Digital Equipment Corporation - Confidential and Proprietary
" For Internal Use Only

Mica Working Design Document
Naming Standards and
Pillar Coding Conventions

Revision 0.6
13—-January—1988

Issued by:
Kris K. Barker

™

TABLE OF CONTENTS

CHAPTER 1 NAMING STANDARDS AND PILLAR CODING CONVENTIONS

.. 1-1
1.1 IntrodUehion . « & o v ot et et e e e e e e e e 1-1
1.2 Naming Standardso oo ve e vt ot 1-1

121 Goals » v it e e e e e e e e 1-1
1.2.2 SCOPE .« v vt e e 1-1
1.2.3 General Naming Standards e 1-2
1.2.3.1 Case Sensitivity P 1-3
1.2.3.2 Whatisa Facility?t 1-3
1.2.4 Facility Names e e e 1-3
1.2.5 Module NAINES & o o o e e e e e et e et me e e e e i e e 14
1.2.5.1 Definition Modules ot i it i ittt i e e 14
1.2.5.2 Implementation Modules 14
1.2.5.3 Combination Modules v ottt ittt it ie e e e 14
126 File Names and File TyPes« o vt v it ot it e i e 1-5
1.2.7 Procedures . - « v v v o v o e e e e e 1-5
1.2.74 System Routinesot 1-5
1.2.7.5 System Services and Executive Routineso 1-6
1276 Kernel ROULINES . . . o v v vt vt i i et et i i e e ettt e 1-6
1.2.7.7 Procedure Arguments oot vttt i 1-6
1.2.8 TYPES v v v v et e e e e 1-6
1.2.8.8 Enumerated Type Element Names e e 1-6
1.2.8.9 Data Structure TYPes . . . « o v o v v v v ittt e e e 1-6
1.29 Global Variables o v v vttt et et e e e 1-7
1.2.10 Comstants. - . v o vt it e e e e e e e e e 1-7
1211 MESSAGES « « o v o o vt v oo am e e e e 1-7
1.2.12 Logical Names cvv vt vttt 1-8
1.2.13 Objects and Object Containersot 1-8
1.2.14 Compile-time Facility Macros and Proceduresot 1-8
1.3 Pillar Coding Conventions cevumuonenenenven e, 1-9
B T T T2 1 L T I 1-9
1.3.2 INdentation oo v v vt i e e et et e e e 1-9
1.8.83 Capitalizationo ii i 1-9
1.34 LineLength i 1-9
1.3.5 Multistatement Lines and Multiline Statements 1-10
1.3.6 COMIMENLS . & « v v v v ot et e et et m ettt s ae ot as s 1-10
1.36.1 Module Level Comments. oo oot vttt it e e e es 1-10
1.3.6.2 Procedure Level Comments oo vttt vt vttt 1-11
1.83.6.3 Block Comments« v v vt v vttt it e s e e e e e 1-11
1.36.4 LineComments.o oo v i ieetone e R 1-12
1.8.7 "Whitespace”ot v v it i e e 1-12

1.38 Module FOrmat v v v v i i e e et ettt e et e et e s s e 1-13

1.3.9 Copyright Formatsttt 1-14
1.83.10 Procedure Format oo v i ittt n ettt i 1-14
1.8.11 Condition Handler Formatttt 1-15
1.3.12 Order of Declarations . .« .« c o o o vt vttt ot e e e 1-15
1.3.13 Statement FOrmat o ot vt e it i et 1-15
1.8.13.1 IF/THEN/ELSE oottt i it e e e 1-15
1.8.18.2 LOOP ..t ot it it it e et e e e e e e 1-15
1.8.18.3 CASE . .ttt it ittt e e e e e 1-16
1.3.13.4 Blocks (WITH Statement)« vt it 1-16
1.3.13.5 VALUE, TYPE, VARIABLE, BIND Declarations 1-16
1.3.13.5.1 RECORD TYPES . - - « o ¢ o v v oe e emete o mmsaa s as s 1-17
1.8.13.5.2 Enumerated TYPes . . -« « o vt vt oo e e et 1-17
1.3.18.6 Procedure Declarationso o v vt ii i 1-18
1.3.18.7 Procedure Invocation uiiiitt i 1-19
1.8.14 Message and Condition Declarations v 1-19
1.8.15 Miscellameous . « o v v v vttt e e e e e 1-19
14 OPENISSUES . & ottt ittt ettt e et it sttt i 1-21
INDEX

Digital Equipment Corporation—Confidential and Proprietary
For Internal Use Only

Revision History

Revision
Date Number Author Summary of Changes
4-DEC-1986 0.1 Benn Schreiber Original.
16-JAN-1987 0.2 Benn Schreiber Incorporate review comments.
1-MAR-1987 0.3 Benn Schreiber Comments from public review.
18-SEP-1987 0.4 Kris Barker Reorganize chapter and add coding conventions.
21-OCT-1987 0.5 Kris Barker Incorporate changes from architect review.
12-NOV-1987 0.6 Kris Barker incorporate changes following further review and notes file

comments.

iv

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

CHAPTER 1
NAMING STANDARDS AND PILLAR CODING CONVENTIONS

1.1 Introduction

This chapter defines standards for the naming of data types, logical names, module names, and so on
throughout the Mica operating system. It also provides preferred conventions for all Mica programs
written in Pillar.

