Simons

RPC DIRECTIONS: How does this map to MIPS? to OSF?
what is current status of VAX/VMS RPC? Effects
relative to portability?

9:25-9:35 - Rich Grove

RISC-y VAX: What is it? What might it mean to us?
9:35-10:00 - Jim Totton

RTL DIRECTIONS: (esp. math library and ARUS) What
do we do around floating point support? ARUS -
completely transportable target - do we want to from
day 0 constrain LP’s to use ARUS interfaces? What
would that mean and what would it accomplish?
Effects of MIPS on ARUS directions?

10:00-10:15- BREAK
10:15-11:00- Scott Davis

AIA DIRECTIONS: the portability dimension. How
does AIA help our software be more easily
retargetted. What specific requirements does this
put on AIA?

11:00-11:30- Liz Freburger/Dick Wilson

REWRITING OUR SOFTWARE IN C: Approaches they think
are viable -- results of their contractor research
to date. Benefits? Cost?

11:30-12:00- Rich Grove

COMPILER DIRECTIONS: Are our strategies/tactics
still the right ones? How do they map over to MIPS?
Should we do compilers for MIPS? Should VAX GEM
have highest priority?

12:00-1:00 - LUNCH

Page 8

1:00-1:30 - Liz Freburger

VAX ULTRIX: What is going to happen here and to
what level should we participate?

1:30-3:00 - Chip Nylander

MIPS: how much do we put there when and how do we
provide business justification for doing so?

PMAX/ULTRIX - do we want to step up to getting base
DECwindows tookit/products here? When? Do we buy
into the "Armando Stettner" system (PMAX/ULTRIX...)
or concentrate on the "Dave Cutler" system
(MIPSco/VMS+0SF)? Do we spearhead a "Common
Software Architecture" for MIPSco or do we just eat
the impact of the lack of such an architecture at
the language and run-time level? Or do we confine
ourselves to one system?

3:00-3:15 - BREAK

3:15-4:30 - Leslie Klein
PORTABILITY ISSUES: What is portability? How do we
get a good multitarget development environment, and
what is it?
Based on what we’ve discussed today, what should our
goals for portable software be? Which targets? Do
we do rewrites in C and to what extent? Do we
redirect effort to getting AIA/ARUS/etc. base
components done for more than one target now rather
than later?

4:30-5:00 - Bill Keating
WRAPUP AND ACTION ITEMS

5:00 - ADJOURN

MEETING
SDT Technical Direction

Get Act Together After Change.

Salvage The PRISM Software &
Architecture Plan To Degree Possible,

Move To An Aggressive Plan.

Drive Plan Within DEC.

Bill K-t]

TODAY

Review Major Technical/Architectural Components.

Move To More General Areas.
Goals

« Recapture Our Vision And Reshape It To
New Environment.

« Identify Fundamental Agreements. -
Capture These Formally.

« Identify Hardspots / Issues.
Plan To Solve These During July.

In General, Have Our Act Together By Mid-August.

Get Any Corporate IssUes |dentified.

g\ K, -2665

RULES:

No Time on Wonying The Past -
Only If It Helps Understand Our Future Direction.

Avoid Rat Holes.

Seek General Theme.
Help Pleces And Decisions To Fit.

Bill g -2F5

My Themes Are:
Leadership
Architecture

Main Areas: CASE, Core Applications
Implementations - (On DEC Hardware first)
(Key Targets, Priorities)

Our Products Must Concentrate On:
Capability - (To Qualify Overall Leadership Candidate)

Integration - (To Insure System Offering Is Indeed
| Leadership

Portability - (Position To Move Into SW Area)
| would like our products to be isolated (to reasonable degree)

from HW and basic OS senvces.

Counting on MIPS here.

Rl K- 4fS

What This Means To Me Going Into This Meeting:

e Move all products to a generally available HW
independent language.

e Achieve Generic RTL (and File Access) layer which can
work on the interesting OS's.

e Isolate OS dependent capabilities.
(l.e., Muitl-Thread Architecture).

e Follow through on our FE / BE Language Strategy.

e 77 Understand Distribution of Stuff To
" "Less - Than - WorkStations" 77

e 77 Enlist Partners For Non-DEC HW Platforms??

Bil K-54°>

What is Software Architecture?

Interfaces and conventions agreed upon and utilized
across multiple software products to produce a system
with qualities required for market leadership and success.

Some soffware architecture can be implemented on
multiple hardware platforms (rehosted) in order to make
software products more portable. For example,

e Utility run-time interfaces

e Record management services

e Remote procedure call services

e Common Multithread Architecture
e X-windows

e DDIF

Some software architecture is not rehostable across
hardware platforms. This is generally language imple-
mentation software architecture, including

e Object language
e Cadlling standard

. Language run-time interfaces

Note that most of this software architecture is NOT DI-
RECTLY VISIBLE to applications. Applications see the
benefits.

