Pillar Language Specification

This document provides a complete description of the Pillar language.

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Digital Equipment Corporation

Digital Equipment Corporation—Confidential and Proprietary
For internal Use Only

November, 1988

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital Equipment
Corporation or its affiliated companies.

Copyright ©1988 by Digital Equipment Corporation

Al Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the user’s critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP vT
DECSYSTEM-20 PDT

DECUS RSTS e
DECwriter RSX Hﬂﬁnﬁn

This document was prepared using VAX DOCUMENT, Version 1.1

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Preface

Pillar is a high-level system programming language for use on 32-bit Digital Equipment
Corporation systems, and for future 64-bit systems. Pillar was originally developed as part
of the PRISM project, and then as part of the OSF project. Pillar was also a possible
candidate for the DEC corporate implementation language.

Changes and scheduling constraints for the OSF project caused the design goals of Pillar
to change slightly between the PRISM and OSF projects. During the PRISM project, an
interim bootstrap language, called SIL, was developed to experiment with the concepts
and design of the Pillar language. Pillar was to be quite different in syntax from the SIL
language. Because of these recent constraints, however, Pillar is basically a superset of the
SIL language.

Intended Audience

This specification is written to be a precise language specification of the Pillar language,
and is intended for use by compiler writers and language experts to produce compilers and
review the language. Many experienced programmers will be able to use this specification
when writing code. However, it is not intended to be a user manual or a tutorial to learn

the language.

Document Structure

This specification describes all of the features of the Pillar programming language. This
specification contains the following chapters:

* Chapter 1 describes the notation used to define Pillar in the rest of the specification.

* Chapter 2 describes the lexical elements of Pillar, that is, the tokens out of which a
Pillar program is constructed.

* Chapter 3 describes the naming and block structure rules of the language and introduces
declarations.

* Chapter 4 describes the Pillar facilities that allow one to divide a program into several
modules that share declarations.

* Chapter 5 describes the Pillar data types, their declaration, and representation in
storage.

* Chapter 6 describes constants, literals, and the various types of constructors in Pillar.
* Chapter 7 describes values and variables in Pillar and how to declare them.

* Chapter 8 describes the storage allocation schemes in Pillar and how data is shared.

* Chapter 9 describes the various kinds of data references as they occur in Pillar programs.
* Chapter 10 describes Pillar expressions.

* Chapter 11 describes the different kinds of statements that can be written in Pillar.

* Chapter 12 describes Pillar blocks, their syntax and execution semantics, and the
condition and exception facilities provided by Pillar.

® Chapter 13 describes Pillar procedures. '

Preface xill

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

e Chapter 14 describes the target-specific features provided by Pillar.
* Appendix A contains a collection of the entire Pillar syntax.

xiv Preface

CONTENTS

Prefacet e e e e e xiii
CHAPTER 1 NOTATION AND METHOD OF DEFINITION 1
1.1 Organization of the Definitionttt 1
1.2 Errors, Exceptions, and Range Violations 00 rnnn.. 2
1.3 Syntax Notationiiitnii ittt ttete et ettt e i, 2
1.3.1 Metasymbols in Syntax Definitionsc00vittirnnennnnnnnn. 2

1.4 Descriptionof Operations 0 ittt iiiinnnnennennn.. 3
1.5 Variablesand Symbolsin Textttt iiiiiiiiinnennnnnnnn. 3
B 7 11T - T 4
CHAPTER 2 LEXICALELEMENTS, 5
2.1 Character Seb oottt ettt et e e e e e 5
2.2 Source Modules and Syntactic Analysis.............coiitiiiiiiiinennnn... 8
2.3 Lexical Syntax. .. ccii ittt ittt ittt e e e e 10
2.3, Identifiers ittt ittt i et et e ettt 11
232 Numeric Literalsttt innivenneoennennnnnnn 11
2.3.3 Character String Literalsttt it reennnnnnnns 12
234 Punctuation Symbols i i e e et e 13

2.4 Compile-Time Facility i i it i it 13
CHAPTER 3 NAMING, BLOCK STRUCTURE, AND DECLARATIONS 15
31 Names............ it ettt ittt ettt e e e 15
3.1.1 Reserved Names vivit ittt ittt ittt etteeenennenononeneeneneens 16

3.2 Block Structure i ittt e ettt ettt et 16
3.3 ScopeofaDeclarationc0tiiiiiiiiii i i e e e 17
3.3.1 Summary of Declarationsand Scopescooiviirrninneeennnennn. 17

3.4 General Declaration Principles0iiiiiiiieiienennnnnnneeennn. 18
3.4.1 Factoring Declaration Keywords............ciiitiiiisnereerererneennn 18
342 Orderof Declarations iiiiiiiiiiiniieinnnanennnn 19
343 Circular Declarations00iitiiiritrinnnnnnnneneenennn 19
3.44 Expressionsin Declarationsc.0iitiiiiiiiniennnnnennnnn. 19
CHAPTER A4 MODULES i e, 21
4.1 Introductionto Pillar Modules.ttt irennnnnennenn. 21
4.2 General Module Level Declarations.ciittiiiinnnneennnnnn. 23
4.3 Importing Modules and Declarations.cciiiiiiininnnn... 24

4.4 Program Modulesoeeueeenonmnnntnnnaeteeentonnnnannarees

4.5 Definition Modules e ettt e
4.5.1 Using Pillar Definition Modules in Other Languagesc..ocvenen.

4.6 Implementation Modulesooiiii i
4.6.1 Declaration Completions.iititi i,
4.6.2 Implementation Without an Imported Declarationccvennnnn

4.7 External Declarationsuoeeteiennennneroocenneannsenasssonosees
4.7.1 Connecting the Declaration and the Completion. cvevennnn

4.7.2 Connecting an external-opaque-type...........cccooemrincererneeecnn..
4.7.3 Connecting external-proceduresotrienienreennnnn

48 Built-in Moduleo v ot v it ie it ettt

4.9 Module OPtiONS . . .« v iivtineieenaeneeeroeennenuanssesstanennanneess
4.9.1 Module Tdentificationcoeeneeneeaesnsoaeeannaeeessonscansasns
492 Module Linkage Options. cvovnvene ettt

4.9.2.1 Default Conventions for Global Symbols ovveeenennn
4.92.2 Qualified Globals Optionocuniniiiiinirrenrnnnnens
4923 Global Synonym Option ot veinninineinnererereataens
4924 Linker Value Optionc.coiiunerennenns PP
493 Module Managementcooueeonsacssonsoasasacnsnnnsansns
49.3.1 Module COnSiSteNCY . . . o v v e vt v v v renroroaeesnssonssnnaensnsssnos

CHAPTER S TYPES ittt iiiiiiiaiiaae e

5.1 Overviewof Pillar typest iiutinntiiinnennerennetenranaenans
5.1.1 Pillar's Type Structurec.ocutuiiemnrraeerenrirananoracees
5.12 Named and Unnamed Types. outnuereerierncanrneencconoeneens

5.2 TypeDeclarationscciieiiiiiunrninneettitrranrencrrenens
5.2.1 Type Specificationsovvrueeenn i eeianae et

5.8 Arithmetic TYPes . . .« oo vvtnvnernsanssosseeoenassanessesscanaaesces e

iv

5.4 Ordinal Types

..

5.4.1 The Concept of Rangecoveeneeeiitnennennecernunannranecen
542 BOOLEANttt inneennraeaseansenasssssnsssansansanssnosnonns
543 CHARACTER0oiv it iineienetnnseonsnonsssasennnnssnsenssonscns
5.44 The Types BYTE, WORD, LONGWORD and QUADWORD
545 Enumerated TYPesccotuvtermmnatosoetrrosenannassocasnnsaeeses

5.4.6 Subrange
54.7 BIT....

g = T R

...

5.6 Flexible TYPeS . ..o vveviviennnnueaeacaensnsenesssoetasasannscscnssens
5.6.1 Bound Flexible TYPeS oo cvvvvraenansssosnonsnnsnacscnsasanecss s

--

25

25
26

26
27
27

27
28
28
28

29
29
29
29
30
30
31
31
32

35

35
35
36

36
37

37

38
38
40
40
40
40
41
41

42

43
45

46
46

5.9 Blank_DATA Types ...
5.10 Array Types........

5.14 Procedure Types
5.15 Oﬁaque Types

...

...

L I T T T T

...

...

...

...

...

...

...

...

...

5.16 Relationships Among TYpes.ot itit ittt e e

5.16.1 Type Equivalence

...

5.16.3 Type Assignment Compatibilitycc0virenereunenunnn. ..
5.16.4 Conversion Between Compatible typescoveeerrmennnnnn.n...
5.16.5 Small Types and Constant Typesovueerenenrnnnnnnnnn.n.

...

...

5.17.2.1 Rules for Size-options in Subrange Typescccuoveeenennnn...
5.17.22 Rules for Size-options in Small Set Typescccuoveeeneenenn..
5.17.2.3 Rules for Size-optionsin Record Types.vvuurernennnnnn..
5.17.2.4 Rules for Size-options in Opaque TyPesoovvreennnnennnn..
5.17.3 The LAYOUT Optionioiiniiiinttn et ieeanannn
5.17.3.1 Determining Alignment Requirements.cvvuun....
5.17.3.2 The Position Optionoitittn ittt e e,
5.17.3.3 Filler Componentsouitirnunenense e,

CHAPTER 6 CONSTANTS, LITERALS, AND CONSTRUCTORS

6.1 Constant Declarations .

...

...

6.3 Initializers and Constructorsovit it en et te ettt e

6.3.1 Initializers

...

...

65
65

65
66

67
67
67
67
68
68

6.3.4 Record CONBEIUCEOTS oo vieee et ieaa e 70

6.3.4.1 Using OTHERS in record-constructorsc..oooaeeeeen 70
CHAPTER 7 VALUES AND VARIABLES ittt 73
7.1 Overview of Values and Variables c.iiiiiiiiiniiniennnnne 73
79 Value Declarationsc.uoviiuennenneenecanesareoneaeaseneaennennes 73
7.2.1 Value Completionscvuena.. et e 74
7.3 Variable Declarations e e et et e e 74
7.3.1 Variable Completionsuuiieuneeniiiietnaan e 75
7.4 BIND Declarationsoeueunieueaanneneenseneasnesanenssscansnnsns 75
7.5 DEFINE Declarationsc.ccveuerneuoroenseareonornasascecassanennsns 76
CHAPTER 8 STORAGE ALLOCATION. i ittt 79
8.1 Storage Classesccovvreecnnnnnernnnnnaeseesaueeteannaneeneen s s 79
8.2 Data Sharing and Aliasing 80
l
8.3 ENVIFONIMENES ..o ovvaveranenesneasnnaasosasessssonsnsosasstsasasnsnss 80
8.3.1 Environment Declarationscceieiiiiiriririenrernenns 80
8.3.2 Properties of Environmentsc..ooeeiiaianet ittt 81
8.3.3 Enabling an Environmentccciieieieieninn PP 81
8.34 Procedures and Environmentsctteitetianieiiiarns 81
CHAPTER 9 DATA REFERENCESiiiiiiiiiiiieinanacsannanes 83
9.1 Syntax of Data References............oooeiiiirinnniinnnnenennneereens 83
9.2 Interpretation of Referencesc.oiiecreniiarnnnnnneeerrrerenes 83
9.2.1 Locationsand Values e et et 83
922 The Valueofa Reference Ruleciiiiiiiniiinneniananes 84
9.3 Reference toa Named Dataltemcoviuiniinienerrnennnnnnens 84
9.3.1 Referencetoa Named Constantc.ciiiuiriennenenreneenaens 84
9.3.2 Reference to an Element of an Enumerated Typeccnnnn e 84
9.33 ReferencetoaNamed Value.covvnrniiiiiiienaneneeannens 84
9.34 ReferencetoaVariable.c.iieiiiiirainernrenanneens 84
9.35 ReferencetoaBindItemttt 84
9.36 ReferencetoaDefineItemcooiiiniiiirininenerneennn 85
9.3.7 Reference to a Loop Control Variablecoiinieinieiinneeeennn 85
0.3.8 Referencetoan IN Parametercouieimnnnaennrnrnannernen 85
9.3.9 Reference to an IN Local Parameter..............ooiniirirnerenen 85
9.3.10 Reference to an OUT, IN OUT, BIND, or Result Local Parameter 85
9.3.11 ReferencetoaProcedureccteeierntiririrennnnnnanencnn 85
9.3.12 Referencetoa Condition.covuenririiinienirnnneeenens 85
9.4 Reference to the Value of a Procedure Invocationccvnvecernnen 85
9.5 Reference to the Value of a Built-in Function Invocationccovvenennn 86

9.6 Indirect Reference . .

...

9.6.1 Dereferencinga Pointer Value it iiiunnunnn.
9.6.2 Implicit Dereferencingt iiiiiiiiiiiriiiiinnnennnn.

9.7 Dot-qualified Reference ittt i
9.7.1 Reference to an Element of an Enumerated Typecoovvvnen. ...
9.7.2 Reference to an Extentofa Named Typecuiu....

9.7.3 Reference to an Extent of a Parameter
9.7.4 Reference to the Length of a LIST Parameter or Local Parameter

..................................

.............

9.7.5 Reference to an Element of an Environmentc.oouiuuenrrnnn..

9.9 Substring Reference
9.10 Type Cast Reference
9.11 Simple References .

...

...

..

...

CHAPTER 10 EXPRESSIONS. i,
10.1 Syntax of EXpressionsuuunetereennnenneeeeeeennnseennneeenennns

10.2 Simple and Constant ExXpressions0uttttneerennnnrennnneennnnan
10.2.1 Summary of Simple Expression Rulesivin...

10.2.2 Dynamic Values

in Simple Expressions00tiiuiiiiaannn..

10.2.3 Summary of Constant Expression Rules................................

10.3 Principles of Expression Evaluation ittt ernnnn.
10.3.1 Orderof Evaluationcuutiiieeninnnnreennnneenennennnnn
10.3.2 Incomplete Evaluation iiiiiiintnrennnueennnneeennn
10.3.3 Evaluation of Integer Operationsciiuiriernennnenrnenennnn
10.3.4 Evaluation of Floating-Point Operations.ccuivirtnnnennnennn.

10.4 Interpretation witha Target Typeccviiiiiiiiriinnnnrennnnss e

10.5 Arithmetic Operationsttt iiiiiinettinnnteennnneennns
10.5.1 Negation Operator i ittt
10.5.2 Addition Operator. ittt ittt ettt et e
10.5.3 Subtraction Operatoriitttiiniiiiineeinnnennnnnnas
10.5.4 Multiplication Operatorc.iituiiniitinnneeneennenneeanns
10.5.5 Division Operatorcvitiiiiinieieeeerernnnneeennnneenneanenn
10.5.6 Integer MOD Operatoriiiiiieie ettt innneneenennesonenneas
10.5.7 Arithmetic Comparison Operatorsccouveurenennoennennsss
10.5.8 Absolute Value Built-in Function iiiiiiinninnrnnnn.
10.5.9 Integer Exponentiation Operatorc.cittiteeereernnnnnnnn
10.5.10 SIGNBuilt-in Function. ittt ittt iinenanennn
10.5.11 ODD Builtin Function i iiinnnnnreennn
10.5.12 MAX Built-in Function ittt innnnnnnnnns
10.5.13 MIN Built<in Function ittt tiiiriinernnreneanannas

10.6 Boolean Operations

...

86
86
86

86
87
87
87
87

88
89

89
89
90

91

91

93
93
93
94

94
94
95
95
95

95
96

SELEEEE

97
97
97
98
98
98
98

98

vii

10.6.1 Boolean Complement Operatoro iiittiiinanencncnnns 98

10.6.2 AND Operatoroeeneeunnneeenerenesaneraneouesussenncesss 98
10.6.3 OR Operatoro v it ienie e tnanen et aeananassoenes 99
10.6.4 Boolean Comparison Operators.outntenenneencennrnneenns 99
10.6.5 Boolean Exclusive OROperator it 99
10.7 Ordinal Operationsiuuttteininrnnnernneroeeeaneeennnnonnasen 99
10.7.1 Ordinal MAX Built-in Functioniittniitiiiinnneeeananns 99
10.7.2 Ordinal MIN Built-in Functiont i ittt it e iae e 99
10.7.3 Ordinal Comparison Operatorsccuuteteneneeenncrnrnneenns 100
10.8 Set Operations.vevtneneeraeesenaena sttt 100
10.8.1 Set Complement Operatorccieeiernirnrnneannoensenens 100
10.8.2 Set Union Operatorc.coeieeeeeneneenencntnonearaneanaens 100
10.8.3 Set Intersection Operator e 100
10.8.4 Set Difference Operator e et 100
10.8.5 Set Exclusive OR Operatorciiuiitnennrne et eneaneanenns 101
10.8.6 Set Comparison Operatorsccuoveeeeeocnenerennnauanoeesosns 101
10.9 Character String Operationsc.uutietirie it intnneenaaeecenecnns 101
10.9.1 String Concatenation Operatorcuiiuiitirianarnernnn. 101
10.9.2 FIND_MEMBER Built-in Function.oivveniii ittt 102
10.9.3 FIND_NONMEMBER Built-in Function............ ..., 102
10.9.4 FIND_SUBSTRING Built-in Functionot 102
10.9.5 TRANSLATE STRING Functionieitienmaneansretransesns 103
10.9.6 String Comparison Operatorscocveetituvinearnnaneaeceones 104
10.10 Pointer Operations.c.otenunteneroenerneerenanraaaasneacans 104
10.10.1 Pointer Addition Operatorcoiiiuinnrenercnnnneannnaanns 104
10.10.2 Pointer Subtraction Operatorcciitiietiieriieneennenonns 104
10.10.3 ADDRESS Built-in Function.ottt ier ittt 104
10.10.4 CONTAINING RECORD Built-in Functionot 105
10.10.5 Pointer Comparison Operationsc.otititinneneeecnanes 105
10.11 Operations Related to Typescuniiiniirnnrinntettnnarenennn 106
10.11.1 MAX Built-in Functionttt ittt errtecenoroasasnennns 106
10.11.2 MINBuilt-in Functioncciitiiiitiiiiinenerrecneceennraessas 106
10.11.3 DATA_TYPE_SIZE Built-in Functionot 106
10.11.4 FIELD _OFFSET Built-in Functioncitiiiieiier oo, 106
10.11.5 Conversion Functionsccciitiiiiiiiennronsscsconanssnnns 107
10.11.5.1 CONVERT_ORDINAL Built-in Function v 107
10.11.5.2 CONVERT_POINTER Built-in Functioncicoieieeeen.n 107
10.11.5.3 CONVERT _ARITHMETIC Built-in Functioncooeetn. 108
10.11.5.4 CONVERT SET Built<in Function i, 108
10.11.5.5 CONVERT STRING Builtin Functiono, 108
10.11.5.6 CONVERT_UNTYPED Built-in Function.t 109
10.11.6 INITIALIZE_FIELDS Built-in Function ot 109
10.12 Miscellaneous Built-in Functions.o ivee ittt rrneninnnnonaesenaesan 110
10.12.1 ZERO Built-in Functioncciviiiiiiittnnrnaeeesasnsonsaaansns 110

viil

10.12.2 ARGUMENT_PRESENT Built-in Function.c..0vuuunn.... 110

10.12.3 VALIDATE _VALUE Built-in Function0ouuuirnnnnnn. .. 110
10.12.4 VALIDATE_ALIGNMENT Built-in Function0 111
CHAPTER 11 STATEMENTS i 113
11.1 Control Flow and Statement Sequences.0 uuuemnnni. . 113
11.2 ASSERT Statementttt et e e e e e e e, 114
11.3 ASSIGNMENT Statementouuunennenensseeaenenenen. 115
11.4 CASE Statementuutititiitt ettt e e e 115
11.5 Compound Statementuininemien e, 116
11.6 EXIT LOOP Statementuuttuntt et eee e e e, 116
11.7 GOTO Statementttt et e e e et e e e e e, 116
11.8 TF Statementottt ittt ittt e e e e e e e, 117
11.9 LOOP Statement vutitn ittt ittt e e e e e e e e e e, 117
11.9.1 Loop Control by an Ordinal Typeccvvmrne e, 118
11.9.2 Loop Control by Increment or Decrementoovueennnunnnnn. 119
11.9.3 General Loop Control ittt 120
11.10 NOTHING Statementc.vuvtinee e eeeeeememn i, 120
11.11 Built-in Function Call Statement0 it nnnnnn. 120
11.11.1 READ_REGISTER Built-in Functionc000uuinnruunnn... 121
11.11.2 WRITE_REGISTER Built-in Functionc.c0uuinurunnunn. 121
11.12 Procedure Call Statement 0t 122
11.13 RAISE Statementcuuitiiitinn e et 123
11.13.1 RAISEERRORttt e e e e e e e e 123
11.13.2 RAISE EXCEPTION and RAISE REPORTo ottt ieeee e, 123
11,133 RAISE VECTOR . .. ittt ittt ettt et et e et et et e et 123
11.14 RETURN Statementuiiutiit it it ne et neeneeenennnnn. 124
CHAPTER 12 LOCAL BLOCKS AND EXCEPTION HANDLING 125
12,1 Local Blocks.o ittt ittt i i e e 125
12.1.1 DeclarationsinaLocal Blockoouiitinnenn e 125
12.1.2 Subproceduresiiiii i e e e e 126
12.1.3 Termination of a Statement Sequence 126
12.13.1 Explicit Unwinding ittt ieieiennnnnns 126
12132 Implicit Unwindingttt ieteieenennnnn. 126

