Digital Equipment Corporation - Confidential and Proprietary

For Internal Use Only

Mica Working Design Document
Process Structure

Revision 0.6
29-0CT-1987

Issued by:
Mark Lucovsky

™

TABLE OF CONTENTS

CHAPTER 1 PROCESS STRUCTURE 1-1
1.1 Introduction it i i it it e e e e e e e e e e e e e 1-1
1.2 Goals/Requirementso vuutennunnneeneesonnneeeee.. 1-1
1.3 UJPT Hierarchyo v et ittt i et ittt et e i aee et e e e 1-1

13.1 TheUser Object o oottt i et e e e e 1-1
1.3.1.1 Object Structure.ot ittt it e 1-1
1.3.1.1.1 Security Profile e 1-2
1.3.1.1.2 Resource Control e e e e e e e e e e e e e e 1-2
1.3.1.1.2.1 Deductable Resource Limits 1-3
1.8.1.1.2.2 Non-Deductable Resource Limits 14
1.3.1.1.3 Access Restrictions ittt 14
1.3.1.2 Functional Interface« oot ii v ittt it ettt e e 14
1.8.1.2.1 User Creation . . . v v v vt v it i et e n e e et e ae et ettt eaeee 14
1.3.1.2.2 Get/Set User Informationt inenennn. 1-6
1.3.1.2.83 User Deletion it ittt it it ittt et e e e 1-7
132 Thedob Object. v i ittt i e e e 1-8
1.3.2.1 Object Structure.o it e 1-8
1.3.2.1.1 Resource Control i i 1-9
1.3.22 FunctionalInterface ittt 1-9
1.322.1 Job Creation o i it it e e i e e e 1-9
1.83.2.2.2 JobDeletion it i e e e e e e 1-11
1.3.2.2.83 Get/Set Job Information 1-11
1.83.3 TheProcess Object it i it it e 1-13
1.3.8.1 Object Structurettt 1-13
1.33.1.1 Resource Control i i it it e e 1-14
1.3.3.1.2 Process Accountingttt 1-14
1.3.3.2 FunctionalInterface ittt 1-15
1.332.1 Process Creation o i it ittt ittt i ii it anaenan 1-15
1.832.2 Process Deletion it it 1-17
1.3.3.2.8 Get/Set Process Information 1-17
1.3.3.2.4 Process Control Operations, 1-19
1.3.324.1 Process Signaling e 1-19
1.3.3.2.4.2 Process Hibernate/Wake 1-20
1.3.3.2.4.3 Process Suspend/Resumet 121

134 TheThread Object i i i i it e e e 1-22
1.3.4.1 Object Structuret 1-22
1.3.4.2 FunctionalInterface0ttt 1-24
1.34.2.1 Thread Creationt it ittt n e ennmennnas 1-24
1.34.2.2 Thread Deletionot i ittt ittt tie s 1-25
1.34.2.3 Get/Set Thread Information., 1-26

iv

1.3.4.2.4 Thread Control Operations 127

1.34.24.1 Thread Signaling oo ittt ittt i e e e et 1-28
1.34.24.2 Thread Hibernate/Wake 1-28
1.34.2.4.3 Thread Suspend/Resumettt ittt eenenns 1-29
1.3.4.2.4.4 Hibernate and Suspend Comparison . e 1-30
14 UJPT Object LANKAges« c o ot ittt ittt ittt et i et e e e 1-30
1.4.1 Linkage Structure e i e 1-31
14.2 Hierarchy Creation it 1-31
1.4.3 Hierarchy Collapse/Deletion i 1-32
14.3.1 Force-Exit Routines i i i it e e 1-33
1.4.3.1.1 User-Object Force-Exit Routine 1-33
1.4.3.1.2 Job-Object Force-Exit Routine 1-33
1.4.3.1.3 Process-Object Force-Exit Routine . e 1-33
1.4.3.1.4 Thread Object Force Exit Routine 1-33
1.4.3.14.1 Thread Context Entry. e e 1-33
1438142 Thread Exit it ittt ittt e e e 1-34
1.4.3.2 Object Remove Routines i 1-34
1.4.3.2.1 User-Object Remove Routine 1-35
1.4.3.2.2 Job Object Remove Routine 1-35
1.4.3.2.83 Process Object Remove Routine 1-35
1.4.3.2.4 Thread Object Remove Routine 1-35
1.4.3.3 Object Delete Routines, 1-35
1.4.3.3.1 User-Object Delete Routine 1-36
1.4.3.3.2 Job-Object Delete Routine, 1-36
1.4.3.3.3 Process-Object Delete Routine 1-36
1.4.3.3.4 Thread-Object Delete Routine 1-36
1.5 Address Space and Execution Threads 1-36
151 Creatlonot it it e e e e e e e e e e e 1-36
1.5.1.1 Initial Thread Creation e e 1-37
1.5.1.1.1 Address Space Creation 1-37
1.5.1.1.2 Execution Thread Creation 1-38
1.5.1.1.2.1 Address Space Initialization 1-38
1.5.1.1.2.2 Control Region Initialization 1-39
1.5.1.1.2.3 Program Image Mapping ittt i i 1-39
1.5.1.2 Subsequent Thread Creation 1-39
1.5.1.2.1 Thread Stack Creationt iiiiinern.n 1-39
1.5.1.2.2 Control Region Initialization 139
1.5.1.2.3 Transitiontonew Thread, 140
1.5.2 Deletion ittt i e e e e e e e e e e e 1-40
1.5.2.1 Execution Thread Deletion 140
1.52.1.1 In-Context Thread Deletion 1-40
1.5.2.1.2 Out of Context Thread Deletion 140
1.5.22 Address Space Deletion i 1-41
1.6 Exit Statuso v i e e e e e e e e e e e e e 141
1.6.1 ObjectStructure ittt e e 141

1.6.2 Functional Interfacettt it i i e e e 141
1.6.2.1 Exit Status Object Creation 142
1.6.2.2 Get Exit Status Information i i 142

16.83 USAge . .ottt i it e e e e e e e s 142
1.6.3.1 Thread Exit Status Object Usage 143
1.6.3.2 Process Exit Status Object Usage 143

1.7 Process/Thread Startup/Rundown Summary 143

1.7.1 Startup Summaryottt e e e 143
1.7.1.1 Additional Thread Startup Summary 145

1.7.2 Rundown SUIMIMATY v vttt vt ittt i et te oot ae et aee e ae e 145

1.8 System Threadst ittt it e 148
1.8.1 System Thread Creation i 148
1.8.2 System Thread Restrictions 1-48

INDEX
EXAMPLES

1-1 User Object Structuret it 1-2

1-2 Resource Control Structures i it it e e 1-3

1-3 Access Restriction Data Structures i oL 14

14 User Object Creation System Interface 1-5

1-5 User Record Structure ittt ittt it e e 1-6

1-6 Get/Set User Information System Interface 1-6

1-7 User Object Deletion System Interface 1-8

1-8 Job Object Structure i s 1-8

1-9 Job Object Creation System Interface 1-10

1-10 JobRecord Structure i it ittt e e e e e e e 1-11

1-11 Job Object Deletion System Interface 1-11

1-12 Get/Set Job Information System Interface 1-12

1-13 Process Object Structure 1-13

1-14 Process Accounting Structure o e e 1-15

1-15 Process Object Creation System Interface 1-16

1-16 Process Record Structureo ittt ittt i e e 1-17

1-17 Process Object Deletion System Interface 1-17

1-18 Get/Set Process Information System Interface 1-18

1-19 Signal Process System Interface 1-20

1-20 Hibernate/Wake Process System Interface 1-20

121 Suspend/Resume Process System Interface 1-21

1-22 Thread Object Structure i 1-23

1-23 Thread Object Creation System Interface 1-24

1-24 Thread Record Structure o it ittt e 1-25

1-25 Thread Object Deletion System Interfaces 1-26

1-26 Get/Set Thread Information System Interface 1-27

1-27 Signal Thread System Interface 1-28

1-28 Hibernate/Wake Thread System Interface 1-29

129 Suspend/Resume Thread System Interface 1-30

FIGURES

TABLES

vi

1-30
1-31
1-32
1-33
1-34
1-35
1-36

1-1

1-1
1-2
1-3
14

Address Space Creationttt it i e 137

Initial Thread Entry Point oo oo it i e 1-38
Address Space Initialization i i 1-38
Exit Status Object Structure i e 141
Exit Status Object Creation System Interface 142
Get Exit Status Information System Interface 142
System Thread Creation Executive Interface 148
Complex UJPT Hierarchy. 1-31
Get/Set User InformationItem Codes 1-7
Get/Set Job InformationItem Codes i i i 1-12
Get/Set Process Information Item Codes 1-19
Get/Set Thread Information Item Codes 1-27

Digital Equipment Corporation - Confidential and Proprietary

For Internal Use Only

Revision History

Revision

Date Number Author Summary of Changes

10—~Jun—-86 0.0 Tom Miller Initial entry

29-Jun-86 0.1 Tom Miller Incorporating review comments

27-Aug-86 0.2 Tom Miller Multiple environment support

06—-Apr-87 0.3 Tom Miller Rewrite for second WDD

27-AUG-1987 x.1 Mark Lucovsky First Draft for third WDD

04-SEP-1987 x.2 Mark Lucovsky Incorporate comments from first draft. Most notable
change was the addition of IO accounting, pro-
cess and thread exit status, and section on thread
/process startup/rundown summary

08-0OCT-1987 x.3 Mark Lucovsky Incorporate comments from Second draft. Most no-
table change was the section on system threads,
and the thread parameter passing scheme

09-0OCT-1987 0.4 Mark Lucovsky Added exec$create_user() and description of thread_
record

16-0OCT-1987 0.5 Mark Lucovsky Proofreading corections, moved security profile from
process object to the thread object, added cancel
io by thread support to the thread object.

29-0CT-1987 0.6 Mark Lucovsky Added access restrictions to user object, revised

hierarchy collapse description

iv

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

CHAPTER 1
PROCESS STRUCTURE

1.1 Introduction

This chapter describes the external interfaces and data structures of the Mica process structure, the
architecture of which is based on the User, Job, Process, Thread (UJPT) hierarchy. This chapter also
describes the UJPT implementation in terms of its algorithms and dependencies on other portions of
the Mica system (e.g. the kernel and object architecture).

1.2 Goals/Requirements

The goal of the UJPT architecture is to provide a vehicle for controlling multiple threads of execution
in a single address space. The architecture provides facilities for resource usage control, security
profile management, address space and image management, and object container directory services.

1.3 UJPT Hierarchy

The UJPT architecture consists of a hierarchy of objects. The objects provide a logical grouping of
functionality and control.

1.3.1 The User Object

The User object appears at the highest level of the UJPT hierarchy. Its primary function is to provide
a focal point for acquiring security profiles and resource quotas/limits for its underlying objects.

The User object is implemented as a system level object in the "USER$OBJECT_CONTAINER" object
container.

1.3.1.1 Object Structure

Each user of the Mica system is assigned a unique username, a security profile, and a set of resource
limits or quotas. The Mica system keeps track of this information in a system-wide authorization
file. If the user has at least one active job, the information is also kept in his user object. As we shall
see later in this chapter, information from the user object is propagated down the UJPT hierarchy
on an as-needed basis. ‘

NOTE

The intent of the Mica executive is to remain independent of the system-wide au-
thorization file. Therefore, all Mica user attributes are stored in the user object.
In addition, the Mica executive places no restrictions on the source of information
stored in the user object. It does, however, place a Digital-reserved identifier in the
ACL for the user object OTD which limits who can create user objects.

Process Structure 1-1

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The user object is split into a user object body and a user control block. The user object body contains
the information necessary to support the UJPT hierarchy. The user control block contains the vital
information of the user object. Example 1-1 illustrates the data structures used to represent the
user object.

Example 1—1: User Object Structure

e$t_user_ object_body: RECORD
u_cbj_id: es$t_object_id;
u_user_ flags: e$t_user flags;
u_job_queue mutex: k$dispatcher_ object (mutex)
u_job_count: integer:;
u_job_gueue hd: e$t_linked list;
u_ucb: e$t_user control_ block;
END RECORD;

Object ID of the user object
User object flags

Mutex for job management

Number of Jobs owned by the user
List head of job objects

User Control Rlock

e$t_user control_block: RECORD
ucb_username: string(e$c max user_name);
ucb_security profile: es$t_security profile;
ucb_quotas: e§t_quotas;
ucb_thread priority: k$combined priority;
uch_access_restrictions: e$t_access_restrictions;
uchb_user_allocation_list: eS$t_allocation_ list;
END RECORD:;

User Name

User Security Profile

Resource usage control information
Default thread priority

Access Restrictions

objects allocated to the user object

1.3.1.1.1 Security Profile

The security profile maintained in the user object contains the list of identifiers assigned to the Mica
user. The identifier list gives access rights to the user object as described in Chapter 11, Security
and Privileges.

1.3.1.1.2 Resource Control

The goals of the Mica system resource control and quota architecture are:

* Prevent a single user from abusing the system by over running system resources.
* Be simple, predictable and easy to understand.

¢ Provide repeatable consistent behavior.
The Mica system achieves these goals through data structures maintained in the user object and

through policies implemented in the object architecture, memory management system, and the kernel.
Example 1-2 illustrates the resource-control data structures maintained in the user object.

