Digital Equipment Corporation - Confidential an& Proprietary
For Internal Use Only

Mica Working Design Document
Internal System Services Manual

Revision 0.3
27-Apri-1988

This manual, which comprises all current Mica system services, was generated directly from the system
service source files. -

Issued by:
Mark Lucovsky, Bill Muse, Charles Olivier, Lou Perazzoli, and Jim Walker

T™

Digital Equipment Corporation - Confidential and Proprietary
- For Internal Use Only

Revision History

’ Revision
Date Number Author Summary of Changes
29 FEB 88 0.1 Lucovsky Initial version.
31 MAR 88 0.2 Lucovsky and others Second version.

28 APR 88 0.3 Lucovsky and others Third version.

Contents

CHAPTER1 OBJECT SYSTEM SERVICES » 1-1
' OS$ALLOCATE_OBJECT 1-2
OS$CREATE_CONTAINER 14
OS$CREATE_IDENTIFIER 1-5
OS$CREATE_REFERENCE_ID 1-6
OS$DEALLOCATE_OBJECT 1-7
OS$DELETE_OBJECT_ID 1-8
OS$DELETE_OBJECT NAME 1-9
OS$GET_OBJCON_INFORMATION 1-10
OS$GET_OBJECT_INFORMATION 1-13
OS$GET_OTD_INFORMATION 1-15
OS$MARK_TEMPORARY 1-16
OS$SET_OBJECT_NAME 1-17
OS$TRANSFER_MARK_TEMPORARY 1-18
OS$TRANSLATE_OBJECT _NAME 1-20

CHAPTER 2 LOGICAL NAME SYSTEM SERVICES 2-1
OS$CREATE_LOGICAL_NAME 2-2
OS$DELETE_LOGICAL_NAME . 2-5
OS$TRANSLATE_LOGICAL_NAME 2-6

CHAPTER 3 WAIT SYSTEM SERVICES 3-1
OS$WAIT_MULTIPLE 3-2
OS$WAIT_SINGLE 34

CHAPTER 4 EVENT SYSTEM SERVICES 4-1
OS$CLEAR_EVENT 4-2
OS$CREATE_EVENT 43
OS$PULSE_EVENT 45
OS$READ_EVENT 4-6
OS$SET_EVENT 47

Contents

CHAPTER 5 SEMAPHORE SYSTEM SERVICES 5-1
OS$CREATE_SEMAPHORE 52
OS$READ_SEMAPHORE 5-4
OS$RELEASE_SEMAPHORE 55

CHAPTER 6 INTERVAL SYSTEM SERVICES 6-1
OS$CANCEL_TIMER 6-2
OS$CREATE_TIMER - 6-3
OS$READ_TIMER 6—4
OS$SET_TIMER 6-5

CHAPTER 7 PROCESS SYSTEM SERVICES 7-1
OS$CREATE_EXIT_HANDLER_PROCESS 7-2

~ OS$CREATE_EXIT_HANDLER_THREAD 7-3
OS$CREATE_EXIT_STATUS 7-4
OS$CREATE_JOB 7-5
OS$CREATE_PROCESS 7-8
OS$CREATE_THREAD 7-11
OS$CREATE_USER 7-13
OS$DELETE_EXIT_HANDLER_PROCESS 7-16
OS$DELETE_EXIT_HANDLER_THREAD 7-17
OSS$EXIT_THREAD 7-18
OS$FORCE_EXIT_JOB 7-19
OS$FORCE_EXIT_PROCESS 7-20
OS$FORCE_EXIT_THREAD 7-21
OS$FORCE_EXIT_USER 7-22
OSS$GET_EXIT_STATUS_INFO 7-23
OS$GET_JOB_INFORMATION 7-24
OS$GET_PROCESS_INFORMATION 7-25
OS$GET_THREAD_INFORMATION 7-26
OS$GET_USER_INFORMATION 7-27
OS$HIBERNATE_PROCESS 7-28
OS$HIBERNATE_THREAD 7-29
OS$RESUME_PROCESS 7-30
OS$RESUME_THREAD 7-31
OS$SET_EXIT_STATUS_INFO 7-32
OS$SET_JOB_INFORMATION 7-33
OS$SET_MINOR_THREAD_PRIORITY 7-34
OS$SET_PROCESS_INFORMATION 7-35

iv

Contents

OS$SET_THREAD_INFORMATION 7-36
OS$SET_THREAD_PRIORITY 7-37
OS$SET_USER_INFORMATION 7-38
OS$SIGNAL_PROCESS . 7-39
OS$SIGNAL_THREAD 7-40
OS$SUSPEND_PROCESS 7-41
OS$SUSPEND_THREAD 7-42
OS$WAKE_PROCESS | 7-43
OS$WAKE_THREAD 7-44
CHAPTER 8 MEMORY SYSTEM SERVICES ' 8-1
| OS$ADJUST_WORKING_SET_LIMIT 8-2
OS$CREATE_ADDRESS_SPACE 8-3
OS$CREATE_SECTION 8-4
OS$DELETE_ADDRESS_SPACE 8-6
OS$EXPAND_ADDRESS_SPACE 8-7
OS$EXPAND_USER_STACK 8-8
OS$GET_MAPPING INFORMATION 8-9
OS$GET_SECTION_INFORMATION 8-10
OS$LOCK_PAGES_IN_MEMORY 8-11
‘OS$LOCK_PAGES_WORKING_SET 8-12
OS$MAP_SECTION 8-13
OS$SET_PROTECTION_ON_PAGES 8-15
OS$UNLOCK_PAGES_FROM_MEMORY 8-17
OS$UNLOCK_PAGES_WORKING_SET 8-18
OS$UPDATE_MAPPED SECTION 8-19
OS$ZERO_TO_END_OF_USER_STACK 8-21
CHAPTER 9 |/O SYSTEM SERVICES 9-1
OS$CANCEL IO 9-2
OS$CONFIGURE_FP 9-3
OS$CREATE_CHANNEL 9-4
OS$CREATE_FPU 9-5
OS$GET_CHANNEL_INFORMATION 96
OS$GET_FPU_INFORMATION 9-7
OS$REQUEST_IO 9-8

OS$SYNCHRONIZE_WITH_IO 9-10
OS$SYNCH_CHANNEL_WITH_FPU 9-11

Contents

CHAPTER 10 SECURITY SYSTEM SERVICES 10-1
OS$CREATE_IMPERSONATION 10-2
OS$CREATE_PRIV_OPERATION 104
OS$DELETE_ACCESS_CONTROL_LIST 10-5
OS$DISABLE_IDENTIFIER 10-6
OS$ENABLE_IDENTIFIER 10-7
OS$GET_ACCESS_CONTROL_LIST 10-8
OS$GET_SECURITY_MONITOR 10-9
OS$IMPERSONATE_CLIENT 10-10
OS$RESTORE_SERVER 1011
OS$SET_ACCESS_CONTROL_LIST 10-12
OS$SET_SECURITY_MONITOR 10-13
OS$TRANSLATE_ACCESS_TYPE 10-14
OS$TRANSLATE_ACCESS_TYPE_NAME 10-15
OSS$VERIFY_PRIV_OPERATION 10-16

CHAPTER 11 CONDITION AND EXIT HANDLING SYSTEM SERVICES 11-1
OS$CREATE_CONDITION_STACK 11-2
OS$CREATE_LAST CHANCE_HANDLER 11-3
OS$CREATE_PRIMARY_HANDLER 11-4
OS$DELETE_LAST_CHANCE_HANDLER 11-5
OSS$DELETE_PRIMARY_HANDLER 11-6

CHAPTER 12 MISCELLANEOUS SYSTEM SERVICES 12-1
OS$GET_PERFORMANCE_INFO 12-2
OS$GET_SYSTEM_INFORMATION 12-3
OS$GET_SYSTEM_TIME 12-5
OS$GET_UID 12-6
OSSINSTALL_PAGE_FILE 12-7
OS$NEXT_UID 12-8
OS$SET_SYSTEM_TIME 12-9

vi

Contents

APPENDIX A EXECUTIVE CONSTANTS AND DATA TYPES A-1
A1 EXECUTIVE CONSTANTS A-1
A2 MISCELLANEOUS DATA TYPES A1
A3 VO DATA TYPES A-3
A4 - LOGICAL NAME DATA TYPES A-3
A5 MEMORY MANAGEMENT DATA TYPES A4
A6 PROCESS ARCHITECTURE DATA TYPES A4
A7 OBJECT ARCHITECTURE DATA TYPES A-9
A8 SECURITY RELATED DATA TYPES A-10
A9 CONDITION HANDLING DATA TYPES A-12

INDEX

vii

Object System Services

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$allocate_object

os$allocate_object

(

IN object_id : e$object _id;
IN allocation_id : e$object_id;
) RETURNS status;

DESCRIPTION

The os$allocate_object service allocates the specified object to the specified
allocation object. An allocation object can be a thread, process, job, user, or
identifier object. '

Each allocation object defines an allocation class. An allocation class is the
set of threads that can access an object allocated to an allocation object.
If an object is allocated and a thread is a member of the allocation class
defined by the allocation object, the thread can access the object (assuming
the object access check performed after the allocation check is successful).

The allocation classes defined for each allocation object are:

thread object - The only member of the thread object allocation class is the
thread of the thread object that an object is allocated to.

process object - The members of the process object allocation class are the
threads of the process object that an object is allocated to and the threads
of any child process of the process object that an object is allocated to.

job object - The members of the job object allocation class are the threads
of the job object that an object is allocated to.

user object - The members of the user object allocation class are the
threads owned by the user who is represented by the user object. An
object is allocated to the user object.

identifier object - The members of the identifier object allocation class are
the threads that hold the identifier represented by the identifier object.

When an allocation object is deleted, any objects allocated to the object are
automatically deallocated.

The visibility of an object determines the allocation objects to which an
object can be allocated. '

- If the object is at the system level, the object can be allocated to any
allocation object.

- If the object is at the job level, the object can be allocated to the job,
process, and thread allocation objects.

- If the object is at the process level, the object can be allocated to the
process and thread allocation objects.

1

ARGUMENTS

1-2

object_id
Supplies the object id of the object to allocate.

DIGITAL - Confidential and Proprietary - Restricted Distribution

allocation_id

os$allocate_object

Supplies the object id of the allocation object to which the specified object

is allocated.

RETURN
VALUES

status$_normal
status$_invalid_object_id
status$_invalid_allocation_id

status$_object_type_
mismatch

status$_object_already_alloc
status$_different_alloc_class

status$_invalid_visibility

normal, successful completion.
invalid object id.
invalid allocation id.

the abject identified by the allocation id is not an
allocation abject.

object is already allocated.

the calling thread is -not a member of the allocation
object's allocation class.

the object cannot be allocated because the visibility
of the object prevents it from being allocated to the
specified allocation object.

13

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_container

os$create container

(

OUT container_id : e$object_id;
IN object_parameters : e$object_parameters = DEFAULT;
) RETURNS STATUS;

- DESCRIPTION

The os$create_container service creates a container. Any type of object
except containers and container directories can be inserted into this type
of object container.

If the object container id value is specified in the object parameters record,
it must identify a container directory. A container can only be inserted
into a container directory.

ARGUMENTS

container_id
Returns the object id of the created container.

object_parameters

Supplies the object container in which the object is inserted, the name of
the object, and the access control list (ACL) of the object. If this argument
is not supplied or if it is supplied but not all values in the object parameter
record are supplied, the service applies default values. The default object
container is the process container directory, the default name is none, and
the default ACL is none.

RETURN
VALUES

status$_normal normal, successful completion.

status$_invalid_object_id the object id of the object container is invalid.

status$_object_type_ the object specified by the object container id was

mismatch not a container directory.

status$_invalid_object the object to insert is not a container.

status$_duplicate_object a container having the same type, mode and name
was found.

status$_quota_exceeded the caller does not have enough quota for the
specified container or for an expanded container
directory.

status$_object_container_full the container directory is full.

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_identifier

os$create _identifier

(

OUT identifier_id : e$object _id;

IN object_parameters : e$object_parameters;
IN identifier : e$identifier;

) RETURNS status;

DESCRIPTION

The os$create_identifier service creates an identifier object. An identifier
object is an allocation object that represents a valid identifier defined on
the system. Because it is an allocation object, objects can be allocated

to the identifier object. Any thread that is a holder of the identifier
represented by the identifier object can access any objects allocated to the
identifier object.

To create an identifier object, the caller must hold the identifier that the
identifier object is to represent.

The identifier object is inserted in the exec$identifier_container system
level container. The name of the object is the alphanumeric name of the
identifier the object represents.

ARGUMENTS -

identifier_id :

Returns the object id of the created identifier object.
object_parameters

Supplies the object container in which the object is inserted, the name of
the object, and the access control list (ACL) of the object. The values for

the name and object container are ignored. If a value for the ACL is not
supplied, the default is

None.

- | :
identifier - Supplies the identifier that the identifier object represents.

RETURN.
VALUES

status$_normal normal, successful completion.
status$_invalid_identifier ~ the caller is not a holder of the specified identifier.
status$_duplicate_ob‘jec{ duplicate object found in object container.

1-5

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_reference_id

os$create reference_id

(

IN object_id : e$object_id;

IN container_id : e$object_id = DEFAULT;
OUT reference_id : e$object_id;

) RETURNS status;

DESCRIPTION

The os$create_reference_id service creates a reference id to an object. A
reference id ensures that as long as the reference id exists, the object
cannot be deleted.

A reference id can only be created for objects whose principal id still exists.

The container through which the reference id identifies the object must be
at a less visible level than the principal object id’s container.

A reference id cannot be created for an object that does not allow reference
ids. For example, container directories and containers do not allow
reference ids.

ARGUMENTS

object_id :
Supplies the object id of the object that a reference id is created for.

container_id
Supplies the container id of the container thru which the object is
referenced.

reference_id
Returns the reference id.

0

RETURN
VALUES

status$_normal normal, successful completion.
status$_invalid_object_id invalid object id.

status$_invalid_container_id invalid container id.

status$_object_type_ the object type of the specified container was not a
mismatch container.

status$_reference_not_ the object does not allow reference ids.

allowed

status$_invalid_target_level the level of the container is not more visible than the

object’s container.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$deallocate_object

os$deallocate_object

(
IN object_id : e$object id;
) RETURNS STATUS;

DESCRIPTION The os$deallocate_object service deallocates the specified object.

The caller must be a member of the allocation object’s allocation class in
order to deallocate the object.

ARGUMENTS object id
Supplies the object id of the object to deallocate.

RETURN

status$_normal normal, successful completion.
VALUES o o

status$_invalid_object_id invalid object id.

status$_object_not_allocated object not allocated.

1-7

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$delete_object_id

os$delete_object_id

(
IN object_id : e$object_id;
) RETURNS STATUS;

DESCRIPTION The os$delete_object_id service deletes the object id of the specified object.
When all object ids that identify the object have been deleted, the object is
: no longer accessible.

Paged or nonpaged pool quota is returned to the correct level when the
object id is deleted. If the object identified by the deleted object id was at
the system level, no quota is returned.

If the object id count decrements to 0, the remove object service
routine specified by the object’s OTD is called. After the remove object
service routine returns, this service dereferences the object by calling
obj$dereference_object.

ARGUMENTS object id
Supplies the object id to delete.

RETURN

status$_normal normal, successful completion.
VALUES -omal pormal Sueee P
status$_invalid_object_id invalid object id.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$delete_object_name

os$delete_object_name

(
IN object_id : e$object_id;
) RETURNS status;

DESCRIPTION The os$delete_object_name service deletes the specified object’s name and
removes the name from the object container’s object name table.

ARGUMENTS object id |
Supplies the object id of the object whose name is deleted.

RETURN tatus$ I | ful leti
status$_normal normal, successful completion.
VALUES o o
status$_invalid_object_id invalid object id.
status$_name_already_ the abject name of the object was already deleted.
deleted

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_objcon_information

os$get_objcon_information

(

IN object_container_id : e$object_id;
IN item_list : POINTER e$item_list_type;
) RETURNS status;

DESCRIPTION

1-10

The os$get_objcon_information service returns the object ids of objects
in the object container and the logical names in the object containers’
logical name table. An object container is either a container directory or
container. '

Object ids are returned in the e$c_object_id_list item. This item is of type
e$object_id_list. The e$object_id_list type is made up of the following
fields:

- length - This field is set by the caller and indicates to the service the
number of entries in the object_id field.

- last_valid_entry - This field is set by the service and indicates to the
caller the last entry in the object_id field that contains a valid value.

- context - This field maintains context across multiple calls to the service.
It is set by the caller and the service.

- object_id - This field is set by the service and indicates to the caller the
object ids that identify objects in the object container.

As described above, the last_valid_entry field indicates the last entry in
the object_id field that contains a valid value. This field can have the
following values:

- If the value of this field is zero, the service did not return any object ids.
This means the object container does not hold any objects. A subsequent
call to the service would not return additional object ids.

- If the value is non-zero and is less than the maximum number of entries,
the service returned the object ids that identify all the objects in the object
container. A subsequent call to the service would not return additional
object ids.

- If the value is non-zero and is equal to the maximum number of entries,
the service may have returned the object ids that identify all the objects
in the object container. The caller must examine the status returned by
the service to determine if all the object ids were returned. If the status
returned was status$_no_more_info, the service returned all the object ids
and a subsequent call to the service would not return additional object ids.
If the status returned was status$_normal, the service did not return all
the object ids and a subsequent call to the service might return additional
object ids.

Note that the service might return additional object ids. At the time the
call completed, the service may have found more objects and therefore
more object ids than could be returned. Between the time the first call

- completes and a subsequent call is made, the objects could be deleted. The

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_objcon_information

subsequent call would then return a status of status$_no_more_info and
the last_valid_entry field would have a value of zero.

As described above, the context field maintains context across multiple
calls to the service. The context field can have the following values:

- zero - When the context field is zéro, the service attempts to set entries
in the object_id field beginning with the object id of the first object found
in the object container.

- nonzero - When the context field is nonzero, the service attempts to set
entries in the object_id field beginning with the object id of the next object
found in the object container.

For the initial call, the caller sets the value of the context field to 0. For
subsequent calls when additional object ids can be returned, the caller
should not modify the value of the context field.

Logical names are returned in the e$c_logical_name_list item. This item
is of type e$logical_name_list. The e$logical_name_list type is made up of
the following fields:

- length - This field is set by the caller and indicates to the service the
number of entries in the logical name field.

- last_valid_entry - This field is set by the service and indicates to the
caller the last entry in the logical name field that contains a valid value.

- context - This field maintains context across multiple calls to the service.
It is set by the caller and the service.

- logical_name - This field is set by the service and indicates to the caller
the logical names in the object container’s logical name table.

The use of the last_valid_entry and the context fields is similar as
described for the object id list and is not described.

Note that the caller can request object ids and logical names in the same
item list. If more information can be returned for either the object id
list or the logical name list, the status returned is status$_normal. If no
more information can be returned for either list, the status returned is
status$_no_more_info. In both cases, the caller should examine the last_
valid_entry in each list to determine the number of entries, if any, were
returned.

ARGUMENTS object_container_id
Supplies the object id of the object container for which information
is returned. The object id identifies either a container directory or a
container.

item_list

Supplies the item list identifying the information the service should
return. .

1-11

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$get_objcon_information

code pointer type

action

e$c_object id_list eS$object_id_list

e$c_logical_name_]ist e$logical_name_list

Returns a list of object ids that identify the
objects in the object container.

Returns a list of logical names contained in the
object container’s logical name table.

RETURN
VALUES

status$_normal

status$_no_more_info

status$_invalid_object_id

status$_object_type__
mismatch

1-12

normal, successful completion. The object container
was found and some of the object ids or logical
names were returned. A subsequent call to this
service may return additional information.

normal, successful completion. The aobject container
was found and all of the object ids or logical names
were returned. A subsequent call to this service will
not return additional information.

invalid object id.

the object type of the specified object container was -
not a container directory or container.

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$get object information

os$get_object_information

(

IN object_id : e$object_id;
IN item_list : POINTER e$item_list type

) RETURNS status;

DESCRIPTION The os$get_object_information service returns information about the
spemﬁed object. The information is control information about the object
and is general for all objects.

ARGUMENTS object id
Supplies the object id of the object for which information is returned.
item_list
Supplies the item list identifying the information the service should
return.
code pointer type action
e$c_painter_count integer Returns the number of outstanding pointers to
the object.
e$c_object_id_count integer Returns the number of object ids that identify the
' object.
e$c_level e$level Returns the level of visibility of the object. The
level can be e$c_process_level, e$c_job_level,
or e$c_system_level.
e$c_object_type name string Returns the object type name of the object.
e$c_otd_id e$object_id Returns the object id of the object’s OTD.
e$c_object_container_id e$object_id Returns the object id of the object's object
_ container. This object id identifies either a
» ' container directory or a container. This field is
valid only if the object’s principal id has not been
deleted. See e$c_object_state.
e$c_principal_object_id e$object_id Returns the object id of the object’s principal id.

e$c_nonpaged_pool_charge

e$c_paged_pool_charge

e$c_name

integer

integer

varying_string

This field is valid only if the object’s principal id
has not been deleted. See e$c_object_state.
Returns the amount of nonpaged pool charged

when the object was inserted into its object
container.

Returns the amount of paged pool charged when
the object was inserted into its object confainer.

Returns the object’'s name. This field is valid
only if the object’s principal id has not been
deleted. See e$c_object_state.

