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Preface

This document summarizes that part of the PRISM Common Software Architecture that
corresponds to the calling standard, and describes the conventions governing the run time
environment of PRISM programs.

This document defines the run time data structures, constants, algorithms, conventions,
methods, and functional interfaces that enable a a user mode procedure to operate correctly
in a multilanguage environment on PRISM systems.

All contents of this document apply to both PRISM ULTRIX and MICA. This document spec-
ifies the PRISM-specific user mode run time environment which is common and compatible
across both operating systems.

Calling standard conventions covered in this document include:
* Register use

¢ Linkage section

¢ Invocation descriptors

e (Call conventions

e (Call stack and frame structure

e Entry and return code sequences

e Exception synchronization and memory synchronization

¢  Procedure values

e Argument passing mechanisms

- -Argument list structure

e Argument descriptors

e Argument data types

o Function value return

e Status codes and condition values

¢ Rules for FLBC usage and the FLBC displacement field

¢ Condition handling

e Stack unwinding == )

__ Asynchronous software conditions . _ _

¢ TUse of R3 and user mode thread context

e Address values in reserved pages (page zero, page maximum, etc.)
e Stack limit checking -

* Alignment rules

. Standardrrecord mappings

_ This calling standard is a component of the larger PRISM Common Software Architecture,
and depends on certain standards and conventions which are not described by this document.
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Those standards, described by other documents, include:

e Heap memory management and dynamic string management
‘e Names and naming conventions '

*  Object language and object file format

e Status values and message definition, formatting, and reporting
¢ Common Multithread Architecture -
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Conventions Used in This Document

The definitions in this sfandard are preéented as follows.
* Data Structures

Data structures are defined in terms of the physical memory layout that must be used
for each structure in the PRISM-32 environment.

¢ Constants

Constants are presented symbolically. - An appendlx provides the symbohc to literal
translation for each constant.

e Algorithms
Algorithms are presented precisely, as a series of steps, in American language.
¢ Conventions

All conventions that are important to correct program execution are presented precisely,
in a form appropriate to each convention.

* Methods

Actual or recommended methods are presented informally, using examples, suggestions,
or other appropriate form.

s  Functional Interfaces

Functional interfaces are presented in precise abstract form. The semantic capabilities
of each functional interface are defined. The language-level interface syntax is not
defined.

For each high level language, each PRISM system must provide an appropriate concrete
interface to each abstract functional interface defined by this standard.

A

All text enclosed in double backslashes, illustrated by this paragraph, is editorial
comment, is not formally a part of the standard, and will not necessarily be in future
revisions of this document.

AR
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' Introduction

1 Introduction

This standard defines the rules and conventions that govern the user mode run time en-
vironment on PRISM systems. It specifically applies to both PRISM ULTRIX and PRISM
MICA systems.

This standard defines properties of the run time environment that must apply at various
points during program execution. These properties include the contents of key registers, the
format and contents of certain data structures, and actions that procedures must perform
under certain circumstances.

-Not all of these properties have the same scope. Some properties apply at all points through-
out the execution of user mode code, and must therefore be held constant at all times; such
properties include those defined for the stack pointer and the frame pointer. Other proper-
ties apply only at certain pomts such as call conventlons that apply only at the point that
aJSRtoa called procedure is executed.

Furthermore, some of these properties apply under all circumstances; such properties in-
clude the call stack structure. Others are optional depending on circumstances; for example,
compilers are not obligated to follow the argument list conventions when a procedure and
all its callers are in the same module, have been analyzed by an interprocedural analyzer,
or have private interfaces (such as language support routines).

Section "Scope and Applicability” summarizes the points at which elements of this standard
apply and the circumstances under which they apply.

This standard defines the software implementation architecture for PRISM systems. The
conventions described in this standard by definition differ from other software implementa-
tion architectures, and programs that depend on properties of this architecture may not be
portable to other architectures.

~ Since source level compatibility and portability between VAX and PRISM is an explicit goal,
users should not depend on the properties of this architecture except indirectly through high
level language facilities that are portable across architectures.

1.1 Goals

The PRISM calling standard has many of the same goals as the VAX calling standard.

¢ The standard must be applicable to all intermodule callable interfaces in the PRISM

software system. Specifically, the standard must consider the requirements of important

. compiled languages including ADA, BASIC, BLISS, C, COBOL, FORTRAN, PASCAL,

PILLAR, PL/I, and calls to the operating system and library procedures. The needs of

~other languages that DIGITAL may support in the future must be met by the standard
or by compatible revision to it.

¢ The standard should not include capabilities specifically for lower level components
(such as assembler routines) that cannot be invoked from the higher level languages.

e The calling program and called procedure can be written in different languages. The
- standard attempts to reduce the need for use of language extensions for mixed language
programs.

e The standard should contribute to the writing of error free, modular, and maintainable
software. Effective sharing and reuse of PRISM software modules are specific goals.
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Introduction

The standard should provide the programmer with control over fixing, reportmg, and
flow of control when software conditions or hardware exceptions occur.

The standard should provide subsystem and application writers with the ability to over-

ride system messages to provide a more suitable application oriented interface.

The standard should add no space or time overhead to procedure calls and returns that
do not establish condition handlers and should minimize time overhead for establishing
handlers at the cost of increased time overhead when exceptions occur.

New goals for the PRISM calling standard include'

Provide a common, compatible user mode run time enwronment on both the PRISM
ULTRIX and PRISM MICA operating systems.

Maintain high level language source level compatibility with VAX procedure calls. In
particular, provide immediate value, reference and descriptor mechanisms for passing
arguments. :

Provide a compatible calling standard archltecture for a future 64-bit extension of the
PRISM architecture.

Effectively use a large number of registers.
Pass some arguments in registers to improve performance.

Provide an efficient mechanism for calling lightweight procedures that do not need a
stack call frame because they do not modify preserved registers.

Use the same calling sequence to invoke lightweight procedures that maintain only a
register call frame and and heavyweight procedures that maintain a stack call frame.
From the caller’s point of view, this unifies the VAX concepts of JSB and CALL linkages.
The compiler determines whether to use a stack frame based on the complexity of the
called procedure, but this does not require any recompilation of callers.

Provide condition handling, traceback, and debugging for lightweight procedures that
do not have a stack frame.
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Register Usage Conventions

2 Register Usage Conventions
2.1 Scalar Register Conventions

RO Hardware defined: binary zero as a source operand, sink (no effect) as a result operand.

R1 SP, the stack pointer. Used by hardware. Must be quadword aligned.

R2 FP, the frame pointer. Defined by call stack conventions. Must be quadword aligned

R3 TEB_BASE, the thread environment block pointer. Contains the address of a data structure used
by compiled code and the run time library to maintain thread local context.

R4..RS Scratch registers which may be modified after the caller has executed the JSR to effect the call,

but before the called procedure is invoked. That is, R4..R5 are destroyable between calling and
called procedures (e.g. by the auto-loader), before they can be accessed by the called procedure.

R8..R9 In a standard call that retuns a function result in a register, the result is returned in R8 (result size
< 32 bits), or R8..R9 (33 bits < result size < 64 bits).

R10 in a standard call, R10 contains the address of the called procedure’s invocation descriptor.

R11 In a standard call, R11 contains the return address.

Ri12 In a standard call to a procedure with more than eight longwords in the argument list, R12 contains
the quadword aligned memory address of the remainder of the argument list. ’

R13 In a standard call, R13 contains the number of longwords in the argument list.

R14..R21 In a standard call, the first eight longwords of the argument list are passed in R14..R21.

R4..R31 Scratch registers in standard call, which may be modified by the called procedure without being
saved and restored. : :

R32..R63 No conventional use. If a standard-conforming procedure modifies one of these registers, it must

save and restore it.

2.2 Vector Register Conventions

VO0..Vi5 Scratch registers in standard call.
VL Scratch register in standard call.
vC Scratch register in standard call.
VM Scratch register in standard call.

The PRISM calling standard specifies no conventions for preserved vector registers, vector
argument registers, or vector function value return registers. All such conventions are by
agreement between the calling and called procedures.

Although no vector registers are preserved in a standard call, the entry descriptors defined
by this standard include specification of the vector registers saved by a procedure. This
so that, when vector registers are preserved by agreement between the calling and called
procedure, the condition handling facility will restore them on unwind.

Any condition handler that distﬁfbs-thé vector state mt;s;t save and restoré 1t »

AR

These conventions for vector register use, particularly the absence of preserved
registers, reflect our current best judgement. The rationale for these
decisions includes the following assumptions: ---- - -

1. Nearly all vector arguments will be passed between cooperating procedures,
such as math library routines and compiler generated code, that will
establish interface-specific. agreements_for_vector register use.
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Register Usage Conventions

2. Nearly all use of vector operations will be in bottom level procedures
(procedures that do not call other procedures), and these procedures
should have as many scratch registers as possible available to them
without the necessity of saving and restoring vector registers.

3. In those cases where vector registers are used in a calling procedure
and there are no agreements with the called procedure, values in the
vector registers either do not need to be saved across calls or else can
be saved equally well by the calling procedure.

These conventions are subject to change when we have more experience with the
use of vector registers in calling and called procedures.

\\
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Invocation Descriptors

3 Invocation Descriptors

An Invocation Descriptor is a quadword ahgned data structure that provides basic infor-
mation about a procedure. This data structure is used in calls between procedures and in
interpreting the call stack that exists at any point in a thread’s execution.

Some PRISM procedures allocate call frames on the stack, others maintain their call frame
entirely in registers (although they may use the stack), and very simple procedures do not
necessarily allocate any stack storage at all. The calling procedure need not distinguish
these cases. The invocation descriptor for the current procedure contains a field that indi-
cates whether the procedure allocates a call frame on the stack.

As illustrated in the subsequent subsections, the form of an invocation descriptor depends
on whether or not a procedure requires a call frame on the stack.

3.1 Invocation Descriptor—Procedures With a Register Frame

A procedure which does not allocate a call frame on the stack (sometimes referred toas a
“lightweight procedure”) saves it’s invocation context in registers.

Such a procedure cannot save and restore nonscratch registers. Because a procedure without
a stack frame must therefore use scratch registers to maintain invocation context, such a
procedure cannot make a standard call to any other procedure.

A procedure with a register frame can have condition handlers and can handle conditions in
the normal way. Such a procedure can also allocate local stack storage in the normal way,
although it will not necessarily do so.

Quadword Aligned

i
T

+

CODE_ADDRESS

(32 bits)
RA_SAVE I SP_SAVE _ | FP_SAVE
(8 bits) | (8 bits) | (8 bits)

1
-—— <+ - ——

FLAGS | FMT
(5) I (3)

+ - — 4+

T

CONDITION_ HANDLER
(32 bits)

+ ——— +
T T T

CODE_ADDRESS is the absolute address of the first instruction of the entry code sequence
for the procedure.

f——t——+——F

+=— == F—— ¢

FMT = INVDESCR$C_REGISTER_FRAME for an invecation descnptor denotmg a proce-
dure with a register frame.

FLAGS is a set of flag bits defined as follows.

¢ FLAGS<HAS HANDLER> is 1if this procedure has a condition handler. If FLAGS<HAS_
HANDLERS> is 1, then the CONDITION_HANDLER field must denote a condition han-
dler. o )

e FLAGS<HANDLER_REINVOKABLE> is 1 if the condition handler is a reinvokable
handler, that is, one which can be reinvoked should another condition occur while the
handler is already active. If FLAGS<HANDLER_REINVOKABLE> is 0 then the con-
dition handler is not reinvokable.
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Invocation Descriptors

FLAGS<HANDLER_RE]NVOKABLE> must be 0 unless FLAGS<HAS_HANDLER> is
1. : B -

e FLAGS<2:4> must be 000

FP_SAVE is the number of the register in which the value of FP at entry to this procedure
is maintained.

SP_SAVE is the number of the register in which the value of SP at entry to this procedure
is maintained. SP_SAVE will specify R1 if this procedure does not modify SP.

RA_SAVE is the number of the register in which the return address is maintained. If this
procedure uses the standard call conventions and does not modify R11, then RA_SAVE will
specify R11.

CONDITION_HANDLER is a signed self-relative pointer to the invocation descriptor for
a run time static condition handling procedure. This field is not defined unless FLAGS
specifies that there is a condition handler.

N\

Lightweight procedures have more freedom than might be apparent. By use
appropriate agreements with procedures that call a lightweight procedure,

by appropriate agreements with procedures that a lightweight procedure calls,
and by use of unwind handlers, a lightweight procedure may modify nonscratch
registers, and may call other procedures.

Such agreements may be by convention (as in the case of language support
routines in the RTL) or by interprocedural analysis. Calls employing such
agreements are, however, not standard calls.

Since such agreements must be permanent (for upwards compatibility of object
code), lightweight procedures should in general follow the normal restrictions.

3.2 Invocation Descriptor—Procedures With a Stack Frame

A procedure which allocates a call frame on the stack (sometimes referred to as a “heavy-
weight procedure”) can save and restore nonscratch registers, and may make standard calls
to other procedures. A standard heavyweight procedure maintains the invocation context
in stack storage as defined in section “The Call Stack”.
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Invocation Descriptors

Quadword Aligned
o —————— +

| CODE_ADDRESS X i | :0
| - . (32 bits) - 1

+ + - + —————t - ———t

| FP_SP_DIFFERENCE | MUST BE ZERO | FLAGS | FMT | :4
| (16 bits) n (8 bits) ] (5) I 3) |

+ + - t ———————t -+

] CONDITION HANDLER | :8
| (32 bits) |
+ T== - + o e e e +

| VECTOR_REGISTER MASK | REGISTER_OFFSET | :12
| (16 bits) | (16 bits) |

+=-= -~ + to———— —-——=+ —-——t

| | =16
I REGISTER MASK |

| (64 bits) . | 20
I

+ + + —— —+

CODE_ADDRESS is the absolute address of the first instruction of entry code sequence
for the procedure. '

FMT = INVDESCR$C_STACK_FRAME for an invocation descriptor denoting a procedure
with a stack frame.

FLAGS is a set of flag bits defined as follows.

e FLAGS<HAS_HANDLERS> is 1 if this procedure has a condition handler. If FLAGS<HAS_
HANDLER> is 1, then the CONDITION_HANDLER field must denote a condition han-
dler.

e FLAGS<HANDLER_REINVOKABLE> is 1 if the condition handler is a reinvokable
handler, that is, one which can be reinvoked should another condition occur while the
handlér is already active. If FLAGS<HANDLER_REINVOKABLE> is 0 then the con-
dition handler is not reinvokable.

FLAGS<HANDLER_REINVOKABLE> must be 0 unless FLAGS<HAS_HANDLER> is
1. -

e FLAGS<VECTOR_CONTEXT SAVE> is 1 if this procedure saves VL, VC, and VM in
the register save area on entry to the procedure.

e  FLAGS<3:4> must be 00.

FP_SP_DIFFERENCE is the distance in bytes between the stack frame base (this pro-
cedure’s FP value) and the stack’s top (SP value) at entry to the procedure (see section
“Stack Frame Layout”). FP_SP_DIFFERENCE must be a multiple of 8 so as to maintain
quadword-alignment of the stack.

CONDITION_HANDLER is a signed self-relative pointer to the invocation descriptor for a
run time static condition handling procedure. This field is present in all invocation descrip-
tors with FMT = INVDESCR$C_STACK_FRAME, but is not defined unless FLAGS specifies
that there is a condition handler.

REGISTER_OFFSET is the difference in bytes between the stack frame base (this proce-
dure’s FP value) and the register save area (see section “Stack Frame Layout”). REGISTER_
OFFSET must be a-multiple of 8 such that REGISTER_OFFSET(FP) yields a quadword
aligned address.
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Invocation Descriptors

REGISTER_MASK is a bit vector (0..63) specifying the scalar registers that are saved in

the register save area on entry to the procedure.

VECTOR_REGISTER_MASK is a bit vector (0... 15) specifying the vector registers that are

saved in the register save area on entry to the procedure.

N\

Dynamic condition handling is not defined by this calling standard; it is
language-defined. Compilers will set up language-specific static condition
handlers, and these static condition handlers will provide the dynamic
condition handling semantics of each language.

Users should not write static condition handlers, as they are part of the
software implementation architecture and are not necessarily portable to
other architectures.

Users should utilize the dynamic condition handling mechanisms provided by the
language in which they are coding, which are implemented and invoked via
compiler and RTL mechanisms, and are portable.

AN
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The Linkage Section

4 The Linkage Section

Since a PRISM instruction cannot contain a full virtual address, PRISM is a ‘base register
architecture. All memory references are displacements relative to the contents of a base
register (or implicitly, the program counter), and all external references must be indirect
through address constants.

The fundamental table of address constants that a procedure can use to access static storage
and external procedures and variables is called a linkage section. A register that is used to
access the contents of the linkage section is a linkage pointer.

A procedure’s linkage section includes the invocation descriptor for that procedure and the
addresses of all external constants, variables, and procedures referenced by the procedure.

When a separately compiled procedure is called, the caller must provide a pointer (in R10)
to the called procedure’s invocation descriptor. R10, the linkage pointer, may be used by the
called procedure as a base register to access address constants in its linkage section.

- Linkages to external procedures are represented in the calling procedure’s linkage section as
a linkage pair. A linkage pair, which must be quadword aligned, consists of two longwords.

Quadword Aligned

e : -- -- R

| I

| invocation descriptor address | :0
I I

o e - +

| |

| code address | :4
| 1
e - - ——————— ————————t

Invocation descriptor address is the absolute address of the invocation descriptor of the
called procedure.

Code address is the absolute address of the first instruction of the called procedure’s entry
code sequence.

Although, because the invocation descriptor also contains the absolute code address, only
‘the invocation descriptor address is strictly required in the linkage section, the absolute code
address is placed in the linkage section to provide better performance for external procedure
calls. Although the absolute code address in the invocation descriptor is used under certain
circumstances (see section "Procedure Values"), this structure of linkage pairs in the linkage
“section is required by this standard—the second longword must always be present.

\\

The linkage section is part of the called procedure, and the layout of a

linkage section is determined by the compiler. Procedures compiled together
(belonging to a single object module) will share a linkage section, which will
contain an invocation descriptor for each procedure in the module. Offsets for
invocation descriptors and address constants within the linkage section are assigned
by the compiler when the module is compiled.
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The Linkage Section -

In practice, the linkage section will be allocated in a read-only PSECT. This
read-only linkage PSECT could alsc contain all read-only constants defiped by
the module. However, when an image is activated and the "fixups on the linkage
section are performed, all the read-only constants in that PSECT become
non-shared between processes. If there are more than a page or two of
read-only constants, this may significantly increase physical memory usage;
thus, caution must be exercised.

In general, an object module contains an invocation descriptor for each entry point
contained by the module. The descriptors are allocated in a linkage PSECT.

For each external procedure, Q, referenced in a module, the module’s linkage

PSECT also contains a linkage pair denoting Q, that is, a pointer to Q's

invocation descriptor and entry code address.

As an example of typical code to call an external procedure, Q, suppose that LP
is a register currently containing the address of the current procedure’s invocation
descriptor (LP is not a fixed register). Q can be called by:

1LDQ Q OFFSET(LP), R10 ; Q's linkage pair into R10..R11l
JSR R11, (R1l1l) ; Jump to Q. Return address in R11l

Because Q’s invocation descriptor is in Q’s linkage section, Q can use the value in
R10 as a base address for accessing data in its linkage PSECT. Q accesses

external procedures and data in other PSECTs through pointers in its linkage

PSECT. Therefore, R10 serves as the root pointer for access to all static data.

\A\

The following example illustrates the layout and use of linkage sections. (This example
does not presume to represent how a compiler might actually layout a linkage section, or
to represent actual PRISM assembler notation, and the code fragments presented do not
presume to do anything useful.)

MODULE X
.psect SLINK ; Linkage section for Module X
Xl:: ; Invocation descriptor for heavyweight procedure X1
.address X1_ENTRY ; Address of entry code sequence for X1
.byte 1 ; X1 has stack frame but no condition handler
.byte 0 ; MBZ
.word 32 ; FP_SP_DIFFERENCE = 32
.long 0 ; No condition handler
.word 16 ; REGISTER OFFSET = 16
.word 0 ; No saved V0..V15
.quad 7 ; Save R61..R63
Y1l PROCVAL: ; Procedure value for procedure Y1
.address Y1 ; Value is Y1’s invocation descriptor address
POWER_2_ TABLE: ; Read-only table of powers of 277 =~ 7 °
.long 1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192
Y DATA 1 ADDR: ; External static varlablaéﬁ"“'“__"w~~"‘_— T
.address Y DATA 1 ; Address of Y DATA_ 1
Y DATA 2 ADDR:
Laddress Y DATA 2 ; Address of Y DATA 2
.psect $CODE ; Code for Module X

; Entry code sequence for procedure X1_
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X1_ENTRY:

LDA
STQ
STL
STQ
STL
OR

OR

; Calculate 2 raised to

LDA

SLL
ADD
LDL
LDL

STL
; Preserve

OR
OR

~-32(sP), SP
R10, (SP)
FP, 8 (SP)
R62, 16 (SP)
R61,24 (SP)
RO, SP, FP
RO,R10,R61

~o Ne Yo

Ne e Ny

Ne Ne % we we

The Linkage Section

Address of X1’s invocation descriptor is in R10

on standard call, and return address is -

in R11 N ’

Allocate stack space for X1l-stack frame

Save invocation descriptor address and return address
Save caller’s frame p01nter

Save R62..R63

Save R61

X1 is now the current procedure

Move own invocation descrzptor address to preserved
register R61 -

power of first argument and store in Y DATA 1

POWER_2_TABLE-X1 (R61),R4

#2,R14,R5
R4,R5,R4
(R4) ,R4

-
r

-
’
-

7

R4 <- address of powers of 2 table

R4 <- address of value of 2**first argument
R4 <- 2**first argument

Y DATA_1_ADDR-X1 (R61),R5

R4, (R5)

-
7
.
’

R5 <- address Y_DATA 1
Y DATA 1 <- R4

arguments across call to Y1

RO,R14,R62
RO,R15,R63

; CALL procedure Y1
Y1l PROCVAL-X1(R61),R10

LDQ

JSR

e N

ADD
LDL

STL

; Return sum to caller.

