DRAFT PROJECT PLAN Date: 27 August 1987
From: Don MacLaren
Dept: DECwest Eng.
Phone: (206) 865-8730
MS: Zs0O
ENET: DECWET::DON

Subj: DECwest Compiler Project, Description and Plan

NOTE: In this document, PRISM refers to the mainline 64-bit
PRISM architecture, not the 32-bit uPRISM.

As part of PRISM project, the DECwest compiler group is producing
a highly optimizing compiler for both C and Pillar, which is a
new systems programming language whose development is also part
of the project. The compiler group is also responsible for some
related PRISM utilities, a highly optimizing VAX compiler for
Pillar, and some compilers wused in the initial development of
PRISM hardware and software.

The purpose of this document is to provide people outside the
compiler group with the information they need to understand the
project and to produce related documents such as business plans
and formal project plans. The document covers the PRISM language
strategy, DECwest languages and related software, properties of
the new compiler, and the schedule through V1 of the Pillar
compiler. The document will be updated as required during the
project. ‘

If you want to be on the distribution list for updates or you
want a copy of this document, please send mail to DECwet::Pillar.
Questions about the content of the project plan should be
directed to Darryl Havens or Don MacLaren.

There is no formal product management for the compiler project,
but it is «closely related to the compute server project. For
that, contact Cathie Richardson in regards to business product
management and Terry Morris in regards to technical product
management.

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

wr

o e o o o

- W= = who

WOONNNNOAOAOTOOUNIs B WNE

CONTENTS

MILESTONES AND SCHEDULE
DEVELOPMENT TEAM
PRISM LANGUAGE STRATEGY .
PILLAR c e e e .
Pillar Development e e e e
Pillar Documentation
Pillar Definition Modules .
PRISM C o o . s .«
MISCELLANEOUS LANGUAGE SOFTWARE
Message File Compiler . . .
SPASM. the Simplified PRISM Ass
Pillar Runtime Support
DST Analysis e e .
THE DECWEST PRISM COMPILER o o e
Compiler Organization And Comma
Code Optimization
Performance Analysis
VAX SOFTWARE« .

VAX Software Dependenc1es .
BOOTSTRAP SOFTWARE

embl
nd I

® & & o ¢ e o o o o

e o o o s e o o (D e o o s s s s s
'

o+
o o o o o (D e o o

o]

o o o o o Fhe o o o o+ o

e« o o o s e o

e o o o o (Yo o o o s s & o o o
o

e o & e o o o o o o s s o o

e e o & o s o+ e o o

WOWONNdOEsEWWN

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

1 MILESTONES AND SCHEDULE

The milestones listed in this section are the points at which
significant software items are available outside the compiler
group in stable form. To be available in this sense, software
must have passed the applicable test system and, by noon Pacific
time of the specified date, must be in the DECwest cluster
directory used for software distribution. Documentation must
have been dispatched so that it will arrive at the ZK mailroom in
time for delivery on the specified day.

As a result of the redirection of the PRISM project, the compiler
group’s original implementation plan has been revised to get the
production PRISM Pillar compiler as quickly as possible. The
schedule given here runs only through delivery of that compiler.
The schedules for PRISM C, VAX Pillar, the wutilities, and the
advanced code-optimization features will all be determined later.

The schedule allows for reasonable support of the SIL compilers.
It requires timely availability of the PRISM simulator, linker,
and librarian, all running on VAX/VMS. Apart from this there are
no significant dependencies on other groups. There are no
resources to spare within the compiler group.

MILESTONES:

1. SIL v1.0, Feb. 18, 1987. The SIL compilers generate code
for VAX or PRISM. PRISM code 1is packaged in VAX object
modules. The reference manual distributed with this compiler
is out of date. The SIL User Manual covers mainly the SIL
command and the structure of programs and modules. The
compiler comes with a set of examples.

2. SIL v2.0. Nov. 87. This version of SIL adds:

o Structured exception handling including the necessary VAX
runtime support.

o An option to probe and capture argquments for entries to
the MICA executive.

o Some minor language improvements.

0o A SIL Reference Manual and an expanded SIL User Manual.