1-13

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_object_information

code pointer type action

e$c_owner e$identifier Returns the object’s owner.

e$c_acl e$access_control_lfist Returns the object’s access contral list.
e$c_allocation_object_id e$object_id Returns the object id of the object’s allocation

e$c_mode

e$c_object_state

e$c_oid_object_container_id

e$c_oid_level

e$c_oid_object_id_type

k$processor_made

set of e$object_étate

e$object_id

~ eSlevel

e$object _id_type

object. This field is valid only if the object is
allocated. See e$c_object_state.

Returns the processor mode of the object. The
mode of the object can be k$c_user or k$c_
kernel.

Returns information about the current state of the

- object. The states are: e$c_transfer_inhibit —

the object cannot be transferred. e$c_reference_
inhibit — reference ids cannot be created to
identify the object. e$c_temporary — the object
has been marked as temporary. e$c_dispatcher_
object — the object has a kernel dispatcher
object. This allows the object to be waited on.
e$c_allocated — the object is allocated. e$c_
principal_id_deleted — the principal id of the
object has been deleted. e$c_transferred — the
object has been transferred.

Returns the object id of the object container
through which the object is identified by the
specified object id.

Returns the level of visibility of the object when
identified by the specified object.id. The level
can be e$c_process_level, e$c_job_level, or
a$c_system_level.

Returns the type of object id. The type of id can
be e$c_principal_id or e$c_reference_id.

RETURN

VALUES status$_normal

status$_invalid_object_id

1-14

normal, successful completion.
invalid object id.

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$get_otd_information

os$get _otd_information

(
IN otd_id : e$object_id;
IN item_list : POINTER e$item_list_type;

) RETURNS status;

DESCRIPTION The os$get_otd_information service returns information about the specified
object.

ARGUMENTS otd_id
Supplies the object id of the otd object for which information is returned.
item_list
Supplies the item list identifying the information the service should
return.

code pointer type action

e$c_object_type_name string Returns the name of the object type described

by the OTD.
e$c_object_count integer , Returns the count of the number of objects of
’ this type.
e$c_waitable boolean Returns a value of true if objects of the typs

e$c_create_disable

described by the OTD can be waited on.
Returns a value of false if objects cannot be
waited on.

boolean Returns the state of the create disable flag. If
the value is false, objects of this type can be
created. If the value is true, objects of this type
cannot be created.

RETURN
VALUES

status$_normal normal, successful completion.

status$_invalid_object id invalid object id.

status$_object_type_ the object type of the specified object was not an otd.
mismatch

1-15

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$mark_temporary

os$mark_temporary

(

IN object_id : e$object id;
) RETURNS status;

DESCRIPTION

The os$mark_temporary service marks the specified object as temporary.

This service is used to cause the principal id of an object to be deleted
when all reference ids to the object have been deleted. If the principal id
has already been deleted, the last deleted reference id causes the object to
be deleted. - .

Only job and system level objects can be marked as temporary.

Container directories and containers cannot be marked as temporary.

ARGUMENTS

object _id
Supplies the object id of the object to mark as temporary.

RETURN
VALUES

1-16

status$_normal normal, successful completion.
status$_invalid_object_id invalid object id.
status$_invalid_object_level the object is a process level abject.
status$_already_temporary the object is already temporary.
status$_temporary_not_ the object cannot be marked as temporary.
allowed

DIGITAL - Confidential and Proprletary Restricted Distribution
os$set_object_name

os$set_object_name

(|

IN object_id : e$object_id;
IN name : string (*);

) RETURNS status;

DESCRIPTION The os$set_object_name service sets the specified object’s name and inserts
the name in the object’s object container object name table.

The name of an object can be set only if the principal id of the object
exists.

ARGUMENTS object id
Supplies the object id of the object whose name is set.

name
Supples the name that the object name’s name is set to.

RETURN tatus$ I l sful leti
- status$_norma normal, successful completion.
VALUES status$_invalid_object_id invalid object id.
status$_duplicate_cbject object found having the same mode, type, and name.

117

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$transfer_mark_temporary

os$transfer_mark_temporary

(

IN container_id : e$object _id;
IN delete : boolean = false;

IN OUT object_id : e$object_id;
) RETURNS status;

DESCRIPTION

The os$transfer_mark_temporary service transfers the object along with
its name to a more visible container and marks the object as temporary.

When an object is transferred to the target container, it is possible that an
object already exists having the same name, object type, and mode. If a
duplicate object does exit, the caller can specify the action to perform. If
the action is not to delete the object specified by the caller, the service does
not transfer the object and returns an error status. Note that the object
id is unchanged. If the action is to delete the object, the service creates

a reference id to the already existing object, deletes.the object id of the
object specified by the caller, and returns the reference id to the caller.
The reference id is returned via the object_id parameter.

If a duplicate object does not exist, the service transfers the object to
the target container, creates a reference id to the object, and returns the
reference id to the caller. The reference id is returned via the object_id

- parameter.

The object cannot be transferred if any one of the following conditions are
true:

- the object has reference ids. This means that the object id specified by
the object_id parameter is the principal id of the object. - the object is
not allowed to be transferred. - an object having the same name, type,
and mode already exists in the target container and the delete action was
specified as false. '

Container directories and containers cannot be transferred and marked as
temporary.

ARGUMENTS

1-18

container_id
Supplies the object id of the container into which the object is transferred.

delete

Supplies the action to perform if a duplicate object is found in the
container. If the value is false, the service does not transfer the specified
object and returns an error status. If the value is true, the service creates
a reference id to the already existing object, deletes the object specified
by the caller, and returns the reference id to the caller. If a value is not
specified, a value of false is assumed.

DIGITAL - Confidential and Proprietary - Restricted Distribution

object_id

os$transfer_mark_temporary

Supplies the object id of the object that is transfered and marked
temporary. This object id must be the object’s principal id. Returns the
reference id of the temporary object.

5 ——

RETURN
VALUES

status$_normal
status$_invalid_object _id
status$_invalid_container_id

status$_object_type_
mismatch

status$_object_already_temp

status$_temporary_not_
allowed

status$_duplicate_temporary

status$_duplicate_not_
temporary

status$_invalid_target_level

status$_object_reference_ids

status$_invalid_object_id_
count

normal, successful completion.
invalid object id.
invalid container id.

the object type of the specified container was not a
container.

the object is already temporary.
the object cannot be marked as temporary.

a duplicate object exists in the target container and is
temporary.

a duplicate object exists in the target container and is
not temporary.

the level of the target container is not more visible
than the original container.

the object id has reference ids.
the object id count of the specified object is not 1.

1-19

DIGITAL - Confidential and Proprletary Restricted Distribution
os$translate_object_name

os$translate_object name

(
IN object_container_id : e$object_id = DEFAULT

IN name : string (*);

IN object_type_name : string (*);
IN case_sensitive : boolean = true;
OUT object_id : e$object _id;

) RETURNS status;

DESCRIPTION The os$translate_object_name service searches the specified object
container for an object having the specified object name and object type
name. If an object is found, the service returns the object id of the object.
The object id is used as input to other services to identify the object that
the service is to operate on.

The service locates the object name using one of two search methods as
specified by the case_sensitive parameter. If the value is false, the service
performs a case blind search. If the value is true, the service performs a
case sensitive search. '

A case blind search locates the first object name whose uppercase
representation matches the uppercase representation of the object name
specified by the caller. Multiple object names in the object container may
match but only the first object name found is matched.

A case sensitive search locates the object name whose name exactly
matches the object name specified by the caller. Only one object name can
match.

The service matches the object type name using a case sensitive search.

The caller can optionally specify the object container parameter. If the
parameter is not specified, the service searches the object name tables of
the process, job, and system container directories. If a match is found,
the object id that identifies the object is returned to the caller. If the
parameter is specified, the 'service searches the object name table of the
specified object container.

If the previous mode of the caller is user, the service tries to match a user
mode object having the specified name and object type name in the target
object container. If a name is found, the object id of the user mode object
is returned to the caller. If a name is not found, the service tries to match
a kernel mode object with the same search criteria. If a name is found, the
object id of the kernel mode object is returned to the caller.

ARGUMENTS object container_ id

Supphes the name of the object container whose object name table
is searched. The object id identifies either a container directory or a
container.

1-20

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$translate_object_name

name
Supplies the name of the object to find.

object_type name
Supplies the object type name of the object to find.

case_sensitive

Supplies the search method used to locate the object name. A value
of false indicates a case blind search. A value of true indicates a case
sensitive search. o

object id
Returns the object id of the matching object.

RETURN

© status$_normal normal, successful completion.
VALUES P

status$_invalid_name_length length of the object name or object type name was
not valid.

status$_invalid_object_type invalid object type specified by the object type name.

status$_invalid_object_id the abject id of the object container is invalid.
status$_object_type_ the object specified by the object container id was
mismatch not a container directory or a container.
status$_object_name_not_ object name not found.

found

1-21

2

Logical Name System Services

2-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_logical name

os$create_logical name

(

IN object_container_id : e$object_id;

IN logical_name : string (*);

IN supersede : boolean = true;

IN logical_name_attributes : SET e$lognam -attributes [..] =[];
IN OUT equivalence_name_list : e$equ1valence name_list;

) RETURNS status;

DESCRIPTION The os$create_logical_name service creates the specified logical name in
, the specified object container.

Before the service creates the logical name, it performs a case sensitive
search for the logical name in the object container. If a logical name is not
found, the service creates the logical name. If a logical name is found, the
service takes the action specified by the supersede parameter. If a value of
false is specified, the logical name specified by the caller is not created and
the service fails. If a value of true is specified, the logical name that was
found is deleted and the logical name specified by the caller is created.

Logical names and equivalence names contain 1-255 characters. The
characters that form the name can be any character in the character set.

A logical name can have 1-128 equivalence names.

Equivalence names are specified in the equivalence_name_list parameter.
This parameter is of type e$equivalence_name_list. The e$equivalence_
name_list type is made up of the following fields:

- length - This field is set by the caller and indicates to the service the
number of entries in the equivalence_name field.

- last_valid_entry - This field is set by thé caller and indicates to the
service how many valid entries are in the equivalence_name field.

- context - This field is set by the service when an entry in the equivalence_
name field is invalid. The context field indicates to the caller the entry
that is invalid.

- eqmvalence name - This field is set by the caller and indicates to the
service the equivalence name or names to assocalate with the specified
logical name.

A logical name can have attributes associated with it. An attribute denotes
a characteristic of the logical name. The following logical name attributes
are defined:

- confine - The confine attribute indicates that the logical name should not
be transferred when an object container is transferred. If the logical name
has the confine attribute, the object container transfer service deletes the
logical name as the transfer is performed. The caller gives the logical
name the confine attribute by setting e$c_confine_lognam_attr in the
logical_name_attributes parameter. If the confine attribute is not given to
the logical name, the logical name is transferred.

2-2

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_logical_name

- noalias - The noalias attribute indicates to os$create_logical_name that
the logical name cannot be duplicated in the object container at an outer
access mode. If another logical name with the same name already exists
in the object container at an outer access mode and the caller of os$create_
logical_name specifies the noalias attribute, os$create_logical_name first
deletes the logical name at the outer access mode and then creates the
logical name at the inner access mode. The caller gives the logical name
the noalias attribute by setting e$c_noalias_lognam_attr in the logical_
name_attributes parameter. If the noalias attribute is not given to the
logical name, the logical name can have a logical name with the same
name at an outer access mode.

- noshow - The noshow attribute indicates to the caller of os$translate_
logical_name that the logical name should not be displayed. General
show logical name utilities examine this attribute to determine if the
logical name should be displayed. The caller gives the logical name the
noshow attribute by setting e$c_noshow_lognam_attr in the logical_name_
attributes parameter. If the noshow attribute is not given to the logical
name, the logical name can be displayed.

Each entry in the equivalence name list specifies an equivalence name
and the attributes to give to the equivalence name. An attribute denotes
a characteristic of the equivalence name. The following equivalence name
attributes are defined:

- concealed - The concealed attribute indicates to the caller of os$translate_
logical_name that the equivalence name should not be displayed. General
show logical name utilities examine this attribute to determine if the
equivalence name should be displayed. The caller gives the equivalence
name the concealed attribute by setting the e$c_concealed_eqvnam_attr
in the attributes field of the equivalence name entry. If the concealed
attribute is not given to the equivalence name, the equivalence name can
be displayed.

- terminal - The terminal attribute indicates to the caller of os$translate_
logical_name that the equivalence name should not be translated as if it
were a logical name. The caller gives the equivalence name the terminal
attribute by setting the e$c_terminal_eqvnam_attr in the attributes field
of the equivalence name entry. If the terminal attribute is not given to the
equivalence name, the equivalence name can be translated as if it were a
logical name.

¥

ARGUMENTS

object_container_id

Supplies the obJect id of the object container whose logical name table
the logical name is created in. The obJect id identifies either a container
directory or a container.

logical_name
Supplies the name of the logical name to create. The size of the name can
be 1 to 255 characters. Any character can be used in the logical name.

supersede

Supplies the action to perform if a matching logical name is found in the
object container’s logical name table.

logical name_atiributes
Supplies a set containing the attributes of the logical name.

2-3

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_logical_name

equivalence_name_list

Supplies the equivalence names associated with the logical name. Returns
in the context field the number of the entry that is invalid. If all entries
are valid, the value of the context field is 0.

—

RETURN
VALUES

24

status$_normal

status$_logical_name_
superseded

status$_invalid_object_id

status$_object_type_
mismatch

status$_invalid_name_length

status$_invalid_eqv_name_
count

status$_duplicate_logical_
name

status$_quota_exceeded

normal, successful completion. The logical name was
created.

normal, successful completion. The logical name was
created and a previously existing logical name with
the same name was deleted.

invalid object container id.

the object type of the specified object container was
not a container directory or container.

length of the logical name or the equivalence name
was not valid.

the count of the number of equivalence names was
invalid.

duplicate logical name was found.

quota was exceeded while trying to create the logical
name.)

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$delete_logical_name

os$delete logical name

(

IN object_container_id : e$object_id;
IN logical_name : string (*);

) RETURNS status;

DESCRIPTION The os$delete_logical_name service deletes the specified logical name from
i the specified object container.

The service performs a case sensitive search for the logical name in the
object container.

ARGUMENTS object container_id

Supplies the object id of the object container whose logical name table
is searched. The object id identifies either a container directory or a
container.

logical_name
Supplies the logical name to delete.

RETURN tatus$ i | ful leti
status$_norma normal, successful completion.

VALUES D Lo -
status$_invalid_object_id invalid object container id.
status$_object_type_ the object type of the specified object container was
mismatch not a container directory or container.
status$_invalid_name_length length of the logical name was not valid.
status$_logical_name_not_ logical name was not found.
found

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$translate_logical_name

os$translate_logical_name

(

IN object_container_id : e$object _id;

IN logical_name : string (*);

IN case_sensitive : boolean = true;

IN OUT equivalence_name_list : e$equivalence_name_list;

OUT logical_name_attributes : SET e$lognam_attributes [..] OPTIONAL;
) RETURNS status; ’

—
DESCRIPTION The os$translate_logical_name service searches the specified object

container for the specified logical name. If the logical name is found,
the service returns the logical name’s equivalence names.

The service locates the logical name in the object container using one of
two search methods as specified by the case_sensitive parameter. If the
value is false, the service performs a case blind search. If the value is
true, the service performs a case sensitive search.

A case blind search locates the first logical name whose uppercase
representation matches the uppercase representation of the logical name
specified by the caller. Multiple logical names in the object container may
match but only the first logical name found is matched. ‘

A case sensitive search locates the logical name whose name exactly
matches the logical name specified by the caller. Only one logical name in
the object container can match.

Equivalence names are returned in the equivalence_name_list parameter.
This parameter is of type e$equivalence_name_list. The e$equivalence_
name_list type is made up of the following fields:

- length - This field is set by the caller and indicates to the service the
number of entries in the equivalence_name field.

- last_valid_entry - This field is set by the service and indicates to the
caller the last entry in the equivalence_name field that contains a valid
value.

- context - This field maintains context across multiple calls to the service.
It is set by the caller and the service.

- equivalence_name - This field is set by the service and indicates to the
caller the equivalence name or names assocaiated with the logical name.

As described above, the last_valid_entry field indicates the last entry in
the equivalence_name field that contains a valid value. This field can have
the following values: :

- If the value of this field is zero, the service did not return any equivalence
names associated with the logical name. A subsequent call to the service
would not return additional equivalence names.

2-6

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$translate_logical name

- If the value is non-zero and is less than the maximum number of entries,
the service returned all the equivalence names associated with the logical
name. A subsequent call to the service would not return additional
equivalence names.

- If the value is non-zero and is equal to the maximum number of entries,
the service may have returned all the equivalence names associated with
the logical name. The caller must examine the status returned by the
service to determine if all the equivalence names were returned. If the
status returned was status$_no_more_info, the service returned all the
equivalence names and a subsequent call to the service would not return
additional equivalence names. If the status returned was status$_normal,
the service did not return all the equivalence names and a subsequent call
to the service would return additional equivalence names.

As described above, the context field maintains context across multiple
calls to the service. The context field can have the following values:

- zero - When the context field is zero, the service attempts to set entries
in the equivalence_name field beginning with the first equivalence name
associated with the logical name.

- nonzero - When the context field is nonzero, the service attempts to set
entries in the equivalence_name field beginning with the next equivalence
name associated with the logical name indicated by the value in the
context field.

For the initial call, the caller sets the value of the context field to 0. For
subsequent calls when additional equivalence names can be returned, the
caller should not modify the value of the context field.

Note, if multiple calls to the service are required to return all the
equivalence names, the logical name may be deleted in between the
calls.

e)

ARGUMENTS

object_container_id

Supplies the object id of the object container whose logical name table
is searched. The object id identifies either a container directory or a
container.

logical_name L
Supplies the name of the logical name to translate.

case_sensitive

Supplies the search method used to locate the logical name. A value
of false indicates a case blind search. A value of true indicates a case
sensitive search.

equivalence_name_list

Supplies (in the length field) the number of entries in the equivalence
name field. Supplies (in the context field) the context of the service.
Returns (in the last_valid_entry field) the last entry in the equivalence_
name field that contains a valid value. Returns (in the context field) the
context for the next call to the service. Returns (in the equivalence_name
field) some or all of the equivalence names associated with the logical
name.

27

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$translate_logical_name

\

logical_name_attributes
Returns a set containing the attributes of the logical name. See os$create_
logical_name for an explanation of the logical name attributes.

RETURN _ ,
VALUES status$_normal normal, successful completion. The logical name
was found and some of the equivalence names were
returned. A subsequent call to this service may
- return additional information.

status$_no_more_info " normal, successful completion. The logical name
was found and all of the equivalence names were
retumed. A subsequent call to this service will not
return additional information.

status$_invalid_object id invalid object container id.
status$_object_type_ the object type of the specified object container was
mismatch not a container directory or centainer.

status$_invalid_name_length length of the logical name was not valid.

status$_logical_name_not_ logical name was not found.
found .

2-8

3

Wait System Services

31

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$wait_multiple

os$wait_multiple

(

IN OUT object_id_list : e$object_id_list;

IN time_out : large_integer OPTIONAL;

IN wait_type : e$wait_type = e$c_wait_any;
OUT object_number : integer; -

) RETURNS return_status : status;

[P s e e S

DESCRIPTION

The os$wait_multiple service suspends the execution of the caller until
one or all of the specified objects become signalled or the specified time
interval expires.

The object ids that identify the objects to wait on are specified in the
object_id_list parameter. This parameter is of type e$object_id_list. The
e$object_id_list type is made up of the following fields:

- length - This field is set by the caller and indicates to the service the
number of entries in the object_id field.

- last_valid_entry - This field is set by the caller and indicates to the
service how many valid entries are in the object_id field.

- context - This field is set by the service when an entry in the object_id
field is invalid. The context field indicates to the caller the entry that is
invalid. :

- object_id - This field is set by the caller and indicates to the service the
object ids that identify the objects to wait on.

—

ARGUMENTS

3-2

object_id_list

Supplies the object ids that identify the objects to wait on. Returns in
the context field the number of the entry that is invalid. If all entries are
valid, the context is 0.

time_out
The amount of time in 100 nanosecond units that can expire before the
wait is timed out.

wait_type

Supplies the type of wait. If e$c_wait_any is specified, any object in the
object list that is signalled satisfies the wait. If e$c_wait_all is specified,
all objects in the object list must be signalled to satisfy the wait. If a value
is not specified, e$c_wait_any is assumed.

object_number
Returns the number of the object in the object id list that satisfied the
wait. If the wait times out, the object number is 0.

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$wait_multiple

RETURN
VALUES

status$_normal
status$_invalid_object_id
status$_invalid_object_count

status$_wait_not_supported
status$_wait_timeout

normal, successful completion.
invalid object id.

the count of the number of objects to wait on was
invalid.

wait not supported by the specified object.
wait was not satisfied before the time out period.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$wait_single ‘

os$wait_single

(

IN object_id : e$object_id;

IN time_out : large_integer OPTIONAL;
) RETURNS return_status : status;

DESCRIPTION The os$wait_single service suspends the execution of the caller until the
specified object becomes signalled or the specified time interval expires.

ARGUMENTS = object id
Supplies the object id that identifies the object to wait on.

time_out
The amount of time in 100 nanosecond units that can expire before the
wait is timed out.

RETURN tatus$ | | ful leti
status$_norma normal, successful completion.
VALUES SRS e e °
status$_invalid_object_id invalid object id.
status$_'_object_type_ object type specified does not match the object type
. mismatch of the object.
status$_wait_not_supported wait not supported by the specified object.
status$_wait_timeout wait was not satisfied before the time out period.