R11, (R11)

R62,R63,R8

.
’
.
r

~

-
r
.
r

.
I

R62 <~ first argument
R63 <- second argument

R10 <- address of Yl's invocation descriptor
R1ll <~ address Y1l’s entry code sequence
R1ll <~ return address and call Y1l

Store first+second argument in external ¥ DATA 2 and return sum
as X1 value

R8 <- sum

Y DATA 2 ADDR-X1(R61),R4™ "~ ~~ °°

RS, (R4)

.
r
-
’

R4 <- address Y_DATA 2
Y_DATA 2 <- R8

LDL 24 (FP) ,R61l ; Restore R61 -
LDQ 16 (FP) ,R62 ; Restore R62..R63
LDQ 4 (FP) ,R4 ; Get return address and caller’s frame pointer
OR RO,R5,FP ; Restore caller’s frame pointer. Caller is once
; again the current procedure.
LDA 32 (R5),SP ; Restore caller’s SP
JSR RO, (R4) ; Return to caller
MODULE Y T - -
.psect SLINK ; Linkage section for Module Y
Yl:: ; Invocation descriptor for lightweight procedure Y1
.address Y1l _ENTRY ; Address of entry code sequence for Y1
.byte 8 ; Y1 has register frame and a nonreinvokable handler
.byte 7 ; Save caller’s FP in R7
.byte 1 ; Leave caller’s SP undisturbed in Rl
.byte 11 ; Leave return address undisturbed in R11l
.long Y1l _HND-. ; Y1_HND is condition handler
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Y1 _HND: Invocation descriptor for condition handler
Address of entry code sequence for Y1 HND.

.address Y1 HND ENTRY
: - (Y1_HND_ENTRY is not shown in this example.)

7
;
.byte -0 - ; Y1 HND has reglster frame and no condition handler
.byte 4 ; Save caller’s FP in R4
.byte 1 ; Leave caller’s SP undisturbed in Rl
.byte - 11 ; Leave return address undisturbed in R11
.long - 0 ; No condition handler

Y STATIC_DATA: address of base of static Y data

.address Y_pATA_?SECT

“

~

.psect SDATA static data psect

Y DATA | PSECT.

Y | DATA 1l:: ; global static variable Y DATA 1
.long 1

Y DATA 2:: ; global static variable Y_DATA 2
.long 1
.psect $CODE ; Code for Module Y

; Entry code sequence for procedure Yl

Y1l ENTRY: ; Address of Yl’'s invocation descriptor is in R10
; on standard call, and return address is
. ; in R11
OR RO,FP,R7 ; Save caller’s frame pointer
DRAIN ; Force pending exceptions to be raised
OR #4,R10,FP ; Y1l is now the current procedure

; Compute product of global static Y DATA 1 and Y DATA 2.
; Store product in Y DATA 1.

LDL Y STATIC DATA-Y1(R10),R4 ; R4 <- base of static data psect
LDL Y DATA 1—Y DATA PSECT(R4),R5 ; R5 <- Y _DATA 1 value
LDL Y DATA . 2—Y DATA PSECT(R4) R6 ; R6 <- Y DATA . 2 value
MUL R5 R6, R5 ; Calculate product
i " DRAIN ; Synchronize exceptions
STL R5,Y DATA_1-Y DATA PSECT(R4) ; Y _DATA 1 <- product

; return to caller

OR RO,R7,FP ; Restore caller’s frame pointer. Caller is once
; again the current procedure.
JSR RO, (R11) ; Return to caller
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5 The PRISM Call Conventions

The PRISM call conventions determine the methods used to communicate certain data be-
tween the caller and the called procedure during invocation and return. Elements of these
conventions may be optional, depending on the properties of the called procedure.

The register or stack location used for an element in standard calls is specified as part of
the calling standard. '

Invocation Descriptor Address

This is the address of the invocation descriptor of the called procedure. This address is
required in standard calls and is contained in register R10. '

Return Address

In a normal return from the called procedure, the return address is the address of the
instruction to which control is transferred. In a standard call, this address is contained

_ in register R11.

Argument Count

This is the number of longwords in the argument list. This count is required in a
standard call and is contained in register R13.

Argument List

The argument list in a PRISM call is an ordered set of zero or more argument items,
which together comprise a logically contiguous structure known as the argument item
sequence. This logically contiguous sequence is in practice mapped to registers and
memory in a fashion that may preduce a physically discontiguous argument list. In a
standard call, the first N items are passed in registers R14..R21. (See section “Argument
Lists” for details of argument-to-register correspondence). The remaining items are
collected in a memory argument list, which is a quadword aligned array of longwords.
In a standard call, the address of this list (if present) is contained in register R12.

Function Result

If a standard-conforming procedure is a function, and the function result is to be re-
turned in a register, then the result is returned in R8 or R8..R9. Otherwise, the function
result is returned via the first argument item. (See section “Function Value Return”).

Scratch Registers

These are registers that the called procedure is allowed to modify without saving and
restoring their contents. In a standard call, these are R4..R31.
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6 The Call Stack
6.1 ) Stack Usage, FP, and SP

The PRISM treatment of condition handling, unwinding (nonlocal GOTOs), trace back, and
debugging depends on conventions governing the use of R1 (SP, the stack pointer register)
and R2 (FP, the frame pointer register). SP is used by the hardware in raising exceptions
and asynchronous software conditions.

SP must denote a quadword aligned address, that is, SP<2:0> must be 000.

The contents of the stack located at addresses lower than (SP) are continually and un-
predictably modified. The contents of the stack located at addresses higher than FP_SP_
DIFFERENCE(FP) belong to the calling procedure; they should not be read or written by
the called procedure, except as specified in the argument list or by language-controlled up
level references.

Additional rules for FP are more complex. Its value in a thread denotes the invocation
context of the current procedure in that thread, which is the root of a chain of procedure
invocation contexts, including a (possibly null) set of register values saved by each invoca-
tion. The first procedure in the invocation chain is the current procedure, the next is its
predecessor (the procedure that invoked the current procedure), and so forth. The current
and saved register values associated with each procedure invocation define the values of all
registers at the moment of that invocation, excluding registers that are scratch registers for
that procedure. The invocation chain information is thus sufficient to analyze a thread at
any moment and to implement stack unwinding.

Given the current register values for a procedure invocation, that invocation can be inter-
preted by examining the value of FP.

If FP<2> is 0 then the current procedure has a stack frame, and FP<31:3> contains the
address of the quadword aligned stack frame base. The standard stack frame layout specifies
the location of key information in the frame, including the location of the address of the
current procedure’s invocation descriptor and the register values saved by that procedure.
From this information the register values and context of the preceding invocation can be
determined.

If FP<2> is 1 then the current procedure has a register frame, and FP<31:3> contains the
address of the quadword aligned invocation descriptor. Information in the invocation de-
scriptor specifies which current registers maintain the return address and the predecessor’s
FP and SP values; these are the only registers needed to determine the register values and
-context for the predecessor.

~Compilers may use FP<1:0> for other flags. That is, FP<2:0> must always be masked to
obtain the stack frame or invocation descriptor address.

Compilers are allowed to optimize high level language procedure calls in such a way that
they do not appear in the invocation chain; in-line procedures, for example, never appear in
the invocation chain.
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6.2 Stack Frame Layout

The following figure illustrates the layout of the PRISM stack frame for procedures that have
stack frames. Some parts of the stack frame are optional and occur only as required by the
particular procedure. Brackets surrounding a field’s name indicate the field is optional.

Quadword Aligned

[other fixed locations]

o ——————————— e et LD E D = -

| | :(SP)
| |

1 - |

| |

| [stack-temporary area] |

| |

| |

I I

| |

B -—— - - -——

| |

| INVOCATION DESCRIPTOR | :(FP)
| !

+ - ———— ————

| : |

| RETURN_ADDRESS | :4(FP)
| | '
e e -— ————

| |

| SAVED_FRAME POINTER | :8(FP)
| |

+- - -—— ——————————t

| | :12(FP)
|

|

|

|

|

|

|
|
|
|
|
|
to———— - - = -—+
| | :REGISTER_OFFSET (FP)
1 |
| |
| |
i [register save area] |
| |
| |
] |
I o P
R - it S
| |
| !
| |
| [other fixed locations] |
| l
] |
| |
e ————————— - - - --+ :FP_SP_DIFFERENCE (FP)

The information needed to interpret the calling chain is at locations (FP), 4(FP), and 8(FP);
these locations must be maintained as defined this calling standard. The stack frame must
be allocated and initialized by the entry code sequence of a called procedure with a stack
frame.
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INVOCATION_DESCRIPTOR contains the address of the invocation descriptor of the
current procedure.

RETURN_ADbRESS contains the address of the instruction to which control is to be
transferred on a normal return.

SAVED_FRAME_POINTER contains the caller’s FP.

Other fixed locations are optional sections of the stack frame that contain language-
specific locations required by the procedure context of some high level languages. This may
include, for example, register spill area, language-specific condition handling context, fixed
temporaries, etc. .

AR

Since REGISTER OFFSET (FP) must be quadword aligned, it can’t be at 12(FP), so 12 (FP)
must either be a fixed compiler temporary or unused.

AR

Register save area is a set of consecutive longwords in which nonscratch registers mod-
ified by the current procedure are saved. The register save area begins at REGISTER_
OFFSET(FP), where REGISTER_OFFSET is specified in the procedure’s invocation descrip-
tor. REGISTER_OFFSET(FP) must yield a quadword aligned address. The set of registers
saved is specified in the invocation descriptor, by the REGISTER_MASK and VECTOR_
REGISTER_MASK fields and by FLAGS<VECTOR_CONTEXT_SAVE>.

The high-address end of the stack frame is defined by the value FP_SP_DIFFERENCE in
the procedure’s invocation descriptor. The high-address end is used to determine the value
of SP for the predecessor procedure in the calling chain.

' A compiler may use the stack-temporary area for fixed local variables, such as constant-sized
data items and program state, as well as for dynamically sized local variables. The stack
temporary area may also be used for dynamically sized items with a limited lifetime, for
example, a dynamically sized function result or string concatenation that can't be directly
stored in a target variable. When a procedure uses this area, the compiler must keep track
of its base and reset SP to the base to reclaim storage used by temporaries. :

6.3 The Register Save Area

The algorithm for packing saved registers in the quadword aligned register save area is

1. All even-odd saved scalar register pairs are stored, in register-number order, in consec-
utive quadwords.

2. Alleven or odd saved scalar registers whose paired register is not being saved are stored,
__in register-number order, in consecutive longwords following the even-odd register pairs.

3. If an odd number of scalar registers are being saved, an additional longword must be
allocated following the last saved scalar register.

4. All saved vector registers V0..V15 are stored, in register-number order, in consecutive
quadwords beginning at the first quadword following the saved scalar registers.

5. If VM, VL, and VC are being saved,
1. VM is stored in the first quadword following the last saved register.
2. . VL is stored in the longword following the saved VM.
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3. VC is stored in the longword following the saved VL.

For-example, if registers R40, R42, R43, R50, and R54 were to be saved, they would be
packed in the register save area as follows.

Quadword Aligned

| R42 | :REGISTER_OFFSET (FP)
+ - —————————— e +
| R43 I
e - —— ——————t
| R40 I
! R50 i
o e e e e e e e e +
| R54 |
+ B e +
| scratch |
=== -—— ———— -+

If R51 had also been saved, the contents of the register save area would instead be

Quadword Aligned

R42 :REGISTER_OFFSET (FP)

R43

R50

R51

R54

|
|
| R40
|
+
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7 Entry and Return Code Sequences

When a procedure is called, the code at the entry address must

Allocate and initialize a stack frame (if a procedure with stack frame).

Initialize RA_SAVE, SP_SAVE, and FP_SAVE (lf a procedure with a register ﬁ'ame)
Store all saved registers (if any).

Execute a DRAIN instruction (if the procedure has a condition handler)

Set FP in a manner consistent with the register conventions that define the calling
chain.

Nk wbd

The current procedure (as defined by the conventions) is the calling procedure until the
called procedure’s entry code sequence sets FP. )

When a procedure returns, the return code sequence must

Restore saved registers (if any).

Execute a DRAIN instruction (if the procedure has a condition handler)
Restore FP to the value it had on entry to the procedure.

Reset SP (if modified by the procedure).

SP will normally be reset to the value it had on entry to the procedure; however, in some
cases the returning procedure must leave SP pointing to a lower stack address than it
had on entry to the procedure (see section “Function Value Return”).

A

In addition, if the called procedure executes vector loads and stores it must under certain
circumstances execute a DRAINM to synchronize memory with the calling procedure or with
procedures it calls (see section “Interprocedural Synchronization”).

The examples below illustrate entry and return code sequences; there are many other pos-
sible code sequences depending on the called procedure’s register use and frame layout, and
the compiler’s optimization methods.

All the examples assume that procedure Q is invoked by a standard call from procedure P.

7.1 Entry Code Sequence—Register Frame

For convenience, this example assumes that @ has no static condition handler, RA_SAVE
speclﬁes R11, and SP_SAVE specifies R1 (that is, the procedure allocates no local stack

— - gtorage):

OR RO, FP, FP_SAVE ; FP_SAVE is specified in Q's invocation descriptor.
OR #4, R10, FP ; FP = address (Q’'s invocation descriptor) OR 4
; Q is now the current procedure.

7.2 Return Code Sequence—Register Frame

OR RO, FP_SAVE, FP ; Restore P’s FP value.
T S ; P is once again the current procedure.
JSR RO, (R11) ; Return to P’s code.
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7.3 Entry Code Sequence—Stack Frame

For bonvenzence, this example assumes that the regions for language-specific fixed locations
are empty, so that REGISTER_OFFSET = 16 and when the entry code sequence is complete
FP = SP.

LDA -Q FP_SP_DIFFERENCE(SP), SP
; Allocate space for new stack frame.
Save address of invocation descriptor and
return address
Save caller’s FP.
Save first register.

STQ R10, (SP)

STL FP, 8(SP)
STL Rx, 16(SP)

DRAIN

N Ne Ne N

; Force any pending hardware exceptions

; to be raised. Required if Q has a

; condition handler so that a pending exception
; caused by the caller will not be raised in the
; context of Q.

4

OR RO, SP, FP Q is now the current procedure.

Note that if this code sequence is interrupted by an asynchronous software condition, SP
will have a different value than it did at entry, but the calling procedure will still be current.

At that point, it would not be possible to determine the original value of SP by the register
frame conventions. If actions by the condition handler result in a nonlocal GOTO to a
location in the procedure, P, that called Q, then it will not be possible to restore SP to the
correct value in P.

Therefore, any procedure that contains a label which can be the target of a non-local GOTO
must reset SP at that label.

7.4 Return Code Sequence—Stack Frame

This is the return code sequence for the preceding example. The example below assumes
the return address is still in R11.

Restore saved registers.

Restore first register saved.

Force any pending hardware exceptions

to be raised. Required if Q has a

condition handler so that a pending exception will
be raised in the context of Q.

Remove temporary stack storage.

LDL 16 (FP), Rx
DRAIN

N Ne Ne Ne Ne

N~ e

-~OR - - RO,FP,SP
LDL 8 (FP), FP : Restore FP. P is once again the current procedure.
———~""LDAQ FP SP DIFFERENCE (SP), SP
; Restore SP.
JSR RO, (R1ll) ; Return to P.

Interruption of this code sequence by an asynchronous software condition can result in P
being the current procedure but with SP not yet restored to its value in P. The discussion
of that situation in entry code sequences applies here as well.
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8 Procedure Values

- PRISM procedure values utilize the properties of invocation descriptors.

A PRISM procedure value is not a procedure’s entry address, and it is not necessarily the
address of an actual invocation descriptor. Rather, a procedure value is a pointer that can
be treated as the address of an invocation descriptor. That is, a procedure value points to
a data structure whose first longword contains the address to which the calling procedure
must jump. The procedure value itself must be passed as part of the calling sequence.

Suppose register R32 contains a procedure value. An example of the code to call the proce-
dure is: A

OR RO, R32, R10"
IDL  (R32), R11
JSR  R11, (R11)

Procedure value to R10

Entry address to scratch register

Jump to entry address; return address goes in R1l

The use of R10 and R1l1l to is specified by the calling standard.
R1l1l is also used here as a temporary.

N Ne NE e N

If a procedure Q is not nested within another procedure, then a procedure value for Q is
simply the address of Q’s invocation descriptor, and the code sequence above calls Q.

If Q is a subprocedure of a procedure P, then a procedure value for Q must be a bound
procedure value. The bound procedure value is a data structure of three longwords that
provides a parent frame pointer, the address of an invocation descriptor, and the address of
a transfer code sequence.

Quadword Aligned

| I
| address of transfer code sequence |0
I |
+ ————— —-——+
I - |
| address of invocation descriptor |:4
I ]
+ —— - +
| |
| parent frame pointer |:8
1 |
+-- - —— -—— +

When the transfer code sequence addressed by the first longword is called (by a call sequence

‘such as the one above), the procedure value will be in R10, and the transfer code must finish

setting up the elements of the standard call.

An example of a such a transfer code sequence, for a target procedure that expects the
parent frame pointer to be passed in R30, is:
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"LDL  8(R10), R30

LDL  4(R10), R10
LDL (R10), R4
JSR RO, (R4)

Parent frame pointer to R30

Invocation descriptor address to R10

Entry address to scratch register

Jump to entry address.

Return address was already in R11l, and this code
sequence preserves the return address in R11.

e N N

Ne No N

Here, when control is transferred to Qs entry address, R10 contains the address of Q’s
invocation descriptor, R11 contains the return address, and R30 contains the parent frame
pointer (which is the parent call frame pointer, FP, for the invocation of P to which Q is
bound in this procedure value).

The parent frame pointer is needed by Q’s code for such things as referencesto variables in
P, and nonlocal GOTOs to points in P. When a bound procedure value such as this is needed,
the data structure will normally be allocated in the parent frame.

Procedure values as defined here are typically not used to manage a call within a module;
in that situation the call may be done by a PC-relative JSR instruction.

A\

Note that bound procedure values must be generated at run-time. The parent
frame pointer is not known until the parent has been invoked. In addition,

if a bound procedure value were to be statically initialized, then the

PRISM Common Software Architecture would require it to be four longwords, with
the absolute address of the target procedure’s entry code sequence in the third

longword —- that is, a bound procedure value would have to have a linkage pair
embedded within it.
A\
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9 Argument Passing Mechanisms

The term argument item means an item passed by PRISM call coﬂventibns, representing an
argument to be associated with a corresponding parameter in the called procedure.

The PRISM calling standard distinguishes among three classes of argument items according
to the mechanism used to pass the argument:

e Immediate value
¢  Reference -

* Descriptor

The standard permits any combination of these mechanisms in an argument list. Argument
items are not self-defining: interpretation of each argument item depends on agreement
between the calling and called procedures.

9.1 Immediate Value

An immediate value argument item contains the value of the data item. The argument item,
or the value contained in it, is to be directly associated with the parameter.

An argument may be passed by immediate value only if
* it is a scalar data type with known size < 32 bits,
or
* it is a record with known size < 32 bits.
or
* it is a set with known size < 32 bits.
No form of string or array may be passed by immediate value.

A standard immediate argument item must be a longword. (This standard also defines the
rules for passing immediate arguments > 32 bits, but such arguments may not be used in
standard calls).

The unused high-order bits of all data types (including records) must be zero-extended or
sign-extended, to the next longword boundary, as appropriate.

9.2 Reference

A reference argument item contains the address of a data item such as a scalar, string, array,
record, or procedure. That data item, or the value contained in it, is to be associated with
the parameter.

A reference argument item must be a longword. 7
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9.3 Descrlptor

A descriptor argument item contains the address of a descriptor, which contains structural
information about the argument’s type (such as array bounds) and the address of a data
item. That data item, or the value contained in it, is to be associated with the parameter.