3. Pillar Reference Manual, Rev. 1.0. Dec. 1987. This 1is a
clean and complete Pillar reference manual. The second
Pillar language review begins at this point.

4. SPASM. December 1987. SPASM is the PRISM assembler. This
version runs on VAX/VMS but generates true PRISM object
modules. It will have a simple macro facility if this is
required by the schedule for development of PRISM hardware
diagnostics. In the 1long run, the Pillar compile time
facility (CTF) will serve as a SPASM'’s macro facility.

5. Close Pillar language review. March 1988, about 3 months
after distribution of the manual. After this date, no new
comments will be accepted. However, there will be a chance

2

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY
to comment on language changes proposed as a result of the
review.

6. Pillar language freeze. April 1988, about one month after
the review <closes. All language extensions, changes, and
clarifications are recorded in the notes file.

7. Pillar vl. June 6, 1988. This is the first production

Pillar compiler. It runs on VAX/VMS generating PRISM object
modules.

2 DEVELOPMENT TEAM

Compiler group:

Don MacLaren -- DECwet: :DON

Tony Ercolano - DECwet : : ERCOLANO
John Hamby - DECwet : :HAMBY
Darryl Havens - DECwet : :HAVENS
Lois Hayes - DECwet: :HAYES
Gary Kimura - DECwet: : KIMURA
Jay Palmer - DECwet: : PALMER
Lu Anne Van de Pas - DECwet: : VANDEPAS

Technical Writers:

Helen Custer - DECwet: :CUSTER
Liz Hunt - DECwet : :HUNT
Bill Muse - DECwet : :MUSE

3 PRISM LANGUAGE STRATEGY

This section describes the original PRISM language and compiler
strategy worked out between DECwest and SDT. The recent high
level events have disrupted the PRISM project, but original
language and compiler strategy is still the right strategy. It
is compatible with marketing PRISM as a compute server, as a work
station, as a complete system with one or more operating systems,
and as an architecture with either or both word sizes.

PRISM programming is done in high level languages. Four language
products are planned for FRS: C, FORTRAN, Pascal, and Pillar.

Additional languages will be provided in a second wave. all
PRISM languages share a common language environment that makes it
easy for a user to mix languages in a single application. The

key components of this common environment are

1. The PRISM calling standard.

2. The PRISM object language.

3. A standard (as yet, unnamed) for general language-independent

compiler features such as the form of command options and the
arrangement of listings.

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

4. The PRISM debugger, which is based on the new debug symbol
table (DST) architecture.

5. The PRISM performance and coverage analysis utility (PCA).
6. The language sensitive editor, LSE.
7. The source code analyzer, SCA.

Under the compute server approach, the wuser interfaces to the
debugger and PCA are on VAX (integrated with the VAX versions),
while LSE and SCA are the VAX versions of these utilities.

Pillar and C are the systems programming languages for PRISM.
DEC 1is using Pillar because of its significant advantages in the
areas of type checking, program structure, and integration with
the DEC software environment. Most customers will use C for
systems, because it is a standard language, it is practical for
systems programming, and it has good portability when programmers
are careful in their use of the language. Customers will
perceive the Pillar and C compilers to be of the same quality --
the highest possible. They will not feel forced to use Pillar.

In addition to the language products, BLISS and a new assembler,
SPASM, are also available for wuse within DEC. Customers can
obtain these only by special arrangement. BLISS is wused for
porting existing software from VMS to PRISM. SPASM is used only
in special contexts where normal programming language concepts do
not apply.

Pillar, C, and SPASM are implemented by DECwest. FORTRAN,
PASCAL, and Bliss are implemented by SDT.

