Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Mica Working Design Document
Image Activation

Revision 1.2
8-February—~1988

Issued by:
Lou Perazzoli

™

dlijg|it[all

TABLE OF CONTENTS

CHAPTER 1 IMAGE ACTIVATION 1-1
L1 Overview. . ..o 1-1
1.1.1 Goals/Requirements. vvvit e es e 1-1
1.1.2 Functional Description vv vt et s e 1-1
1.12.1 Image Initialization 1-1
1122 Image Exit.ttt 1-2
1.1.23 Autoload Procedurecouuuuunnnnn . 1-2
1.124 Installationof Imagesouuuuuninnne . .. 1-2
1.1.2.5 Images Within Shareable ImageSpace 1-3
1.1.3 IssuestobeResolved 1-3
12 Image Activation. i 1-3
121 Thread Startup.o 13
1.2.2 Segment Does Not Exist forImage File0o oo oo .. 14
1221 ImageHeader........... ..., 14
1.2.2.1.1 Image Section Descriptorsovvver ... 14
1.2.3 Mapping the Image into Virtual Address Space. 1-5
1232 Image FIXUDot vttt it ittt e e e e e 1-5
1.2.3.3 Thread Local Storage Fixups voo e ee e e, 1-5
1.2.3.3 Activate Immediately Shareable Images 1-5
1234 Debugger.ottt 16
1.2.4 Loadingof ShareableImages. 00ooou. ... 1-6
1.2.5 Autoloading of ShareableImages00oooo. ... 1-7
125.1 Linkage Pair0uuiin i, 1-7
1.25.2 Autoload Vector.t 1-7
1253 Transfercodeouuiinnununnnn 1-8
1.2.6 Image Descriptor. oottt te e e e e e 1-8
126.1 Autoloader 1-10
1.2.7 Autoloading System Services 1-11
128 ImageStartupot 1-11
1.2.9 Merged Image Activation00uuunren . 1-12
1.2.10 Installation of Images.oov v v i e 1-12
1.2.10.1 Images Within Shareable Image Space e et e 1-12
1.2.11 Image Mapping into System Space00rnnn. ... 1-12
EXAMPLES
1-1 Prototype PTE Protection Attributes0...... 14

FIGURES
1-1
1-2

Structures Before Autoload Has Occurred

Structures After Autoload Has Occurred

..........................

...........................

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Revislon History

Date Revision Number - Summary of Changes

30-May-1986 0.0 Initial entry. (Lou Perazzoli)

9-Sep-1986 0.1 Changed to reflect new improved map_file directive.
(Lou Perazzoli)

25-Sep-1986 0.2 Incorporated review comments and changed name to
image mapper. (Lou Perazzoli)

04-Nov-1987 1.0 Eliminated moldy P.TBD concepts such as environments,

map_file directive, etc. and changed to refiect current
linker and memory management designs. Add sections
on autoloader and synchronizations. Added section on
shareable image loading and initializations. (Lou Per-

azzoli)

25-Nov-1987 1.1 Minor edits to conform with object language and linker
chapters. (Lou Perazzoli)

01-Feb-1988 1.2 Add section on thread local storage and modify au-

toloader design. (Lou Perazzoli)

iv

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

CHAPTER 1
IMAGE ACTIVATION

1.1 Overview

The linker produces an executable image as the end product of program development. During process
creation, the thread creating the process specifies the image to be executed by the new process. After
the creation of the process and the initial process thread, the image file is mapped into the newly
created address space. This mapping occurs in the context of the initial process thread.

Image mapping involves several steps that prepare the image for execution. The image activator
opens the image file, thereby establishing a channel to obtain the necessary information to map the
file. If the image does not already have an associated segment object, the image activator creates
a segment object for the image, building prototype PTEs for the image file. The image activator
maps the image into the user’s address space, resolves certain address references, and establishes
the debugger and traceback handlers.

1.1.1 Goals/Requirements ,
The Mica image activator has the following goals:
* All images are automatically and transparently shared among all users.

* Optimal performance is achieved by issuing a minimal number of disk reads to initially map the
image and delaying most fixups by delaying the loading of shareable images.

1.1.2 Functional Description
1.1.2.1 Image Initialization

No special code exists in Mica to read images into memory for initial execution. Instead, the paging
mechanism is used to "page” an image into memory. The image activator configures the process page
tables to reflect all pages in the image file.