Digital Confidential and Proprietary—Intemal Use Only 6/29/88 CGN 1

Benefits of Good Software Architecture

e Consistency of software products

Integration—multilanguage environment, common
run-time environment, tool integration among tools
and with languages, application integration, etc.

Ease of development
Reliability

Evolvability

Longevity

Performance
Completeness of solutions

Digital Confidential and Proprietary—Internal Use Only 6/29/88 CGN 2

Software Architecture at Digital
PDP-11

Layered product software architecture tended to be ad-
hoc and/or accidental. Mostly provided by operating
systems, and by emulation of PDP-11 operating systems
on other PDP-11 operating systems.

Digital Confidential and Proprietary—Intemal Use Only 6/29/88 CGN 3

Software Architecture at Digital
VAX

VAX software product architecture was deliberate and
thought out.

However, did not have the benefit of experience, so
some mistakes were made (VAX Cadlling Standard de-
scriptor design) and some things took years to get
right and stabilize (command definition and parsing
interfaces).

This is an excellent software architecture on VAX/VMS,
but most of the older architecture is VAX/VMS specific—
we would probably not want to use it as the basis for
future system:s.

Digital Confidential and Proprietary—internal Use Only 6/29/88 CGN 4

Software Architecture at Digital
VAX

In 1988, VAX product software architecture includes:
— Cdlling Standard |

— Condition Handling

— Object Language

— RMS-32 |

— VM librarian, including interactive HELP

— Command definition and parsing (CLD and CLI$)
— Many VMS system services

— Message files, message handling, status codes
— Common Run Time Library

— DECwindows

— Compound Document Architecture

— Common Data Dictionary

— Application Integration Architecture (soon)

— Common Multithread Architecture (soon)

— Remote Procedure Caills (soon)

Digital Confidential and Proprietary—Internal Use Only 6/29/88 CGN 5

Software Architecture at Digital
PRISM

PRISM software product architecture was deliberate and
thought out, for MULTIPLE OPERATING ENVIRONMENTS.

For the most part, ONLY BUILD LAYERED PRODUCTS ONCE.

Had the benefit of VAX experience, so mistakes were
corrected.

Digital Confidential and Proprietary—Internal Use Only 6/29/88 CGN 6

Software Architecture at Digital
PRISM

PRISM Common Software Architecture included:

— Cadlling Standard

— Condition Handling

— Object Ldnguage

— Record Management System

— librarian interfaces, incI\uding HELP

— Interactive HELP librarian

— Command definition and parsing

— Message files, message handling, status codes
— Application Runtime Services

— DECwindows |

— Common Multithread Architecture

= Compound Document Architecture

— Application Integration Architecture (incrementally)
= Remote Procedure Calls (incrementally)

— Common Data Dictionary (later)

Digital Confidential and Proprietary—Internal Use Only 6/29/88 CGN 7

Software Architecture at Digital
MIPS ’

To recap,

e PDP-11: accidental and ad-hoc layered software
architecture

e VAX: deliberate, thought-out software architecture for
one operating environment

e PRISM: deliberate, thought-out software architecture
for multiple operating environments, reflecting ex-
perience with VAX, providing benefits that include
consistency of software products, integration, ease
of development (only develop once), reliability,
evolvability, longevity, performance, completeness
of solutions.

MIPS is here. Now what?

Digital Confidential and Proprietary—Intemal Use Only 6/29/88 CGN 8

Software Architecture at Digital
MIPS

OVERSIMPLIFYING, we will have to choose between
investing in design and deployment of layered software
architecture that we think is required to provide benefits
that we think are important; or else take what's there
with probable loss of the benefits of layered software
architecture as we understand it.

Also must distinguish between rehostable software ar-
chitecture (AlA, ARUS, CMA, etc.) and implementation
software architecture (calling standard, object language,
condition handling, etc). |

PROPOSAL:

e Commit to defining and deploying rehostable soft-
ware architecture as basis for portable SDT products.

e Evaluate need for new implementation software
architecture on a platform-by-platform basis.