4 PILLAR

Pillar is a high-level systems programming language for wuse on
32- and 64- bit Digital Equipment systems. The Pillar design
emphasizes general features for high-level programming: modules,
data type declarations, control structures, and the wuse of
procedures. Examples of Pillar features are:

o A flexible module structure in which information that is not
logically part of a definition module can be hidden in a
separate implementation module even though it is needed at
compile time.

o A treatment of data types, with roots in Pascal, that
provides flexible types (parametric types) to describe
dynamically sized data and records with variants.

o The sort of type escapes necessary for systems programming,
but with some safeguards.

o 1Inline procedures that can be defined in modules.

o Four distinct modes for parameters: input, output,
input-output, and bind, this last mode being for the unusual
case of an argument that must be addressed in its original

4

DIGITAL EQUIPMENT CORPORATION — CONFIDENTIAL AND PROPRIETARY

storage.

o Parameters with matching extents: the extents of the
parameter’s data type are determined by the extents of the
actual argument.

0 Structured exception handling.

When compared with 1low-level systems programming languages,
Pillar has the following advantages:

o Software is more portable, because hardware dependencies are
isolated in declarations and small procedures. Accidental
hardware dependencies are avoided.

o Code is easier to read and maintain. This was emphasized in
the design of Pillar’s syntax.

o Program development is faster because the compiler detects
more errors, and the language provides explicit help in
difficult areas, such as exception handling.

o Pillar yields the fastest object code for the PRISM
architecture.

Although system independent in most respects, Pillar has been
designed to take full advantage of DEC’s software technology.
For example, exception handling and messages are provided in a
way that extends the existing VAX/VMS capabilities. Also,
specific hardware features are supported via system dependent
modules built into the compiler. The PRISM Pillar compiler has
PRISM specific modules for scalar operations (e.q.; shift
instructions), vector operations, and privileged operations.

4.1 Pillar Development

Pillar has been developed as a fundamental part of the PRISM
project to implement the PRISM executive and PRISM software
components that operate above the executive (compilers,linkers,
runtime libraries and such). The first draft Pillar reference
manual (Rev. 0.0) was distributed for review in November, 1985.
The proposed 1language was closely tied to VAXELN Pascal. As a
result of the review the language was redesigned, and it 1is no
longer coupled to Pascal. In February 1987, the redesigned
Pillar was made available via the SIL compilers that support
most, but not all, of the language.

The documentation distributed with SIL V1.0 was incomplete in
regards to SIL, and the SIL language is not exactly a subset of
Pillar, which has continued to evolve. The next true Pillar
manual will be Rev 1.0. It is scheduled for December, 1987. As
soon as the manual is available, the next 1language review will
start.

The style, structure, and principal features of Pillar are set.

However there is still plenty of opportunity for improvement via
the review. To get as good a language as possible within the

5

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

project constraints, the review will be done online over a three
month period. All comments and proposed language changes will be
published in a notes file as they are received. This way all
interested parties will get up to date information on language
issues, and people’s comments can be timely. A review team will
consider all significant issues, and all language changes will be
listed in the notes file.

The language resulting from the review will be described in Rev 2
of the Pillar manual, and implemented in the Pillar V1 compiler,
which will be the first production Pillar compiler. This
compiler will v

o provide an absolutely sound base for system software
development and further compiler development.

o produce clean, moderately optimized code.

o implement a smooth language that is functionally a superset
of SIL.

o run on VAX/VMS, produce PRISM object modules, and wuse the
PRISM libarian and 1linker (which will also temporarily
operate on VAX/VMS).

It is neither possible nor desirable to make Pillar exactly
compatible with SIL. To ease the transition from SIL to Pillar.
the compiler will have two features:

1. WwWhenever possible, the compiler will recognize an obsolete
SIL construction, issue a very specific error message, and
emit an LSE diagnostic record with correction information.
This should make conversion from SIL to Pillar rather easy.

2. There will be a /SIL command option for compatibility. Under
this option, the compiler will, whenever possible, recognize
an obsolete SIL construction and do the right thing without
any error message.

The cases excluded by the phrase "whenever possible" are expected
to arise only from code depending on accidental features of SIL
and the limitations of SIL’s type checking and range checking.
The compatibility option will not be removed until after both
PRISM and VAX versions of the Pillar compiler are available.

The language supported by the V1 Pillar compiler will be almost
the complete language required for FRS of the PRISM system, and
the missing pieces will be provided rapidly. (Rev 1 of the
manual will indicate which pieces are expected to be deferred
until after V1.) Most of the compiler development resources after
Vl will be devoted to code optimization, the VAX back end for
Pillar, and the PRISM C compiler. However, after people have
some experience with Pillar V1, there will be another language
review to consider possible language extensions that might be
made before or after PRISM FRS.