Mica performs the following steps to support image activation:
1. Opens the image file

The image activator issues a read-only share open service on the image file. This service returns
a channel ID to the file.

2. Creates a section

The image activator calls the exec$create_section system service. The caller specifies the channel
ID from the previous system service call, and a mapping type of e$k_image_map. This service
returns a section_id.

3. Maps the section

The image activator calls the exec$map_section system service, specifying the section_id returned
from the exec$create_section system service. This service returns the starting and ending ad-
dresses that delimit the mapped image in the virtual address space.

Iimage Activation 1-1

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

4. Performs fixups

The starting address identifies where the image’s image header begins. The image activator
examines the image header, and performs the necessary image fixup operations on the image.

5. Handles message sections

If any message sections are present in the image, as indicated by the image header, the image
activator calls the routine to add these message sections to the process. The nature and functions
of this routine are described in Chapter 3, Status Codes and Messages.

6. Maps shareable images marked "activate immediately”

The image activator examines the image header, and maps any shareable images which are
marked "activate immediately”. The image activator performs the external fixups for those
shareable images once they are mapped. Note that this is a recursive call to the image activator.

7. Calls initialization procedures

Once the image activator maps and fixes up the "activate immediately” images, it examines
the image header, and calls any initialization procedures at their specified entry points. These
initialization procedures provide the functionality of the LIB$INITIALIZE routine in VMS. The
image activator does not guarantee the order between images of initialization procedure calls,
but it does guarantee each procedure is called only once before the user executes any code within
that shareable image.

8. Invokes image

After the image activator has invoked all initialization procedures, it calls the image at its
transfer address.

1.1.2.2 Image Exit

When an image returns to the image activator, the exec$thread_exit system service is issued, which
begins thread termination. The exec$thread_exit system service simply calls each exit handler that
has been declared by the thread, and then invokes the exec$delete_thread system service. If the
process has other threads executing, those threads continue to execute normally. Image exit occurs
when the last thread in the process exits and the mapping objects and section objects for the image
are deleted during object container rundown.

1.1.2.3 Autoload Procedure

The autoload procedure operates similarly to the "activate immediately” method described above. The
autoload procedure loads shareable images and resolves the external references when the reference
is encountered, rather than at initial image activation time. This reduces the overhead of initial
image activation, and maps shareable images only when they are actually required.

1.1.24 Installation of Images
The Install Utility serves two purposes. It provides for the installation of a shareable image:
* Within the shareable image space

* With the WRITE attribute
The Install Utility creates a section object for the image, which causes a segment object to be built.

The segment object has a "system channel” to the image which implies that the image is effectively
installed "opened”.

1-2 Image Activation

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

1.1.2.5 Images Within Shareable Image Space

When a shareable image is installed in the shareable image space by use of the /BASE qualifier, the
Install Utility opens the image file, and creates a segment causing prototype PTEs to be built. The
segment object for the shareable image contains the base address for the image within the shareable
address space. When the shareable image is loaded, it is mapped at the specified address. If the
image cannot be mapped at the specified address due to addressing conflicts, an error is returned,
and the shareable image is not mapped.

When the shareable image is installed no fixups, internal or external, are performed. Note, however,
that since no external fixups are performed, any referenced shareable images are treated just like
referenced external images. This allows later versions of shareable images to be installed at different
base addresses while the system is running, and the latest image is properly loaded.

Images installed in shareable image space may reference other images though use of the autoload
capability or the activate immediately capability. These referenced images do not need to reside in
shareable image space.

1.1.3 Issues to be Resolved

* Exact detail of message section addition. This is dependent on the design of message sections
and the definition of the routines.

1.2 Image Activation
121 Thread Startup

Once the process and the initial thread have been created with a minimal address context (user stack,
process control region, thread control region, last chance condition handler), the initial thread startup
routine is invoked in user mode. The initial thread startup routine exists in the system portion of
the address space. Its sole purpose is to map the shareable image, mica$fm_share, that performs the
actual user-mode thread startup.

A section exists for the mica$fm_share shareable image in a known system container. To map the
image an object name translation is performed on the image name in the system container. The
resulting section ID is mapped and its base address in shareable image space.