1.2 Naming Standards

Naming standards are used for all names accessible from user-mode programs throughout Mica. Such
names are commonly referred to as public names.

1.21 Goals
Naming standards are important for several reasons:
e To present a consistent, easy-to-remember name space to users and developers

e To ensure that system software uses consistent naming to aid future developers in maintaining
and extending the software

e To ensure that customer-written software is not invalidated by future releases of DIGITAL prod-
ucts that add new symbols

e To facilitate straightforward usage within Pillar; the names are similarly usable in all other
DIGITAL-supported languages

1.2.2 Scope

This section covers the public naming standards for:

Facility names
The software facility name based on the product or component name.

Module names
The names assigned to program source modules.

Procedure names

The names of system services, system routines, kernel routines, and run-time library routines, and
the names of the arguments to those procedures.

Files and directories
The format for naming files that constitute the system software.

Naming Standards and Pillar Coding Conventions 1-1

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Program data and type names
Including:

e Types—Pillar named types including records and record fields
e Global variables—global symbols known to the linker
e Constants—compile-time named constants including:
— Item codes
— Function codes
— T/O parameter record codes
— Other named constants
e Message names—symbols that define unique message values

Logical names A
System or group logical names used to alter, define, or control a facility.

Compile-time facility macros and procedures
Macros and command procedures used during the compilation process.

These are discussed in the following sections. The standards in this section cover all public software
interfaces for layered products, as well as bundled Mica software.

1.2.3 General Naming Standards

Names should not be short acronyms. Use full English word(s) whenever possible. For instance, a
parameter representing the desired access mode should be named access_mode rather than acmode.

If the name consists of more than one word, the words must be separated with the underscore ("_")
character. '

\Throughout this document multiword names in naming examples are hyphenated. This is done to
improve readability and to point out exactly where underscores are required. For example,

facilitysc_name—;of—constant
is an example of a constant name; "name-of-constant” might be something such as user_buffer.\

The exception to this standard occurs when a name is too long, that is, longer than the maximum
allowed symbol length. In this case, the engineer must use good judgment and derive an acceptable
name that is easily remembered. While the maximum symbol length on Mica is TBD, this standard
recommends limiting symbols to 31 characters, especially for code that may be ported to VAX/VMS.

All DIGITAL-supplied public symbols that can be referenced by users and where the scope of the
symbols overlaps with the user name space, are prefixed with "facility$"” where:

e "facility"—the facility to which this symbol belongs

e "$"—indicates a DIGITAL reserved name

Users must not use the currency sign in their definitions. This ensures separation of name spaces
and prevents naming collisions in future releases. See Section 1.2.5.1 for more information.

When something is named in several different places throughout the system, it must have the same
name. For instance, all services that accept an event object ID as an argument should name the
argument event_id.

1-2 Naming Standards and Pillar Coding Conventions

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.2.3.1 Case Sensitivity

Unlike the VAX/VMS object language, the Mica object language is case sensitive. To accommodate
common coding practices in case-sensitive languages such as C, case-insensitive compilers output
symbols completely in lowercase. This eliminates the need for generating both lower and uppercase
versions of global symbols. The names given to system services, RTL routines, item codes, objects
and object containers, message names, and so forth should, therefore, be completely in lowercase.

\The sample names presented in this chapter do not always follow this lowercase guideline exactly.
This is for readability only. The rules for presenting sample names in this chapter are:

e Generic portions (that is, portions of the name that are determined by the engineer based on
where and how the name is used) are in lowercase.

» Specific portions (that is, portions of the name that must be exactly as specified in the example)
are in uppercase. In actual code, these portions would be written in lowercase.

For example, when an engineer creates a constant name that has been presented in this chapter as:

facility$C_name-of-constant
* The generic "facility” is replaced by the facility name (in lowercase).
* The specific "$C_" is written as "$c_".

e The generic "name-of-constant” is replaced by a descriptive name for the constant (in lowercase).