4

Event System Services

44

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$clear_event '

os$clear_event

(_
IN event_id : e$object_id;

OUT previous_state : boolean;

) RETURNS return_status : status;

DESCRIPTION The os$clear_event service clears the state of the specified event to not
signalled

ARGUMENTS event id
Supplies the object id of the event to clear.

previous_state

Returns the previous state of the event. A value of false indicates that the
state of the event was clear (not signalled). A value of true indicates that
the state of the event was set (signalled).

RETURN tatus$ | | ful leti
status$_norma normal, successful completion.
VALUES , R A
status$_invalid_object_id invalid object id.
status$_object_type_ object type specified does not match the object type

mismatch of the object.

4-2

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_event

os$create _event

(

OUT event_id : e$object_id;

IN object_parameters : e$object_parameters = DEFAULT;
IN autoclear_flag : boolean = false;

IN initial_state : boolean = false;

) RETURNS return_status : status;

DESCRIPTION

The os$create_event service creates an event object.

An event can have two states: clear and set. When an event is clear it

is not signalled. When an event is set it is signalled. Only an event that
has been signalled satisfies a wait. An event is signalled by calling os$set_
event.

The creator of an event can specify that the event is automatically cleared
when the event satisfies a wait. If multiple threads are waiting on the
event, only the first thread’s wait is satisfied; the remaining threads must

‘wait until the event is set again. If the object is created without automatic

clearing, the event remains set until explicitly cleared. If multiple threads
are waiting on the event, all the waits are satisfied. An event is cleared by
calling os$clear_event.

ARGUMENTS

event_id
Returns the object id of the created event.

object_parameters

Supplies the object container in which the object is inserted, the name of
the object, and the access control list (ACL) of the object. If this argument
is not supplied or if it is supplied but not all values in the object parameter
record are supplied, the service applies default values. The default object

container is the process private container, the default name is none, and
the default ACL is none.

autoclear_flag

Supplies the action taken when a wait on the event is satisfied. If the
value is false, the state of the event is not changed; otherwise, the state is
cleared. If this argument is not supplied, the state is not changed.

initial _state

Supphes the initial state of the event. If the value is false, the initial state
is cleared (not signalled); othermse, it is set (signalled). If this argument
is not supplied, the state is cleared.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_event

RETURN tatus$, I al ful leti
status$_norma normal, successful completion.

VALUES O o e S
status$_invalid_object_id invalid object id.
status$_object_type_ object type specified does not match the object type
mismatch of the object.
status$_invalid_object invalid object.
status$_duplicate_object duplicate object found in object container.

status$_object_container_full . object container full.

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$pulse_event

os$pulse_event

(

IN event_id : e$object _id;
OUT previous_state : boolean;
) RETURNS return_status : status;

DESCRIPTION

The os$pulse_event service sets the state of the specified event to
signalled, services all the threads waiting on the event, and clears the
state of the specified event to not signalled.

The service ignores the autoclear flag that was specified when the event
was created

ARGUMENTS

event_id
Supplies the object id of the event to clear.

previous_state

Returns the previous state of the event. A value of false indicates that the
state of the event was clear (not signalled). A value of true indicates that
the state of the event was set (signalled). ‘

RETURN
VALUES

status$_normal normal, successful completion.
status$_invalid_object_id invalid object id.

status$_object type_ object type specified does not match the object type
mismatch of the object.

5

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$read_event

os$read_event

(

IN event_id : e$object _id;

OUT state : boolean;

) RETURNS return_status : status;

DESCRIPTION The os$read_event service reads the state of the specified event.

ARGUMENTS event id
Supplies the object id of the event to read.

state

Returns the current state of the event. A value of false indicates that the
state of the event is clear (not signalled). A value of true indicates that
the state of the event is set (signalled).

RETURN status$ | al ful leti
us$_normal normal, successful completion.
VALUES gl P
status$_invalid_object_id invalid object id.
status$_object_type_ object type specified does not match the object type
mismatch of the object.

DIGITAL - Confidential and Proprietary - Restricted Distribution
i os$set_event

os$set event

(.

IN event_id : e$object_id;

OUT previous_state : boolean;

) RETURNS return_status : status;

DESCRIPTION The os$set_event service sets the state of the specified event to signalled.

ARGUMENTS event id
Supplies the object id of the event to set.

previous_state

Returns the previous state of the event. A value of false indicates that the
state of the event was clear (not signalled). A value of true indicates that
the state of the event was set (signalled).

RETURN tatus$_normal ! ful completi
status$_normal normal, successful completion.
VALUES g P
, status$_invalid_object_id invalid object id.
status$_object_type_ object type specified does not match the object type
mismatch of the object.

47

5

Semaphore System Services

5-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_semaphore

os$create_semaphore

(

OUT semaphore_id : e$object_id;

IN object_parameters : e$object_parameters;
IN initial_count : integer;

IN maximum_count : integer;

) RETURNS status;

DESCRIPTION

This os$create_semaphore service creates a semaphore object.

(The following description is brought to you by the Kernel.) A semaphore
object is used to control access to a resource but not necessarily in a
mutually exclusive fashion. A semaphore acts as a gate through which a
variable number of threads can pass concurrently, up to a specified limit.
The gate is open (signaled state) as long as there are resources available.
When the number of resources that may be concurrently in use has been
exhausted, the gate is closed (not-signaled state). The gating mechanism
of a semaphore is implemented by a counter. Waiting on a semaphore
waits until a resource is available and decrements the count. Releasing
the semaphore increments the count and allows another thread to pass -
through the gate. :

ARGUMENTS

5-2

semaphore_id
Returns the object id of the created semaphore.

object_parameters

Supplies the object container in which the object is inserted, the name of
the object, and the access control list (ACL) of the object. If this argument
is not supplied or if it is supplied but not all values in the object parameter
record are supplied, the service applies default values. The default object

container is the process private container, the default name is none, and
the default ACL is none.

initial _count
Supplies the initial count of the semaphore. The intitial count must be
less than or equal to the maximum count.

maximum_count

Supplies the maximum count the semaphore can attain. The maximum
count must be greater than zero.

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_semaphore

RETURN
VALUES

status$_normal
status$_invalid_object id

status$_object_type_
mismatch

status$_duplicate_object
status$_object_container_full
status$_invalid_initial_count

status$_invalid_maximum_
count

normal, successful completion.
invalid object id.

object type specified does not match the object type
of the object. ;

duplicate object found in object container.
object container full.

. the value specified as the initial count was greater

than the maximum.

the value specified as the maximum count was not
greater than zero.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$read_semaphore

os$read_semaphore

(

IN semaphore_id : e$object _id;
OUT count : integer;

) RETURNS status;

DESCRIPTION The os$read_semaphore service reads the count of the specified semaphore.

ARGUMENTS semaphore_id
Supplies the object id of the semaphore object to read.

count
Returns the count of the semaphore.

RETURN tatus$ l | ful leti
status$_norma normal, successful completion.
VALUES e e i
status$_invalid_object _id invalid object id.
status$_object_type_ object type specified does not match the object type
mismatch of the object. '

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$release_semaphore

os$release_semaphore

(

IN semaphore_id : e$object_id;
IN release_count : integer = 1;
OUT previous_count : integer;
) RETURNS status;

DESCRIPTION

The os$release_semaphore service releases the specified semaphore. This
action causes the semaphore count to be incremented by the specified
count. If the count was 0 before it was incremented, the the state of the
semaphore is set to signaled.

The release_count argument specifies the value that is added to the
semaphore count. If a value for this argument is not specified, the
semaphore count is incremented by 1. The resulting semaphore count
must not exceed the maximum count of the semaphore.

ARGUMENTS

semaphore_id
Supplies the object id of the semaphore object to release.

release_count
Supplies the value that is added to the semaphore count.

previous_count
Returns the count of the semaphore before the count was incremented.

RETURN
VALUES

status$_normal normal, successful completion.
status$_invalid_object_id invalid object id.

status$_object_type_ object type specified does not match the object type
mismatch of the object.

status$_invalid_release the release of the semaphore caused the the count

to exceed the maximum count.

5

6

Interval System Services

6-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$cancel_timer

os$cancel_timer

(

IN timer_id : e$object _id;
OUT timer_state : boolean;
) RETURNS status;

DESCRIPTION Cancels a timer object. If a timer object has been set with an AST, only
the thread that originally set the timer may cancel it.

ARGUMENTS timer_id
supplies the object id of the timer object

timer_state

returns true if the timer was currently active, false otherwise

RETURN tatus$ | th i leted without
status$_normal e service completed without errors
VALUES _ " o
status$_access_violation a specified parameter is not accessable
status$_invalid_cancel_timer the calling thread is not the thread that set the timer
with an AST
others object id translation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_timer

os$create timer

(

OUT timer_id : e$object_id;

IN object_parameters : e$object_parameters = DEFAULT;
) RETURNS status;

DESCRIPTION Creates and initializes a timer object. The default object container is
process private

ARGUMENTS timer_id
returns the object id of the resulting timer obJect

object_parameters
supplies the object type independent parameters governing the creation of
the timer object

\lezg gg status$_normal the service completed without errors
status$_access_violation a specified parameter is not accessable
statu$$_duplicate-_object a timer with the same name already exists in the

specified container
others object id translation errors

L

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$read_timer

os$read timer

(

IN timer_id : e$object _id;
OUT timer_state : boolean;
) RETURNS status;

DESCRIPTION reads the signaled state of a timer object

ARGUMENTS timer_id
supplies the object id of the timer object

timer_state
returns true if the timer is in the signaled state , false otherwise

RETURN tatus$ | th i leted without
. status$_normal e service complsted without errors
VALUES . " ,
status$_access_violation a specified parameter is not accessable
others object id translation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_timer

osPset timer

(

IN timer_id : e$object_id;

IN due_time : large_integer;

IN ast_procedure : k$normal_ast_routine = NIL;
IN ast_parameter : POINTER anytype CONFORM = NIL;
) RETURNS status;

DESCRIPTION Sets a timer to expire in due_time. Timers are waitable objects. Waits are
: satisfied when the timer expires.

When timers are used with ASTs, the system_value parameter is the
current system time in absolute UTC.

ARGUMENTS timer_id
‘ supplies the object id of the timer to set

due_time

supphes the number of 100ns units of time that should elapse before

the timer expires if due_time is negative, the timer is "relative”, or the
timer will expire (-due_time) units of time after the set timer call is made.
Positive values of due_time implys absolute time in UTC.

ast_procedure \
supplies the procedure that should be called when the timer expires. If
defaulted, no procedure is called. If the previous mode is k$c_user, then
the procedure is called as a user mode ast procedure, otherwise, it is called
as a kernel mode ast procedure.

ast_parameter
supplies the context passed to the ast procedure If the ast procedure is
defaulted, then this parameter is ignored.

—
RETURN status$ { th i | t d without
us$_normal - e service completed without errors
VALUES - o S omee
status$_access_violation a specified parameter is not accessable

status$_invalid_cancel_timer the timer is set with an AST, and the calling thread
is not the thread that originally set the timer with an
AST

others object id translation errors

I

7

Process System Services

7-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_exit_handler_process

os$create_exit_handler_process

(

IN handler_procedure : k$normal_ast_routine;

IN handler_context : POINTER anytype CONFORM = NIL;

IN handler_placement : e$exit_handler_placement = e$c_beginning_of _
list; ‘

OUT handler_id : e$exit_handler_id;

) RETURNS status;

DESCRIPTION This service is used to create a process level exit handler. Exit handlers
are called as user mode AST routines during exit. Process level exit
handlers are processed when a the last thread in a process calls os$exit_
thread(), and after all of the thread level exit handlers have been
processed. The exit handler list head stored in the exiting threads PCR
is processed in order. Each handler found in the list is removed and
then called as an AST routine. This interface supports placement of an
exit handler at either the beginning or end of the exit handler list head.
Placement is under the control of the handler_placement parameter which
defaults to beginning of the list. Once created, a handler is assigned

‘a handler_id. This return value may be used to delete an existing exit
handler. |

ARGUMENTS handler_procedure

Supplies the exit handler procedure to be executed when this handler is
processed

handler_context

Supplies a parameter to be passed to the handler_procedure when the
handler is processed.

handler_placement

Supplies exit handler placement control.

handler_id
Returns the handler ID of the exit handler. This argument is only valid if
the service returns with status$_normal.

status$_normal the service completed without errors

VALUES . " . .
status$_access_violation a specified parameter is not accessible
status$_not_supported an attempt to call this service from a system thread

was made, or the service was called after kernel
mode exit processing has started.

7-2

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_exit_handler_thread

os$create exit handler thread

(

IN handler_procedure : k$normal_ast_routine;
IN handler_context : POINTER anytype CONFORM = NIL;
IN handler_placement : e$exit_handler_placement = e$c >_beginning_of _

list;

OUT handler_id : e$exit handler id;
) RETURNS status;

DESCRIPTION

This service is used to create a thread level exit handler. Exit handlers
are called as user mode AST routines during exit. Thread level exit
handlers are processed when a thread calls os$exit_thread(). The exit
handler list head stored in the exiting threads TCR is processed in order.
Each handler found in the list is removed and then called as an AST
routine. This interface supports placement of an exit handler at either

the beginning or end of the exit handler list head. Placement is under the
control of the handler_placement parameter which defaults to beginning

of the list. Once created, a handler is assigned a handler_id. This return
value may be used to delete an existing exit handler.

ARGUMENTS

handler_procedure
Supplies the exit handler procedure to be executed when this handler is
processed

handler_context

Supplies a parameter to be passed to the handler_procedure when the
handler is processed.

handler_placement
Supplies exit handler placement control.

handler_id
Returns the handler ID of the created exit handler. This argument is only
valid if the service returns with status$_normal.

RETURN
VALUES

status$_normal the service completed without errors
status$_access_violation a specified parameter is not accessible

status$_not_supported an attempt to call this service from a system thread
was made, or the service was called after kernel
mode exit processing has started.

7-3

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_exit_status

os$create exit_status

(

OUT exit_status_id : e$object_id;

IN object_parameters : e$object_parameters = DEFAULT;
) RETURNS status;

DESCRIPTION Create and initialize an exit status object. If the container id stored in
object parameters is defaulted, then process private is assumed.

ARGUMENTS exit_status id

object id of created exit status object

object_parameters
the object type independant parameters of the exit status object

-RETURN tatus$ I th i leted without
. status$_normal e service completed without errors
VALUES . " .
status$_access_violation a specified parameter is not accessable
status$_duplicate_object an exit status object with the same name aiready

exists in the specified container
others object id translation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_job

os$create_job

(

OUT job_id : e$object id;

IN object_parameters : e$object_parameters = DEFAULT;

IN job_record : e$job_record = DEFAULT;

IN job_initial_container : e$object_id = DEFAULT;

IN job_allocation_list : POINTER e$object id_list = NIL;

IN process_object_parameters : e$object_parameters = DEFAULT;

IN process_record : e$process_record; |

IN process_public_container : e$object_id = DEFAULT;

IN process_private_container : e$object_id = DEFAULT;

IN process_allocation_list : POINTER e$object _id_list = NIL;

IN process_data_block : POINTER quadword_data(*) CONFORM = NIL;
IN thread_object_parameters : e$object_parameters = DEFAULT;

IN thread_record : e$thread _record = DEFAULT;

IN thread_allocation_list : POINTER e$object_id_list = NIL;

 IN thread_data_block : POINTER quadword _data(*) = NIL;

IN thread_immediate_parameter1 : POINTER anytype CONFORM = NIL;
IN thread_immediate_parameter2 : POINTER anytype CONFORM = NIL;
IN thread_status : e$object_id = DEFAULT;

) RETURNS status;

DESCRIPTION Create a job, process, and thread object as specified by the parameters.

ARGUMENTS job id
Returns the object ID of the resulting job object

object_parameters
Supplies the object type independent parameters for the job object the
ACL and container ID are ignored

job_record
Supplies the attributes of the job being created. If not present, then values
are obtained from current user object

job_initial _container

Supplies the _]ob level object container to be transfered into the job level
container directory for this job. If not present then container directory
comes up empty

. 7-5

DIGITAL - Confidehtial and Proprietary - Restricted Distribution

os$create_job

7-6

job_allocation__ Ilst

Supplies the obJects to be allocated to the Job object. If not present then no
objects are allocated to the job

process_object_parameters

Supplies the object type independent parameters for the process object the
ACL and container ID are ignored

process_record
Supplies the attributes of the process being created

process_public_container

Supplies the process level public container to be transfered into the process
level container directory for the process. If not present then the container

' comes up empty.

process_private_container

Supplies the process level private container to be transfered into the
process level container directory for the process. If not present then
container comes up empty.

process_allocation_list

Supplies the objects to be allocated to the process object. If not present
then no objects are allocated to the process

process_data block
Supplies an arbltrary data block passed to the process

thread _object_parameters

Supplies the object type independent parameters for the thread object the
ACL and Container ID are ignored

thread_record
Supplies the attributes of the thread being created

thread allocation list

Supplies ‘the objects to be allocated to the thread obJect If not present
then no objects are allocated to the thread

thread_data_block

Supplies an arbitrary data block passed to initial thread. Pointer in TCR,
if pointer is NIL, then no data block was passed

thread_immediate_parameter1
Supplies an immediate parameter passed to thread through TCR

thread_immediate_parameter2
Supplies an immediate parameter passed to thread through TCR

thread_status

Supplies an exit status object to be bound to the initial thread. If not
present then the thread is created without an exit status object

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_job

RETURN
VALUES

status$_normal
status$_access_violation
status$_job_name_exists

status$_bad_job_record

status$_bad_job_init_
container

status$_bad_job_allocation

status$_process_name_
exists

status$_bad_process_record

status$_bad_prc_pub_
container

status$_bad_pre_priv_
container

status$_bad_process_
allocation

status$_thread_name_exists

status$_bad_thread_record

status$_bad_thread_
allocation

status$_bad_process_exit_
status

status$_bad_thread_exit_
status

status$_quota_exceeded

the service completed without errors
a specified parameter is not accessable

a job object already exists with the name specified in
the job object parameters

an invalid job record was specified

the specfied job initial container can not be transfered
to the new job

an invalid job allocation list was specified

a process cobject already exists with the name
specified in the process object parameters

an invalid process record was specified

the specified process public container can not be
transfered to the new process

the specified process private container can not be
transfered to the new process

an invalid process allocation list was specified

a thread object already exists with the name specified
in the thread object parameters

an invalid thread record was specified
an invalid thread allocation list was specified

an error occured translating the object id of the
specified process exit status object

an error occured translating the object id of the
specified thread exit status object

not enough quota exists to complete the service

7-7

DIGITAL - Confidential and Proprletary Restricted Distribution
os$create _process

os$create process

(

OUT process_id : e$object_id;

IN object_parameters : e$object_parameters = DEFAULT;

IN process_record : e$process_record;

IN process_public_container : e$object_id = DEFAULT;

IN process_private _container : e$object id = DEFAULT;

IN process_allocation_list : POINTER e$object_id_list = NIL;

IN process _data_block : POINTER quadword_data(*) CONFORM = NIL;
IN thread_object_parameters : e$object_parameters = DEFAULT;

IN thread _record : e$thread record = DEFAULT;

IN thread_allocation_list : POINTER e$object_id_list = NIL;

IN thread_data_block : POINTER quadword_data(*) CONFORM = NIL;
IN thread_immediate _parameter1 : POINTER anytype CONFORM = NIL;
IN thread _immediate_parameter2 : POINTER anytype CONFORM = NIL;
IN thread_status : e$object_id = DEFAULT;

) RETURNS STATUS;

DESCRIPTION Create a Process and thread object as specified by the parameters. Always

results in the creation of a sub-process

ARGUMENTS process_id
. Returns the object ID of the resulting process object

object_parameters

Supplies the object type independent parameters for the process object the

ACL and container ID are ignored

process_record
Supplies the attributes of the process being created

process_public_container

Supplies the process level public container to be transfered into the process
level container directory for the process. If not present then the container

comes up empty.

process_private_container

Supplies the process level private container to be transfered into the
process level container directory for the process. If not present then
container comes up empty.

process_allocation_list
Supplies the objects to be allocated to the process object. If not present
then no objects are allocated to the process

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_process

process_data_block
Supplies an arbitrary data block passed to the process

thread_object_parameters
Supplies the object type independent parameters for the thread object the
ACL and Container ID are ignored

thread_record
Supplies the attributes of the thread being created

thread_allocation_list

Supplies the objects to be e allocated to the thread object. If not present
then no objects are allocated to the thread

thread_data_block
Supplies an arbltrary data block passed to 1mt1a1 thread. Pointer in TCR,
if pointer is NIL, then no data block was passed

thread_immediate _parameter1
Supplies an immediate parameter passed to thread through TCR

thread_immediate_parameter2

Supplies an immediate parameter passed to thread through TCR

thread_status

Supplies an exit status object to be bound to the initial thread. If not
present then the thread is created without an exit status object

RETURN
VALUES

7-9

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_process

7-10

status$_normal
status$_access_violation

status$_process_name_
exists

status$_bad_process_record

status$_bad_prc_pub_
container

status$_bad_prc_priv_
container

status$_bad_process_
allocation

status$_thread_name_exists

status$_bad_thread_record

status$_bad_thread
allocation

status$_bad_process_exit
status

status$_bad_thread_exit_
status

status$_quota_exceeded

the service completed without errors
a specified parameter is not accessable

a process object already exists with the name
specified in the process object parameters

an invalid process record was specified

the specified process public container can not be
transfered to the new process

the specified process private container can not be
transfered to the new process

an invalid process allocation list was specified

a thread object already exists with the name specified
in the thread object parameters

an invalid thread record was specified
an invalid thread aliocation list was specified

an error occured translating the object id of the
specified process exit status object

an-error occured translating the object id of the
specified thread exit status object

not enough quota exists to complete the service

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_thread

os$create_thread

(

OUT thread_id : e$object_id;

IN object_parameters : e$object_parameters = DEFAULT;

IN thread_procedure : e$thread_entry_point;

IN thread_record : e$thread record = DEFAULT:;

IN thread_allocation_list : POINTER e$object_id_list = NIL;

IN thread _data_block : POINTER quadword_data(*) CONFORM = NIL;
IN thread_immediate_parameter1 : POINTER anytype CONFORM = NIL;
IN thread_immediate_parameter2 : POINTER anytype CONFORM = NIL;
IN thread_status : e$object_id = DEFAULT;

) RETURNS STATUS;

DESCRIPTION Create and additional thread object as specified by the parameters.