VAX Pillar requires some additional system-specific features,
e.g.; for VAX descriptors. Shortly after V1, there will be a
review of VAX features. This review should also cover any issues
about the integration of Pillar with the VMS environment, e.q.;

6

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY .

in regards to message files. The schedule for the Pillar VAX
compiler depends on project priorities. If it has high enough
priority, it can be ready for use in December 1988.

4.2 Pillar Documentation
There are two manuals for PRISM Pillar.

o The Pillar Reference Manual is a concise language reference
manual. For the most part it is system independent. 1In the
few instances where the manual does deal with system
dependent rules, it will cover both VAX and PRISM. Until the
Pillar language is frozen, this manual serves as the language
standard. It’s being written by Don MacLaren and edited by
Bill Muse. Once Rev 2 is published, Bill will convert it to
a normal reference manual.

0 The Pillar User Manual. This manual is for experienced
programmers, but it does not require knowledge of Pillar. It
explains how to use Pillar on PRISM, emphasizing the solution
of problems that occur in systems programming. There will
also be a VAX version of this manual. Liz Hunt is the
technical writer for this manual.

Rev 1 and Rev 2 of the Pillar manuals will be distributed (hard
copy and labeled company confidential) to everyone on the Pillar
and SIL interest lists. The open review procedures will be
announced along with Rev 1.

Requests for documentation and general questions about Pillar
should be sent to DECWET::PILLAR.

4.3 Pillar Definition Modules

This section discusses Pillar definition modules, which can be
used by other compilers and utilities to get information about
routines programmed in Pillar. This is especially important for
system routines. :

Compilation of a Pillar source module, ALPHA, generally produces
a definition module in addition to an object module. The
definition module contains the declarations of all of ALPHA's
exported symbols in a compiled form. An exported symbol is one

that may be used in another module. If another module wuses
symbols from ALPHA, it names ALPHA in an import statement, and
the compiler reads ALPHA’'s definition module. This 1is more

efficient than compiling ALPHA’s declarations each time they are
used in another module, and it prevents errors in ALPHA from
showing up while compiling another module.

In large systems or application programs there is always a danger
of inconsistency resulting from failure to recompile a module
when declarations on which it depends have changed. To prevent
this, Pillar definition modules contain a signature for each
exported declaration, and both definition an object modules

7

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

record the signatures on which they depend. Consistency of
signatures can be checked by the compiler or by the 1linker (a
feature of the MICA linker). Because there is a signature for
each symbol, it is not necessary to recompile everything just
because a simple change is made to a module.

Pillar definition modules are the means for making system
interfaces available to all languages. When the declaration of a
system interface is needed in a language other than Pillar, it
can be obtained two ways. The other language’s compiler can
directly import the definition module, or the definition module
can be translated into an include or require file in the other
language. The direct import method has these advantages:

o It’s less bother; there are no require files to manage.
0 Module consistency checking can be used.

o] The'other language’s compiler can understand some things that
can’t be expressed in the 1language or that require
nonstandard expressions such as %DESCRIPTOR.

Because the direct import method has not been wused before, and
because customers may prefer the concrete form of a require file,
we are supporting both methods. There is a definition module
utility that translates Pillar definition modules into other
languages: C, FORTRAN, Pascal, and Bliss. Additional 1languages
will be supported as they are implemented on PRISM. This utility
is structured as a shell plus a set of back ends, one for each
target language. The shell reads the definition modules and
builds a symbol table in memory. Each language-specific back end
accesses the symbol table through a set of routines provided as
part of the shell. The shell and C backend are implemented by
DECwest, the other backends by SDT.

The parts of the shell that build and access the symbol table
will be packaged so that they can be incorporated into other
utilities. 1In particular, this will be the way in which the SDT
compilers directly import Pillar definition modules.