1-2 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Example 1-2: Resource Control Structures

1

! User Object Resource Control
1

e$t_qguotas: RECORD

q usage_and limits: eS$t_quota_usage and limits; ! Currently Used Quotas and Quota Limits
g _per_job_limits: e$t_guota_ limits; ! Per Job Limits
g_per_process_limits: e$t_quota_limits; ! Per Process Limits

END RECORD;

1
! Quota Limits
1
e$t_quota_limits: RECORD
gl_deductable limits: e$t_quota deductable limits; ! Deductable Resource Limits
gl nondeductable limits: e$t_quota nondeductable limits; ! Non-Deductable Resource Limits
END RECORD;

! Quota Usage and Limits
1

e$t_quota usage and limits: RECORD

qual mutex: k$dispatcher_object (mutex); ! Used for block quota allocations

qual_ limits: e$t_quota_limits; ! Resource limits for this object

qual_usage: e$t_guota_usage; ! Resources used by this object
END RECORD;

1

! Deductable Limits

1

e$t_guota_deductable limits: RECORD
gdl_paging_file limit: e$t_resource_counter;
qdl_paged pool limit: e$t_resource_counter;
gdl_non_paged_pool limit: e$t_resource counter;
qdl_cpu time limit: e$t_time value;

END RECORD;

Max blocks of paging file usable by object

Max number bytes paged pool usable by object
Max number bytes non paged pocl usable by object
Max cpu time used by object

1

! Non Deductable Limits

1

e$t_guota_nondeductable limits: RECORD
gnl_working_set_ limit: e$t_resource counter;
gnl_working_set_ extent: e$t_resource counter;

END RECORD;

Max pages in working set
Largest Possible Working Set

1

! Quota Usage

1

e$t_quota_usage: RECORD
qu_paging_file_in_use: e$t_resource counter;
qu_paged_pool_in_use: e$t_resource counter;
qu_non_paged pool_in_use: e$t_resource_ counter:;
qu_working set_in_use: e§t_resource counter;
qu_cpu time used: e$t_time value;

END RECORD;

Number blocks of paging file in use by object
Number bytes paged pool in use by object
Number bytes non paged pool in use by object
Pages in working set for this object

Cpu time used by object

During user-object creation, the uch_quotas field of the user control block is initialized. The values
are obtained from the user_record parameter to the execcreate_user() system service.

Once established, the ucb_guotas field of the user control block becomes the focal point for resource
allocation limitation. The Mica system organizes resource limits as deductable and non-deductable
resources. All operations on e$t_quota_limits are performed in terms of the attributes of deductable
and non-deductable resource limits.

1.3.1.1.2.1 Deductable Resource Limits

Deductable resource limits are charged to the next highest object in the UJPT hierarchy at object
creation time. An example of this property can be seen in the creation of a process object. Assume a
job object had 100 units of paged pool available in gd!_paged_pool_limit, and the user object specified
that the per process limit for gdl_paged_pool_limit was 50 units. After the process object was created,
the job object would be charged with 50 units of paged pool in qu_paged_pool_in_use. The process
object would have 50 units of paged pool available in gd!_paged_pool_limit, and would be charged
with 0 units of paged pool in qu_paged_pool_in_use.

Process Structure 1-3

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.1.1.2.2 Non-Deductable Resource Limits

Non-deductable resource limits are limits enforced by policies of the Mica system, but are not charged
for against the higher level objects pool of available resources. For example, assume that in the
creation of a process the user object specified a working set limit of 50 units. As a consequence, all
job objects and process objects would contain the 50 units of resource in their gni_working_set_limit
fields.

1.3.1.1.3 Access Restrictions

The user object maintains the current system access restrictions for the Mica user that it represents.
The access restrictions are not enforced by the UJPT architecture. External processes may inspect the
access restrictions in the current set of user objects and determine what type of enforcement actions
are necessary. Example 1-8 illustrates the data structures used to maintain the access restrictions
placed in the user object.

Example 1-3: Access Restriction Data Structures

1

! Access Restrictions

1

e$t_access_restrictions: RECORD
ar_restriction_vector: ARRAY[e$t job_class] OF e$t_class_access_restrictionms:
ar_expiration_date: e$t_date; ! The last day that user can access the system

END RECORD;

!

! Per Job Class Access Restrictions

1

e$t_class_access_restrictions: RECORD
car_prime days: eS$t_day set;
car non_prime days: e$t_day_ set;
car_prime hours: e$t_hour_set;
car_non_prime hours: e$t_hour_set;

END RECORD;

The prime days user can access system

The non-prime days user can access system

The hours on prime days user can access system

The hours on non prime days user can access system

1.3.1.2 Functional Interface

The Mica executive provides entry points capable of creating and deleting user objects, and setting
and extracting various attributes of a User object.

1.3.1.2.1 User Creation

Creating a user object also causes a UJPT hierarchy to be created. The system service exec$create_
user() creates a user object, job object, process object, and thread object. If there is a name colli-
sion between the new user object and an existing user object for the same user, then the new user
object is discarded, and the job, process, and thread objects are attached to the existing user object.
Example 14 illustrates the interface to exec$create_user().

1-4 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Example 1—4: User Object Creation System Interface

PROCEDURE exec$create user (

1
!
1
!
!
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
t
1
t
1
t
i
1
1
1
1
1
1
H
t
1
1
!
1
1
i
'
1

1
1
1
1

OUT object_id:
IN container:

exec$t_object_id;

exec$t_object_id = DEFAULT;
IN name: exec$t object name =
IN acl: exec$t_acl

DEFAULT;
= DEFAULT;

IN user record: exec$t_user record;

IN user_allocation list: exec$t_allocation list =

IN job_record: exec$t_job_record =

DEFAULT;

DEFAULT;

IN job_initial container: exec$t_obJject_id = DEFAULT;

IN job_allocation_list: exec$t_allocation_list =

DEFAULT;

IN process_record: exec$t_process_record;

IN process_public container: exec$t_object_id =

DEFAULT;

IN process_private container: exec$t_object_id = DEFAULT:

IN process_allocation_list: exec$t_allocation list =

DEFAULT;

IN thread_record: execst_ﬁhread_record = DEFAULT;
IN thread allocation list: exec$t_allocation_list = DEFAULT;
IN thread data block: quadword data(*) CONFORM OPTIONAL:

IN thread immediate parameterl: exec$t_thread parameter =
IN thread immediate parameter2: exec$t_thread parameter =
IN thread status: exec$t_object id =

} RETURNS status;
EXTERNAL;

Routine description:

Create a user,

DEFAULT;
DEFAULT;
DEFAULT;

job, process, and thread object as specified by the parameters.

If the user object collides with an existing user object, then use the existing

user object

Arguments:

object_id

container

name

acl

user_ record
user_allocation list
job_record

job_initial_ container

job_allocation_list
process_record
process_public_container

process_private container

process_allocation_list

thread record
thread allocation_list

thread data_block

thread immediate parameterl
thfead_immediate_parameter2

thread_ status

Return value:

TBS

Object ID of the resulting user object

Object container for user object (ignored)

Name of user object

ACL to place on user object

Attributes of new user (from authorization file ?)

Objects to be allocated to the user object. If not present then
no objects are allocated to the user

Attributes of the job being created. If not present, then
values are obtained from current user object

Job level object container to be transfered into the job

level container directory for this job. If not present then
container directory comes up empty

Objects to be allocated to the job object. If not present then
no objects are allocated to the job

Attributes of the process being created

Process level public container to be transfered into the process
level container directory for the process. If not present then
container comes up empty.

Process level private container to be transfered into the process
level container directory for the process. If not present then
container comes up empty.

Objects to be allocated to the process object.
no objects are allocated to the process
Attributes of the thread being created
Objects to be allocated to the thread object.
no objects are allocated to the thread
Arbitrary data block passed to initial thread. Pointer in TCR, if
pointer is NIL, then no data block was passed

Immediate parameter passed to thread through TCR

Immediate parameter passed to thread through TCR

Exit status object to be bound to the initial thread. If not present
then the thread is created without an exit status object

If not present then

If not present then

Process Structure

1-5

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

From the interface to exec$create_user(), it is clear that the user_record can have an impact on the
structure of the user being created. Example 1-5 illustrates the layout of the user_record.

Example 1-5: User Record Structure
!
! The User Record
éxec$t_user_record: RECORD
1

User Fields

1

!

t The User fields are only used to initialize a user object if no user

! object exists. The intent is for the contents of these fields come from

! the system wide authorization file

1

User Name

User Security Profile from Authorization File
Per User Resource Limits
Per Job Resource Limits
Per Process Resource Limits
Default thread priority
Users Access Restrictions

user username: string(e$c_max user_ name);
user_security_profile: eSt_security profile;
user_per user_limits: e$t_quota_ limits;
user_per job limits: e$t_quota limits;
user_per_process_limits: e$t_quota limits;
user_ thread priority: k$combined priority;
user_access_restrictions: e$t_access_restrictions
END RECORD;)

1.3.1.2.2 Get/Set User information

The exec$get_user_information and exec$set_user_information system services provide a mechanism
to obtain and to modify attributes of the specified user object. Example 1-6 illustrates the interfaces
to the user object get/set system services.

Example 1-6: Get/Set User Information System Interface

PROCEDURE exec$get_user_ information (
IN user object_id: exec$t_object_id = DEFAULT;
IN user_get_ items: exec$t_item list;
)} RETURNS status:;
EXTERNAL;

Routine description:

Return information about the user object to the caller. The
information returned is item list driven

Arguments:

user_ object_id if present, the object ID of user object that is to be inspected
otherwise, the user object of the calling thread is assumed
user_get_items item list identifying user object information to be extracted
Return value: .
TBS

!
!
1
!
1
1
!
!
1
1
1
1
t
t
1
H
!
1

Example 1-6 Cont’d. on next page

1-6 Process Structure

Digital Equipment Corporation - Confidential and Proprietary

Example 1-6 (Cont.): Get/Set User Information System Interface

PROCEDURE exec§$set_user_information (
IN user_object_ id: exec$t_object_id = DEFAULT;
IN user get_items: exec$St_item list;
) RETURNS status;
EXTERNAL;
I++
!
! Routine description:
1
Modify information in the user object. The
information to be modified is item list driven

For Internal Use Only

Arguments:
user_object_id if present, the object ID of user object that is to be modified
assumed
user_get items item list identifying user object information to be modified

Return value:

1
1
1
M
1
!
! otherwise, the user object of the calling thread is
1
1
1
!
! TBS

!

1

Only certain pieces of the user object may be inspected or modified. Table 1-1 illustrates the possible
item codes and the information read or written when using the item code.

Table 1—-1: Get/Set User Information ltem Codes

ltem Code Set Action Get Action
e$i_job_count error return u_job_count
e$i_job_ids error return object ID's of jobs owned by
user
e$i_username error return username of user
e$i_security_profile replace ucb_security_profile return ucb_security_profile
e$i_quotas error return ucb_guotas
e$i_user_limits replace qual_limits return qual_limits
e$i_job_limits replace q_per_job_limits return q_per_job_limits
e$i_process_limits replace q_per_process_limits return q_per_process_limits
e$i_thread_priority replace ucb_thread_priority return ucb_thread_priority
e$i_access_restrictions replace ucb_access_restrictions return ucb_access_restrictions
e$i_allocation_list error return ucb_user_allocation_list

1.3.1.2.3 User Deletion

The exec$force_exit_user() system service provides a mechanism for removing an active Mica user
from the system. The service effectively causes an entire UJPT hierarchy to be removed, including
all jobs, processes, and threads that are directly beneath the user object. Example 1-7 illustrates

the interface used to remove a user object from the Mica system.

Process Structure 1-7

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Example 1—7: User Object Deletion System Interface

PROCEDURE exec$force exit user (
IN user_object_id: exec$t_object_id = DEFAULT;
IN exit_status: exec$exit_status;
) RETURNS status:
EXTERNAL;

Routine description:

Causes the UJPT hierarchy whose user object head is user_object_id to
be removed from the Mica system

Arguments:
user_object_id the user object to be removed. If not specified,
then the current user is assumed
exit_status the reason that the user is force-exiting

Return value:

TBS

1
1
1
1
1
1
1
!
1
1
1
1
1
1
1
1
1
1

1.3.2 The Job Object

The job object appears at the second level of the UJPT hierarchy. Its sole function is to provide a
set of resource limits for a collection of processes running as a job. The job object also provides a job
level container directory.

The job object is implemented as a system level object in the "JOB$OBJECT_CONTAINER" object
container.

1.3.2.1 Object Structure

Each job in the Mica system represents a set of active processes and is responsible for controlling the
resources used by those processes.

The job object is split into a job object body and a job control block. The job object body contains the
information necessary to maintain its position in a UJPT hierarchy. The job control block contains
the information necessary to provide resource management for the job’s processes. Example 1-8
illustrates the job object.

Example 1-8: Job Object Structure

t

! Job Object Body
1
e$t_job_object body: RECORD
j_obj_id: e$t_object_id:
j_user pointer: POINTER e$t_user object_body:
Jj_job_flags: e$t_job_flags:
j_job_queue: e$t_linked_list;
j_process_queue mutex: k$dispatcher object (mutex):
j_process_count: integer;
j_process_gqgueue hd: e$t_linked list;
j_jcb: e$t_job_control_block;
END RECORD;

Object ID of The job object
Referenced Pointer to owning User
Job Flags

List of users jobs

Mutex for process management
Number Of processes of the Jjob
List head of Jjobs processes

Job Control Block

Example 1-8 Cont’d. on next page

1-8 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Example 1-8 (Cont.): Job Object Structure

1

t Job Control Block

1

e$t_Jjob_control_ block: RECORD
jcb_job_class: e$t_job class;
jcb_usage and_limits: e$t_guota_usage and limits;
jeb_job_condir mutex: k$dispatcher object (mutex):
jeb_job_condir_id: e$t_object_id;

The jobs class

Current resources used/resource limits

Job Level Condir mutex

Job Level Container directory ID
visible in jobs context

Job Level Container directory ID
visible in an arbitrary context

Pointer to Job Level Condir

Objects allocated to the job objects

jcb_job_alt_condir id: e$t_object_id;

jeb_job_condir pointer: POINTER e$t_object header;
jcb_job allocation list: e$t_allocation_list;
END RECORD;

1.3.2.1.1 Resource Control

The job object maintains resource usage information for itself, in addition to providing a pool of
resources to its processes on an as-needed basis. During job-object creation, the jcb_usage_and_
limits.qual_limits field of the job control-block is set to the value of g_per_job_limits from the user
control block. The jcb_usage_and_limits.qual_usage field of the job control-block is then set to zero(),
and the q_usage_and_limits.qual_usage field of the user control block is incremented by g_per_job_
limits to reflect the resources allocated to the job. Once this resource shuffling operation has com-
pleted, the value of jeb_usage_and_limits.qual_limits represents the amount of system resources
available to the job object and to all its process.