The actual name would be something such as linker$c_maximum_symbols.\

1.2.3.2 What is a Facility?

A facility is a collection of code and data which operate together to perform a function or set of
functions. For the purposes of the Mica naming scheme, each utility or layered product is typically
considered to be a facility.

For Mica, most of the executive is considered a single facility. However, separate facilities are defined
for code that appears to provide executive functionality, but in reality resides elsewhere (remote
procedure call support, for example). Exceptions to this include support that is viewed as part of the
executive on VAX/VMS. : ‘

1.24 Facility Names

Good judgment must be used when defining facility names. In general, facility names should be the
full name of the facility. For instance, the Pillar compiler should use the facility name pillar, the
linker should use linker. Use of the facility name itself is preferred over use of the verb describing
the function performed by the facility (for example, linker rather than link).

Facility names must be carefully chosen so that messages issued from the various facilities can be
easily identified without requiring extensive prior knowledge of the software or a need to feed facility
names through an alphabet-soup-to-English translation program.

There are facilities to be ported from VAX/VMS that have three-letter acronyms, such as the various
components of the Run-Time Library. It is preferred that these facilities maintain their acronyms to

maximize compatibility and to minimize confusion for both developers and users who migrate from
VAX/VMS to Mica.

If the facility name is eight characters or less, the facility name must be used as is. If the facility
name exceeds eight characters, an acronym must be chosen that is sensible and easy to remember.
(For example, perform might be used as the facility name for the PERFORMANCE facility.)

The facility name has no direct relation to the method of software distribution used (bundled versus
layered). Facilities that are bundled with the Mica operating system have their own facility names.
For instance, debugger is the facility name for the debugger.

Naming Standards and Pillar Coding Conventions 1-3

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Facility names and facility codes must be registered. A list of registered facility names and facility
codes is presented in the Type, Record, and Name Appendix of this document.

\For the remainder of this chapter, the term "facility prefix" is used to indicate the facility name
followed by a currency ("$") sign.\

1.2.5 Module Names

The name given to a particular source module depends on its type. There are three types of source
modules in Pillar: definition modules, implementation modules, and combination modules. Rules for
naming these modules are presented in the following sections.

1.2.5.1 Definition Modules

Definition modules contain only value, type, variable, and procedure definitions. Two types of defini-
tion modules are:

¢ "Internal” or "Private" definition modules

These are modules containing definitions used internally within Mica. Since these are not seen
by customers, granularity of declarations within a facility or the executive is that deemed most
appropriate to Mica development.

Private definition module names are of the form:

facility$module-name DEF
¢ "External" or "Public” definition modules

These are modules containing definitions visible to customers. Typically, the public definition
module for a particular facility is a collection of selected portions of private definitions modules
used by that facility. Only one such public definition module is allowed per facility. Most facilities
will not even have a public definition module.

Public definition module names are of the form:

facility$DEFINITION

All exported procedures, types, variables, and constants (defined in both private and public definition
modules) must have names beginning with "facility$”. Furthermore, all non-exported procedures,
types, variables, and constants (defined in implementation modules) may not have names beginning
with "facility$".

1.2.5.2 Impiementation Modules

Implementation modules contain only code. Implementation module names are of the form:

facility$module-name

1.2.5.3 Combination Modules

Combination modules are modules that contain both data definition and implementation components.
They are named as specified in Section 1.2.5.2. Note, however, that use of combination modules is
discouraged. Developers should use separate definition and implementation modules instead.

1-4 Naming Standards and Pillar Coding Conventions

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.2.6 File Names and File Types

"All file names are prefixed with "facility$" to identify the facility to which a file belongs. Typically,
source file names are taken directly from the name of the module which is implemented within the
file.

The names of all files supplied with the Mica operating system that are facility-independent are
prefixed with mica$. This includes the operating system images, system support images, and utilities
typically identified with the operating system rather than as their own facility. Facilities such as
TPU, the debugger, and the Run-Time Library, although supplied with the operating system, are
typically identified as their own facility, and therefore use tpu$, debugger$, and so on, as the facility
prefix.

\The mica$ prefix is what was specified in the previous version of this chapter. If we believe that
the name Mica will disappear in the actual product, this prefix should probably be changed.\

Long file names use underscores ("_") to separate words within the file name. \The hyphen as a
separator was rejected because it would cause an inconsistency between file names and procedure
names.\ o

File types must be fégis'teredi The fethod for registering file types is TBD (see Section 1.4). A list
of registered file types is included in an appendix of this document.

The three-character file type limit that was once imposed on VAX/VMS file type naming does not
exist on Mica or VAX/VMS V4.0 and following. When defining new file types, there is no reason to
be limited to three characters.