The mica$fm_share shareable image contains the image activator, the image fixup, the global au-
toloader, and the support routines to start the initial image.

After mapping the mica$fm_share shareable image, the initial thread mapping procedure examines
the image header to locate the transfer vector offset for the imact$initialize procedure. The image
activator then calls the imact$initialize procedure, passing the base of the system service vector page
as an argument. The base of the system service vector page is required to allow various system
services to be called before the system service shareable image has been loaded.

The imact$initialize procedure maps the section for the system services, and opens the specified
image file as execute only.

If the open service on the image file succeeds, the exec$create_section service is called to create the
structures necessary to share the file among multiple address spaces.

The exec$create_section service performs an object name lookup to determine if the specified image file
currently has an associated segment object. Note that all segment objects exist in the same system
container. If the segment indicates that the file is mapped as a data file rather than an image file,
the execfcreate_section service returns an error indicating that the file is mapped in an incompatible
state. If the segment object specifying image mapping currently exists for the image file, a section
object is created which refers to the segment object. If the segment object exists, the image activator
continues the process of image activation by mapping the section (See Section 1.2.3). Otherwise,
memory management software must create the segment (See Section 1.2.2).

Image Activetion 1-3

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

-1.2.2 Segment Does Not Exist for Image File

If a segment object does not currently exist for the image, the exec$create_section system service
creates and initializes a segment object for the image. A system channel is created to the specified
file, and the pointer to the channel object is stored in the segment object.

The segment object header contains, among other items, the system channel pointer of the file, the
number of pages in the segment, the required size of the user stack, and the mapping type (in this
case, mm$c_image_map).

1.2.2.1 Image Header

The first sixteen virtual blocks of the image are read into memory and examined. If the image is less
than 16 blocks, an error status is returned in the IOSB, but the read still completes, delivering all the
blocks in the image. The image header (which is at least one block) contains an item describing the
number of 64-Kbyte pages required to map this image. The number of 64-Kbyte pages determines
the allocation required for the segment object.

1.2.2.1.1 Image Section Descriptors

The analysis of the image header continues by examining the image section descriptors (ISD). The
image section descriptors describe the layout for creating the prototype PTEs for the image. Each
image section is aligned by the linker on a virtual disk block number (VBN). An image section
descriptor starts on a 64-Kbyte virtual boundary. The image section is either demand zero, or it
contains the number of VBNs in the section, and the starting VBN number of the section. The ISD
also contains the page protection for the section. See Chapter 29, Linker for more details.

The image activator determines the format and the protection attributes of the prototype PTE from
the information in the ISD. Example 1-1 describes how the protection is set.

Example 1-1: Prototype PTE Protection Attributes

Flags in ISD Settings in Prototype PTE
READ WRITE EXECUTE READ WRITE FOR FOW FOE COM
0 0 0 0 0 0 1 0 1
0 0 1 1 0 1 1 0 1
0 1 0 Invalid in PRISM
0 1 1 Invalid in PRISM
1 0 0 1 0 0 1 1 1
1 0 1 1 0 0 1 0 1
1 1 o) 1 1 0 1 1 *
1 1 1 Invalid in an image file

* Set if MODIMGS IMAGE _SECTION DESCRIPTOR.COPY ON MODIFY is true.

The copy_on_modify flag is set on all nonwritable pages. This allows the protection on a nonwritable
page to be changed to writable, causing the materialization of a private page before the actual write.
Also, fault on write is enabled on all pages even if those pages are not writable. This allows the
protection to be changed to writable without having to also enable fault on write. For ISDs which
are read/write and not copy on modify, fault on write is enabled to maintain the modified state of the

page.
When a writable image section descriptor is encountered without copy_on_modify set, the file system
is queried to see if the user has opened the file for write access. If the file has not been opened for
write access, the exec$create_section service fails indicating the file was not opened for write access
in the status value. If the file was opened for write access, the exec$create_section proceeds. Only a
shareable image may have image sections without copy_on_modify set.

Once the stack descriptor has been found, the size of the stack is recorded in the segment object.

1-4 Image Activation

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Once the segment object has been initialized, the section object is created in the process-private
container that refers to the segment object.