While the above resource allocation scheme is the normal case, during job creation a parameter
specifying the per-job limits for the job can be specified, altering the algorithm. This value simply
overrides the value from g_per_job_limits in the above example and applies to the newly created job.

1.3.2.2 Functional Interface

The Mica executive provides entry points capable of creating and deleting job objects, and setting
and extracting various attributes of a job object.

As pai‘t of job object creation, all of the necessary support data structures are created, including a
job level container directory and associated kernel mutex dispatcher object.

1.3.2.2.1 Job Creation

The system service execcreate_job() causes the creation of a job object, a process object, and a thread
object. These objects appear beneath the user object of the calling thread. Example 1-9 illustrates
the interface to exec$create_job(). ’

Process Structure 1-9

Digital Equipment Corporation - Confidential and Proprietai'y
For Internal Use Only

Example 1-9: Job Object Creation System Interface

PROCEDURE exec$create_job (
OUT object_id: exec$t_object_id;
IN container: exec$t_object_id = DEFAULT;
IN name: exec$t_object name = DEFAULT;
IN acl: exec$t_§cl = DEFAULT;

IN job_record: execS$t_job record = DEFAULT;
IN job_initial container: exec$t_object_id = DEFAULT;

IN job_allocation_list: execS$t_allocation_list = DEFAULT;

IN process_record: exec§t_process_record;
IN process_public_container: exec$t_object_id = DEFAULT;

IN process_private container: exec$t_object_id = DEFAULT;
IN process_allocation_list: exec$t_allocation_list = DEFAULT;

IN thread record: exec$t_thread record = DEFAULT;

IN thread allocation_list: exec$t_allocation_list = DEFAULT;

IN thread data block: quadword data(*) CONFORM OPTIONAL;
IN thread immediate parameterl: exec$t_thread parameter
IN thread immediate parameter2: exec$t_thread parameter
IN thread status: exec$t_object_id = DEFAULT;

= DEFAULT:;
= DEFAULT;

) RETURNS status;
EXTERNAL;

Routine description:

Arguments :
object_id
container
name
acl
job_record

job_initial container

job_allocation_list
process_record
process_public_container

process_private container

process_allocation_list

thread record
thread allocation_ list

thread data_block

thread immediate parameterl
thread immediate parameter2
thread status

Return value:

TBS

1-10 Process Structure

Create a job, process, and thread object as specified by the parameters.
If no user object exists, then alsoc create a user object.

Object ID of the resulting job object

Object container for job object (ignored)

Name of job object

ACL to place on job object

Attributes of the job being created. If not present, then

values are obtained from current user object

Job level object container to be transfered into the job

level container directory for this job. If not present then
container directory comes up empty

Objects to be allocated to the Jjob object. If not present then

no objects are allocated to the job

Attributes of the process being created

Process level public container to be transfered into the process
level container directory for the process. If not present then
container comes up empty.

Process level private container to be transfered into the process
level container directory for the process. If not present then
container comes up empty.

Objects to be allocated to the process object. If not present then
no objects are allocated to the process

Attributes of the thread being created

Objects to be allocated to the thread object. If not present then
no objects are allocated to the thread

Arbitrary data block passed to initial thread. Pointer in TCR, if
pointer is NIL, then no data block was passed

Immediate parameter passed to thread through TCR

Immediate parameter passed to thread through TCR

Exit status object to be bound to the initial thread. If not present
then the thread is created without an exit status object

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

From the interface to exec$create_job(), it is clear that the job_record can have an impact on the
structure of the job being created. Example 1-10 illustrates the layout of the job_record.

Example 1-10: Job Record Structure

1

!t The Job Record
t

exec$t_job_record: RECORD
1
! Job Fields
1

job_class: eS$t_job_class; ! The class of the job being created (i.e. network,batch...)
1

! Per Job Resource limits. This value is used as the

! qual_limits value for the job object, and is deducted

! from the gqual_usage field of the owning user object.

! A value of zero() in any one of fields means to use the
! corresponding value of the g _per_ job_limit from the

1

user structure
!

job_per job limits: e$t_quota limits;
END RECORD;

1.3.2.2.2 Job Deletion

The exec$force_exit_job() system service provides a mechanism for removing job objects from the
system. The removal of a job has the following system-wide effects:

e All processes beneath the job are removed from the system.

¢ The amount of resources available to the job (qual_limits—qual_usage) is returned to the job’s
user object by decrementing qual_usage in the user object.

* If the job object is the last job owned by its user object, then the user object is removed from the
system.

Example 1-11 illustrates the interface to exec$force_exit_job().
Example 1-11: Job Object Deletion System Interface

PROCEDURE exec$force exit_job (
IN job_object_id: execS$t_object_id = DEFAULT;
IN exit_status: exec$t_exit_status;
) RETURNS status;
EXTERNAL;

Routine description:

Causes the job object specified by job_object_id to
be removed from the Mica system

Arguments:
then the current job is assumed
exit_status the reason that the job is force—exiting

Return value:

t
1
1
1
1
1
1
1
!
! job_object id the job object to be removed. If not specified,
t
1
1
t
M
! TBS

!

1

1.3.2.2.3 Get/Set Job Information
The exec$get_job_information() and exec$set_job_information() system services provide a mechanism

to obtain and to modify attributes of the specified job object. Example 1-12 illustrates the interfaces
to the job object get/set system services.

Process Structure 1-11

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Example 1-12: Get/Set Job Information System Interface

PROCEDURE exec$get_job_information (
IN job_object_id: exec$t_object_id = DEFAULT;
IN job_get_items: exec$t_item list;
} RETURNS status;
EXTERNAL;

Routine description:

Return information about the job object to the caller. The
information returned is item list driven

Arguments:

otherwise, the job object of the calling thread is assumed
job_get_items item list identifying job object information to be extracted

Return value:

TBS

PROCEDURE exec$set_job_information (
IN job_object_id: execS$t_object_id = DEFAULT;
IN job_get items: exec$t_item list;
) RETURNS status;
EXTERNAL;

Routine description:

Modify information in the Jjob object. The
information to be modified is item list driven

1
1
1
1
1
1
H
1
1 B
! job_object_id if present, the object ID of job object that is to be inspected
1
1
t
1
1
1
1
1

Arguments:
otherwise, the job object of the calling thread is assumed
job_get_items item list identifying job object information to be modified

Return value:

TBS

1
1
1
1
1
1
1
1
!
! job_object id if present, the object ID of Jjob object that is to be modified
1
1
1
t
1
1
1
1

Only certain pieces of the job object may be inspected or modified. Table 1-2 illustrates the possible
item codes and the information read or written when using the item code.

Table 1-2: Get/Set Job Information Item Codes

ltem Code Set Action Get Action

e$i_user_id error return object ID of jobs user object

e$i_process_count error return j_process_count

e$i_process_ids error return object ID’s of processes owned
by job

e$i_usage_and_limits error return jcb_usage_and_limité

e$i_job_limits replace qual_limits return qual_limits

e$i_job_condir_id error return jcb_job_condir_id

e$i_allocation_list error return jcb_job_allocation_list

e$i_job_class error return jeb_job_class

1-12 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.3 The Process Object

The Process object appears at the third level of the UJPT hierarchy. Its primary function is to provide
address space support and program image support for a set of execution threads, and to manage the
set of process-level objects. The process object is the target of all accounting information. The process
object can also act as a focal point for control operations.

There can be multiple processes in a job. Processes created as a result of job creation are top level
processes. Once established, a process may cause the creation of other processes. These new processes
are sub—processes, or child processes. Their creating processes are referred to as parent processes.

The Process object is implemented as a system level object in the "PROCESS$OBJECT_CONTAINER"
object container.

1.3.3.1 Object Structure

Each process in the Mica system represents a set of execution threads and in some cases a set of
sub-processes. The process object is responsible for managing the address spaces of its execution
threads and for controlling the resource allocation limits of its execution threads.

The process object is split into a process object body and a process control block. The process object
body contains the information necessary to maintain its position in the UJPT hierarchy, a task which
includes coordinating its sub-process objects. The process control block contains the information nec-
essary to manage the address space, to control the resource usage, and to pool accounting information
of all of its execution threads. Example 113 illustrates the process object.

Example 1-13: Process Object Structure

!

! Process Object Body

1

e$t_process_object_body: RECORD
p_obj_id: e$t_object_id;
p_Jjob_pointer: POINTER e$t_job:
p_parent_process: POINTER e$t_process;
p_process_flags: e$t_process_flags;
p_process_queue: e$t_linked list;
p_sub_process_queue: e$t_linked list;
p_thread_queue mutex: k$dispatcher_ object (mutex):;
p_thread count: integer:
p_thread gqueue hd: e$t_linked list;
p_sub_process queue mutex: k$dispatcher_ object (mutex):;
p_sub_process_count: integer:
p_sub_process _queue_hd: e$t_linked list;
p_pcb: e$t_process_control block:

END RECORD;

Obje9ct ID of process object
Referenced pointer to owning job
Referenced pointer to owning process, or NIL
Process Flags

List of jobs processes

List of parents sub-processes

Mutex for thread management

Number of threads of the process

List head of processes threads

Mutex for sub-process management
Number of sub-processes of the process
List head of processes sub-processes
Process Control Block

1

! Process Control Block

1

e$t_process_control block: RECORD
pcb_usage_and limits: e$t_quota usage_and_limits;
pcb_process_condir_id: e$t_object_id;

Current resources used/resource limits

Process Level Container directory ID
visible in an processes context

Process Level Container directory ID
visible in an arbitrary context

Process accounting summary

User Readable Process Contrel Region

Prototype PTE for seg 1 page table page

Pointer to page table

Kernel Process Block

Exit Status Object ID for process

Exit Status for Process

objects allocated to the process object

pcb_process_alt_condir id: e$t_object_id;

pcb_accounting: e$t_accounting_summary;

pcb_pcr_base: POINTER eS$t_process_control region;
‘ pcb_process_control_pte: mm$pte;

pcb_ptbr: POINTER kSpage table;

pcb_kernel process_block: kS$process;

pcb_exit status id: e$t_object_id;

pcb_exit status_ptr: POINTER e$t_exit status_body:

pcb_process_allocation list: e$t_allocation_list;

1

! Object Architecture Defined Container Directory Vector
1

pcb_condir mutex: ARRAY [e$t_level type] OF POINTER k$dispatcher_object (mutex);
pcb_condir address: ARRAY [eS$t_level type] OF POINTER e$t_object_header;
END RECORD;

Example 1-13 Cont’d. on next page

Process Structure 1-13

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Example 113 (Cont.): Process Object Structure

Process Control Region

1
1
! .
! The process control region appears in the processes address space as user read only/ system
! read write.
!
e$t_process_control region: RECORD
per_image name: string(e$c max image name);
pcr_number running_threads: e§t_resource counter;
pcr_object_id: e$t_object_id;
pcr_exit_handlers: e$t_exit_handlers;
per_exec_dispatch_table: e$t_dispatch_table;
END RECORD;

process image name

number of running threads for this process
process object id - duplicate of p_obj_id
Process exit Handlers

Executive routines dispatch table

1.3.3.1.1 Resource Control

The process object maintains resource usage information for all of its threads. Unlike the job object,
the process object’s qual_usage values represent resources actively in use by its threads. Each time
one of the process objects threads consume paged pool, the gu_paged_pool_in_use field is incremented
by the amount of pool actually used. This action is called pooling the resource usage from the thread
level to the process level.

During process object creation, the pcb_usage_and_limits.qual_limits field of the process control
block is set to the value of g_per_process_limits from the user control block. The pcb_usage_and_
limits.qual_usage field of the process control block is then set to zero(), and the q_usage_and_
limits.qual_usage field of the job control block is incremented by gq_per_process_limits to reflect the
resources allocated to the process. Once this resource shuffling operation has completed, the value of
pcb_usage_and_limits.qual_limits represents the amount of system resources available to the process
object which can be consumed by all its thread objects.

While the above resource allocation scheme is the normal case, during process creation a parameter
specifying the per-process limits for the process can be specified, altering the algorithm. This value
simply overrides the value from q_per_process_limits in the above example and applies to the newly
created process.

1.3.3.1.2 Process Accounting

The process object maintains accounting information for all of its threads. Process accounting infor-
mation is pooled from the thread level to the process level. Example 1-14 illustrates the types of
information accounted for at the process level in the Mica system.

NOTE

Process accounting information is recorded with interlocked instructions, such that
the information is always maintained in an up-to-date state.

1-14 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Example 1-14: Process Accounting Structure

Process Accounting Summary

1

1

!

! The final accounting record contains this information in TLV format

! in addition to fields identifying the process, image name, user ...

1

e$t_accounting summary: RECORD
acct_cpu_cycles: e$§t_counter;
acct_total page faults: e$t_counter;
acct_hard_page faults: e$t_counter;
acct_soft_page faults: e$t_counter;
acct_dzro_page faults: e§t_counter;
acct_com page faults: eS$t_counter;
acct_peak virtual memory: e$t_counter;
acct_peak working set_size: e$t_counter:
acct_start_time: e$t_time_value;
acct_end_time: e$t_time value;
acct_page file usage: eft_counter;
acct_paged pool usage: e$t_counter;
acct_non paged_pool_usage: e$t_counter;
1

Number of cycles used by the process

Total number of page faults

Number of page faults for non resident pages
Number of page faults fixed from reclaim list
Number of demand zero page faults

Number of copy on modify page faults

Peak virtual memory size

Peak working set size

Start time of process

End time of process

Peak page file usage

Peak paged pool usage

Peak non paged pool usage

! IO Accounting

! Request IO’s are counted once.