1.2.7 Procedures
Public procedures provided by DIGITAL for Mica are of the form:
facility$entry-name

In general, non-public procedures are not visible. This is because the bulk of the system is imple-
mented in Pillar which allows the use of module-qualified symbols for intermodule communication.
However, there are some facilities coded in BLISS or other languages that do not support the con-
cept of module-qualified symbols. In such languages, non-public procedures that must be declared as
global for intermodule communication have names of the form:

facility$$entry-name

\SIL does not support module-qualified symbols. However, a mechanism has been added to SIL to
permit prefixing all exported names with a specified string. This is accomplished with the LINKAGE
OPTIONS LOCAL PREFIX statement. When SIL programs are converted to Pillar, this statement
will be removed, and the symbols and references to these symbols will be through module-qualified
symbols.\

1.2.74 System Routines

System routines are those routines that are:

¢ Provided by DIGITAL

¢ Run in user mode

e Required to have a documented, supported public interface

e Not officially part of the Mica RTL provided by SDT

¢ Viewed by users as having "system” functionality

Examples of system routines are Get Active Thread Count, Formatted ASCII Output, and Get Cycle
Count.

The facility prefix for system routine names is execd.

Naming Standards and Pillar Coding Conventions 1-5

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.2.7.5 System Services and Executive Routines

System services run in kernel mode in the Mica executive. The facility prefix for user-visible Mica
system service names is exec$.

Executive routines also run in kernel mode but do not have user-visible interfaces. General purpose

executive routines have the facility prefix e$. Other executive routines which provide non-general-

purpose functionality have facility names which reflect that particular area of the executive. Such"
routines are generally callable only if certain conditions have been met, such as acquisition of one or

more mutexes, or executing in a particular module such as a device driver. The actual facility names

for these executive routines are presented elsewhere in this document.

1.2.7.6 Kernel Routines

Kernel routines may only be called by the Mica operating system. Kernel routines are not visible to
user programs. The facility prefix for kernel routine names is k$.

1.2.7.7 Procedure Argumen_ts'

Procedure arguments must have names that describe the argument’s purpose. Do not indicate any-
thing about data type or passing mechanism in an argument name.

1.2.8 Types

The basic format for type names is:
facility$name-of-type

e "facility"—the facility to which this type belongs

e "$" indicates a DIGITAL reserved name

¢ "name-of-type"—descriptive name of type

1.2.8.8 Enumerated Type Element Names

Enumerated type names are as described in Section 1.2.8. The names of the elements of an enumer-
ated type are as described in Section 1.2.10 for naming constants.

In cases where naming conflicts require further qualification of enumerated type element names, the
"name-of-element" portion may include a portion of the enumerated type name itself.

1.2.8.9 Data Structure Types

Data structure names consist of two parts: the name of the structure and the name of the field within
the structure. Data structure names follow the standard described in Section 1.2.8. Data structure
field names are not required to follow any specific naming standards. They should be as descriptive as
is reasonable. Field names should not include any indication of size or alignment within the record;
size and alignment information is specified in the structure definition itself.

\Previous versions of this chapter called for field names which included the facility name. It was felt
that this was necessary for software written in C. This understanding has since changed; current
C language products require fully qualified structure references requiring field names to be unique
only within a given structure.\

1-6 Naming Standards and Pillar Coding Conventions

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.2.9 Global Variables

Global variables are those data locations known to the linker as global symbols. In general, global
variables are typically not provided in public program interfaces. However, in those cases where
public global variables must be defined, the names are specified as:

facility$name-of-variable
e "facility"—the facility to which this type belongs
e "$" —indicates a DIGITAL reserved name

e "name-of-variable"—descriptive name of global variable

1.2.10 Constants

Named constants have names of the following form:
facility$C_name . .

e "facility"—the facﬂity to which this type belongs

e "$"_indicates a DIGITAL reserved name

. "C__"—Mica-speciﬁé portion indicating the use of the constant. All constants including item code
names, function codes, I/O parameter record codes, and so on have the "C_" to indicate that they
are constants.

Note that this creates a problem for system services that accept an item list as input. Normally,
such services would use exec as the facility portion of the name. A collision will occur if two
different parts of the executive choose the same name for different valued item codes. For these
system routines and services, the facility name may be specified as the service name or an
acronym of the service name.

e "name"—descriptive name of constant

Due to internationalization requirements, string constants used for display purposes (either on a
terminal or in a listing) must not exist within programs. String constants must be implemented via
the message facility.

\The previous paragraph deals with the content of string constants rather than their names. It is
felt, however, that this rule is important and should be stated here.\

1.2.11 Messages

Message names are of the form:

facility$ status-name)
The "status-name” string is derived by using the first two or three words of the English message text.

Engineers must use good judgment when selecting message names, as these names are used con-
stantly by application programmers. Choose names that are reasonable and easily remembered.