5 PRISM C

For systems programming, PRISM customers are most likely to wuse
the c language, and this wusage will be intermixed with
applications programming in C. (There 1is no clear boundary
between systems and applications programming.) The compiler will
be heavily used in the scientific, technical, and educational

markets. It will feature the industry’s most advanced code
optimization methods: interprocedural analysis, vectorization
and decomposition, instruction scheduling, global register

allocation, and performance profile feedback to improve all
aspects of code generation and optimization.

Within the PRISM project, PRISM C will be used for ULTRIX-related
software (including ULTRIX itself if it is ported to PRISM). C
will also be wused for parts of the Applications Interface
Architecture (AIA) on MICA.

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

PRISM C will be an implementation of the ANSI C standard. This
standard specifies certain syntax for implementation-specific
extensions to the standard language. This syntax will be used in
VAX C, V3.0, for both old and new extensions. PRISM C will
contain the extensions from VAX C that do not depend on the
target architecture. A point to note here is that the VAX C,
v3.0, extensions related to optimization are being defined in a
way that 1is not dependent on the architecture, so they will be
supported by PRISM C.

PRISM C will support 64-bit integers as well as 16- and 32-bit
integers. This may require an extension. Built-in functions for
privileged operations and atomic memory access may be required,
especially for the ULTRIX executive. No other 1language
extensions are planned for PRISM C. However, the compiler’s
ability to import PRISM definition modules will be a valuable
feature for users of PRISM C on MICA.

Validation for the C compiler will use a test system derived from
the VAX C test system. The compiler will also be tested via its
use in compiling ULTRIX software.

PRISM C is documented in the Guide to PRISM C. This has the same
organization as the Guide to VAX C, and the two manuals differ
only where the systems differ. Helen Custer is the technical
writer for this manual.

Direct questions about the PRISM C language to Lu Anne Van de
Pas.

For information on the C runtime library on MICA, see the MICA
project plan.

6 MISCELLANEOUS LANGUAGE SOFTWARE

This section covers the other PRISM software being developed by
the DECwest compiler group.

6.1 Message File Compiler

Pillar has features for defining conditions and messages either
casually (in a Pillar program) or in a message file. The Pillar
message file compiler accepts a Pillar message source file. It
produces a message file, an object module, and a Pillar
definition module. The definition module can be imported by any
module that needs to reference a message in the file. Note that
there is a single source for all information about messages and
conditions defined in the file.

To produce messages in a different natural language, the message
file is edited and recompiled. The message file compiler will be
able to import the original definition module and check the
modified source file for consistency with it. ,

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY .

Pillar message files will be the system message files for PRISM.
For VAX/VMS Pillar, the compiler will generate VMS message files.

6.2 SPASM. the Simplified PRISM Assembler

SPASM is the new assembly language for PRISM. It is not
compatible with the language accepted by the interim assembler.
SPASM will use the Pillar lexical analyzer, so it will be
possible to use the full Pillar compile time facility with SPASM.
However, to meet the diagnostic group’s short term requirements
for a macro capability, SPASM will have a simple intrinsic macro
language.

SPASM will be wused only in special contexts where normal
programming language concepts do not apply. Customers can only
obtain the assembler by special arrangement.

Gary Kimura is responsible for SPASM, including definition of the
language.

6.3 Pillar Runtime Support

Pillar object code may use out of line complex code sequences and
a few runtime routines that are not known to the user. These
will be implemented by the DECwest compiler group. Because the
executive of the PRISM operating system (MICA) is written in
Pillar, this runtime will be packaged with the executive.

6.4 DST Analysis

The MICA ANALYZE command will have an option to analyze the debug
symbol table in an object module or image. The DST specification
is being done by the debug group in SDT. The DECwest compiler
group is doing the analysis program.

7 THE DECWEST PRISM COMPILER

This is the PRISM compiler for Pillar and C, and it also includes
the SPASM assembler. It will feature the industry’s most
advanced code optimization methods: interprocedural analysis,
inline routine expansion, vectorization and decomposition,
instruction scheduling, global register allocation, and
performance profile feedback to improve all aspects of code
generation and optimization.