12.1.4 Interpretationofa Local Blockconrvirrimnninnnnrnnnnene s 126

12.14.1 The Enable Section of a Local Blockccooovveeens e 128
12.1.4.1.1 AcqUIiting 8 LOCKo v vuneenienne et 128
12.1.4.1.2 Disabling Alertsiiuiurinrinire e 128
12.1.4.1.3 Enabling and Disabling Underflowcovvninnnnnenen. 128
12.1.4.1.4 Enabling a Condition Handler...........c.covvmnrnnneneennnn 129
12.1.4.1.5 Enabling a Message Vectorcoocecrrronnnneereenrne. 129
12.1.4.1.6 Enabling an Environmentottt 129

12.2 Contents of the $CONDITION Built-in Module.ovvennrinnnrrnneeeen. 129
12.2.1 SEVERITY .. iotiereeeereeennenasnensneenaaesestosnssosnssecsnes 130
12.2.2 STATUS oo it itneteesaeneassensasssanaassesacesasasesesecses 130

112.22.1 GET_SEVERITY Built-in Functioncovcvmeiireernnnnens 130
12.22.2 SUCCESS_STATUS Built-in Functioncovhvenreiiaeneneenne 130
12.2.3 MESSAGE_VECTORtuttnnrnneocnronnanansessoensanancecnnes 131

12.2.3.1 GET_SEVERITY Built-in Functionc.cteeerneneerennn. 131

12.2.3.2 GET_STATUS Built-in Functionccccooeenierierncenenn. 131

12.2.3.3 GET_EXCEPTION_FLAG Built-in Functioncomveveneeeennns - 132

12.2.3.4 SET EXCEPTION_FLAG Built-in Functioncoovrereeneen.. 132

12.2.3.5 SET_MESSAGE Built-in Function...........occvienanenrereneenes 132

12.2.3.6 EXPAND_MESSAGE_VECTOR Built-in Functioncvvvnvvnne 132

12.2.3.7 COPY_MESSAGE_VECTOR Built-in Functionconmeevneens 133

12.2.4 CONDITION HANDLERcc0ioeeenennnnenrranaancnerece e 133
12.2.5 CONDITION_DISPOSITIONccvettreonnaesnrecnennnennceenres 133
1226 USER SEMAPHOREcittnenntnennnnennenenanancecn ey 133

12.3 Messages, Conditions, Exceptions, and Reports.........c.oovvvevvrennercrens 134
12.3.1 Promotionof a Conditionc.ccutiriienrtirariana e 134
12.3.2 Message Declarationsc...covemrenerrn i 134
12.3.3 Condition Declarationscueeetiennenrcecreraaenrrecnneenns 134

12.4 Procedural Condition Handlingccvontnnrnninannncenrcernnennee. 135

12.5 Exception Handlersoouutiiianennnennrennerecn e 136

126 Unwind Handlersc.coviumenarneneeonaanssnenncunrereneseenes 136

CHAPTER 13 PROCEDUREScc it 137
13.1 Procedure Declarationscececereneneencnannrenernrrar e 138
13.1.1 Procedure Type Specifications and Constructorsoveverreeneres 138
13.1.1.1 Parameter Repetitions civirrenrenrorerrrnneenns 139
13.2 Parameterscoceeecesoraonaneasssasasesstasasasa sttty 139
13.2.1 INPArameterscoccevesoosesonsnsarsosanseseesacerrosncesse 141
13.2.1.1 Special Restrictions on IN Parameters.ccceeverereererenee 142
13.2.2 OUT Parameters. ccocveencaronannnsosssssnsssosretosesncneses 142
1323 INOUT Parametersc.oevceraronsossscsnanseesnrornsenserscs 142

13.2.3.1 STRING and VARYING_STRING, OUT and IN OUT Parameters......... 142
13.2.4 BIND Parameters...... e B R 143

1325 Matching Extents ittt ittt eeainann, 143

13.2.5.1 The Normal Extent-Matching Rulec0viiiiieenenn... 144
13.2.5.2 Extent Matching for CONFORM ATTAYSo vvvneeennnnnennnn.. 145
13.2.6 Parameters with Captured Extentsccuiuinnnnnnnn.. 146
13.2.7 Parameter Optionsttt ittt ettt e e 146
13.2.8 The CONFORM Optionc0ii ittt et e e e 146
13.2.9 Parameter Default Values................... ... 0., 147
13.2.10 OPTIONAL Paramete?s ... 148
13.2.11 LIST Parameters.ottt ti et it entiitee et eeneann 148
13.2.11.1 Argument Interpretation for LIST Parameters 149
13.2.12 KEYWORD Parameterscciutiiintininintennnnnnnns 149
13.2.13 STATUS VECTOR Parameters ooviitineneieneenemeenennnn. 150
13.3 Procedure Results ittt ittt 151
13.3.1 Procedures Returning STATUSottt ittt ittt et aannnn. 151
13.4 Procedure Invocationsc.itiiiit ittt e 152
1341 Argument Lists. e 152
13.4.2 Argument List Validation i, 154
13.5 INLINE and INLINE ONLY Proceduresoouiueeineeeenneennnnnn. 155
13.6 EXTERNAL Procedures.uvittteitenetine e eeeeeseeeeaeennnnns 156
13.6.1 Procedure Completionsoutitiitinnnnnnenneenennennnnn 156
13.7 Environments and Proceduresc0ititt ittt it 157
13.8 Procedure LinKkagesttt ittt e e e 157
13.8.1 Argument Passing Mechanisms and Pillar Conventions 157
13.8.2 Linkage Specifications e ettt e, 158
CHAPTER 14 TARGET-SPECIFICFEATURES, 161
APPENDIX A COLLECTED SYNTAX ...ttt i, 163
GLOSSARY
INDEX
TABLES
2-1 Pillar Character Set.............iuiiiitiiiiiiiinininneenenenenennns 5
2-2 Pillar Keywordsottt ittt it iiiee it et eeeenennneaans 9
2-3 Pillar Punctuation Symbols0 0ttt 13
3-1 Reserved Names.ciiuiitinrenneneenneneenneeneeneeneeneennn 16
5-1 Primitive Typesttt ittt 35
6-1 Default Types for Literal-Constantsooeeeennnnnnnnneeeennnnn. 66
6~2 Initial DEFAULT Field Valuesc.iitiiitiiiinetenennennnnnn. 71

xi

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

CHAPTER 1
NOTATION AND METHOD OF DEFINITION

1.1 Organization of the Definition

For the most part, the definition of Pillar (in this manual) is divided into units, each
unit describing a particular language construction. The description begins with a template
showing the form of the construction. The template is either a syntactic category definition
or an operation template. It is followed by text explaining the construction’s interpretation,
and this generally refers to the interpretation of subphrases named in the template. For
example, the definition of an assignment-statement begins:

B assignment-statement
data-reference = expression ;

The data-reference is interpreted to yield a location that must be assignable. The
location has a type ¢, which is used as the target type while evaluating the expression.

In this example, the interpretation of each subphrase is qualified in some way; the data-
reference is interpreted to obtain an assignable location, and the expression is interpreted
with a target type (see Section 5.16.2). In connection with expressions and statements, the
terms evaluation and execution are also used to mean interpretation.

For the purposes of definition, the interpretation of a Pillar source module can be divided
into two steps:

1. The module is analyzed as an instance of the module syntactic category. If not rejected
for being an error, the module can now be treated as a tree structure without regard
to details of concrete representation, such as punctuation. This step is primarily
defined by the syntax; however, lexical analysis and the compile-time facilities add
some nonanalytic elements to the process. This is covered in Chapter 2.

2. The module is dynamically interpreted in an environment containing storage, other
modules, external communication devices, and such. As explained above, the rules for
this interpretation are tied to the syntax.

When a module is compiled, the compiler carries out Step 1 and as much as is possible of
Step 2. It is not practical to specify exactly what the compiler does, but certain things are
guaranteed, especially regarding error detection and the evaluation of constant-expressions.

Technically, the syntax is ambiguous. However, the semantic rules that apply at compile
time eliminate the ambiguities.

Notation and Method of Definition 1

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.2 Errors, Exceptions, and Range Violations

An error is a violation of a Pillar language rule. Most errors are detected by the compiler.
Errors that might not be detected by the compiler are classified as exceptions, range
violations, or errors with unpredictable consequences.

An exception happens during interpretation of a language construction; it abruptly suspends
and then terminates the interpretation. Continuing from the point of exception is not
allowed. Recovery is possible using condition handling features that apply at the local-block
level.

A range violation is an error that will cause an exception if the module containing the range
violation is compiled with range checking enabled. If range checking is not enabled, the error
has unpredictable consequences. As far as possible, the compiler checks for range violations
at compile time, whether or not range checking is enabled. Except within a declaration, such
detection does not generally prevent successful compilation, because the offending part of
the module might never be executed.

1.3 Syntax Notation

Pillar has a two-level syntax. The lexical syntax defines the division of a line of text into
tokens and white-space, the latter being ignored after lexical analysis. The terminal symbols
of the lexical syntax are individual characters.

The main syntax of Pillar defines the structure of a Pillar source module. The terminal
symbols of this syntax are the tokens produced by lexical analysis.

Both levels of syntax use the same notation. A few syntactic categories are defined
informally, the remainder by definitions of this form:

M category-name
constructive-definition

Within these definitions, category-names are set in lowercase and a sans-serif typeface,
with compound names hyphenated. Specific symbols are in uppercase; these symbols never
contain blanks.

1.3.1 Metasymbols in Syntax Definitions

A few symbols in the language are similar to symbols in the syntax notation. In the syntax
notation, such language symbols are delimited by quotation marks (which are not language
characters); for example: ’{’. To avoid ambiguity, symbols are also delimited this way if two
specific language symbols occur next to each other in a syntax definition. In addition to the
apostrophe, the following symbols are used as metasymbols in syntactic definitions.

Metasymbol Meaning

{} Braces denote a set of alternatives, one of which is used. The alternatives are displayed on
separate lines within the braces. (It is possible to have only one alternative within the braces; this
is useful with the ellipsis metasymbols.)

2 Notation and Method of Definition

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

Metasymbol Meaning

[1 Double brackets denote a set of choices, none or one of which is used. The alternatives are
displayed on separate lines within the brackets.

Ellipses are used after a closing brace or bracket to denote possible repetition: one or more
occurrences after a brace, zero or more occurrences after a bracket. When the braces or brackets
enclose more than one alternative, each occurrence can be a different alternative.

The occurrences are not separated by any additional symbois.
roue The occurrences are separated by commas.
- The occurrences are separated by semicolons.

1.4 Description of Operations

In many cases, an operator or built-in function is generic in the sense that it accepts a variety
of data types; its meaning for one data type can be quite different from that for another.
Typically, the description of the operator or function’s meaning for a particular data type is
given in a section with other operations on the same data type. Thus, the description of “+”
as an arithmetic operation is given in the section on arithmetic operations; “+” as the string
concatenation operator is described in the section on string operations.

The description of an operator or built-in function begins with a display showing a template
invocation of the operation. Text stating which data types are applicable to this case of the
operator or function will follow the description, or will be presented at the beginning of a
section if the data types are the same for an entire group; for example, the set difference
operator is defined this way:

result=x —y;
The result contains every element that is a member of x but not a member of y.

At the beginning of the Set Operators section is this paragraph:

The operands of set operators must have set types with the same range. (Requiring that
the set ranges be identical eliminates situations that produce very complex code; the
CONVERT_SET function [see Section 10.11.5.4] can be used to explicitly adjust ranges.)
Unless specified otherwise, the result’s type is a set type with the same range as the
operands.

1.5 Variables and Symbols in Text

Some parts of the manual use an informal mathematical style of exposition in explaining the
language rules. Names that are variables of this exposition are set in italics; for example:

If the target type ¢...

Here, the variable name ¢ denotes a type occurring in the interpretation of an arbitrary
Pillar program.

In the text, normal mathematical symbols have their conventional mathematical meaning;
they are not Pillar operators; for example:

When m/3...

Notation and Method of Definition 3

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

If m has the value 4, m/3 has the value one-and-one-third (which cannot be represented
exactly by any standard Pillar data type).

Built-in Pillar objects (types, constants, functions, and such) and Pillar keywords are denoted
by their standard Pillar names in uppercase. Thus, “INTEGER” is the name of a built-in
Pillar type, while “integer” is just an English word.

When a fragment of a Pillar program appears in this manual, it is set between paragraphs,
unless it is very small, in which case it is enclosed in quotation marks, as in:

If the expression “X[I] + 2”...

1.6 Remarks

Throughout this language specification are remarks from the language designers. These
remarks are printed in italics and surrounded by triple backslashes, for example: \\\ Here

is what a remark looks like. \\\

4 Notation and Method of Definition

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

CHAPTER 2
LEXICAL ELEMENTS

This chapter describes Pillar’s character set, lexical syntax, and compile-time facility.

2.1 Character Set
Pillar is based on an 8-bit character set.

Pillar lists all the characters with character codes 0 through 127. Those characters listed as
nonescaped characters can be used directly in character-string-literals, or for other purposes,
as shown in the lexical syntax. In addition, the quotation mark ("), back slash (\), horizontal
tab (E{,), and form feed (I%\) characters are significant in the syntax; no other characters are
allowed in Pillar source modules. All 256 characters are allowed in character string data,
and there is a convenient escape notation for them in character-string-literals.

Table 2-1: Plllar Character Set

Terminal Decimal Nonescaped Escape
Graphic Value Character? Name Description
0 NUL Null character
1 SOH Start of heading
2 STX Start of text
3 ETX End of text
4 EOT End of transmission
5 ENQ Enquiry
6 ACK Acknowledge
7 BEL Bell
8 BS Backspace
H‘. 9 HT Horizontal tab
I.F 10 LF Line feed
\4_ 11 vT Vertical tab
FF 12 FF Form feed
% 13 CR Carriage return
14 SO Shift out
15 S| Shift in
16 DLE Data link escape
17 DC1 Device control 1

Lexical Elements 5

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

Table 2-1 (Cont.): Plllar Character Set

Terminal Decimal Nonescaped Escape
Graphic Value Character? Name Description
18 DC2 Device control 2
19 DC3 Device control 3
20 DC4 Device control 4
21 NAK Negative acknowledge
22 SYN Synchronous
23 ETB End of transmission
24 CAN Cancel
25 EM End of medium
26 sus Substitute
27 ESC Escape
28 FS File Separator
29 GS Group separator
30 RS Record separator
31 - Us Unit separator
32 yes Space
! 33 yes Exclamation point
" 34 Quotation mark
35 yes Number sign
$ 36 yes Dollar sign
% 37 yes Percent sign
& 38 yes Ampersand
! 39 yes Apostrophe
(40 yes Opening parenthesis
) 41 yes Closing parenthesis
* 42 yes Asterisk
+ 43 yes Plus sign
, 44 yes Comma ’
- 45 yes Hyphen and minus sign
. 46 yes Period and decimal point
/ 47 yes Slash
0 48 yes Zero
1 49 yes One
2 50 yes Two
3 51 yes Three
4 52 yes Four
5 53 yes Five
6 54 yes Six
7 55 yes Seven
8 56 yes Eight
9 57 yes Nine
58 yes Colon

6 Lexical Elements

Digital Equipment Corporation - Confidential and Proprietary

For internal Use Only

Table 2-1 (Cont.): Pillar Character Set

Terminal Decimal Nonescaped Escape
Graphic Value Character? Name Description
; 59 yes Semicolon
< 60 yes Less than
= 61 yes Equal sign
> 62 yes Greater than
? 63 yes Question mark
@ 64 yes At sign
A 65 yes Uppercase A
B 66 yes Uppercase B
C 67 yes Uppercase C
D 68 yes Uppercase D
E 69 yes Uppercase E
F 70 yes Uppercase F
G 71 yes Uppercase G
H 72 yes Uppercase H
I 73 yes Uppercase |
J 74 yes Uppercase J
K 75 yes Uppercase K
L 76 yes Uppercass L
M 77 yes Uppercase M
N 78 yes Uppercase N
o} 79 yes Uppercase O
P 80 yes Uppercase P
Q 81 yes Uppercase Q
R 82 yes Uppercase R -
S 83 yes Uppercase S
T 84 yes Uppercase T
U 85 yes Uppercase U
" 86 yes Uppercass V
w 87 yes Uppercase W
X 88 yes Uppercase X
Y 89 yes Uppercase Y
p4 90 yes Uppercase Z
[91 yes Opening bracket
\ 92 Back slash
1 93 yes Closing bracket
A 94 yes Circumflex
- 95 yes Underscore
! 96 yes Grave accent
a 97 yes Lowercase a
b 98 yes Lowercase b
99 yes Lowercase ¢

- Lexical Elements 7

Digital Equipment Corporation - Confidential and Proprietary
For Iinternal Use Only

Table 2-1 (Cont.): Pillar Character Set

Terminal Decimal Nonescaped Escape

Graphic Value Character? Name Description

d 100 yes Lowercase d
e 101 yes Lowercase e
f 102 yes Lowercase f

g 103 yes Lowercase g
h 104 yes Lowercase h

i 105 yes Lowercase i

i 106 yes Lowercase |
k 107 yes Lowercase k
! 108 yes Lowercase |
m 109 yes Lowercase m
n 110 yes Lowercase n
o 111 yes Lowercase o
p 112 yes Lowercase p
q 113 yes Lowercase q
r 114 yes Lowercase r
s 115 yes Lowercase s
t 116 yes Lowercase t
u 117 yes Lowercase u
v 118 yes Lowercase v
w 119 yes Lowercase w
X 120 yes Lowercase x
y 121 yes Lowercase y
rd 122 yes Lowercase z
{ 123 yes Opening brace
| 124 yes Vertical line

} 125 yes Closing brace
~ 126 yes Tilde

DEL 127 DEL Delete, rubout

2.2 Source Modules and Syntactic Analysis

A Pillar source module is a sequence of lines, each line a sequence of characters. The module
is interpreted as an occurrence of the module syntactic category in the following way:

e Each line must satisfy the lexical syntax for a line; this determines the tokens within
the line.

e The tokens in all lines form a single token sequence. (This eliminates the division into
lines and eliminates any white-space that occurred between tokens.) From this point
on, each token is treated as a terminal symbol.

e If the token sequence contains any compile-time-facility symbols, the token sequence
is transformed according to Pillar’s compile-time-facility rules. The result of this step
must satisfy the syntax for the module category. Pillar’s compile-time-facility is very
primitive, and is described in Section 2.4.