Digital Confidential and Proprietary—Internal Use Only 6/29/88 CGN 9

RISCy VAX

R. Grove
30 June 1988

RISCy VAX Program

An STF task force to find ways to keep VAX and VMS
competitive for an extended lifetime

Modernized VMS software

Modernized compilers

Identify preferred RISCy subset of VAX
Possiblev incompatible extensions

Task force reports to be completed in a couple of
months

Would affect VAX processors AFTER Aquarius and Rigel

RISCy VAX RBG 6/30/88 1

RISCy VAX Architecture

First, identify a RISC-like subset of VAX

MOVL for Load/Store, 3-operand register-to-register
CPUs execute the RISCy subset fast

Compilers target the fast RISCy subset

Old/new programs OK on old/new machines

Second, consider incompatible extensions to gain more
performance

e More registers (RISC needs more than VAX)

Virtual address space extensions

No longer backward compatible with classical VAX

RISCy VAX RBG 6/30/88 2

RISCy VAX Compilers

Compiler modernization

Common code generator (GEM)
Reduce procedure overhead
Tailored code generation and scheduling

Possible compiler strategies

e Low level of effort: Some mods to a few compilers
FORTRAN, BLISS, VCG

e High level of effort: Use GEM
FORTRAN, C, Ada, Pascal, ...

RISCy VAX RBG 6/30/88 3

Comments on RISCy VAX

o SDT will need to participate in task force
e A RISCy VAX is neither RISC nor VAX

e RISCy VAX should NOT be the primary focus for
our leading edge compiler technology. Real RISC
machines will be the performance leaders, and
that’s where we need to compete and win.

RISCy VAX | . RBG 6/30/88 4

A Model For Portability

[Applications and SDT Products]

Software Implementation
Architecture

AlA

Jom T, — 4,63

A Model For P'ortability

[Applications and SDT Products]

Portable
(Standardizable)

Proprietary

ath
Zra sldded Velue
Common Lang. Env. DEC Run-Time SOT M
’fiéééf"‘}f}?‘%; ") Toolkits Proprietary Veclaor /ety
T er & om| | Toolkits PN
(RTL & DW) Histaricel
Campelibilily

Influence Standards

* Trade off against portability requirements

Tim T -3

Recommendations

Define DEC Run-Time Toolkit Arch_ifecture—Portable

Define SDT Run-Time Toolkit Architecture—Platform
Dependent

Implement in portable C except for critical compo-
nents tuned to platform requirements.

Participate and drive appropriate components into
key industry standards (OSF, POSIX, X/OPEN, PCTE).
Ongoing effort based on prioritized components.

JimT. - 3% 3

‘AlA and Portability
Where were we going?
—ARUS for common architected runtimo on MICA and

FLINT, move to VMS and VAX/UL‘I’RIX

-lnvestigatmg common archntected service/components
for "AIA platforms" |

—Data dlctlonary |
~Naming |

-DB écooss -
« Determumng archltected services that might be avail-
able o
-Graphics

-DSMS (?)

Sesf D-)

AIA and Portability

Where are we?

_ARUS for MICA and FLINT blown away. [Well, what
about MICA?]

~Corporate commitment to OSF seems to imply
commitment to POSIX. [And what else? And when?
“And Who?]

_Work on common services/components needs a new
plan.

§<?f7{ D- Aa

AIA and Portability

Where do we go from here?: APA

-Sort out OSF and what it means to portability
~In order to avoid perturbations in the future, go
ahead full tilt with a common runtime environment for
all applications: POSIX plus ARUS extensions.

- -Be prepared to make ARUS run anywhere.

-Push ARUS into OSF, if we can; i.e., if we’re serious
about OSF.

Seetfd -~ 3

BLISS to C Conversion Project

Charter/Scope
Strategy
Status

Issues

Dk W - 10§ 5

BLISS to C Conversion Project

Charter/Scope

Purpose:

Position our current toolset/utilities into being
portable to other architectures by replac-

ing proprietary implementation language
dependency (BLISS) with a broader based
implementation language (C).

Scope: |

The Following tools and utilities have been
suggested for conversion consideration:

. VAXset'

e SORT
e VAX Notes
e Project Manager
e CDD+
e Rdb
Non-goal:

Compiler Technology

Dk w -Jef 5

BLISS to C Conversion Project
Strategy

To quickly convert our tools with minimal impact
on engineering schedule

Investigate vendors providing conversion
tools/services

Issue RFP to identified vendor candidates soliciting
response for pilot conversion project (DTM)

Evaluate responses
Top two compete in DTM conversion
Evaluate results

Winner continues with other software (if quality
from both is found comparable, possibly sub-divide
the work between both)

RFP spells out task, schedule and acceptance
criteria. Also,defines input (BLISS language manual
attachment) and output (Digital C Coding Standard
attachment).