The general goal for the compiler group is to produce a compiler
that will meet PRISM performance goals and that will be perceived
as being of higher quality than any existing VAX compiler. Here
quality encompasses ease of use, compile speed, reliability
(correct behavior), and object code performance. Object code
performance is receiving special emphasis in the PRISM project,
but all the goals are important. 1In particular, reliability must

10

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY .

not be compromised.

The compiler has roots in the family of compilers using the VAX
Code Generator (VCG), but the design is completely new. It has
been influenced by eight years of experience with the VCG
compilers and by new work done at DECwest in the context of the
SIL compilers and their Pascal predecessors. This section
describes some of the newest features of the design: the modular
organization and the code optimization methods.

7.1 Compiler Organization And Command Interface

The compiler is structured so that it can be easily integrated
with new environments and hosted on a variety of systems. It
contains:

l. a small super shell that contains all functions related to
the host operating system and command interface,

2. a small language driver routine for each language,

3. a compiler shell providing general routines used by all parts
of the compiler,

4. a separate front end for each language,

5. a back end that does optimization and code generation
including all target-dependent code generation.

A complete compilation is controlled by the lanquage driver.
Supported by the super shell, it interprets the command line and
establishes an environment for the compilation. The driver then
calls the compiler shell to initiate the real work. To integrate
the compiler with a new program-development environment, one only
needs to modify the language drivers. For example, a fancy
program development system can provide its own drivers thus
bypassing the normal command interface.

The expansion of displayed text (e.g.; error messages) can be
controlled by the language driver (using the super shell). There
is complete flexibility in regards to the translation of messages
into national languages.

The compiler can be packaged in various ways: one big image, a
set of related shareable images, three separate images, etc.
Whatever arrangement is finally chosen, the DECwest compiler
group regards development of this compiler as one project being
done by one team. :

The shell and super shell are used in the Pillar definition
module utility and the message file compiler.

7.2 Code Optimization

Almost all optimization is done in the compiler’s common back end
so that it will apply to all languages except SPASM. As in the

11

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

VCG compilers, the operators of the intermediate language are
n-tuples, but all traces of PL/I have been removed, and the basic
classification of data types deals only with size and alignment.
From the point of view of the front ends, certain key operators,
such as those for data references and procedure calls, are
simplified. The intermediate language is always processed by the
compiler’s global optimizer, which converts the difficult
operators into forms most appropriate for optimization.

The first phase of the global optimizer scans the intermediate
language and extracts information about the calling relations
between procedures and the usage of variables within procedures.
This information is then analyzed to get sharp information about
procedure calls and data aliasing. Here, as in many places in
the back end, there is an option for quick analysis or deeper,
more time consuming analysis. The wuser will not see these
options directly, rather there will be a few practical command
options to control the compiler. The default mode is for the
maximum optimization consistent with quick compiling.

The second phase of the global optimizer performs conventional
global optimization on the intermediate lanquage. Procedures are
processed separately using the results of the preceding
inter-procedural analysis. The flow analysis method is a
variation of recursive descent analysis that works on flow graphs
and accommodates moderate usage of goto’s. This method’s running
time is linear in the number of graph nodes, and the storage
required for bit vectors depends (more or less) on the nesting
depth of control structures rather than the number of nodes in
the graph. Recognition of equivalent expressions uses a
combination of hashing and self-adjusting binary trees, so the
time spent is at worst n*log(n).

Inline procedure expansion and inter-procedural analysis both
yield many opportunities for value propagation, which can result
in the recognition of constant conditionals. The flow analysis
and recognition of equivalent expressions is designed to exploit
this, and the flow graph is simplified whenever possible. The
flow analysis can be repeated on the simplified graph, and there
will be a provision for repeating the interprocedural analysis
using the sharper information found by flow analysis.

The global optimizer does standard optimizations such as loop
unrolling and result incorporation. Over time we add many
specialized optimizations of this sort, the most interesting
being vectorization and decomposition (into parallel threads of
execution). The optimizer also collects interference and
life-time information for later optimization phases. When it’s
finished with a procedure, it produces the optimized intermediate
language in the form expected by the local code generator.