8 Lexical Elements

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The compiler actually inferleaves the preceding steps, but the effect is the same as if they
were sequential.

A token is any literal, identifier, or punctuation symbol (all these categories are defined in
the lexical syntax). The various categories of literals are used directly in the main syntax.
Punctuation symbols are used as specific terminal symbols.

Identifiers are used two ways in the main syntax: as names, or as specific terminal symbols
(as listed in Table 2-2). Note that some keywords are reserved words; they cannot in general
be used as names (that is, they are not allowed as an instance of the name category).

Table 2-2: Pillar Keywords

Keywords in boldface are not reserved in the Pillar compiler.

ALIASED ENVIRONMENT MOD RETURN
ALIGNED ERROR MODULE RETURNS
ALIGNMENT EXCEPTION NEXT REVEAL

AND EXIT NIL SET
ANYTYPE EXTENDS NOT SHARED
ARGUMENT EXTERNAL NOTHING SIZE

ARRAY EXTENTS OF STATUS
ASSERT EXTENSIBLE ONLY STRING
BEGIN FATAL OPAQUE SUBPROCEDURES
BIND FILLER OPTIONAL SUCCESS
BIT FOR OPTIONS THEN
BIT_DATA GLOBALS OR TO
BOOLEAN GOTO ORDER TRAILING

BY HANDLER OTHERS TRUNCATE
BYTE IDENTIFICATION ouT TYPE
BYTE_DATA IF OVERLAY UNDERFLOW
CAPTURE IMPLEMENT PACKED UNION

CASE IMPORT PILLAR UNWINDING
COMPONENTS IN PILLAR$_ASSERT VALUE
CONDITION INFORMATIONAL PILLAR$_ERROR VARIABLE
CONFORM INLINE POINTER VARIANTS
CONSTANT INTEGER POSITION VARYING_STRING
DEFAULT KEYWORD PROBING VECTOR
DEFINE LARGE_INTEGER PROCEDURE WARNING
DESCRIPTOR LAYOUT PROGRAM WHEN
DISABLE LINKAGE QUADWORD WHILE
DOUBLE LINKER QUADWORD_DATA WITH

DOWN LIST QUALIFIED WORD

ELSE LOCK RAISE WORD_DATA
ELSEIF LONGWORD REAL XOR
ENABLE LONGWORD_DATA RECORD

Lexical Elements 9

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Table 2-2 (Cont.): Plllar Keywords

END LOOP REFERENCE
ENTRY MESSAGE REPORT

2.3 Lexical Syntax

Pillar’s lexical syntax defines how a line is partitioned into tokens. A line can contain a
form feed (at the beginning only), tokens, white-space (spaces and horizontal tabs) and a
comment (at the end only). White-space can appear before, between, and after tokens.

Note that the representation of lines in the operating system environment is not covered by
the Pillar language definition. Troublesome characters, such as line feed, are excluded from
Pillar source modules so that they need not be handled by lexical analysis.

M line
I FF] [white-space] [token [white-space]]... [comment]

H token

(identifier
compile-time-facility-symbol
decimal-literal

binary-literal

octal-literal >
hexadecimal-literal
floating-point-literal
character-string-literal
| punctuation-symbol J

Nonpunctuation tokens must be separated by white-space or punctuation symbols; they
must not be adjacent. For example,

FOR i=1 TO 10 LOOP
is legal, whereas

FORi = 1TO10LOOP
is not.

B white-space

pace 1

A comment begins with an exclamation point. The rest of the line can contain any of the
characters allowed in a source module except a form feed.

10 Lexical Elements

Digital Equipment Corporation - Confidential and Proprietary
For Iinternal Use Only

B comment

non-escaped-character
, Htab H

\

A non-escaped-character denotes a character with a character code in the range 32-126 or
160-255, excluding the quotation mark (") and back slash (\). (Non-escaped-characters are
indicated in Table 2—-1.) The tab category stands for a single horizontal tab character.

2.3.1 Identifiers

Identifiers are composed of letters, decimal digits, underscores (_), and dollar signs ($). The
first character cannot be a digit.

B identifier
letter j:tter
$
- decimal-digit

An instance of the letter category is one of the characters A-Z or a—z. Uppercase and
lowercase are equivalent in identifiers; “a” is replaced by “A,” “b” by “B,” and so forth. An
instance of the decimal-digit category is one of the digits 0-9.

2.3.2 Numeric Literals

The data type assigned to a numeric literal depends on the literal’s form and the context in
which it occurs; the rules are in Section 6.2.1 and Chapter 10. In numeric literals, the digits
0-9 are used with their normal meaning. The letters A-F and a—f are used as hexadecimal
digits.

An instance of the categories decimal-, binary-, octal-, or hexadecimal-digit-string denotes
a sequence of one or more of the indicated class of digits. Such a digit string denotes a
nonnegative integer value according to the normal conventions for numbers in its base.

B decimal-literal

decimal-digit-string
B binary-literal

" { binary-digit-string }... " { g }
M octal-literal

" { octal-digit-string }... " { ?) }

Lexical Elements 11

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

M hexadecimal-iteral

" { hexadecimal-digit-string }... " {);(}

A floating-point-literal denotes a rational number, and it uses the conventional decimal
floating-point notation. The exact value can be changed when converting to the internal
form, which depends on the type associated with the literal.

M floating-point-literal
decimal-digit-string exponent
decimal-digit-string . decimal-digit-string [exponent]
.decimal-digit-string [exponent]

M exponent

{; } [[“]]decimal-digit-string

2.3.3 Character String Literals

B character-string-literal

. [non-escaped-character "
escaped-character

The value of a character-string-literal is the sequence of characters between the quotation
marks, with each occurrence of an escaped-character replaced by the character it denotes.
The data type depends on the number of characters and the context in which the literal
occurs; the rules are in Section 6.2.1 and Chapter 10.

B escaped-character

A\

\’
\(decimal-digit-string)
\(identifier)

The first two cases denote the backslash and quotation mark, respectively. The third case
denotes the character whose character code is the indicated integer, which must be in the
range 0..255. In the final case, the identifier (mapped to uppercase) must be one of the
escape names listed in Pillar, and it denotes the corresponding character. For example,

"ABC\ "DEF\ \ GHI\ (126)\ (HET)"
denotes the string
ABC"DEF\ GHI~H,

See Table 2-1 for a list of escape names.

12 Lexical Elements

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

2.3.4 Punctuation Symbols

An instance of the punctuation-symbol category is any of the sequences of characters shown
in Table 2-3.

Table 2-3: Pillar Punctuation Symbols

() * T+ -

/ . , ; :

{ } [] ~

= > < e

. <= => <> ==

+)

2.4 Compile-Time Facility
The only compile-time facility in the Pillar compiler is a %ZINCLUDE feature; its form is:
%INCLUDE character-string-literal

The string must be a file specification, using the host system rules, optionally followed by
/LIST or /NOLIST to include or not include the file in the compiler listing; for example:

%$INCLUDE "somefile"/LIST

On a VMS system this includes the file named “SOMEFILE” from the current default
directory. The default file type for an included file is .PILLAR.!

1 Pillar bas a complete compile time facility already designed. However, due to schedule constraints, it will not be released
until after V1 Pillar.

Lexical Elements 13

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

CHAPTER 3
NAMING, BLOCK STRUCTURE, AND DECLARATIONS

3.1 Names

In the Pillar syntax, the name category occurs at all the points where an identifier is to be
interpreted as a name in accordance with Pillar’s scope rules. In general, a reserved name,
for example INTEGER, or a qualified name, for example alpha.x, can be used at the same
points, so the name category covers all possibilities.

B name

unqualified-name
qualified-name
reserved-name
M unqualified-name
identifier
An occurrence of ungualified-name must be within the scope of a declaration of the identifier;
the unqualified-name denotes the innermost such declaration. However, if the unqualified-
name is within the scope of more than one declaration, and the one with innermost scope
is the local declaration of a procedure parameter, the occurrence of unqualified-name is an
error; agualified-name must be used instead. For an explanation of the Pillar principles
governing multiple declarations of the same identifier, see Section 3.3.
B qualified-name
name . identifier

There are three cases:

1. The name denotes an imported definition module. That module must export a
declaration of the identifier. This qualified-name denotes that exported declaration.

2. The name denotes the current module. The identifier must be declared at module level
in the current module. This qualified-name denotes that declaration.

3. The name denotes a procedure, and this qualified-name occurs within the procedure’s
body. The identifier must be declared as one of the procedure’s parameters. This
qualified-name denotes the local parameter declaration of that parameter.

Cases 2 and 3 are provided only to deal with situations where, unavoidably, a procedure
parameter has the same name as a higher-level declaration.

Note that the dot notation is used more generally in the category data-reference.

Naming, Block Structure, and Declarations 15

Digital Equipment Corporation - Confidential and Proprietary
For Iinternal Use Only

3.1.1 Reserved Names
B reserved-name
identifier

Here identifier is one of the reserved names listed in Table 3-1. As names, these reserved
words always denote the built-in declarations; they cannot be redeclared.

Table 3-1: Reserved Names

Reserved words that can be used as names.

ANYTYPE DOUBLE PILLAR$_ERROR VARYING_STRING
BIT INTEGER QUADWORD WORD

BIT_DATA LARGE_INTEGER QUADWORD_DATA WORD_DATA
BOOLEAN LONGWORD REAL

BYTE LONGWORD_DATA STATUS

BYTE_DATA PILLARS_ASSERT STRING

3.2 Block Structure

A block is a module, procedure-body, or compound-statement. A declaration that is within
a block, b, is at block-level in b provided that it is not contained within another declaration
in b or within a subblock of . Two other cases produce block-level declarations:

e The declarations of elements within an enumerated-type-constructor are block level
declarations unless the QUALIFIED option is used.

e Ifpis a procedure with a parameter X, a local parameter declaration corresponding to
p is implicitly created in p’s procedure-body.

\\\ 7b some extent, the distinction between a parameter’s declaration in a procedure-type-
constructor, and the corresponding local declaration in the procedure-body is a technicality
of the method used in the language specification. \\\

The following example shows some declarations and their positions in the block structure.

MODULE alpha;

TYPE t : RECORD ! t declared at block level in alpha
x : integer; ! x not declared at block level
END RECORD;
TYPE color : (! color declared at block level in alpha
red); ! red declared at block level in alpha
switech : (
red) QUALIFIED; ! This red not declared at block level

PROCEDURE p (
IN X : integer):;

! p declared at block level in alpha

! x not declared at block level here

! Implicit declaration of x as a local parameter
!

VARIABLE y : integer; ! v declared at block level in the body of p

BEGIN
e ! Some of p’s code
WITH ! Start a compound-statement with declarations
VARIABLE z : integer; ! declared at block level in the compound-statement
BEGIN
.o ! Compound-statement’s code
END; ! End of the compound-statement

16 Naming, Block Structure, and Declarations

Dlgital Equipment Corporation - Confidential and Proprietary
For internal Use Only

END PROCEDURE p;
END MODULE alpha;

A block is the scope for its block-level declarations (see Section 3.3). The block also affects
the allocation of storage for variables and the rules for expressions within block-level
declarations. The key distinction here is between modules and the other kinds of blocks. A
declaration that is at block-level in a module is a module-level declaration; a declaration at
block-level in a procedure-body or compound-statement is a local declaration.

Module-level declarations are completely interpreted at compile time. Expressions within
them must, in general, be constant. Module-level variable-declarations have static storage.

In general, a local declaration cannot be completely interpreted until the containing
procedure-body or compound-statement is executed. An expression within a local declaration
can denote a value that is determined dynaOZIXlly by evaluating the expression during the
block’s prologue. Storage for a local variable declaration is allocated only for the duration
of the block’s execution. (This is a bit over simplified; for more details see Chapter 8).

3.3 Scope of a Declaration

Each declaration in a module has a scope. This is the lexical interval in which the declared
identifier can be used as an unqualified-name. The language rules are such that scopes
nest: if two scopes overlap, they are the same or one properly includes the other. The rules
governing multiple declarations with the same name are as follows.

 There is never a name conflict between declarations with disjoint scopes.
e Itis an error to have two declarations with the same name and the same scope.

* A nested declaration is one whose scope is properly included in the scope of another
declaration of the same identifier. Nested block-level declarations are not allowed except
for the local parameter declarations created implicitly in a procedure body.

¢ Nested declarations of labels or loop control variables are not allowed.

The nested declaration rule enhances the readability of code. If an unqualified-name in
code is within the scope of a declaration, it must refer to that declaration; one does not have
to worry about overlooking a nested declaration of the same name. The exception allowing
nested declarations of local procedure parameters does not invalidate this principle, because
of the special rule (see Section 3.1) that requires the use of a qualified-name within the scope
of such a nested declaration. This exception is made for procedure parameters, because
their names are determined by the procedure type, and it might not be feasible to change
the names (in the parameter list) to avoid conflicts.

3.3.1 Summary of Declarations and Scopes

e The current module’s name is declared with the entire module as the declaration’s scope.
e The scope of a module-level declaration is the entire current module.

e Importing a module, either in an import-section or implement-section, declares the
1mported module and all explicitly named components The scope of these declarations
is the entire current module.

Naming, Block Structure, and Declarations 17

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

Declarations exported by a module imported into the current module do not have a scope
in the current module unless they are explicitly imported using the COMPONENTS
construction. However, such a declaration can be referred to using a qualified-name.

The scope of a procedure parameter declaration (see Section 13.2) is the procedure type
constructor containing the declaration. In addition, a local parameter declaration is
created implicitly in the body of each procedure of that procedure type (see Section 13.1).
The scope of this local declaration is the procedure body.

The scope of a block-level declaration in a local-block (procedure body or compound
statement) is the entire local-block.

The scope of a loop control variable (see Section 11.9) is the entire loop statement
containing it.

The scope of a label (see Section 11.1) is the statement sequence in which it occurs,
unless it occurs in the main statement sequence of a procedure body. In the latter case,
the scope is the entire procedure body.

An enumerated type constructor declares one or more enumerated elements (see
Section 5.4.5). If QUALIFIED is not used in the enumerated type constructor, the
scope of these declarations is the entire block (local-block or module) containing the
enumerated type constructor. If QUALIFIED is used, the scope is the enumerated type
constructor. :

A flexible type declaration declares one or more extent parameters of the type. (see
Section 5.6). The scope of such an extent parameter declaration is the part of the flexible
type declaration following the colon after the flexible type’s name (which is lexically in
the containing block scope).

The scope of a record field declaration or filler declaration (see Section 5.11 and

Section 5.17.3.3) is the entire record type constructor in which it is declared. Outside
of the type constructor, fields are referred to using the dot notation in a data-reference.

The scope of a member variable declaration is the environment declaration that contains
it. Member variables are referred to using the dot notation in a data-reference.

3.4 General Declaration Principles

3.4.1 Factoring Declaration Keywords

In Pillar, block-level declarations begin with a distinctive keyword, for example, CONSTANT
or PROCEDURE. When two or more declarations of the same kind are adjacent, only the
first requires the keyword, for example:

VARIABLE
x : integer;
y : POINTER t;

PROCEDURE
p(...) EXTERNAL:
gq(...) INLINE EXTERNAL;

18 Naming, Block Structure, and Declarations

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

3.4.2 Order of Declarétlons

In some scopes, the order of declarations is significant, for example in a parameter list.
- However, there is no general requirement that a declaration occur after all other declarations
on which it depends. For example, the following declarations order is allowed.

VARIABLE x : string(count):;
CONSTANT count = 10;
PROCEDURE p (IN s : string(n); IN n : integer{0..]):

3.4.3 Circular Declarations

Circular declarations are disallowed; a declaration cannot depend on itself. Dependence is
defined recursively: one declaration depends on another if the first depends directly on the
second, or if it depends directly on a third declaration which in turn depends on the second.
If a declaration, DI, contains a name that denotes a declaration, D2, then DI depends
directly on D2, with one exception. The exception is this: use of a pointer-type-reference
does not cause dependency on the associated type of the referred to pointer type unless that
is the same declaration. Examples:

TYPE
r: POINTER r; { r is a circular declaration
v: RECORD ! v is circular (through w.k, below)
i: integer;
j: w;

END RECORD;

w: RECORD ! w is circular (through v.j, above)
k: v;

END RECORD;

s: RECORD ! 8 is not circular
£: POINTER s;
i: integer;

END RECORD;

u(e: integer): RECORD ! u is not circular
£: POINTER u(2*e);
i: integer;

END RECORD;

t(e: integer): RECORD ! £ is not circular
CAPTURE e;
f: POINTER t;
i: integer;

END RECORD;

3.4.4 Expressions in Declarations

Pillar allows expressions in declarations, but such an expression must be simple according
to rules explicitly stated in Section 10.2. The rules have been chosen so that a simple
expression can easily be computed at compile time when the operands are constants, and
so that this class of expressions is sufficient for effective use of Pillar’s flexible type facility.
The rules eliminate explicit side effects (which can result from use of function procedures),
and they minimize the chance of an exception during the expression’s evaluation.