! Each FPU that passes on an IRP (execute iofs) must also record the transfer
! by incrementing the counter for its class of FPU

1

acct_request_io_count: e$t_counter; ! Number of request_io’s
acct_execute_io_count: ARRAY[eSfpu_ class] ! Number of execute_io’s per fpu class
OF ef$t_counter;
END RECORD:

1.3.3.2 Functional Interface

The Mica executive provides entry points capable of creating and deleting process objects, setting and
extracting various attributes of a Process object, and performing control operations on all threads
of a process. Control operations are Suspend/Resume Process, Hibernate/Wake Process, and Signal
Process.

As part of process-object creation, all of the necessary support data structures are created, including
a read only process control region (PCR), and a process-level object-container directory. The PCR is
part of the process’s user-mode read-only address space. The Mica executive places information in
the PCR so that the process can read it without entering the system.

1.3.3.2.1 Process Creation

The exec$create_process() system service extends an existing UJPT hierarchy by causing the creation
of a process object and a thread object. The newly created process object becomes a sub-process of the
process above the calling thread. Example 1-15 illustrates the interface to exec$create_process().

Process Structure 1-15

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Example 1-15: Process Object Creation System Interface

PROCEDURE exec$create process (
OUT object_id: exec$t_object_id;
IN container: exec$t_object_id = DEFAULT;
IN name: execSt_object name = DEFAULT;
IN acl: exec$t_acl = DEFAULT;

IN process_record: exec$t_process_record;

IN process_public_container: exec$t_object_id = DEFAULT;

IN process_private container: exec$t_object_ id = DEFAULT;

IN process_allocation list: exec$t_allocation_list = DEFAULT:

IN thread record: exec$t_thread record = DEFAULT:

IN thread_allocation list: exec$t_allocation_list = DEFAULT;

IN thread data_block: quadword data(*) CONFORM OPTIONAL;

IN thread immediate_parameterl: exec$t_thread parameter = DEFAULT;
IN thread_immediate_parameter2: exec$t_thread parameter = DEFAULT;
IN thread status: exec$t_object_id = DEFAULT;

) RETURNS status;
EXTERNAL;

Rout ine description:

Create a Process and thread object as specified by the parameters.

Arguments:
object_id Object ID of the resulting process object
container Object container for process object (ignored)
name Name of process object
acl ACL to place on process object
process_record Attributes of the process being created
process_public container Process level public container to be transfered into the process

1

1

1

1

1

1

1

1

i

t

1

1

1

! level container directory for the process. If not present then
! container comes up empty.

H process_private container Process level private container to be transfered into the process
1 level container directory for the process. If not present then
! container comes up empty.

H process_allocation_list Objects to be allocated to the process object. If not present then
1

]

1

!

1

1

1

1

1

1

1

1

1

1

!

1

1

no objects are allocated to the process

thread_record Attributes of the thread being created

thread allocation_list Objects to be allocated to the thread object. If not present then
no objects are allocated to the thread

thread data_ block Arbitrary data block passed to initial thread. Pointer in TCR, if

pointer is NIL, then no data block was passed
thread immediate_parameterl Immediate parameter passed to thread through TCR
thread immediate parameter2 Immediate parameter passed to thread through TCR

thread status Exit status object to be bound to the initial thread. If not present
then the thread is created without an exit status object
process_status TBS

Return value:

TBS

1-16 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

From the interface to exec$create_process(), it is clear that the process_record has an impact on the
structure of the process being created. Example 1-16 illustrates the layout of the process_record.

Example 1-16: Process Record Structure

{The Process Record
1
exec$t_process record: RECORD
process status_object: e$t_object_id; ! Object ID of processes status object

process_image_ name: string(e$c_max_image name); ! Image name for process being created
1

! Per Process Resource limits. This value is used as the

! qual_limits value for the process object, and is deducted
! from the qual_usage field of the owning job object.

!t A value of zero() in any one of fields means to use the

! corresponding value of the g_per process_limit from the

1

user structure
1

process_per process_limits: e$t quota_limits; ! Resource limits for this process
END RECORD;

1.3.3.2.2 Process Deletion

The exec$force_exit_process() system service provides a mechanism for removing process objects from
the system. The removal of a process has the following system-wide effects:

e All threads of the process are removed from the system.

¢ The amount of rescurces available to the process (qual_limits—qual_usage) is returned to the
processes job object by decrementing qual_usage in the job object.

e If the process object is the last process owned by its job object, then the job object is removed
from the system.

Example 1-17 illustrates the interface to exec$force_exit_process().

Example 1-17: Process Object Deletion System Interface
PROCEDURE exec$force exit process (

IN process_object_id: exec$t_object_ id = DEFAULT;

IN exit_ status: execS$t_exit_status;

) RETURNS status;

EXTERNAL;

Routine description:

Causes the Process object specified by process object id to
be removed from the Mica system

Arguments:
then the current process is assumed
exit_status the reason that the process is force-exiting
Return value:

TBS

1
1
1
1
1
1
1
1
!
! process object_id the process object to be removed. If not specified,
1
1
t
1
1
1
1
1

1.3.3.2.3 Get/Set Process Information
The exec$get_process_information() and exec$set_process_information() system services provide a

mechanism to obtain and modify attributes of the specified process object. Example 1-18 illustrates
the interfaces to the process object get/set system services.

Process Structure 1-17

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Example 1-18: Get/Set Process Information System Interface

PROCEDURE exec$get_ process_information (
IN process_object_id: exec$t_object_ id = DEFAULT;
IN process_get_items: exec$t_item list;
) RETURNS status;
EXTERNAL;
++

Routine description:

Return information about the process object to the caller. The
information returned is item list driven

Arguments:

process_object_ id if present, the object ID of process object that is to be inspected
otherwise, the process object of the calling thread is assumed
process_get_items item list identifying process object information to be extracted

Return value:

TBS

M
1
!
1
1
1
!
1
1
1
1
!
1
!
!
1
1
1

PROCEDURE exec$set_process_information (
IN process_object_id: exec$t_object_id = DEFAULT;
IN process_get_ items: exec$t_item list;
) RETURNS status;

EXTERNAL

onoi1n the process object. The
information to be modified is item 1list driven

! Arguments:
otherwise, the process object of the calling thread is assumed
process_get_items item list identifying process object information to be modified
Return value:

1
1
1
1
1
1
1
1
1
! process_object_id if present, the object ID of process object that is to be modified
t
1
1
1
1
! TBS

1

t

1-18 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Only certain pieces of the process object may be inspected or modified. Table 1-3 illustrates the
possible item codes and the information read or written by using the item code. .

Table 1-3: Get/Set Process Information ltem Codes

ltem Code Set Action Get Action

e$i_job_id error return object ID of processes job ob-
ject

e$i_parent_id error return object ID of processes parent
process object

e$i_sub_process_count error return p_sub_process_count

e$i_sub_process_ids error return object ID’s of sub_processes
owned by process

e$i_thread_count error return p_thread_count

e$i_thread_ids error return object ID’s of threads owned by
process

e$i_usage_and_limits error return pcb_usage_and_limits

e$i_process_limits replace qual_limits return qual_fimits

e$i_process_condir_id error return pcb_process_condir_id

e$i_accounting error return pcb_accounting

e$i_pcr_base error ' return pcb_pcr_base

e$i_allocation_list error return pcb_process_allocation_list

1.3.3.24 Process Control Operations

Two process control operations exist in the Mica system to coordinate the execution of all threads of
a process. The first provides a primitive which can alter the execution flow of another process by
causing a condition to be raised in the target process. The second provides primitives to block and
unblock the execution of the target process. In this latter technique, there are two classes of control
operations. One class allows user-mode activity within the process to continue via user-mode AST
routines, while the other class disables user-mode activity.

1.3.3.2.4.1 Process Signaling

The exec$signal_process() system service provides a mechanism to alter the execution flow of all
threads of the process by causing a condition to be raised in the threads context.

NOTE

Process signalling is implemented through user-mode ASTs; therefore, if ASTs are
disabled then so are signals.

Example 1-19 illustrates the interface to exec$signal_process().

Process Structure 1-19

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Example 1-19: Signal Process System Interface

PROCEDURE exec$signal process (
IN object_id: exec$t_object_id:
IN condition value: exec$t_condition value:
IN argument: longword CONFORM = DEFAULT;
} RETURNS status;
EXTERNAL;

++
Routine description:

Cause a condition of type condition_value to be raised in all threads owned by the process
specified by object_id. The condition handler is passed argument.

Arguments:
condition_value A descriptor for the condition to be raised in all threads
of the target process
argument If present, the value that is passed to the condition handler

Return value:

1
1
1
i
1
1
1
1
!
! object_ id the object_id of the process to be signaled
1
1
1
1
1
H
1 TBS

!

1

1.3.3.2.4.2 Process Hibernate/Wake

The exec$hibernate_process() and execwake_process() provide a mechanism to block and unblock the
execution flow of all threads within the target process. The block is implemented by causing all
threads within the target process to issue a wait on the auto-clearing hibernate-event object within
the thread control block. During the block, the only user-mode activity that is allowed is execution
within user-mode AST routines; kernel-mode ASTs remain enabled. The unblock of the process is
implemented by setting the auto-clearing hibernate event object within the thread control block of
all threads of the target process. Example 1-20 illustrates the interfaces to exec$hibernate_process()
and exec$wake_process().

Example 1-20: Hibernate/Wake Process System Interface

1

! Hibernate Process

1

PROCEDURE exec$hibernate_process (
IN object_id: exec$t_object_id:
) RETURNS status;
EXTERNAL;

Routine description:

Cause all threads owned by the process specified by object_id to issue a wait on the
auto-clearing hibernate event object in their TCB. User mode AST’s remain enabled

object_id object ID of target process
Return value:

t

1

1

1

1

1

!

! Arguments:
!

1

1

!

!

! TBS
)

H

1

! Wake Process

1

PROCEDURE exec$wake_process (
IN object_id: exec$t_object_id;
) RETURNS status:
EXTERNAL;

Example 1—20 Cont’d. on next page

1-20 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Example 1-20 {Cont.): Hibernate/Wake Process System Interface

++
Routine description:

Cause all threads owned by the process specified by obJject_id to have their waits on the
auto-clearing hibernate event object in their TCB to be satisfied by setting the event.

object_id object ID of target process
Return value:

1

M

t

1

!

1

!

! Arguments:
!

1

!

!

1

! IBS
!

1

1.3.3.2.4.3 Process Suspend/Resume

The exec$suspend_process() and exec$resume_process() provide a mechanism to block and unblock
the execution flow of all threads within the target process. The block is implemented by causing all
threads within the target process to issue a wait on the auto-clearing suspend event object within the
thread control block. During the block, no user-mode activity is possible; only kernel-mode normal
and special AST routines may be executed. The unblock of the process is implemented by setting the
auto-clearing suspend event object within the thread control block of all threads of the target process.
Example 1-21 illustrates the interfaces to exec§suspend_process() and exec$resume_process().

Example 1-21: Susnend/Resume Process System Interface

! Suspend Process
1

PROCEDURE exec$suspend process (
IN object_id: exec$t_object_id:
) RETURNS status;
EXTERNAL;

Routine description:

Cause all threads owned by the process specified by object_id to issue a wait on the

1
1
1
1
1
! auto—clearing suspend event object in their TCB. User mode AST’s are disabled.
1

! Arguments:

1

! object_id object ID of target process

1

! Return value:

1

! TBS

!

t

1

! Resume Process

1

PROCEDURE exec§resume process (
IN object_id: exec$t_object_id;
) RETURNS status;
EXTERNAL:

Example 1—-21 Cont’d. on next page

Process Structure 1-21

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Example 1-21 (Cont.): Suspend/Resume Process System Interface

++
Routine description:

Cause all threads owned by the process specified by object_id to have their waits on the
auto-clearing suspend event object in their TCB to be satisfied by setting the event.

object_id object ID of target process
Return value:

TBS

1
1
1
1
!
1
!
! Arguments:
!
1
1
1
1
1
'
1

1.3.4 The Thread Object

The thread object appears at the lowest level of the UJPT hierarchy. Its primary function is to provide
a thread of execution.

In addition, the thread object has the following functions:
e It is the schedulable entity in the Mica system.
e It maintains the processor state as it executes the program steps of an image.

e Ttisthe consumer of resources. All accounting and resource limitation data structures reside in
the thread's process object, with the thread’s aciivity pooled to the process level.

* It can act as a focal point for synchronization.

The thread object is implemented as a system level object in the "THREAD$OBJECT_CONTAINER"
object container.

1.3.4.1 Object Structure

The thread object maintains the state of the processor as it moves through the program steps of the
program image mapped into its processes address space.

The thread object is split into a thread object body and a thread control block. The thread object
body contains information necessary to maintain the thread’s position within the UJPT hierarchy.
The thread control block contains the information necessary to move the execution thread through
the steps of the program image. Example 1-22 illustrates the thread object.

1-22 Process Structure

Digital Equipment Corporation - Confidential and Proprietary

Example 1-22: Thread Object Structure

!
!
1

Thread Object Body

e$t_thread: RECORD

t_obj_id: e$t_object_id:
t_process_pointer: POINTER e$t_process;
t_thread flags: eS$t_thread flags;
t_thread_gqueue: e$t_linked list;

t_tcb: e$t_thread control block;

END RECORD;

!
'
!