ARGUMENTS thread id
T Returns the object ID of the resulting process object

object_parameters
Supplies the object type independent parameters for the thread object the
ACL and container ID are ignored

thread procedure
Supplies the entrypoint for the new thread

thread_record
Supplies the attributes of the thread being created

thread_allocation_list
Supplies the objects to be allocated to the thread object. If not present
then no objects are allocated to the thread

thread_data_block

Supplies an arbitrary data block passed to initial thread. Pointer in TCR,
if pointer is NIL, then no data block was passed

thread _immediate_parameter1
Supplies an immediate parameter passed to thread through TCR

thread _immediate_parameter2
Supplies an immediate parameter passed to thread through TCR

thread_status

Supplies an exit status object to be bound to the initial thread. If not
present then the thread is created without an exit status object

7-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_thread

RETURN

V ALUES status$_normal the service completed without errors
status$_access_violation. a specified parameter is not accessable

status$_thread_name_exists a thread object already exists with the name specified
in the thread object parameters

status$_bad_thread_record an invalid thread record was specified
status$_bad_thread_ an invalid thread allocation list was specified
allocation v

status$_bad_thread_exit_ an error occured translating the object id of the
status specified thread exit status object
status$_quota_exceeded not enough quota exists to complete the service

7-12

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_user

os$create_user

(

OUT user_id : e$object _id;

IN object_parameters : e$object_parameters = DEFAULT;

IN user_record : e$user_record;

IN user_allocation_list : POINTER e$object _id_list = NIL;

IN job_object_parameters : e$object_parameters = DEFA ULT;

IN job_record : e$job_record = DEFAULT;

IN job_initial_container : e$object_id = DEFAULT;

IN job_allocation_list : POINTER e$object id_list = NIL;

IN process_object_parameters : e$object_parameters = DEFAULT;

IN process_record : e$process_record;

IN process_public_container : e$object_id = DEFAULT;

IN process_private_container : e$object_id = DEFAULT;

IN process_allocation_list : POINTER e$object_id_list = NIL;

IN process_data_block : POINTER quadword_data(*) CONFORM = NIL;
IN thread_object_parameters : e$object_parameters = DEFAULT;

IN thread _record : e$thread_record = DEFAULT; ,

IN thread_allocation_list : POINTER e$object_id_list = NIL;

IN thread _data_block : POINTER quadword_data(*) CONFORM = NIL;
IN thread_immediate_parameter1 : POINTER anytype CONFORM = NIL;
IN thread_immediate_parameter2 : POINTER anytype CONFORM = NIL;
IN thread_status : e$object_id = DEFAULT;

) RETURNS STATUS;

R R

DESCRIPTION Create a user, job, process, and thread object as specified by the
parameters. If the user object collides with an existing user object, then
use the existing user object.

R e e
ARGUMENTS user _id ‘
Returns the object ID of the resulting user object

object_parameters
Supplies the object type independent parameters for the user obJect the
ACL and container ID are ignored

user_record
Supplies the attributes of new user object.

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_user

7-14

user _allocation_list

Supplies the objects to be allocated to the user object. If not present then
no objects are allocated to the user

job_object parameters

Supplies the object type independent parameters for the job object the
ACL and container ID are ignored

job_record

Supplies the attributes of the job being created. If not present, then values
are obtained from current user object

job_initial_container

Supplies the JOb level object container to be transfered into the job level
container directory for this job. If not present then container directory
comes up empty

job_allocation_list
Supplies the obJects to be allocated to the job object. If not present then no
objects are allocated to the job

process_object parameters

Supplies the object type independent parameters for the process object the
ACL and container ID are ignored

process_record
Supplies the attributes of the process being created

process_public_container

Supplies the process level public container to be transfered into the process
level container directory for the process. If not present then the container
comes up empty.

process_private_container

Supplies the process level private container to be transfered into the
process level container directory for the process. If not present then
container comes up empty.

process_allocation_list
Supplies the objects to be allocated to the process object. If not present
then no objects are allocated to the process

process_data_block
Supplies an arbitrary data block passed to the process

thread _object parameters
Supplies the object type independent parameters for the thread object the
ACL and Container ID are ignored

thread record
Supplies the attributes of the thread being created

thread_allocation_list
Supplies the objects to be allocated to the thread object. If not present
then no objects are allocated to the thread

DIGITAL - Confidential and Proprietary - Restricted Distribution

thread _ data block

os$create_user

Supplies an a.rbltrary data block passed to initial thread. Pointer in TCR,
if pointer is NIL, then no data block was passed

thread_immediate_parameter1
Supplies an immediate parameter passed to thread through TCR

thread _immediate_parameter2
Supplies an immediate parameter passed to thread through TCR

thread status

Supplies an exit status obJect to be bound to the initial thread. If not
present then the thread is created without an exit status object

e

RETURN
VALUES

status$_normal
status$_access_violation
status$_bad_user_record
status$_bad_user_allocation
status$_job_name_exists

status$_bad_job_record
status$_bad_job_init_

" container

status$_bad_job_allocation

status$_process _name_
exists

status$_bad_process_record

status$_bad_prc_pub__
container

status$_bad_prc_priv_
container

status$_bad_process_
allocation

status$_thread_namse_exists

status$_bad_thread_record

status$_bad_thread
allocation

status$_bad_process_exit_
status

status$_bad_thread_exit_
status

status$_quota_exceeded

the service completed without errors

a specified parameter is not accessable
an invalid user record was specified

an invalid user allocation list was specified

a job object already exists with the name specified in
the job object parameters

an invalid job record was specified

the specfied job initial container can not be transfered
to the new job

an invalid job allocation list was specified

a process object already exists with the name
specified in the process object parameters

an invalid process record was specified

the specified process public container can not be
transfered to the new process

the specified process private container can not be
transfered to the new process

an invalid process allocation list was specified

a thread object already exists with the name specified
in the thread object parameters

an invalid thread record was specified
an invalid thread allocation list was specified

an error occured translating the object id of the
specified process exit status object

an error occured translating the object id of the
specified thread exit status object

not enough quota exists to complete the service

7-15

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$delete_exit_handler_process

os$delete exit handler_process

(
IN handler_id : e$exit_handler_id;

) RETURNS status;

DESCRIPTION This service is used to delete an existing process level exit handler. The
specified exit handler is removed from the process exit handler list. Once
an exit handler is delete, it will not be processed.

ARGUMENTS handler_id
Supplies the handler ID of the exit handler to be deleted.

RETURN tatus$ | th i leted without
status$_norma e service completed without errors
VALUES - 9 .
status$_exit_handler_not_ the handler specified by handler_id was not found on
found ' exit handler list
status$_not_supported an attempt to call this service from a system thread
was made

7-16

DIGITAL - Confidential and Proprietary - Restricted Distribution
- ‘ os$delete_exit_handier_thread

os$delete_exit_handler_thread

(
IN handler_id : e$exit_handler_id;

) RETURNS status;

DESCRIPTION This service is used to delete an existing thread level exit handler. The
specified exit handler is removed from the threads exit handler list. Once
an exit handler is deleted, it will not be processed.

ARGUMENTS handler_id
Supplies the handler ID of the exit handler to be deleted.

RETURN tatus$ I th i leted without
status$_normal e service completed without errors
VALUES =" P)
status$_exit_handler_not_ the handler specified by handler_id was not found on
found exit handler list
. status$_not_supported an attempt to call this service from a system thread
was made

7-17

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$exit_thread

os$exit thread

(

IN exit_status : status;
) RETURNS status;

DESCRIPTION This service begins kernel mode exit processing. This involves calling all
thread level exit handlers. The thread object id is then removed. If the
. thread is the last thread in its process, then it executes its process level
exit handlers.

ARGUMENTS exit_status
Supplies the reason that the thread is exiting

RETURN _ o ,
VALUES status$_repeat_service Seen only by the system service dispatcher. This
u value is returned when dispatching to an exit handler.

If the handler returns, os$exit_thread() is restarted.

7-18

DIGITAL - Confidential and Proprietary - Restricted Distribution
‘ os$force_exit_job

os$force_exit_job

(

IN job_id : e$object _id;
IN exit_status : status;
) RETURNS status;

DESCRIPTION Force exit the job specified by job_id. This action causes all of the jobs
i processes to exit

ARGUMENTS job_id
supplies object id of the job to be exited.

exit_status
supplies the reason for job to exit

RETURN

status$_normal normal completion of the service
VALUES o .
others object id translation errors

7-19

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$force_exit_process

os$force_exit_process

(

IN process_id : e$object_id;
IN exit_status : status;

) RETURNS status;

DESCRIPTION Force exit the process specified by process_id. This action causes all of the
) processes sub-processes and threads to be force exited.

ARGUMENTS process_id
Supplies the object id of the process to be exited.

exit_status
Supplies the reason for the process exiting

RETURN

V ALUES status$_normal = - normal completion of the service
others . object id translation errors

7-20

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$force_exit_thread

os$force_exit_thread

(

IN thread _id : e$object _id;
IN exit_status : status;

) RETURNS status;

DESCRIPTION Force exit the thread specified by thread_id.

ARGUMENTS thread id
supplies the object id of the thread to be exited.

exit_status
supplies the reason that the thread is force exiting

RETURN
VALUES

status$_normal normal completion of the service
athers ‘ object id translation errors

7-21

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$force_exit_user

‘os$force_exit_user

(

IN user_id : e$object_id;
IN exit_status : status;

) RETURNS status;

DESCRIPTION Force exit the user specified by user_obj_id. This action causes all of the
users jobs to be force exited.

ARGUMENTS user_ id
Supplies the object id of the user to be exited.

exit_statlus
Supplies the reason for the user exiting

RETURN
VALUES

status$_normal normal complstion of the service
others ‘ object id translation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
, : os$get_exit_status_info

os$get_exit_status_info

(

IN exit_status_id : e$object_id = DEFAULT;

IN exit_status_items : POINTER e$item_list_type;
IN process_status_object : boolean = true;

) RETURNS status; :

S

DESCRIPTION Return information about the specified exit status. The information
returned is item list driven _

—

ARGUMENT exit_status_id

supplies the object id of the exit status object to get information from. If
defaulted, then either the process exit status object of the current thread,
or the thread exit status object of the current thread is assumed.

exilt_status_items
supplies the item list which specifies the information to be retrieved.

Code : Pointer Type _ Action

e$c_status_value : status - ; returns the status value from the item list

e$c_status_string varying_string returns the status string stored in the exit status
object

e$c_status_string_set boolean returns and indication of whether a status string

exists in the exit status object. True == exists

e$c_status_summary e$exit_status_summary returns the exit status summary from the exit
status object. (this function does not return the
status string, only its address has no use from
user mode.)

process_status_object ‘

only looked at if exits status id is defaulted. If true, the process level exit
status object of the current thread is assumed, otherwise, the thread level
exit status is agsumed

1

RETURN tatus$ l th i leted without
status$_normal e service completed without errors
VALUES . o ,
status$_access_violation a specified parameter is not accessable
status$_invalid_item_code a specified item code is invalid, or its item entry is
invalid
others object id translation errors

7-23

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_job_information

os$get_job_information

(

IN job_id : e$object_id = DEFAULT;

IN job_get_items : POINTER e$item_list_type;
) RETURNS status;

_
DESCRIPTION Return information about the job object to the caller. The information
- returned is item list driven

R e]

ARGUMENTS job_id

supplies if present, the object ID of job object that is to be inspected
otherwise, the job object of the calling thread is assumed

job_get items
supplies the item list identifying job object information to be extracted

Code Pointer Type Action

e$c_user_id - e$object_id return the object id of the jobs user object

e$c_process_count integer return the number of processes for this user
) (subprocesss not included)

e$c_process_ids e$object id_list _ return the object id’s for the users processes

{subprocesss not included)

e$c_quota_usage _ e$quota_usage return the jobs resource usage

e$c_job_limits e$quota_limits return the per job resource limits

e$c_job_class e$job_class return the job class of the job object

”’

RETURN , _

VALUES status$_normal the service completed without errors
status$_access_violation a specified paramster is not accessable
status$_invalid_item_code a specified item code is invalid, or its item entry is

invalid
others object id translation errors

7-24

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_process_information

os$get_process_information

(.
IN process _id : e$object_id = DEFAULT;
IN process_get_items : POINTER e$item_list_type;

) RETURNS status;

~

DESCRIPTION Return information about the process object to the caller. The information
returned is item list driven

"
ARGUMENTS process id

supplies if present, the object ID of process object that is to be inspected
otherwise, the process object of the calling thread is assumed

process_get_items
supplies the item list identifying process object information to be extracted

Code Pointer Type Action
e$c_job_id " e$object_id return the object id of the processes job
- e$c_parent_id ' " e$object_id - : return the object id of the parent process zero()
’ : if process is not a subprocess
e$c_sub_process_count integer return the number of sub processes
e$c_sub_process_ids e$object_id_list return the object id's for the processes sub
processes
e$c_thread count integer return the number of threads for the process (
threads in sub processes not included)
e$c_thread_ids e$object_id_list return the object ids for the threads of the
_ process (threads in sub processes not included)
e$c_process_accounting = e$accounting_summary return the process level accounting summary
e$c_pcr_base e$process_control_region return address of the process control region
e$c_quota_usage e$quota_usage return the processes resource usage
e$c_process_limits e$quota_limits return the per process resource limits

~

RETURN
status$_normal the service completed without errors
VALUES o o)
status$_access_violation a specified parameter is not accessable
status$_invalid_item_code a specified item code is invalid, or its item entry is
invalid ‘
others object id translation errors -

7-25

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_thread_information

os$get_thread_information

(.

IN thread _id : e$object_id = DEFAULT;

IN thread_get _items : POINTER e$item_list_type;
) RETURNS status;

e e

DESCRIPTION Return information about the thread object to the caller. The information
returned is item list driven

-
ARGUMENTS thread id

supplies if present, the object ID of thread object that is to be inspected
otherwise, the thread object of the calling thread is assumed

thread _get_items
supplies the item list identifying thread object information to be extracted

Code Pointer Type Action

e$c_process_id e$object_id © returns the object id of the threads process
e$c_tcr_base . e$thread_control_region returns address of the threads tcr
e$c_thread_accounting e$cpu_and_io_summary returns the thread specific accounting summary
e$c_thread perf counters e$thread_perf_counters returns the thread performance counters
e$c_thread_priority k$combined_priority return the current thread priority '
e$c_thread_affinity k$affinity return the current thread affinity

S

RETURN '
status$_normal the service completed without errors
VALUES . ")
status$_access_violation a specified parameter is not accessable
status$_invalid_item_code a specified item code is invalid, or its item entry is
invalid
others object id translation errors

7-26

DIGITAL - Confidential and Proprietary - Restricied Distribution
os$get_user_information

os$get_user_information

(
IN user_id : e$object_id = DEFAULT;
IN user_get_items : POINTER e$item_list_type;
) RETURNS status;
"‘
DESCRIPTION Return information about the user object to the caller. The information

- returned is item list driven -

~
ARGUMENTS user id |

supplies if present, the object ID of user object that is to be inspected
otherwise, the user object of the calling thread is assumed

user_get_items
supplies the item list identifying user object information to be extracted

Code Pointer Type ‘ Action

e$c_job_count integer return the number of jobs for this user
e$c_job_ids _ e$aobject_id_list return the object id's for the users jobs
e$c_username - varying_string " return the user name
e$c_quota_usage e$quota_usage return the users resource usage
e$c_user_fimits e$quota_limits _ return the users resource limits
a$c_job_limits e$quota_limits return the per job resource limits
e$c_process_limits e$quota_limits return the per process resource limits
e$c_thread_priority k$combined_priority return the default thread priority
e$c_thread_affinity k$affinity return the default thread affinity
e$c_access_rsstrictions e$access_restrictions return the access retrictions

—

RETURN , _

VALUES status$_normal the service completed without errors
status$_access_violation a specified parameter is not accessable
status$_invalid_item_code a specified item code is invalid, or its item entry is

invalid
others object id transiation errors

7-27

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$hibernate_process

os$hibernate_process

IN process_id : e$object_id;
) RETURNS status;

DESCRIPTION Cause all threads owned by the process specified by process_id to issue a
wait on the auto-clearing hibernate event object in their TCB. User mode
AST’s remain enabled -

ARGUMENTS process id
supplies the object of the target process

status$_normal the service completed without errors
VALUES o " :

status$_access_violation a specified parameter is not accessable

status$_quota_exceeded not enough quota exists to capture the thread or

subprocess ids of the specified process
others object id franslation errors

7-28

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$hibernate_thread

oS$hibernate_thread

(
IN thread _id : e$object _id;
) RETURNS status;

DESCRIPTION Cause the thread specified by thread_id to issue a wait on the auto-
clearing hibernate event object in its TCB. User mode AST’s remain
enabled

ARGUMENTS thread_id
supplies the object of the target thread

RETURN tatus$ | th i leted without
status$_normal e service completed without errors

VALUES - ")
status$_access_violation a specified parameter is not accessable
others object id translation etrors

7-29

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$resume_process

os$resume_process

(
IN process_id : e$object_id;
) RETURNS status;

DESCRIPTION Cause all threads owned by the process specified by process object_id to
have their waits on the auto-clearing suspend event object in their TCB to
be satisfied by setting the event.

ARGUMENTS process_id
supplies the object ID of the target process

RETURN tatus$ | th i leted without
status$_norma e service completed without errors

VALUES , . . ,
status$_access_violation a specified parameter is not accessable

status$_quota_exceeded not enough quota exists to capture the thread or
4 subprocess ids of the specified process

others object id translation errors

7-30

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$resume_thread

os$resume_thread

(
IN thread_id : e$object id;
) RETURNS status;

DESCRIPTION Cause the thread specified by thread object_ id to have its wait on the
auto-clearing suspend event obJect in its TCB to be satisfied by setting the
event.

ARGUMENTS thread_id
' supplies the object ID of the target thread

RETURN tatus$ I th [leted without
status$_norma e service completed without errors

VALUES L " ,
status$_access_violation a specified parameter is not accessable
others o object id franslation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_exit_status_info ’

os$set_exit_status_info

(

IN exit_status_id : e$object_id = DEFAULT;

IN exit_status_items : POINTER e$item_list_type;
IN process_status_object : boolean = true;

) RETURNS status;

”

DESCR|PT|CN Set information in the specified exit status. The information returned is
_ item list driven

“

ARGUMENTS exit_status_id
supplies the object id of the exit status object to set information into. If
defaulted, then either the process exit status object of the current thread,
or the thread exit status object of the current thread is assumed. When
this id is defaulted, then the process or thread level exit status object is
used by address (no acl protection) since we assume that you can always
write to your own exit status object.

exit_status_items ,
supplies the item list which specifies the information to be set.
Code Pointer Type Action
e$c_status_string varying_string places the specified string in the exit status
. object

process_stalus _object

only looked at if exits status id is defaulted. If true, the process level exit

status object of the current thread is assumed, otherwise, the thread level
. exit status is assumed .

M

RETURN
status$_normal the service completed without errors
VALUES _— " \
status$_access_violation a specified parameter is not accessable
status$_invalid_item_code a specified item code is invalid, or its item entry is
invalid
others object id translation errors

7-32

DIGITAL - Confidential and Proprietary - Restricted Distribution
: os$set_job_information

os$set_job_information

(

IN job_id : e$object_id = DEFAULT;

IN job_set_items : POINTER e$itern_list_type;
) RETURNS status;

DESCRIPTION Return information about the job object to the caller. The information
returned is item list driven

ARGUMENTS job id
supplies if present, the object ID of job object that is to be modified

otherwise, the job object of the calling thread is assumed

job _set _items
supplies the item list identifying job object information to be modified

Code Pointer Type , Action

e$c_job_limits i e$quota_limits set the per job resource limits

RETURN tatus$ I th i leted without
status$_normal e service completed without errors
VALUES , . o ,
status$_access_violation a specified parameter is not accessable
status$_invalid_item_code a ‘specified item code is invalid, or its item entry is
invalid
others object id translation errors

7-33

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_minor_thread_priority

os$set_minor_thread_priority

(

IN thread _id : e$object_id = DEFAULT;

IN new_priority : k$minor_priority;

OUT previous_priority : k§combined_priority;
) RETURNS status; » :

DESCRIPTION This system service changes the minor priority of the specified thread.