Naming, Block Structure, and Declarations 19

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Expressions within module-level declarations are generally required to be constant expres-
sions; they are evaluated at compile time. The two exceptions are an expression depending
on the extent parameter of a flexible type, and an expression within a define-declaration; in
both cases, evaluation of the expression is not required until the declaration is referred to.

20 Naming, Block Structure, and Declarations

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

CHAPTER 4
MODULES

4.1 Introduction to Pillar Modules

A module is the normal compilation unit in Pillar. A source module is one text file. Where
necessary, the term current module is used to distinguish the module being compiled from
other modules. :

\\\ A source module does not have to be a conventional text file. For example, it could
be stored in a data base, or it could be transiently generated within the compiler by use of
a compile-time facility. In due course, the compiler will support compiling a set of Pillar
modules to obtain a single object module. These and other variations do not affect the
structural partitioning of a program or system into a set of modules. \\\

There are three forms of modules.

B module
program-module
definition-module
implementation-module

A program module is used for the main module of a conventional program. Definition
modules and implementation modules are of much greater interest in system programming.

A Pillar definition module exports declarations for use by other modules. These declarations
tie together the set of modules making up a complete program or system. Compiling a Pillar
definition module produces an information module, which contains the exported declarations
in compiled form.

To use an exported declaration called ed, from a definition module called alpha, in a second
module, the second module’s import section (Section 4.3) names alpha as an imported
module. The import section can also specify ed explicitly as an imported component, in
which case it can be referred to by its unqualified name. Otherwise, the qualified name
notation must be used, for example, alpha.ed.

As with other languages, compiling a source module can produce an object module containing
the code and data required in any program or system that uses the module. An object
module will be produced for a definition module if it contains a complete module-level value-
, variable-, message-, condition-, or procedure- declaration. Such definition modules are
handy during program development and in casual programming, but they are generally not
used in production quality systems.

Note that compiling a definition module can produce an object module containing information
for the debug symbol table.

Modules 21

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

Pure definition modules can be obtained by using external-declarations. Such a declaration
provides type information, but it does not give a complete description of the declared object.
The remainder of the description is given in a separate implementation module, or outside
of Pillar. The category name for the remainder of the description ends in “-completion,” for
example, “procedure-completion.”

The following examples illustrate these variations. In the first one, the object module
random_numbers will contain the code for the procedure uniform and an object language
definition of the global symbol for the variable random_seed.

MODULE random_numbers; ! Will produce an object module

VARIABLE random seed : longword; ! Exported static variable

PROCEDURE uniform() RETURNS double; ! Exported procedure

BEGIN
! code to compute a new value for the variable random_seed and return
! this value as a 64-bit floating point value in the range (0..1)

END PROCEDURE uniform;

END MODULE random_numbers;
In the next example, the procedure and static variable are declared by external declarations.
Therefore, there will be no code or data in the object module random_numbers:

MODULE random_numbers; ! Will normally not produce an ocbject module.

VARIABLE random_seed : longword EXTERNAL; ! Exported static variable

PROCEDURE uniform() RETURNS double EXTERNAL; ! Exported procedure

END MODULE random_numbers;
In the next example, two external-procedures are used. There will be no code or data in the
object module random_numbers:

MODULE random numbers; ! Will normally not produce an object module.

PROCEDURE uniform() RETURNS double INLINE EXTERNAL; ! External procedure

PROCEDURE set_seed(IN new_seed : longword) EXTERNAL; ! External procedure

END MODULE random numbers;
If the random number sequence can be assumed as properly initialized, any one of the three
versions of the module random_numbers can be imported in the following example:

PROGRAM xxx ENTRY main;

IMPORT random_numbers COMPONENTS uniform;

PROCEDURE main():

BEGIN
x = 2*uniform();

END PROCEDURE main;
END MODULE xxx;

The version of the module random_numbers with uniform and random_seed declared
external can be implemented as follows:

22 Modules

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

MODULE réndom_;mpl;
IMPLEMENT random_numbers COMPONENTS random seed, uniform;

VARIABLE random _seed = 1; ! implementation of the declaration of random_seed
! this allocates static storage and initializes it

PROCEDURE uniform() RETURNS; ! header introducing the implementation of uniform
BEGIN

! code to compute a new value for the variable random seed and return

t this value as a 64-bit floating point value in the range (0..1)
END PROCEDURE uniform;

END MODULE random_impl;

The version of the module random_numbers with uniform as an external inline procedure
can be implemented as follows:

MODULE random impl;
IMPLEMENT random_numbers COMPONENTS uniform, set seed;

VARIABLE seed : longword; ! private static variable

PROCEDURE uniform() RETURNS;
BEGIN

! code to compute a new value for the variable seed and return

! this value as a 64-bit floating point value in the range (0..1l)
END PROCEDURE uniform;

PROCEDURE set_seed(new_seed);
BEGIN

seed = new_seed;
END PROCEDURE new_seed;

END MODULE random_impl;

To compile a module that uses the inline procedure uniform, the compiler (automatically)
loads the information module for random_impl. The object module from this compilation
must be linked against the object module for random_impl, because it defines the storage
for the private static variable seed. The code for set_seed, which was declared external, is
also in the random_impl object module.

4.2 General Module Level Declarations

These declarations are allowed at module level (see Section 3.2) in any form of module.

'l general-module-level-declaration

(constant-declaration
normal-type-declaration
flexible-type-declaration
procedure-type-declaration
complete-value-declaration
complete-variable-declaration
environment-deciaration
define-declaration
complete-message-declaration
complete-condition-declaration
complete-procedure-declaration

\ external-declaration J

-~

Modules 23

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

4.3 Importing Modules and Declarations

Any form of module can contain an import section.

B import-section

[IMPORT { module-import} ...] ...
[REVEAL {name } ;]

Each module-import (if any) imports modules into the current module. In addition,
individual declarations can be explicitly imported by using a component list.

The names following REVEAL (if present) must denote opaque types. These opaque types
are revealed in the current module (see Section 5.15). There are two restrictions:

e If the current module contains the declaration of the type as an external opaque type,
revealing it is not allowed (because the module that implements the type depends on
the current module).

e Ifthe current module is an implementation module that implements an external opaque
type, that type cannot be (redundantly) revealed in the import section.

B module-import
identifier [COMPONENTS component-list] ;

The identifier is declared as a module imported into the current module. The identifier
cannot be given any other declaration at module level, and giving another module-import
for the same module is not allowed. However, the current module’s implement-section can
import the same module (hence declare the same identifier). In this case, the component-list
must be present in this module-import (which otherwise would be redundant).

The component-list names one or more declarations exported from the module imported
by this module-import. Each of these declarations is explicitly imported into the current
module. In the current compilation, the explicitly imported declaration’s scope is the entire
current module.

Some components from the imported module can be imported by the current module’s
implement section. If so, explicitly naming such a component in this component-list is
not allowed (because it would be redundant). However, a wild-card match is allowed, but a
wildcard component must match some declaration that was not explicitly imported in the
implement-section.

Note that an exported declaration called x, from an imported module called alpha, can be
referred to by its qualified name, alpha.x, regardless of whether x is explicitly imported as
a component of alpha.
M component-list

{ identifier [*] }....

A component-list specifies a set of one or more exported declarations within an imported
module, M. Each identifier must occur only once in the component-list and must be the
name of an exported declaration in M.

24 Modules

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

The construction identifier* is used for wildcard importing; it denotes all exported
declarations whose names begin with the characters in the identifier. There must be at
least one such declaration.

Note that the identifier can be a reserved word, for example,

COMPONENTS fab$*, FOR*;
selects all declarations whose names begin with “fab$” or “for”.

Wildcard importing is generally used with definition modules exporting names that are
governed by prefix conventions.

4.4 Program Modules

B program-module |
PROGRAM identifier ENTRY name [module-identification] ;
[import-section] .
{ generai-module-level-declaration }...
[linkage-option-section]
END PROGRAM identifier;

The identifier following PROGRAM is declared as the name of the current module. The
same identifier must occur after the END PROGRAM that terminates the program module.

A program module is used for the main module of a conventional program. It neither exports
declarations nor implements declarations from other modules.

The name following ENTRY must denote a complete procedure declaration (at module level
in the current module). The name’s type must satisfy the target-system requirements for
main program entries.

4.5 Definition Modules

B definition-module

MODULE identifier [module-identification] ;

[import-section]
general-module-level-declaration

{ complete-opaque-type-declaration }
external-declaration

[linkage-option-section]

END MODULE identifier;

The identifier following MODULE is declared as the name of the current module. The same
identifier must occur after the END MODULE that terminates the definition module.

A definition module exports declarations for use in other modules. All the module-level
declarations in the current module are exported. No other declarations are exported.

Note that declarations imported (from another module) into the current definition module
are not reexported.

Modules 25

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

4.5.1 Using Plilar Definition Modules in Other Languages

Pillar is a OZIX/OSF replacement for SDL, a language used for common definition files on
VMS. There will be a definition module utility (derived from the Pillar compiler) that reads
Pillar information modules and translates them into other OZIX/OSF supported languages.

\\\ If worthwhile, a few extras might be added to Pillar just to clarify the translation without
changing the Pillar meaning. At least some of the OZIX/OSF compilers will directly accept
the information modules. This might also sharpen the translation. \\\

4.6 Implementation Modules

M implementation-module

MODULE identifier [module-identification J ;

{ implement-section }...

[import-section]
general-module-level-declaration

{ declaration-completion }

[linkage-option-section}

END MODULE identifier;

The identifier following MODULE is declared as the name of the current module. The same
identifier must occur after the END MODULE that terminates the implementation module.

This form of module does not export any declarations. It implements external-declarations
from definition-modules specified in the implement-section. The keyword IMPLEMENT at
the beginning of the implement-section distinguishes this form of module from a definition-
module.

M implement-section
{ IMPLEMENT { module-implement } ... } ...

Each module-implement in the implement-section designates a module to be imported into
the current module, and designates one or more exported declarations within it that are to
be implemented (completed) in the current module.

B module-implement
identifier COMPONENTS component-list ;

The identifier is declared as a module imported into the current module. The identifier
cannot be given any other declaration at module level, and giving another module-implement
for the same module is not allowed. However, it can be specified again in the current module’s
import-section.

The component-list names one or more exported declarations within the imported module
that are to be implemented in the current module. If a component in the list is a particular
identifier, the corresponding declaration must be external. In the case of a wildcard
component, word *, any matching declarations that are not external are ignored, but at
least one external declaration must be matched.

\\\ Using a wildcard here appears to be a controversial style question. \\\

26 Modules

Digital Equipment Corporation - Confidential and Proprietary
‘For Internal Use Only

The declarations named by the component list are explicitly imported into the current
module. The current module must contain a completion for each of these declarations.
It is invalid to explicitly import any of them again in the current module’s import section.

Opagque types imported in an implement section are revealed in the current module.

4.6.1 Declaration Completions

M declaration-completion
opaque-type-completion
value-completion
variable-complietion
procedure-completion

Declaration completions occur only in an implementation module. They are described in the
chapters that cover the corresponding forms of declarations.

4.6.2 Implementation Without an imported Declaration

A special interpretation is given to the identifier $nodefinition when used as the module
name in a module-implement. It means that the identifiers specified in the component-list
do not have exported declarations in a Pillar definition module. For each of these identifiers,
the implementation module must contain a complete module-level value-, variable-, or
procedure- declaration. The identifier is defined to the linker as an unqualified global symbol
denoting the declaration’s data or procedure entry. This feature is provided so that certain

run-time library routines and complex code sequences can be implemented in Pillar w1thout
creating exported declarations that should never be used.

Wildcards cannot be used with $nodefinition; there is nothing to match. This identifier is
treated as the name of a built-in module; it cannot be used as the name of any other module.

4.7 External Declarations

B external-declaration

external-value-declaration
external-variable-declaration
external-message-declaration
external-condition-declaration
external-procedure-declaration
external-opaque-type-declaration

An external-declaration is allowed only at module level. In general, the declaration
only provides type information. For example, an external-procedure-declaration gives
the procedure’s type (parameter declarations, result type, and others) but not the the
procedure’s body. The implementation of an external-declaration is normally given in
a Pillar implementation module. This module provides the completion of the external
declaration. Code and data for the completion is in the object module produced by compiling
the implementation module.

The implementation of an external value-, variable-, or procedure- declaration can be made
outside Pillar by linking the associated global symbol to an appropriate data item or routine.

Modules 27

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The item must be consistent with the Pillar declaration and with Pillar implementation
conventions.

One important rule pertains to completing external variable declarations: If an external
variable declaration is linked outside Pillar, the data to which it is linked must not overlap
the data to which another exported name is linked.

The specific forms of external declarations are described in Chapter 7, Section 13.6, and
Section 12.3. '

4.7.1 Connecting the Declaration and the Completion

The following external declarations are always connected to their completion by the linker.
¢ External-value-declaration

e External-variable-declaration

¢ External-message-declaration

¢ External-condition-declaration

The linker makes the connection between an object module using an external declaration

and the object module containing its implementation. The compiler does not access the
implementation of an external-declaration that is used in the current module.

4.7.2 Connecting an external-opaque-type

The compiler does not need the implementing information module for an external-opaque-
type-declaration unless the type is revealed in the current module.

4.7.3 Connecting external-procedures

If an external-procedure-declaration is an inline-procedure, the compiler requires access
to the information module created by the Pillar implementation module, otherwise the
external-procedure-declaration will be connected to its body by the linker.

The module implementing an external-opaque-type-declaration or an INLINE external-
procedure-declaration must import (through the implement-section) the definition module
containing the declaration. Therefore, the definition module cannot itself use these two
external declarations except in the case of using an unrevealed opaque type.

4.8 Built-in Module

Pillar has one built-in module, SCONDITION, which contains built-in declarations related
to condition handling.

This built-in module must be imported in an import-section. Its name cannot be used as a
name for conventional modules. The module $CONDITION is described in Section 12.2.

In the text of this language specification, items in these modules are generally denoted by
the qualified name, for example, “$Pillar.initialize_fields”. In code examples, the unqualified
names are generally used, because this is the normal coding practice.

28 Modules

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

4.9 Module Options

This section describes miscellaneous options that can be used in modules. The syntax
definitions for the three forms of modules show where the options occur.

4.9.1 Module ldentification
B module-identification
IDENTIFICATION (character-string-literal)

The string is used as the identification string in the current module’s object module and
information module. The string must satisfy the system requirements (target, host, or both)
for such identification strings. If this option is not present, the default string “NO-IDENT”
is used.

4.9.2 Module Linkage Options
M linkage-option-section

LINKAGE OPTIONS

[qualified-globals-option]

[global-synonym-option]

[linker-value-option]

This section occurs just before the final END in a module. If present (that is, if the keywords
LINKAGE OPTIONS occur), then at least one of the options must be present.

These options modify the normal Pillar conventions for the use of global symbols. These
are the symbols used in the target system’s object language for references between object
modules.

4.9.2.1 Default Conventlons for Global Symbois

The circumstances in which Pillar uses a global symbol, and the default conventions for that
symbol, are as follows.

* An exported value- or variable- dechraﬁon: The global symbol’s name is the same as
the declaration’s name (unqualified). The global symbol denotes the address of the data.

* An exported noninline procedure declaration: The global symbol’s name is the same as
the declaration’s name (unqualified). The global symbol denotes the procedure entry in
accordance with the target system’s conventions.

¢ An exported message- or condition- declaration: \ The rules here are TBS.\

* An external declaration in a program module or implementation module: This is treated
as an exported declaration of the same kind.

e The entry symbol for a program module: The global symbol’s name is the same as the
declaration’s name (unqualified). '

e A value-, variable-, message-, condition-, or noninline-procedure- declaration needed
for expansion of an external inline procedure: These are nonexternal declarations in
a module, M, implementing the external inline procedure. With one exception, these
declarations are at module level in M; the exception is a value declaration within the
procedure whose size exceeds 64 bits. The global symbols for these private declarations

Modules 29

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

have qualified names of the form M.qual.dcl_name, where dcl_name is the declaration’s
unqualified name and qual-is an appropriately unique name provided by the Pillar
compiler.

e The module-level declarations for identifiers specified as components in an IMPLE-
MENT $nodefinition: The default convention for the global symbol is the same as for
an exported declaration of the same kind.

\\\ The OZIX/OSF object language supports qualified names for global symbols. On VAX
this is an open issue. \\\

4.9.2.2 Qualified Globals Option
B qualified-globals-option
QUALIFIED GLOBALS;

This option specifies that certain global symbols should have names qualified by the current
module’s name.

In a definition module, the option applies to all declarations exported from the module.

In an implementation module, the option applies to module-level declarations for identifiers
specified as components in an IMPLEMENT $nodefinition. If there are no such components,
the option is an error.

The option is not allowed in a program module.

\\\ If this option is not used, one can encounter name conflicts when linking even though
there are no name conflicts as far as Pillar is concerned. However if the names exported
from the module are all governed by a prefix convention, for example, all begin with “my_
facility$”, no conflicts should occur during linking. The use of name prefixes is so well
established in DEC software engineering, that this governs the default naming convention
for global symbols. \\\

4.9.2.3 Global Synonym Option
B global-synonym-option
{name = character-string-literal} ,... ;
This option specifies an explicit name for a global symbol. Each name in the option
must be the name of an appropriate module-level declaration, and the corresponding

character-string-literal must be a valid global symbol name in accordance with target system
conventions.

In a definition module, this option can be applied to any exported value-, variable-, message-,
condition-, or noninline-procedure- declaration.

In an implementation module, this option can be applied to an external declaration or to
a module-level declaration for an identifier specified as a component in an IMPLEMENT
$nodefinition.

In a program module, this option can be applied to an external declaration.

The global-synonym-option overrides all other options in determining the global symbol’s
name.

30 Modules

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

4.9.2.4 Linker Value Option
B linker-value-option |
LINKER VALUE ({ name } ,...) ;

Each name must denote an appropriate module-level declaration. In a definition module, it
must be an exported value declaration; in an implementation or program module it must be

an external value declaration. In either case, the value’s type must be constant with size <
32 bits.