The Local Code Generator (LCG) reads the intermediate-language
operators produced by the global optimizer. It generates unbound
code blocks which implement the operators. The wunbound code
blocks look something 1like instructions, but use register
temporaries and symbol nodes rather than hardware registers to
keep track of the storage of operands. The actual instructions
being emitted by the LCG may also contain pseudo-opcodes rather
than real instructions.

12

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

The code blocks are unbound in the sense that their
interrelationship is not «constant at the end of the code
generation phase of the compiler. This allows the code scheduler
to freely reorder the instruction stream based on the machine
which the code is being generated for.

The LCG may also output more than one sequence of instructions
for a given operator. For example, when a string of characters
is to be moved from one location to another, the code generator
might provide code blocks to move the string three different
ways:

1. a straight inline code sequence, or
2. a loop to move the string, or
3. a call to a complex code sequence to move the string.

It is then up to another phase of the compiler which runs after
the code generator to select which sequence should be used based
on profile information, register usage, instruction stream cache
information, etc.

The Code Block Optimizer (CBO) works on the unbound code blocks
produced by the LCG. Actions of the CBO include:

1. Keeping track of the constants which are too 1large to be
placed in the instruction stream itself and allocating the
storage in linkage section to hold the constants.

2. Keeping track of constants which have been 1loaded into
register temporaries. This allows the CBO to ensure that no
constants are loaded into register temporaries which have
already been loaded, therefore cutting down on the number of
memory load instructions which are performed.

3. Coalescing register temporaries so that two register
temporaries may exist in the same register temporary. This
cuts down on the number of register temporaries that the
register allocator must deal with. It also guarantees that a
value in one register temporary which is simply being moved
to another register temporary will not use two separate
hardware registers.

4. Performing some peephole optimizations that apply before
scheduling and register allocation. The CBO takes out some
unnecessary instructions or changes their sequences so that
there are fewer instruction code blocks.

Because the CBO is dealing with all of the code blocks output by
the LCG at once, it has a much better view of the operations
actually being performed. It also has the graphs that the
optimizer built which it can use to make some decisions about how
to optimize out code blocks. All of this allows the CBO to
actually peephole code blocks across basic blocks.

The instruction scheduler runs after the Code Block Optimizer.
It rearranges the order in which PRISM instructions are issued to
minimize execution time due to stalled instruction issue cycles.
It is an optional phase of the PRISM compiler. For each specific

13

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

PRISM processor, the scheduler uses a different model to describe
its characteristics with respect to when it will stall on an
issue cycle.

The scheduling algorithm can be tuned for various levels of
optimizations. It can schedule basic blocks or entire
procedures. Scheduling basic blocks is the simplest and fastest
scheme where the instruction scheduler only rearranges
instructions within a single basic block, one basic block at a
time. When scheduling an entire procedure, the instruction
scheduler is allowed to rearrange and move instructions anywhere

within the procedure. The scheduler will wuse flow graph
information (provided by the optimizer) and profile information
to help schedule entire procedures. Intermediate degrees of

scheduling will also be defined as warranted.

The register allocator runs after the instruction scheduler. Its
task is to assign register temporaries to actual hardware
registers, insert spill code as needed, finalize the decision on
which procedures need or do not need a call frame, insert
prologue and epilogue code, and complete the storage allocation.
It wuses flow graph information, call graph information (both
provided by the optimizer), and profile information to help it
assign register temporaries to hardware registers. An underlying
goal in register allocation is to minimize hardware register
usage, spill, and the need for call frames.

Like the scheduling algorithm, the register allocation algorithm
is tuned for various levels of optimizations. A fast allocator
will only process one procedure at a time and use a simple fixed
point method for allocation. The more thorough allocator will
use all of the flow information available and deal with global
register usage. It will also assign parameters to nonstandard
registers for procedure calls where it is possible and
beneficial.

Several different register allocators, each using different
algorithms, were experimented with during the development of the
SIL compiler. The final allocator selected for use in that
compiler wuses a non-backtracking form of coloring algorithm and
allocates registers across procedures within a compilation wunit.
This allocator was selected for that compiler based on its output
relative to the actual processor time required to complete the
compilation.