ARGUMENTS thread_id
Supplies the object id of the thread whose priority is to be altered. If this
parameter is defaulted, the current thread is assumed

new_priority
Supplies the minor priority that is to be set in the specified thread.

previous_priority
Returns the specified threads previous combined priority. Only valid if
status$_normal was returned.

RETURN tatus$ | th i leted without
status$_normal e service completed without errors

VALUES - e N
status$_invalid_argument new_priority is not a valid value for k$minor_priority
others object id transiation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_process_information

os$set_process_information

(

IN process_id : e$object_id = DEFAULT;

IN process_set_items : POINTER e$item_list_type;
) RETURNS status;

5

DESCRIPTION Return information about the process object to the caller. The information
returned is item list driven

—
ARGUMENTS process id

supplies if present, the object ID of process object that is to be modified
otherwise, the process object of the calling thread is assumed

process_set_items
supplies the item list identifying process object information to be modified

Code Pointer Type Action

e$c_protected_data " anytype add block to protected data listhead in the per
. (item length determines how many bytes of data
are being linked to the list.)

e$c_process_limits ' e$quota_limits replace the per process resource limits

“

35:-3 gg statﬁs$_normal the service completed without errors
status$_access_violation a specified parameter is not accessable
status$_invalid_item_code a specified item code is invalid, or its item entry is

invalid
others object id translation errors

DIGITAL - Confidential and Proprietary - Réstricted Distribution
os$set_thread_information

os$set thread information

(

IN thread_id : e$object id = DEFAULT;

IN thread_set _items : POINTER e$item_list_type;
) RETURNS status;

DESCRIPTION Return information about the thread object to the caller. The information
) returned is item list driven

;
ARGUMENTS thread id

supplies if present, the object ID of thread object that is to be modified
otherwise, the thread object of the calling thread is assumed

thread_set_items
supplies the item list identifying thread object information to be modified

Code Pointer Type Action

e$c_thread_priority k$combined_priority set the current thread priority
e$c_thread_mnr_priority k$minor_priority 'set the current thread minor priority
e$c_thread_mir_priority - k$major_priority set the current thread major priority
e$c_thread_affinity k$affinity set the current thread affinity

status$_normal the service completed without errors
VALUES . " ,
status$_access_violation a specified parameter is not accessable
status$_invalid_ijtem_code a specified item code is invalid, or its item entry is
invalid
others object id translation errors

7-36

DIGITAL - Confidential and Proprletary Restricted Distribution

os$set_thread_priority

os$set_thread_priority

(

IN thread_id : e$object_id = DEFAULT;

IN new_priority : k§combined_priority = 0;
OUT previous_priority : k$combined _pnorn‘y,
) RETURNS status;

.

DESCRIPTION This system service changes the combined priority of the specified thread.

00

ARGUMENTS

thread id

Supplies the object id of the thread whose pnonty is to be altered. If this
parameter is defaulted, the current thread is assumed

new_priority

Supplies the combined priority that is to be set in the thread. If this
parameter is defaulted, the base pnonty of the threads process is assumed.
If the major priority in new_priority is greater than the threads current
major priority, then the calling thread must have access to the raise
priority privileged operation object.

This service never allows the pnonty to be changed out of the pnonty
class that the thread process is a member of. If the process is not in a
realtime priority class, then the threads priority can not be changed to a
realtime priority class. If the process is within a realtime priority class,
then the threads new priority must stay within a realtime priority class.

previous_priority

Returns the specified threads previous combmed priority. Only valid if
status$_normal was returned.

. :

RETURN
VALUES

13

status$_normal the service completed without errors

status$_invalid_argument new_priority is not a valid value for k$combined _
priority, or specifies a priority class that is different
from the threads process

others object id translation errors

737

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_user_information

os$set_user_information

(

IN user_id : e$object_id = DEFAULT;

IN user_set_items : POINTER e$item_list_type;
) RETURNS status;

1 -

DESCRIPTION Return information about the user object to the caller. The information
returned is item list driven

—
ARGUMENTS user_ id
supplies if present, the object ID of user object that is to be modified

otherwise, the user object of the calling thread is assumed

user_sel_items
supplies the item list identifying user object information to be modified

Code Pointer Type Action

e$c_user_limits e$quota_limits set the users resource limits
e$c_job_limits - ‘e$quota_limits set the per job resource limits
e$c_process_limits ' e$quota_limits set the per process resource limits
e$c_thread_priority k$combined_priority set the default thread priority
e$c_thread affinity ' k$affinity set the default thread affinity
e$c_access_restrictions - e$access_restrictions set the access retrictions

50—

RETURN tatus$ | th i leted without
status$_normal e service completed without errors
VALUES . o ,
status$_access_violation a specified parameter is not accessable
status$_invalid_item_code a specified item code is invalid, or its item entry is
invalid
others object id translation errors

7-38

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$signal_process

os$signal_process

(
IN process_id : e$object_id;

IN condition_value : status;
IN signal_argument : longword CONFORM = DEFAULT
) RETURNS status; .

DESCR]PT]dN Cause a condition of type condition_value to be raised in all threads owned
by the process specified by process_id. The cond1t10n handler is passed
signal_argument.

ARGUMENTS process id
supplies the object_id of the process to be signaled

condition_value
supplies a condition value to be raised in all threads of the target process

signal_argument
supplies the value that is passed to the condition handler

RETURN tatus$ | th i leted without
status$_norma e service completed without errors

VALUES _— ” .
status$_access_violation a specified parameter is not accessable
others object id translation errors

739

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$signal_thread

os$signal_thread

(
IN thread_id : e$object _id;

IN condition_value : status;
IN signal_argument : longword CONFORM = DEFAULT;
) RETURNS status; : '

DESCR]P‘“ON Cause a condition of type condition_value to be raised in the thread
specified by thread_id. The condition handler_is passed signal_argument.

ARGUMENTS thread id
supplies the object_id of the thread to be signaled

condition_value
supplies a condition value to be raised in all threads of the target thread

signal_argument
supplies the value that is passed to the condition handler

RETURN ‘ ,

VALUES status$_normal o the ser'v.lce completed .W|thout errors
status$_access_violation a specified paramster is not accessable
status$_not_supported the target thread was a system thread
others object id translation errors

7-40

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$suspend_process

os$suspend_process

(
IN process_id : e$object id;
) RETURNS status;

" DESCRIPTION Cause all threads owned by the process specified by process_id to issue a
wait on the auto-clearing suspend event object in their TCB. User mode
AST’s are disabled.

ARGUMENTS process_id
supplies the object ID of the target process

status$_normal’ the service completed without errors
VALUES - " ,

status$_access_violation a specified parameter is not accessable

status$_quota exceeded not enough quota exists to capture the thread or

subprocess ids of the specified process
others ‘ object id translation errors

7-41

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$suspend_thread

os$suspend_thread

(
IN thread _id : e$object _id;
) RETURNS status;

DESCRIPTION Cause the thread specified by thread_id to issue a wait on the auto-
clearing suspend event object in its TQB. User mode AST’s are disabled.

ARGUMENTS thread id
supplies the object ID of the target thread

RETURN
: status$_normal the service completed without errors
VALUES - " .
status$_access_violation *a specified parameter is not accessable
others object id translation errors

742

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$wake_process

os$wake_process

(
IN process_id : e$object _id;
) RETURNS status;

DESCRIPTION Cause all threads owned by the process specified by proéess_id to have
their waits on the auto-clearing hibernate event object in their TCB to be
satisfied by setting the event.

ARGUMENTS process_id
: supplies the object ID of the target process

RETURN tatus$ | th i leted without
status$_norma e service completed without errors
VALUES | - " ,
status$_access_violation a specified parameter is not accessable
status$_quota_exceeded not enough quota exists to capture the thread or

subprocess ids of the specified process
others object id translation errors

743

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$wake_thread

os$wake_thread

(
IN thread_id : e$object_id;
) RETURNS status;

DESCRIPTIO Cause the thread specified by thread_id to have its wait on the auto-
clearing hibernate event object in its TCB to be satisfied by setting the
event.

ARGUMENTS thread id
supplies the object ID of the target thread

RETURN

VALUES status$_normal the service completed without errors
status$_access_violation a specified parameter is not accessable
others object id translation errors

8

Memory System Services

8-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$adjust_working_set _limit

os$adjust_working_set_limit

(

IN number_of_bytes : integer;
OUT new_working_set_limit : integer [1..];
) RETURNS STATUS;

DESCRIPTION

The Adjust Working Set Limit service adjusts a process’s current working
set limit by the specified number of bytes and returns the new value to the
caller. The specified number of bytes will be converted into pages and the
calculated number of pages will be added to or removed from the working
set. A negative value for the byte count will cause pages to be removed
from the working set.

ARGUMENTS

number_of_byles
Supplies the number of bytes to add or remove from the working set.

new_working_set_limit
Returns the current size of the working set in bytes. The working set is
maintained in pages and converted to bytes.

RETURN
VALUES

8-2

status$_normal normal, successful completion.

status$_invalid_address error, either the starting or ending address is not
accessable.

status$_working set_at_ error, unable to add any more pages to the working

maximum set.

status$_working_set_at_ error, unable to_remove any more pages from the

minimum working set.

DIGITAL - Confidential and Proprletary Restricted Distribution

osS$create_address_space

os$create_address_space

(

IN desired_beginning_address : POINTER anytype CONFORM;
IN desired_ending_address : POINTER anytype CONFORM;
OUT actual_beginning_address : POINTER anytype CONFORM;
OUT actual_ending_address : POINTER anytype CONFORM;

) RETURNS status;

DESCRIPTION

This routine creates address space at the specified address. An error is
returned if any of the desired address range is already mapped, but the
create address will map from the desired address up to the already created
addresses, and that range will be returned.

ARGUMENTS

desired _beginning_address
Supplies the beginning address of the range to create.

desired_ending_address
Supplies the ending address of the range to create.

actual_beginning_address

Returned address of the beginning of the range actually created. The
actual range could differ from the desired range due to 64K byte
alignment.

actual_ending_address
Returned address of the ending of the range actually created.

RETURN
VALUES

status$_normat normal, successful completion.

status$_invalid_begin__ error, the beginning address is invalid.
address

status$_invalid_ending_ error, the ending address is invalid.
address

status$_complete_range__ warning, the complete range of addresses could not
not_map be mapped do to previously mapped addresses.

L

DIGITAL - Confidential and Propnetary Restricted Distribution
osscreate section

os$create_section

(

OUT section_id : e$object_id;

IN object_parameters : e$object_parameters = DEFAULT;
IN file_channel : integer OPTIONAL; l### needs flxed also item list needs to
be added-

IN mappmg type : e$mapping_type OPTIONAL

IN size_in_bytes : integer OPTIONAL;

IN virtual_block_number : integer OPTIONAL;

IN protection : e$page_protection OPTIONAL;

IN identification_match : integer OPTIONAL;

) RETURNS status;

DESCRIPTION This routine creates a section which is either backed by an existing file or
backed by paging file.

ARGUMENTS section id

Returned object ID of the created section.

object parameters

Supplies the object container in which the object is inserted, the name of
the object, and the access control list (ACL) of the object. If this argument
is not supplied or if it is supplied but not all values in the object parameter
record are supplied, the service applies default values. The default object
container is the process private container, the default name is none, and
the default ACL is none. to map the section into.

file_channel

Supphes the object ID of a prevmusly created channel which has had a file
open performed. If the channel is not supplied, a section backed by paging
file is created.

mapping_type
Supplies the type of section to create, either data or image.

size_in_bytes
Supplies the size of the section to create in bytes. If page file mapping is
performed this parameter is required.

virtual_block_number

Supphes “the virtual block number offset within the opened file to begm
mapping. This virtual block number is aligned on a 64K byte boundary.
Hence is the virtual block number is specified as 40 the actual virtual
block number would be 33 (start at vbn 1).

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_section
protection
Supplies the desired protection to apply to the newly created pages,
optional.

identification_match
Supplies the id to match, optional.

RETURN tatus$ { al ful leti
status$_norma . normal, successful complstion.
VALUES -rom | e |
status$_invalid_address error, either the starting or ending address is not
accessable. .
status$_mapping_conflict error, the specified address range contains pages

which are already mapped.
status$_invalid_section_size error, the size specified for the section is invalid.

status$_requires_channel_ error, the section type requires a channel to be
arg specified.
others any object error in creating an object.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$delete_address_space

os$delete_address_space

(
IN desired_beginning_address : POINTER anytype CONFORM;

IN desired_ending_address : POINTER anytype CONFORM;

OUT actual_beginning_address : POINTER anytype CONFORM,;

OUT actual_ending_address : POINTER anytype CONFORM

) RE TUF?NS status;

PR e s e e e]
Thi deletes the addr h fied address. An

DESCRIPTION Warsnfno;t;g.atu: :;t::turfl:;i if :isys&afﬁeageine'eip:gldrzssaranr;:sls mapped

in by a mapping object, i.e. was not created by e$create_virtual_address_
space and only the address space up to the found address is deleted.

00—

ARGUMENTS desired_beginning_address
Supplies the beginning address of the range to delete.

desired_ending_address
Supplies the ending address of the range to delete.

actual _beginning_address :
Returned address of the beggin of the range actually deleted. The actual
range could differ from the desired range due to 64K byte alignment.

actual_ending_address
Returned address of the ending of the range actually deleted.

S O

RETURN s morml . sucsssctul comolet
status$_norma normal, successful completion.
VALUES SR o S
status$_invalid_begin_ error, the beginning address is invalid.
address
status$_invalid_ending_ error, the ending address is invalid.
address
status$_total_range_not_ warning, the complete range of addresses could not
deleted be deleted do to previously mapped addresses.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$expand_address_space

os$expand_address_space

(
IN number_of bytes : integer [0..];

OUT actual_beginning_address : POINTER anytype CONFORM,;
OUT actual_ending_address : POINTER anytype CONFORM,;
) RETURNS status;

DESCRIPTION This routine creates address space starting at the highest virtual address
in use by the process for the number of bytes specified.

ARGUMENTS number_of_byltes
Supplies the number of bytes to add to the address space.

actual beginning_address ,
Returned address of the first byte of the created address range.

actual_ending_address
Returned address of the last byte of the created address range.

RETURN tatus$ | al ful leti
status$_norma normal, successful completion.

VALUES - . P
status$_complste_range_ warning, the complete range of addresses could not
not_map be mapped do to previously mapped addresses.

8-7

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$expand_user_stack

os$expand_user_stack

(

IN number_of_bytes_to_add : integer [1..];
OUT new _stack_size : integer [1..];
) RETURNS STATUS;

DESCRIPTION

The Expand User Stack service attempts to adjust the user stack by the
specified number of bytes. The number of bytes is converted into pages
and an attempt is made to expand the stack by the calculated number of
pages.

The stack expansion may fail due to other thead user stacks occupying
virtual address space and thereby preventing the stack expansion. Note
that there is no way to contract a stack.

ARGUMENTS

number_of_byles to_add
Supplies the number of bytés to add to the stack. The number of bytes is
converted to pages.

- new_stack_size

Returns the current stack size in bytes.

RETURN
VALUES

status$_normal normal, successful completion.

status$_unable_to_expand_ error, stack expansion failed.

stack

status$_partial_expansion warning, not all bytes were added to the stack.

status$_invalid_address error, either the- starting or ending address is not
accessable.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_mapping_information

os$get_mapping_information

(

IN mapping_id : e$object_id;

IN mapping_get _items : POINTER e$item_list_type;
) RETURNS STATUS;

DESCRIPTION The Get Mapping Information service provides information about the
. specified mapping object. The information which may be obtained is
specified in an item list.

ARGUMENTS mapping id
Supplies the object ID of the desired mapping object on which information

should be extracted.

mapping_get_items
Supplies the item list which specifies the information about the mapping
object to return.

item code description
e$c_mapping_section . The object ID of the section
) which this mapping object
maps.
e$c_mapping_starting__ The starting address of the
address mapping in the address
spacs.
e$c_mapping_size The size of the mapping in
bytes.
e$c_mapping_offset The byte offset from the start

of the section object.

10 S

RETURN

status$_normal normal, successful completion.
VALUES . . : ,
object_reference_etrors any errors trying to reference an object by id.

8-9

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_section_information

os$get_section_information

IN section_id : e$object_id;
IN section_get_items : POINTER e$item_list_type;
) RETURNS STATUS;

S

DESCRIPTION The Get Section Information service provides information about the
specified section object. The information which may be obtained is
specified in an item list.

{5

ARGUMENTS section_id
Supplies the object ID of the desired section on which information should

be extracted.

section_get _items
Supplies the item list which specifies the information about the section to
return. v

The following codes are valid:

item code . action

ae$c_section_vbn Virtual block number offset
which the section is based
upon. :

e$c_section_size Size of the section in bytes.

e$c_seaction_protection_code Protection code assigned to
section pages.

e$c_section_ident_match Identification match specified
on saction.

e$c_section_type Type of section (image or
data).

[S S

RETURN
VALUES

status$_normal normal, successful completion.
object_reference_errors any errors trying to reference an object by id.

-8-10

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$lock_pages_in_memory

os$lock _page_s__in_memory'

(.

IN starting_address : POINTER anytype CONFORM;

IN ending_address : POINTER anytype CONFORM;

OUT last_locked_address : POINTER anytype CONFORM;
) RETURNS STATUS; o

DESCRIPTION The Lock Pages in Memory service locks a page or range of pages in
memory. The specified virtual pages are forced into the working set,

then locked in memory. A locked page is not removed from memory if its
process’s working set is removed from the balance set.

ARGUMENTS starting address
Supplies the starting virtual address of the range to be locked into
memory.

ending_address
Supplies the ending virtual address of the the range to be locked into
memory. . :

last _locked_address ‘
Returns the last address which was actually locked in memory.

RETURN tatus$ I al ful leti
status$_norma normal, successful completion.

VALUES - | P .
status$_complete_range_ warning, at least one page was locked in memory.
not_lock .

status$_locked_limit_reached error, no more pages may be locked in memory.

status$_invalid_address) error, either the starting or ending address is not
accessable.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$lock_pages_working_set

os$lock pages_working_set

(.

IN starting_address : POINTER anytype CONFORM;

IN ending_address : POINTER anytype CONFORM;

OUT last_locked_address : POINTER anytype CONFORM;
) RETURNS STATUS; |

DESCRIPTION The lock pages in working set service locks a page or range of pages in
a process’s working set. The specified virtual pages are forced into the
working set.

ARGUMENTS starting_address
Supplies the starting virtual address of the range to be locked into the
working set.

ending_address
Supplies the ending virtual address of the the range to be locked into the
working set. : -

last_locked_address

Returns the last address which was actually locked in the working set.

RETURN tatus$ al | ful pleti
status$_norm normal, successful completion.

VALUES g) : :
status$_complete_range_ warning, at least one page was locked in the working
not_lock set.
status$_working_set_full error, no more pages may be locked in the working

set.
status$_invalid_address error, either the starting or ending address is not
accessable.

8-12

DIGITAL - Confidential and Proprietary - Restricted Distribution
. os$map_section

os$map_section

(

OUT mapping_id : e$object_id;

IN object_parameters : e$object_parameters = DEFAULT;

IN section_id : e$object_id;

IN desired_beginning_address : POINTER anytype CONFORM
OPTIONAL;

IN desired_ending_address : POINTER anytype CONFORM OPTIONAL;
IN protection : e$page_protection OPTIONAL;

IN identification_match : integer OPTIONAL;

IN byte_offset : integer [0..] OPTIONAL;

OUT actual_beginning_address : POINTER anytype CONFORM;
OUT actual_ending_address : POINTER anytype CONFORM;

) RETURNS status;

“

DESCRIPTION This routine maps a previously created section into the process’s address
space.

m

ARGUMENTS mapping_id

Returned object ID of the mapping object which describes the memory
section.

object_parameters

Supplies the object container in which the object is inserted, the name of
the object, and the access control list (ACL) of the object. If this argument
is not supplied or if it is supplied but not all values in the object parameter
record are supplied, the service applies default values. The default object
container is the process private container, the default name is none, and
the default ACL is none. ‘

section_id
Supplies the object ID of previously created section.

desired_beginning_address

Supplies the beginning address of the range to map the section into. The
range must not currently have any valid addresses. The actual mapping
occurs on a 64K bytes boundary.

desired_ending_address
Supplies the ending address of the range to map the section into.

protection
Supplies the desired protection to apply to the newly created pages,
optional.

8-13

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$map_section

RETURN
VALUES

8-14

identification_maich
Supplies the id to match, optional.

byte offset
Supplies the offset into the section to beginning mapping, optional.

actual_beginning address
Returns the actual beginning address of the created range.

actual_ending_address :
Returns the actual ending address of the created range.

status$_normal normal, successful completion.

status$_invalid_address error, either the starting or ending address is not
accessable.

status$_mapping_conflict error, the specified address range contains pages
which are already mapped.

status$_invalid_map_ error, the specified container for the mapping object

container was not the defauit private container.

others any abject error in creating an object.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_protection_on_pages

os$set_protection_on_pages

(_
IN starting_address : POINTER anytype CONFORM,;

IN ending_address : POINTER anytype CONFORM;

IN page_protection : e$page_protection;

OUT last_changed_address : POINTER anytype CONFORM:;
OUT previous_page protection : e$page_protection OPTIONAL;
) RETURNS status; | i |

DESCRIPTION The Set Protection on Pages system service allows a thread to change the
protection on a page or range of pages.