A descriptor argument item must be a longword, and the descriptor to which it points must
be quadword aligned.

AR - :
The rules that determine how high level language arguments are mapped to these
argument passing mechanisms are language defined. In general,

languages should use the same rules as those used on VAX, in order to avoid
pertubations in the user-visible programming environment from VAX to PRISM, and
to maintain interlanguage compatibility.

In practice, this means by reference except when descriptor is required.

System implementation languages (PILLAR and C) will, however, use immediate
whenever possible.

A\
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10 Argument Lists
10.1 Argument List Structure

The argument list in a PRISM call is an ordered set of zero or more argument items, which
together comprise a logically contiguous structure known as the argument item sequence.

An argument item in a standard procedure call must be a longword. A longword argument
item may be used to pass immediate arguments < 32 bits, arguments by reference, and
arguments by descriptor.

Although the longword argument items form a logically contiguous sequence, they are in
practice mapped to registers and memory in a fashion that may produce a physically dis-
contiguous argument list. Registers R14..R21 are used to pass the first eight longwords of
the argument item sequence. Additional argument items must be passed in a quadword
aligned memory argument list, the address of which must be passed in R12.

Argument items are assigned to registers R14 to R21 and to longwords in the memory
argument list according to the following rules:

1. Argument items are assigned in order to increasing argument registers, beginning with '
R14.

2. Ifthere is one or more unassigned argument items after argument register R21 has been
allocated, then all remaining argument items are assigned to the memory argument list
in order from the lowest-addressed longword to the highest-addressed longword.

¢ The address of the memory argument list must be passed in R12.
¢ The memory argument list must be quadword aligned.
3. Argument items must not be directly assigned to R12.

That is, the order of the arguments in registers and memory is R14 < R21 < (R12) < (R12)+N:"

The memory portion of the argument list must be treated as read-only data by the called
procedure, and may be allocated in read-only memory at the option of the calling proce-
dure (except by agreement between the calling and called procedure, such as for output
parameters).

10.2 Large Immediate Arguments
Certain languages will pass immediate arguments > 32 bits as large immediate arguments.

Such arguments are not standard, cannot be used for interlanguage procedure calls, and -
must not be used in public interfaces callable by multiple languages. However, this standard
defines how large immediate arguments must be passed by languages that support them.

Large immediate arguments are treated as a sequence of longwords, and are assigned to
argument registers and memory as though they were a sequence of different argument
items. This means that large immediate argument is not necessarily quadword aligned,
and may be split between R21 and (R12).

Large immediate arguments that are not a multiple of 32 bits in length must be zero-‘i
extended or sign-extended to the next multiple of 32 bits.
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" The sequence of longwords comprising a long immediate argument is assigned to registers
and memory according to the algorithm in the preceeding section, where the lowest ad- .
dressed longword of the immediate argument is the first argument item contributed by the
immediate argument, the next-lowest addressed longword of the immediate argument is the
next argument item contributed by the immediate argument, and so on.

Large immediate arguments are treated as a number of separate longword arguments when
computing the argument count to be stored in R13.

10.3 Argument Lists and High Level Languages

High level language functional notations for procedure calls are mappéd into PRISM argu-
ment item sequences according to the following rules:

1. Arguments are mapped from left to right to increasing offsets in the argument item
sequence. R14 is allocated to the first argument, and the last longword of the memory
argument list (if any) is allocated to the last argument.

2. Each source language argument corresponds to a single PRISM argument item, except
for certain parameterized types.

For parameterized types, if the source language argument is not being passed by a
single standard descriptor, then the address of the argument value is passed in a sin-
gle argument item (that is, the argument value is passed by reference) and the type
parameter values are passed in consecutive argument items immediately following the
argument value item in the argument item sequence.

3. Each argument item is a longword.
This may require zero-extension or sign-extension.

4. A null or omitted argument, for example CALL SUB(A,,B), is represented by a longword
argument item containing 0. -

No arguments passed by the immediate mechanism may be omitted unless a default
value is supplied by the language. (This is to enable called procedures to distingish an
omitted immediate argument from an immediate argument with the value 0).”

Trailing null or omitted arguments, for example CALL SUB(4,,), are passed by the same
rules as embedded null or omitted arguments.

10.4 Order of Argument Evaluation

Since most higher level languages do not specify the order of evaluation (with respect to side-
effects) of arguments, those language processors can evaluate arguments in any convenient
order. The choice of argument evaluation order and code generation strategy is constrained
only by the definition of the particular language. Programs should not be written that
depend on the order of evaluation of arguments.
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11 Procedure Argument Descriptors
" 11.1 Goals

Support high level languages

Support passing parameters between procedures that conform to the PRISM calling
standard. Thus, they are designed to support high level language (HLL) procedures
calling procedures which are:

e written in a HLL (same language or a different language)
e part of the Run Time Library -

* part of a callable utility

Provide architectural extensibility

Two variants of the PRISM architecture are anticipated, 32-bit and 64-bit. Because of
this, the logical and physical attributes of descriptors must be separated.

¢ The information found in a PRISM descriptor will be the same across all variants
of the PRISM architecture, and the user’s view of PRISM descriptors should not be
sensitive to the variants of the architecture. This is termed the logical view of the
architecture.

e The physical view of a descriptor includes the order and the size of each field. The
size and order of the fields will not necessarily be the same across all variants of
the PRISM architecture.

Definitions of descriptors at both the logical and physical level are provided. Only
routines using the logical view will work across all variants of the architecture. Routines
using the physical view will not work across all variants of the architecture.

Software that needs to view descriptor fields should use the logical view wherever pos-
sible so that it remains invariant across the PRISM architecture. High level language
users should utilize descriptors via mechanisms such as %DESCR, attributes on vari-
ables, and macros or lightweight procedures for accessing and manipulating descriptor
attributes.

VAX compatibility

VAX programs that use descriptors via mechanisms such as %DESCR will continue to
work on PRISM (except those programs that pass atomic data by %#DESCR).

Make descriptors self defining ,
Given the starting address, it is possiblé to determine what fields exist in a descriptor.
Minimize time of access to data. o R

Descriptors frequently need to trade off size of the descriptor for speed of access to
descriptor data. PRISM descriptors favor improving the speed of access to data.

Avoid redundant information ' ’

Several VAX descriptors contain fields that can be derived from other fields in the de-
scriptor. PRISM descriptors are designed to avoid that redundant information.

Avoid redundant forms.

Due to evolution of the VAX calling standard, there are multiple ways of describing
some objects with a descriptor. PRISM descriptors avoid redundant forms.

26 PRISM Calling Standard V0.7—DEC Proprietary & Confidential - Do Not Copy or Disclose



Procedure Argument Descriptors

Support 8-bit and multibyte character sets
PRISM descriptors support 8-bit character sets and multibyte character sets.
Avoid unsupported combinations of fields. B '

PRISM Descriptors are designed to avoid unsupported combinations of fields. VAX de-
scriptors have 2 fields, CLASS and DTYPE, that are not entirely orthogonal to one
another. Combinations that seem quite feasible are not supported and often go unde-
tected by DIGITAL software. A crisper definition of descriptors was applied to PRISM.

Provide uniform descriptors for procedure arguments, function return values, and con-
dition arguments. -

Provide uniform array descriptors

On VAX, FORTRAN will create a contiguous array descriptor for an array of real values
whereas PASCAL will create a noncontiguous array descriptor for the same array. This
problem is resolved on PRISM by avoiding special descriptor classes for contiguous
arrays. Noncontiguous array descriptors can describe both contiguous arrays and cross
sections of arrays that cannot be described by a contiguous array descriptor.

Provide uniform bit descriptors

Languages can check whether a bit string or array is aligned by testing the lowest three
bits of the POSITION field in the descriptor.

Provide uniformity descriptors for sequences of bits and characters.

On VAX, some languages pass strings using string class descriptors, and expect string
class descriptors for input arguments; other languages use one dimensional array de-
scriptors. This problem is resolved on PRISM by having one form of descriptor for linear,
one-dimensional data.

Avoid addressing calculations in called procedures.

The addressing fields in the PRISM array descriptors are optimized for compiled code
referencing an array element.

11.2 Non-Goals

Descriptors are not designed to describe objects to the degree needed by tools such as
the PRISM Debugger or PRISM CDD. :

These tools should use their own data structures, such as DSTs, to describe objects. The
calling standard will not encompass all the requirements of such utilities.

VAX and PRISM descriptors are not identical-

PRISM descriptors support high level language use of descriptors. Code that explicitly
declares and references fields in VAX descriptors is unlikely to work on PRISM.
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11.3 Use of Descriptors for Procedure Arguments
Standard descriptors are defined for passing argument information between high level lan-
guages. - » T

Unless explicitly stated otherwise in this standard, the calling procedure must fill in all
fields in a descriptor. This is true whether the descriptor is generated by default or by a
language extension. The fields must be filled in even if a called procedure written in the
same language would ignore the contents of some of the fields.

Unless explicitly stated otherwise in this standard, all fields of a PRISM descriptor rep-
resent unsigned quantities. Descriptors are read-only from the point of view of the called
procedure, and may be allocated in read-only storage at the option of the calling procedure
(except by agreement between the calling and called procedure, such as dynamic text string
descriptors).

Descriptors must be quadword aligned.

Procedure argument descriptors are divided into two broad categories, each of which is
discussed in a following subsection:

e descriptors for byte addressable data
* descriptors for bit addressable data

11.4 Descriptors for Byte Addressable Data

The broad class of descriptors for byte addressable data contains the following specific de-
scriptor classes:

¢ Fixed text

® Varying text

¢ Dynamic text

e Byte addressable array

PRISM byte addressable array descriptors may be used to pass arrays Where'each array

element starts and ends on a byte boundary. The storage of the array elements is allocated
with a fixed (possibly zero) number of bytes separating logically adjacent elements.

The four byte addressable data descriptor classes support all the types of text strings un-
derstood in the PRISM software architecture. Each of the languages with a concept of text

string must map it to one of these forms. Utility routines that accept text string arguments

by descriptor should anticipate receiving text strings in any of these forms, and only these
forms. W O EERE TS, S T R

11.4.1 Logical Attributes of Byte Addressable Data Descriptors
CLASS is the descriptor class attribute:

DESCR$C_FIXED_TEXT
DESCR$C_DYNAMIC_TEXT
DESCR$C_VARYING_TEXT
DESCR$C_BYTE_ARRAY
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POINTER is the address of the first byte of storage occupied by the data. This is the address
of the first byte of the string or, for an a.rray, the address of element (low_bound(1), . . . low_
bound(n)).

EXTENT specifies the number of bytes of contiguous storage occupled by the data.

" When CLASS = DESCR$C_FIXED_TEXT or CLASS = DESCR$C_DYNAMIC_TEXT,
EXTENT is an integer 0..2%1 — 1 specifying the length in bytes of the string.

When CLASS = DESCR$C_VARYING_TEXT, EXTENT is an integer 0..216 — 1 specifying
the maximum length in bytes of the varying string.

When CLASS = DESCR$C_BYTE_ARRAY, and DIMENSIONS = 1, and STRIDE = EL-
EMENT _SIZE, then EXTENT is an integer 0..23! — 1 specifying the length in bytes of
the storage occupied by the array.

For all other cases, EXTENT is undefined.

DIMENSION is an unsigned integer 1..255 specifying the number of dimensions in an array.
If CLASS is not DESCR$C_BYTE_ARRAY, then DIMENSION must be zero.

ELEMENT_SIZE specifies the number of bytes of storage occupied by each element of a
character array, and is present if and only if CLASS = DESCR$C_BYTE_ARRAY.

For arrays of fixed length text strings, ELEMENT_SIZE is an integer 0..231 -1 specifying
the length in bytes of each element of the array.

For arrays of varying text strings, ELEMENT_SIZE is an integer 0..216 — 1 specifying
- the maximum length in bytes of each element of the array.
For all other data types, ELEMENT_SIZE is undefined.

VIRTUAL_ORIGIN is the address of element (0, . . . 0), and is present if and only if CLASS
= DESCR$C_BYTE_ARRAY. This address is not necessarily within the storage of the array.

If, and only if, CLASS = DESCR$C_BYTE_ARRAY, then the following fields occur once per
dimension:

LOW. BOUND(l) isa 51gned mbeger spec:fymg the lower bound of the ith dimension of the

QETEY e e e

HIGH_BOUNDA) is a signed integer specifying the upper bound of the ith dimension of
the array.

STRIDE() is a signed integer specifying the difference in bytes between the addresses of
successive elements of the ith dimension of the array.

PRISM Calling Standard V0.7—DEC Proprietary & Confidential - Do Not Copy or Disclose 29



Procedure Argument Descriptors

11.42 Data Type Conventions for Byte Addressable Data Descriptors

Byte addressable data descriptors do not specify the data type contained by a string or array.
" This must be established by agreement between calling and the called procedures.

All characters in a fixed, varying, or dynamic string must be of the same size, and the
character size cannot be determined by inspecting the descriptor; the calling and called
procedures must agree on the character size.

11.4.3 Run Time Conventions for Byte Addressable Data Descriptors

The conventions controlling the use of byte addressable data descriptors are determined by
the class of the descriptor.

DESCR$C_FIXED_TEXT

A fixed text string is sequence of 0.3! — 1 bytes with a fixed extent.

EXTENT specifies the number of bytes (not characters) occupied by the string.

When a fixed text string is written, the contents of the descriptor must not be modified.
DESCR$C_VARYING_TEXT

A varying text string is an unsigned 16-bit integer immediately followed by a fixed
length area containing 0..216 — 1 bytes. The varying string is left justified within this
fixed length area.

EXTENT, which must be < 216 — 1, specifies the length in bytes (not characters) of the
fixed length area.

POINTER specifies the address of the unsigned 16-bit integer count which preceeds the
fixed length area. This integer, which must be < EXTENT, specifies the current length
in bytes of the varying string.

When a varying text string is written, the contents of the descriptor must not be modi-

fied. If a text string is copied to a varying text string of smaller extent, the string must
be truncated. When a varying text string is modified, the new current length of the
string is written to the 16-bit count.

DESCR$C_DYNAMIC_TEXT
A dynamic text string is a sequence of 0..231 — 1 bytes.

An uninitialized DYNAMIC_TEXT descriptor, and a descriptor for a null dynamic string,
has an EXTENT of zero.

The EXTENT and POINTER fields of a DYNAMIC_TEXT descriptor may be changed
when the associated dynamic string is modified. These fields are volatile across exter-
nal procedure calls, and descriptors for DYNAMIC_TEXT strings must be allocated in
read/write memory.

The system supplies functions for allocating and deallocating memory for dynamic
strings. These functions may modify the EXTENT and POINTER fields of the descrip-
tor. With one exception, these system supplied functions are the only procedures that
may modify to these fields.

The only exception to this rule is that a procedure with knowlege that the descriptor
has not yet been used must zero the extent field to mark it as being uninitialized. A
procedure with this knowlege is typically the procedure that allocated the descriptor.
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e DESCR$C_BYTE_ARRAY

A byte addressable array is a ordered sequence of elements, where all elements of any
array must be the same byte addressable PRISM data type.

All elements of an array must reside in distinct storage. That is, a PRISM array de-
scriptor must not specify that any array elements overlap one another.

When an array is written, the contents of the descriptor must not be modified. |
The address of element (i,j,k) of a byte addressable array can be computed as follows.
address = VIRTUAL_ORIGIN + i*STRIDE(1) + j*STRIDE(2) + k*STRIDE(3)
The address of the first byte of a byte addressable array is:
address =

VIRTUAL_ORIGIN +
LOW_BOUND(1)*STRIDE(1) +
LOW_BOUND(2)*STRIDE(2) +
LOW_BOUND(3)*STRIDE(3)

or
address = POINTER

11.4.4 Physical Format of PRISM-32 Byte Addressable Data Descriptors

Quadword Aligned

i 3
T +

| EXTENT | =0
Fommm e + + ————m e t

| N POINTER | =4

| zero ] DIMENSION# | CLASS | =8

| VIRTUAL ORIGIN¥* | =12
+ + --: + —————t ———————t

| ELEMENT SIZE* | :16
+==== + + + —————t

| LOW_BOUND (1) * | =20

| HIGH ] BOUND (1) * | 24
o + tmm—= +

| STRIDE (1) * | 28

| LOW BOUND (n)* | sx

| HIGH | BOUND {n)* | :x+4
| STRIDE (n) * | :x+8
i - + + e +

# : must be zero unless CLASS = DESCR$C_BYTE_ARRAY
* : present if and only if CLASS = DESCR$C BYTE ARRAY
C X =-12%(n = 1) 4 20 - - oot
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11.5 Descriptors for Bit Addressable Data

The broad class of descnptors for bit addressable data contains the following specific de-
scriptor classes:

e Bit string
¢ Bit addressable array

PRISM bit addressable data descriptors may be used to pass bit sequences that start on an
arbitrary bit boundary and end on an arbitrary bit boundary. Bit sequences that are byte
aligned can be distinguished by POSITION<2:0> = 000.

A bit addressable data descriptor isAcapable of describing a bit sequence that starts anywhere
in virtual memory. It is not capable of describing all of virtual memory as a single bit string
or array.

PRISM bit addressable array descriptors may be used to pass arrays where each array
element may start on an arbitrary bit boundary and end on an arbitrary bit boundary.
The storage of the array elements is allocated with a fixed (possibly zero) number of bits
separating logically adjacent elements.

The two bit addressable data descriptor classes support all the types of bit strings understood
in the PRISM software architecture. Each of the languages with a concept of bit string must
map it to one of these forms. Utility routines that accept bit string arguments by descriptor
should anticipate receiving bit strings in either of these forms, and only these forms.

11.5.1 Logical Attributes of Bit Addressable Data Descriptors
CLASS is the descriptor class attribute:
DESCR$C_FIXED_BIT
DESCR$C_BIT_ARRAY

POINTER is the base address of the bit string or array. This is the longword aligned
address of the storage containing the first bit of the string or, for an array, the longword
aligned address of the storage containing element (low_bound(1), . . . low_bound(n)).
EXTENT specifies the number of bits of contiguous storage occupied by the data.

When CLASS = DESCR$C_FIXED_BIT, EXTENT is an integer 0..231 — 1 specifying the
length in bits of the string.

When CLASS = DESCR$C_BIT_ARRAY, and DIMENSIONS = 1, and STRIDE = ELE-
_MENT _SIZE, then EXTENT is an integer 0..23! — 1 specifying the length in bits of the
storage occupied by the array.

For all other cases, EXTENT is undefined.

DIMENSION is an unsigned integer 1..255 specifying the number of dimensions in an array.
If CLASS is not DESCR$C_BIT_ARRAY, then DIMENSION must be zero.

POSITION is a signed integer 0..31 specifying the relative bit position with respect to
POINTER of the first bit of the string or, for an array, the relative bit position with respect
to POINTER of element (low_bound(1), . . . low_bound(n)).

32 PRISM Calling Standard V0.7—DEC Proprietary & Confidential - Do Not Copy or Disclose



Procedure Argument Descriptors

ELEMENT_SIZE specifies the number of bits of storage occupied by each element of a bit
array, and is present if and only if CLASS = DESCR$C_BIT_ ARRAY

If, and only if, CLASS = DESCR$C_BIT_ARRAY, then the followmg fields occur once per
dimension:

LOW_BOUNDYJ) is a signed integer specifying the lower bound of the ith dimension of the
array. ;

HIGH, BOUND(i) is a signed integer specifying the upper bound of the ith dimension of
the array.

STRIDE() is a signed integer specifying the difference between the bit (not byte) addresses
of successive elements of the ith dimension of the array.

11.5.2 Run Time Conventions for Bit Addressable Data Descriptors

The conventions controlling the use of bit addressable data descriptors are determined by
the class of the descriptor.

* DESCR$C_FIXED_BIT

A fixed bit string is sequence of 0..3! — 1 bits with a fixed extent. EXTENT specifies the
number of bits occupied by the string.

When a fixed bit string is written, the contents of the descriptor must not be modified.
The absolute bit address of the first bit of a bit string is:

bit_address = POINTER*8 + POSITION o
The absolute bit address may require more than 32 bits to represent.

The POINTER-relative bit offset of the last bit in a bit string can always be represented
as a signed 32-bit integer < 231 — 1. This means that the extent passed in a a bit string
descriptor array must be < 23! - 32.

* DESCR$C_BIT_ARRAY

A bit addressable array is a ordered sequence of elements, where all elements of any
array must be the same PRISM data type, and therefore have the same length in blts .

All elements of an array must reside in distinct storage. That is, a PRISM array de-
scriptor must not specify that any array elements overlap one another.