This option specifies that the value declaration’s global symbol is to denote the actual value
rather than the address of the value. In the object language the value is, in effect, defined as
a 32-bit value. If the declaration’s type is an integer type, the signed 32-bit representation
is used. For other types, the value is zero-extended to 32 bits as required.

In general, use of this option is not recommended on OZIX/OSF.

4.9.3 Module Management

When a non-built-in module is imported, the compiler must find and load its information
module. The rules for this are part of the compiler’s command interface specification, and
they might depend on the host system. The imported module must be compiled before the
current module, which rules out a pair such as:

MODULE alpha;

IMPORT beta;

TYPE t : RECORD x : POINTER beta.s; END RECORD;
END MODULE alpha;

MODULE beta;
IMPORT alpha;
TYPE s : RECORD
y : POINTER alpha.t;
END RECORD;
END MODULE beta;

Information modules can be given explicitly to the compiler as input files or the compiler
can find them by library search. The set of explicit input modules is treated as the first
library in the library search. The module name is the key in the search, so it is not possible
to import two modules with the same name.

\\\ The compiler is designed so that it can be extended to support other methods, for example,
obtaining the module from a data base. The language can be extended to handle duplicate
module names if that proves necessary, for example:

"IMPORT alpha = duplicate-module name"\
AR

If an imported definition module depends on a second definition module, the compiler
might need to import the second module and modules on which it depends. Consider the
compilation of a module, M, that imports and uses the procedure p from the module alpha.

MODULE alpha;

IMPORT beta;

PROCEDURE p(IN x : beta.t) INLINE EXTERNAL;
END MODULE alpha;

Modules 31

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Because M uses the procedure p, the compiler needs to get the type declaration of ¢ from the
module beta. The compiler automatically finds and loads the information module for beta
using the same search rules it would use for an explicit import of beta. The name beta is
the key in this search. ‘

Because p is an external inline procedure, the compiler also needs to get the body of p, which
is in some implementation module, IMP. The name of IMP is not specified in the definition
module alpha. The compiler finds the information module for IMP by library search using
the qualified name alpha.p as the key in a library index reserved for this purpose.

The same library set is used in all these searches.

4.9.3.1 Module Consistency

Modules are typically modified and recompiled in the course of program development, and
this can lead to inconsistencies. For example, suppose that a program module, p, uses
definition modules alpha and beta, and suppose that alpha also uses beta. Consider the
following sequence of events:

Beta is compiled.

Alpha is compiled.

Beta is changed and recompiled.
p is compiled.

LU ol

The program p is linked.

Because alpha was not recompiled, the information modules for alpha and beta can be
inconsistent when p is compiled, or the corresponding object modules can be inconsistent
when the program is linked, which can cause serious problems. In particular, an undetected
inconsistency at compile time can cause the generation of faulty code, although it is more
likely to simply cause the compiler to abort mysteriously.

Production programs and systems should be built from scratch using methods that make
the occurrence of such inconsistencies impossible, but doing this during development every
time something is changed is too cumbersome. For this reason the compiler checks the
consistency of the modules used in a compilation. It also has an option to simply check the
consistency of a set of modules with each other and with all the modules on which they
depend.

The consistency checking is based on computing a signature for each exported declaration.
If two declarations have the same signature, then, with very high probability, they are
equivalent for all practical purposes. If the signatures are different, the declarations are
certainly not equivalent.

\\\ The current plan is to use 64-bit signatures. \\\

The signatures of a definition module’s exported declarations are stored in its information
module. When a module, M, uses an exported declaration, that usage, including the
signature, is stored in M’s information module and object module. Consistency checking
is just a matter of comparing sighatures. It does not require knowledge of the rule for
computing signatures.

32 Modules

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

Library searches for the implementations of external declarations can lead to odd results.
Suppose an old module, alpha, implements X and Y, while a newer module, beta, implements
Y. Assume the search rules are set up to search a library of new modules first. If the compiler,
first searches for ¥ and then for X, it will load module beta and then module alpha. While
loading alpha, it will detect the duplicate implementation of Y. However, if the first search
is for X, the compiler loads alpha, which also implements Y, so it will not bother with the
formal library search for ¥ unless this degree of consistency checking is requested.

The compiler will have options to control the degree of consistency checking, including an
option to check a specified set of modules and all others on which they depend, directly or
indirectly.

Modules 33

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

CHAPTER 5
TYPES

This chapter describes Pillar’s type structure and type declarations.

5.1 Overview of Pillar types

A type is a property of a data item. It is a set of values that can be assumed by the item,
together with a set of operations that can be performed on the item. For example, INTEGER
and REAL are types.

Each type also has associated with it a size and arrangement of its data in storage. These
properties are referred to as its data representation.

5.1.1 Pillar’s Type Structure

Pillar provides a set of primitive types, and also allows the construction of new types. Each
primitive type is denoted by a reserved word. These primitive types are summarized in
Table 5-1. Some of the types in this table have a parameter; these types are flexible types,
which are described in Section 5.6.

Table 5-1: Primitive Types

Primitive Type Values of that Type

ANYTYPE A datum of no specific size or type

BIT_DATA(n) A datum consisting of n bits

BOOLEAN A boolean value

BYTE A single byte containing an unsigned 8-bit integer
BYTE_DATA(n) A datum consisting of n bytes

CHARACTER A single byte containing an 8-bit character

DOUBLE A 64-bit floating-point number

INTEGER A 32-bit signed integer

LARGE_INTEGER A 64-bit signed integer

LONGWORD A single longword containing an unsigned 32-bit integer
LONGWORD_DATA(n) A datum consisting of n longwords

QUADWORD A single quadword containing an unsigned 64-bit integer

QUADWORD_DATA(n) A datum consisting of n quadwords

Types 35

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Table 5-1 (Cont.): Primitive Types

Primitive Type Values of that Type

REAL A 32-bit floating-point number

STATUS A datum containing a system status value
STRING(n) A string of n characters

WORD A single word containing an unsigned 16-bit integer
WORD_DATA(n) A datum consisting of n words

VARYING_STRING(n) A string of characters whose length is < n

In addition to providing primitive types, Pillar allows one to define new types by using the
various kinds of type constructors defined in this chapter.

'5.1.2 Named and Unnamed Types

A Pillar type can be named or unnamed. In its most simple form, a named type is either a
primitive type or a type declared in a type declaration. The concept named type, however,
refers to more than this, and a complete definition of it is given in Section 5.2.1. A named
type can be used in the type specification of other declarations.

In contrast, an unnamed type is introduced by a type constructor in a declaration other than
a type declaration. For example, consider the following declarations, the syntax of which is
covered later in this chapter:

TYPE
positive_integer: integer [1l..];

VARIABLE
positive var: positive_ integer;
negative_var: integer [..-1];

Here, the type declaration introduces a named-type, positive_integer. The variable positive_
var is declared with this named type. However, the variable negative_var has an unnamed

type.
5.2 Type Declarations

A type declaration that occurs as one of the categories normal-type-declaration, complete-
opaque-type-declaration, external-opaque-type-declaration, or procedure-type-declaration
declares an identifier as a new named type. Pillar also has flexible-type-declarations, which
declare an identifier as the name of a family of flexible types.

A normal-type-declaration declares an identifier as a new named type that is not opaque
(opaque types are described in Section 5.15).

M normal-type-declaration
[TYPE] identifier :

type-specification .
enumerated-type-constructor |’

The keyword TYPE can be omitted only if this type declaration immediately follows another
type declaration. ,

36 Types

Dlgital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

5.2.1 Type Specifications

A type-specification is a named type or one of several kinds of type constructors. Type
specifications are generally used to specify a new type in declarations other than type
declarations. Type specifications (or an enumerated type constructor) also can be used to
specify the type in a normal type declaration.
B type-specification

named-type

subrange-type-constructor

set-type-constructor

array-type-constructor
record-type-constructor

A named-type was (see Section 5.1.2) is one of the following:
* A primitive type
e A type declared in a normal or opaque type declaration

* A bound-flexible-type that is either a binding of a primitive flexible type, or a type
declared in a flexible-type-declaration (bindings of flexible types are discussed in
Section 5.6.1)

¢ POINTER ¢, where ¢t is one of the cases above
Syntactically, a named-type is described as follows:

B named-type

[POINTER } name
bound-flexible-type

If name occurs, it must denote a type ¢, where ¢ is:
e A type that is not a flexible type
e A flexible type with captured extents, unless:

— this is an occurrence of a named-type used as the type-specification of a VALUE or
VARIABLE declaration or

— this is an occurrence of a named-type immediately following EXTENDS in a record-
type-constructor (see Section 5.11.5).

In either of these cases, however, name can be supplied as name in the bound-flexible-
type (see Section 5.6.1).

If name occurs, the named-type denotes the type ¢ or POINTER ¢.
A bound-flexible-type denotes a particular instance of a flexible type (see Section 5.6).

5.3 Arithmetic Types

The primitive arithmetic types provided by Pillar are INTEGER, LARGE_INTEGER, REAL,
and DOUBLE. These types, together with any type derived from them, are arithmetic types.
Pillar provides a standard set of arithmetic operations that can be applied to data items of
an arithmetic type.

Types 37

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Integer types, one subcategory of arithmetic types, are one of the primitive types INTEGER
or LARGE_INTEGER, or any type derived from them. The values taken by an integer type
are the integers in some interval.

LARGE_INTEGER denotes signed 64-bit integers, and INTEGER denotes signed 32-bit
integers. The integer types are also ordinal types. Subrange-type-constructors (see
Section 5.4.6) allow the construction of a new type derived from another integer type, and
enable specifying precise limits for an integer type’s range.

Floating-point types, the other subcategory of arithmetic types, are one of the types REAL
or DOUBLE. The values taken by a floating-point type are rational numbers. REAL denotes
32-bit floating point numbers, and DOUBLE denotes 64-bit floating point numbers.

5.4 Ordinal Types

An ordinal type is a type in which each possible value of the type is one of a contiguous
range of integers. Pillar provides the following ordinal types:

* Base ordinal types:
— The primitive types INTEGER and LARGE_INTEGER. These are also integer types.

— The primitive types BOOLEAN, CHARACTER, BYTE, WORD, LONGWORD and
QUADWORD. None of these are integer types.

— Enumerated types. An enumerated-type-constructor introduces a new distinct base
ordinal type.

* Subrange types. A subrange-type-constructor introduces a new ordinal type that is
derived from another ordinal type given in the subrange-type-constructor.

Fundamental to ordinal types is the concept of base ordinal type. Base ordinal types are
only those types listed as such in the above list.

Every ordinal type ¢ has a base ordinal type. If the ordinal type ¢ is a base ordinal type,
then its base ordinal type is ¢. If the ordinal type ¢ is a subrange type, then its base ordinal
type is the base ordinal type of the ordinal type given in the subrange-type-constructor.

An ordinal type takes on values in an interval determined by the type: low < value <
high. However, except for the integer types, ordinal values are not allowed in arithmetic
operations because they are used for conceptually different purposes; this is reflected in the
compatibility rules for ordinal types (defined in Section 5.16.2). The low and high values of
a named ordinal type can be obtained using the MIN and MAX built-in functions.

The phrase “ordinal value of” is used to refer to the natural integer value of an ordinal item.
The ordinal value of v is also referred to as ORD(v).

5.4.1 The Concept of Range

The concept of a range of ordinal values is fundamental to dealing with ordinal types. A
range can be regarded as a pair of ordinal values (low, high) that have the same base ordinal
types and that satisfy:

ORD(low)<ORD(high) + 1

38 Types

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The base ordinal type of the low and high ordinal values is called the range’s type. A range
can also be regarded as the set of all values x having the range’s type and satisfying:

low<z<high

The number of elements in the set above is:

ORD(high) — ORD(low) — 1

There are several contexts in Pillar where the range-specification category is used to specify
a particular range. The notation allows one to specify the low and high values, the low
value and the number of elements, or the name of an ordinal type, which indicates the same
range as that type. In the first case, the low and high values can be taken by default from
a target type.

B range-specification
[expression] .. [expression]
expression : {(expression)
named-type

There are three classes of range-specifications.

Class 1: The range-specification contains “..”

The expressions (if present) must have ordinal types with equivalent base ordinal types.
If the context provides a target type, its base ordinal type must be equivalent to the
expressions’ base ordinal types. The value of the first expression becomes the low value
in the range, and the value of the second expression becomes the high value in the range. If
either expression is omitted, the context must provide a target type, and the corresponding
limit value is that of the target type’s range. The low and high values must satisfy:

ORD(low)<ORD(high) +1

Otherwise, a range violation occurs. Note that if equality holds in the above relationship,
the range contains no elements, and is said to be an empty range. For example, an empty
range can be specified like this:

[2..1]
but never like this:
[3..1]

Class 2: The range-specification contains “:”

The first expression must have an ordinal type, and this must be compatible with the target
type (if the context provides a target type). The value of the first expression is the low value
in the range. The second expression must have an integer type; its value is the number of
elements in the range. If the second expression is negative, a range violation occurs. If the
second expression is zero, the range is empty.

Class 3: The range-specification is a type-name

The type-name must be declared as the name of an ordinal type. The range is the same as
that ordinal type’s range.

Types 39

Digital Equipment Corporation - Confidentlal and Proprietary
For internal Use Only

All Classes
In all of the preceding classes, if there is a target type, the range’s low and high values must
lie within the target type’s range (otherwise, a range violation occurs).

In some places that use a range, a constant range is required. A constant range is one whose
specification contains only constant expressions.

5.4.2 BOOLEAN

The primitive ordinal type BOOLEAN takes on values representing true and false in logical
operations. These values have the predeclared names TRUE and FALSE; their ordinal
values are:

ORD (FALSE)
ORD (TRUE)

0
1

Boolean values can also be represented by the type BIT (described in Section 5.4.7).

5.43 CHARACTER

The primitive ordinal type CHARACTER takes on values in the Pillar character set. The
ordinal value of a CHARACTER value is its character code.

5.4.4 The Types BYTE, WORD, LONGWORD and QUADWORD

The primitive ordinal types BYTE, WORD, LONGWORD, and QUADWORD correspond to
fundamental units of storage. These types are used when no particular type interpretation
is appropriate for the data item (see Section 5.9). Their ordinal values lie in the following
ranges:

BYTE 0.2% -1
WORD 0.2"% -1
LONGWORD 0.2% 1
QUADWORD 0. 2% -1

5.4.5 Enumerated Types

An enumerated type is an ordinal type defined by an enumeration of elements. The type is
ordinal because each element is associated with a unique integer value.

A named enumerated type is introduced by a type-declaration containing an enumerated-
type-constuctor; this is the only context in which such a constructor occurs (Pillar does not
have unnamed enumerated types).

B enumerated-type-constructor
({ identifier } ,...) [QUALIFIED]

Let the identifiers in the constructor be ey, es,... e,. The new enumerated type has n distinct
values. The identifier e, is declared as a named constant (see Section 6.1) denoting the kth
value in the type:

ORD (ex) = k - 1

40 Types

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

e, is also called an element of the enumerated type. !

If the keyword QUALIFIED is present in an enumerated-type-constructor, then the scope
of the declaration of e, is the type constructor itself. An element of such a type must be
referred to from within the type’s scope by the qualified name t.e}.

If the keyword QUALIFIED is not present, then the scope of the declaration of e, is the same
as the scope of the containing type-declaration. In this case, using a qualified name to refer
to one of the type’s elements from within the type’s scope is permitted, but not necessary.

Qualified names have another use in referring enumerated types. If the enumerated type ¢
is imported into module m, then an element of ¢, e, that is not imported into module m can
be referred to from that module by the qualified name t.e.

5.4.6 Subrange Types

A subrange-type-constructor introduces a new ordinal type whose base ordinal type is an
existing type. The new type’s range of values is given by an explicit range-specification.

B subrange-type-constructor

name [range-specification] [size-option]
name size-option

In the form that contains the range-specification, the name must denote an ordinal type.
This type is used as the target type for interpretation of the range-specification, and this
type’s base ordinal type becomes the new subrange type’s base ordinal type. The range-
specification, which supplies the range of the new subrange type, must be a constant range-
specification, and not a named-type. 2

The size-option, if present, controls the internal representation of the subrange type (see
Section 5.17.2). If present, the subrange type must be one that would have been a small
type (see Section 5.16.5) if the size-option were not present.

In the form of subrange-type-constructor without the range specification, the name must
denote a small (see Section 5.16.5) subrange type. The size-option controls the internal
representation of the new subrange type (see Section 5.17.2).

5.4.7 BIT

BIT is a reserved word that denotes a special predeclared type. This type takes on boolean
values, occupies one bit of storage, and is an ordinal type. The type BIT is declared as if
the following declaration were present (this declaration is not legal in Pillar because BIT is
a reserved word):

TYPE
bit: boolean size (bit);

1 Like all ordinal types, the values that an enumerated type can assume are contiguous. A possible future extension of the
language is to define a variation of enumerated types, in which the elements do not necessarily have contiguous values.

2 There does not seem to be any reason to allow subrange types with nonconstant range-specifications, and doing so would
complicate ordinal types. Given this, is there any reason to allow an empty range-specification here?

Types 41

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

A data item of type BIT is not addressable and is called a bit-class type. The allowed usage
of such data types is very restricted; essentially, they are allowed only as the types of array
elements and record fields. BIT_DATA is also a bit-class type, as are subranges and small
set types specified with a bit size.

5.5 Set Types

A set type represents a set of ordinal values. It is characterized by a range. The set type’s
base ordinal type is the base ordinal type of the range. A set type’s values are sets of ordinal
values whose elements lie in the set type’s range. The ordinal values of the set’s range must
all lie within the range of the type INTEGER (otherwise, a range violation occurs).

A set-type-constructor introduces a new set type.

B set-type-constructor

SET name [range-specification] [size-option]
name size-option

For example:

TYPE
int_set: SET integer {0..63];
bool set: SET boolean [false..true];

In the form that contains the range-specification, the name must denote an ordinal type.
This type is used as the target type for interpretation of the range-specification, and this
type’s base ordinal type becomes the new set’s base ordinal type. The range-specification
supplies the range of the new set type. The ordinal values in the range must all lie within
the range of the type INTEGER (otherwise, a range violation occurs).

The range-specification need not be constant, and must not be a named-type.

The size-option, if present, controls the internal representation of the set type (see
Section 5.17.2). If it is present, the set type must be one that would have been a small
type (see Section 5.16.5) if the size-option were not present.

In the form of set-type-constructor without the range specification, the name must denote a
small set type. The size-option controls the internal representation of the new set type (see
Section 5.17.2). .

Pillar supports basic operations on set types (see Section 10.8). For example, if x and y are
set variables,

x=x + y;
assigns the union of x and y to x.