Thread Control Block

e$t_thread control_block: RECORD

tcb_previous_mode: e$t_processor_status;
tcb_thread_context: e$t_thread context;

tcb_kernel thread block: k$dispatcher object (thread):
tcb_hibernate event: k$dispatcher object (event):
tcb_suspend event: k$dispatcher object (event):
tcb_pcb _pointer: POINTER e$t_process_control_block:
teb_tcer base: POINTER e$t_thread control region;
tcbh_exit_status_id: e$t_object_id;

tcb_exit status_ptr: POINTER e$t_exit status_body:
tcb~exit_status_value: e$t_exit_status;
tcb_security_profile: eSt_security_profile:

teb thread allocation_list: e$t_allocation list:
1

! Memory Management Events

1

teb_initial page_event: k$dispatcher_ object (event); !
tcbh_secondary page event: k$dispatcher object (event);
tcb_current page_event: integer:

1

t I/0

1

tcb_io synchronization_event: k$dispatcher object (event):
tcb_irp_list_head: e$t_linked_list;

tcb_cancel_io: boolean;

tcb_cancel event: k$dispatcher object (event);

END RECOCRD;

1
b
+

Thread Context

e$t_thread_context: RECORD

tc_priviledged context block: k$hwpcb:

tc _vector registers: POINTER e$t_vector registers;

END RECORD;

Thread Control Region

For Internal Use Only

Object ID of thread object
Referenced pointer to owning process
Thread Flags
List of processes threads
Thread Control Block

saved processor status

Processor State of Thread

Kernel Thread Block
auto-clearing hibernate event
auto-clearing suspend event
Pointer to PCB

Pointer to TCR

Exit Status Object ID for Thread
Exit Status for Thread

Exit Status
The threads security profile

Objects allocated to the thread object

Memory Management
Memory Management
Memory Management

I/0 synchronization event

I/0 Request Packet List Head
Cancel io by thread in progress
Cancel io synchronization

! Hardware Privileged Context RBlock
tc_general purpose registers: POINTER e$t_general purpose registers:;! Scalar Register Set
! Vector Register Set

The thread control region appears in the processes address space as user read only/ system

read write

e$t_thread_control_ region: RECORD

ter_object_id: e$t_object id;

ter_per pointer: POINTER e$t_process_control region;
teor_start address: e$t_thread entry point:

ter initial sp: e$t_scalar_ register;
tcr_stack_limit: eSt_scalar_register:
tcr_stack_base: est_scalar_register;
ter_condition initial_sp: e$t_scalar_ register;
tcr_condition_stack*limit: eSt_scalar_register;
tcr _condition_stack_base: e$t_scalar register;
ter_exit_handlers: e$t_exit handlers;
tcr_vectored handlers: e$t_vectored handlers;

!

! Initial Thread Parameters

1

tcr_block data: POINTER anytype:
tcr_block data_length: integex;
tcr_parameterl: e$t_thread parameter;

Example 1—22 Cont’d. on next page

Object ID of this thread
to process control region

Pointer
initial
Initial
Primary
Primary
Initial

start
Value
Stack
Stack
Value

address of thread

of Stack Pointer
Limit

Base

of Condition Stack Ptr

Condition Stack Limit
Condition Stack Base

Thread exit handlers

Entry descriptors for vectored
condition handlers

Initial thread data block or NIL
Byte length of data block rounded to gquadword
Inmediate parameter / or zero{)

Process Structure 1-23

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Example 1-22 (Cont.): Thread Object Structure

ter_parameter2: e$t_thread parameter; ! Immediate parameter / or zero()
END RECORD;

1

! Immediate Parameter
1

e$t_thread parameter: eS$t_register; ! Same size as a machine register
i

! Thread Entry Point
1

e$t_thread entry point: PROCEDURE():

1.3.4.2 Functional Interface

The Mica executive provides entry points capable of creating, deleting, and controlling thread objects,
in addition to setting and extracting various attributes of a thread object.

Thread object control services are Suspend/Resume thread, Hibernate/Wake thread, and Signal
thread.

As part of Thread object creation, all of the necessary support data structures are created including
the read-only thread control region (TCR), the read/write thread environment block (TEB), and user
and kernel stacks. The TCR is part of the process’s user-mode read-only address space. The Mica
executive places information in the TCR so that the thread can read it without entering the system.
The TEB is part of the user-mode thread architecture. The MICA executive initializes the TEB to
point to the TCR.

1.3.4.2.1 Thread Creation

The exec$create_thread() system service extends an existing UJPT hierarchy by causing the creation
of a thread object. The newly created thread object begins execution within the address space of its
process at a start address passed to the system interface. Example 1-23 illustrates the interface to
exec$create_thread().

Example 1-23: Thread Object Creation System Interface

PROCEDURE exec$create thread (
OUT object_id: exec$t_object id;
IN container: exec$t_object_id = DEFAULT;
IN name: execst_object_name = DEFAULT;
IN acl: execst_acl = DEFAULT;

IN thread procedure: exec$t thread entry point:

IN thread record: exec$t_thread record = DEFAULT;

IN thread allocation list: exec$t_allocation list = DEFAULT;

IN thread data_block: quadword_data(*) CONFORM OPTIONAL;

IN thread_immediate parameterl: exec$t thread parameter = DEFAULT;
IN thread immediate_parameter2: exec$t_thread parameter = DEFAULT;
IN thread status: exec$t_object_id = DEFAULT:

) RETURNS status;

EXTERNAL;

Routine description:

Create a thread object as specified by the parameters.

Arguments:

container Object container for thread object {ignored)

name Name of thread object

acl ACL to place on thread object

thread record Attributes of the thread being created

thread allocation_list Objects to be allocated to the thread object. If not present then
no objects are allocated to the thread

thread_data_block Arbitrary data block passed to initial thread. Pointer in TCR, if

1
1
t
1
1
1
1
!
! object id Object ID of the resultin rocess object
3 - J g p J
1
1
1
1
1
b
1
1

peinter is NIL, then no data block was passed

Example 1-23 Cont’d. on next page

1-24 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

Example 1-23 (Cont.): Thread Object Creation System Interface

thread immediate parameterl Immediate parameter passed to thread through TCR

thread immediate_parameter2 Immediate parameter passed to thread through TCR

thread procedure pointer to thread entry point entry descriptor

thread_status Exit status object to be bound to the thread. If not present
then the thread is created without an exit status object

Return value:

TBS

From the interface to exec$create_thread(), it is clear that the thread_record can have an impact on
the structure of the thread being created. Example 1-24 illustrates the layout of the thread_record.

Example 1-24: Thread Record Structure
!
! The thread record
1
eS$type thread record: RECORD

thread_stack_size: integer; ! If 0 then system wide default
thread priority: k$combined priority: ! initial thread priority if all O then default
thread affinity: k$affinity; ! processor affinity If all 0 then all processors

END RECORD;

1.3.4.2.2 Thread Deletion

Thread deletion is the action which causes the removal of a thread object. The Mica system provides
two mechanisms for deleting thread objects. The first mechanism, simple exi¢, will in some cases
not cause the thread object to be removed; however, it is the normal path for thread exit when a
thread wants to exit. The second mechanism, forced exit, will cause the thread object to be removed
unconditionally. The forced exit path occurs when any thread wants the specified thread to exit.

The deletion of a thread object causes the thread’s exit handlers to execute. In the simple exit case,
exit handlers may run indefinitely, possibly never completing; thus, thread object may not occur.
In the forced exit case, the thread’s exit handlers are executed with a CPU time limit. If a time
limit is exceeded, the next handler is executed. This technique guarantees that all exit handlers will
be invoked and that afterwards thread object deletion will proceed. The exec$exit_thread() system
interface provides the simple exit functionality. The exec$force_exit_thread() system service provides
the forced-exit functionality.

When the last thread of a process is deleted, the process object is removed from the system.

Example 1-25 illustrates the interfaces to exec$exit_thread(), and exec$force_exit_thread().

Process Structure 1-25

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Example 1-25: Thread Object Deletion System Interfaces

! Thread Exit System Service
1
PROCEDURE exec$exit_thread (
IN exit_status: execS$t_exit_status;

)z

Routine description:

Cause the deletion of the calling thread object. Place

1
'
1
1
1
! thread status in the threads tcb at tcb exit status_value
1

! Arguments:

1

! thread status the exit status of the thread

t

! Return value:

1

! none

1
1

1

! Thread Force Exit System Service

1

PROCEDURE execS$force exit thread (
IN object_id: execS$t_object_id = DEFAULT;
IN exit_status: execS$t_exit_status;
)} RETURNS status:;

Routine description:
Cause the deletion of the thread object specified by object id
Arguments:

object_id the object ID of the thread object being deleted. If not specified,

then the calling thread is assumed
exit_status the reason that the thread is force-exiting

Return value:

TBS

t
1
1
1
1
t
1
1
1
1
1
1
1
1
1
1
1

1.3.4.2.3 Get/Set Thread Information

The exec$get thread_information() and exec$set_thread_information() system services provide a
mechanism to obtain and modify attributes of the specified thread object. Example 1-26 illustrates
the interfaces to the thread object get/set system services.

1-26 Process Structure

Digital Equipment Corporation - Confidential and Proprietary

Example 1-26: Get/Set Thread Information System Interface
PROCEDURE exec$get_thread information (

IN thread_object id: exec$t_object_id = DEFAULT:

IN thread get items: exec$t_item list;

) RETURNS status;

EXTERNAL;

Routine description:

Return information about the thread object to the caller. The
information returned is item list driven

Arguments:
otherwise, the calling thread is assumed

Return value:
TBS

1
1
1
1
1
1
'
1
!
1
1
1
1
1
'
§
!
1

PROCEDURE exec§set_thread information (
IN thread object_ id: exec$t_object_id = DEFAULT;
IN thread get_items: execS$t_item list;
) RETURNS status;
EXTERNAL;?

Routine description:

Modify information in the thread object. The
information to be modified is item list driven

Arguments:

otherwise, the calling thread is assumed

keturn value:

!
H
!
'
!
1
1
1
1
!
'
!
!
!
.
! TBS
!

!

For Internal Use Only

thread object_id if present, the object id of thread object that is to be inspected

thread get_items item list identifying thread object information to be extracted

thread object_ id if present, the object ID of thread object that is to be modified

thread get_ items item list identifying thread object information to be modified

Only certain pieces of the thread object may be inspected or modified. Table 1-4 illustrates the
possible item codes and the information read or written by using the item code.

Table 1-4: Get/Set Thread Information ltem Codes

ltem Code Set Action Get Action

e$i_process_id error return object ID of threads process ob-
ject

e$i_tcr_base error return tcb_tcr_base

e$i_tcr_start_address set ter_start_address error

e$i_allocation_list error return tcb_thread_allocation_list

1.3.4.24 Thread Control Operations

Two thread control operations exist in the Mica system to coordinate the execution of threads. The
first provides a primitive which can alter the execution flow of another thread by causing a condition
to be raised in the target thread. The second provides primitives to block and unblock the execution
of the target thread. In this latter technique, there are two classes of control operations. One class
allows user-mode activity within the thread to continue via user-mode AST routines, while the other

class disables user-mode activity.

Process Structure 1-27

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.4.2.4.1 Thread Signaling

The exec$signal_thread() system service provides a mechanism to alter the execution flow of a thread
by causing a condition to be raised in the context of the target thread.

NOTE

The thread signalling mechanism is implemented through user-mode ASTs; there-
fore, if ASTs are disabled, then so are signals.
Example 1-27 illustrates the interface to exec$signal_thread().

Example 1-27: Signal Thread System Interface

PROCEDURE exec$signal thread (
IN object_id: exec$t object id;
IN condition value: execS$t_condition value;
IN argument: longword CONFORM = DEFAULT;
} RETURNS status:
EXTERNAL;

Routine description:

Cause a condition of type condition value to be raised in the thread
specified by object_id. The condition handler is passed argument.

Arguments:
object_id the object_id of the thread to be signaled
condition_value A descriptor for the condition to be raised in the target thread
argument If present, the value that is passed to the condition handler

Return vaiue:

1
1
1
1
!
1
!
1
1
1
1
t
t
1
!
! TBS
1

1

1.3.4.2.4.2 Thread Hibernate/Wake

The exec$hibernate_thread() and exec$wake_thread() provide a mechanism to block and unblock the
execution flow of a thread. The block is implemented by causing the thread to issue a wait on the
auto-clearing hibernate event object within the thread control block. During the block, the only user-
mode activity that is allowed is execution within user-mode AST routines. The unblock of the thread
is implemented by setting the auto-clearing hibernate event object within the thread control block.
Example 1-28 illustrates the interfaces to exec$hibernate_thread() and execfwake_thread().

1-28 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Example 1-28: Hibernate/Wake Thread System Interface

1

! Hibernate Thread
1

PROCEDURE exec$hibernate thread (
IN object_id: execS$t_object_ id:
} RETURNS status;
EXTERNAL;

144
!

! Routine description:
1

Cause the thread specified by object_id to issue a2 wait on the
auto-clearing hibernate event object in the TCB. User mode AST’s remain enabled

Arguments:
object_id object ID of target thread
Return value:

1
1
1
!
!
1
1
1
!
t TBS
!

1

1

! Wake Thread
1

PROCEDURE execSwake_thread (
IN object_id: exec$t_object id:
} RETURNS status;
EXTERNAL;

++
Routine description:

Cause the thread specified by object_id to have the wait on the

auto-clearing hibernate event object in the TCB to be satisfied by setting the event.
Arguments:

object_id object ID of target thread
Return value:

TBS

Il
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1.3.4.2.4.3 Thread Suspend/Resume

The exec$suspend_thread() and execresume_thread() provide a mechanism to block and unblock the
execution flow of the target thread. The block is implemented by causing the thread to issue a
wait on the auto-clearing suspend-event object within the thread control block. During the block,
no user-mode activity is possible. Only kernel-mode normal and special AST routines may be exe-
cuted. The unblock of the thread is implemented by setting the auto-clearing suspend-event object
within the thread control block. Example 1-29 illustrates the interfaces to exec$suspend_thread()
and exec$resume_thread().

Process Structure. 1-29

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Example 1-29: Suspend/Resume Thread System interface

1

! Suspend Thread

1

PROCEDURE exec$suspend_thread (
IN object_id: exec$t_object_id;
) RETURNS status;
EXTERNAL:?

Routine description:

Cause the thread specified by object_id to issue a wait on the
auto-clearing suspend event object in the TCB. User mode AST’s are disabled.

Arguments:
object_id object ID of target thread
Return value:

1
1
1
1
1
1
1
!
1
1
1
1
2
! TBS
!

1

1

! Resume Thread

t

PROCEDURE execSresume_thread (
IN object_id: exec$t_object_id;
) RETURNS status;
EXTERNAL;

Routine description:

Cause the thread specified by object_id to have the wait on the

1
1
1
1
!
! auto-clearing suspend event object in the TCB to be satisfied by setting the event.
1

! Arguments:

1

! object_id object ID of target thread

1

! Return value:

1

! TBS

!