When an array is written, the contents of the descriptor must not be modified.
The absolute bit address of the first bit of a bit array is:
bit_address = POINTER*8 + POSITION
The absolute bit address may require more than 32 bits to represent. - - - - -
The absolute bit address of element (i,j,k) of a bit array can be computed as follows.
bit_address = POINTER*8 + POSITION -+
(i ~-LOW_BOUND(1))*STRIDE(1) +
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(j ~LOW_BOUND(2))*STRIDE(2) +
(k ~-LOW_BOUND(3))*STRIDE(3)-

or .
bit_address = POINTER*8 + POSITION +

i*STRIDE(1) + j*STRIDE(2) + k*STRIDE(3) -
(LOW_BOUND(1)*STRIDE(1) +
LOW_BOUND(2)*STRIDE(2) +
LOW_BOUND(3)*STRIDE(3))

The POINTER-relative bit offset of the last bit in the last element in a bit array must
be < 231 — 1. This means that the difference between absolute bit addresses of the first
and last bits in an array must be < 23! —32.

11.5.3 Physical Format of PRISM-32 Bit Addressable Data Descriptors

Quadword Aligned

+- Frmmm + -~ —————t - -+
| EXTENT | :0
+-= oo + - + - +
| POINTER | :4
+== + ———————+t - + - +
| zero | POSITION | DIMENSION# | CLASS | :8
e —————t -— e o ———————— e +
| ELEMENT SIZE¥ | 212
B + ———= - o -+
| LOW BOUND (1) * | :16
e m e N et N - + +
| HIGH BOUND (1)* | :20
+ + et S +

N STRIDE (1) * | :24
+ + - + -——t
| - LOW_BOUND (n) * | =x
+ + —tm—m——— + +
| HIGH BOUND (n)* | :x+4
+ + + - + ———————t
| STRIDE(n)* | :x+8
+ + ———— e - N —-——t

4 : must be zero unless CLASS = DESCR$C_BIT ARRAY
* : present if-and only if CLASS = DESCRSC_BIT_ARRAY
Lox =12*%(n = 1) +-16 — e
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11.6 Interchangeabillity of Fixed Text and Array Descriptors

.Array and fixed string descriptors are interchangeable for use in passing contiguous one-
dimensional sequences of bits or characters.

For any standard interface which accepts a fixed text string or a contiguous one-dimensional
array of characters, either of the following descriptors may be passed:

CLASS = DESCR$C_FIXED_TEXT
EXTENT = n

or

CLASS = DESCR$C_BYTE_ARRAY

EXTENT =n

DIMENSION =1

ELEMENT SIZE = character size

HIGH_BOUND = EXTENT/ELEMENT_SIZE + LOW_BOUND -1
STRIDE = ELEMENT _SIZE

For any standard interface which accepts a fixed bit string or a contiguous one-dimensional
array of bits, either of the following descriptors may be passed: .

CLASS = DESCR$C_FIXED_BIT
EXTENT =n

or

CLASS = DESCR$C_BIT_ARRAY

EXTENT =n

DIMENSION = 1

ELEMENT_SIZE = 1

HIGH_BOUND = EXTENT + LOW_BOUND -1
STRIDE =1

Any called procedure which accepts a FIXED_TEXT descriptor is allowed to interpret a
BYTE_ARRAY descriptor as a FIXED_TEXT descriptor. Likewise, any called procedure
which accepts a FIXED_BIT descriptor is allowed to interpret a BIT_ARRAY descriptor as
a FIXED_BIT descriptor.

If a called interface requires a one-dimensional character array descriptor, then it must
be prepared to accept either type of descriptor and convert a FIXED_TEXT descriptor to a
BYTE_ARRAY if necessary. Likewise, if a called interface requires a one-dimensional bit
array descriptor, then it must be prepared to accept either type of descriptor and convert a
FIXED_BIT descriptor to a BIT_ARRAY if necessary. I
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12 Function Value Return

_ A standard function must return its function value by one of three mechanisms:

e immediate value

¢ reference

e descriptor

These mechanisms are the only standard means available for returning function values,
and they support the important language-independent data types. Data types not supported

by these mechanisms, such as noncontiguous arrays and variable-sized records, cannot be
function values of a standard procedure.

12.1 Function Value Return By Immediate Value

A function value is returned by immediate value in register R8 or in R8..R9 if, and only if,
* it is a scalar data type with known size < 64 bits,
or ,
e it is a record with known size < 64 bits.
or
e it is a set with known size < 64 bits.

No form of string or array may be returned by immediate value.

A function value is returned in register RS if its data type is represented in < 32 bits. Data
types shorter than 32 bits must be zero-extended or sign-extended, as appropriate, to a full
longword. .

A function value is returned in R8..R9 if its data type is represented in > 32 bits and < 64
bits. Data types shorter than 64 bits must be zero-extended or sign-extended, as appropriate,
to a full quadword. Two separate 32-bit entities cannot be returned in R8..R9.

12.2 Function Value Return By Reference

A function value is returned by reference if, and only if,

e the actual size of the function value is known, but the value cannot be returned by
immediate value (because the function value requires more than 64 bits, the data type
is a string or an array type, etc.)

and
¢ the function value can be returned in a contiguous region of storage.

The actual-argument list and the formal-argument list are shifted to the right by one argu-
ment item. The new, first argument item is reserved for the function value.

The calling procedure must provide the required contiguous storage and pass the address
of the storage as the first argument.

The called function must write the function value to the storage descnbed by the ﬁrst
argument.
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12.3 Function Value Return By Descriptor
A function value is returned by descriptor if, and only if,
¢ the actual length of a function value is not known,
and A
e the function value is a string or a contiguous one-dimensional array.

No form of record, or any noncontiguous array or array with more than one dimension may
be returned by descriptor.

The actual-argument list and the formal-argument list are shifted to the right by one ar-
gument item. The calling procedure must pass the address of a descriptor as the new, first
argument item.

There are two distinct mechanisms for returning a function value by descriptor. The mech-
anism to be used is chosen by the calling procedure, and is specified by the class of the
descriptor passed as the first argument item.

Any standard-conformmg function which returns its value by descriptor must be prepared
to handle both mechanisms, and must return its value according to the mechanism chosen
by the caller.

12.3.1 Logical Attributes and Use of Fixed Buffer Return Descriptors

The fixed buffer mechanism supports returning the function value in storage provided by
the caller for that purpose.

The caller must pass as the first argument a function return descriptor which specifies an
existing region of contiguous storage. The fields of the descriptor must be initialized by the
caller as follows.

CLASS = DESCR$C_FIXED_RETURN :
POINTER = the address of the first byte of storage
EXTENT = a signed integer 0..231 — 1 specifying the length in bytes of the storage

The called function must return its value as follows.

1. Write the return value into the storage specified by the descriptor, truncating the return
value if its length exceeds the value of EXTENT.

2. Set register R8 to the length of the function return value before any truncation.

The called function must not modify the descriptor, and the descriptor may be allocated in
- read-only storage by the caller.

12.3.2 Physlical Format of PRISM-32 Fixed Buffer Return Descriptors
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Quadword Aligned

G ————— -+

+

| EXTENT . | =0
+ - + -—— + - + ————————— +
| POINTER | =4
+ —— t + - e -+
| zero | CLASS | =8

+

+ + -+

12.3.3 Logical Attributes and Use of Stack Return Descriptors

The top of stack mechanism supports returning the function value in stack storage allocated
by the called function.

The caller must pass as the first argument a function return descriptor initialized as follows.

CLASS = DESCR$C_STACK_RETURN
POINTER = undefined
EXTENT = undefined

The descriptor must be allocated in writeable storage, and will be modified by the called
function.

The called function must return its value as follows.

1. Allocate stack storage sufficient to contain the return value and place the return value
on the stack. i

2. Update the descriptor as follows.

CLASS = DECSR$C_STACK_RETURN
POINTER = the address of the first byte of the return value
EXTENT = a signed integer 0..231 — 1 specifying the length in bytes of the return
value
3. The return code sequence must not reset SP such that any part of the function return

value is contained by a stack address lower than (SP). The return value must be entirely
contained by stack storage at or above (SP).

No information is returned in registers R8..R9.

When control returns to the calling procedure, the caller must manage the return value and
SP. The caller may copy the return value from the stack to some other storage (possibly to a
higher address on the stack) and reset SP appropriately to reflect the return from the called
function. e e :

12.3.4 Physical Format of PRISM-32 Stack Return Descriptors

Quadword Aligned

i == B S +
| EXTENT | =0
== ——— + ———te——— —_—— +
| POINTER | 24
+-= - + + ———te +
| zZero | CLASS | =8
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12.3.5 Run Time Conventions for Function Value Return Descriptors

Functions which return a value by descriptor must use the following a.lgorithni to determine
which of the two mechanisms to use.

1. If CLASS = DESCR$C_FIXED_RETURN, then use the fixed buffer mechanism.

2. Otherwise, use the top of stack mechanism.

It is important that functions do not specifically test for CLASS = DESCR$C_STACK_
RETURN. This is because future extensions to this standard may specify new function

return mechanisms which define new CLASS codes, but which are upward compatible with
the top of stack mechanism specified here (see Appendix C).

Any function which tests for CLASS = DESCR$C_STACK_RETURN will not be upward
compatible when this standard is extended.

For the same reason, functions which return a value by the top of stack mechanism must
always set CLASS = DESCR$C_STACK_RETURN.

Any function which returns a value by the top of stack mechanism and does not set CLASS =
DESCR$C_STACK_RETURN will not be upward compatible when this standard is extended.
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13 Data Types, Alignment, and Conventions for Interlanguage Use

13.1 Data Types '
N\ '
This subsection will enumerate all of the data types for interlanguage use on
PRISM and rigorously define them.
This section is still under development, pending completion of the Corporate
Remote Procedure Calls Architecture, with which the data type architecture of
this standard will interact.

A\
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13.2 Data Alignment

A natural address is a virtual address which is multiple of at least the size of the data type,
- in bytes, which is being referenced. Natural alignment refers to placement of data such the
first byte of the data is at a natural address for that data.

There are five natural alignments defined by this standard:
* Bit—any bit boundary '

* Byte—any byte address
* Word—any byte address which is a multiple of 2

* Longword—any byte address which is a multiple of 4
* Quadword—any byte address which is a multiple of 8

On some implementations of the PRISM architecture, memory references to data which is
not naturally aligned will result in alignment faults, which can degrade the performance of
all procedures that reference the unnaturally aligned data.

For this reason, all data on PRISM systems must be aligned on natural boundaries. For
example, 8-bit character strings must start on byte boundaries; 16-bit integers must start
at addresses which are a multiple of at least 2 (word alignment); F-floating real values must
start at addresses which are a multiple of at least 4 (longword alignment); G-floating real
values must start at addresses which are a multiple of at least 8 (quadword alignment); and
so forth.

Data types larger than 64 bits may use quadword alignment, which is the largest align-
ment defined by this standard. Alignments larger than quadword are language specific or
application defined.

For aggregates such as strings, arrays, and records, the data type for purposes-of alignment
is not the aggregate itself, but the elements of which the aggregate is composed, and the
alignment requirement of an aggregate is that all elements of the aggregate be naturally
aligned. Varying 8-bit character strings must, for example, start at addresses which are a
multiple of at least 2 (word alignment) because of the 16-bit count at the beginning of the
string; 32-bit integer arrays start at a longword boundary, irrespective of the extent of the
array.

\\
This is the basic rule. When we enumerate and define the PRISM data types, we
will also enumerate the alignment requirements of the individual data types.

AR
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13.3 Record Layout Conventions

The PRISM record layout rules are designed to provide go:)d run time performance on all
implementations of the PRISM architecure, and to provide the required level of compatibility
with VAX.

The PRISM calling standard therefore defines two record layout conventions:

* record layout conventions optimized for the PRISM architecture, referred to as PRISM
preferred record layouts;

¢ record layout conventions which are compat1ble with those traditionally used by VAX
languages, referred to as VAX compatible record layouts. :
PRISM high level languages support both record layouts.

Only these two record layouts may be used across standard interfaces or between languages.
Languages may support other language-specific record layout conventions, but such other
record layouts not standard.

The PRISM preferred record layout conventions should be used unless interchange is re-
quired with VAX applications that use the VAX compatible record layouts.

13.3.1 PRISM Preferred Record Layout 7
The PRISM preferred record layout conventions ensure that
* all components of a record or subrecord are naturally aligned;

* thelayout and alignment of record elements and subrecords is independent of any record
or subrecord that they may be embedded in;

* the layout and alignment of a subrecord is the same as if it were a top level record;

* declaration in high level languages of standard records for interlanguage use is reason-
ably straightforward and obvious, and meets the requirements for source level compat-
ibility between PRISM and VAX languages.

The PRISM preferred record layout is defined by the following conventions:

1. The components of a record must be laid out in memory corresponding to the lexical
order of their appearance in the high level language declaration of the record.

2. Unaligned bit strings, unaligned bit arrays, and elements of unaligned bit arrays must
start at the next available bit in the record; no fill is ever supplied preceeding an un-
aligned bit string, unaligned bit array, or unaligned bit array element.

3. All other components of a.record must start at the next available natural boundary for
the data type; any unused bits following the last-used bit in the last-used byte of each -
component must be filled out to the next natural boundary such that any following data
starts on a natural boundary.

Strings and arrays must be aligned according to the natural alignment requirements of
the data type of which the string or array is composed.

- 4. Records and subrecords must be ahgned according to the largest natural alignment
requirements of the contained elements and subrecords.
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13.3.2 VAX Compatible Record Layout
The VAX compatible record layout is defined by the following conventions:

1.

‘The components of a record must be laid out in memory corresponding to the lexical
order of their appearance in the high level language declaration of the record.

Unaligned bit strings, unaligned bit arrays, and elements of unaligned bit arrays must
start at the next available bit in the record; no fill is ever supplied preceeding an un-

_aligned bit string, unaligned bit array, or unaligned bit array element.

All other components of a record must start at the next available byte in the record,
and any unused bits following the last-used bit in the last-used byte of each component
must be filled out to the next byte boundary such that any following data starts on a
byte boundary.

Subrecords must be aligned according to the largest alignment of the contained elements
and subrecords. This means that a subrecord always starts at the next available byte
unless it consists entirely of unaligned bit data and it immeidately follows an unaligned
bit string, unaligned bit array, or a subrecord consisting entirely of unaligned bit data.

Records must be aligned on byte boundaries.
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14 Status Codes and Condition Values
W

TBS
A\
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15 Condition Handling

" A condition results from an event that occurs during thread execution, which the normal
flow of control in the current procedure is not prepared to respond to. Such an event may
be caused by hardware exceptions, such as arithmetic overflows, memory access violations,
etc; or by actions performed in software, such as subscript range checking and assertion
checking.

A condition handler is a procedure which is designed to handle conditions when they occur
during the execution of the thread. When a condition occurs, the normal flow of control in
the current procedure will be interrupted, the context saved, and a search initiated for a
condition handler established by that thread.

If a handler is located, it will be called as a procedure with arguments that describe the
nature of the condition and the environment within which the condition was raised. The
handler may respond to the condition in several ways, including various combinations of
the following.

* Perform some action that affects the context of the thread.

¢ Modify or augment the description of the condition.

* Raise a nested condition: cause another condition to occur in the context of the condition
handler or in a procedure called directly or indirectly by the handler. 7

When a condition handler has completed all processing, it completes in one of the following

ways.

®  Reraise the condition: cause the search to be continued for another handler for this
condition.

* Continue execution: resume execution of the thread at the point that it was interrupted.

* Unuwind: resume execution of the thread at a point different than the point at which it
was interrupted.

e Exit Unwind: cause thread execution to terminate.
This standard defines the interfaces, data structures, and algorithms that provide for reli-
able, controlled user mode handling of conditions on PRISM systems: the types of condition

handlers, how they are established and invoked, how they may complete, the order in which
they are invoked, and other properties of condition handling.

15.1 Goals

e Provide programmers and programs with reliable control over response to conditions
and reporting of conditions, and over the flow of control when conditions occur.

* Provide user mode condition handling that is compatible and common across both the
PRISM ULTRIX and PRISM MICA operating systems.

*  Support the condition handling requirements of PRISM languages and layered products

*  Provide for correct and predictable condition handling in a multllanguage environment,
and the construction of modular, maintainable applications. _
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e Add no space or time overhead to procedure calls and returns that do not establish
condition handlers and, and minimize time overhead for estabhsh.mg handlers at the
cost of increased time overhead when conditions occur.

e Provide condition handling for hghtwelght procedures that do not have a stack frame.

e Provide condition handling on a per-tbread basis. Threads may not affect each other’s
condition handling.

* Provide subsystems and applications with the ability to override system messages to
provide a more suitable application oriented interface.

e Maintain a degree of high level language source level compatibility with the VAX/VMS
condition handling. Where possible, the majority of existing VMS applications should
not need any logic or any drastic source changes to use PRISM condition handling.

(There are some bounds on this goal due to the PRISM architecture).

* Define a superset of VAX/VMS condition handling capabilities, removing some past re-
strictions and adding useful capabilities for languages and run time libraries.

15.2 Conditions

A condition results from an event that occurs during thread execution, which the normal
flow of control in the executing procedure is not prepared to respond to.

There are two classes of conditions in PRISM systems: hardware conditions and software
conditions.

Hardware and software conditions are raised and handled in user mode with the same
interfaces, data structures, and algorithms as hardware conditions. That is, there is unified
condition handling for hardware and software conditions.

15.2.1 Hardware Conditions

Hardware conditions occur when a thread attempts some action defined as incorrect, im-
possible, or not yet possible by the hardware. Such action results in a hardware exception
interrupting execution of the thread, which in turn causes a condition to be raised in context
of the current procedure.

Hardware exceptions are always raised in the same thread that issued the instruction re-
sponsible for the exception.

The hardware exceptions which can result in a user mode condition on PRISM systems
include

¢ Arithmetic traps

¢ Data alignment exceptions

¢ Faults occurring as a consequence of an instruction
¢ Memory management faults

* Serious system failures

e Stack alignment aborts

* Vector exceptions
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The state of the machine when a hardware exception occurs, the exception-related informa-
tion which is delivered to a user mode thread, and circumstances under which execution can
be continued are all specific to individual hardware exceptions. Hardware exceptions are
fully defined by the PRISM hardware architecture, which should be consulted for additional
information.

15.2.2 Software Conditions ,
Software conditions result from an explicit action by a thread.

Software conditions may be raised at any point during thread execution. Applications and
" language run time libraries may utilize software conditions to notify a thread that some
action defined as incorrect, impossible, or not yet possible was attempted by the thread. For
example, subscript range checking failures and assertion checking failures may be raised
as software conditions.

Software conditions may occur synchronously and asynchronously to thread execution. An
asynchronous software condition is one which is raised in a thread by a different thread
executing in the same or in a different process. (Asynchronous software conditions are not
defined in this section; see section "Asynchronous Software Conditions".)

15.2.3 FLBC Instruction Faults

The Fault On Bit Clear (FLBC) instruction is available as a general mechanism for soft-
ware to declare a condition without the usual overhead of setting up a procedure call. The
displacement field of the FLBC instruction may be used to specify an argument for the
condition.

Thus, a hardware fault exception may be used to raise what are essentially software condi-
tions.

There are special software conventions that apply to the FLBC displacement argument, as
defined in the following section.

15.3 Ralising Software Conditions

15.3.1 Raising Synchronous Software Conditions

A thread may raise a synchronous software condition in its own context by calling a system
supplied function.

Each PRISM system provides concrete language bindings to this function, which is abstractly .

defined in this standard as RAISE_CONDITION.

RAISE_CONDITION accepts one argument:
e CONDITION_RECORD: a primary condition record.

RAISE_CONDITION returns a status value, and only returns to the caller if a handler
returns STATUS$_CONTINUE, or if an error is detected in the condition record argument.
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' 45.3.2 FLBC Instruction Faults

-

T\ -
This will be defined in the next revision of this standard.

N\

15.4 Condition Handlers

There are four types of condition handlers:
*  Primary vectored handlers

® Invocation-based handlers

* Last chance vectored handlers

¢ The system catchall handler

With the exception of the system catchall handler, a thread may have an arbitrary number
of each type of handler simultaneously established.

A\
ASTs and ULTRIX signal handlers are asynchronous software condition handlers
in this standard.

AR

15.4.1 Primary Vectored Handlers

Vectored handlers may only be established at runtime, and are independent of the procedure
stack frame structure of the executing thread. Vectored handlers are normally utilized to
provide language independent services such as debugging.

When a condition is raised, the system searches for primary vectored handlers. No other
types condition handlers are invoked until all primary vectored handlers have been invoked
and have reraised the condition.

Primary vectored handlers are invoked in FIFO order with respect to when they were es-
tablished.

15.4.2 Invocation-Based Handlers

An invocation-based handler is established when a procedure becomes current whose invo-
cation descriptor specifies a condition handler. Thus, invocation-based handlers are usually
~ bound to a procedure at compile time, and are located at run time via the procedure’s invo-
cation descriptor.

'These condition handlers are normally used to implement a particular language’s condition
handling semantics.

If all primary vectored handlers reraise the condition, then the system searches for invocation-
based handlers. The invocation-based handlers which may be invoked are those established
by actlve procedures, from the most current procedure to the oldest predecessor.
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15.4.3 Last Chance Vectored Handlers

Like primary vectored handlers, last chance vectored handlers may only be established
‘at runtime, and are independent of the procedure stack frame structure of the executing
thread.