At this time, the section object and segment object for the file have been created. All local image
sections have been processed and the prototype PTEs have been created for the segment. It is
interesting to notice that at this time all prototype PTEs either point to a subsection, are no access,
or are demand zero.

1.2.3 Mapping the Image Into Virtual Address Space

The exec$map_section service is issued to map the section into the user’s address space. This causes
the creation of a mapping object in the process-private object container. The mapping object contains
a reference pointer to the section object and the virtual address limits where the section was mapped.

The image activator attempts to map images at their based address to eliminate internal fixups.

If the initial user stack is less than the stack size specified in the segment object, the exec$expand_
stack service is called to produce a stack of the proper size.

1.2.3.2 Image Fixup

An image section contains the fixup information necessary to resolve any internal image addresses.
Once the exec$map_section code completes, the image fixup is done in user mode by examining the
fixup information, and adding the difference between the real and the base address of the image to
each fixup location,

If necessary, the protection of the page is changed to writable in order to allow fixup information to
be written to the page. By examining the fixup information, an argument list for the Set Protection
service is created which sets the protection of all necessary pages, that is, pages which reside in
nonwritable program sections, to write enable. The fixups are then calculated and written to the
appropriate locations. The protection on the pages is changed back to write disable.

1.23.3 Thread Local Storage Fixups

The shareable image mica$fm_share contains the current sum of all thread local storage regions in
each loaded image. When an image is loaded via the activate immediate mechanism or the autoloader,
the image being loaded is given the current sum, and the sum is updated by adding the number of
thread local storage regions found in the image being loaded to the current sum.

The accessing and modification of the sum is performed under synchronization to prevent multiple
threads from storing or updating the sum simultaneously.

1.2.3.3 Activate Inmediately Shareable Images

After completing internal fixups, the image activator examines the image header to locate any "acti-
vate immediately” shareable images. If found, the image activator issues a call to an object service
to determine if a mapping object exists with the name of the image desired. If the image has been
mapped previously, the virtual addresses of where it is mapped may be obtained from the mapping
object. The virtual address of the shareable image is used to perform the external fixups. Note that
the linker determines whether a shareable image is autoloaded or "activate immediately”.

If an "activate immediately” image is not currently mapped, the shareable image synchronization
primitives described in a later section are used to ensure that only one copy of the shareable image
is mapped, fixed up, and initialized.

As each shareable image is mapped and fixups performed as necessary, any initialization procedures
for that shareable image are invoked. As "activate immediately” image operations are performed,
external fixups are performed in the invoking image.

Image Activation 1-5

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.2.3.4 Debugger

The debugger is invoked as an activate immediately shareable image which has an initialization
procedure. The debugger’s initialization procedure checks to see if the debugger should be invoked
and if so does whatever operations are necessary to create a debugging environment.

1.24 Loading of Shareable Images

The following pseudo-code describes the steps to ensure that two threads do not attempt to load the
same shareable image at the same time.

! General shareable image synchronization.
disable ASTs
status = execScreate_event (name = shareable_image_game)
IF status == collision THEN
status = execSwait_any (collided event_id)

! Shareable image is loaded and initialized when wait
! completes. Note wait could return an invalid ID error.

END IF

status = exec$translate_pbject_pame (
object id = returned mapping_id,
object_type = mapping object,
object _name = shareable_image name

)
IF status == name_does_not_exist THEN
! Image has not been loaded. Load it.

open_file (shareable image)

create section (shareable_image_phannel)
map section (shareable_image_section_id)
fixup shareable image

activate immediates

call initialization procedures

ELSEIF status == success THEN
! Shareable image is loaded and initialized.

exec$get_mapping_ info (
object_id = returned mapping_id,
item = base address
)
ELSE
restore AST state
! Unexpected error - raise condition.

END IF

store the base_address

status = exec$set_event (event_id) !ignore any errors
status = exec$delete object id (event_id) !ignore any errors

restore AST state

1-6 Image Activation

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.2.5 = Autoloading of Shareable Images

Automatic loading of shareable images is the act of loading a shareable image only when a procedure
within that shareable image is invoked. This allows the overhead of loading the shareable image
and performing fixups and initialization routines to be deferred until the shareable image is actually
required.