1

1.3.4.2.44 Hibernate and Suspend Comparison

Both the exec$hibernate_thread() system service, and the exec$suspend_thread() system service block
the execution of the specified thread. The difference between these two types of blocked states is the
ability of the blocked thread to receive and execute in the context of user-mode ASTs. Threads that
are blocked due to the exec$hibernate_thread() system service are able to receive and execute in the
context of user-mode ASTs; threads that are blocked due to the exec$suspend_thread() system service
are not.

1.4 UJPT Object Linkages

The UJPT hierarchy is bound together through the existence of object IDs and referenced pointers.
The following section describes the implementation of the object linkages, the steps of hierarchy
creation, and the actions which lead to the collapse of a UJPT hierarchy. This section does not
describe process or thread creation in terms of address space creation or the intricate details of
kernel, memory management, or object architecture interactions.

1-30 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.4.1 Linkage Structure

The UJPT object linkage structure requires that objects in lower levels of the hierarchy point to
the object immediately above them using a referenced pointer. The reference pointer guarantees
the existence of the higher-level object for the life of the lower-level object. Figure 1-1 illustrates a
complex UJPT hierarchy consisting of a user object, a job object, and a process object consisting of
two immediate threads and a sub-process object with a single thread.

Figure 1—1: Complex UJPT Hierarchy

System Container Directory

. D0 USER$OBJECT_CONTAINER
User.0 ID1 JOB$OBJECT_CONTAINER
2,1 iDo
Job Ct1 D2 PROCESS$OBJECT_CONTAINER
D5
Job Container Directory
:gi THREAD$OBJECT_CONTAINER
Job.0 e

31 D1

Process Gtz N e B N R
Process Container Directory
Process.0
41 D2
Sub Process Ct 1
Thread Ct 2
Process.1
21 DS
] Sub Process Ct 0 i HH
E Thread Ct 1
Process Container Directory
Thread.0 Thread.1
21 D3 21 ID4
Thread.2
21 iD6

X,Y = Pointer Count, Object ID Count

= Referenced Pointer
ZS-24347-87

1.4.2 Hierarchy Creation

The creation of a UJPT hierarchy is triggered by the exec$create_user() system service. At this time,
a hierarchy is either created or extended, depending on the existence of a user object representing
the Mica user specified in the user_record.user_username field of the user_record parameter.

Process Structure 1-31

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The following steps occur during the creation of a UJPT hierarchy.

1.

Determine if a user object exists for user_record.user_username. If the object exists, then obtain
a referenced pointer to the user object. Otherwise, create the user object in the system container
directory, initialize the user object with the information from the user_record and then obtain a
referenced pointer to the user object.

Create the job object in the system container directory and obtain a referenced pointer to the job
object. Initialize the job object according to the following tasks.

e Setj obj id equal to the object ID of the job being created.
* Setj user_pointer to the referenced pointer of the proper user object.

¢ Link the job object to the user object’s u_job_queue_hd, and initialize the j_process... fields
of the job object.

* (Create the job-level container directory, and populate it with the job_initial_container pa-
rameter.

Create the process object in the system container directory and obtain a referenced pointer to
the process object. Initialize the process object according to the following tasks.

¢ Set p_obj_id equal to the object ID of the process being created.

¢ Set p_job_poinier to the referenced pointer of the proper job object.

¢ Link the process object to the job object’s j_process_queue_hd.

* Initialize the p_thread... fields and p_sub_process... fields of the job object.

¢ Create the process level container directory, and populate it with the process_public_
container parameter and the process_private_container parameter.

Create the thread object in the system container directory.
Obtain a referenced pointer to the thread object.

Initialize the thread object such that t_obj_id contains the object ID of the thread, and ¢_process_
pointer contains the referenced pointer to the proper process object.

Link the thread object to the process object’s p_thread_queue_hd.

1.4.3 Hierarchy Collapse/Deletion

The collapse of a UJPT hierarch‘}; can be triggered by force-exiting any component of a hierarchy. The
ultimate collapse is always the result of a thread’s exit, whether it be a forced exit or a voluntary

exit.

The forced exit of a component in the UJPT hierarchy eventually causes all threads beneath that
object to exit. The following actions occur during a thread exit.

If the exiting thread is the last thread in its process, then cause the process to exit by removing
its object ID.

If the exiting process has any sub-processes, then cause its sub-processes to exit by force-exiting
them.

If the exiting process is the last process in its job, then cause the job to exit by removing its
object ID.

If the exiting job is the last job in its user, then cause the user to exit by removing its object ID.

1-32 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.4.3.1 Force-Exit Routines

Each component of the hierarchy provides a force-exit interface as part of its primitive object service
routines. The basic action performed in these routines is the forced exit of the object’s sub-objects.

1.4.3.1.1 User-Object Force-Exit Routine

The user-object force-exit routine is responsible for causing the forced exit of all of its job objects.
This is implemented by setting its force-exit in-progress flag, and looping over the linked list of its
job objects headed by u_job_queue_hd and a force-exit of that job via e$force_exit_job().

1.4.3.1.2 Job-Object Force-Exit Routine

The job object force-exit routine is responsible for causing the forced exit of all of its process objects.
This is implemented by setting its force-exit in progress flag, looping over the linked list of its process
objects headed by j_process_queue_hd, and causing a forced exit of that process via e$force_exit_
process().

1.4.3.1.3 Process-Object Force-Exit Routine

The process object force-exit routine is responsible for causing the removal of all of its thread objects
and sub-processes represented as process objects. This is implemented by setting its force-exit in
progress flag, and looping over the linked list of its thread objects headed by p_thread_queue_hd and
causing a force-exit of that thread via e$force_exit_thread(). Then the routine loops over the linked
list of sub-processes headed by p_sub_process_gueue_hd and causes a forced exit of that process via
e$force_exit_process().

1.4.3.1.4 Thread Object Force Exit Routine

The routine occurs in two phases. The first phase is to cleanly enter the exiting thread’s context to
begin the thread exit. The second phase is to complete the exit of the thread by calling exec$exiz_
thread(), an action which starts the second phase of hierarchy collapse and finally brings the “exiting”
thread out of the system. Before starting the forced-exit processing, the force-exit in-progress flag is
set in the thread object.

During a thread forced-exit, there is a moment when control is returned to the original caller of
exec$exit_thread() even though the thread to be exited is still part of the system. The exit is considered
complete with respect to the caller after the system has delivered an AST to the exiting thread that
will cause the thread itself to exit. The exit is complete with respect to the exiting thread once the
thread has issued its call to k$terminate_thread();

1.4.3.1.4.1 Thread Context Entry

To force-exit a thread, that thread’s context must be entered in a controlled manner in a “trusted” user-
mode routine. This is achieved by delivering a user-mode AST to the thread. The target procedure
of the AST is a routine that is part of the Mica executive but is executed in user mode. The AST
target procedure is the function e$in_context_force_exit(). The purpose of this function is to bring the
thread into a “clean” state so that it can complete its exit. The following steps occur in e$in_context_
force_exit():

¢ The thread issues an efunwind() specifying an exit unwind.

* Once the unwind has completed, the thread issues a call to exec$exit_thread().

Process Structure 1-33

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.43.1.4.2 Thread Exit

The second phase of thread exit processing begins at the entry point exec$exit_thread(). The purpose
of this function is to execute all of the exit handlers for the thread and, when completed, to bring the
thread object out of the system. The following steps occur in exec$exit_thread():

* Dequeue the first exit handler from the thread control region.
¢ Ifthe thread is in the force-exit in progress state, then establish a CPU time quota for the thread.

NOTE

The thread-exit CPU time quota is on accumulated user-mode CPU time. It is
not an elapsed time limit.

¢ Ifthe CPU time quota expires, then deliver a user-mode AST to the thread. The target procedure
of the AST is executive code that runs in “trusted” user-mode at the e$exit_handler_quota_
expire(). This entry point causes the termination of the current exit handler and begins the next
by calling exec$exit_thread().

¢ Vector to the exit handler in user-mode.

* If no more exit handlers for the thread exist, then remove the object ID of the thread by calling
e$remove_object_id(), passing it the object ID of the thread stored in £_obj_id in the thread object
body. This action begins the second phase of hierarchy collapse by causing the execution of the
affected object’s remove routines. If there are more exit handlers, then repeat the above steps.

e After completion of e$remove_object_id(), the thread removes itself from the system by calling
k$terminate_thread(). This action begins the third phase of hierarchy collapse by causing the
execution of the affected object’s delete routines.

1.43.2 Object Remove Routines

The object remove routines are called when the objhdr$object_id_count within the object header
decrements to zero. This occurs during the second phase of hierarchy collapse as a result of a call
to e$remove_object_id() for the “exiting” object. Object remove routines are always executed in the
context of the object being removed.

NOTE

In order to ensure the above context restrictions, objects within the UJPT hierar-
chy may not have alias object IDs, and their ACLs are such that only the function
exec$exit_thread() is capable of removing their object IDs.

Assuming the UJPT hierarchy from Figure 1-1, the following legal contexts exist to execute the
remove routines for the hierarchy.

* Thread.0 will execute its remove routine in the context of thread.0.
e Thread.l will execute its remove routine in the context of thread.l.
e Thread.2 will execute its remove routine in the context of thread.2.

"o Process.0 could execute its remove routine in either the context of thread.0, or thread.l. The
context would be determined by the context of the last thread to begin the second phase of exit.

¢ Process.1 will execute its remove routine in the context of thread.2.

e Job.0 will execute its remove routine in the context that was used to execute process.0’s remove
routine.

® User.0 will execute its remove routine in the context that was used to execute job.0’s remove
routine.

1-34 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.4.3.2.1 User-Object Remove Routine

The user-object remove routine performs no actions related to hierarchy collapse.

1.4.3.2.2 Job Object Remove Routine

The job-object remove routine is responsible for breaking the link between itself and its user object.
If the job object is the last object of its user cbject then it must guarantee the removal of the user
object. This occurs as follows:

¢ The job object is de-linked from the u_job_gqueue_hd in the user object pointed to by j user_
pointer.

e If the u_job_count field is decremented to zero by this action, then the user object is removed by
calling ef$remove_object_id() specifying the object ID of the user object (u_obj_id) stored in the
user object body.

1.4.3.2.3 Process Object Remove Routine

The process object remove routine is responsible for breaking the link between itself and its job object,
and if the process is a sub-process, it must break the link between itself and its parent process i.e. the
process above it. Two different paths are followed during the process remove routine. The following
occurs in the remove routine for a process without a parent.

¢ The process object is de-linked from the j process_gueue_hd in the job object pointed to by p_job_
pointer.

e If the j_process_count field is decremented to zero by this action, then the job object is removed
by calling e$remove_object_id() specifying the object ID of the job object (j_obj_id) stored in the
job object body.

The remove routine for a sub-process i.e. a process with a parent simply de-links itself from the
p_sub_process_queue_hd in the process object pointed to by p_parent_poiniter.

1.4.3.2.4 Thread Object Remove Routine

The thread object remove routine is responsible for breaking the link between itself, and its process
object. If the thread object is the last object of its process object then it must guarantee the removal
of the process object. This occurs as follows:

* The thread object is de-linked from the p_thread _queue_hd in the process object pointed to by
t_process_pointer.

e If the p_thread_count field is decremented to zero by this action, then the process object is
removed by calling e$remove_object_id() specifying the object ID of the process object (p_obj_id)
stored in the process object body.

1.4.3.3 Object Delete Routines

The object delete routines are called as a result of the objhdrpointer_count field decrementing to
zero. This occurs during the third phase of hierarchy collapse as a result of the call to k$terminate_
thread() in execPexit_thread().

The function of k$terminate_thread() is to remove the thread from the system. This is accomplished
by queuing a pointer to the thread object to a queue served by a system thread running e$terminate_
thread(). This thread is responsible for dereferencing the thread object which begins the third phase
of hierarchy collapse.

Process Structure 1-35

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Object delete routines always execute in the context of the system thread running e$terminate_
thread().

NOTE

At the time that k$terminate_thread() is called, the thread object’s objhdr$pointer_count
is 1, and the objhdrobject_id_count is 0.

1.4.3.3.1 User-Object Delete Routine

The user-object delete routine performs no actions related to hierarchy collapse.

1.4.3.3.2 Job-Object Delete Routine

The job-object delete routine simply dereferences its user object by calling e$dereference_object()
passing it the referenced pointer to the user object stored in j_user_pointer.

1.4.3.3.3 Process-Object Delete Routine
The process-object delete routine performs the following actions:

e Ifthe process has a parent process, its parent process object is dereferenced by calling e$dereference_
object(), passing it the referenced pointer to the parent process object stored in p_parent_pointer.

* The job object is dereferenced by calling e$dereference_object(), passing it the referenced pointer
to the job object stored in p_job_pointer.

1.4.3.3.4 Thread-Object Delete Routine

The thread-object delete routine simply dereferences its process object by calling e$dereference_
object(), passing it the referenced pointer to the process object stored in ¢_process_pointer.

1.5 Address Space and Execution Threads

Execution threads exist within a context which includes an address space and processor state. The
creation and deletion of execution threads involves heavy interactions with the Mica kernel and
memory management subsystems. This section describes execution thread creation and deletion in
terms of its interactions with the Mica kernel, executive, and memory management subsystems.
Interactions with the object architecture are not discussed.

1.5.1 Creation
The creation of an execution thread has two distinct paths.

The first path occurs when an execution thread is being created, an action which requires the cre-
ation of both an address space and a processor state. This path is a result of an exec$create_user(),
an exec$create_job(), or exec$create_process() system service. This path is known as initial thread
creation.

The second path occurs when an execution thread is being created within an existing address space.
The only context that needs to be established is the processor state. This path occurs as a result of
an exec$create_thread() system service and is known as subsequent thread creation.

1-36 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.5.1.1 Initial Thread Creation

During initial thread creation, the following actions occur.

¢ An address space must be created and initialized.

* A transition to the new thread’s partial context must occur.

* Both thread- and process-control region address space must be created and initialized.