Dok, - 3065

BLISS to C Conversion Project

Four candidates identified

—~ LEXEME

— RAPIDTECH

— COMPASS

— ISC

RFP nearing completion

— brief, 3 pages

— BLISS language spec

— C coding standard

— sample of code

— all covered by non-disclosure agreement
Next Steps

— Send to candidates by 07/8/88

— their response due by 08/15/88

— pilot project begin by 09/15/88

— pilot project complete by 11/15/88
— final vendor selection by 12/01/88

D\'C.k ‘d-' l+ &5‘

BLISS to C Conversion Project

Issues

Measuring portability of converted code
Potential performance loss of converted code
Code being converted is evolving dynamically

What to reveal to vendors regarding retargets (e.g.
VAX/ULTRIX)

chk \J‘ - 50‘(5—

SDT Compiler Technology
Strategy and Tactics

R. Grove
30 June 1988

World-Class Compiler Technology

"World-class” compiler technology is an essential
ingredient for DEC

e Classical global scalar optimization

* Advanced scalar optimization

Loop unrolling
Code scheduling

e Interprocedural optimization
Inlining
Linkage Tailoring
Global register allocation
Compilation database

e Vectorization

e Parallel decomposition

e Multi-language code generator

¢ Industry-leadership language features
e Integrated tools environment

SDT Compiler Technology RBG 6/30/88 1

PRISM Compilers vs. MIPS

Global optimization

PRISM V1 compilers will have state of the art scalar
optimization and loop unrolling

Target-specific code scheduling better than current
MIPS

Interprocedural optimization

PRISM V1 compilers will do inlining, linkage tallor-
ing, global reg|ster allocation. Equal to or better
than MIPS.

Compiler architecture designed to support interpro-
cedural database

Vectorization
PRISM V2 FORTRAN compiler

PRISM vectorizer based on VAX FORTRAN will
equal or exceed industry leaders CONVEX and IBM

MIPS doesn’t do it, doesn’t believe in vectors

SDT Compiler Technology RBG 6/30/88 2

PRISM Compilers vs. MIPS
(continued) |

Parallel decomposition
Automatic decomposition in PRISM V2 FORTRAN

Decomposition builds on global optimizer and
vector dependency analysis

MIPS doesn’t do it

Language features
VAX languages are industry-leadership

PRISM languages derived from VAX
Designed and tested 100% VAX-compatible

MIPS third-party front ends not 100% VAX-
compatible

Tools and environment

PRISM software architecture is the basis for future
leadership products |

SDT Compiler Technology RBG 6/30/88 3

What has Changed?

Changes as a result of MIPS decision
e MIPS ISP instead of PRISM, possibly others
e No vectors planned for MIPS in near term

e A much greater emphasis on parallel decomp and
threads

The following are still true

e DEC will offer a comprehensive operating system
(MICA/OSF) on a RISC processor (MIPS for now)

e DEC will define and implement a comprehensive
software architecture on RISC processors

e DEC needs a full line of compilers

SDT Compiler Technology RBG 6/30/88 4

GEM targets

The following architectures are possible targets for
some GEM-based compilers:

VAX/VMS

RISCy VAX

MIPS (or others) running MICA/OSF
MIPS running MIPS UNIX

Future 64-bit machine (the future is not all that far
away) |

SDT Compiler Technology RBG 6/30/88 5

GEM added value for VAX/VMS

Replacing any existing VAX compiler by a GEM-based
compiler is very difficult because of large customer
base, compatibility issues, and reliability issues.

A GEM-based compiler must add substantial value such
as vectors, decomp, interprocedural optimization, or
major new tools '

Opportunities for added value

e FORTRAN: Interprocedural

e Pascal: Vectors, decomp, interprocedural

e C: Vectors, better scalar code, C+ + support

e Ada: Currently stretching limits of VCG. Improved
optimization, robustness, retargetability, vectors

e BLISS: Modern optimization technology

SDT Compiler Technology RBG 6/30/88 6

GEM added vaIUe for others

RISCy VAX: An aggressive effort would use GEM based
compilers

Common code generator
Code scheduling and tailoring

MIPS UNIX systems - MIPS has a complete line of
compilers now. There is relatively little that we could
add:

More VAX compatibility (but DEC is commlttmg to
help them solve this problem)

VAX Ada - leadership Ada with optimization

SDT Compiler Technology RBG 6/30/88 7

SDT Compiler Strategy

Work with DECwest to execute the previous PRISM
program on MIPS hardware with a greater emphasis on
portability and retargetability.

Priorities for GEM work:

1. Multi-language retargetable compiler for FORTRAN,
Pascal, BLISS, then Ada.

State of the art global optimization
Interprocedural optimization
Parallel decomp

o B 0D

Tools and environment
Design for future 64-bit and vector machines

VAX version as AD project initially

SDT Compiler Technology RBG 6/30/88 8

VAX RPC status

e Current status and schedule:

In first Field Test (March, 1988)
FT update in Fall 88

Working on a design based on the current VAX
RPC spec.