ARGUMENTS starling_address
Supplies the starting virtual address of the range to have its protection

modified.

ending_address
Supplies the ending virtual address of the the range to have its protection
modified.

page_protection

Supplies the page protection to assign to the pages within the specified
address range. The page protection is a set with the following members.
Note that write implies read and for user access, kernel access is always
set to be identical. Also, user execute or kernel execute implies the other.

protection code protection
e$c_page_user_read user read access.
e$c_page_user_write user write,read access.
e$c_page user_exacute user execute access.
e$c_page_ kernel_read kernel read access.
e$c_page kernsl_write kernel write access.
e$c_page_kernel_execute kernel execute access.

last_changed_address
Returns the last address which the protection was actually changed.

previous_page protection
Optionalily returns the previous page protection for the first page which
the protection was actually changed.

8-15

DIGITAL - Confidential and Proprletary Restricted Distribution
os$set_protection_on_pages

L
RETURN '
VALUES

status$_normal normal, sucessful completion.

status$_partial_range_done warning, unable to change the protection on the
complete range do to nonexistant pages.

status$_invalid_argument error, unable to access or iterpret argument.
status$_invalid_protection error, pratection set contains invalid members.
status$_page_owner_ error, attempt to change kernel protection on kernel
violation owned pages.

8-16

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$unlock_pages_from_memory

os$unlock_pages_from_memory

(.
IN starting_address : POINTER anytype CONFORM;

IN ending_address : POINTER anytype CONFORM,;
OUT last_unlocked_address : POINTER anytype CONFORM
) RETURNS STATUS;

DESCR]PT[ON The unlock pages from memory service unlocks a page or range of pages
from memory. The specified virtual pages are unlocked from memory and
become eligible for replacement.

ARGUMENTS starting _address
Supplies the starting virtual address of the range to be unlocked from
memory.

ending_address
Supplies the ending virtual address of the the range to be unlocked from
memory.

last_locked _address _
Returns the last address which was actually unlocked from memory.

RETURN tatus$ | al ful pleti
status$_normal normal, successful complstion.
VALUES - .
status$_complete_range_ warning, at least one page was unlocked from
not_lock memory.
status$_invalid_address error, either the. starting or ending address is not
accessable.

8-17

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$unlock_pages_working_set

os$unlock_pages_working_set

(.
IN starting_address : POINTER anytype CONFORM;

IN ending_address : POINTER anytype CONFORM;
OUT last_unlocked_address : POINTER anytype CONFORM
) RETURNS STATUS;

DESCR[PT]ON The unlock pages from working set service unlocks a page or range
of pages from a process’s working set. The specified virtual pages are
unlocked from the working set and become eligible for replacement.

ARGUMENTS starting _address
Supplies the starting virtual address of the range to be unlocked from the
working set.

ending_address
Supplies the ending virtual address of the the range to be unlocked from
the working set.

last_locked_address

Returns the last address which was actually unlocked from the working
set.

RETURN status$! al ful leti

us$_norma normal, successful completion.

VALUES) ,
status$_complete_range_ warning, at least one page was unlocked in the
not_lock working set.
status$_invalid_address error, either the starting or ending address is not

accessable.

8-18

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$update_mapped_section

os$update_mapped_section

(

IN mapping_id : e$object_id;

IN desired_beginning_address : POINTER anytype CONFORM;
IN desired_ending_address : POINTER anytype CONFORM

IN flags : e$section_update_flags;

IN event_id : e$object_id OPTIONAL;

IN ast_procedure : k$normal_ast_routine OPTIONAL;

"IN ast_parameter : LONGWORD CONFORM OPTIONAL;

BIND jo_status_block : e$iosb; |

OUT actual_beginning_address : POINTER anytype CONFORM:;
OUT actual_ending_address : POINTER anytype CONFORM;

) RETURNS STATUS;

DESCRIPTION The Update Mapped Section service writes all modified pages in a mapped
section back into the section file on disk. One or more I/O requests are
queued based on the number of pages that have been modified.

ARGUMENTS mapping_id
‘ Supplies the mapping ID of the mapped section to update.

desired _beginning_address

Optionally supplies the beginning address within the mapping to begin
updating the section. If this argument is not specified, the starting address
of the mapping will be used.

desired_ending_address

Optionally supplies the ending address within the mapping to end
updating the section. If this argument is not specified, the endinng
address of the mapping will be used.

flags
Optionally supplies the update specified for updating the section. More
here later.

event_id
Optionally supplies the object ID of an event object which will be set when
the update operation has completed.

ast_procedure -
Optionally supplies the address of an AST procedure which will be called
when the update operation has completed.

ast_parameter
Optionally supples the value which will be supplied to the AST procedure
when called. -

8-19

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$update_mapped_section

io_status block
Optionally supplies the I/O status block which will receive the final
completion status of the updating operation.

actual_beginning_address .
Optionally returns the actual beginning address of the update operation.

actual_ending_address
Optionally returns the actual ending address of the update operation.

RETURN tatus$ I mal, sucessful leti
status$_norma normal, sucessful completion.

VALUES ghigl e P .
status$_invalid_address_ error, beginning or ending address was not within the
range mapping as specified by the mapping ID.
object_reference_errors any errors trying to reference an object by id.

8-20

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$zero_to_end_of_user_stack

os$zero to _end of user stack

(
) RETURNS STATUS;

DESCR|PT|QN The Zero to End of User Stack service zeroes all pages from the current
stack pointer to the end of the stack. The zeromg is accomphshed
by releasing any pages in physical memory or in the paging file and
converting the pages into demand zero pages.

ARGUMENTS None.

RETURN

status$_normal normal, successful completion.
VALUES - P

9

/0 Systém Services

9-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
ocs$cancel_io

os$cancel_io

(
IN channel_id : e$object_id;

) RETURNS status;

DESCRIPTION This service cancels all outstanding I/O request on the specified channel.
_ Only the outstanding /O requests that were issued by the calling thread
’ are canceled.

Outstanding I/O requests that are canceled are done so, asynchronously to
the the completion of the this service. That is, completion of this service
cannot be used to synchronize with the cancellation of the I/O requests.

ARGUMENTS channel_id
Supplies an ID of the channel

RETURN tatus$ | { ful leti
status$_normal normal, successful completion.

VALUES il e i
status$_invalid_object_id invalid object id
status$_object_type_ invalid object

mismatch

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$configure_fp

os$configure fp

(

IN fod_id : e$object id;

IN function_code : integer;

IN user_event : e$object_id = DEFAULT;
IN fod_parameters : POINTER anytype CONFORM = DEFAULT;
) RETURNS status;

DESCRIPTION This service is used to issue configuration and deconfiguration requests to
a function processor. The function code and the fpd_parameters specifies

the reqeust type.

The user supplied event object is specified if the caller wants to
synchronized with the completion of the request.

ARGUMENTS fpd id
Supplies the FPD object ID

function_code
Supplies the configuration function code

user_event
Supplies object id of event to be signalled when done

fpd_parameters
Supplies the FPD configuration parameters.

RETURN s norml ! cusossetul comalet
status$_normal normal, successful completion
VALUES oL o s °
status$_invalid_object_id invalid object id
status$_object type_ invalid object
mismatch

£

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_channel

os$create channel

(

OUT channel_id :

e$object _id;

IN object_parameters : e$object_parameters;
IN fou_id : e$object _id;
) RETURNS status;

DESCRIPTION

This service is call to create a channel to an existing FPU object. The
FPU object ID parameter specifies the FPU object to which the channel is
attach. '

The object ID of the newly created channel is returned in the channel

id parameter. After the channel object is created it is inserted into the
container specified in the object_parameters record. If there is a duplicate
object currently in the container, the newly created channel object is
deleted, and the object ID of the duplicate object is returned. If a container
object ID is not specified, the channel object is placed in the process private
container.

[P e

ARGUMENTS

channel_id

Returns a channel id

object_parameters
Supplies the object architecture create object parameters

fpu_id
Supplies an object id of the FPU object to create a channel to

0 ——

RETURN
VALUES

status$_normal - normal, successful completion
status$_invalid_object_id invalid object. id

status$_duplicate_object duplicate object found in object container
status$_object_contianer_full object container full
status$_object_type_ invalid object

mismatch

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_fpu

os$create fpu

(

OUT fpu_id : e$object_id;

IN object_parameters : e$object_parameters;

IN fod_id : e$object _id; ’

IN fou_parameters : POINTER anytype CONFORM = DEFAULT;
) RETURNS status;

DESCRIPTION

This service creates an FPU object for a function processor. The fpd_id
parameter specifies the function processor for which the FPU object is
created for.

The object ID of the newly created FPU object is returned in the fpu_id
parameter. The object parameters specifies the object name, an ACL for
the FPU obJect and the object ID of the container where the FPU object is
to be inserted in.

If a container object ID is not supplied, the FPU object is inserted into the
process private container after it is created. If a duplicate object already

-exist in the specified container, the newly created FPU object is deleted,

and the object ID of the duplicate object is returned

ARGUMENTS fpu_id
Return the object id of the created FPU object.
object_paramters
Supplies the object parameters.
fpd _id
Supplies the object id of fpd.
fpu_parameters |
Supplies the FPU specific parameters used to initialize the the FPU obJect
RETURN status$_normal I, successful completion
s$_n normal, succe: c
VALUES e i
status$_invalid_object_id invalid object
status$_duplicate_object duplicate object found in object container
status$_object_container_full object container full

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_channel_information

os$get_channel_information

(
IN channel_id : e$object_id;

IN channel_items : POINTER e$1tem list_type = DEFAULT;
) RETURNS status;

DESCRIPTION Returns information about a channel object. The information returned is
item list driven.

ARGUMENTS channel_id
Supplies channel object ID.

channel_items
Supplies a pointer to an item list.

Item Codes Data Type Description
io$c_item_channel_access BOOLEAN TRUE, if channel is being access.
io$c_item_granted_access SET[access_type] Returns the access types that have béen granted

on this channel.

RETURN tatus$ | al ful leti
status$_norma normal, successful completion
VALUES SO e S e SR
status$_invalid_object_id invalid object id
status$_object_type_ invalid object
mismatch

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$get_fpu_information

os$get_fpu_information

(
IN fou_id : e$object_id;
IN fou_items : POINTER e$item_list_type = DEFAULT;

) RETURNS status;
DESCRlP’ﬂQN Returns information about an FPU object. The information returned is
item list driven.
ARGUMENTS fpu_id
Supplies an FPU object ID.
fpu_items
Supplies a pointer to an item list.
ltem Codes Data Type - Description
io$c_item_interface_class INTEGER Returns FPU interface class
io$c_item_fpu_state e$fpu_state - FPU current state
io$c_fpu_bound o Integer Returns TRUE if FPU is bound
io$c_item_fp_params_area_ Integer Returns size of the FP parameter arez needed

size

by this function processor and all function
processor below it. The size is returned in
quadwords.

RETURN
VALUES

status$_normal normal, successful completion
status$_invalid_objsct_id invalid object ID
status$_object type_ invalid object

mismatch

97

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$request_io

os$request _io

(

IN channel_id : e$object_id;

IN function_code : integer;

BIND iosb : e$iosb;

IN completion_event_id : e$object_id = DEFAULT;

IN completion_ast : k$normal_ast_routine = DEFAULT;

IN ast_parameter : POINTER anytype CONFORM = DEFAULT;
IN io_parameters : POINTER anytype CONFORM = DEFAULT;
) RETURNS status;

DESCRIPTION This service is used to issue an I/O request. Two types of /O request may
be issued, they are:

a. Asynchronous I/O request, and
b. Syrichronous I/O request

An I/O request is describe by its function code and I/O parameter record
supplied to this service. The request will fail if the channel or event object
is invalid, the function code or /O parameters are invalid. The returned
status will contain the cause of failure. No information will be written to
the I/O status block.

An asynchronous I/O request is issued if an event object, AST procedure,
or both are specified in the call. Control is return to the caller after
the request has been successfully posted. When the I/O completes, the
following events can occur:

a. If an event object was specified, it is signalled.

b. If an AST procedure was specified, the AST is queued to the calling
thread. "

c. If both event object and a AST procedure is specified, the event is signal
first, then the AST is queued.

In the absents of an event object or an AST procedure, will cause the
request to be synchronous. In the case of a synchronous I/O request, the
calling thread is not allow to continue until the request completes.

The I/O request completion status is returned in the I/O status block.

ARGUMENTS channel_id
Supplies the object id of channel to request ioc on

function_code

Supplies an I/O request function code
iosb

Supplies an I/O status block

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$request_io

completion_event_id
Supplies a user event object to be signaled after I/O the completes

completion_ast

Supplies an ast procedure address to be called-when the I/O completes.

ast_parameter

Supplies a parameter for an ast procedure

io_parameters

Supplies a pointer to an I/O parameter record

RETURN
VALUES

status$_normal
status$_invalid_object_id
status$_wrong_record_type

status$_object_type_
mismatch

status_wrong_device_class

normal, successful completion
invalid object_id
Incorrect /O parameter record for this function code.

Invalid object

Invalid function code for this device.
Interface class specific status

9-9

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$synchronize_with_io

os$synchronize_with_io

(

IN event_id : e$object_id;
BIND iosb : e$iosb;
) RETURNS status;

DESCRIPTION

This service synchronize the calling thread with a currently outstanding
asynchronous I/O request.

This service can only be use for asynchronous request that contians at
least an event object.

The event object and the IOSB of the previously issued asynchronous I/0
request must be supplied as the parameters to this service.

ARGUMENTS

iosb
Supplies an IOSB.

event_id

" Supplies an event object ID.

RETURN
VALUES

9-10

status$_normal normal, successful completion
status$_invalid_object_id invalid object id

status$_object_type_ invalid object
mismatch

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$synch_channel_with_fpu

os$synch_channel_with_fpu

(
IN channel_id : e$object _id;
) RETURNS status;

DESCRIPTION This routines synchronizes the channel with an FPU object. This is done
by copying the sequence number in the FPU object to the channel object.

ARGUMENTS channel_id '
Supplies a object id of the channel object to be synchronized.

RETURN tatus$ | al ful Isti
status$_norma normal, successful complstion
VALUES e e Seee P
status$_invalid_object_id invalid object id
status$_object_type_ invalid object
mismatch '

9-11

1 0 Security System Services

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_impersonation

os$create_impersonation

(

OUT impersonation_id : e$object _id;

IN object_parameters : e$object_parameters = DEFAULT;
IN remote_nodename : string (*);

IN remote_username : string (*);

IN password : string (*) OPTIONAL;

) RETURNS status; " -

i e e
DESCRIPTION The os$create_impersonation service allows user mode servers to create an

impersonation object. The impersonation object can then be used as input
to the os$impersonate_client service to impersonate remote clients.

This service verifies that the remote user is a valid user of the system by
requesting the remote user’s local user authorization record. If a record
exists and the specified password, if any, matches the password in the
authorization record, the user is a valid user of the system. If the user is
a valid user, the service creates the impersonation object representing the
remote user from the remote user’s local user authorization record.

The object_parameters parameter is a record consisting of a name, an
object container ID, and an ACL. This record, and values for these fields,
are optionally provided by the caller. The name field is the name of the
object. If a value is not supplied, the object is created without a name.
The object container ID field identifies the object container into which the
object is inserted, but this field is ignored; the object is inserted into the
process-private container. The ACL field supplies additional protection for
" the object. If a value is not supplied, the object is created without an ACL.

Note: The only server calling this service should be the DFS server.

o e e s)

ARGUMENTS impersonation_id

Returns the object id of the created impersonation object.

object_parameters

Supplies the object’s name, object container, and protection.

remote_nodename
Supplies the name of the remote node.

remote _username
Supplies the name of the remote user.

password
Supplies the password specified by the remote user.

10-2

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_impersonation

RETURN
VALUES

status$_normal
status$_duplicate_object
status$_object_container_full
status$_invalid_user

status$_invalid_password

normal, successful completion.
duplicate object found in abject container.
object container full. .

the specified user is not authorized to access the
system.

the specified password was not vaiid.

10-3

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_priv_operation

os$create priv_operation

(

OUT privileged_operation_id : e$object _id;

IN object_parameters : e$object_parameters = DEFAULT;
) RETURNS status;

DESCRIPTION The os$create_priv_operation creates a privileged operation object. A
privileged operation object represents a privileged operation. This object
allows software that performs a privileged operation, to determine if a
user can perform the privileged operation. If the user has PERFORM_
OPERATION access to the privileged operation object, the user is allowed
to perform the privileged operation.

Software can have multiple privileged operation objects; the name of each
privileged operation object denotes the privileged operation.

The object_parameters parameter is a record consisting of a name, an
object container ID, and an ACL. This record, and values for these fields,
are optionally provided by the caller. The name field is the name of the
object. A value must be supplied because it specifies the name of the
privileged operation. The object container ID field identifies the object
container into which the object is inserted, but this field is ignored; the
object is inserted into the exec$privileged_operation_container system-level
container. The ACL field supplies additional protection for the object. If a
value is not supplied, the object is created without an ACL.

X

ARGUMENTS privileged_operation_id
Returns the object id of the created privileged operation object.

object_parameters

Supplies the object’s name, object container, and protection.

PR S e e

RETURN tatus$ | al ful leti
status$_normal normal, successful completion.

VALUES g A e .
status$_duplicate_object duplicate object found in object container.
status$_object_container_full object container full.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$delete_access_control_list

os$delete access control _list

(
IN object_id : e$object_id;
) RETURNS status;

DESCRIPTION The os$delete_access_control_list services deletes the specified object’s
access control list.

ARGUMENTS object id
Supplies the object id of the object whose ACL is deleted.

RETURN

status$_normal normal, successful completion.
VALUES o P
status$_invalid_object_id invalid object id.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$disable_identifier

os$disable identifier

N

IN identifier : e$identifier;
) RETURNS status;

DESCRIPTION

The os$enable_identifier service disables an identifier in the caller’s user
identifier list. After the identifier is disabled, it is not used by the system
when determining access to objects. -

The caller must hold the specified identifier before it can be disabled.
The identifier must have the dynamic attribute in order to be disabled.

ARGUMENTS

identifier
Supplies the identifier to disable.

RETURN
VALUES

status$_normal normal, successful completion.
status$_identifier_not_found the identifier was not found in the user identifier list.

status$_ident_already_ the identifier was already disabled.

disabled '

status$_identifier_not_ the identifier does not have the dynamic attribute.
dynamic

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$enable_identifier

os$enable identifier

(

IN identifier : e$identifier;
) RETURNS status;

DESCRIPTION The os$enable_identifier service enables an identifier in the caller’s user
" identifier list. After the identifier is enabled it is used by the system when
determining access to objects. -

The caller must hold the specified identifier before it can be enabled.
The identifier must have the dynamic attribute in order to be enabled.

ARGUMENTS identifier
Supplies the identifier to enable.

RETURN tatus$ | { ful leti
status$_normal normal, successful completion.

VALUES N o : o
status$_identifier_not_found the identifier was not found in the user identifier list.
status$_ident_already_ - the identifier was already enabled.
enabled . ’
status$_identifier_not__ the identifier does not have the dynamic attribute.
dynamic

10-7

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_access_control_list

os$get_access_control_list

(

IN object_id : e$object_id;

IN acl : POINTER e$access_control_list;
) RETURNS status;

DESCRIPTION

ARGUMENTS

The os$get_access_control_list service returns the specified object’s access
control list.

When the service is called, it copies the object’s ACL into the ACL pointed
to by the ACL parameter. The memory specified by the ACL parameter is
managed by the caller and must be large enough to hold the object’s ACL.
If the ACL is not large enough, the service copies as many entries as the
ACL can hold and returns an error status.

object_id

Supplies the object id of the object whose ACL is returned.

acl
Supplies a pointer to the ACL into which a copy of the object’s ACL is
written. The memory containing the ACL is managed by the caller.

RETURN
VALUES

10-8

status$_normal normal, successful completion.
status$_invalid_object_id invalid object id.

status$_acl_length_too_small the size of the specified ACL was not large enough
to hold the object's ACL.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_security_monitor

os$get_security_monitor

(

OUT security_events_enabled : SET e$security_event|..];
) RETURNS status;

DESCRIPTION The os$get_security_monitor service returns a summary of the security
events that are being monitored.

ARGUMENTS security_evenis_enabled

Returns the summary of security events that are being monitored.

RETURN

status$_normal normal, successful completion.
VALUES P

10-9

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$impersonate_client

os$impersonate_client

(

IN impersonation_id : e$object_id;

IN identifier_option : e$imp_identifier_option;
) RETURNS status;

R s)

DESCRIPTION The os$impersonate_client service allows a server to impersonate a client.
- A server can restore its own identity by calling the os$restore_server
service.

The only context of a client that can be impersonated are the identifiers
held by the client. The server can specify to the service how to
impersonate the client’s identifiers. If the server wants to impersonate the
client only, the service sets the caller’s identifier list to the list contained
in the impersonation object. If the server wants to impersonate the union
of the client and the server, the service allocates pool, combines the caller’s
identifier list and the identifier list in the impersonation object and saves
the resultant list in the pool, and sets the caller’s identifier list to the list
contained in the pool.

Before the service performs the impersonation, it restores the caller’s
previous identifier list. This allows the caller to impersonate multiple
clients in succession without having to make an explicit call to the
os$restore_server service. .

When a server impersonates a client, the server can access objects as if it
were the client.

e

ARGUMENTS impersonation_id
Supplies the object id of the impersonation object.

identifier_option

Supplies how the service performs the impersonation. If e$c_client_
identifiers value is specified, the service sets the server’s identifiers to the
client’s identifiers in the impersonation object. If the e$c_union_identifiers
value is specified, the service combines the server’s identifiers with the
client’s identifiers in the impersonation object.