The optimizations discussed so far are based on the analysis of
the procedures in a single compilation unit. The compiler is
designed to work with very large programs, but there is still a
need to carry out interprocedural analysis and register
allocation across separate compilation units. Within DEC, this
has been named universal optimization. A long-term goal for both
PRISM compiler projects is to provide universal optimization in a
way that is not tied to a single language or compiler.

To efficiently support universal optimization and processor
sensitive optimization, especially instruction scheduling, the
DECwest compiler will provide deferred code generation. The
intermediate language representation of a module (or multiple
modules) can be saved in a deferred object module and compiled
later. The deferred compilation starts with the global optimizer

14

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY .

phase. The target processor can be specified at this time, and
profile information or the results of universal optimization may
be used.

7.3 Performance Analysis

Performance analysis of program code is receiving special
attention in the PRISM Pillar and C compiler. 1In addition to its
value for programming compute-intensive applications and system
software, this sort of performance analysis contributes to the
development of the compiler’s code optimization methods and to
the evaluation of hardware architectures and designs. The
traditional separation between hardware performance analysis and
compiler development has handicapped both VAX and PRISM

development. :

On PRISM, the most useful data for performance analysis appears
to be execution profiles generated by code inserted by the
compiler. This can be related to the structure of the program as
seen by the wuser and also to the fine structure used in code
optimization. The compiler will have the capability to generate
this form of profile code, and the results can be fed back to
improve optimization in a subsequent compilation of the same
program. We have successfully experimented with this in the
PRISM SIL compiler, including an experiment where the compiler
varied the number of hardware registers and reported the
resulting numbers of loads and stores.

The compiler will have a special option to accept information
produced by the PRISM timing simulator. It will be able to
display this information, the regular profile information, and
its own code scheduling assumptions as part of the machine code
listing. 1In addition, it can display interesting statistics.
The point of this is to get all the relevant information together
in a useful form for design feedback. This should eliminate
inconsistencies in the hardware- and compiler- design
assumptions.

8 VAX SOFTWARE

Pillar will be a product on VAX/VMS. The software involved is
the Pillar compiler, the related runtime support, and the Pillar
definition module utility.

The VMS Pillar compiler differs from the PRISM compiler only in
the super shell and in those parts of the back end that depend on
the target architecture. All of the compiler’s general
optimization apparatus is used on both VAX and PRISM.

The Phase 1 review for VAX Pillar will be held sometime after the
PRISM Pillar |21 compiler is available. At that time,
VMS-specific specifications for the compiler will be available
for review.

15

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY .

8.1 VAX Software Dependencies

The plan for the VAX Pillar compiler depends on VAX Debug
accepting the new format debug symbol table and providing
language-specific support for Pillar ("SET LANGUAGE PILLAR").

9 BOOTSTRAP SOFTWARE

PRISM has a new hardware implementation architecture, a new
operating system, and a new systems programming language.
Developing the new system requires an elaborate bootstrap
process. Most of the compiler group’s work prior to June 1987
has been on software to be wused in the bootstrap and then
discarded. The compiler group is responsible for:

o The SIL cross compiler. This produces PRISM object code
packaged in VAX object modules. The code can be used on the
PRISM emulators or under PRISM simulators running on VAX.
This compiler features instruction scheduling and global
register allocation across procedures. It uses the PRISM
calling standard and has options to assist in hardware
evaluation.

o The VAX/VMS SIL compiler. This is used for the development
of modules and programs that do not require PRISM-specific
functions (e.g.; privileged instructions). The compiler does
support the vector operations via a runtime package.
Programs such as the PRISM and C compiler and the MICA linker
will be developed using this compiler.

© An interim macro assembler. This is a modification of the
VAX macro assembler that produces PRISM object code packaged
in VAX object modules. Note that this assembly language will
not be supported on PRISM.

The SIL compilers have an option to translate Pillar data
declarations and procedure declarations into interim Macro.

The SIL compilers (PRISM and VAX) will be supported wuntil the
Pillar compilers (PRISM and VAX, respectively) are available.

Preliminary 64- and 32-bit Pascal compilers for PRISM were
developed, used for a while, and retired.

16