If all invocation-based handlers reraise the condition, then the last chance vectored handlers
are invoked in LIFO order with respect to when they were established.

15.4.4 System Catchall Handler

Should all other condition handlers reraise the condition, then the system catchall handler
is invoked.

The system catchall handler is not established by the thread. It is supplied by the system,
is always established, and is always valid.

The action of the system catchall handler is undefined by this standard. It may produce an
error message, continue thread execution, terminate execution of the thread, or any other
system-defined action.

15.5 Establishing Handlers

'15.5.1 Establishing Primary Vectored Handlers

A thread may establish a primary vectored handler, to be called in FIFO order after all pre-
viously established primary vectored handlers have reraised, via a system supplied function. -

Each PRISM system provides concrete language bindings to this function, which is abstractly
defined in this standard as ESTABLISH_PRIMARY_HANDLER.

ESTABLISH_PRIMARY_HANDLER accepts two arguments:

e HANDLER: specifies the condition handler to be established as a primary vectored
handler.

e [OPTIONAL OUTPUT] ESTABLISHMENT: if this argument is provided, a specifier for
this vectored handler establishment will be written to the argument.

ESTABLISH_PRIMARY_HANDLER returns a status value.

—.15.5.2 Establishing Invocation-based Handlers

__The list of established invocation-based handlers for a thread is defined by the thread’s
procedure invocation chain.

An invocation descriptor for which FLAGS<HAS_HANDLER> = 1 specifies the self-relative
offset of exactly one condition handler in the CONDITION_HANDLER field. The condition
handler specified by an invocation descriptor is established when that descriptor is added
to the invocation chain (that is, when the procedure designated by the descriptor becomes
~ current), remains established as long as that procedure invocation is part of the invocation
chain, and is no longer established when that descriptor is removed from the invocation
_chain (that is, when the procedure invocation designated by the descriptor returns or is
unwound).
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Thus, the set of invocation-based handlers which is established at any moment is defined
by the current procedure call structure. : ~

15.5.3 Establishing Last Chance Vectored Handlers

A thread may establish a last chance vectored handler, to be called in LIFO order before
any previously established last chance vectored handlers are called, via a system supplied
function. “

Each PRISM system provides concrete language bindings to this function, which is abstractly
defined in this standard as ESTABLISH_LAST_CHANCE_HANDLER.

ESTABLISH_LAST CHANCE_HANDLER accepts two arguments:

¢ HANDLER: specifies the condition handler to be established as a last chance vectored
handler.

e [OPTIONAL OUTPUT] ESTABLISHMENT: if this argument is provided, a specifier for
this vectored handler establishment will be written to the argument.

ESTABLISH_LAST_CHANCE_HANDLER returns a status value.

15.5.4 The System Catchall Handler

The system catchall handler may not be established or modified by any user mode code
which conforms to this standard. This condition handler always exists, is always valid, and
has system-defined effects.

15.6 Removing Vectored Handlers

A thread may remove a previously established vectored handler by calling a system supplied
function.

Each PRISM system provides concrete language bindings to this function, which is abstractly
"defined in this standard as REMOVE_VECTORED_HANDLER.

REMOVE_VECTORED_HANDLER accepts one argument:

e ESTABLISHMENT: specifies the vectored handler establishment to be removed from
the set of established vectored handlers. This value must be one previously returned by
ESTABLISH_PRIMARY_HANDLER or ESTABLISH_LAST CHANCE_HANDLER.

REMOVE_VECTORED_HAI_\IVDEE“R“_;gtiumsﬁg isf:gtus valu_e.

15.7 Arguments Passed toHandlers "~ "~ "~

Every condition handler is called as a function which returns a status value and is passed
two writable arguments:

1. A condition record passed by reference.

2. A mechanism record passed by rererence.
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15.7.1 Condition Record

The condition record is the root of a list of one or more condition records.- Each condition
record describes one condition, including the condition specifier and the arguments associ-
ated with that condition.

The first condition record in the list describes the primary condition. Additional secondary
conditions may be specified by additional condition records in the list. Secondary conditions
qualify or elaborate on the primary condition; they may be raised at the same time as the
primary condition, or a handler may add new secondary conditions to the list before handling
or reraising the condition.

Each condition record is quadword aligned and is defined as foilows. -

Quadword Aligned
e it + +

| CONDITION VALUE | :0
e e s e T P e +

| CONDITION VALUE QUALIFIER | =4
+- ————— ———t +

| COND ITION_FLAGS | =8
+ + ———————i -t +

| CONDITION_LI ST | 12
+ + ——=t ———tm——— -—=+

| PROCESSOR STATUS | =216
+--— + ———————t o +

| CONDITION_ADDRESS | :20
+ - + s ——

| zZero | =24
| ARGUMENT COUNT | :28
Fmmm e ——— tmm———— + + +

| | 32
te——- ————t

| |
- CONDITION_ ARGUMENT (1) -

| |
+om—— : ——t

| -
+=—— ‘ t - + e -+

+ - e + - + -+

| | X
+———- ————

| |
t——— CONDITION ARGUMENT (n}) ————

| B |

S ===

I S U
+-- N + ———— -— -+

x = 16%(n - 1) + 32
CONDITION_VALUE is a longword denoting the condition.

CONDITION_VALUE_QUALIFIER is a longword whose mterpretatlon depends on CON-
DITION_VALUE (see section "Status Codes and Condition Values")
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CONDITION_FLAGS is a set-of flag bits. These flag bits are significant only in the primary
condition record; they are undefined in secondary condition records.

e CONDITION_FLAGS<UNWINDING> = 1 if the condition handler is being invoked be-
cause of an unwind operation. This means that the procedure invocation which estab-
lished this handler is being removed from the invocation chain.

e CONDITION_FLAGS<EXIT UNWIND> = 1 if the condition handler is being invoked
: because of an unwind operation that will terminate execution of the thread.

CONDITION_FLAGS<EXIT_UNWIND> must be 0 unless CONDITION_FLAGS<UNWINDING>
=1.

° CONDITION_FLAGS<NONCONTINUABLE> = 1 if the condition handler must not
return STATUS$_CONTINUE.

e CONDITION_FLAGS<DURING_AST> = 1 if an asynchronous software condition han-
dler has resignaled or has been unwound. This indicates that a nested condition was
raised or an unwind was initiated during asynchronous condition handling, which was
not handled within the scope of the most current active asynchronous condition handler.

CONDITION_LIST is either zero or is the address of the next condition record in the list.
PROCESSOR_STATUS is the processor status stored when the condition was raised.

CONDITION_ADDRESS is the value of the program counter when the condition was
raised.

ARGUMENT_COUNT is the number of condition-specific quadword arguments in the con-
dition record.

Each CONDITION_ARGUMENT(n) is four longwords which provide additional informa-
tion specific to the condition, and may contain information intended for display in messages.

15.7.1.1 Condition Arguments

There are two forms of condition arguments:

* immediate condition argument descriptors
* indirect condition argument descriptors

15.7.1.1.1 Immediate Condition Argument Descriptors

Immediate condition argument descriptors contain condition argument values that require
eight bytes of storage or less.

Quadword Aligned
+-- + -——t - + -- +
| ARGUMENT LONGWORD_1 | =0
+-- et + ———————t +
| ARGUMENT_LONGWORD_2 | :4
e e + +
| DATA TYPE | zero | CLASS | =8
pommmm e + S e L e +
| EXTENT | s12
] + - e o+ +
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- CLASS is DESCR$C_IMMEDIATE_ARGUMENT.

DATA_TYPE is the data type of the condition argument.
A\

Data types will be defined in a future revision of this standard.

AR

ARGUMENT_LONGWORD_1.ARGUMENT_LONGWORD_2 contain the value of the
argument. The argument value must be stored starting at byte 0.

EXTENT specifies the number of bytes of contiguous storage occupied by the argument
data. The maximum value of EXTENT is 8.

15.7.1.1.2 Indirect Condition Argument Descriptors

Indirect condition argument descriptors specify condition argument values that require more
than eight bytes of storage.

Quadword Aligned

U - + - o o e o o e e o o e o e e e +

| EXTENT | :0
fmmm—mm———— + - + —————————t -+
| POINTER | 24
fom e ——————— e et + ——————t -+
| DATA TYPE | zero | CLASS | =8
+om— - o ———— —-——t ——— - ——
| zero | =12
e - o - ~—t-- - —-——+

CLASS is DESCR$C_INDIRECT_ARGUMENT.
DATA_TYPE is the data type of the condition argument.
POINTER is the address of the first byte of storage occupied by the data.

EXTENT specifies the number of bytes of contiguous storage occupied by the argument
data.

15.7.1.2 Condition Records for Hardware Conditions

All hardware exceptions have a hardware exception frame associated with them. This frame
-is defined for each exception by the PRISM hardware architecture.

The meaning of the CONDITION_ADDRESS, PROCESSOR_STATUS, and the CONDI-
TION_ARGUMENT fields is determined by the hardware exception frame, which is the
source of the information for these condition record fields.

For some hardware exceptions, the CONDITION_ADDRESS specifies the instruction which
caused the exception; for other hardware exceptions, CONDITION_ADDRESS specifies
some instruction following that which caused the exception. The meaning of CONDITION_
ADDRESS is defined for each hardware exception by the hardware architecture, as is the

PROCESSOR_STATUS. S
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In addition to the condition address and processor status, most hardware exceptions have
additional exception-specific information defined in the exception frame. It is this additional
information which is converted to condition argument format and marshalled into the con-
dition record for the hardware exception. The condition arguments correspond one-for-one
with the items defined in the hardware exception frame.

The PRISM hardware architecture should be consulted for further information.

15.7.1.3 Condition Records for FLBC Instruction Faults

The Fault On Low Bit Clear instruction fault is unique among the hardware exceptions in
as much as the condition arguments for this condition are not the information defined by
the PRISM hardware architecture for the exception.

* The hardware architecture defines the first longword in the exception frame to be zero;
the first argument in the condition record is the displacement field of the faulting in-
struction.

*  The hardware architecture defines the second longword in the exception frame to be the .
faulting instruction; the second argument in the condition record is the contents of the
register specified by the FLBC register operand.

15.7.1.4 Condition Records for Synchronous Software Conditions

When a software condition is raised, the condition record and one or more condition records
must be specified for the first argument to condition handlers invoked for that condition (see
section "Raising Software Conditions").

However, the CONDITION_ADDRESS and PROCESSOR_STATUS fields in each condition
record cannot be specified when the condition is raised. These fields are defined by the
system as the virtual address at which the software condition was raised, and the processor
status when the condition was raised.

15.7.1.5 Modification of Condition iInformation by Handlers

The condition record, condition records, and condition _arguments are always allocated in
writeable memory, and handlers may write to any location in these data structures.

The effect of a handler modifying this condition information is as follows.

1. If CONDITION_FLAGS<NONCONTINUABLE> in the primary condition record is
changed from 0 to 1, then the condition handler which made the modification must
not return STATUS$_CONTINUE, nor may -any handler subsequently invoked for the
condition return STATUS$_CONTINUE. ___ o - e

2. If CONDITION_FLAGS in the primary condition record is modJﬁed except as spec1ﬁed
above, there is no effect after the condition handler completes; all handlers subsequently
invoked for the condition receive a primary condition record with the flags unmodified.

In particular, if a condition handler changes CONDITION_FLAGS<NONCONTINUABLE>
from 1 to 0, that handler modification must not return STATUS$_CONTINUE, and any
and all handlers subsequently invoked for the condition will be invoked with CONDI-
TION_FLAGS<NONCONTINUABLE> = 1.

3. Except as specified above, all changes made to the condition information will be visible
to handlers subsequently invoked for the condition.
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4. Any other effects of modifying the condition information are not defined by this standard.

15.7.2 Mechanlsm Record

The mechanism record descrlbes the environment within which the cond1t1on handler is
executing. '

The mechanism record is quadword aligned and is defined as follows.

Quadword Aligned

+ + - ———— + _— -+
[ STACK_VALID | :0
== + -——+ e - -+
| ESTABLISHER FP | :4
+-= + -——+ e +
i RETURN_STATUS_ R8 | :8
+ + + ——t _— -+
| RETURN_STATUS_R9 | :16
+-- —+-- -+ e ——————t

STACK_VALID is 0 if the system has detected that the thread’s stack is corrupt during the
search for invocation-based handlers, and 1 if the stack is valid. STACK_VALID will always
be 1 when an invocation-based handler is invoked; only vectored handlers are invoked if the
stack is corrupt.

ESTABLISHER_FP is the current value of the frame pointer in the procedure invocation
which established the handler. ESTABLISHER_FP is meaningful only when an invocation-
based handler is invoked. It is undefined when a vectored handler is invoked.

RETURN_STATUS_RS provides a means for condition handlers to determine the contents
of register R8 when execution resumes after a handler returns STATUS$_CONTINUE or
an unwind operation completes (see "Modification of the Mechanism Record by Handlers").

RETURN_STATUS_RY provides a means for condition handlers to determine the contents
of register R9 when execution resumes after a handler returns STATUS$_CONTINUE or
an unwind operation completes.

15.7.2.1 Modification of the Mechanism Record by Handlers

The mechanism record is always allocated in writeable memory, and condition handlers may
write to any location in the record.

The effect of a condition handler modifying the mechanism record is as follows.

1. If ESTABLISHER: FP is modified; there is-no effect after the condition handler com-
pletes; this field is reset by the system before each handler is invoked.

2. If STACK_VALID is modified, there is no effect after the condition handler completes;
all handlers subsequently invoked for the condition receive a mechanism record with
STACK_VALID unmodified. '

3. Changes made to RETURN_STATUS_R8. RETURN_STATUS_R9 will be visible to con-
dition handlers subsequently invoked for this condition.
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4. If an unwind operation occurs while a condition is active, and if the optional condition
record argument was not specified to the unwind operation, and if one or more active
condition handlers are removed from the procedure invocation chain, then the contents
of registers R8..R9 when control passes to the unwind target location will be the contents
last written to RETURN_STATUS_RS..RETURN_STATU S R9 for the mechanism record
of the most recently raised condition.

That is, when a condition handler is unwound, and a condition record is not speciﬁed,
then the last condition handler, if any, which modifies one of these fields before unwind-
ing is initiated will determine the contents of R8..R9 at the unwind target.

5. If a condition handler returns STATUS$_CONTINUE, then the contents of registers
RS8..R9 when execution resumes at the continue address will be the contents of RE-
TURN_STATUS_RS8..RETURN_STATUS_R9 m the mechanism record.

Therefore the last condition handler, if any, which modifies one of these fields will de-
termine the contents of R8..R9 when execution continues.

6. Any other effects of modifying the mechanism record are not defined by this standard.

15.8 Access to Current Procedure Context

A condition handler may fetch the current context of the procedure invocation within which
a condition was raised, and may construct the current context of any invocation on the
procedure invocation chain, by calling system supplied functions.

Each PRISM system provides concrete language bindings to these functions, which are ab-
stractly defined in this standard as GET_CONTEXT and GET_PRECEEDING_CONTEXT.

GET_CONTEXT provides the context of the procedure invocation which immediately pro-
ceeds the most current active handler on the procedure invocation chain. If that handler
was invoked because a condition was raised, this will be the current context of the proce-
dure invocation within which the condition was raised. If that handler was invoked during
unwind operation, this will be the current context of the establisher of the handler.

GET_CONTEXT accepts one argument:

e CONTEXT_BUFFER: the address of a 256-byte quadword aligned region of writeable
memory into which the procedure context is written.

GET_CONTEXT returns a status value in R8R9, and provides the procedure context in
the memory specified by CONTEXT_BUFFER as follows.
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Quadword Aligned

+ + —— + +-=- ————————t
| PROGRAM _COUNTER ‘ 1 =0

Fmm—————— + + - + +

I REGISTER SP | :4
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GET_PRECEEDIN G_CONTEXT takes as input the procedure context provided by a prior
invocation of GET_CONTEXT or GET_PRECEEDING_CONTEXT, and returns the current
context of the immediately preceeding procedure invocation.

GET_PRECEEDING_CONTEXT accepts one argument:

¢ CONTEXT_BUFFER: the address of a 256 byte quadword aligned region of writeable
memory. When GET_PRECEEDING_CONTEXT is called, the memory specified by
CONTEXT_BUFFER must contain the procedure context returned by a prior call to
GET_CONTEXT or GET PRECEEDING_CONTEXT. When this function returns, the
memory specified by CONTEXT_BUFFER will contain the context of the procedure in-
vocation preceeding that for which the context was passed as an argument.

GET_PRECEEDING_CONTEXT returns a status value in R8..R9, and provides the pre-
ceeding procedure context in the same form at that provided by GET_CONTEXT.

15.9 Handler Completion and Return Value

When a condition handler has finished all its processing, it must complete its execution
by reraising the condition, continuing execution of the thread at the location at which the
condition was raised, or by initiating procedure invocation unwinding.

15.9.1 Reraise

If a condition handler determines that additional handlers should be invoked for the con-
dition (because it could not handle the condition), it can reraise the condition by setting
register R8 to STATUS$_RERAISE and performing a normal return. ~

Reraise causes the next condition handler to be invoked (see section "Order of Handler
- Invocation”). This next handler is invoked with an updated mechanism record and with the
condition record as it was left by the handler which reraised the condition.

If all condition handlers established by the thread reraise the condition, the system catchall
handler will be invoked, with system-defined results.
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15.9.2 Continue

A condition handler can continue execution of the thread at the location at which the condi-
tion was raised by setting register R8 to STATUS$_CONTINUE and performing a normal
return. '

This will cause execution to resume at the condition address, with the context of the in-
terrupted procedure restored, except registers R8..R9. Registers R9..R9 are restored from
RETURN_STATUS_RS8.RETURN_STATUS_R9 in the mechanism record, so modification
made to these fields by a condition handler will be reflected in the context of the interrupted
procedure when its execution resumes.

If STATUS$_CONTINUE is returned and CONDITION_FLAGS<NONCONTINUABLE> =
0, then the register context of the procedure invocation in which the condition was raised
is restored to its original state (except R8..R9), and execution continues at the condition
address. The contents of registers R8..R9 when execution continues will be will be the
contents of RETURN_STATUS_R8.RETURN_STATUS_RS9 in the mechanism record.

If STATUS$_CONTINUE is returned and CONDITION_FLAGS<NONCONTINUABLE> =
1, then a nested condition is raised with CONDITION_VALUE = STATUS$_NONCONTINUE_
CONDITION, indicating that an attempt was made to continue from a noncontinuable con-
dition. This second condition is also noncontinuable.

15.9.2.1 Restrictions on Continuation

The PRISM architecture neither guarantees that instructions are completed in the same
order in which they were fetched from memory nor that instruction execution is strictly
sequential. Continuation after most hardware exceptions is possible, but there are some
restrictions.

Arithmetic traps cannot be restarted, since they are instruction aborts and not all informa-
tion is stored for a restart. The only way in which software may guarantee the ability to
continue from this type of exception is by placing DRAIN instructions around an exception
site.

AN\

Although this allows continuation, it is neither practical nor desirable
because of the negative effects on application performance.

AR

User stack alignment abort also does not save enough information to allow a restart or
continuation.

Software conditions are, by definition, synchronous with the instruction stream and can
have a well defined continuation point. Thus, a handler may have the option of requesting
continuation from a software condition. However, since compiler-generated code at any
instant typically relies on previous error free execution, continuing from a software condition
may result in unpredictable behavior unless the handler has explicitly fixed the cause of the
condition in such a way as to be transparent to subsequent code.
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15.9.3 Unwind

The handler, or any descendant procedure called directly or indirectly by the handler, can
continue execution of the thread at a different location than that at which the condition was.
raised by initiating an unwind operation.

An unwind operation specifies a target invocation in the procedure invocation chain and a
location in that procedure. The operation will remove from the procedure invocation chain
all invocations up to the target, and continue thread execution at the specified location in
that procedure.

Before control is transfered to the target location, the unwind operation invokes each
invocation-based handler which was established by any procedure invocations being re-
moved. These handlers are invoked with a condition record indicating that an unwind is
in progress, and a mechanism record describing the environment from which the unwind
was initiated. This allows each procedure invocation being discarded to perform clean-up
processing before its context is lost.

Once this phase has completed, the target invocation’s register saved context is restored and
the execution is continued at the specified location. In the case that a condition handler is
unwound, R8..R9 are restored from the mechanism record, allowing a status to be returned
to the target of the unwind.

One effect of the unwind operation is to discard the condition handler invocation. Control
will never be returned to the point at which the unwind was initiated, and that handler
invocation can therefore never return to its caller.

The details of unwinding are discussed in section "Procedure Invocation Unwinding".

15.9.3.1 Exit Unwind

Since processes on the PRISM system are multithreaded, it is necessary for a thread which

is terminating execution to clean up its use of shared process resources such as the virtual
address space.

Because of this, user mode thread exit may accomplished only by unwinding. A special form
of unwind, referred to as exit unwind, invokes all established invocation-based handlers
with a condition record specifying that an exit unwind is in progress, removes all procedure
invocations up to the beginning of the call heirarchy, and terminates execution of the thread.