* The program image for the new process must be mapped into the process address space.

¢ The thread must begin execution at the program image starting address

1.5.1.1.1 Address Space Creation

The creation of a Mica address space occurs as a result of a call to e§create_process_address_space().
Example 1-30 illustrates the interface to this function.

Example 1-30: Address Space Creation

PROCEDURE e$create process_address_space (
IN process_control pte : POINTER mm$pte;
OUT ptbr : integer; 'page table base register
OUT kernel_ stack pointer : POINTER anytype;
y:
EXTERNAL;

Routine description:

This routine creates the foundation of a process address space.
Pages are allocated for the segment 1 page table, the segment 2
page table for the control region, the kernel stack and the
working set list.

NO ADDRESSES WITHIN THE ADDRESS SPACE ARE VALID, THIS INCLUDES THE
KERNEL STACK POINTER WHICH IS RETURNED.

Once an address space foundation has been created, k$initialize thread
and k$ready_thread are invoked to create the initial thread running
within this new address space.

IN process_control pte - pointer to the process_control_pte in the process
control block. Upon return the prototype PTE
referred to by process_control pte will contain
the prototype PTE for the segment 1 page table
page. The PEN database PTP element will contain
this address (process_control pte) so it must

be in non paged system space.

OUT ptbr - the value to be used for the page table base register
OUT kernel_stack pointer - the value to be used for the kernel stack pointer
Return value:

none.

1
1
1
1
!
!
!
1
1
1
?
!
!
!
!
!
! Arguments:
!
1
1
1
1
!
1
1
1
1
1
1
1
1
1
1
1
1

The created address space is only valid in the context of the new thread. The next phase of address
space creation occurs in the context of the new thread.

Process Structure 1-37

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.5.1.1.2 Execution Thread Creation

Once the address space for the initial thread is created, the thread must be started in its context.
This occurs by calls to the the kernel interfaces k$initialize_thread(), and k$ready_thread(). After
the completion of k$ready_thread(), the new thread is eligible to run in its own context, and the
calling thread considers the thread creation complete.

The new thread begins execution at e$initial_thread_startup(). Example 1-31 illustrates the entry
point for all initial threads.

Example 1-31: Initial Thread Entry Point

PROCEDURE e$initial thread_startup ()’
EXTERNAL;

Routine descriptiocn:

The entry point for all initial threads. This routine is responsible for completing an
execution thread which involves

o Initializing the threads address space

o creating and initializing the control region memory pool
o initializing the pcr and ter

o mapping the program image into the new address space

o starting the thread at the image entry point

Arguments:
none
Return value:

1
1
1
1
1
1
1
1
1
1
!
1
!
!
1
i
1
1
t
! none
t

1

1.5.1.1.2.1 Address Space Initialization

The first action performed by e$initial_thread_startup() is the initialization of the process address
space. This action makes it possible for the thread to begin taking page faults within its address space.
Address space initialization is accomplished by calling efinitialize_address_space(). Example 1-32
illustrates the interface to e$initialize_address_space().

Example 1-32: Address Space Initialization

PROCEDURE e$initialize_address_space (
IN working set_extent: e$t_resource_counter;
IN working set quota: e$t_resource counter;
)
EXTERNAL;

1++

!

! Routine description:

1

This routine initializes an address space which was previously

created by e$create process_address_space.

It must now be running in the non paged portion of the exec
with the newly created address space mapped. No page faults
may be taken until this routine has been invoked.

This routine will create the working set list, mark the control
region, kernel stack, and working set list as locked in the
working set.

The arguments are derived from the process control block
gnl _working set limit and gnl_working set_extent fields of
pcb_usage_and limits structure.

Arguments:

IN working set_extent -~ maximum size of the working set.
IN working_set_quota - current size of the working set.

Example 1-32 Cont’d. on next page

1-38 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Example 1-32 (Cont.): Address Space Initialization

Return value:

none - it had better work.

1.5.1.1.2.2 Control Region Initialization

Once the process address space has been initialized, the control region memory pool must be ini-
tialized. The control region is at a fixed virtual address within the process’s address space and is
user read-only, kernel read/write. The standard Mica pool header for pool type e$k_pool_control is
initialized and fed by calling e$initialize_control_region().

Once the control region pool has been created, a process control region and thread control region are
allocated from the control region pool. The control regions are then initialized by copying dummy
control regions allocated from non-paged pool to the real control regions. Finally, the thread control
region is linked to its thread control block, and the process control region is linked to the process
control block and the thread control region.

1.5.1.1.2.3 Program Image Mapping

The program image to be executed must be mapped into the newly created process address space.
This occurs by transitioning into user-mode at the entry point e$program_image_startup().

The function of e$program_image_startup() is to map the program image and cause it to begin execu-
tion at the image start address. To map the image, the function execfmap_image() is called passing
it the image name stored in its process control region. Once mapped, the thread startup address
stored in the thread control region is set using exec$set_thread_information(). The image is then
called. The initial thread parameters may be found in the thread control region.

1.5.1.2 Subsequent Thread Creation

During subsequent thread creation the following must occur.

* Creation of a kernel mode and user mode stack for the thread.
¢ (Creation and initialization of the thread control region.

¢ Transition to the new thread’s context at the proper start address.

1.5.1.2.1 Thread Stack Creation

The creation of a kernel and user mode stack for the new thread occurs as a result of calling efcreate_
thread_stacks().

1.5.1.2.2 Control Region Initialization

A thread control region is allocated for the new thread from the control region pool of the calling
thread’s process. The thread control region is then initialized with the values obtained from the
exec$create_thread() parameters. The thread control region is then linked to the thread control block
and is set to point to the proper process control region.

Process Structure 1-39

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.5.1.2.3 Transition to new Thread

The final steps in subsequent thread creation require that the thread be started in its context. This
is achieved by making calls to k$initialize_thread(), and k$ready_thread(). After the completion of
the call to k$ready_thread(), the new thread is eligible to be run in its own context, and the calling
thread assumes that the thread creation has completed.

The new thread begins execution at e$subsequent_thread_startup(). This entry point simply forces a
transition to user-mode at the address specified by the thread control blocks tcr_start_address_field.

1.5.2 Deletion

Address space and execution thread deletion happen as part of the process object and thread object
delete routines.

1.5.2.1 Execution Thread Deletion

Execution thread deletion happens in two phases. The first phase is executed within the context
of the terminating thread and is responsible for thread resource cleanup. The second phase occurs
outside the context of the calling thread and is responsible for the deletion of the kernel stack of the
terminating thread.

NOTE

The context restrictions are enforced by the lack of alias object IDs on components
of the UJPT hierarchy, and through restrictions on the removal of objects within
the hierarchy.

1.5.2.1.1 In-Context Thread Deletion

In-context thread deletion involves returning to the system all resources owned by the thread. This
may include AST control blocks, I0 request packets, and other outstanding system resources. All
mutexes owned by the thread must be dealt with, and the thread control region must be returned
to the control region pool of its process. These actions occur as part of the thread object’s remove
routine.

The second phase of execution thread deletion is then started by calling the kernel primitive
k$terminate_thread().

1.5.2.1.2 Out of Context Thread Deletion

The call to k$terminate_thread() is responsible for queuing a terminate-thread descriptor on a queue
served by the system thread responsible for out-of-context thread deletion. The server causes the
thread object’s delete routine to be executed by dereferencing the pointer to the thread object.

The thread object delete routine deletes the kernel stack of the terminating thread by calling e$delete_
thread_stack().

At the end of out-of-context thread deletion, all data structures that represent the thread are returned
to the system. This includes the entire thread object and thread control block.

NOTE

The thread control region is deallocated during in context thread deletion because
it must refer to the thread’s process address space.

1-40 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.5.2.2 Address Space Deletion

If the terminating execution thread is the last thread of its process, then the address space of the
process must also be deleted. This occurs in the process delete routine.

NOTE

Address space, as used above, means address-space management data structures
such as page tables, working set lists, and the last thread’s kernel stack.

The user-mode address space is deleted mostly as a result of removing the process
level container directory, since user-mode address space is represented as section
objects.
The process delete routine calls e$delete_process_address_space(), specifying the page table base reg-
ister value from process object body.

1.6 Exit Status

The exit status mechanism in the Mica system supports the ability to obtain the exit status from a
process and, in some cases, from an individual thread within a process.

The exit status mechanism is coordinated through the exit status object.

1.6.1 Object Structure

The exit status object contains information describing the termination state of the object it is bound
to. Example 1-33 illustrates the layout of the exit status object.

Example 1-33: Exit Status Object Structure
!
! Exit Status Object Body
!
e$t_exit_status_body: RECORD

es_exit_status_summary: e$t_exit_status_summary; ! Exit Status Summary
es_exit status_event: kS$dispatcher object (event): ! Signaled on status summary valid
END RECORD;

1
! Exit Status Summary
1

e$t_exi t_status_summary: RECORD

status_valid: boolean; ! True if status summary valid
status_bound_object_type: e$t_ status_object_types; ! Process or Thread
status_bound_object_id: e$t_object_id; ! Object ID of object reporting status
status_value: e$t_exit_status; ! Exit Status

END RECORD;

1.6.2 Functional interface

The Mica executive provides interfaces to create and obtain information from exit status objects.

Process Structure 1-41

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.6.2.1 Exit Status Object Creation

Exit status objects are created by the exec$create_exit_status() system service. Exit status objects are
created in a “invalid” state and are not bound to either a process or a thread object. The object binding
occurs during thread and process object creation. The “validation” of exit status objects occurs during
process and thread deletion. Example 1-34 illustrates the interface to exec$create_exit_status().

Example 1-34: Exit Status Object Creation System Interface

PROCEDURE exec$create exit_status (
OUT object_id: exec$t_object_id:
IN container: exec$t_object_id = DEFAULT;
IN name: exec$t_object name = DEFAULT;
IN acl: execSt_acl = DEFAULT;
) RETURNS status;
EXTERNAL;

Routine description:

Create an invalid exit status object

Arguments:
container Object céntainer for exit status object
name Name of exit status object
acl ACL to place on exit status object

t
1
t
1
1
1
1
1
1 object_id The object ID of the created exit status object
1
1
1
!
! Return value:

1

! TBS

!

1

1.6.2.2 Get Exit Status Information

The exec$get_exit_status_information() system service provides a mechanism for obtaining the infor-
mation stored in an exit status object. Example 1-35 illustrates the interface to exec$get_exit_status_
information().

Example 1-35: Get Exit Status Information System Interface

PROCEDURE execfget exit_status_information (
IN object_id: execSt_object_id;
OUT status_summary: e$t_status_summary;
) RETURNS status;
EXTERNAL;

Routine description:

Return the es_exit_status_summary field from the exit status object
specified by object_id

Arguments:

object_id object ID of exit status object
status_summary es_exit_ status summary field from specified exit status object

Return value:

TBS

1
1
!
t
1
1
1
1
t
t
]
1
!
'
!
'
1

1.6.3 Usage
Exit status objects are used to report the exit status of exiting processes and exiting threads.

Each thread in the Mica system may optionally be bound to an exit status object. The binding occurs
during the creation of the thread.

142 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Each process in the Mica system is bound to an exit status object. The binding occurs during the
creation of the process.

Exit status objects are “invalid” at object creation time and remain invalid until the object that they
are bound to is removed from the system.

1.6.3.1 Thread Exit Status Object Usage

If the thread_status parameter is specified during the direct or indirect creation of a thread, then the
thread is bound to the specified exit status object. The exit status object is made valid during the
object remove routine for an exiting thread. This occurs as follows:

¢ Set the tcb_exit_status_value field to the value stored in the thread control block tcb_exit_status_
value field.

* Set to true the status_valid field in the existing status object bound to the exiting thread.

e Set the status_value field to the value stored in the thread control block #cb_exit_status_value
field.

¢ Set to true the status_valid field in the exit status object bound to the exiting threads process.
* Signal the es_exit_status_event in the exit status object bound to the exiting thread.

If the exiting thread is not bound to an exit status object, then the following occurs.

¢ Set the status_value field to the value stored in the thread control block tcb_exit_status_value
field.

* Set to true the status_valid field in the exit status object bound to the exiting threads process.

1.6.3.2 Process Exit Status Object Usage

Each process in the Mica system is bound to an exit status object. During the object remove routine
for a process object, the process exit status object is signaled by setting the es_exit_staius_event in
the exit status object bound to the exiting process. The status_valid and status_value fields were
previously set during the individual thread exits for all of the processes threads.

1.7 Process/Thread Startup/Rundown Summary

This section is an attempt to summarize the steps that occur during the creation, execution, and
termination of a thread in the Mica system. A very simple hierarchy will be studied in this description.
The hierarchy consists of user.0, job.0, process.0, and thread.0 from Figure 1-1.

1.7.1 Startup Summary

The sample hierarchy is created as a result of the job controller calling exec$create_user(). The
following steps occur as a result of this call.

1. A user object named user.0 is created. The user control block is initialized from the user_record
parameter. The user object body is initialized to contain an empty job list and a job count of
zero.

2. A job object named job.0 is created. The job control block is initialized by allocating q_per_job_
limits quota from user.0, and assigning it to jcb_usage_and_limits. A job level container directory
is created and optionally populated based on the existence of the job_initial_container parameter.
The job object body is initialized to contain an empty process list and a process count of zero.
The j_user_pointer is set to be a referenced pointer to user.0, and job.0 is linked to user.0’s job
list. User.0’s job count is incremented to 1.

Process Structure 1-43

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

3.

10.

11.

12.

13.

14.

A process object named process.0 is created. The process control block is initialized by allocating
q_per_process_limits quota from user.0 and assigning it to pcb_usage_and_limits. A security pro-
file for the process is obtained from user.0. The accounting structure in the process control block
is initialized to zero(). A process level container directory is created and optionally populated
based on the existence of the process_public_container and process_private_container parameters.
The pcb_condir_address and pcb_condir_mutex vectors are initialized. The process object body
is initialized to contain an empty thread and sub-process list. The thread count and sub-process
count is set to zero. The p_job_pointer is set to be a referenced pointer to job.0, and process.0 is
linked to job.0’s process list. Job.0’s process count is incremented to 1.