Ship to SDC Q3 ’'89. (Current hope.)

e The V1 product:

A subset of the DEC RPC architecture.

No direct conflicts with the arch. Customers
should be able to grow into the corp. arch. with
little or no pain.

Not portable, highly VAX/VMS specific.

A s - 163

Effects of MIPS decision

e Effects on the corporate architecture

Architecture is targeted to multi-HW, multi-0S
from inception.

Architecture is optimized for VAX hardware
datatype formats.

We see NO IMPACT on the architecture.

e Effects on portability

Joint NAC/SDT proposal to provude common RPC
tools is being put forward.

Components would need to be smarter sooner,
but no unforseen or unsolvable problems due to
MIPS.

Al S, - ef3

N

Effects of OSF announcement

; Ap_%l,})v s(—B_PC'

NN V. V.Y M. W .-\Y/ - a) VAN -~Varoarat LT~V
VLI PO—C— Rt LURDHCIYV-EHaoTrSet

Eems UKe A CAMDIDAE "START /G |
In several areas it is incompatible with the architec-
ture that is emerging.

Wasn’t deemed adequate for our needs earlier, doubt

that it has improved.
Ho P
We ar=h - to be able to influence it.

The DEC RPC Architects need direction if a change is
desired. We are going ahead as before.

NAC DRIVING PROGRAM TO GCATHER PECQUIREMENV TS,
GrIN OSF MEMBERS Ryy 1, AD INFLUEAJCE,

OsF KiPC REDUIREMEVTS,

Al s -343

VAX/ULTRIX Strategy
UEG’s Position (Unofficial)

MIPS platform is primary focus

VAX platforms judiciously selected

Wants SDT to focus on MIPS

ULTRIX-32 will probably support VAX Vectors
Decomposition seems to be a very low priority

L{:Z F, ' "/0{‘%

VAX/ULTRIX Strategy

SDT Product Issues

UEG not committed to VCC as systems compiler for
VAX/ULTRIX

Funding for port of VAXset to VAX/ULTRIX uncertain
Marketing will push for VAXset on all DEC platforms

Marketing will push for VAX FORTRAN/ULTRIX and
VAX C/ULTRIX VAX vector support

Liz T\:,ZIXL

OSF Operating System
Development Strategy

Digital Equipment Corporation
Confidential and Proprietary

David N. Cutler
DECwest Engineering
- June 27, 1988

INTERNAL USE ONLY

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

OSF Vision/Goals

Produce a general purpose, OSF compliant, operating
system for workstations and servers that:

e addresses the STF OS of the future requirements (e.g.
portability, range, robustness, extensibility, etc.).

® provides all the components of the OSF Level 0
specification. | |

o exploits Digital’s existing software technology.
e is integrated into the Digital Computing Environment.
e makes it easy to share layered products with VMS.

® provides at least source level migration for VMS
applications.

INTERNAL USE ONLY June 27, 1988 dnc - 1

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

OSF Level 0 Components

e Operating System - XOPEN, POSIX.

e Languages - C, Fortran, Pascal, Ada, Basic, Cobol,
Lisp.

e User Interface - X Windows, X language bindings.
e Graphics libraries - GKS, PHIGS.

o Networking Services - Selected ARPA/BSD services,
TCP, IP, SMTP, TELNET, FTP, Selected OSI protocols.

e Database management - SQL.

INTERNAL USE ONLY June 27, 1988 dnc - 2

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Opportunities for OSF
Leadership in
Base Systems Technology

e Multithreading (CMA).

e Enhanced security (ACL based protection) and pro-
tected subsystems.

e Shareable code libraries, named data segments,
dynamic binding.

e Advanced file system capabilities.

e Integration of DDA and DDTA, two Phase Commit,
resource management, recovery.

e High performance, high availability /0 - DMA non-
buffered 1/0, striping, shadowing.

e System and network management.

INTERNAL USE ONLY June 27, 1988 dnc - 3

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Opportunities for OSF
Leadership in
Program Environment Technology

e Uniform interlanguage calling and condition handling
standard.

e Industrial strength, high quality, state-of-the-art VMS
compatible compilers. |

e Integrated program support environme'nt and CASE
tools. .

e Record management, math library, and 4application
runtime utility services (e.g. AIA capabilities).

e RPC capabilities for intra- and inter-system operation
with VMS, other OSF systems, and UN+*X.

e DECwindows, VMS migration, and layered product
compatibility. .