Status codes returned by the Mica executive are of the form:
EXEC$_status-name

Naming Standards and Pillar Coding Conventions 1-7

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.2.12 Logical Names

Logical names are of the form:

facility$name

The "name" string should consist of one or more English (this does not present an internationalization
problem) underscore-separated words describing the purpose of the logical name.

Although the Mica executive facility prefix is exec$, logical names defined by the operating system
use the facility prefix sys$. This is done for compatibility and familiarity with VAX/VMS.

1.2.13 Objects and Object Containers

There is no standard for naming objects (the optional ASCII string associated with an object). In
most cases, objects will not be named.

System object container names are of the form:
facility$name_ OBJECT_CONTAINER

e "facility"—the facility which creates and uses this container
e "$" indicates a DIGITAL reserved name

e "name_"—describes the use of the container (for example, process_ could be used to indicate that
the object container contains process IDs)

e "OBJECT_CONTAINER'—indicates that this is an object container

The facility prefix for object containers created by the operating system is exec$.

1.2.14 Compile-time Facility Macros and Procedures
TBD.

1-8 Naming Standards and Pillar Coding Conventions

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only
1.3 Pillar Coding Conventions

All Mica programs written in Pillar follow certain coding conventions. In the following sections, all
guidelines apply to both the Pillar and SIL languages.

1.3.1 Goals

Writing code which follows these conventions has the following benefits:

e More readable code—Standardized coding makes code much easier to read and understand.

e More easily maintained code—Standardized coding makes code easier to modify and maintain.

e More consistent code to writers for inclusion in documentation—It is highly desirable to eliminate
the need to alter code for inclusion in documentation.

Making decisions about "religious" issues such as coding style is never easy. The following conventions
were developed based on the response to a questionnaire and discussions with people in both the Pillar
compiler and Mica OS groups.

1.3.2 Indentation

Each level of indentation is 4 spaces. For multiple levels, spaces are preferable to tabs as spaces
make level adjustments easier. Statement format (that is, what the actual indentation is for each
type of statement) is described in Section 1.3.13.

1.3.3 Capitalization

All Pillar language keywords are in uppercase. Built-in types and procedures should not be in
uppercase. A list of keywords may be found in Chapter 2 of the current "Obsolete SIL Reference
Manual”. ' '

All identifiers must be lowercase. Uppercasing any identifiers defeats the purpose of uppercasing
keywords.

\Pillar is an example of a case-irisensitive language. Therefore, as described in Section 1.2.3, Pillar
exports symbols in lowercase as required by the naming standard.\

1.3.4 Line Length
The maximum source line length is 112 characters.
\112 characters was chosen as the maximum source line length for the following reasons:

e The naming standards described in Section 1.2.3 require the use of descriptive names for data
types, global variable names, procedures, and so on. Traditional 80 column source forces many
statements to be broken up over several lines. A line length of 112 columns allows long names
to be used in a single line.

e A source line length of 112 columns allows listing files to fit within 132 columns.

e 112-character source lines allow source displays using a default full-sized font on workstations.
A 132-column font, which is less readable, is not required).\

Naming Standards and Pillar Codirig Conventions 1-9

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.5 Multistatement Lines and Multiline Statements

Each source line should contain one statement or part of a statement. No lines should contain
multiple statements. There are no exceptions to this rule.

1.3.6 Comments

These conventions describe formats for four different uses of comments.

1.3.6.1 Module Level Comments

Module level comments document the purpose of the module, contain the DIGITAL copyright notice,
document the module’s author, revision history, and so on. Module comments are in the following
form:

L]

MODULE module name;

!***

tx *
1* DIGITAL Copyright *

1% *
!***

++
Facility:
Name of facility
Abstract:

A paragraph that describes the basic functionality provided by
the module.

Author:

Date:
Original date
Revision History:

VX .x-yy Date EDIT# Modifier’s Name

!

!

!

1

1

!

!

!

'

!

!

!

! Author’s name
!

!

!

!

!

!

!

H

! Description of modification
!
!

Module copyright format is describe in Section 1.3.9.
Vx.x-yy is the software revision level

EDIT# is the modifier’s edit number (for example KKB047)
Dates are expressed as DD-MMM-YYYY

To avoid excessively long revision histories in the module level comment block format shown above,
revisions are removed on each major software release. For example, when version 2.0 is released, all
revision comments pertaining to all 1.n versions will be removed. This process is especially important
at release 1.0. At that time, the entire pre-release revision history will be removed.

\The numeric portion of the edit number is a running count of edits made by the engineer over the
life of the project or work at DIGITAL.\

1-10 Naming Standards and Pillar Coding Conventions

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

\The file COMPILER$:[WORK.COPYRIGHTIMODULE.HEADER contains the module level com-
ment format described above.\ .