When the first call to a procedure within a shareable image is made, that image is automatically
loaded. All other calls to procedures within that shareable image from the image making the call are
fixed to directly call the loaded shareable image. Note that this involves changing the protection of
read-only memory to read-write, and then changing it back again.

1.2.5.1 Linkage Pair

A linkage pair consists of two longwords. The first contains a pointer to the invocation descriptor
for the procedure and the second contains the address of the code for the procedure. The following
instructions are generated to call the procedure:

LDQ routine(Rx),R10 ;load R10 with invoc. desc and rll with code address
JSR R11, (R11) ;call the procedure

Note that routines which access the linkage pair must always be accessed with a LDQ instruction.
This prevent synchronization problems when the linkage pair is being modified.

For procedures which reside in automatically loaded shareable images the first longword of the
linkage pair contains the address of the autoload vector and the second longword contains the address
of the transfer code. The linkage pair and autoload vector reside in the linkage section, which is read-
only.

1.2.5.2 Autoload Vector

The autoload vector is the data structure that maintains the information about the automatic link-
age to a routine in another shareable image. The autoload vector consists of 5 longwords, and is
quadword aligned. The first longword is the address of the transfer code, the second longword is
the address of the entry descriptor for the transfer code, the third longword contains the address of
the autoload vector, the fourth longword contains the address of the autoloader code, and the fifth
longword contains the address of the image descriptor for this shareable image. The third and fourth
longwords are changed after the image is loaded to contain the address of the routine’s real invocation
descriptor and entry point. This allows subsequent calls to the routine using the autoload vector to
work (which might happen in an optimizing compiler).

For each procedure called within a autoloaded shareable image a autoload vector exists. The autoload
vector is created by the linker in the image’s header, which is read-only memory. When the desired
image has been loaded and all fixups and initializations performed, the autoload vector is modified.
The address of the autoload vector field and the pointer to the local autoload code are changed to be
the real routines linkage pair using a STQ instruction.

Image Activation 1-7

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only v

1.2.5.3 Transfer code

The transfer code consists of the following 3 instructions:

LDQ 8 (R10) ,R4 ;load address of autoloader code
OR R4,R0O,R10 ?load R10 with address of autoload vector
JSR RO, (R5) ;jump to the local autoloader

Since the autoload vector itself is fixed up during automatic image loading, the transfer code on
subsequent calls transfers the caller directly to the called routine. The transfer code is generated by
the linker in a special psect that allows execution.

1.2.6 Image Descriptor

The image descriptor consists of the image name, the self-relative base address for the current image,
and an array of longwords consisting relative pointers to each linkage pair which references procedure
in the shareable image described by this image descriptor. Note that the image descriptor is created
by the linker in the image header in read-only memory.

1-8 Image Activation

Digital Equipment Corporation - Confidential and Proprietary
' For Internal Use Only

Figure 1-1: Structures Before Autoload Has Occurred

Linkage Pair

Address of autoload vector

Address of transfer code

Autoload Vector

Address of transfer code

Entry descriptor for tranfer code

Address of autcload vector

Pointer to local autoload code

Transfer Code

Address of image descriptor

LDQ 8(R10),R4 ;Autoload vector to R4, code to R10
OR R4,R0,R10 ;Autolcad vector to R10

JSR RO,(R5) ;Jump to code address in RS

Image Descriptor

Image name

Image base address

Global autoloader invocation descriptor

Address of linkage pairs

Image Activation 1-9

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-2: Structures After Autoload Has Occurred

Linkage Pair
Address of invocation descriptor] . Autoload Vector
Address of routine code -

Address of transfer code
Entry descriptor for transfer code
Address of invocation descriptor -
Address of routine code *
Address of image descriptor

Transfer Code

LDQ 8(R10),R4 ;Autoload vector o r4, code to r5
OR R4,RO,R10 ;Autolcad vectorto r10
JSR RO,(R5) #~ump to code address in r5

l

Image Descriptor

Image name

Image base address

Global autoloader invocation descriptor

Address of linkage pairs

1.2.6.1 Autoloader

The autoloader consists of two parts, a local portion generated by the linker and a global portion
which resides in the shareable image mica$fm_share.

The local portion does the following:

* Checks to ensure that R10 contains the address of the autoload vector. This is accomplished by
comparing R10 to 8(R10). If they are unequal, then the image is already loaded and may be
called by executing the transfer code instructions.