Pillar is designed so that a set variable can be treated as a bit vector whose bits correspond
to the values in the set type’s range; for example, the following code builds a vector whose
bits denote divisibility by 4:

VARIABLE x : SET [l..n];

FOR i = 1 TO n LOOP
x{i] = (i MOD 4 == 0);
END LOOP i;

42 Types

Digital Equipment Corg .. siion - Confidential and Proprietary
For internal Use Only

There are two ways to assign a proper value to an entire set:
e Assign values to all of the individual elements in the set.
* Assign a value to the entire set.

5.6 Flexible Types

In general, any type-constructor except an enumerated-type-constructor or subrange-type-
constructor can contain nonconstant expressions; if one does, it actually defines a family
of distinct types, one family member for each possible set of nonconstant values on which
the type depends. For example, if variables M and N are declared in an outer block, then
consider:

VARIABLE x : ARRAY[1l..M] OF SET [0..2*N];

This declaration can occur only in a local-block, since M and N must be declared in a
containing scope. M and N are called free extents?

In any particular activation of its block, the variable x technically has one of a family of
distinct unnamed array types in which the family members can be indexed by pairs (m,n),
where m ranges over all possible values of M, and n ranges over all possible values of N.

Pillar also provides flexible types as the preferred way to describe a family of types. A
flexible type is a type that is declared with parameters (called extent parameters). Such a
type defines a family of types. A flexible-type-declaration declares an identifier as the name
of a flexible type. ‘

M fiexible-type-declaration
[TYPE] identifier (extent-parameter-declaration-list) :

named-type
set-type-constructor
array-type-constructor
record-type-constructor

The keyword TYPE can be omitted only if this type declaration immediately follows another
type declaration.

If the flexible-type-declaration contains a named-type, this type must be a bound-flexible-
type or a pointer to a bound-flexible-type.

Pillar also provides primitive flexible types, for example STRING, which defines this family
of types:
STRING(0)—strings of length zero

STRING{(1)—strings of length one
STRING(2)—strings of length two

3 As Pillar is defined, free extents do not appear in any language rules. In particular, they do not enter into the question
of whether two instances of a type with free extents are equivalent, because the two instances will always have identical
values of their free extents.

Types 43

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

To illustrate the concept of flexible types, consider rewriting the above declaration of x as a
flexible type and a variable of that type:

TYPE

t(j,k: integer): ARRAY [1..j] OF SET [0..2%k];
VARIABLE

x: t(m,n);

Technically, a flexible type is not a type at all, as the term “type” is used in Pillar. Rather,
a flexible type is a combination of a set of n extent parameters (each with an ordinal type)
and a family of distinct types indexed by n tuples of extent-parameter values. For example:

TYPE vector (n : INTEGER[1l..]) : ARRAY[l..n] OF REAL;

The line above declares vector as the name of a new flexible type with one extent parameter
named n, whose values range from one to the maximum INTEGER value. Each instance of
this type is a one-dimensional array type with its lower bound equal to one and its element
type REAL. The upper bound of the array type is the value of the extent parameter r; for
example:

VARIABLE x : vector (100); VARIABLE y : vector (2*50);

The variables x and y have the same type because they have the same value (100) of the
extent parameter n.

An item whose type is derived from a flexible type is said to “have a flexible type.” Thus,
in the preceding example, x and y have the flexible type vector. New types can be derived
from vector; for example:

TYPE short_vector (m : [0..100]) : vector (m);
TYPE t : short_vector (50):;

The extent parameters of a flexible type are declared in an extent-parameter-declaration-list.

B extent-parameter-declaration-list

I . [name . .
({ { identifier } ,... : { subrange-type-constructor } } D)

The identifiers are declared as the names of the flexible type’s extent parameters.

The type of an extent parameter is given by a subrange-type-constructor, or by a name that
denotes an ordinal type. The ordinal values in an extent parameter’s range must lie within
the range of the type INTEGER (otherwise, a range violation occurs).

As shown in the syntax, a name or constructor can apply to a list of extent parameters
whose names are separated by commas.

If ¢t is the name of a type, then the set of extents that can be named as extents of ¢ includes
the following, and nothing more:

o Ift is declared by a flexible-type-declaration, the set includes all of the extents declared
in ¢’s extent-parameter-declaration.

a4 Types

Digital Equipment Cor,. ~u - Confidential and Proprietary
For Internal Use Only

. » If the declaration of ¢ specifies ¢’s type using a named-type that is a bound-flexible-type
(see Section 5.6.1) or a name (of a type) that names the type ¢1, then the set also includes
all the names of ¢1’s extents, except names that already appear in the set as a result of
the application of the rule above.

5.6.1 Bound Flexible Types

A bound-flexible-type is a binding of a flexible type, and denotes one particular member of
a family of types denoted by a flexible type.

B bound-flexible-type

name ({ ?xpression })

The name must denote a flexible type, f. The number of asterisks and expressions must
equal the number of fs extent parameters. The exceptions to this rule (discussed below)
involve captured record extents. Each asterisk or expression is interpreted to yield a value
for the corresponding extent parameter. Let ¢ be the instance of f corresponding to the
n tuple of extent values. The bound-flexible-type denotes the type ¢ or POINTER ¢. For
example, s20 below denotes a type that is that particular instance of the type string with
20 characters:

TYPE
s20: string(20);

When an extent value is given as an expression, the expression is interpreted with the
corresponding extent parameter’s type as the target type. When an extent value is given
as an asterisk, it is called a matching extent. The value of the matching extent is derived
from the type of another item. The use of matching extents is allowed only in the type of a
parameter or in a blank_DATA type in type casting. (The match.mg rules are contained in
Section 13.2.5 and Section 9.10.)

In bound-flexible-types that occur in declarations, any expressions must be simple-
expressions (these are defined in Section 10.2.1).

A flexible record type can be specified as having its extent parameters captured. This means
that the value of the extents for a particular instance of the type are stored in the record.
With two exceptions, captured extent values are never specified in a bound-flexible-type,
because the extents are already present in the item. The only exceptions to this rule are:

e A bound-flexible-type that is used as the type-specification of a VALUE or VARIABLE
declaration

e A bound-flexible-type that immediately follows EXTENDS in a record-type-constructor
(see Section 5.11.5)

In the above cases, since the data item does not yet exist but is created by the declaration,
values for all extents (captured or not) must be present in the bound-flexible-type.

Types 45

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

5.7 Pointer Types

For every distinct named-type ¢ (primitive or created by a type declaration) that is not a
bit-class type, there is an associated pointer type, POINTER ¢; this is also true of flexible
types. Thus, with the flexible type vector (from the preceding example), there is also the
flexible type POINTER vector, and instances of it; for example:

VARIABLE g : POINTER vector (100); ! Points to vectors of size 100
In the type POINTER ¢, ¢ is called the associated type of POINTER ¢.
The value of a pointer item is a storage address or the predeclared primitive value NIL.

5.8 String Types

In Pillar, a string value (or variable) is a finite sequence of character values (or variables)
of the same type. Pillar has the flexible string types STRING and VARYING_STRING.*

STRING has one extent parameter:
LENGTH : INTEGER[O..]
STRING(n) takes on strings of length n as its values.

Pillar has a convenient bracket notation for accessing an individual element of a string or
substring; for example, if s is of type STRING{n), then s/i] refers to the ith character of s
and has the type CHARACTER.

To refer to a substring of s, use a range-specification within the brackets; for example, s/2..]
refers to the substring beginning at the second character and continuing through the last
character of s. The type of such a substring is the same as the original, except for the extent
value; for this example, the data-reference’s type is STRING{(n — 1).

An item of type STRING is also called a character string. Pillar has a form of literal for
character strings (see Section 2.3.3), a set of character string operations (see Section 10.9),
and the primitive flexible types STRING and VARYING_STRING.5

STRING is the fundamental character string type. Use it in procedure interfaces and in
building other types related to character strings. :

VARYING_STRING is provided as a type for variables that take on values with a variable
length but with a reasonable maximum length. VARYING_STRING is a primitive flexible
record type with special properties that permit it to be treated as taking on character strings
as values. As a record type, its declaration is the same as:

TYPE
varying_string (max_length: integer [0..32767]): RECORD
length: integer [0..32767] size(word); ! current length
body: string (max_length); ! holds current value
LAYOUT SIZE(byte,*)
length;
body:
END LAYOUT;
END RECORD;

4 Possible future extensions of Pillar (by adding new types) include zero-terminated strings (such as are found in C), and
strings in which the characters are larger than one byte.

5 Should character strings be restricted to 32767 characters? This is consistent with the declaration of VARYING_STRINGS,
and is necessary if the compiler generates character string instructions for VAX processors.

46 Types

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

\\\ The type VARYING STRING appears to be obsolete. = Better suited to modern
architectures would be: :

TYPE
varying_string (max_length: integer [0..] size(longword)): RECORD
CAPTURE EXTENTS; -
length: integer [0..] size(longword):; ! current length
body: string (max_length); ! holds current wvalue
LAYOUT SIZE (longword, *)
max_length;
length;
body;
END LAYOUT;
END RECORD;

A\

When a data-reference to a VARYING_STRING item, s, is interpreted as a value, the
reference is treated as a reference to the part of s’s body determined by the current length:

s.body[l .. s.length]

Thus, the value of s can be any character string whose length does not exceed s.MAX_
LENGTH. The same interpretation applies when the bracket notation is used; for example:

sf[2..]
actually refers to:
s.BODY[2..s.LENGTH]

In an assignment, s = v, v must be a character string value. This assignment is equivalent
to:

s.LENGTH = n;
s.BODY[1l..n] = v;

where n is the length of v.

Bracket notation can be used to refer to a substring of a VARYING_STRING, just as for
STRING.

For OUT ahd IN OUT procedure parameters that have the string types, there are restrictions
on the argument in addition to the requirement that it be compatible with the parameter.
These restrictions are discussed in Section 13.2.3.1.

5.9 Blank_DATA Types

Blank_DATA types are primitive flexible types provided by Pillar for the purpose of
manipulating data without regard to its true type.

Blank_DATA types consist of a sequence of values or variables of the same type. In this
respect, they are similar to character strings. Pillar provides the following predeclared
primitive flexible blank DATA types:

Types 47

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

Blank_DATA Type Type of Members of the Sequence
BIT_DATA BIT

BYTE_DATA BYTE

WORD_DATA WORD

LONGWORD_DATA LONGWORD

QUADWORD_DATA QUADWORD

The members of a sequence defined by a blank_DATA type are also called elements.
Each of these types has one extent parameter:
LENGTH : INTEGER[O..]

If t is one of these flexible types, an instance of it, ¢{(n), takes on data of length n as its
values.

To facilitate the treatment of ordinary types as blank DATA, the blank DATA types are
treated specially in type casting and in procedure interfaces using the CONFORM option
on parameters.

The same bracket notation as is used for character strings (see Section 5.8) can be used to
reference individual elements or subsequences of blank DATA items. For example, if b is
of type BYTE_DATA(n), then b/[i] refers to the ith byte of b and has the type BYTE. (If s
had type BIT_DATA, the reference’s type would be BIT, and so on for the other blank_DATA

types.)
An item with the type BIT_DATA(n) can occur at an arbitrary bit position in storage. For

this reason, any instance of BIT_DATA is included in the set of bit-class types, and its use
is restricted to record fields and array elements.

' 5.10 Array Types

An array type represents an array, or sequence of data items. This sequence consists of zero
or more data items of the same type. Each data item is called an element of the array type.

An array type is characterized by one or more index ranges and an element type. A new
array type is introduced by an array-type-constructor.

B array-type-constructor
ARRAY [{ range-specification } ,...] OF type-specification

The range-specifications are interpreted to yield the array type’s index ranges. The ordinal
values in an index range must all lie within the range of the type INTEGER (otherwise, a
range violation occurs). The number of ranges is the “number of dimensions” of the array
type. The type-specification is interpreted to yield the array type’s “element type.”

An array item, x, with element type ¢, contains a sequence of elements all of type ¢. If the
number of dimensions is n, and there are m; elements in the kth index range, then the
array x contains m; x mg X ...mp distinct elements. The elements are indexed by n tuples
(i1,... in), where iy lies in the kth index range.

48 Types

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

An element of the array is accessed by an array element reference, x/i;,...in/, where the
subscript expression iy specifies a value in the kth index range. Partial subscripting is not
allowed, that is, values for all subscripts must be given.

The only operation provided for entire arrays is assignment. An assignment simply copies
the entire array from the source to the target variable (two base array types are compatible
only if they are of equivalent types). If an element in the source array has a well-defined
value, the corresponding element in the target array is assigned that value. There is no
requirement that all of the source array’s elements have well-defined values.

5.11 Record Types

A record represents a collection of fields, that is, many data of potentially different types.
A record type is introduced by a record-type-constructor.

B record-type-constructor
RECORD [CAPTURE EXTENTS ;] [EXTENSIBLE ;]
[EXTENDS named-type ;]
field-list }
{ NOTHING;
[record-layout-option]
END RECORD ;

B field-list

[[field-declaration II
union
[variant-part]

A field-list must not be empty.

B field-declaration
{ identifier } ,... : type-specification [= initializer] ;

The identifiers in a field-declaration are declared as the names of distinct fields, all with
the type denoted by the type-specification. The scope of a field-declaration is the entire
record-type-constructor (including the record-layout-option). A field name within a flexible
record type must not be the same as an extent name of the type, since the scope of an
extent-declaration includes the record-type-constructor.

If an initializer is present in a field-declaration, it must be a constant-expression, and the
type-specification must not denote a type that, by itself, contains any fields specified as
requiring initialization. The initializer provides a value to which the declared fields are
initialized in any instance of a data item having the declared record type, or in any such
data item initialized with the INITIALIZE_FIELDS built-in function (see Section 10.11.6).
The initializer is interpreted with the given type-specification as a target type. Neither an
initializer nor a type-specification denoting a type containing fields requiring initialization
can be present in a field-declaration that is contained in a variant, or be present in more
than one alternative of a union.”

7 Since this disallows some types from being used for fields in variants, Pillar might provide a way to declare an uninitialized
type that is otherwise the same as an initialized one.

Types 49

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

Records can be declared with a record-layout-option to control their representation in storage
(see Section 5.17.3).

5.11.1 Captured Extents

A record-type-constructor that occurs : 1 flexible-type-declaration can be specified with the

keywords CAPTURE EXTENTS. Thi: .auses all of the type’s extents to be fields of the

record type. Since the extents themse:ves determine what instance of the flexible type a

particular record represents, they must have values (hence, be captured) for the record to

represent a valid type. Such a record has its captured extents set to particular values in

one of the following ways:

e The compiler allocates a new instance of a record with captured extents. This occurs in
the interpretation of a declaration of a data item whose type has captured extents.

¢ The built-in function INITIALIZE_FIELDS (see Section 10.11.6) initializes the captured
extents in storage.

Records with captured extents provide a way of declaring self-defining flexible records—
records that contain all the information necessary to define their type.

5.11.2 Unions and Variants

A field-list can contain variant-parts and unions, which contain one or more variants (in the
case of a variant-part) or alternatives (in the case of a union). If a variant-part or union
contains more than one variant or alternative, the same storage can be used for all variants
or alternatives. In any record data-item whose type contains a union or variant-part, one
alternative or variant is said to be selected. The identifier that follows CASE is called the
selector.

Unions and variant-parts are declared using the following syntax:
B variant-part

VARIANTS CASE identifier
{ variant} ...
END VARIANTS;

B variant

set-of-values field-list
WHEN { OTHERS } THEN { NOTHING ; }

B union
UNION CASE { identifier }

{ alternative } ...
END UNION ;

W aitemative

WHEN { set-of-values }THEN { union-field-list }

OTHERS NOTHING ;

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

B union-field-list

{ field-declaration }
union

For both unions and variant-parts, the alternative or variant that is selected is determined
by the set-of-values following the WHEN. All range-specfications and expressions in this
set-of-values must be constant; they are interpreted with the selector’s type as the target
type. A field in one of the variants or alternatives is selected only if the current value of
the selector lies in that variant’s or alternative’s set-of-values. When a field-reference is
interpreted, and it denotes a field in one of the variants or alternatives, that variant or
alternative must be selected (otherwise, a range violation occurs).

The specified sets in the set-of-values in the WHEN clauses must not overlap. OTHERS
can be used in place of a set-of-values, but for only one variant or alternative. OTHERS
denotes the set of all values in the selector’s range that are not in any other variant’s or
alternative’s set.

5.11.3 Unions

For a union, Pillar allocates enough storage to contain the largest of the alternatives. A
union can occur anywhere in the field list. All fields in a union’s alternatives must have
constant types (see Section 5.16.5); This ensures that the compiler can treat the entire union
as a constant-sized data item.

If an identifier follows the CASE, the union has selected alternatives. The identifier must
denote the name of either a field in the record or an extent parameter of the record type
that includes the union. (The latter is only allowed if the union is in the record-type-
constructor for a flexible record type). If the selector is a field, its declaration must not be in
any alternative or variant, and it must precede this union in the record-type-constructor’s
field-list.

If “CASE *” is used rather than a name following CASE, the alternatives in a union are
unselected; there is no checking on correct access to them. When this happens, the values
specified following WHEN have no significance in the language, so they are required to be
- 1 for the first altematwe, 2 for the second, and so on. OTHERS is not allowed.

5.11.4 Variants

In contrast to a union, variant-parts are only allocated enough storage to contain one of the
variants. Therefore, variants are said to be “selected at allocation.” A variant-part can only
occur at the end of the field list.

An identifier must follow the CASE in a variant-part; an asterisk (*) is not allowed, as it
is for unions. The identifier must denote the name of an extent parameter. Therefore, a
variant-part can occur only in the record-type-constructor for a flexible record type.

Types 51

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

5.11.5 Record Extensions

A record-type-constructor can be declared as being EXTENSIBLE, which allows the type to
be used as part of a new record type that contains all of the extensible type’s fields.

A record-type-constructor must meet the following criteria to be declared as extensible:

e The occurrence of the record-type-constructor must be as the type-specification of a
type-declaration.

e The record-type-constructor’s field-list must not contain a variant-part.

A record-type-constructor r can be declared using EXTENDS named-type. The named-type
must denote a record type ¢ that is declared as being EXTENSIBLE. The record type defined
by r contains, in addition to the fields declared in r, all of #’s fields. Type ¢’s fields are therefore
also in the same scope as r’s fields. The type defined by r is said to extend the type . R
begins with #’s fields, and that part of r that is not contained in ¢ is called the extension.