1.3.6.2 Procedure Level Comments

Procedure level comments describe the function performed by the procedure, and list and describe
procedure inputs and outputs. Procedure comments are formatted as follows:

PROCEDURE procedure_name (

) RETURNS return_ﬁype;

Routine description:

Description of function of procedure.

Arguments:

argument2 - This argument supplies another value.
arg3 - This argument returns some value.
argument4 - This argument supplies some value and returns

another value.
Return value:

'
!
!
!
!
!
!
!
!
!
!
t argl - This argument supplies some value.
!
!
!
!
!
!
!
! The procedure returns some value.
!
!

Notice that the argument descriptions are listed in the order of the procedure declaration and that
the words "supplies” and "returns" are used to indicate which are inputs, outputs, or both. This
alternative was chosen over the previous "Inputs” and "Outputs” grouping because:

e Ttis easier to read and maintain since grouping by inputs and outputs frequently is in a different
order than the parameters are ordéred in the declaration.

e There is no problem with determining where to describe an argument that is both an input and
an output.

Also, the hyphens ("-") separating the argument names and their descriptions are not aligned (see
Section 1.3.7).

1.3.6.3 Block Comments

Block comments are used to describe the function performed by a section of code. They appear prior
to the code section and are indented to the same level as the code which is being documented. Block
comments are in the following form:

pillar statement;

Naming Standards and Pillar Coding Conventions 1-11

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

This is a block comment describing a section of
Pillar code which follows it. Notice that the
actual text portion of the comment is proceeded
and followed by a blank line and an empty comment
line. Block comments should always be expressed in
complete sentences.

- e tem tem tem tem e tm=

pillar statement;

1.3.6.4 Line Comments

Line comments describe a single line of code. Line comments are only allowed in the declaration
sections of modules and procedures; they are not allowed in procedure code. Comments in procedure
code should be in the block form described in Section 1.3.6.3. Line comments should be aligned
vertically within a given section of code. For example, the line comments used to describe the fields
in records should all line up within the TYPE declaration section as in:

TYPE

sample : RECORD
code : integer;
data : array [1l..max length] of real;
next_record : sample_pointer;

END RECORD;

Sample record type
Record code

Data portion
Pointer to next

t— e te e

sample pointer : POINTER sample; ! Pointer to sample record

\This example is a non-exported type declaration.\

1.3.7 "Whitespace”

"Whitespace" (in this context) is a term used to describe spacing between Pillar tokens. In general,
whitespace is good. For example:

a=>b + ¢c;
is preferable to
a=b+c;
and:
IF xyz <> abc THEN

is preferable to
IF xyz<>abc THEN

For declarations, initializers, and procedure parameters, the guideline for whitespace around the

colon (":") and equal sign ("=") characters is that both characters have a space on either side.

For example:

VALUE
value name = some_value;
VARIABLE
variable name : variable type = variable_initializer;

PROCEDURE foo (
IN arg : arg_type;
):

1-12 Naming Standards and Pillar Coding Conventions

Digital Equipment Corporation - Confidential and Proprietary

For Internal Use Only

Other than appropriate indentation, do not align colons or equal signs in declarations and statements
or hyphens in procedure argument definitions. This makes code more difficult to maintain. For

example:

VALUE

a_name = 10;
another_pame = 20;
yet_another name = 30;
a_final_pame = 40;

is preferred to:

VALUE
a_name = 10;
another name = 20;
yet_;nother_pame = 30;
a_final_name = 40;

Procedure invocations and multiline aséignment statements are places where it makes sense to at-

tempt to line up code to improve readability. For example:

the resulting value = one_term with _a very long_name +
another term with a_ very long name;

or
proq_result = proc_name(
argument_1 = first argument,
arg2 = second_argument

)i

1.3.8 Module Format

The general format for a Pillar module is:
MODULE module name;
! Module-level comments
Interface section
Implementation section
Module linkage options

END module name;
e Module-level comments are described in Section 1.3.6.1.