15.10 Order of Handler Invocation
When a condition occurs, established condition handlers are invoked in a specific order.

All primary vectored handlers are first invoked in FIFO order with respect to the order in
which they were established.

If no primary vectored handlers have been established, or if all reraise the condition, then
any invocation-based handlers are invoked in order from that established by the most cur-
rent procedure to the oldest predecessor in the invocation chain.

If no invocation-based handlers have been established, or if all reraise the condition, then
the last chance vectored handlers are invoked in LIFO order with respect to the order in
which they were established. o
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Finally, should no other condition handlers have been established, or should all reraise the
condition, then the system catchall handler is invoked. :

15.10.1 Nested Conditions

A nested condition occurs if a condition is raised while a condition handler is active.

When a nested condition occurs, the structure of the procedure invocation chain, from the
most recent procedure invocation to the oldest predecessor, is as follows.

1. The procedure invocation within which the nested condition was raised.

2. Zero or more procedures invoked indirectly or directly by the most recently invoked
(most current) handler.

3. The most current handler.

This is the same invocation as that in which the nested condition was raised (item 1) if
there are zero invocations in item 2.

4. The procedure invocation within which the active condition that immediately preceeded .
the nested condition was raised; that is, the invocation in which the condition was raised
for which the most current handler was invoked.

5. Zero or more procedure invocations, all established handlers of which were invoked
for the condition that immediately preceeded the nested condition, and all of which
resignaled.

6. The establisher of the most current handler.

This is the same as the invocation in which the condition that immediately preceeded
the nested condition was raised (item 4) if there are zero invocation in item 5.

7. Zero or more procedure mvocatmns for which no established handlers have yet been
invoked.

Established handlers will be invoked in reverse order with respect to that in which their
establishers were invoked, as defined above.

Any handlers established by the invocations described by items 1, 2, 3, and 7 will always
be invoked for a nested condition.

Any handlers established by the invocations described by items 4, 5, and 6 will be invoked
if, and only if, the invocation descriptor for the establisher flags that handler as reinvokable.
This means that no handler will be invoked which has already been invoked for an active
condition unless that handler is flagged as reinvokable. -In particular, this applies to any
handler established by a descendent of the establisher of the most current active handler.

If further nested conditions occur, this procedure invocation chain structure is repeated for
those further nested conditions, and invocation-based handlers are invoked according to
the above rules, in order from those established by the most current procedure to those
established by the oldest predecessor. No handler will be invoked which has already been
invoked for an active condition unless that handler is flagged as reinvokable, and no handler
established by a descendent of the establisher of any active handler will be invoked unless
it is reinvokable.
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15.10.2 Steps of Searching for and Invoking Handlers
When a condition is raised, the steps that implement the above capabilities are as follows.

If an alternate condition stack has been estabhshed switch to the alternate condition
stack (see section "Alternate Condition Stack for Vectored Handlers").

Locate the first-established primary vectored handler, if any.
If no established primary vectored handler was located, go to step 8.

Invoke the vectored handler just located.

If the handler returns STATUS$_CONTINUE or initiates an unwind, switch back to
the primary stack and exit these steps.

Locate the next-established primary vectored handler, if any.

Go to step 3.

If an alternate condition stack has been established, switch back to the primary stack.
Let current_invocation be the procedure invocation in which the condition was raised.
If current_invocation does not establish a handler, go to step 21.

. Invoke the handler established by current_invocation.

. If the handler returns STATUS$_CONTINUE or initiates an unwindQ exit these steps.
.- If current_invocation is not itself an active handler, go to step 21.

. Locate the establisher of current_invocation.

. Let current_invocation be the procedure invocation which invoked current_invocation.

If the current_invocation does not establish a handler, go to step 20.

If the handler is not flagged as reinvokable by its establisher, go to step 20.

Invoke the handler established by current_invocation.

If the handler returns STATUS$_CONTINUE or initiates an unwind, exit these steps.

. If current_invocation is not the establisher located in step 14, go to step 15.
. If current_invocation is the beginning of the procedure invocation chain, go to step 24.

Let current_invocation be the procedure invocation which invoked current_invocation.

. Go to step 10.

. If an alternate condltlon stack has been established, switch to the alternate condition
T stack.

. Locate the last-established last chance vectored handler, if any.
. If no established last chance vectored handler was located, go to step 31.
. Invoke the vectored handler just located.

. If the handler returns STATUS$_CONTINUE or initiates an unwind, switch back to
~ the primary stack and exit these steps.

Locate the previously-established last chance vectored handler, if any.

. Go to step 26.
. Invoke the system catchall handler.
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32. Force thread to terminate execution by initiating an exit unwind.

15.11 Other Properties of Condition Handlers
15.11.1 Access to Memory

Conditions can be raised when the current value of one or more variables is in registers
rather than in memory.

Because of this, a condition handler, and any descendant procedure called directly or in-
directly by a handler, must in general not access any memory except arguments explicitly
passed to the procedure and memory that the procedure allocated.

This rule can be violated for specific memory locations only by agreement between the
handler and all procedures which might access those memory locations, and such a handler
is not standard conforming. '

15.11.2 Alternate Condition Stack for Vectored Handlers

To avoid having vectored handlers utilize the main procedure stack, a thread may specify
an alternate stack for invocation and use of vectored handlers. This is done by calling a
system supplied function.

Each PRISM system provides concrete language bindings to this function, which is abstractly
defined in this standard as CREATE_CONDITION_STACK.

CREATE_CONDITION_STACK accepts one argument:
* STACK_SIZE: the size in bytes for the alternate condition stack.

CREATE_CONDITION_STACK will always allocate a minimum size for the alternate con-
dition stack, generally the size required to raise the largest architecture-defined hardware
condition and a stack overflow condition. If STACK_SIZE is less than this system-defined
minimum size, then the minimum stack size will be allocated.

CREATE_CONDITION_STACK returns a status value, which may describe an error condi-
tion if, for example, the alternate condition stack could not be allocated or if an alternate
condition stack was already established.

If a condition stack is defined for a thread, it is used to invoke all user mode vectored han-
dlers. Thus, mechanism and condition records are first delivered to the primary vectored
handlers on the condition stack. If all of these handlers resignal, the mechanism and con-
dition records are transferred to the thread’s main stack and any invocation-based handlers
are invoked. If all of these resignal, or the main stack is corrupted, the condition and mech-
“anism records are transferred back to the condition stack and the last chance handlers are
invoked.

Once created, the alternate condition stack is permanent with respect to the thread; it
cannot be disabled or removed.
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15.11.3 Invalid Thread Stack

"If, during the search for and invocation of invocation-based handlers, the system detects
that the thread’s primary stack or alternate condition stack is corrupt, then the following
steps take place.

1. STACK_VALID in the mechanism record is set to 0.

2. The search for handlers imﬁzediately proceeds to the last chance vectored handlers (step
24 in the previous section).

3. Ifalllast chance vectored handlers resignal, then the system catchall handler is invoked.
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16 Procedure Invocation Unwinding

Unwmdzng transfers control in a th.read from the location at which the unwind operation
- is initiated to the target location in a target invocation.

This results in removal from the procedure invocation chain of all procedure invocations,
including the invocation in which the unwind request was initiated, up to the target pro-
cedure invocation, after which thread execution continues at the target location. Once an
unwind is initiated, control never returns to the point at which the unwind was initiated.

Unwinding does not require a condition handler to be actlve, it may be used by languages
to implement nonlocal GOTO.

Before control is transfered to the target location, the unwind operation invokes each
invocation-based handler which was established by any procedure invocations being re-
moved. These handlers are invoked with a condition record indicating that an unwind is
in progress, and a mechanism record describing the environment from which the unwind
was initiated. This allows each procedure invocation being discarded to perform clean-up
processing before its context is lost. '

Once this phase has completed, the target invocation’s saved register context is restored and
the execution is continued at the specified location.

16.1_ Types of Unwind

There are three types of unwind requests:
1. Nonlocal GOTO

Nonlocal GOTO transfers control to a specified location in a specified procedure invoca-
tion.

The target procedure invocation is specified by the address of its stack frame. Thus, a
procedure invocation with a register frame may not be the target of a nonlocal GOTO.

If the target location is not specified, then the target location is the current return
address in the target invocation.

This type of unwind may be initiated from any context: from any type of hand]er, and
when no handler is active.

2. Caller of establisher

Unwind to caller of establisher transfers control to the caller of the establisher of the

—most-current active invocation-based condition handler. The target location in the caller

___of the establisher may be specified; if not specified, the target location is the current
return address in that procedure invocation.

A procedure with a register frame may not be the target of an unwind to caller of
establisher.

This type of unwind may only be initiated by an active invocation-based handler, or by
_ a procedure called directly or indirectly from such a handler.

3. Exit unwind
Exit unwind removes every procedure invocation in the invocation chain, after which
~ execution of the thread is terminated.
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This type of unwind may be initiated from any context: from any type of handler, and
when no handler is active.

" Since processes. on the PRISM system are multithreaded, it is necessary for a thread
which is terminating execution to clean up its use of shared process resources such as
the virtual address space. Because of this, user mode thread exit may accomplished
only by initiating an exit unwind.

16.2 Unwind Initiation
A thread may initiate an unwind operation by calling a system supplied function.

Each PRISM system provides concrete language bindings to this function, which is abstractly
defined in this standard as UNWIND.

UNWIND returns a status value, although it only returns to the caller if an error is detected
in the argument list.

UNWIND accepts six arguments:

* FRAME: Zero or the address of the stack frame of the target invocation.
e CALLER_OF_ESTABLISHER: TRUE or FALSE

¢ EXIT UNWIND: TRUE or FALSE

e TARGET_PC: Zero or the address of the target location.

e CONDITION_RECORD: Zero or the address of a condition record

e COLLAPSE_STACK: TRUE or FALSE

FRAME, if non-zero, specifies the address of the stack frame of the target procedure invo-
cation to be unwound to.

CALLER_OF_ESTABLISHER = TRUE specifies unwind to the caller of the establisher of
the most current active invocation-based condition handler. CALLER_OF_ESTABLISHER
maust be not be TRUE unless a invocation-based handler is active; otherwise, an error con-
dition is raised.

EXIT_UNWIND = TRUE specifies an exit unwind.

These first three arguments are the means of specifying one of the three mutually exclusive
types of unwind. The error STATUS$_INVALID_ARGUMENTS is returned if more than
one of the types of unwind are specified, or if none of the types of unwind are specified.

TARGET_PC specifies the address within the target invocation at which to continue ex-

" ecution. It may be used with either the FRAME or the CALLER_OF_ESTABLISHER ar-

guments. If TARGET_PC is zero for these types of unwind, the current return address in

the target procedure invocation is used. If TARGET_PC is non-zero and EXIT UNWIND is
TRUE, STATUS$_INVALID_ARGUMENTS is returned.

CONDITION_RECORD may be used to specify an optional condition record. If specified,
this argument is used as the condition record passed to each handler called during the
unwind operation. The unwind operation checks the validity of the condition record; STA-
TUS$_INVALID_ARGUMENTS is returned if an ill-formed condition record is specified. If

no condition record is specified, then the system allocates a default condition record. :
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COLLAPSE_STACK is used to determine whether, before execution resumes at the target
location, the stack is collapsed back to the point at which the target procedure invocation
. last left it, or left as it was when the unwind operation was initiated. If COLLAPSE_STACK
is FALSE, a procedure which initiates an unwind may return data to the target invocation
by leaving it on the top of the stack. '

16.3 Arguments Passed to Handlers

The arguments passed to handlers invoked by the unwind operation are the same as those
passed to handlers for all other conditions: a condition record and a mechanism record.

These records have certain properties specific to the unwind operation.

16.3.1 Condition Record

When an unwind operation is in progress, CONDITION_FLAGS<UNWINDING> = 1 in
the primary condition record. If the unwind is an exit unwind operation, then in addition
CONDITION_FLAGS<EXIT UNWIND> = 1 in the primary condition record.

If the CONDITION_RECORD argument is specified when the unwind is initiated, then all
other properties of the condition record are determined by CONDITION_RECORD.

- If CONDITION_RECORD argument is not specified, then a default condition record is sup-
plied which specifies exactly one condition record in which CONDITION_VALUE = STA-
TUS$_UNWINDING.

16.4 Order of Handler Invocation

When an unwind operation takes place, all invocation-based condition handlers are invoked
which were established by any procedure invocation being removed from the invocation
chain. These handlers are invoked in reverse order with respect to that in which they were
established.

Since vectored handlers and the system catchall handler are not associated with a proce-
dure invocation, these handlers are never invoked during an unwind (although they will be
invoked if a condition is raised during the unwind operation).

16.4.1 Multiply Active Unwind Operations

During an unwind operation, another unwind operation may be initated. This may occur,
for example, if a handler which is invoked for the original unwind initiates another unwind,

or if a condition is raised in the context of such a handler and a handler invoked for that

condition initiates another unwind operation.

An unwind which is initiated while a previous unwind is active is either a nested unwind
or an overlapped unwind.
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- 16.4.1.1 Nested Unwind

A nested unwind is an unwind to caller of establisher or a nonlocal goto which is initiated
while a previous unwind is active, and whose target invocation in the procedure invocation
chain is not a predecessor of the most current active unwind handler.

That is, a nested unwind is one which does not remove any procedure invocation which
would have been removed by the previously active unwind.

- When a nested unwind is initiated, no special rules apply. The nested unwind operation
proceeds as a normal unwind operation, and when execution resumes at the target location
of the nested unwind, the nested unwind will be complete and the previous unwind will
once again be the most current unwind operation.

16.4.1.2 Overlapping Unwind

An overlapping unwind is an exit unwind, an unwind to caller of establisher, or a nonlocal
goto which is initiated while a previous unwind is active, and whose target invocation in
the procedure invocation chain is a predecessor of the most current active unwind handler.

That is, an overlapping unwind is one which removes one or more procedure invocations
that would have been removed by the previously active unwind.

An overlapping unwind is detected immediately after the most current active unwind han-
dler is removed from the procedure invocation chain. This detection of an overlapping
unwind is termed a collision.

When a collision occurs, the two unwind operations are merged into a new unwind operation,
which is the only unwind operation active following the merge.

The target invocation of the merged unwind operation is whichever of the target invocations
specified by the colliding unwind operations is-the oldest predecessor on the procedure invo-
cation chain. That is, the merged target invocation is whichever of the two target invocations
causes the greatest number of invocations to be removed from the invocation chain.

The target location of the merged unwind operation is the target location associated with
the oldest preceseccor target invocation. If the colliding unwinds specify the same target
invocation, then the target location in that invocation is the target location specified by the
overlapping unwind, and the target location specified by the previously active unwind is
ignored.

The condition and mechanism arguments of the merged unwind operation are those asso-
ciated with the overlapping unwind; the arguments associated with the previously active
unwind are discarded.

After the colliding unwinds are merged, the unwind operation continues from the point of
the collision.

These rules for merging overlapping unwinds and continuing do not apply when an over-
lapping unwind to caller of establisher or an overlapping nonlocal GOTO collide with a
previously active exit unwind. If an overlapping non-exit unwind collides with a previously
active exit unwind, the noncontinuable STATUS$_COLLIDED_EXIT UNWIND condition is
raised.
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A\
NOTE TO CALLING STANDARD WORKING GROUP:

I have not yet mechanized overlapping -unwind in the steps below.

The overlapping unwind rules will be mechanlzed before the next public
distribution of the standard.
AR

16.4.2 Steps of Searching for and Invoking Handlers

When an unwind operation it initiated, the steps that implement the above capabilities are
as follows.

1.
2.
3.

o

14,
15.

16.
17.

18.
19.

21,

23.
24,

If unwind arguments are invalid, return erfor STATUS$_INVALID_ARGUMENTS.
If CONDITION_RECORD specified, let unwind_status = CONDITION_VALUE.

If CONDITION_RECORD not specified, supply default condition record and let unwind_
status = STATUS$_CONDITION_NORMAL.

If CONDITION_RECORD is invalid, return error STATUS$_INVALID_ARGUMENTS.

Let current_invocation be the procedure invocation which initiated the unwind opera-
tion.

If current_invocation = FRAME, go to step 25.

If current_invocation is an active handler, go to step 13.

If current_invocation establishes a handler, invoke that handler.
Remove current_invocation from the procedure invocation chain.
If the procedure invocation chain is empty, go to step 28.

. Let current_invocation be the most current invocation in the procedure invocation chain.

Go to step 6.

If CONDITION_RECORD not specified in unwind argument list, let unwind_status =
RETURN_STATUS_RS8..RETURN_STATUS_R9 in the mechanism record which was the
second argument to current_invocation.

If unwind type not CALLER_OF_ESTABLISHER, go to step 20.

If current_invocation is a vectored handler, raise STATUS$ UNWIND_THROUGH_
VECTOR condition.

Locate caller of establisher of current_invocation. =

If caller of establisher of current_invocation has_ reglster frame raise STATUS$_
INVALID_CONDITION_DESC condition.

Let FRAME = address of stack frame of caller of establisher of current_invocation.

If current_invocation = FRAME, go to step 25. _

If current_invocation establishes a handler, invoke that handler.

Remove current_invocation from the procedure invocation chain.

If the procedure invocation chain is empty, go to step 28.

Let current_invocation be the most current invocation in the procedure invocation chain.
Go to step 20.
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25. Restore saved context of current_invocation. Let R8.R9 = unwind_status. Set stack’

pointer as spec1ﬁed by COLLAPSE_STACK. Let return_pc = return address in current_
invocation.

26. If TARGET _PC speciﬁed, let return_pc = TARGET_PC.
- 27. Exit these steps, resuming execution at TARGET_PC.

28. If unwind type not EXIT _UNWIND, raise STATUS$_TARGET FRAME _NOT_FOUND
condition.

29. Terminate execution of thread.
AR

These steps do not incorporate overlapping unwind support.

AR

16.4.3 Invalid Thread Stack

If, during the search for and invocation of invocation-based handlers, the system detects
that the thread’s primary or condition stack is corrupt, the STATUS$_STACK_INVALID
condition is raised, interrupting the unwind operation.

This will result in a search for vectored handlers to be invoked for the stack invalid condition.
If no vectored handler continues execution of the unwind operatlon then the system catchall
handler will be invoked.

16.5 Unwind Completion

When a nonlocal GOTO or an unwind to caller of establisher completes, the following prop-
erties apply.

* The target procedure invocation is the most current invocation in the procedure invoca-
tion chain.

® The saved register context of the target invocation is restored to its state when the
invocation was last current, except for registers R8..R9 (even if saved).

¢ The contents of R8..R9 are determined as follows:

1. If CONDITION_RECORD was specified to the unwind operation, then R8..R9 con-
tains the CONDITION_VALUE..CONDITION_VALUE_QUALIFIER specified in the
condition record.

2. If CONDITION_RECORD was not specified, and if the unwind operation was initi-
ated while a condition was-active, and if one or more active condition handlers were
removed from the invocation chain, then the contents of R8..R9 are the contents last
written to RETURN_STATUS_RS8..RETURN_STATUS_R9 in the mechanism record
of the most recently raised condition.

3. Otherwise R8..R9 contain STATUS$_CONDITION_NORMAL.

e If COLLAPSE_STACK was specified to the unwind operation, then the stack pointer is
restored to its state when the invocation was last current; otherwise, the stack pointer
is in the state it had the unwind operation was initiated. (Note that if the stack is not
collapsed, then the target location must be prepared to deal with this).
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e Execution continues at the target location, which defaults to the return PC if not spec-
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17 Asynchronous Software Conditions

A\

The next revision of this standard will define interfaces for enabling and
disabling asynchronous software conditions, for raising and handling such
conditions, the effects of such conditions, and the interaction between such
conditions and the rest of the condition handling environment.

AR

17.1 Raising Asynchronous Software Conditions

A\

This will be defined in the next revision of this standard.

AR

17.2 Enabling and Disabling Delivery of Asynchronous Conditions

A\
This will be via the SWASTEN instruction and an abstract functional interface,
which will be defined in the next revision of this standard.

AN\

17.3 Invocation of Asynchronous Handlers

N\

This will be defined in the next revision of this standard.

AR

17.4 Effect of Conditions Raised In Asynchronous Handlers

AN

This will be defined in the next revision of this standard.

Since asynchronous software conditions can be raised and asynchronous handlers
invoked in a procedure context that has little or nothing to do with the
asynchronous condition, established invocation-based handlers may not be
prepared to deal with conditions that are raised in the context of an active
asynchronous handler. . Asynchronous handlers have to avoid propagating
inapproprite conditions to the invocation-based handlers. Note also that

- —--unwinds- can-propagate-out -of an asynchronous handler.

A\

17.5 Asynchronous Handler Completion

B N

This will be defined in the next revision of this standard.

N\
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18 Interprocedural Synchronization
18.1 Exception Synchronization

The PRISM hardware architecture allows instructions to complete in a different order than
that in which they were issued, and for exceptions caused by an instruction to be raised
after subsequently issued instructions have been completed.