"

RETURN tatus$ | i ful leti
: status$_norma normal, successful completion.
VALUE -
S status$_invalid_object_id invalid object id.
status$_object_type_ the object identified by the imersonation id is not an
mismatch impersonation object. :

10-10

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$restore_server

os$restore_server

DESCRIPTION The os$restore_server service restores a server’s original identifier list.
is service is used by servers that call the os$impersonate_client service
to impersonate clients.

ARGUMENTS None.

RETURN \
VALUES

10-11

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_access_control_list

os$set_access control_list

(

IN object_id : e$object_id;
IN acl : POINTER e$access_control_list;
) RETURNS status;

DESCRIPTION

The os$set_access_control_list sets the specified object’s access control list.

The memory specified by the ACL parameter is managed by the caller.
When the service is called, it allocates pool and copies the contents of the
specified ACL into the pool.

ARGUMENTS

object id
Supplies the object id of the object whose ACL is set.

acl
Supplies a pointer to the ACL from which the ACL on the object is set.
The memory containing the ACL is managed by the caller.

RETURN
VALUES

10-12

status$_normal normal, successful completion.
status$_invalid_object id invalid object id.
status$_invalid_acl invalid ACL.
status$_invalid_acse invalid ACE.

DIGITAL - Confidential and Proprietary - Restricted Distribution
' , ' os$set_security_monitor

os$set_security_monitor

(

IN security_events_enabled : SET e$security_event[..];
IN security_events_disabled : SET e$security_event]..];
) RETURNS status;

DESCRIPTION The os$set_security_monitor enables or disables the monitoring of security
events.

ARGUMENTS security_events_enabled

Supplies the summary of security events indicating the security events to
start monitoring.

security_events_disabled

Supplies the summary of security events indicating the security events to .
stop monitoring.

RETURN

status$_normal ‘ normal, successful completion.
VALUES .

10-13

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$translate_access_type

os$translate_access_;type

(

IN access_type : e$access_type;

IN object_type_name : string (*) OPTIONAL;
OUT access_type_name : string (*);

) RETURNS status;

”

DESC RlPTl()N The os$translate_access_type service translates an access type to its
corresponding access type name.

The access type can be either a general or specific access type. If the
access type is a general access type, the caller does not have to specify the
object_type_name parameter. If the access typeisa specific access type,
the caller must specify the object_type_name parameter. The object type
name denotes the object type that defined the specific access type.

The service performs a case sensitive search to match the object type
name.

N

ARGUMENTS access_lype

Supplies the access type to translate.

object_type name
Supplies the object type name of the object type that defined the specific
access type.

access_type name

Returns the access type name corresponding to the access type.

N

RETURN

status$_normal narmal, successful completion.

VALUES gl o P
status$_invalid_access_type invalid access type.
status$_invalid_name_length length of the object type name was not valid.
status$_invalid_object_type invalid object type specified by the object type name.

10-14

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$translate_access_type name

os$translate_access_type name

(

IN access_type _name : string (*);

IN object_type_name : string (*) OPTIONAL;
OUT access_type : e$access _type;

) RETURNS status;

DESCRIPTION

The os$translate_access_type_name service translates an access type name
to its corresponding access type.

The access type name can correspond to either a general or specific access
type. If the access type name corresponds to a general access type, the
caller does not have to specify the object_type_name parameter. If the
access type name corresponds to a specific access type, the caller must
specify the object_type_name parameter. The object type name denotes the
object type that defined the specific access type.

The service performs a case sensitive search to match the access type-
name and object type name.

' ARGUMENTS |

access_type_name .
Supplies the access type name to translate.

object_type name
Supplies the object type name of the object type that defined the specific
access type.

access_type

Returns the access type corresponding to the access type name.

RETURN
VALUES

status$_normal normal, successful complstion.

status$_invalid_name_length length of the access type name or the object type
name was not valid.

status$_invalid_access_type invalid access type specified by the access type
name.

status$_invalid_object_type invalid object type specified by the object type name.

10-15

DIGITAL - Confidential and Propfietary - Restricted Distribution
os$verify priv_operation

os$verify_priv_operation

(.
IN privileged_operation_id : e$object_id;
) RETURNS status;

DESCRIPTION The os$verify_priv_operation allows software to determine if a user can
perform the privileged operation represented by the specified privileged
operation object. If the user has PERFORM_OPERATION access to the
privileged operation object, the user is allowed to perform the privieged
operation.

ARGUMENTS privileged operation_id
Supplies the object id of the privileged operation object.

RETURN tatus$ I | ful leti
status$_norma normal, successful completion.
VALUES wini e °
status$_invalid_object_id invalid object id.
status$_object_type the object identified by the privileged operation id is
mismatch nat a privileged operation object.

10-16

‘1 1 Condition and Exit Handling System Services

111

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_condition_stack

os$create_condition_stack

|
IN condition_stack_size : integer|0..];
) RETURNS status;

DESCRIPTION This system service creates a condition stack of the specified size. If a
condition stack already exists, then a new stack is not created and an
error status is returned. The stacks size is based on the requested size
parameter and is always rounded up two a system defined value. A single
guard page is placed at the top of the stack.

ARGUMENTS condition_stack_size
Supplies the size in bytes for the condition stack being created. This value
is always rounded up to an appropriate granularity.

RETURN

status$_normal Normal succesful completion of the system service
VALUES - P Y

status$_no_user_stack va " The condition stack was not created because no
: virtual address space in the stack region could be
found large to staisfy the request.

status$_condition_stack A new condition stack was not created since a
exists condition stack already exists.

11-2

DIGITAL - Confidential and Proprietary - Restricted Distribution
osS$create_last_chance_handler

os$create last chance handler
{(
IN condition_handler : e$condition_handler;

OUT handler_id : e$condition_handler_id;
) RETURNS status;

DESCRIPTION This system service creates a last chance vectored condition handler. Last
: chance vectored condition handlers are processed in LIFO order during
condition delivery. This service places the created last chance handler at
the beginning of the last chance vectored condition handler list stored in
the calling threads TCR. The service returns a resulting handler_id which
may be used to delete a last chance vectored condition handler once it has
been created.

The condition handler is linked on the list head in the calling threads TCR
indexed by the processor mode that the call was made in.

ARGUMENTS condition_handler

Supplies the condition handler routine to be invoked when a condition is
- being dispatched.

handler_id . -
Returns the handler ID of the created last chance handler. This argument
is only valid if the service returns status$_normal.

RETURN
VALUES

status$_normal the service completed without srrors
status$_access_violation a specified parameter is not accessible

11-3

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_primary_handler

os$create_primary_handler

(

IN condition_handler : e$condition_handler;
OUT handler_id : e$condition_handler_id;
) RETURNS status;

DESCRIPTION

This system service creates a primary vectored condition handler. Primary
vectored condition handlers are processed in FIFO order during condition
delivery. This service places the created primary handler at the end of the
primary vectored condition handler list stored in the calling threads TCR.
The service returns a resulting handler_id which may be used to delete a
primary vectored condition handler once it has been created.

The condition handler is linked on the list head in the calling threads TCR
indexed by the processor mode that the call was made in.

ARGUMENTS

condition_handler
Supplies the condition handler routine to be invoked when a condition is
being d1spatched

handler_id
Returns the handler ID of the created primary handler. This argument is
only valid if the service returns status$_normal.

RETURN
VALUES

114

status$_normal the service completed without errors
status$_access_violation a specified parameter is not accessible

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$delete_last_chance_handier

os$delete_last_chance_handier

(

IN handler_id : e$condition_handlef_ id;
) RETURNS status;

DESCRIPTION This service deletes an existing last chance vectored condition handler.
Once deleted, the condition handler will not be called during exception
dispatching. . -

The condition handler is deleted from the list head in the calling threads
TCR indexed by the processor mode that the call was made in.

ARGUMENTS handler_id
Supplies the handler id of the last chance vectored condition handler
which is to be deleted.

RETURN status$ 1 th i leted without
us$_norma e service completed without errors
VALUES -nome P ° y
status$_condition_handler_ the last chance vectored condition handler specified
not_found by handler_id was not found.

11-5

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$delete_primary_handler

os$delete_primary_handler

(
IN handler _id : e$condition_handler_id;

) RETURNS status;

DESCRIPTION This service deletes an existing primary vectored condition handler.
) Once deleted, the condition handler will not be called during exception
dispatching.

The condition handler is deletéd fromr ;;he list head in the calling threads
TCR indexed by the processor mode that the call was made in.

ARGUMENTS handler_id
Supplies the handler id of the primary vectored condition handler which is

to be deleted.
[e e e
RETURN tatus$ | th i leted without
status$_norma e service completed without errors
VALUES ~norma . P o y
status$_condition_handler_ the primary vectored condition handler specified by.
not_found ' handler_id was not found.

11-6 -

1 2 Miscellaneous System Services

121

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$get_performance_info

os$get_performance_info

(
IN data_list: POINTER e$item_list_type;
IN component_list: POINTER egitem_list_type = NIL;

) RETURNS status;

DESCRIPTION Return requested information about the usage of Mica system resources.

/

ARGUMENTS data_list

Supplies the address of an item list which describes the data items to be

gathered.
component_list

Supplies the address of the data,

list item list. If the data_list specifies

data items for a component class, this list specifies the components for
which data is to be gathered. If the component item list is not specified, or
does not include any components of the requested type, then information
is returned for all components of the requested type. If the component_list
includes component types for which data is not requested, those component

types are ignored.

M

RETURN
VALUES

status$_normal
status$_no_xx_component

status$_oox_buffer_overflow

status$_access_violation

12-2

All data was gathered (success)

A specified companent of type xxx is missing from
the system. Data was returned for all other specified
components of that type. (success)

The data buffer for item xxx was not large enough to
hold the requested data (failure)

The service cannot access the locations specified by
one or more items (failure)

DIGITAL - Confldentlal and Proprletary Restricted Distribution
os$get_system_information

os$get_system_information

N
IN system_get _items : POINTER e$item _ llst F type;

) RETURNS STATUS;

DESCRIPTION The Get System Information system services returns information about
the current system.

ARGUMENTS sysiem_get _items
Supplies the item list which specifies the information about the system to
return. The following codes are valid:

item code action

e$c_syi_boottime
e$c_syi_cpu_type
e$c_syi_software_version
e$c_syi_number_pagefil§§
e$c_syi_pagefile_free
e$c_syi_pagefile_used
e$c_number_of_scalar_cpus
e$c_number_of vector_cpus
e$c_memory_size
e$c_free_page_list_size
e$c_zeroed_page_list_size
e$c_modified_page_list_size
e$c_standby_page_list_size

e$c_bad_page_list_size

Returns the time when the
system was booted.

Returns the CPU processor
type. '
Returns the current version
of the operating system.

Returns the current number
of pagefiles installed.

Returns the total number of
free pages in all pagefiles.

Returns the total number of
used pages in all pagefiles.
Returns the total number of
scalar processors.

Returns the total number of
vector processors.

Returns the amount of
memory on the system.

Returns the size of the free
page list.

Returns the size of the
zeroed page list.

Returns the size of the
modifed page list.

Returns the size of the
standby page list.

Returns the size of the bad
page list.

X

RETURN
VALUES

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_system_information

status$_normal Normal,successful completion.
stauts$_invalid_item_code error, invalid item code found.

124

DIGITAL - Confidential and Proprletary Restricted Distribution
os$get_system_time

os$get system_time

(

- ouT system_time : e$binary_absolute_time;
) RETURNS STATUS;

DESCRIPTION The Get System Time service returns the current time in ISO time format.

ARGUMENTS system_time

Returns the current time.

RETURN

status$_normal Success, normal completion.
VALUES -
status$_invalid_argument Error, cannot access argument.

12-5

DIGITAL - Confldentlal and Proprletary Restricted Distribution
os$get_uid

“os$get_uid
(

IN desired_number : integer [1..] = 1;

QU first_uid : e$uid;

OUT number_allocated : integer [0.]OPTIONAL
) RETURNS STATUS;

DESCRIPTION The Get UID (Unique Identifier) service returns a UID for use in various
components of the Digital Network Architecture.

ARGUMENTS desired_number
Optionally supplies the desired number of UIDs to allocate. This allows
a single call to reserve a group of UIDs for usage. If this argument is not
supplied an allocation group of one is returned.

first_uid
Returns the first unique identifier in the allocated group.

number_allocated
Returns the number of UIDs reserved.

RETURN tatus$, | S | leti
status$_norma uccess, normal completion.
VALUES I
status$_invalid_argument Error, cannot access argument.
status$_not_all_created Waming, the desired number of UIDs could not be
created.

12-6

DIGITAL - Confidential and Proprietary - Restricted Distribution
osSinstall_page_file

os$install_page_file
(|

IN page_file_name : string (*);
) RETURNS STATUS;

DESCRIPTION The Install Page File service installs the speéiﬁed file as a paging file. The
specified file must already exist and not be currently accessed.

ARGUMENTS page_file_name V
Supplies the file name of the specifed page file to install.

RETURN

V ALUES status$_normal Normal, sucessful completion.
file_access_errors whatever.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$next_uid

os$next_uid

(|
IN previous_uid : e$uid;
OUT next_uid : e$uid;
) RETURNS STATUS;

DESCR]PT]QN The Next UID (Unique Identlﬁer) service returns a the next UID in a
ted UID range.

ARGUMENTS revious_uid

upplies the previous UID in the range which was returned.

next_uid
Returns the next UID.

RETURN |
VALUES status$_normal

status$_invalid_uid Error, the value for the UID was not a valid UID.

Success, normal completion.

12-8

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_system_time

os$set_system_time

(

IN system_time : e$binary_absolute time;
) RETURNS STATUS;

DESCRIPTION The Set System Time service changes the value of the system time.

ARGUMENTS system time

Supplies the new time value for the system time.

RETURN tatus$ l S I leti
status$_normal uccess, normal completion.
VALUES -
status$_invalid_argument Error, cannot access argument.
status$_no_rights : Error, the thread does not have the proper identifier

to change the system time.

A Executive Constants and Data Types

A1 Executive Constants

Executive Defined Constants

io$c_deaccess = -1; !
io$c_fpu_accéss = =2; !
ioc$c_get_fpu information = ~3;
io$c_get_channel information = -4;
io$c_establish callback = -=5;
io$c_enable_atat e_change_a.st = =6;
io$c disable_state change ast = -7;
io$c_item interface class = -1;
io$c_item fpu state = -2;
io$c_i£em_fpu_bound = =3;

io$ c_item fp params_area size = - 4;
io$ c_it em_channel_access = =1;
io%c_item granted access = -2;

(e$ request_io, e$execute_io , e$synchronous_io)
(e$ request_io)

{(eSreque st_io)

(e$request_io)

(e$synchronous_ioc_call)

(e$reque st_io , e$ ay:nchronous__i o__ca.ll)
(e$request_io, e$synchronous_io_call)

- bem aee eem tem

io$c_access _request_io : e$access_type = eSc_specific access_l;
io$c_access_get_chn info : efaccess type = efc_specific_access_2;
io$c_access_management : eSaccess_type = e$c_specific_access_1;

io$c_access_maintenance
io$c_access_performance

eSacces s_type = e$ c_specific_access_2;
eSacces s_type = e$c_specif ic_acces s_3;

io$c_access diagnostic : e$access_type = efc specific access 4;

io$ c_a.ccess_allew_channel

eSacce ss_type = e$c_spe cifi c_acces s_5;

io$c_access_get Fpu info : efaccess type = efc_specific_access_§;

io$c_access_accounting :
io$c_access_access

e$access_type = a$c_specific_access_'7;
eSaccess_type = e$c_specific access_8;

io$c_access_fpu read : efaccess_type = ef$c_specific_access_9;

io$c_access_fpu write :
e$c_es max_string = 32767;
e$c__max_image_na.me = 256;

e$c_max name = 255;

e$c_max_eqvnam count = 128;

obj Sc_max_object_name = 127;
e$c_max ace_count = 255;
e$c_ma.x_user_name = 32;

k$c_high priority level = 63;
k$c_high processor number = 31;
e$c_max__ace_identifier_count = 63;
efc_max_audit_name = 246;

ejaccess_type = efc_specific access 10;

t# This should be 255.

! Specified by ACL Architecture.

A.2 Miscellaneous Data Types

Misceleneous Data Types

A-1

Executive Constants and Data Types

e$binary absolute time :
utc_value :
inaccuracy :

RECORD
large_integer;
integer [0..] SIZE (BIT,32);
reserved : integer {0..2**16 - 1] SIZE (BIT,16);
tdf : integer [-720.. 780] SIZE (BIT,12);
version : integer [0..2**4 - 1] SIZE (BIT,4);
LAYOUT
utc_value;
inaccuracy;
reserved;
tdf;
version;
END LAYOUT;
END RECORD;

! Unique Identifier Format
1

e$uid : RECORD
first_quadword : large integer;
second_quadword : large_integer;
END RECORD;

! Common Item List Format
!

e$item list type(ilv_max entries
CAPTURE ilv_max_ entries;
ilv_last_inuse_entry
ilv_direction :
ilv_list :

END RECORD;

integer) : RECORD
integer;
e$item list_direction;

(e$c_item list in out,
e$c_item list_in,
e$c_item list out

}y:

e$item list direction

!

f11%x**x gi] limitation should be 48 bits
titx** gij] limitation...

! An Ttem List Consists of an array of item list entries

e$item list_entry : RECORD
ile_ﬁtemLcode : integer;
ile item_length : integer;

ile_item address POINTER anytype;
ile:ﬁetu;n_length_address POINTER integer;
LAYOUT
ile_}tem_pode ;
ile_item length ;
ile_item_address ;
ilq_:eturn_length_address ;
END LAYOUT;
END RECORD;

2

1
{ Common Linked List Entry/Header
1

e$linked list RECORD
1 flink : POINTER e$linked list;
1 blink : POINTER ef$linked list;

END RECORD;

!

! Wait Type
!

! max size number of entries
!t index of last wvalid entry
! direction of entire item list

ARRAY[1l..ilv_max_entries] OF e$item list entry;

internal format of an item code
internal format of an item length
item address

address of return length

A3

A4

e$wait_type : {
e$c_wait_any,
e$c _wait_all

):

k$processor mode :

IS,

AST Procedure Format

k$normal_ast_routine :
PROCEDURE (
IN context : POINTER anytype CONFORM;
IN system value : quadword CONFORM;
)i

Executive Constants and Data Types

(kc_kernel, kc_user);

I/O Data Types

I/0 Status Block

e$iosb : RECORD
condition _value : longword;
byte_count longword;
fp condition : gquadworzd;

END RECORD;

e$ fpu_state :

! I/0 status
{ I/0 transfer count
! Filled in by the FP.

{io$ c_fpu_state_of fline, io0$ c_fpu_st ate_available,

io$ c_fpu_stat e_online, io$ c_fpu_st ate_transition,
iofc_fpu state maintenance);

Logical Name Data Types

e$logical_name_list (length : integer [1..]) : RECORD

CAPTURE length;

last_valid entry : integer;

context large_integer;
logical_name ARRAY [1l..length] OF
LAYOUT

length;

last_valid_entry;

context;

logical name;
END LAYOUT;
END RECORD;

eSequivalence name_list (length :
CAPTURE length;
last_valid entry : integer;
context : large integer;
equivalence name
LAYOUT
length;
last_valid entry;
context;
equivalence name;
END LAYOUT;
END RECORD;

integer

e$lognam attributes : (
e$c_confine lognam attr,
e$c_noalias lognam attr,
e$c_noshow_lognam attr

);

varying string (e$c_max name);

[1..e3c_max_eqvnam count]) : RECORD

ARRAY [1..length] OF varying string (e$c_max name);

A-3

Executive Constants and Data Types

A5 Memory Management Data Types

e$page _protections : {
e$c.page_user_read,
e$c_page user write,
ejc_page user_ execute, N
e$c_page_kernel read,
elc _page_kemel_write,
e$c_page_ kernel_execute);

e$mapping_type : (e$c_data map, e$c_image_map);

ejpage protection : SET e$page_protections [..];

e$section_update flags : integer; !!!*** fix this

A.6 Process Architecture Data Types

Process Accounting Summary

The final accounting record contains this information in TLV format
in addition to fields identifying the process, image name, user ...

[—

eSaccounting summary : RECORD
acct_total page_faults : integer; ! Total number of page faults
acct_hard page faults : integer; ! Number of page faults for non resident pages
acct_soft_page faults : integer; ! Number of page faults fixed from reclaim lis
acct_dzro page faults : integer; . ! Number of demand zero page faults
acct_com page_faults : integer; ! Number of copy on modify page faults
acct_peak virtual memory : integer; ! Peak virtual memory size
acct_peak working set_size : integer; ! Peak working set size
acct_start_time : large_integer; ! Start time of process
acct_end_time : large_integer; ! End time of process
acct_page_file usage : integer; ! Peak page file usage
acct_paged pool_usage : integer; ! Peak paged pool usage
acct_non_paged_pool_usage : integer; ! Peak non paged pool usage
acct_cpu_and_io : e$cpu_and io_summary; ! CPU and IO accounting summary

END RECORD;

Cpu and IO accounting summary

An instance of this record exists in both the thread control block

and in the process control block. Updates to the pcbh version requires interlocked
instructions. In the TCB version, only the execute io counters will have to be updated
using interlocked instructions

- e ee ae bea sem b aem

e$cpu_and io summary : RECORD
cis_cpu_cycles : large_ integer; ! Number of cyclea used by the process or

I0 Accounting

Request I0O’s are counted once.