The following rules apply to the constructor r:

e The constructor r can contain a record-layout-option only if ¢ is a type with a layout. If
r does contain a record-layout-option, it does not affect ¢’s layout, and does not contain
any mention of ¢'s fields.

e Ifris a constructor that defines a flexible record type with captured extents, and the
extents of ¢ are also captured, then if er, an extent parameter of r is supplied (in the
binding of ¢ following EXTENDS in r’s declaration) as the value for et, one of ¢’s extents,
then er does not appear as a field in the extension, since it is already present in ¢,
which is part of r. Therefore, if r contains a record-layout-option, er must not be named
therein. The following example illustrates this:

TYPE
recl (el: integer): RECORD
CAPTURE EXTENTS;
EXTENSIBLE;
fla: integer;
£f1b: integer;
LAYOUT
el;
fla;
£flb;
END LAYOUT;
END RECORD;

rec2(e2: integer): RECORD
CAPTURE EXTENTS;
EXTENDS recl(e2):
f2a: integer;
£2b: integer;
LAYOUT ! note that e2 must not appear in rec2’s record-layout-option
£2a;
£2b;
END LAYOUT;
END RECORD;

52 Types

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

5.12 STATUS

STATUS is a built-in type used in Pillar’s condition-handling mechanisms. It is declared in
the module $condition. A value of type STATUS denotes a condition or error that can occur
during a program’s execution. A STATUS value also has a severity level. Since the type is
used in condition handling, it is discussed further in Section 12.2.2.

5.13 ANYTYPE

ANYTYPE is a predeclared primitive type used when dealing with data whose structure
cannot be expressed within the Pillar type system. This type defines no valid values, set of
operations, or data representation.

ANYTYPE is allowed to occur as a named-type only in contexts for which this is explicitly
stated. Unless stated otherwise, a data-reference of type ANYTYPE is not allowed; the
data-reference must be type-cast to some other type.

5.14 Procedure Types

Each of the types described heretofore in this chapter is a data type, in the sense that a
data item of that type can be declared. But in addition to data types, Pillar also provides
procedure types. Given a procedure type, one can declare a data item of that type, or a
procedure of that type.

A procedure type is declared using a procedure-type-declaration:

B procedure-type-declaration
[TYPE] identifier :

PROCEDURE procedure-type-specification

The keyword TYPE can be omitted only if this type declaration immediately follows another
type declaration.

The syntax for a procedure-type-specification is shown in Section 13.1.1.
An example of some declarations of procedure types follows:

TYPE
math_function: PROCEDURE (
IN operand: double)
RETURNS double;
sqrt_function: PROCEDURE (
operand)
OF TYPE math_function;

To declare a synonym of a procedure type, the preceding syntax must be used. Note that
the following is not allowed:

TYPE
sqrt_function: math function; ! Not allowed

Types 53

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

5.15 Opaque Types

An opaque type is a type whose properties (except for its size) are not, in general, made
available to users of the type. All of its properties can be made known to a user of the type
by revealing the type (see Section 4.3).

An opaque type is a way of hiding a type’s true nature. The type that is hidden is referred
to as the opaque type’s actual type.

In a scope in which an opaque type ¢ is not revealed, only the following uses of the type are

permitted: : .

e Type t can be referred to in other declarations (but not in expressions contained in
declarations).

* A data item of type ¢ can be passed as an argument.

e A data item of type ¢ can be used as the target or source of an assignment.

* A data item of type ¢ can be typecast to ANYTYPE.

An opaque type is declared either as complete or external, by a complete-opaque-type-

declaration or an external-opaque-type-declaration, each of which declares an identifier as
the name of an opaque named-type:

B complete-opaque-type-declaration
[TYPE] identifier OPAQUE [size-option] : type-specification ;

B extemal-opaque-type-declaration
[TYPE] identifier OPAQUE [size-option] EXTERNAL ;

Both the complete-opaque-type-declaration and the external-opaque-type-declaration de-
clare the identifier as the name of an opaque type. The complete-opaque-type-declaration
also reveals the opaque type in the module in which the declaration occurs.

The use of the size-option is described in Section 5.17.2.

In either the complete or external case, the keyword TYPE can be omitted only if this type
declaration immediately follows another type declaration. If the size-option is omitted on an
external-opaque-type-declaration, the type’s alignment requirement and size is taken to be
the same as that for pointer types. An external-opaque-type-declaration must be completed
in another module (an implementation module) by an opaque-type-completion:

B opaque-type-completion

[TYPE] identifier : type-specification ;
The keyword TYPE can be omitted only if this type declaration immediately follows another
type declaration.

The identifier must denote an opaque type that was imported in an implement-section of
the mocule containing the opaque-type-completion. An opaque-type-completion also causes
the type being completed to be revealed in the containing module.

Opaque types must always have constant-types: the type-specification in a complete-
opaque-type-declaration or an opaque-type-completion must denote a constant type (see
Section 5.16.5).

54 Types

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

5.16 Relationships Among Types
5.16.1 Type Equivalence

Type equivalence is a relationship between two types that means the types have no practical
differences (the exact meaning of this is the definition of type equivalence, which follows).
Type equivalence is reflexive.

To define type equivalence, the concept of root type is useful. If¢ is a type, then its root type
rt is defined as follows:

e Iftis a synonym for ¢t1, then rt is the root type of ¢1.

e Iftis a binding of the flexible type ¢1, then rt is the root type of the particular instance
of t1 denoted by the binding. Note that this rule is applied recursively.

e Iftis a revealed opaque type (see Sections 4.3 and 5.15) with actual type at, then r¢ is
the root type of at.

e Iftis an unrevealed opaque type, then rt is £.

e Otherwise, rt is t.

By these rules, a root type is either a primitive type, a type constructor, or an unrevealed
opaque type.

Two types are considered the same if they have identical root types.

Two types are equivalent only if at least one of the following relationships holds between
the root types of the two types:

* Both are the same nonflexible type.

* Both are the same primitive or record flexible type, and their corresponding extents are
equal.

* Both are ordinal types or set types, and both have the same base ordinal type, with
their upper and lower bounds equal, their sizes equal, their alignment requirements
equal, and both or neither are subrange types.

* Both are array types, and both have the same number of dimensions, the same number
of elements in each dimension, and equivalent element types.

* Both are pointer types, and their associated types are equivalent.
* Both are procedure types with all of the following true:

— Both have the same number of parameters.

— All their corresponding parameters are equivalent.

— All their corresponding parameters have the same mode.

— All their corresponding parameters have identical parameter options and default
values.

— Both or neither must return a value.
— If both return a value, their return types must be equivalent.

— Both have the same linkage options.

Types 55

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

— Both or neither require an environment. If they require an environment, both must
require the same environment.

5.16.2 Type Compatibility

Type compatibility is a relationship between two types meaning that a value of either type
can be assigned to an assignable data item of the other type. Type compatibility is reflexive.

Type compatibility is determined by the following rules:

* Two equivalent types are compatible.

* All arithmetic types are compatible.

* Two ordinal types are compatible if they have the same base ordinal type.

* Two set types are compatible if they have the same base ordinal type and the same
range.

e All string types are compatible.

Contexts in Pillar that require compatibility provide a target type for interpreting an
expression or other construction. These contexts are made explicit by such phrases as “The
expression is interpreted with the data-reference’s type as its target type.” For example, in
a = b + c;, the expression b + ¢ is interpreted with the type of a as its target type.

Where compatibility is required and the expression or other construction does not have a
type that is equivalent to the target type, the expression’s value is converted to the target
type (see Section 5.16.4.

5.16.3 Type Assignment Compatibility

Type assignment compatibility is a nonreflexive relationship between two types, meaning
that a value of one type can be assigned to an assignable data item of the other type.

The type 2 being assignment compatible to the type {1 means that a value of type ¢2 can
be assigned to a data-reference of type ¢1. This is true if either:
®* {2 and ¢I are compatible or

* {2 and ¢ are both pointer types, and the associated type of 2 extends the associated
type of t1

5.16.4 Conversion Between Compatible types

In contexts such as assignment, a source value is implicitly converted to a compatible target
type. If the source and target types are equivalent, there is no change in the value or
internal representation. If the types are different, there can be a change in value, or the
internal representation might change without the value changing.

The following rules cover all cases of implicit conversion between compatible types in which
a value can change, or a range violation can occur. (For additional, explicit conversions, see
the descriptions of the conversion functions in Section 10.11.5).

56 Types

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

Target type: Any integer type
Value's type: Any arithmetic type

If the value is not an integer, it is converted to one by truncating it towards zero.
The truncated value must lie in the target type’s range (otherwise, a range violation

occurs).
Target type: Any floating-point type
Value's type: Any arithmetic type

The value is rounded to the precision of the target type. If the rounded value’s
magnitude is too large for the target type, an overflow exception occurs. If the
rounded value’s magnitude is too small for the target type, and underflow is enabled,
an underflow exception occurs; if underflow is disabled, the value is converted to

zero.
Target type: STRING(m)
Value's type: STRING(n)

The length m must be greater than or equal to the length n (otherwise, range
violation). If m is greater than n, the value is padded with enough blanks on the
right to make its length equal to m. If m and . are equal, the value does not change.
Note that because of the way Pillar is defined, a value used in a conversion never
has the type VARYING_STRING.

For STRING OUT and IN OUT parameters, there are restrictions on the argument
in addition to the requirement that it be compatible with the parameter (see
Section 13.2.3.1).

Target type: VARYING_STRING(m)
Value's type: A STRING(n)

The value’s length, n, must not exceed the target’s maximum length, m (otherwise,
range violation). The value does not change.

For VARYING_STRING OUT and IN OUT parameters, there are restrictions on the
argument in addition to the requirement that it be compatible with the parameter
(see Section 13.2.3.1).

5.16.5 Small Types and Constant Types

A type is said to be a constant type if its type-specification does not depend on nonconstant
expressions.

A type is said to be a small type if it is any one of the following:
* Any arithmetic, ordinal, or pointer type
e A constant set type whose range contains at most 64 ordinal values

Types 57

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

* A set type with a size-option
* A procedure type
* The type STATUS

* An opaque type declared in an external-opaque-type-declaration either without a size-
option, where the size-option does not contain an expression

* An opaque type declared in a complete-opaque-type-declaratmn with a s1ze-opt10n that
does not contain an expression, or whose actual type is small

All small types contain 64 bits or fewer. 8

The concept small type is used in Pillar language rules because the rules reflect the
assumption that small types can reasonably be held in registers and that copying a value
of the type is inexpensive.

5.17 Data Representation

Each Pillar data type has an internal representation that specifies how items of the type
are normally represented in storage. The compiler is not required to follow these rules in
all cases, but it will follow them for data that can be accessed outside of Pillar or through
one of Pillar’s type escape mechanisms.

The following representational properties of a data type are of special interest. These
properties can be explicitly specified for ordinal subrange types, small set types, and record

types.

Data Type Property Description

Size units Expressed as one of the types BIT, BYTE, WORD, LONGWORD, or QUADWORD.
Size A nonnegative integer giving the storage size in the specified size units.

Alignment requirement Expressed as one of the types BIT, BYTE, WORD, LONGWORD, or QUADWORD.

ltems with this property will be allocated in storage with at least the alignment
specified; the lone exception is that fields in a record can be explicitly dealigned
(see Section 5.17.3.1).

5.17.1 Standard Data Representation Rules

e The types BIT, BYTE, WORD, LONGWORD, and QUADWORD have the size and
alignment requirement implied by their names. The ordinal value is stored as an

unsigned integer.
e The type INTEGER has the same size and alignment requirement as LONGWORD. The
integer value is stored as a two’s complement integer.

e The type LARGE_INTEGER has the same size and alignment requirement as
QUADWORD. The integer value is stored as a two’s complement integer.

e The type REAL has the same size and alignment requirement as LONGWORD.
e The type DOUBLE has the same size and alignment requirement as QUADWORD.

8 Should any other types that contain 64 bits or fewer be considered small types? For example: record types, blaxik_DATA,
strings, and arrays. It is not at all clear that it is appropriate to put these types in registers.

58 Types

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

® The type BOOLEAN has the same size and alignment requirement as BYTE. The values
TRUE and FALSE are represented by their ordinal values: one and zero, respectively.

* The type CHARACTER has the same size and alignment requirement as BYTE. The
ordinal values of the characters listed by Pillar are the values shown in Table 2-1.

¢ An enumerated type has the same size and alignment requirement as LONGWORD.

e Unless a subrange-type-constructor contains a size-option, its internal representation is
the same as that of the type from which it is derived.

e The type blank_DATA(n) has size n with size units and alignment requirement as
implied by the name.

* If a set-type-constructor does not contain a size-option, then:

— If the set is constant sized and contains 32 or fewer elements, it has the same size
and alignment requirement as LONGWORD.

— Otherwise, it has the same size units and alignment requirement as QUADWORD_
DATA.

In all sets, the first bit? corresponds to the lowest element in the set’s range, and one
bit is used to represent each element.

e The type STRING(n) has the same size and alignment requirement as BYTE_DATA(n).

e For the type VARYING_STRING{(n), the representation is specified by the type’s
definition as a record type.

* The type POINTER ¢ has the same size and alignment requirement as LONGWORD.
Such a pointer item holds a machine address in the form determined by the system.
NIL is represented by the value zero.

e If, in an array-type-constructor, the element type is a bit-class data type, the array type s
size units and alignment requirement are the same as for INTEGER; otherwise, they
are the same as the element type’s. The array’s elements are stored in row-major order
(which means that the rightmost subscript varies most rapidly, for example, X[1,1],
X[1,2],...) with no fill between elements. The only possible fill occurs at the end for a
bit-class element type. ‘

e If a record-type-constructor has a record-layout-option, the type’s representation is
specified by the layout; otherwise, the record’s size units and alignment requirement
are the same as for QUADWORD_DATA.

e In atype-declaration whose type-specification is a named-type (that is, not a constructed
type), the representation of the new type is the same as the type from which it is derived.

e The type STATUS has the same size and alignment requirement as QUADWORD. The
quadword contains a system status value.

e All procedure data types have the same size and alignment requirement as pointer types
(because they are represented as pointers).

The standard alignment requirement and the size units for a type are the same.

9 The meaning of "first bit" is machine dependent. It is the low order bit on VAX machines, but might be different on RISC
architectures.

Types 59

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

5.17.2 The SIZE Option

A size-option can be given within a subrange-type-constructor that defines a subrange type,
within a set-type-constructor that defines a small set type, within the record-layout-option
of a record-type-constructor, or in an opaque type declaration. The option controls the size
and alignment requirement of the new type.

M size-option
BIT
BYTE
SIZE ({ WORD [[
LONGWORD
QUADWORD

, simple-expression]] |

5.17.2.1 Rules for Size-options in Subrange Types

If BIT is specified, the simple-expression (not the asterisk) must occur and must be constant
and denote an integer value in the range 1..64. In this case, the subrange type is a bit-class

data type.

If BIT is not specified, neither the simple-expression nor asterisk is allowed. The size is a
single byte, word, longword or quadword.

If the specified range of ordinal values includes any negative integer values, the ordinal
values are represented as two’s complement integers; otherwise, they are represented as
unsigned integers. The specified size must be large enough to hold all ordinal values in the
subrange (otherwise, a range violation occurs).

5.17.2.2 Rules for Size-options in Small Set Types

If BIT is specified, the simple-expression (not the asterisk) must occur and must be constant
and denote an integer value in the range 1..64. In this case, the set type is a bit-class data
type. If BIT is not specified, neither the simple-expression nor asterisk is allowed. The size
is a single byte, word, longword or quadword.

Within the specified size, the first bit corresponds to the lowest element in the set type’s
range. The specified size must be large enough to hold all elements in the range (otherwise,
a range violation occurs).

A set type with a size-option must have constant limits and is limited to 64 elements.

5.17.2.3 Rules for Size-options in Record Types

The size-option is allowed as part of a record layout. BIT cannot be used. The specified size
unit (BYTE, WORD, LONGWORD, or QUADWORD) is the alignment requirement for the
record type and also the maximum alignment requirement for each field.

Either the asterisk or the simple-expression must occur. The size of the record is first
determined by the layout rules. If the asterisk occurs, the size is the minimum number
of specified units required to hold the record. If the simple-expression occurs, it must be
constant, and must denote an integer value that specifies a size large enough to hold the
entire record (otherwise, a range violation occurs). 10

10 Suggested additional restriction: a constant-expression can only occur if the record type is a constant type.

60 Types

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

5.17.2.4 Rules for Slze?optlons in Opaque Types

BIT cannot be specified. The asterisk must not occur. If a simple-expression occurs, it must
be constant and denote an integer value. If the expression is omitted, the size is a single
byte, word, longword or quadword. In any case, the specified size must be large enough to
hold the entire actual type (otherwise, a range violation occurs).

5.17.3 The LAYOUT Option

A record-type-constructor can contain a record-layout-option. A record-layout-option
explicitly controls the internal representation of the record by listing all field names in
the order in which they are to occur. The exact spacing of fields can be adjusted by filler-
components, alignment-options, and position-options. No implicit gaps are allowed; use a
filler-component where a field’s alignment requirement or position would otherwise cause a
gap.

Using a record-layout-option is the only way to get a known record layout. If a record-layout-
option is not used in a given record declaration, Pillar is free to choose its own layout, which
can include reordering the fields in storage.

M record-layout-option
LAYOUT [size-option]
layout-list .
{ PACKED IN ORDER }
ALIGNED IN ORDER
END LAYOUT ;

If PACKED IN ORDER is specified in a record-layout-option, the compiler supplies a layout
which packs each field into a minimal amount of storage. The alignment of each field can
be less than its type’s standard alignment requirement. The fields are laid out in the same
order in which they are specified in the record-type-constructor. 1!

If ALIGNED IN ORDER is specified in a record-layout-option, the compiler supplies a layout
that uses a minimal amount of storage while still aligning each field in accordance with its
type’s standard alignment requirement. The fields are laid out in the same order as they
are specified in the record-type-constructor.

M layout-list
[components-layout] ...
[variant-part-iayout }
The layout-list must not be empty.

B components-layout

field-component
filler-component
union-layout

11 The exact rules for this layout option will be supplied.

Types 61

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

M field-component
identifier ,... [alignment-option] [position-option] ;

All the fields in the record must be named exactly once in field-components within the
layout-list. Fields in a variant or alternative must be in the layout-list of a corresponding
OVERLAY.

The interpretation of a record layout uses a location counter measuring the current bit offset
from the record’s origin. The counter’s value is increased as the layout-list is processed. At
each step, the location counter has a well-defined alignment, which is never greater than
the alignment requirement of the entire record.

When a field is processed, it is allocated at the current value of the location counter,
whose alignment must equal or exceed the field’s alignment requirement (otherwise, a range
violation occurs). The location counter is then incremented by the size of the field. If the
new location value is constant, the counter’s new alignment is the maximum alignment that
does not exceed the record type’s alignment requirement, and is consistent with the location
value (for example, if the location is 16 bits, the maximum consistent alignment is WORD).

If the new location value is not constant, the new alignnient is the smaller of the previous
alignment and the effective size units of the field. (For a constant-sized field, the effective
size units are the maximum units consistent with the actual size.)