¢ Interface section:

IMPORT
import module COMPONENTS componentl, component2;
another_}mport_module COMPONENTS otherl, other2;

VALUE, TYPE, VARIABLE, BIND, PROCEDURE -- exported declarations

e Implementation section:

IMPLEMENT
implement name COMPONENTS compl, comp2;
other impl name COMPONENTS all*;

IMPORT (as above - these imports are not available to the interface section)

VALUE, TYPE, VARIABLE, BIND, procedure bodies -- non-exported declarations

Naming Standards and Pillar Coding Conventions 1-13

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only
1.3.9 Copyright Formats

For internal sources, the copyright format is:

!**

1 *
t* (C) DIGITAL EQUIPMENT CORPORATION 19xzx *
1 *
1 This is an unpublished work which was created in the indicated *
1% year, which contains confidential and secret information, and *
1% which is protected under the copyright laws. The existence of *
1® the copyright notice is not to be construed as an admission or *
t* presumption that publication has occurred. Reverse engineering *
P and unauthorized copying is strictly prohibited. All rights *
1% reserved. *
!* *
!**

\The above copyright statement is available in: .
COMPILER$:[WORK.COPYRIGHTIUNPUBLISHED.COPYRIGHT\
For distributable sources, the copyright format is TBD. ‘

\Current policy is to use the internal format for all sources until sources are ready to ship. At that
time (or before if the format is defined), all distributable sources will their have copyrights updated.\

1.3.10 Procedure Format
The general format for a Pillar procedure is:
PROCEDURE procedure name...

T4+
! Procedure-level comments

-

VALUE, TYPE, VARIABLE, BIND Declarations

BEGIN
statement-sequence ...

SUBPROCEDURES
PROCEDURE sub_procedure name...
U+

Procedure-level comments

Notice that subprocedures are indented one level. If a sub-
procedure itself contains a SUBPROCEDURES section, those

!
t
!
!
| subprocedures are indented one more level and so on.
1

VALUE, TYPE, VARIABLE, BIND Declarations

BEGIN
statement-sequence ...
END sub_procedure name;

END procedure name;

Procedure-level comments are described in Section 1.3.6.2.

1-14 Naming Standards and Pillar Coding Conventions

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.11 Condition Handler Format

\Coding conventions for condition handlers will be added pending complete definition of Pillar’s
condition handling syntax.\

1.3.12 Order of Declarations

Declarations are normally grouped together by the type of declaration (such as VALUE, TYPE, and
so on). In large modules and procedures, however, declarations may be grouped by function. Within
each functional grouping, declarations are grouped together by type. Declarations should appear in
the following order:

¢ VALUE

¢ TYPE

* VARIABLE
e BIND

1.3.13 Statement Format

The following sections describe preferred formats for several Pillar statements.

1.3.13.1 IFF/THEN/ELSE

IF/THEN/ELSE statements are formatted as follows:

IF condition THEN
statement-sequence ...
ELSEIF condition THEN
statement-sequence ...
ELSE
statement-sequence ...
END IF; :

1.3.13.2 LOOP

The various forms of the LOOP statement are formatted as follows:

LOOP

statement-sequence ...
END LOOP;
FOR name ... LOOP

statement-sequence ...
END LOOP name;

WHILE clause LOOP
statement-sequence .
END LOOP;

For more complicated loops, use one of these formats:

FOR name ... BY ... DOWN TO ... WHILE ... LOOP
statement-sequence ...
END LOOP name;

or:.

FOR name ...
BY ...
DOWN TO ..
WHILE ... LOOP
statement-sequence ...
END LOOP name;

Naming Standards and Pillar Coding Conventions 1-15

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

if all of the loop control does not fit on one line.

1.3.13.3 CASE
CASE statements are formatted as follows:

CASE expression
WHEN set-of-values THEN
statement-sequence ...
WHEN set-of-values THEN
statement-sequence ...

WHEN OTHERS THEN
statement-sequence ...
END CASE;

1.3.13.4 Blocks (WITH Statement)

Code blocks (defined by the WITH statement) are formatted as follows:
WITH
VALUE, TYPE, VARIABLE, BIND declarations

BEGIN
statement-sequence ...
END;

1.3.13.5 VALUE, TYPE, VARIABLE, BIND Declarations

VALUE, TYPE (except record and enumerated types), VARIABLE, and BIND declarations are for-
matted as follows:

VALUE
first value = some_ value;
second value = some_value;
TYPE

some_type : a_type_ declaration;
another type : ARRAY [l..first value] OF integer;

VARIABLE

variablel : integer = 10;
variable two : POINTER another type;
third_variable : boolean;

BIND
name = variable_ name;

Notice that a blank line preceeds and succeeds the declaration keyword and the declarations are
indented one level from the declaration keyword.