When a procedure with a condition handler is called, the entry code sequence must execute
a DRAIN instruction before setting FP in order to ensure that pending exceptions are raised
in the condition handling context of the calling procedure.

Likewise, when a procedure with a condition handler returns, the return code sequence must
execute a DRAIN instruction before resetting FP in order to ensure that pending exceptions
are raised in the condition handling context of the returning procedure.

This rule ensures that exceptions are detected in the context within which condition handlers
may have been set up to handle such exceptions.

This rule does not ensure that exceptions are detected while the procedure within which the
exception-causing instruction was issued is current. For example, if a procedure without
a condition handler is called, an exception detected while that called procedure is current
may have been caused by an instruction issued while the caller was the current procedure.
This means that the frame designated by the condition handling information is the frame
which was current when the exception was detected, not the frame which was current when
the exception-causing instruction was issued.

If a procedure wants to make sure all exceptions it might cause are detected while it is the
current procedure, then a DRAIN must be executed before every procedure call it makes
and before it returns.

18.2 Memory Synchrohizatlon

The PRISM hardware architecture allows vector memory operations to be executed without
automatic hardware synchronization of those vector memory operations with scalar memory
operations or with other vector memory operations.

This requires execution of DRAINM instruction to synchronize vector memory operations
with other memory operations (vector or scalar) that may reference the same quadword.
DRAINM must be executed between a vector memory operation and every other preceeding
or following memory operation, unless it can be determined that the vector operation does
not potentially conflict with the other memory operations.

The term unsafe quadword denotes any-quadword-that can potentially be referenced by
more than one memory operation, where neither of the following is true:

1. All references to the quadword are read-only references.

2. All references to the quadword are by scalar operations.

The term unsafe operation denotes any reference to an unsafe quadword by any vector
load/store instruction. (Only vector memory operations are termed unsafe, since only vector
memory operations are potentially unsynchronized with any other memory operations).
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Since standard procedure calls do not assume global memory reference agreements across
the call interface, all vector memory operations referencing memory potentially visible to
any other procedure (for example, global variables, passed arguments, up level addressable
storage, or stack temporary storage that may be used by a calling procedure after return)
are unsafe operations in a standard call.

Any procedure containing an unsafe operation must adhere to the following conventions.

1.

A DRAINM instruction must be executed by a called procedure (typically in the entry
code sequence) before the first unsafe operation, to synchronize with memory operations
issued before the procedure was called.

A DRAINM instruction must be executed by a called procedure (typically in the return
code sequence) after the last unsafe operation, to synchronize with memory operations
issued after the procedure returns.

A DRAINM must be executed by a calling procedure between each unsafe operation and
the next standard call, to synchronize with memory operations subsequently issued by
called procedures.

A DRAINM must be executed by a calling procedure between each standard call and
the next unsafe operation, to synchronize with memory operations previously issued by
called procedures.

That is, any procedure that issues vector loads or stores is responsible to synchronize with
potentially conflicting memory operations by any other procedure. (This may result in ex-
ecution of redundant DRAINM instructions, which is a consequence of synchronizing with
scalar load/stores across standard calls.)

A\

Adherence to the above conventions is not required when it can be determined -
(by compiler analysis or by agreements across procedure call interfaces) that a
procedure contains no unsafe operations relative to calling and called
procedures.

This is, however, not a standard call.

A\
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19 User Mode Thread Architecture and COnventions '

The PRISM operating systems provide multiple threads of execution within a p;ocess. A

thread is the entity that is scheduled for execution on a processor. A process includes an
address space and at least one thread of execution.

This standard applies only to threads which execute within the context of a user process
in user mode and are scheduled according to software priority. All subsequent uses of the
term thread in this standard refer to such user mode process threads only.

All threads executing within the same process share the same address space and other
process context, but have unique per-thread stack and hardware context which includes
processor status, program counter, stack pointer, scalar registers R2..R63, and vector regis-
ters V0..V15.

In language terms, a thread is a computational entity utilized by a program unit. Such a
program unit might be a task, a procedure, a loop, or some other unit of computation.

Threads may create and delete other threads, and may affect other threads via mechanisms
provided by the operating system. However, the operating system does not define the rela-
tionship of threads within a process to one another; there is no heirarchical arrangement
of threads. Neither does the operating system dictate policy for use of process resources by
individual threads within the process.

The user mode thread architecture defined by this calling standard provides the additional
properties and conventions to allow multiple threads to coordinate multilanguage execution
within a process, including

* the relationship to one another of threads within a process
* synchronization between multiple threads in a process
* thread management of process resources

* the interaction of threads via asyncronous events

19.1 Goals i
* Simplicity
Support a set of primitives that are adequate for use by languages and utilities to

implement multithreaded applications and tools, and which can be easily understood
and documented.

* Support multiple languages and facilities

The user mode thread architecture must ensure that threads and sets of threads can
meet all important requirements of PRISM languages and software products.

These requirements include (but are not limited to):

* Closely-coupled threads—a set of threads executing the same code sequence, such
as different iterations of a loop, with fine grained synchronization between threads.

* Tasking threads—a thread that runs a high level language procedure as a separate
task, with language-defined synchronization between tasks.

* Work queue threads—a set of threads that maintain a work queue, inserting and
removing work items in cooperation with one another.
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~» LIB$ threads—direct use of the PRISM operating system thread management ser-
vices from high level languages, via run time hbrary interfaces. ~ :

Avoid restricting concurrent execution

The user mode thread architecture must support concurrent execution in a single process
of multiple threads and sets of threads under the control of different languages and

facilities.
Avoid restricting multilanguage execution within a thread

The user mode thread architecture must allow code compiled from multiple Digital
languages to execute correctly within a single thread.

Support low-overhead multithread execution

The user mode thread architecture must support multithread execution that is efficient
enough to allow fined grained parallelism.

Support thread management of process resources

The user mode thread architecture must define mechanisms to allow multiple threads
to cooperatively allocate and manage shared process resources (such as virtual memory
and other threads). Furthermore, it must define mechanisms to ensure that, when that
thread terminates, it is able to free process resources that it allocated.

Support coordination of conditions between threads

The user mode thread architecture must support coordination between a cooperating set
of threads when a condition occurs in one thread, one thread terminates abnormally,
etc. (for example, a collection of cooperating FORTRAN decomposition threads, or a
related set of ADA tasks implemented as threads).

Support thread synchronization

The user mode thread architecture must define mechanisms that allow multiple threads
to synchronize their execution as necessary, while working correctly in a multilanguage
environment (for example, FORTRAN threads synchronizing with one another, while
ADA tasks are concurrently executing within the same process).

Support run time programmer tools

The user mode thread architecture must provide the features necessary for run time
PRISM programming tools, such as DEBUG and PCA, to support multiple threads of
execution.

Coexist with multiple system interfaces

The user mode thread architecture must support a.nd work correctly with the ULTRIX
and MICA operating system interfaces.

Layer cleanly on the PRISM operating system thread management services

The user mode thread architecture should avoid placing unnecessary requirements on
the operating system and should avoid duplicating operating system functions.

Common Multithread Architecture support

The user mode thread architecture must support and coexist with the facilities defined
by the Common Multithread Architecture.
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19.2 Thread Environment Block

The thread environment block (TEB) is a data structure associated with each thread. The
TEB is used to maintain user mode software context specific to that thread, and to manage
resources used by the thread.

The address of a thread’s environment block is specified by the contents of the thread’s TEB_
BASE register (which is always R3). The TEB_BASE register must specify the address of a
valid thread environment block at all times, a.nd_ the TEB must be quadword aligned.

The following figure illustrates the layout of the thread environment block.

. Quadword Aligned
+ _____ -

I TEB_LENGTH | =0
e -- -——- +
I TCR_ADDRESS | =4
+- -- - -- -+
I TEB_VM_ZONE | :8
-- ————- -—-- ————t
I TLS_ARRAY_ ADDRESS | :12
S ——— - —————— -—+
! TLS_ARRAY_FREE | :16
+-—= - - e L L L LR PR +

TEB_LENGTH contains the length in bytes of the thread environment block. This length
is system-defined, is the length allocated for the block (not necessarily the length of the
fields currently defined in the block), and is subject to change.

TCR_ADDRESS contains the address of the thread control region for this thread.

TEB_VM_ZONE is the identification of a zone of virtual memory which is unique to the
thread and which is autimatically deallocated by the run time system when the thread
terminates.

TLS_ARRAY_ADDRESS contains the quadword aligned address of the thread local static
storage control array. Use of this field and of the thread local static storage control array is
defined in section “Thread Local Static Storage”.

TLS_ARRAY_FREE specifies the byte offset of the first unused position in the thread local
static storage control array. Use of this field is defined in section “Thread Local Static
Storage”.

19.3 Thread Control Region e

The thread control region (TCR)-is a data structure associated with-each thread, and used to
maintain software context specific to that thread. The contents of the TCR are maintained
by the operating system on behalf of the thread, and are read-only to user mode.

The thread control region is accessed through a pointer maintained in the thread environ-
ment block.

The following figure illustrates the layout of the thread control region.
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Quadword Aligned

.
o

Thread ID

I
|
|
thread invocation descriptor address | 12
—— - ———
primary stack initial SP | :16
- —— +
primary stack limit [ 220
primary stack base | 24
- S ———— -- +
| condition stack initial SP | =28
fom——— ——————— e —— ——
| condition stack limit | 232
Fom———————— -+
| condition stack base | =36
o ———— - e e e e +

*kkkkkkkkkkkkkkkxk* THIS IS NOT ACCURATE OR UP TO DATE **xkkkkxkkkkkkkknk
¥***x*%x TT WILL BE UPDATED WHEN THE NEW MICA CHAPTER IS AVAILABLE ***k%x%X

Thread ID contains the operating system supplied ID for this thread.

Thread invocation descriptor address contains the address of the invocation descriptor
which designates the entry point of the procedure initially invoked when the thread is
created.

Primary stack initial SP contains the initial value of the thread’s primary stack pointer.

Primary stack limit contains the lowest address currently allocated to the thread’s primary
stack. Since the stack grows from high addresses to low addresses, the primary stack
locations in use at any instant are those between the primary stack base and the current
primary stack pointer.

Primary stack base contains the lowest address allocated to the thread’s primary stack.

The primary stack locations not in use at any time are those between the current primary
stack pointer - 1 and the primary stack limit.

Condition stack initial SP contains the initial value of the thread’s condition stack pointer.

Condition stack limit contains the lowest address currently allocated to the thread’s al-
ternate condition stack. Since the stack grows from high addresses to low addresses, the
condition stack locations in use at any instant are those between the condition stack base
and the current condition stack pointer. T ’

Condition stack base contains the lowest address allocated to the thread’s alternate con-
dition stack. The condition stack locations not in use at any time are those between the
current condition stack pointer - 1 and the condition stack limit.
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19.4 Thread Creation and Initialization

\\ i ’
TBS -- we will specify here the environment and state that applies compatibly
across MICA and ULTRIX when non-system user mode code gets control in a newly
created thread on a system that supports multithreaded processes.

In this context, part of the common RTL is probably considered "system" code,
and we will include the effects of RTL thread initialization in this section.

This will be incorporated when the necessary design description from the MICA
group is available.

AR -

19.5 Thread Exit

When a thread exits, various actions must be performed. Such actions may include

e Terminate threads created as computational resources specifically for this thread
* Free all thread local static regions '

¢ Free the default VM zone

® Free other resources local to this thread

In order to ensure that all procedures which are active when a thread exits are able to
perform the necessary exit actions, the only standard means for initiating thread exit is to
initiate an exit unwind operation.

This unwind condition will terminate the thread after all procedures have been unwound.

As the procedures in a thread are unwound, they must respond to the thread exit unwind
by performing the appropriate exit actions.

See section "Procedure Invocation Unwinding” for the complete definition of the exit unwind
operation.
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20 Stack Limit Checking

A program that is otherwise correct can fail because of stack overrun. Stack overrun occurs
when extension of the stack (by decrementing SP) allocates addresses not reserved for the
current thread’s stack. If not explicitly detected in some way, this condition can result in
unpredictable behavior because the current thread, writing into what it considers to be stack
storage, modifies data allocated to that storage for some other purpose.

The standard conventions for PRISM procedures include checking for stack overflow based
on a guard region (a page or contiguous set of pages). The virtual address space allocated
for a thread’s stack contains one or more null-access pages at the stack’s limit (low address
end). The total size of this guard region is at least 2*GPLIM bytes, where the value GPLIM
is defined to be 4096 bytes by this standard.

AS\

Threads will probably be created with two contiguous 8K byte (2*GPLIM = 8K)

guard regions, in order to allow handling of stack overflow exceptions. When a
- stack overflow occurs, the highest-addressed 8K region will be unprotected to

allow delivery and processing of the stack overflow. The lowest-addressed 8K

guard region continues to provide the required protection during stack overflow

handling.

AN\

Most stack limit checking is implicit, based on the fact that any reference to a guard page
will cause an access violation fault.

Compilers must generate code such that the stack is not extended past the guard pages
into valid storage that is not allocated to the current thread’s stack. This requires that the
difference between the value of SP and the address of some stack location known to be valid

never exceeds GPLIM. Therefore, stack extension can be done by sequences such as:
STL RO, -GPLIM(SP) Touch within GPLIM of the current stack top.

The stack is still valid for delivery of an exception

if one occurs

Extend by no more than 2*GPLIM.

If |ext| £ GPLIM then ext-8(SP) may be in a guard page

and a subsequent small stack extension may cause

an exception.

If GPLIM < |ext| £ 2*GPLIM then ext(SP) may be in a guard

page and the next stack reference may cause an exception.

If the location at 2*GPLIM(SP) is not in a valid stack page belonging to this thread, then the
location referenced in the first instruction will be in a guard page and will cause an access
violation. If the referenced location is valid, then any new value of SP (within 2*GPLIM of

the old value of SP) will not be past the guard pages. -

LDA ext (SP), SP

Ne Ne Ne Ne Ve Ne Ne Ne N

If the stack is being extended by a dynamic amount (value not known at compile time),
the new SP value must be checked against the actual stack limit, which is kept in a data
structure accessed via R3, the TEB_BASE register. Stack extension by a dynamic amount
can be done by sequences such as:
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Assume that amount of additional stack needed is in R30
Get address of thread control region
Develop address of new SP - '
Get current stack limit -

Is new SP > stack limit?

If R31 = 0 then new SP < stack limit, so error.
Extend SP by needed amount

~e

LDL  TCR_ADDRESS(R3), R31
ADD  SP, R30, R30

LDL  STACK LIMIT(R31), R31
CMPGE R30, R31, R31

BLBC R31, STACK_OVERFLOW

OR RO, R30, SP

N\
Note -- STACK LIMIT is not a very good name for a field that has a defined name

in the TCR. When the updated process chapter is available, update this name
to reflect the real name of the current stack limit in the TCR.

N\

If a stack overflow occurs, the system may extend the thread’s stack and reset STACK_
LIMIT appropriately. In particular, a stack overflow that occurs in a called procedure might
cause the stack to be extended and STACK_LIMIT to be modified in the TCR.

Because of this the STACK_LIMIT value in the TCR must be considered volatile and poten-
“tially modified by external procedure calls.

-

Ne Yo Ng Ne N

~
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21 Reserved Virtual Memory

Two regions of virtual memory must not be accessed by any user mode code:
* First 64K—virtual addresses 0..65535.
* Last 64K—virtual addresses 232 — 65536..232 — 1.

These memory regions are reserved, must not be accessed for read, write, or execute, and
will normally be protected against any user mode access.
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22 Scope and Applicability

This section summarizes the properties that the PRISM Extended Calling Standard requires
of user mode code, in contrast to techniques, recommendations, and examples provided by -
this standard that are not required properties. This section also explains the scope for which
these properties are required.

This standard applies specifically to the user mode run time environments of both the PRISM
ULTRIX and PRISM MICA operating systems.

This standard applies to all standard procedures. That is,
* All externally callable interfaces in DIGITAL-supported, standard system software
e All intermodule calls to major PRISM components

e All external procedure calls generated by DIGITAL language processors without the
benefit of interprocedural analysis or permanent private conventions (such as those
used for language support RTL routines).

22.1 Properties That Must Be Held Invariant

Some conventions in this standard define properties that must be maintained at every point
during execution of user mode code. These are properties which the underlying hardware
architecture and/or software architecture depend on, and a program that violates any of
these properties at any point may fail or may produce incorrect results.

e  Frame Pointer (FP)

If FP<2> is 1, then FP<31:3> must specify the address of an invocation descriptor for a
procedure with a register frame. The contents of the registers specified by RA_SAVE,
SP_SAVE, and FP_ SAVE in that invocation descriptor must be valid as defined by this
standard.

IfFP<2> is 0, then FP<31:3> must specify the address of a quadword aligned stack frame
allocated on the thread stack, and all frame locations (including the saved register area)
must be valid as defined by this standard.-

e Stack Pointer (SP)

SP must specify the quadword aligned address of the lowest valid address on the thread
stack. All code must assume that, when the stack pointer is decremented, the contents
of all addresses below the old (SP) are undefined until written; that is, there must be
no "live" data on the stack at addresses lower than (SP)

The difference between the value of SP and the add.ress of some thread stack location
known to be valid must never exceed GPLIM. ™~ 77

¢ Thread Environment Block Base (TEB_BASE)

TEB_BASE must be zero (for a thread for which the TEB has not been initialized) or
must specify the quadword aligned address of the thread environment block, and all
TEB locations must be valid as defined by this standard.

¢ Invocation Descriptors

Each invocation descriptor specified by the call stack or by FP must be quadword aligned,
and each field in each descriptor must be valid as defined by this standard.
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22.2 Properties Required of All Procedures

Some conventions in this standard define properties that are required for all procedure entry
and return sequences. These are properties which the underlying software architecture
depends on, and a procedure that violates any of these properties may cause the program
to fail or produce incorrect results.

These requirements are in addition to those imposed on entry and return code sequences
by the invariant properties described above.

Frame Activation

At the point that a procedure entry code sequence modifies the value of FP, all registers
specified in the procedure’s entry mask must have been saved in the called procedure’s
frame as defined by this standard.

Frame Deactivation

At the point that a procedure return code sequence modifies the value of FP, all registers
specified in the procedure’s entry mask must have been restored from the called procedure’s
frame as defined by this standard.

22.3 Properties Required for Standard Call and Return

Some conventions in this standard define properties that are required for all standard call
and return interfaces. A standard call in this context is defined as any call that is not based
on sufficient agreements between the calling and called procedure to permit these properties
to be safely violated. Such standard calls include

e All externally callable interfaces in DIGITAL-supported, standard system software
¢ All intermodule calls to major PRISM components

e All external procedure calls generated by DIGITAL language processors without the
benefit of interprocedural analysis or permanent private conventions (such as those
used for language support RTL routines).

These are properties which a calling or called user mode procedure may assume to be true,
and a procedure that violates any of these properties may cause the progra.m to fail or
produce incorrect results.

These requirements are in addition to those imposed by the invariant properties and prop-
erties required of all procedures, described above.

Procedure Call I o

At the point that the J SR to a called procedure is execubed the followmg properties are
required.

¢ The PRISM Call Conventions

R10 (invocation descriptor address), R11 (return address), R13 (argument count),
R14..R20 (argument list) and R12 (address of argument list) must have been set up
as required by the conventions for a standard call.

* R4.R5
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Registers R4..R5 must not contain data needed by either the calling or the called proce-
dure, since they may be destroyed between the execution of the J SR and the execution
of the first instruction of the called procedure. :

. Argument List and Descriptor Structure

The argument list (if any) must have been constructed as defined by this standard.
All procedure values passed as arguments must produce the effect of an invocation
descriptor when treated as an invocation descriptor by code that calls the procedure
value. All descriptors for arguments or return values must conform to this standard.

* Memory Synchronization

A DRAINM instruction must have been executed between any standard call and ahy
unsafe vector load/store operation in the caller, both before and/or after the standard
call.

Frame Activation ,

At the point that a procedure entry code sequence modifies the value of FP, the following

properties are required.

® Preserved Registers
Any scalar register R32..R63 which the called procedure may modify, or which any of
the called procedure’s descendents may modify without saving and restoring, must have
been saved in the called procedure’s frame as defined by this standard. The called pro-
cedure’s entry mask must specify all of the saved registers and only the saved registers.

e Exception Synchronization

If the called procedure has a condition handler, a DRAIN instruction must have been
executed.

First Vector Load/Store

A DRAINM instruction must have been executed between the call to a procedure and the
first unsafe vector load/store operation (if any) in the called procedure. (The DRAINM
is typically executed in the entry code sequence, and must be executed before any vector
registers are saved).

Frame Deactivation
At the point that a procedure return code sequence reséts the value of FP, the following
properties are required.

* Function Return Value

The function return value (if any) must have been written as defined by this standard to
R8; to R8..R9; to storage provided by the calling procedure; or to stack storage allocated
by the calling procedure, and specified by a descriptor provided by the calling procedure
and updated by the called procedure.

* Preserved Registers

Any scalar register R32..R63 which the called procedure may modify, or which any of
the called procedure’s descendents may modify without saving and restoring, must have
been restored from the called procedure’s stack frame as defined by this standard.