® Saves all scratch registers except R4 and R5.

1-10 Image Activation

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

* Loads R10 with invocation descriptor, and loads R11 with the code address of the global autoload
routine.

e (Calls the global autoload routine.

* Upon return, restores the saved registers and executes the transfer code sequence to call the
newly loaded routine.

The global autoloader does the following:
* Disables ASTs.

* Performs synchronization to ensure that multiple threads are not attempting to load the same
" shareable image simultaneously. See Section 1.2.4 for details.

* Checks to ensure that the autoload has not already occurred. This is done by comparing R10
with 8(R10). If they are not equal, 8(R10) contains the invocation descriptor address and 12(R10)
contains the code address.

* Maps in the shareable image if it is not already mapped.
* Performs fixups on the shareable image.
* Invokes the shareable image’s initialization procedures.

* Performs synchronization to ensure that multiple threads are not attempting to update the
shareable image’s linkage pair area simultaneously.

* Sets the protection of the linkage pair areas to read/write and updating all elements represented
in the image descriptor’s array of longword pairs. As linkage pairs are updated, the autoload
vector which the invocation descriptor refers to is also updated.

* Restores AST state.
* Returns to the local autoload procedure.

After the autoloader has executed, the linkage pair contains the actual address of the invocation de- -
scriptor and the code, and the autoload vector contains the actual address of the invocation descriptor
in the third longword and the actual address of the code in the fourth longword.

\This section will track any changes in the Prism calling standard.\

1.2.7 Autoloading System Services

At system initialization some pages of system space are allocated as kernel entry pages (user read,
fault on execute, kernel entry point fields are set). The starting address of these pages is stored in
the global variable e$system_services_base.

Also, at system initialization, the exec$create_section service is called to create a section for the system
services shareable image. This image is mapped into shareable image space, thus creating a segment
for the subsequent references. In order to fixup the vectors, the address found in e$system_services_
base is added to each offset. Thus, when a JSR is issued to a system service, the destination address
of the JSR is within the system service vector page.

1.2.8 Image Startup

Once the fixup operation has completed and all "activate immediately” shareable images have been
loaded and initialized, the thread startup procedure, still running in user mode, locates the transfer
address to be called.

The transfer address is called with the standard argument list. This transfer address is the entry
point of the user image.

\ Exact details of the argument list are TBD. \

image Activation 1-11

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.2.9 Merged image Activation

The image activator supports merged image activation to allow the emulation of the lib3find_image_
symbol routine. Note that VMS compatible routines for $imgact or imgfix is not provided since they
are not documented in the VMS system services manual.

1.2.10 Installation of images

The Install Utility serves two purposes. It allows:

* Installation of a shareable image within the shareable image space
¢ INSTALL /WRITE functionality

All images which are installed have a segment object. Since the segment object contains a channel
to the specified image file, the image is effectively installed "opened".

1.2.10.1 Images Within Shareable Image Space

When a shareable image is installed in the shareable image space by use of the /BASE qualifier,
the image file is opened and prototype PTEs are built. The segment object for the shareable image
contains the base address for the image within the shareable address space. When the shareable
image is mapped, it is mapped at the BASE address specified. If the image cannot be mapped at the
specified address space, due to addressing conflicts, an error is returned and the shareable image is
not mapped.

When the shareable image is installed no fixups are performed. Internal fixups are not performed
because of the complex nature in forcing the fixups back to the prototype PTEs. However, by linking
the shareable image as based and installing the shareable image at its linked based address, no
internal fixups are required.

External fixups are not performed to allow later versions of referenced shareable images to be installed
(at different base addresses) while the system is running, and the latest image is autoloaded.

It is not possible for the same address space to have two different versions of the same shareable
image loaded. This problem is avoided because the synchronization rules followed when shareable
images are loaded.

1.2.11 Image Mapping into System Space

During system initialization and normal system operations shareable images need to be loaded into
system space. Such shareable images could be function processors, object service routines or user
loadable system services, or in the case of system initialization, components of the executive.

The image activator is subsetted to create a system image loader which provides this functionality.
The system image loader loads and binds shareable images with the executive.

\There also needs to be a executive service to allow system management to invoke the system loader.\

1-12 Image Activation