. Support of SQL and data management capabilities.

INTERNAL USE ONLY June 27, 1988 dnc - 4

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Single Environment Proposal

OSF
Environment

o Language Runtime
* DECwindows

* RMS
* ARUS
e Math

« Layered Product
o CMA

Non-Privileged
Privileged

OSF System Services
XOPEN / POSIX

» Multithreading -
* DMA O '

:

Extended
Environment

Extended Services I

« Protected Subsystsm :
= Security

* Protected Subsystems |
e Zpc, Resource Mgmnt. 1

* Drivers

* Memory Management

Common Executive
e Object Architecture

* Network

'

* SMP

Common Kernel

e Synchronization

» Scheduling

INTERNAL USE ONLY

June 27, 1988 dnc - 5

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Advantages of Single
Environment Proposal

e Absolute OSF compliance with extended features
incorporated directly as system services.

e No tradeoffs made in any dimension for VMS, Mica,
or compatibility with any other system.

e A single execution environment With the OSF case
sensitivity, character set, filename, and parsing rules.

° Database, enhanced security, protected subsys-
terms, availability, and other industrial grade features
provided by extended OSF environment.

e Common language runtime environment (e.g. math
library, RMS, ARUS, etc.), DECwindows, and AIA
support. |

e Multithreading available via the Common Multithread-
ing Architecture.

INTERNAL USE ONLY ' June 27, 1988 dnc - 5

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Disadvantages of Single
Environment Proposal

e The extended OSF environment is not currently
defined by any standard and will require extensive
additions to the XOPEN and POSIX standards - an
undertaking that should not be taken lightly.

e Incorporation of certain extended features may be .
difficult and require incompatible changes (e.g. ACL's
on all objects, protected subsystem support with
impersonation services, multithreading, etc.).

e VMS layered products and applications that do not
use AlA interfaces will be more difficult to port.

INTERNAL USE ONLY June 27, 1988 dnc - 6

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Dual Environment Proposal

OSF RPC Mica
Environment Environment
«RMS « Language Runtime ~ *RMS «CMA
* ARUS e« DECwindows * ARUS .« Language Runtime
* Math <4— Shared Memory e Math * DECwindows
Non-Privileged
Privileged

OSF System Services

Mica System Services
Common Executive

* Drivers * Object Architecture
* Memory Management * Network

!

Common Kernel

s SMP * Synchronization
* Scheduling

INTERNAL USE ONLY June 27, 1988 dnc - 7

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Advantages of Dual
Environment Proposal

e Absolute OSF compliance without impacting the
design and capabilities of Mica.

e No need to make tradeoffs in favor of either OSF or
VMS - both can be accommodated equally.

e Database, enhanced security, availability, and other
industrial grade features available to both environ-
ments.

e Provides largest number of VMS layered products
earliest via high degree of compatiblity with Mica
environment.

e Common language runtime environment (e.g. math
library, RMS, ARUS, etc.), DECwindows, and AIA
support.

e Mica protected subsystem functionality available to
OSF programs as well as Mica programs - prefered
method for adding functionality.

INTERNAL USE ONLY ' June 27, 1988 dnc - 7

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Disadvantages of Dual
- Environment Structure

e Programs must be executable from more than one en-
vironment which has implications on case sensitivity,
character set, filename and command parsing.

e OSF capabilities may be perceived as second class
when compared to those of Mica and therefore Digi-
tal’s commitment to OSF may be questioned.

e New OSF functionality is added via Mica protected
subsystems rather than pioneering and leading OSF
standards activities which would Incorporate these
capabilites directly.

INTERNAL USE ONLY | June 27, 1988 dnc - 8

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Open Questions

e What is the OSF operating system standard - XOPEN
and POSIX?

e What about VAX ULTRIX compatibility, Berkeley UN*X
compatibility, SVID compatibility?

e What should be done about UN#*X concepts that
compromise security (i.e. set UID and set GID)?

‘e What about Sun tools - Yellow Pages, RPC, etc.?

e What is the relationship of OSF to MIPS jelly bean
UN+*X? MIPS compilers to SDT compilers?

o Wil an OSF system that is not pure UN*X be saleable
in the UN*X market?

INTERNAL USE ONLY June 27, 1988 dnc - 9

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

How Do We Get
the Project
Back on Track

e Get agreement on OSF implementation and product
strategy and its relationship to MIPS UN=X.

e Assess current status and changes required by MIPS
architecture and decided upon strategy.

e Define hardware platforms, OSF product, and layered
product deliverables.

e Revise plans and set new schedules.