¢ Memory Synchronization
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A DRAINM instruction must have been executed between the last unsafe vector
load/store operation (if any) in the called procedure and the return to the caller. (This
DRAINM is typically executed in the return code sequence, and must be executed after
any vector registers are restored). '

Exception Synchronization

If the called procedure has a condition handler, a DRAIN instruction must have been
executed after the last poss1b1e point of exception in the called procedure, but before
resetting FP.

Procedure Return-

At the point that the JSR to the calling procedure is executed, the following properties are
required.

Frame Pointer

FP must have been reset to it’s value on entry to the called procedure (that is, the called
procedure’s frame must have been deactivated).

Stack Pointer

SP must have been reset to it’s value on entry to the called procedure, unless a function
value is being returned on the stack, in which case SP must not have a higher value
than it had on entry.
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APPENDIX A
GUIDELINES FOR THE PRISM SOFTWARE ENVIRONMENT

This section describes guidelines for use of calling interfaces and mechanisms, modular
programming recommendations, coding style guidelines, and other suggested practices.

This section of the document is not formally a part of the PRISM Extended Calling Standard.
Rather, it is a separate standard with a scope and applicability similar to that of the VAX
Medular Programming Standard.

Much of the information in this section is tenative, and comments from reviewers are en-
couraged and solicited. :

A.1 Language Extensions for Argument Transmission

Since the PRISM calling standard permits arguments to be passed by immediate value,
by reference, or by descriptor, language extensions are needed to reconcile the different
argument passing mechanisms. In addition to the default passing mechanisms used, each
language processor is required to give the user explicit control of the argument passing
mechanism in the calling procedure for the data types supported by the language as follows.

Data Type Immediate Reference Descriptor
Atomic < 64 bits Yes Yes No
Atomic > 64 bits No Yes No
Text String No Yes Yes
Bit String No Yes Yes
Array No Yes Yes
Miscellaneous < 64 bits Yes Yes No
Miscellaneous > 64 bits No Yes No

~ For example, FORTRAN provides the following intrinsic compile time functions:

%VAL(arg) Immediate Mechanism—Corresponding argument item contains the 32-bit or 64-bit value of
crmTm s ==~ the argument, arg.

%REF(arg) Reference Mechanism—Corresponding argument item contains the address of the value of
the argument, arg.

%DESCR(arg) Descriptor Mechanism—~Corresponding argument item contains the address of the PRISM

descriptor of the argument, arg.
These intrinsic functions can be used in the syntax of a procedure call to control generation
of the argument list. For example:

T , CALL SUB1(%VAL(123), %REF(X), %#DESCR(A))
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'A.2 Argument Data Types

The PRISM calhng standard defines three classes of representational data types:
¢ Public interface data types

* Application-area data types

* Facility-specific data types

Each of the above classes is further organized into atomic, string, and miscellaneous data
types.

Each language data type implemented by a high level language uses one of the these PRISM

~ representational data types for procedure parameters and elements of file records. When

existing data types are not sufficient to satisfy the semantics of a language, new data types
will be added to this standard, including facility-specific data types.

Some data types are composed of a record-like structure consisting of two or more elementary
data types. For example, the F_floating complex data type is made up of two F_floating data
types, and the varying character coded text data type is made up of a word logical data type
followed by a character coded text data type.

Unless explicitly stated otherwise, all data types represent signed quantities. The unsigned
quantities throughout this standard do not allocate space for the sign; all bit or character
positions are used for significant data.

AN

Exactly which data types should be in which class is a topic of continuing
analysis. In particular, we want all the public interface types to work
well with remote procedure calls. These assignments are not final.

Rigorous definition of the data types will be included in a future version
of this standard. The public interface types and the application area types
can be understood by reference to their VAX analogues and to other sections
of this standard.

AR

A.2.1 Public Interface Data Types

Public interface data types are the preferred data types for use in all externally callable
interfaces to DIGITAL-supported, standard system software.

Application-independent public interfaces should utilize only these data types.

All DIGITAL language processors must define the correspondence between language data
types and these representatmnal public interface types:

~ Atomic Types

boolean-valued byte
signed 32-bit integer
F_floating
G_floating

- String Types

Fixed-length character coded text
"~ "Miscellaneous Types -
32-bit typed pointer
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set of flags with < 32 members
procedure value

\A
Note that procedure value may not work well for remote procedure calls.
This issue will be considered further

AR

A.2.2 Application-area Data Types

Application-area data types are appropriate data types for use in externally callable inter-
faces, but are not recommended for application independent public interfaces.

These data types are common in certain applications and styles of programming, but are
not fully supported by one or more important programming languages.

Therefore, although these data types are defined and supported for use in external inter-
faces and may be supported by multiple languages they are considered specific to certain
application areas.

DIGITAL language processors that support these representational data types must define
the correspendence between language data types and these types:
e Atomic Types

unsigned 32-bit integer

signed 64-bit integer

unsigned 64-bit integer

F_floating complex

G_floating complex

¢ String Types
varying character coded text
numeric string, left separate sign
¢ Miscellaneous Types

32-bit untyped pointer (raw address)
records that conform to PRISM record layout and alignment rules.
records that conform to VAX record layout and alignment rules.

A.2.3 Facllity-specific Data Types

Facility-specific data types are inappropriate for use in public interfaces, and are not rec-
ommended for interlanguage use.

They may be used freely for extemal procedure ca]]s w1thm a smgle language or facility,
and when appropriate will be supported by language utilities such as the debugger.

However, these data types are not supported by most languages and/or do not work well for
public interfaces and/or represent an unnecessary level of specification.

These representational data types include (but are not necessarily restricted to):
e Atomic Types

signed 8-bit integer
unsigned 8-bit integer
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signed 16-bit integer

unsigned 16-bit integer

signed 128-bit integer _
unsigned 128-bit integer

biased integer

intermediate temporary (COBOL)
D_floating

H_floating

D_floating complex

H_floating complex

D_floating and H_floating real and complex are further distinguished in that operations
on these types are not directly supported by the PRISM hardware. D_floating and H_
floating real should not be used.

e String Types
dynamic strings
two-byte character coded text
varying two-byte character coded text
aligned bit string
unaligned bit string
numeric string, unsigned
numeric string, left overpunched sign
numeric string, right separate sign
numeric string, right overpunched sign
numeric string, zoned sign
packed decimal string
picture (COBOL)
- . ASCIC string (byte count)
ASCIW string (word count)
ASCIZ string (zero terminated)

¢ Miscellaneous Types

parameterized types not passed by standard descriptor
record that do not conform to either the PRISM or the VAX record layout and align-
ment rules : ‘
address range
bound label value
self-relative label (PL/T)
absolute date and time
“relative date and timeé
condition value
set with > 32 members
typed pointer type spec
untyped pointer type spec
file
record file address (BASIC)
area (PL/T)
block (BLISS)
task (ADA)
tree (SCAN)
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tree pointer (SCAN)
unspecified . -

A.3 Other Guidelines for Arguments

Writeable storage passed for return of function values should be aligned according to the
alignment rules of the return value’s data type.
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APPENDIX B
DESCRIPTOR DESIGN AND COMPATIBILITY NOTES

Argument descriptors are important for the following purposes:
1. Support of the semantics of high level languages (HLLs)

2. Support of existing VAX/VMS public interfaces for procedures that will be run on PRISM.
These include: the language independent part of the RTL, VAX/VMS compatibility ser-
vices, and call interfaces to utilities such as DTR and FMS.

The requirements of these 2 groups differ.

The first group poses requirements to support the semantics of various languages and to
permit the passing of arguments between procedures written in different languages. For
example, string descriptors are necessary to pass strings between procedures written in high
level languages.

The requirements of the second group involve compatibility constraints. Public interfaces
exist that users rely on. Removing information from descriptors potentially breaks these
interfaces.

This standards addresses the needs of high level languages, most of the interfaces to the
language independent part of the RTL, and VMS compatibility services.

It does not address the remaining interfaces outlined in group 2. Descriptors to support
these interfaces will only be added if the need for them is substantiated.

The interfaces to the existing VMS language support RTLs are not considered in this stan-
dard since these interfaces are considered private to DIGITAL and thus can be changed.

The characteristics of VAX descriptors which have been eliminated in PRISM descriptors
are: : ‘
1. Unimplemented combinations of CLASS and DTYPE

The PRISM calling standard defines descriptors only for cases where they are needed.
By merging CLASS and DTYPE, illegal combinations of these fields are eliminated.

2. Data types in array descriptors

Since utility routines do not require array descriptors, array descriptors contain only
the information needed to support high level language calls.

3. Descriptors for atomic types .

High level languages do not require descriptors to pass such objects. The VAX calling
standard, however, has defined descriptors for these objects and most VAX languages
can generate such atomic descriptors. Few languages (we know of none) will accept an
atomic descriptor as a formal argument, and thus use of these descriptors is limited to
communicating with utility routines.
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6.

It appears that the only

DXDX. .

public RTL interface that uses these descriptors is LIBSCVT_

Therefore, descriptors for atomic typeé are not provided by this standard. They will be

added only if the need for them is demonstrated.

Various data types

The following scalar data types cannot be described by PRISM descriptors:

Data Type

Reason

COBOL intermediate type
Instruction sequence type
Entry mask type
Bounded label value
Bounded procedure value
Absolute date-time
Unspecified

Descriptor

D and H floating point
Octaword

Aligned bit string

Private to COBOL

Not needed to support HLLs
Not needed to support HLLs
Not needed to support HLLs
Not needed to support HLLs
Not needed to support HLLs
Not needed to support HLLs
Private to certain languages
Not supported by PRISM
Not supported by PRISM
Merged with unaligned

Various descriptor classes

The following descriptor classes have been eliminated:

Class

Reason

Contiguous array descriptor
Procedure descriptor
Label descriptor

Language specific descriptors

Decimal string descriptor

Varying array string descriptor

All deprecated VAX classes

Merged with noncontiguous

Not needed to support HLLs
Not needed to support HLLs
Private to certain languages
Not needed to support HLLs

Replaced by byte array descriptor

No longer in use on the VAX

Various descriptor fields

The i'bllAdWiAng' deééri;itof fields have been eliminated:

Field Reason
DTYPE Not needed to support HLLs
SCALE Not needed to support HLLs
~biams Not needed to support HLLs
BINSCALE Not needed to support HLLs
REDIM Private to BASIC
- ARSIZE - . - . Can be derived from remaining fields
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Field ) Reason
POINTER o In byte arrays can be derived from remaining fields
COLUMN " Not needed for noncontiguous arrays
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APPENDIX C
CALLING STANDARD TOPICS UNDER DEVELOPMENT

There are a number of calling standard conventions under development which have not yet

‘been stabilized for inclusion in the main part of this document. These include:

* Function value return by optional dynamic string
* Thread local storage

* Thread local context

* Thread control and I/O synchronization

* Spin lock conventions

* Linkages to complex instruction sequences

* Rigorous definitions for data types

These conventions will be defined in future documents or revisions to this document. The
current state of some of these topics is described in the following sections.

C.1 Function Value Return by Optional Dynamic String

The optional dynamic string mechanism supports returning the function value in dynamic
string storage, but does not require use of dynamic string storage. The function value may,
at the option of the called function, be returned by the top of stack mechanism.

The caller must pass as the first argument a function return descriptor which specifies the
address of a valid dynamic string descriptor.

The fields of the function return descriptor must be initialized by the caller as follows.

CLASS = DESCR$C_DYNAMIC_RETURN
POINTER = the address of a valid dynamic string descriptor
EXTENT = undefined

The fields of the dynamic string descriptor must be initialized by the caller as follows.

=~ ‘CLASS = DESCR$C_DYNAMIC_TEXT

POINTER = the address of the first byte of storage
EXTENT = a signed integer 0..23! - 1 specifying the length in bytes of the storage

If the caller does not provide any dynamic string storage for return of the function value,
then the dynamic string descriptor must denote the null dynamic string.

Both descriptors must be allocated in writeable storage, and may be modified by the called
function.

The called function must either
¢ proceed to step 1 of the top of stack mechanism,
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or

* assign the function return value to a dyhamic string and update the dynamic string
-descriptor (not the function value descriptor) to denote the function return value as
follows. ’

CLASS = DESCR$C_DYNAMIC_TEXT

POINTER = the address of the first byte of the return value

EXTENT = a signed integer 0..231 — 1 specifying the length in bytes of the return
value :

No information is returned in registers R8..R9, and the function value descriptor is not
modified. ‘

If, and only if, the latter option is chosen, then all dynamic string management conventions
apply to this operation. For example,

e All part, or none of any dynamic string storage provided by the caller may be used by
the called function to return its value.

e The called function may allocate new dynamic string storage in which to return its
value.

¢ Any dynamic string storage provided by the caller which is not used to return the
function value must be deallocated by the called function.

¢ All dynamic string allocation and deallocation by the called function must be done using
the standard dynamic string management interfaces.

When control returns to the calling procedure, the caller must inspect the function return
descriptor to determine which mechanism was used by the called function to return its
value. The caller must manage the affected storage appropriately for the mechanism that
was used. '

For example, if the called function used the top of stack mechanism, then the caller must
manage the return value according to that mechanism. In addition, since in this case
the called function will have treated the function return descriptor as a STACK_RETURN
descriptor, then the contents of the function return descriptor will have been destroyed by
the called function and the descriptor will no longer specify the address of the dynamic
string descriptor.

For this reason, calling procedures will normally maintain a copy of the address of the
dynamic string descriptor passed to the called function, and use this copy to recover the
. dynamic string descriptor if the function returns its value by the top of stack machanism.
In addition, since in this case the called function will not have utilized the dynamic string
- storage specified by the dynamic string descpritor, any storage specified by the dynamic
string descriptor must be reclaimed by the caller if necessary.
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C.2 Thread Local Static Storage

Thread local static storage (TLS) »pi'ovides“threads executing in a multithread environment
with per-thread storage that has properties of process wide static storage (that is, the prop-
erties of static overlaid PSECTs):

. Any> number of modules can contribute to a thread local static region; the length of the
region is determined by linker processing of object code.

¢ A TLS region can initially contain zero or non-zero data. The initial contents of a TLS
region are determined by linker processing of object code.

® A TLS region can be aligned as required by the contributing modules. The alignment
of the region is determined by linker processing of object code.

® The offsets for data within a region are managed by compilers and the linker using the
general methods available for managing data within PSECTs (such as variables within
a COMMON block).

Thread local static storage has additional properties:

* It must be allocated and initialized when first referenced by a thread. Each thread
referencing a TLS region references a distinct instance of the region.

® References to data within a TLS region are made as offsets relative to a base pointer.
The base pointer is established when the region is allocated, and must be obtained by
each procedure that references the region.

* Each TLS region allocated by a thread must be freed when the thread terminates.

All local static storage for a thread is managed via the TLS array, the base address of which
is maintained in the thread’s TEB.

The TLS array is an array of longwords. Each longword (except the first) specifies the
location of a TLS region belonging to that thread. The first longword of the TLS array
specifies the length of the array in bytes (for longwords both utilized and not yet utilized).

The offset of first free TLS descriptor, maintained the TEB, specifies the offset of the first
byte in the first unused longword in the array.

Initially, the TLS array base address and first free offset are zero in the TEB.

Each distinct TLS region in the process has a unique offset in the TLS array. This offset
is assigned by the linker and image activator in cooperation with one another: the image
activator keeps track of the highest offset assigned so far; when a new mage is activated
the offset is incremented by 4 times the number of TLS regions in the image. The offsets
are stored in a module’s linkage section; and are referenced by special image fixup records.

The TLS array is not modified when an image is activated. Rather, whenever a thread needs
to reference a TLS region, it determines whether that region exists by testing whether the
first free TLS array offset specified by the TEB is greater than the offset assigned to that
TLS region by the image activator, and whether the pointer in that array position has been
initialized. (Normally this test will be done on entry to every procedure that references one
or more TLS regions, and will be done once per local TLS region accessed by each procedure).
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If either test fails, the thread must allocate and initialize the TLS region. That may be
done, for example, by calling an RTL routine. A

if R3~.TLS_ARRAY FREE < TLS_OFFSET

or else R3*. TLS_ARRAY ADDRESS”[TLS OFFSET] = O
then :
CREATE _TLE_REGION (TLS_OFFSET, PROTOTYPE) ;

TLS_REGION_ADDRESS = TEB_BASE~.TLS ARRAY BASE*[TLS OFFSET]

In this example, the RTL routine allocates memory for the specified TLS region, using the
PROTOTYPE to determine the length, the alignment, and the initial contents (if any) of the
region. If necessary, it also updates the first free TLS array offset in the TEB. If furthermore
necessary, it allocates a new, larger TLS array, copies the old array into it, and updates the
TLS array base in the TEB. It then initializes the new entry in the TLS array and returns.

(Note that the values of TLS_ARRAY_ADDRESS and TLS_ARRAY FREE are not valid
across external calls, since the array of TLS descriptors may be copied to a new location by
an external procedure).
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C.3 Thread Local Context
Thread local context is data and values that are unique to a thread.

This mechanism is provided for languages, applications, and utilities to manage language-
specific thread control blocks, thread local virtual memory, lists of synchronization locks,
ete. '

Unlike thread local storage (TLS), which is designed and primarily intended for use by
compilers to provide the correct language semantics in a shared-memory multithread envi-
ronment, thread local context (TLC) is intended to provide per-thread context management
to applications and high level language programmers via a modular run time library inter-
face. :

This mechanism supports a dynamic number of threads within a process, a dynamic amount
of thread local context per thread, and local context in threads created by sharable images
which were dynamically activated in a multithread environment. It provides thread local
context management including allocation of resources, freeing of resources, coordination
with other threads, and access by potentially all procedures executed by the thread.

A thread local context pointer contained by the TEB would be the root pointer to a data
structure used to manage all thread local context not directly supported by this standard.

The proposed interface is a single routine with the following form:

longword = GET_THREAD_LOCAL_VALUE (IN key_block)

Key_block is an array of longwords as follows.
COUNT REQUIRED: the number of longwords following

~ KEY REQUIRED: a 32 bit value that uniquely identifies this local context within the thread; used

by GET_THREAD_LOCAL_VALUE to distinguish this thread local context from any other
within the thread

INIT_PROC REQUIRED: an initialization procedure value to be called if GET_THREAD_LOCAL_VALUE
_ has not previously seen this key within this thread
[TERM_PROC] OPTIONAL.: a termination procedure value to be called when the thread is terminated
[REF_PROC] OPTIONAL.: a reference procedure value to be called if GET_THREAD_LOCAL_VALUE has
previously seen this key within this thread
[ARG1..ARGn] OPTIONAL: 0..N longwords that are not directly interpreted by GET_THREAD_LOCAL _
VALUE

When a thread requires the value of some thread local context, it calls GET_THREAD_
LOCAL_VALUE, passing the address of a data structure called a key_block. The key_block
~ describes the thread local context to be accessed. GET_ THREAD_LOCAL_VALUE returns
a longword which is the value for that thread local context.

GET_THREAD_LOCAL_VALUE maintains a per thread data structure of the keys that
are currently defined for this thread. The root of this data structure is kept in the thread
environment block.

If GET_THREAD_LOCAL_VALUE does not find the key in this database, it calls the ini-
tialization procedure specified in the key_block:

status = INIT PROC (IN key_block, OUT longword)
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The procedure specified by INIT_PROC performs any necessary initialization and returns
the longword value that GET_THREAD_LOCAL_VALUE is to return to its caller.

Before returning, GET_THREAD_LOCAL_VALUE adds the new key to its data base. Asso-
ciated with that key, it maintains the longword value from initialization procedure, and the
termination procedure value (if any).

If GET_THREAD_LOCAL_VALUE does find the key in its database, it proceeds as follows.

If no reference procedure is specified, the longword maintained by GET_THREAD_LOCAL_
VALUE for this key is returned.

If a reference procedure is specified, it is invoked to obtain a new value for GET THREAD_
LOCAL_VALUE to return. :

status = REF_PROC (IN key_block, IN old_longword, OUT new_longword)

The reference procedure may examine the optional items ARG1..ARGn in the key_block.
- OLD_LONGWORD is the longword value associated with the key (OUT parameter of the
INIT _PROC or last REF_PROC call). NEW_LONGWORD is the value for GET_THREAD_
LOCAL_VALUE to return and to replace OLD_LONGWORD in the GET_THREAD_LOCAL_
VALUE database.

The termination procedure maintained in the GET_THREAD_LOCAL_VALUE database are
invoked when the thread terminates. If the TEB has a non-null pointer for the root of the
GET_THREAD_LOCAL_VALUE database, a routine is called that will walk through the
database and call the termination procedure (if specified) for each key.

status = TERM_PROC (IN longword)

If the key_block specified no termination procedure for a key, then no termination is per-
formed for that key.

C-6 PRISM Calling Standard V0.7—DEC Proprietary & Confidential - Do Not Copy or Disclose



APPENDIX D
LITERAL VALUES FOR SYMBOLIC CONSTANTS
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