A thread object named thread.0 is created. The thread control block is initialized by clearing all
events and setting the fcb_irp_list_head to empty. The tch_pch_pointer field is initialized to point
to process.0’s process control block. If specified in the thread_status parameter, the exit status
object for the thread is referenced and stored in tcb_exit_status_ptr. The tcb_exit_status_value is
cleared. The thread object body is initialized by setting the f_process_pointer to be a referenced
pointer to process.0, and thread.0 is linked to process.0’s thread list. Process.0’s thread count is
incremented to 1.

An address space is created for process.0 by calling e$create_process_address_space(). This call
initializes portions of the tch_thread_context, and the pcb_ptbr.

The kernel context for the thread is initialized by calling k$initialize_thread().

The thread is made eligible to run in kernel mode at the e$initial_thread_startup() entry point
by calling k$ready_thread(). At this point, the original caller of exec$create_user() is returned to
with a “successful” user creation. Failures in thread startup after this point occur in the context
of the created thread and are treated as an abnormal termination status of the thread.

The first action performed by the thread at e$initial_thread_startup() is a call to e$initialize_
address_space().

Once the address space has been initialized, the thread initializes the control region by calling
edinitialize_control_region(). The control region appears as a user-mode read-only, kernel-mode
read/write portion of process.0’s address space. A buddy system memory pool is created and
initialized in the control region as a result of calling e$initialize_control_region().

The process control region is allocated by calling e$pool_allocate() specifying a pool type of e$k_
pool_control_region. The pcb_pcr_base field of process.0’s process control block is set to point to
the allocated pcr, and the per is initialized by portions of the initial_thread_parameters param-
eter, and the object ID of process.0. -

The thread control region is allocated by calling e$pool_allocate() specifying a pool type of e$k_
pool_control_region. The tcb_tcr_base field of thread.0’s thread contrel block is set to point to the
allocated ter, and the ter is initialized by portions of the initial_thread_parameters parameter,
the objeet ID of thread.0, the address of process.0’s per, and various attributes of the thread
specific address space.

The program image specified by the process_record field of the initial_thread_parameters param-
eter is mapped into process.0’s address space by transitioning into user-mode at e$program_
image_startup().

Once at e$program_image_startup(), the thread issues a call to exec§map_image() and then sets
the thread start address in the thread control region to the value returned by exec$map_image()
by calling exec$set_thread_information().

The thread entry point stored in tcr_start_address is “called” and is passed the thread parameters
stored in itp_thread_parameter_list.

144 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.7.1.1 Additional Thread Startup Summary

This section describes the startup procedures for subsequent threads of a process. Assuming the
hierarchy of the previous section, the following occurs when thread.0 makes a call to exec$create_
thread() creating thread.l.

1. A thread object named thread.l is created. The thread control block is initialized by clearing all
events and setting the icb_irp_list_head to empty. The tch_pcb_pointer field is initialized to point
to process.0’s process control block. If specified in the thread_status parameter, the exit status
object for the thread is referenced and stored in tch_exit_status_pir. The tcb_exit_status_value is
cleared. The thread object body is initialized by setting the ¢_process_pointer to be a referenced
pointer to process.0, and thread.l is linked to process.0’s thread list. Process.0’s thread count is
incremented to 2.

2. A partial address space is created for thread.1 calling e$create_thread_stacks(). This call initial-
izes portions of the fcb_thread_context.

3. The thread control region is allocated by calling e$pool_allocate() specifying a pool type of e$k_
pool_control_region. The tcb_tcr_base field of thread.1l’s thread control block is set to point to the
allocated ter, and the TCR is initialized by portions of the initial_thread_parameters parameter,
the object ID of thread.l, the address of process.0’s per, and various attributes of the thread
specific address space.

4. The thread start address in thread.1’s TCR is initialized to the value specified in the thread_
procedure parameter.

The kernel context for the thread is initialized by calling k$initialize_thread().

The thread is made eligible to run in kernel mode at the e$subsequent_thread_startup() entry
point by calling k$ready_thread(). At this point, the caller of exec$create_thread() is returned
to with an “successful” thread creation. Failures in thread startup after this point occur in the
context of the created thread and are treated as an abnormal termination status of the thread.

7. Once at e$subsequent_thread_startup(), the thread entry point stored in tcr_start_address is
“called” and is passed the thread parameters stored in thread_parameter_list.

1.7.2 Rundown Summary

At some point in the threads lifetime it will either voluntarily exit by calling exec$exit_thread() or
be forcibly exited by calling exec$force_exit_thread() on itself or having some other thread issue an
exec$force_exit_thread() specifying that thread.

For the following rundown example, it is assumed that thread.99 issues an exec$force_exit_thread()
specifying the object ID of thread.0. The hierarchy consists of user.0, job.0, process.0, and thread.0.

1. The Mica executive is entered at efforce_exit_thread(). The force-exit in progress flag is set in
the thread object body of thread.0. The purpose of this flag is to prevent the creation of new exit
handlers for the thread and to prohibit the thread from creating new threads, processes, and
jobs.

2. The next step is to cause thread.0 to begin execution in “trusted” user-mode at the e$in_context_
force_exit() executive entry point. At this point the force-exit of thread.0 is complete with respect
to thread.99. The following steps are then taken to force thread.0 into taking an active role in
its exit. This occurs as follows:

¢ An elapsed timer is set to expire in a TBD peried. If the timer expires, all of these steps
are repeated, in addition to enabling user mode ASTS, setting the ast queue flush flag in the
thread object body, and a call to k$flush_ast_queue() is issued.

* A user-mode AST is queued to thread.0. The target procedure of the AST is e$in_context
force_exit().

3. Once at e$in_context_force_exit(), thread.0 unwinds its stack by calling e$unwind().

Process Structure 1-45

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

4

Once the stack has been unwound and all unwind handlers have been executed, thread.0 executes
a call to exec$exit_thread().

The code at exec$exit_thread() assigns the parameter exit_status to the fch_exit_status_value
field of thread.0’s thread control block. If thread.0 was created with an exit status object, the
exit_status is also assigned to tcb_exit_status_pir.es_exit_status_sumary.status_value. The value
exit_status is then assigned to pcb_exit_status_ptr/.es_exit_status_sumary.status_value in pro-
cess.0’s exit status object. The force-exit in-progress flag for thread.0 is examined. Since the flag
was set, the elapsed timer set up in e$force_exit_thread() is dismissed.

NOTE

If the timer in the example above had expired, that would indicate that the user-
mode AST was not delivered, or that there was an exceptional delay in making

progress through the stack unwind. In any case, timer expiration causes a retry
which will eventually be successful.

Thread.0 is then allowed to execute each one of its exit handlers. Since the thread is being
force-exited, its exit handlers are assigned a small CPU time quota. When the quota expires, a
user-mode AST is delivered to the thread that causes it to execute an execexit thread(). The
method for delivering the user-mode AST is similar to the technique used to cause the thread
to execute at e$in_context_force_exit(), only the AST procedure target is e$exit_handler_expire().
The function of efexit_handler_expire() is to simply call exec$exit_thread().

Thread.Q issues a call to e$remove_object_id() specifying its object id (f_obj_id. This action causes
thread.0’s object remove routine to be called.

Thread.0’s object remove routine is entered. It performs the following steps.

* All outstanding resources that require cleanup by the thread are processed. This includes
the dismissal of all outstanding I/O by callin e$cancel_io_by_thread(), the dismissal of out-
standing ASTs, and ...(TBS).

* The thread control region is returned to the control region pool of process.0 by calling e$pool_
deallocate().

¢ The thread object is de-linked from the p_thread_gueue_hd of process.0.

¢ Since the above step causes the p_thread_count field to decrement to zero, the process.0
object is removed by calling e$remove_object_id() specifying the object ID of process.0.

e If thread.0 was created with an exit status object, then the es_exit_status_event in the object
is “set”. The exit status object is then dereferenced by calling e$dereference_object().

The object remove routine for process.0 is entered as a result of thread.0’s object remove routine
being entered. The following occurs during process.0’s object remove routine.

* The job level container directory whose address is stored in peb_condir_array is dereferenced.

* The process level container directory is removed from the system by calling e$remove_object_
id(), and specifying pcb_process_condir_id

* The process control region is returned to its control region pool by calling e$pool_deallocate().
* The process object is de-linked from the j_process_queue_hd of job.0.

* Since the above step causes the j _process_count field to decrement to zero, the job.0 object
is removed by calling e$remove_object_id() specifying the object ID of job.0.

¢ The es_exit_status_event in process.0’s exit status object is “set”. The exit status object is
then dereferenced by calling e$dereference_object().

146 Process Structure

10.

1.

12.

13.

14.

15.

16.

17.
18.

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The object remove routine for job.0 is entered as a result of process.0’s object remove routine
being entered. Th=e following occurs during job.0’s object remove routine.

* The job level container directory is removed from the system by calling e$remove_object_id(),
and specifying jeb_job_condir_id.

* The job object is de-linked from the u_job_queue_hd of user.0.

* Since the above step causes the u_job_count field to decrement to zero, the user9.0 object is
removed by calling e$remove_object_id() specifying the object ID of user.0.

The object remove routine for user.0 is entered as a result of job.0’s object remove routine being
entered. The routine performs no significant actions

The original call in exec$exit_thread() which removed the object ID of thread.0 returns. The
next step is a call to k$terminate_thread(). The purpose of k$terminate_thread() is to remove
the specified thread (thread.0) from execution within the Mica system. Once all of the kernel
related activities are complete, a pointer to thread.0 is queued to a special system thread known
as the thread eater. The thread eater executes the loop at e$terminate_thread().

The function of e$terminate_thread() is to dequeue the thread’s arriving on its queue, and to
dereference the thread objects. When the thread eater processes thread.0, it calls e$dereference_
object() specifying thread.0. The delete routine for thread.0 is entered. It is important to note
that the delete routine for thread.0 is entered in the context of the thread eater.

The delete routine for thread.0 is entered. It performs the following actions.
¢ Thread level accounting information is rolled up to the thread’s process.

* The thread specific address space (user-mode, and kernel-mode stacks) of thread.0 are
returned to the address space of process.0 by calling e$delete_thread_stacks().

¢ The referenced pointer to process.0 is dereferenced. This causes the delete routine for pro-
cess.0 to be executed.

The delete routine for process.0 is entered. It performs the following actions.

* An accounting record is written to the TBD message function processor. The information
for the accounting record is obtained from the pcb_accounting field from process.0’s process
control block.

e All resources accounted for in process.0’s pcb_usage_and_limits are returned to job.0’s jcb_
usage_and_limits using the rules of deductable and non-deductable resource arithmetic.

¢ The address space of process.0 is returned to the system by calling e$delete_process_address_
space().

¢ The referenced pointer to job.0 is dereferenced. This causes the delete routine for job.0 to
be executed.

The delete routine for job.0 is entered. It performs the following actions.

¢ All resources accounted for in job.0’s jcb_usage_and_limits are returned to user.0’s wch_
quotas.q_usage_and_limits using the rules of deductable and non-deductable resource arith-
metic. ,

e The referenced pointer to user.0 is dereferenced. This causes the delete routine for user.0 to
be executed.

The delete routine for user.0 is entered. It performs no significant actions.

Once the call frame has returned from the original call to e$dereference_object() issued by the
thread eater on thread.0, the UJPT hierarchy consisting of user.0, job, process.0, and thread.0 is
removed from the system, and the thread eater goes back to its queue of threads to be processed.

Process Structure 1-47

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

1.8 System Threads

This section describes the interface for creating system threads. It also describes the differences
between system threads and normal threads, and the special restrictions placed on system threads.

1.8.1 System Thread Creation

The e$create_system_thread() executive interface creates a system thread. The system thread exe-
cutes within the UJPT hierarchy of the system. The address space of the system thread is that of
the initial system process. Example 1-36 illustrates the interface to e$create_system_thread().

Example 1-36: System Thread Creation Executive interface

PROCEDURE exec$create system_thread (
OUT object_id: e$t_object_id;
IN container: e$t_object_id = DEFAULT;
IN name: e$t_object_ name = DEFAULT;
IN acl: e$t_acl = DEFAULT;

IN thread procedure: eSt_thread entry point;

IN thread record: e$t_thread record = DEFAULT;

IN thread allocation list: e$t_allocation_list = DEFAULT;

IN thread immediate parameterl: e$t_thread parameter = DEFAULT;

IN thread immediate_parameter2: e$t_thread parameter DEFAULT;
IN thread_status: e$t_object_id = DEFAULT;
) RETURNS status:;
EXTERNAL;
++
Routine description:
Create a System thread object as specified by the parameters.
Arguments:
object iad Object ID of the resulting process object
container Object container for thread object (ignored)
name Name of thread object
acl ACL to place on thread object
thread_allocation list Objects to be allocated to the thread object. If not present then

no objects are allocated to the thread
thread immediate_ parameterl Immediate parameter passed to thread through TCR
thread immediate_parameter2 Immediate parameter passed to thread through TCR
thread procedure pointer to thread entry point entry descriptor
thread_status Exit status object to be bound to the thread. If not present
then the thread is created without an exit status object
Return value:

1
!
!
M
1
I
I
l
I
I
l
!
! thread record Attributes of the thread being created
!
!
1
H
1
1
l
!
!
!
! TBS
1
-

1.8.2 System Thread Restrictions
The important differences between system threads and normal threads are as follows:
* System threads may not execute in user-mode.

e System threads are incapable of processing or executing in the context of user-mode ASTs. Algo-
rithms such as the one in exec$signal_thread() that employ user-mode ASTs either understand
system threads and modify their algorithms or don’t support the functions on system threads.

* The thread control region for system threads exists in paged pool.
¢ There is no thread environment block for system threads.
e System threads execute within the address space of the system.

¢ There are no provisions for passing block data to a system thread through the fcr_block_data
field in a system thread’s TCR.

1-48 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

* The exec$force_exit_thread() system service is not supported for system threads.

Process Structure 1-49