INTERNAL USE ONLY _ June 27, 1988 dnc - 10

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Assessing Current Status

e DECwest produces short analysis of significant
architectural differences between MIPS and PRISM.

e DECwest produces short architectural description of
OSF implementation and product strategy alterna-
tives.

e SDT/DECwest analyze runtime software changes.
e SDT/DECwest develop code generation white paper.
e SDT generates calling standard white paper.

e DECwest analyzes the impact of the MIPS privi-
leged architecture on the Mica memory management,
condition handling, and multiprocessing capabilities.

INTERNAL USE ONLY » June 27, 1988 dnc - 11

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Other Activities

e DECwest produces plan for MIPS development en-
vironment (development systems, communication
tools, development tool changes, development com-
pilers).

e SDT/DECwest define changes to:
+ Calling standard

+ RPC strategy

e DECwest evaluates impact on previous plans for
seamless client-server communication and integra-
tion.

e DECwest evaluates the Mica I/0 strategy to determine
what VAX devices, if any, can be supported by MIPS
architecture. |

e SDT/DECwest Product Management and development
rethink what, when, and how for compilers and
layered products (e. g. SQL)

INTERNAL USE ONLY June 27, 1988 dnc - 12

" What to do about MIPS?

Preparing this presentation in absence of answers to
many questions, had to take a very general approach.

Have made an few assumptions, asked some questions,
and explored some possible answers.

Drew up a straw horse proposal to stimulate discussion
and provide something to react to.

Digital Confidential and Proprietary—Intemnal Use Only 6/29/88 CGN 1

‘ What to do about MIPS?

Assumptions

Assume (at least) four significant (overlapping)
operating system audiences:

a. UNIX (tm) purists

b. OSF

c. VMS migration/capability
d

Industrial-strength operating environment: high
performance, highly available, fault tolerant,
multithreaded, shared servers, etc. (MICA)
Assume that Ultrix or MIPS UNIX will be A.
Refer to this system as "UNIX".
Assume that MIPS-based hardware will be used to
address at least one of B, C, and/or D.
Refer to B, C, and D collectively as "industrial-strength
OSF system".
Assume that Ultrix or MIPS UNIX will not be B, C, or D.

Then, we are faced with two operating environments
on the MIPS-based hardware.

Digital Confidential and Proprietary—Internal Use Only 6/29/88 CGN 2

What to do about MIPS?

Questions

1. Will we define a Rehostable Software Architecture for
portability, to which we target portable SDT products?

Propose YES. This is an important strategic require-
ment for positioning our products for future require-
ments, opportunities, and portability.

2. Will Rehostable Software Architecture be vanilla
UNIX?

Propose NO. Application Integration Architecture,
Digital added value, and benefits of more compre-
hensive software architecture (c.f. this morning’s
software architecture presentation) demand more
than vanilla UNIX.

Note that this will require investment in design and
multiple deployments.

Digital Confidential and Proprietary—internal Use Only 6/29/88 CGN 3

What to do about MIPS?

Questions

3. Do we build most layered products for industrial-
strength OSF system?

Propose YES. This will be a strategic systems, will re-
quire SDT layered products, represent an opportunity
for SDT, and be a good first target for rehostable
software architecture for portability.

Digital Confidential and Proprietary—Internal Use Only 6/29/88 CGN 4

What to do about MIPS?

Questions

4. Do we build versions of most layered products for
UNIX?

DON'T KNOW. Depends on answers to other questions
below, and on business requirements.

e Note that many third-party products are avail-
able for "vanilla UNIX", so should SDT invest in
that system in addition to the OSF system?

e PMAX people have argued sﬁongly that ab-
solutely no SDT products besides DECwindows
client software and toolkit are required.

e Will revisit this question after looking at some
other questions. |

5. Will we implement Rehostable Software Architecture
on UNIX? |

DON’T KNOW. Depends on where we want to invest.

Digital Confidential and Proprietary—Intemal Use Only 6/29/88 CGN 5

What to do about MIPS?

Questions

6. Will we take the non-portable software implemen-
tation architecture (calling standard, condition
handling, object language, etc.) of MIPS as is, or
will we apply our experience and goails to provide a
better MIPS-specific implementation architecture for
industrial-strength OSF system?

NOT ENOUGH INFORMATION AVAILABLE. Need to
evaluate the MIPS implementation architecture.

7. Should we build compilers for MIPS UNIXsystem?

NO. Adequate compilers already exist.

8. Should we build compilers for MIPS OSF system?

DON'T KNOW. Must answer questions about non-
portable software implementation architecture, and
must determine requirements of OSF system which
existing MIPS compilers don’t satisfy.