1-16 Naming Standards and Pillar Coding Conventions

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.13.5.1 RECORD Types

RECORD type declarations are examples of declarations which typically span multiple lines. They
are formatted as follows:

TYPE

name : RECORD
CAPTURE ...
field-list
LAYOUT
layout-1list
END LAYOUT;
END RECORD;

The field list is:

first field : field_type;
second_field : field type;
third field : field type;

Within records, unions and variants are formatted as follows:

UNION CASE ...
WHEN set-of-values THEN
field~-1list
WHEN set-of-values THEN
field-list
END UNION;

VARIANTS CASE ...
WHEN set-of-values THEN
field-list
WHEN set-of-values THEN
field-list
END VARIANTS;

1.3.13.5.2 Enumerated Types

Another type declaration which can span multiple lines is that of an enumerated type. Short enu-
merated type declarations may be written on a single line. For longer declarations where multiple
lines are required, the following format is used:

TYPE

enumerated type name : (
enumerated name_ 1,
enumerated name 2,

enumerated name n

)

Naming Standards and Pillar Coding Conventions 1-17

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.13.6 Procedure Declarations
Procedure declarations are formatted as follows:

e External declarations:

PROCEDURE

procedure namel (
IN first_param : some_type;

) RETURNS return_type;
EXTERNAL;

procedure name2 (

)} RETURNS return_type;
EXTERNAL;

or

PROCEDURE procedure namel (]
IN first param : some_ type;

) RETURNS return_type:;
EXTERNAL;

PROCEDURE procedure_pameZ (

) RETURNS return_type;
EXTERNAL;

\The second form is required to use the Pillar procedure expansion support provided as an
extension to TPU.\

¢ Normal declarations:

PROCEDURE procedure name (
IN first parameter : some_type;
OUT second parameter : another type:
BIND third parameter : another type;
IN OUT fourth parameter : another type;
) RETURNS return-type;

Section 1.3.10 describes the complete procedure format.
Note:

e Placing parentheses ("(" and ")") on lines which do not contain parameters makes parameter
reordering easier.

¢ The semicolon (";") following the last parameter is optional in Pillar; it should be included to
make parameter reordering easier.

e For procedure declarations, the keyword PROCEDURE is just like other declaration keywords
(for example TYPE, VALUE, and so on) in that multiple procedure declarations may be made
following it. \However, as noted above, this format should be avoided if the TPU Pillar procedure
expansion support package is being used.\

1-18 Naming Standards and Pillar Coding Conventions

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

* For procedure implementations, the procedure arguments are indented to the closest tab stop
following the procedure name (under the 3rd character of the procedure name).

1.3.13.7 Procedure Invocation
The following format is used to invoke a procedure:

¢ Keyworded parameters:

procedure_name (
first_parameter = parameterl,
second parameter = parameter2,
third parameter = parameter3

yi
¢ Positional parameters:

procedure name (argl, arg2, arg3);

The use of keywords to specify the arguments in a procedure call is preferred, but not required. Use of
keywords when invoking externally declarated procedures is strongly recommended. Code examples
used in documentation must not use positional arguments in function calls.

\Additional information regarding use of the KEYWORD parameter option TBS.\

1.3.14 Message and Condition Declarations

\Coding conventions declaring messages and conditions will be added pending complete definition of
Pillar’s message and condition declaration syntax and use.\

1.3.15 Miscellaneous

The following is a list of several other conventions which do not fall under any of the previous

groupings. ,

* Use of pointer dereference character ("A") in record field references—Pillar does not require that
pointers to records be explicitly dereferenced when the fields of those records are being accessed.
It is felt, however, that use of the dereference character provides more information about the
record, especially when multiple levels of dereferencing are required. The prefered convention
is to explicitly dereference all pointers. The following code fragments illustrates use of explicit
pointer dereferencing.

TYPE

sample record : RECORD

data : integer;

flag : boolean;

record pointer : sample record pointer;
END RECORD;
sample record pointer : POINTER sample record;

VARIABLE
first record, second record : sample_ record pointer;

BEGIN
1

! Allocate the records.
1

ALLOCATE first record LOCAL;
ALLOCATE second record LOCAL;

Naming Standards and Pillar Coding Conventions 1-19

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Pointer

dereferencing here is not required but is preferred.

!
! Set the data and flag values in the first record.
!
1

first record”.data 1;
first_record”.flag = false;

Set the second record equal to the first record.

required.

second record”® = first record”;

Since the

entire record is being accessed, pointer dereferencing is

Set the records to point to each other. Pointer dereferencing

preferred; the entire record is not dereferenced as it is needed

as a pointer.

!
!
! is not required to access the "record pointer" field but is
1
!
!

first record”.record pointer = second_record;
second record*.reéord_pointer = first record;

\The ALLOCATE statement used above is not available in SIL.\
e QOthers TBD.

1-20 Naming Standards and Pillar Coding Conventions

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.4 OPEN ISSUES

The following issues are yet to be resolved.

* Compile-time facility procedure and macro names.

e Use of "MICA$" as the file name prefix for system files.
¢ Condition handler format.

e Message and condition declarations.

Naming Standards and Pillar Coding Conventions 1-21