Each FPU that passes on an IRP (execute_io’s) must also record the transfer
by incrementing the counter for its class of FPU

cis_request_io count : integer; ! Number of request_io’s
cis_execute_io count : ARRAY[e$fpu class] OF integer; ! Number of execute io’s per fpu class
END RECORD;
!

! Determines the granularity in the execute io count array
1

A4

Executive Constants and Data Types

e$fpu_class : { e$c_fpu disk, ! Disk FPU’s
e$c_f£fpu_tape, ! Tape FPU’s
e$c_fpu_terminal, ! Terminal FPU’s
e$c_£pu_network, ! Network FPU’'s
e$c_fpu_ generic ! Generic FPU’s

):

Quota and Resource Usage Data Structures

[P —

e$quota vector : ARRAY[e$quota_types] OF integer;
e$quota usage : e$quota_ vector;
esquota_limits : eSquota_vector;
e$quota_types : (
e$c_paging_file_ gquota,
- e$c_paged pool_quota,
e$c_nonpaged pool_gquota,
efc_cpu_time quota

)i

'
! User Job, Process, and Thread Creation Records
t

e$user record : RECORD

user username : string(e$c_max_user_name); ! User Name

user_security profile : e$security profile; ! User Security Profile from Authorization Fi
user_per_pser_limits H e$quota_limits; ! Per User Resource Limits

user_ »er_job_limits : e$quota_limits; ! Per Job Resource Limits

user_ per process_limits : ef$quota_limits; ! Per Process Resource Limits

user_thread priority : k$combined priority; ! Default Thread Priority

user_thread affinity : k$affinity; ! Default Thread Affinity
user_access_restrictions : e$access restrictions; ! Users Access Restrictions

END RECORD;

e$job_record : RECORD
job_class : e$job_plass;
1
! Per job Resource limits. This value is used as the
! qual limits value for the job object, and is deducted
! from the qual_usage field of the jobs user object.
! A value of zero() in any one of fields means to use the
! corresponding value of the g per job_limit from the
! user structure
1

job_per job limits : aSquota_limits;

END RECORD;

e$process_record : RECORD
process_status_object : efobject_id; ! Object ID of processes status object
process_image name : string(e$c max_image name); ! Image name for process being created

!

! Per Process Resource limits. This value is used as the

! qual_limits value for the process object, and is deducted
! from the qual_usage field of the owning job object.

! A value of zero() in any one of fields means to use the

! corresponding value of the g per process_limit from the

! user structure

1

process_per process_limits : eS$quota_limits; ! Resource limits for this process
END RECORD;

e$thread record : RECORD
thread stack_size : integer; ! If all 0 then default
thread priority : k$combined priority; ! initial thread priority if all 0 then default
thread affinity : k$affinity; ! complement of affinity If all 0 then all processor

END RECORD;
!

! Miscelenecus Thread Creation Parameters
1

A-5

Executive Constants and Data Types

e$thread entry point :
k$affinity :
k$combined;priority :
k$minor_priority :
e$jocb_class :

I,

e$process_control region :

PROCEDURE () b
SET integer[O..k$c_pigh_proceasor_pumber];
integer[0. .k$c high priority levell:;
integer[0..3];

(e$c_je_invalid,

e$c~jc_petwork,

e$c_jc_interactive,

e$c_jc_batch,

e$c_jc_rsvdl,

e$c_jc_rsvd2,

e$c_jc_ravd3,

e$c_jc_rsvd4,

e$c_jc_rsvd5

)i
The User Visible Process Control Region

RECORD

pcr_image name string(e$c_max_image name);
pcr_;otal_number_of_threads : integer;
per_number running threads : integer;
pcr_object_id : eS$object_id;

duplicate of p_obj_id

A-6

pcr_protected data hd : e$linked list;
pcr_data block : POINTER anytype;
pcr_data_block_length : integer;
per_exit handlers : e$linked list;

END RECORD;

e$thread_control_region :

The User Visible Thread Control Region

RECORD

tcr_object_id : e$object_id;)

tcr_stack array : ARRAY[0..1l] OF e$stack representation;
ter_current_stack_index : integer{0..1];

ter_per pointer : POINTER e$process_control region;
tcr_handler_array :

tcr_exit_handlers :
tcr_start_address

e$1inked;}ist;
e$thread;§ntry_point;

! Initial Thread Parameters
!

ter_data _block : POINTER anytype;
tcr_data;plock_length : integer;
tcr_parameterl POINTER anytype;
ter_parameter2 POINTER anytype;
LAYOUT
tcr_object_}d;
tcr_stack_array;
ter_current_stack index;
ter_per pointer;
tcr_handler_ array;
ter_exit_handlers;
tcr_start_;ddreas;
tcr_data_block;
tcr_data_block length;
ter_parameterl;
tcr_parameter2;
END LAYOUT;

END RECORD;

e = sme

Thread Environment Block User Mode R3 points to this

ARRAY[k$processor_@ode] OF e$vectored;pandlers; !

process image name

total number of threads for this process
number of running threads for this proce
process object id ~

. ten s e

List head of protexted data
Initial process data or NIL
Length rounded to quad in bytes of data
process level exit handlers

! Object ID of thias thread

! ter stack array

! index of current stack

! Pointer to process control region

vectored handlers for kerne!
! user mode

! Thread exit handlers User mode only

! initial start address of thread

Initial thread data or NIL

Length rounded to quad in bytes
Immediate parameter / or zero()
Immediate parameter / or zero()

Executive Constants and Data Types

e$thread_pnvironmsnt_block : RECORD
teb_header e$common_teb tcb header;
teb_vm _zone : integer;

tls_array_ address :
tls_array free :
LAYOUT
teb header;
teb_vm_zone;
tls_array_address;
tls_array_free;
END LAYOUT;
END RECORD;

POINTER anytype;
integer;

1

! Misceleneous TCR Constructs

!

e$vectored handlers : RECORD
primary_handlers e$linked_list;
last_chance handlers : eSlinked_;ist;

END RECORD;

e$stack representation :
initial sp

RECORD
POINTER anytype;

]

stack limit POINTER anytype; !

stack base POINTER anytype; !
END RECORD;

! Common TEB, TCB Header, R3 always points
!

ejcommon_teb_‘tcb_header : RECCRD
UNION CASE * -
WHEN 1 THEN
teb_length : integer;

WHEN 2 THEN
tcb_previous mode :
END UNION;
ter_address
LAYOUT
UNION
OVERLAY
teb_length;
OVERLAY
tcb_previous—mode;
END UNION;
tcr_address;
END LAYOUT;
END RECORD;

k$prccessor_mode;

POINTER e$thread control_region;

! Thread performance data
!

e$thread_perf_counters
tpc_kernel ticks integer;
tpc_user_ticks integer;
tpc_preemption_switch integer;
tpc_voluntary switch : integer;
tpc_quantum ends : integer;

END RECORD;

RECORD

!

!{ Item Codes For User,
1

Job, Process,

[U

to this structure kernel mode,

' common teb/tcb header

thread local vm zone
address of thread local storage control
byte offset of first unused tls control array s

Initial Value of Condition SP
Condition Stack Limit
Condition Stack Base

or user mode

! When teb header first word is length
! byte length of teb

! When tcb header first word is previous mode
! saved previous processor mode

! Pointer to TCR

and Thread Services

Executive Constants and Data Types

e$ujpt_item codes : (efc_ujpt_nil code,

" e$c_job_count,
e$c_job ids,
e$c_username,
e$c_quota_usage,
e$c__user_limits ,
e$c_job_limits,
e$c_process limits,
e$ c_thread | priority,
e$c_thread affinity,
e$c_access_restrictions,
e$c_user_id,
eSc :_process_count,
e$c_process_ids,
e$c_job_class,
e$c_job_id,
eSc _parent_id ,
e$c_su.b _process_count,
e$c_sub process_ids,
e$c_thread count,
e$c_thread ids,
e$c_process accounting,
alc _pcr_ba..se ,
elc > _protected_data,
e$c_process_id,
e$c__tcr_base ’
e$c_thread accounting,
e$c_thread perf counters,
e$c_thread mnr priority,
e$c_thread mjr_priority,
e$c_get_entire_object

)i
]

! Exit Status Object Data Types
! ;

e$status_object_types : (e$c_status_process,
e$c_status thread);

efexit_status_ summary : RECORD
status_bound_object_type : e$status_object_types; ! Proceas or Thread
status_bound object_id : e$object_id; ! Object ID of object reporting st
status_value : status; ! Exit Status
status_string pointer : POINTER varying string(e$c_es_max_string);! Pointer to exit status string
END RECORD;

1

! Get Set information item codes for exit status objects
!

e$exit_status_item codes : (efc_exit_status_nil_code,
e$c_status_value,
e$c_status_ string,
e$c_status_string set,
e$c_status_summary

yi
efexit handler_id : POINTER anytype;

e$exit handler placement : (
e$c_beginning of list,
e$c_end of list

)i

A-8

Executive Constants and Data Types

A.7 Object Architecture Data Types

All object creation object service routines take as a

parameter an e$object_parameters record. This record

specifies the container that the object is to be created in, B
the name of the object, and the acl for the object. Any, or

all fields can be defaulted to zero() in which case the object
service routine chooses an appropriate default value.

e$object_parameters : RECORD
object_container_id : e$object_id;
name : varying_string (obj$c_max object_name);
acl : POINTER ef$access control list;
END RECORD; - - -

Item codes used in the get information services for
object architecture defined objects like object containers,
container directories, and all object headers

[P,

e$object_item__code : (
e$c__acl ’
e$c_allocation_object_id,
e$c_create_disable,
e$c_level ,

" efc_logical_ name_list,

e$c_mode,
e$c_name ,

e $c_nonpaged _pool_charge ,
e$c_object_container_ id,
e Sc__obj ect_count,

e $c_cbj ect__id__count ’
e$c_object_ id list,
e$c_object_state,

e $c_obj ect_type_ name,

e $c__oid__l evel,
e$c_oid_object_container_id,
e$c_oid object_id type,
eSc_otd__id,

e $c_owner,

e$c_paged pool_ charge,
elc _pointer count,
e$c_principal object_id,
e$c_waitable

):

1

! representation of an object id
!

eSob ject__id : QUADWORD;

!
! This data structure is used whenever a variable length list of object
! ids is required

!

e$object_id list (length : integer [1l..]) : RECORD
CAPTURE length;

last_valid entry : integer;
context : large integer;
object_id : ARRAY [l..length] OF e$object_id;
LAYOQUT
length;
last_valid_entry ;
context;
object_id;

END LAYOUT;
END RECORD;

A-9

A.8

Executive Constants and Data Types

Security Related Data Types

eSaccess_control list{ace_ count

CAPTURE ace_count;

VARIANTS CASE ace_count

WHEN 0 THEN
NOTHING;
WHEN OTHERS THEN
ace : ARRAY
END VARIANTS;
LAYOUT
ace_count;
VARIANTS
OVERLAY

reserved :

ace;
END VARIANTS;
END LAYOUT;

END RECORD;

eSacces s_type : (

A-10

e$c_general access_1,
e$c_general access_2,
e$c_general access_3,
e$ c_gene ral_accesa__4 ,
e$c_general access_5,
e$c_general access_§,
e$c__general_acce 33_7 ,
e$c_general access_8,
e$c_general_ acce ss_9,

e$ c_genera.l_acce ss 10,
e $c_general_acce s._s_ll ’
e$c_general access_12,
e$c_general_acce ss 13,
e $c_general_access_l 4,
e$c_general_access_15 ,
e$c_general access_ 16,
e$c_general acceass_17,
e$c_general access_18,
e$c_general access_l9,
e$c_general access_ 20,
e$c_general access 21,
e$c_general access_22,
e$c_qene ral_ access_23,
e$c_general access_24,
e$c_general access 25,
e $c__general_acce ss_26,
e$c_general access 27,
eSc_general_access_28,
e$c_general access 29,
e$c_general access_ 30,
e$ c_general access_31,
e$c_general access_32,
e$c_specifi c_access_1,
e$c__speci fi ¢ _access_2,
e$c_specific_access_3,
e$c_speci fic_access_ 4,
e$c_specific_access 5,
e $c_speci fic_acces s_6,
e$c_specific_access 7,
eSc_specific_access_8,
e$c_specific_access 9,
e$c_specifi c_access_10,
e$ c_specifi c_acces s__ll ,
e$ c_specific_access_12,
e$c_specific_access_13,
e$c_specific_access_ 14,
e$c_specifi c_acces s__15 ,
e$c_specific access_16,
e$c _specifi c_access_17,

[1..ace_count] OF e$access_contro 1_entxy;

FILLER (longword,*);

integer [0..e$c max_ace count]) :

RECORD

e$c_specific access_18,
e$c__speci fic_access_19,
e$c__speci fi c_access__Z o,
e$c_specific access_ 21,
e$c_specific_access_22,
e$c_specific_access 23,
e$c_specifi c_access_24,
e$c_specific access_25,
efc_specific access_26,
e$c_specific_access_27,
e$c_specific access_28,
e$c_specific_access_29,
e$c_specific_access_30,
e$c_specific_access_31,
e$c_specific access_32
)i

e$identifier : longword;

e$imp identifier option : (
e$c_client_identifiers,
esc_union_identi fiers

):

e$ security event : (
e$c__a.c1__aud.it_se curity event

)

e$access_ace flag : (
e$c_nont_erminal_ace_f lag

):

e $ace_£l ag : {
e$c_default_ace_ flag,
e$c_nopropagate_ace_flag

r

eSace_type : (
e$c_access_ace,
e$c_audit_ace

):

eSaudit_ace_flag : (
e $c_succe ss_ace_flag,
e $c_f ai lure_ace_fl ag,
e$c_alarm ace flag

)i

e$access_control entry : RECORD

ace_type : e$ace_type [..] SIZE
ace_flags
reserved : byte data (2);

UNION CASE *

WHEN 1 THEN
access_flags
access_identifier count
access_access_allowed :
access_identifier :

WHEN 2 THEN
audit_flags
audit_access_monitored :
audit_name

END UNION;
END RECORD;

Executive Constants and Data Types

(byte) ;

SET e$ace flag [..] SIZE (byte);

! Access ACE specific
SET e$access_ace flag [..] SIZE (byte);

integer [l..e$c_max_ace_identifier_ count] SIZE (byte);

SET e$access_type [..];
ARRAY [1..e$c__max__ace_identifier_count] OF e$identifier;
! Audit ACE specific

SET e$audit_ace_flag [..] SIZE (byte);

SET e$access_type [..];

varying string (e$c_max_audit_name);

A-11

Executive Constants and Data Types

A9 Condition Handling Data Types

e$conditioq_record;pointer : POINTER e$condition_}ecord;
e$mechanism record pointer : POINTER eS$mechanism record;

eScondition handler : PROCEDURE (
IN condition_record : e$condition_record_pointer;

IN mechanism record : e$mechanism_record pointer;
) RETURNS status;

e$condition handler_id : POINTER anytype;

e$condition_reco£d(argument number : integer [0..]) : RECORD
CAPTURE argument number;
condition name : status;
condition_flags : SET e$condition flags [..];
conditioﬁ_list H e$conditioq;record_pointer;
processor_status : arch$processor_status;
condition_address : e$instruction_pointer;
arguments : ARRAY [1l..argument number] OF e$argument descriptor;
LAYOUT
condition_name;
condition_flags;
condition_list;
procesasor_ status;
condition_address;
unused : FILLER (longword, 1);
argument number;
arguments;
END LAYOUT;
END RECORD;

e$mechanism record : RECORD
stack_valid : boolean [..] SIZE (longword);
establisher fp : - e$frame pointer;

UNION CASE *.
WHEN 1 THEN

return_ status : status;

WHEN 2 THEN
first_return_register : arch$register;
second_;eturn_register : arch$register;

END UNION;

LAYQUT
stack_yalid;
establisher fp;
UNION
OVERLAY
: return_status;
OQVERILAY
' first return_register;
second_return register;
END . UNION;
END LAYOUT;
END RECORD;

e$frame pointer : POINTER anytype;

archsproceséor_status : integer; ! dummy definition
arch$register : longword;

e$instructidh_pointer : POINTER arch$instruction;
arch$instruction : integer; ! dummy definition

A-12

Executive Constants and Data Types

e$argument_descriptor : RECORD
UNION CASE *
WHEN 1 THEN
extent : integer;
ptr : POINTER anytype;
WHEN 2 THEN
immediate : dinteger;
WHEN 3 THEN
large_immediate : quadwoxd;
END UNION;
class : integer [0..255] SIZE (byte);
datatype : integer [0..255] SIZE (byte);
size : integer;
LAYOUT
UNION
OVERLAY
- extent, R -
ptr;
OVERLAY
immediate;
OVERLAY
large_immediate;
END UNION;
class;
sbzl : FILLER (byte,2);
datatype;
size;
END LAYOUT;
END RECORD;

e$ ccndition_flags : (
e$c_condition unwinding,
.e$c_condition_noncontinuable,
e$c_condition_exit_unwind,
e$c_condition_during_ast ’
e$c_condition_async

)i

A-13

Index

C

Condition handling data types + A-11

E

Executive constants « A-1

I/O data types « A-3

L

Logicai name data types * A-3

M

Memory management data types « A-3
Miscellaneous data types » A~1

O

Object architecture data types « A-8
os$adjust_working_set_limit - 82
os$allocate_object »1-2
os$cancel_io « 9-2
os$cancel_timer « 6-2
os$clear_event »4-2
os$configure_fp «9-3
os$create_address_space ¢ 8-3
os$create_channel « 9-4
os$create_condition_stack » 11-2
os$create_container » 1—4
os$create_event « 4-3
os$create_exit_handler_process *» 7-2
os$create_exit_handler_thread « 7-3

os$create_exit_status =.7—4
os$create_fpu « 9-5

os$create _identifier « 1-5
os$create_impersonation « 10-2
os$create_job » 7-5
os$create_last_chance_handier « 11-3
os$create_logical_name «2-2
os$create_primary_handler « 11-4
os$create_priv_operation « 104
os$create_process * 7-8
os$create_reference_id » 1-6
os$create_section « 8-4
os$create_semaphore * 5-2
os$create_thread « 7-11
os$create_timer «6-3
os$create_user » 7-13
os$deallocate_object » 1-7
os$delete_access_control_list « 10-5
os$delete_address_space « 8-6
os$delete_exit_handler_process « 7-16
os$delete_exit_handler_thread « 7-17
os$delete_last_chance_handler « 11-5
os$delete_logical_name «2-5
os$delste_abject_id » 1-8
os$delete_object_name + 1-9
os$delete_primary_handler » 11—6
os$disable - identifier - 106
os$enable_identifier » 107
os$exit_thread = 7—18
os$expand_address_space *8-7
os$expand_user_stack » 8-8
os$force_exit_job «7-19
os$force_exit_process « 7-20
os$force_exit_thread « 7-21
os$force_exit_user » 7-22
os$get_access_control_list» 10-8
os$get_channel_information « 9-6
os$get_exit_status_info » 723
os$get_fpu_information « 9~7
os$get_job_information « 7-24
os$get_mapping_information « 8-9
os$get_objcon_information « 1-10
os$get_object_information » 1-13
os$get_otd_information+ 1-15
os$get_performance_info « 12-2
os$get_process_information = 7-25
os$get_section_information » 8-10

Index—1

Index

os$get_security_monitor » 10-9

" os$get_system_information « 12-3
os$get_system_time * 12-5
os$get_thread_information « 7-26
os$get_uid » 12-6
os$get_user_information « 7-27
os$hibernate_process « 7-28
os$hibernate_thread « 7-29
os$impersonate_clients 10-10
osSinstall_page_file » 12-7
os$lock_pages_in_memory « 8-11
os$lock_pages_working_set « 8—12
os$map_section *8-13
os$mark_temporary * 1—-16
os$next_uid « 12-8
os$puiss_event « 4-5
os$read_event s 4-6
os$read_semaphore « 54
os$read_timer *» 64
os$release_semaphore * 5-5
os$request jo * 98
os$restore_server « 10—11
os$resume_process * 7-30
os$resume_thread ¢ 7-31
os$set_access_control_list»10-12
os$set_event « 4-7
os$set_exit_status_info « 7-32
os$set_job_information « 7-33
os$set_minor_thread_priority * 7-34
os$set_object_name » 1-17
os$set_process_information « 7-35
os$set_protection_on_pages * 8-15
os$set_security_monitor « 10-13
os$set_system_time * 12-9
os$set_thread_information « 7-36
os$set_thread_priority « 7-37
os$set_timer = 6-5
os$set_user_information » 7-38
os$signal_process «7-39
os$signal_thread « 7-40
os$suspend_process * 7—41
os$suspend_thread » 7—42
os$synchronize_with_io » 9-10
os$synch_channel_with_fpu » 811
os$transfer_mark_temporary » 1-18
os$translate_access_type » 10-14

os$translate_access_type_name « 10-15

os$translate_logical_name *2-6
os$translate_object_name » 1-20
os$uniock_pages_from_memary «8-17
os$unlock_pages_working_set « 8~18

Index—2

os$update_mapped_section « 8-19
os$verify_priv_operation « 10-16
os$wait_multiple « 3-2

os$wait_single « 34
os$wake_process * 7-43
os$wake_thread - 7—44
os$zero_to_end_of_user_stack « 8-21

P

Process architecture data types * A—4

R

S

Security related data types « A-9