Digital Confidential and Proprietary—Internal Use Only 6/29/88 CGN 6

What to do about MIPS?

Questions

9. Revisited, when do we build a layered product for
UNIX? |

Propose when business -requires product (third party
UNIX product are not adequate); AND in addition

— dll software architecture (portability architecture
and non-portable implementation architecture)
required by product is provided compatibly with
industrial-strength OSF system: OR

— if we are willing to build the software product
twice; OR

— if we can just recompile product from VAX Ultrix
for MIPS UNIX.

Otherwise, don’t build product for MIPS UNIX.

Digital Confidential and Proprietary—Internal Use Only 6/29/88 CGN 7

What to do about MIPS?

Trade-offs

Summarizing, the trade-offs include (but are probably
not limited to)

e Costs of new software architecture design and de-
ployment versus the benefits of such investment.

e Costs and liabilities of common software drchitecture
versus cost of developing products twice.

e Costs of maintaining software for multiple software
environments versus opportunities for selling products
in both environments. :

ALSO, we should treat the MIPS system at the FIRST of
a possible SERIES of such targets, NOT as an isolated
system.

We should develop a position and strategy for MIPS
which applies to other such targets and which will help
position us for future targets. |

Digital Confidential and Proprietary—Internal Use Only 6/29/88 CGN 8

“What to do about MIPS?

Straw Horse Proposal

Keep current premise that SDT has at most two
strategic targets.

Those targets are currently MIPS OSF and VAX/VMS

SDT long-term strategy is to converge to ONE "virtual
target” by deploying rehostable software architecture
on VAX/VMS, and other strategic targets.

SDT deploys reshostable software architecture on
MIPS OSF. |

SDT provides products on MIPS OSF.

Products required are similar to those required for
PRISM system:s.

SDT does not deploy portability architecture on MIPS
UNIX. Let someone else do that if business requires it.

SDT provides products on MIPS UNIX if business
requires them AND if they can be targeted to a
common software architecture. |

Digital Confidential and Proprletary—lnternol Use Only 6/29/88 CGN 9

What to do about MIPS?

Issues and Problems

e What to do about non-portable architecture on OSF
system needs to be researched.

e What to do about compilers on OSF system needs to
be researched.

e Have to deal with architectural incompadtibilities with
VAX. Floating point formats, etc.

e What do we do with the BLISS-based products?

e How different are UNIX and OSF, really? Will re-
hostable software architecture go from OSF to UNIX
"for free"?

Digital Confidential and Proprietary—Internal Use Only 6/29/88 CGN 10

DEFINITIONS

Portability:

Multiple hosts
recom'plle and run

requires that everything you plug into is on host (e.g. VAX
instruction set, library routines, file system, dictionary ...)

requires great care in managing what you depend upon

requires avoiding dependency on any single operating

 environment, even indirectly (e.g. "memory is cheap”)

Retargetability

Mutiple targets

Requires that everything you plug into is there (e.g. lan-
guage RTL for generated code)

Requires that certain support is present on the host(s) to

enable building software for the target and communicating
with the target

May imply a certain structure/design for a software product
(e.g. main/remote debugger split)

Led g 16§5

PRODUCT PORTABILITY LEVELS

Absolute—recompile it and it runs on the new host
/target

Partial—well-defined modules need to be rewritten
in well-defined ways. Performance tuning criteria
well-understood. Can port the product in wall-clock
time of 6-9 months. '

Painful—product requires a rewrite that could take
close to the same amount of effort it took to write it
originally.

it 2]

DEVELOPMENT ENVIRONMENT

SUPPORTING REHOSTING/RETARGETTING

OUR PRODUCTS

Portablity checking - compiler(s) and tools must
support writing portable code (syntactic, semantic
checks) |

Cross-development tools to automate/support
development processes: Including good DTM sup-
port, performance analysis support, configuration
management support ...

Defined portable interfaces

Well-documented development methodologies,
including a well-defined process for doing ports
(probably includes "recompile and run” versions of
base components to allow quick and dirty ports to
get the testing environment in place)

Technology that supports retargetting our imple-
mentation language(s) quickly and rehosting the
runtimes it/they depend on quickly

s £ 34 5

MAJOR STUMBLING BLOCKS

Implementation language
Run time support of all flavors

Operating environment (OS, etc.) assumptions
reflected in product structure/design/packaging

Dol botiof:

QUESTIONS

How do we know when we are sufficiently
"portable”?

What must always be ported (rehosted)? What
needs to be retargetted?

What are the goals?

What are the "bounds” of portability? Can we
come up with a reference model for what sorts of
hardware and software environments we want to
be positioned for, versus those that will never be of
interest?