The complete interpretation. of a record-layout-option is:

e If a size-option is present, it is interpreted. If a size-option is not present, then the
record’s size units and alignment requirement are the same as for the type QUADWORD,
just as they would be if no record-layout-option were present.

e The alignment requirement is determined for the entire record type and for each field.

e The layout-list is processed with an initial location counter value of zero. The initial
alignment is equal to the record’s alignment requirement.

e To obtain the record size, the final value of the location counter is rounded up to the
record’s size units. (This might introduce an implicit fill at the end of the record.)

5.17.3.1 Determining Alignment Requirements

If the record-layout-option contains a size-option, the size-option determines the alignment
requirement of the record type. This, in turn, determines the maximum alignment possible
for each field in the record. Therefore, using a size-option can result in dealigned record
fields.

If the record-layout-option does not contain a size-option, the alignment requirement is the
same as for the type QUADWORD, just as it would have been if no record-layout-option
were present.

If the field-component for a field does not contain an alignment-option, the field’s alignment
requirement is the minimum of its type’s alignment requirement and the entire record type’s
alignment requirement. If the layout component for a field ccntains an alignment-option, it
specifies the field’s alignment requirement; this must not exceed the alignment requirement
established by a size-option for the entire record type.

The compiler will generate different code to access an item that is known to be dealigned.

62 Types

Digital Equipment Corporation - Confidentiai and Proprietary
For Internal Use Only

B alignment-option

BYTE

WORD
LONGWORD
QUADWORD

Non-bit-class data can never be dealigned to BIT.

ALIGNMENT (

5.17.3.2 The Position Option

A position-option is used to specify the exact position of a field from the origin of a record.
Only one field can be named in a field-component containing a position-option.12

B position-option
' (BIT
BYTE
POSITION (¢ WORD , constant-expression)
LONGWORD
QUADWORD

Whichever units are used in the position-option, it can be considered as specifying the bit
offset of the field from the record origin. A position option can only be specified if the current
value of the location counter is constant. The constant-expression, if present, must denote
an integer value; it supplies the offset value. The offset value must equal the current value
of the location counter (otherwise, a range violation occurs); to achieve this, FILLER(units,*)
can be used. If FILLER(units,*) is used, the offset specified in the position must not be less
than the filler’s location (otherwise, a range violation occurs). The offset value must also
be consistent with the alignment requirement of the field (otherwise, range violation); for
example, if the alignment requirement is WORD then “offset MOD 16 = 0” must be true.

5.17.3.3 Filler Components

A filler-component reserves space in the record layout, or indicates the existence of a gap
whose size is computed by the compiler from other information. A filler-component has a
name (the identifier shown in the syntax below), which is declared with the same scope as
a record field. No references to the name are valid.

M filler-component

BIT
BYTE

identifier : FILLER ({ WORD) {
LONGWORD
QUADWORD

*

constant-expression })

12 A possible extension to the language is a special position-option to allow a field in a record that extends another to occupy
the same space as a filler in the extended record type. Records types that can be extended in this manner haveextensible
filler, and their properties are still to be defined. For example, assignments to them are not safe.

Types 63

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

The specified units must not exceed the current alignment of the location counter. If the
constant-expression occurs, it must denote a positive integer value, and the indicated amount
of space is reserved beginning at the current location counter. If an asterisk occurs, the
amount of space reserved is the minimum required to be consistent with the alignment
requirement and/or explicit position of the next item. All filler-components, including those
with an asterisk, must cause some space to be reserved.

5.17.3.4 Variant Part and Union Layouts
Unions and variant-parts are laid out using union-layouts and variant-part-layouts:

B union-layout

‘UNION [alignment-option] [position-option J
{OVERLAY components-layout}...
END UNION;

B variant-part-layout

VARIANTS [alignment-option] [position-option }
{OVERLAY layout-list}...
END VARIANTS;

For each variant-part or union in a field-list, the corresponding layout-list must contain a
corresponding variant-part-layout or union-layout, and this must contain one “OVERLAY
layout-list” or “OVERLAY components-layout” for each nonempty variant or alternative in
the variant-part or union. The “OVERLAY layout-list” or “OVERLAY components-layout”
must name all the fields in the variant or alternative and no others.

Since in a variant-part, a single variant is selected at record allocation, only that variant is
laid out, and only it contributes to the record’s size. In a union, however, each alternative
is laid out starting with the same initial value of the location counter.

All items in a union’s alternative must have constant types (see Section 5.16.5); therefore,
at the end of the union-layout, each location counter yields a final location value of the form
initial_value + constant. The size of the entire union is determined as the maximum of all
these constants; the maximum is then treated as a single item in the containing layout-list.

64 Types

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

CHAPTER 6
CONSTANTS, LITERALS, AND CONSTRUCTORS

6.1 Constant Declarations

A constant-declaration declares a named compile-time constant. A constant-declaration has
no explicit storage, it is not addressable. If the constant-declaration is exported, the value
of the constant is made available in the compilation of an importing module.

M constant-declaration
[CONSTANT] identifier [: type-specification] = initializer;

A named constant always has a type. If the optional type-specification (which must be
constant) is part of the declaration, the type-specification is used as the target type for
interpretation of the initializer and is the type of the named constant. Otherwise, the
named constant will have the type of the initializer (which must be a constant type) as its
type. If the initializer is a set constructor and the type-specificaion is not present in. the
constant-declaration, the set constructor must have a named-type. The initializer must not
be an array- or record-constructor, and must be constant. A named constant must have a
type whose type is ordinal, small set, floating, pointer, or STRING. If the named constant’s
type is string, the string must not have a length longer then 1024. A named-constant cannot
have a type of VARYING_STRING. ‘

6.2 Literal Constants

As explained in Chapter 2, the natural value of a character-string-literal is a sequence of
characters; the natural value of any other form of literal is a number. The rules in this
section govern assigning specific Pillar types to occurrences of literals, and interpreting the
literal’s natural value as required by the target type. Pillar was designed so that a literal
will usually get an appropriate type, either by default or because the context provides a
target type. In other cases, you can specify a type or use a CONVERT function.

H literal-constant

decimal-literal
binary-literal
octal-literal
hexadecimal-literal
floating-point-literal
character-string-literal

Character-string-literals must have a target type of STRING or VARYING_STRING. All
other literals must have a target type that is small (see Section 5.16.5).

[: named-type]

Constants, Literals, and Constructors 65

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

6.2.1 Literals with a Named Type

If the named-type is present, the literal is interpreted as a value (see Section 9.2.1) with
the named-type as its type. The following are rules for the literals with a named-type:

The named-type must be constant.
The named-type must be string, ordinal, integer, floating, small set, or pointer.

If the literal is a character-string-literal and its length is less than the named-types,
the literal will be blank padded.

With the exception of character-string- and floating-point-literals, if the literal is smaller
than the named-type, the literal will be zero extended to the size -:f the named type.

If the literal is a decimal-literal, the named-type must be integer or large_integer.

If the literal is a floating-point-literal, the named type must be REAL or DOUBLE. In
addition, the “conversion” of the value must not underflow or overflow.

If the value of the literal requires a size that is larger than the size of the named-type,
it is an error.

If the named-type is ordinal and the value of the literal is outside the range of the
ordinal type, an error occurs.

If a specific type for the literal is not determined by the above rules, its type is determined
by default as shown in Table 6-1.

Table 6—1: Default Types for Literal-Constants

Literal-Constant Defauit Type
Decimal-literal with value < 2%' INTEGER
Decimal-literal with value > 2% LARGE_INTEGER
Binary-, octal-, or hexadecimal-literal with value < 2% LONGWORD
Binary-, octal-, or hexadecimal-literal with value > 2% QUADWORD
Floating-paint-literal DOUBLE
Character-string-literal with length = 1 CHARACTER
Character-string-literal with length n > 1 STRING(n)

A binary-, octal-, or hexadecimal-literal can have a small set type as its target type. In
this case, the set value is obtained by considering the binary representation of the literal-
constant’s natural value; if bit 2 equals one, the set value contains the kth element in its
range. Bits outside the set type’s range must be zero; for example:

TYPE bitset : SET [0..31];
VARIABLE x, y : bitset;

x = "3"x;
y = [0,1];

The variables x and y are assigned the same value.!

1 The ability to assign a literal without a named-type to a set seems to be of questionable worth. Should this ability be
removed?

66 Constants, Literals, and Constructors

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

6.3 Initializers and Constructors

Initializers are used in: '

e Value-declarations, to specify the value

® Variable-declarations, to specify an initial value for the variable

e Field-declarations, see Section 5.11

¢ Parameter-declarations, to specify a default value for an IN parameter

‘e Array-constructors and record-constructors, to specify the value of an element or field
Array- and record-constructors are always constant, that is, they contain only initializers
of NIL, literals, constant-expressions, array-constructors, or record-constructors. Set-

constructors used as initializers can have only constant expressions in their set-of-values.
However, set-constructors used in expressions in statement-sequences can be dynamic.

6.3.1 Initializers
M initializer
expression

The type of an initialized item must be constant. The initialized item’s type provides the
target type for interpreting constructors and literals.

Initialization is sometimes deceptively inefficient; the compiler imposes the followmg
restrictions to eliminate some of the less efficient cases:

o The size of an initialized item must not exceed 65535 bytes.

e Ifthe initialized item is a local variable (that is, not at module level), then its size must
not be greater than 1024.

Even in the case of a module level variable, initializing a large variable can involve copying
a large amount of data at run time. This data movement can be less efficient than using
explicit assignments. If only a few elements of an aggregate are initialized to nonzero
values, consider using OTHERS = "0"x for array-constructors and OTHERS = DEFAULT
for record-constructors as the initializer, and then use assignment statements to supply the
nondefault values.

6.3.1.1 NIL as an Initializer
When NIL is used as an initializer, the target type must be a pointer type or a procedure

type.
6.3.2 Set Constructors

A set-constructor specifies a set value by enumerating the ordinal values contained in the
set. The constructor either gives an explicit type for the value, or the context must provide
a target type. All values specified in the constructor are required to lie in the type’s range.

Constants, Literals, and Constructors 67

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

W set-constructor
[[set-of-values]] [: named-type]

If the named-type is present, it must denote a set type, ¢; otherwise, the context must provide
a target set type, t. The range of ¢ is taken to specify an ordinal type, and this ordinal type
is the target type for interpreting the set-of-values (see Section 6.3.2.1). This set-of-values
yields a set value of type ¢. If the set-of-values is omitted, the value is the empty set of type
t.

The range specified by the set-of-values must be constant if the set-constructor is used as an
initializer, but can be variable if the set-constructor occurs as an expression in a local-block’s
statement sequence.

6.3.2.1 Set of Values

The set-of-values category specifies a set of ordinal values by enumerating one or more
ranges or single values that belong to the set. The set-of-values category is used in
set-constructors and with the keyword WHEN (the latter in UNION and VARIANTS
declarations and CASE statements).

B set-of-values

expression
range-specification

Each expression or range-specification is interpreted with the ordinal target type provided
for the interpretation of the set-of-values (if the context provides such a type). The resulting
set contains the ordinal values of the expressions and the ordinal values in the ranges. If the
constant does not provide a target type, all the expressions and ranges must have equivalent
base ordinal types; this can occur when a set-of-values follows the keyword WHEN in a case-
statement or record-type-constructor.

6.3.3 Array Constructors
An array constructor provides a way to specify an array constant.

In an array constructor, the element values can simply be listed in row-major order. The
same value can be repeated (for example, 10 OF 1 specifies 10 occurrences of the integer
1). The list must provide values for exactly the number of items in the array, unless it uses
OTHERS to specify a value for all remaining elements; for example:

{ 1, OTHERS = 0 }

The constructor above is valid for any arithmetic array type that has at least one element.
The first element value is one; all others are zero. OTHERS can be used in this case even
if there are no remaining elements.

Rather than list all the elements in order, individual elements can be explicitly selected by
index values; for example:

68 Constants, Literals, and Constructors

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

TYPE
alkali: (lithium, sodium, potassium, rubidium, cesium, francium);

VALUE
atomic_number: ARRAY [alkali] OF integer =
{ [lithium] = 3,
[sedium] = 11, v
[potassium] = 19,

.
There are no rules about the order in which the selected elements occur. All elements must
be selected unless OTHERS is used to specify a value for the remaining elements.

The selection notation can be used to select subarrays, which are then given using the
positional notation. For example, an identity matrix can be constructed thus:

{ [1]1 = { 1, OTHERS = 0 }, ! first row
[2] = { 0, 1, OTHERS = 0 }, ! second row
= {20F 0, 1, OTHERS = 0 }, ! third row

[3]

}

M array-constructor

element-list
wpn selected-element-value o “4
{ { selected-subarray-value } [. OTHERS = initializer] }

If selected-subarray-values are used, they must all have the same dimension. The same
element or subarray must not be specified twice by a selected-element-value or selected-
subarray-value. If OTHERS occurs, the value of the initializer following OTHERS is used
for all other elements of the array; in this case (that is, if selected-subarray-values are used),
there must be at least one unselected element or subarray. If OTHERS does not occur, all
elements or subarrays must be selected.

Bl element-ist

[I { [constant-expression OF] initializer } ,... [, OTHERS = initializer }]]
OTHERS = initializer

An element-list specifies the values of an array or subarray in row-major order. Each
element’s value is specified by an initializer. This initializer’s target type is the array’s
element type.

The constant-expression preceding OF must yield a nonnegative integer; this integer is the
number of times the associated initializer’s value is repeated in the list.

If OTHERS is used, the number of values must not exceed the number of elements in the
target. The value of the initializer following OTHERS is used for any excess target elements.
If OTHERS is not used, the number of values in the list must equal the number of elements
in the target array type or selected subarray. An element list can be empty if the target
array has no elements. -

Constants, Literals, and Constructors 69

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

B selected-element-value
array-selector = initializer

B selected-subarray-vaiue
array-selector = “{" element-list “}”

B amay-selector
[{ constant-expression } ,...]

An array-selector is used in an array-constructor to select an element or subarray of the
target array type. The number, n, of constant-expressions must not exceed the dimension,
d, of the array. The kth expression must be compatible with the kth index range of the
array.

Let vy be the value of the kth expression. If n is equal to d, the element with index n tuple
(v1..Un) is selected. Otherwise, a subarray is selected. The subarray contains all elements
with index n tuples (v1..Un, in41.-iq), Where iy lies in index range &, k = n+1 ..d.

6.3.4 Record Constructors
A record constructor provides a way to specify a record constant.

M record-constructor

o H { identifier = initializer } ... [, OTHERS = DEFAULT] H}
OTHERS = DEFAULT

Each identifier must be the name of a field (not a filler) in the record. The corresponding
initializer is interpreted with the field’s type as its target type.

If OTHERS is used, all fields not named receive default initialization, except for those in
excluded variants and alternatives. If OTHERS is not used, all fields in the record type
must be named in the constructor, except for those in excluded variants and alternatives.
If the record-constructor names a field in a variant, all other variants in the same variant
part are excluded; fields in them must not be named in the record-constructor. Similarly,
if the record-constructor names a field in an alternative, all other alternatives in the same
union are excluded; fields in them must not be named in the record-constructor. A record-
constructor can be empty if the record type has no fields. Note that OTHERS can be used
even if all fields are named in the initializer; OTHERS has no effect in this case.

6.3.4.1 Using OTHERS In record-constructors

When OTHERS = DEFAULT is used, any target type is allowed. The initial value’s internal
representation is zero in all bits. Table 6-2 shows the initial value, in Pillar terms, of a
field with a given target type when it is initialized with DEFAULT (assuming standard data
representation).

70 Constants, Literals, and Constructors

Digital Equipment COrporation - Confidential and Proprietary
For internal Use Only

Table 6-2: Initial DEFAULT Field Values

Target Type Initial Value
Arithmetic type Zero

BOOLEAN FALSE
CHARACTER The NUL character
Other ordinal types Ordinal value zero
Set types : The empty set
STRING String of NUL characters
VARYING_STRING Null string

Pointer types) NIL

Procedurs types NiL

STATUS binary zero
MESSAGE_VECTOR binary zero

Note that an ordinal item with a subrange type can thus be initialized to a value outside
its range.

Constants, Literals, and Constructors 71

Dlgltal Equipment Corporation - Confidential and Proprietary
For internal Use Only

CHAPTER 7
VALUES AND VARIABLES

7.1 Overview of Values and Variables

This chapter describes declarations of data items that can be declared at block level in
Pillar. These declarations are: constant-declarations (see Section 6.1), value-declarations,
variable-declarations, bind-declarations, and define-declarations.

A value-declaration causes storage to be allocated for a data item that cannot be modified
during its existence. This data item is called a nonassignable data item.

A variable-declaration causes storage to be allocated for a data item that can be modified
during its existence. This data item is called an assignable data item.

A bind-declaration or define-declaration does not cause any storage to be allocated; rather,
it renames an already existing data item (or part thereof). A bind-declaration or define-
declaration can declare an assignable data item or a nonassignable data item, depending on
the properties of the existing data item it renames.

Some of these declarations can or must be declared with an mltml value, called an initializer.
Initializers are described in Section 6.3.1.

7.2 Value Declarations

A value-declaration declares a name for a named value, which is a nonassignable data
item with its own location. The value’s location is unique across all data items declared by
value-declarations and variable-declarations in blocks that are active at the same time.

There are two forms of value-declaration:
B complete-value-declaration
[VALUE] identifier : type-specification = initializer ;
B external-value-declaration
[VALUE] identifier : type-specification EXTERNAL ;

The keyword VALUE must be present unless the value-declaration immediately follows
another value-declaration or value-completion.

The identifier is declared as the name of a nonassignable data item. The type-specification
determines the name’s type. Note that a value-declaration does not declare a named
constant, but it does declare a named value.

values and Variables 73

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

In a complete-value-declaration, the initializer is interpreted with the name’s declared type
(provided by the type-specification) as its target type; the resulting value is the value of the
data item.

In an external-value-declaration (which can only occur at module-level), the name’s
value and storage must be given by a value-completion in the module-level block of

an implementation module, or the name’s value and storage can be supplied by being
implemented in a module written in another language.

The data item defined by a value-declaration exists for as long as its containing block is
active. The storage class of a value data item is given in Section 8.1.

7.2.1 Value Completions

A value-completion provides the value and the storage of a named value declared by an
external-value-declaration. A value-completion is allowed only at module level; its name
must be specified as an implemented name (in one of the module’s implement-sections,
either explicitly or using wildcard notation). The value-completion is not itself a declaration
of the name.

B value-completion
[VALUE] identifier = initializer ;

The keyword VALUE must be present unless the value-declaration immediately follows
another value-declaration or value-completion.

The initializer is interpreted with the name’s declared type (the name denoted by the
identifier) as its target type, and the name denotes the resulting value.

7.3 Variable Declarations

A variable-declaration declares an identifier as the name of a variable, which is an assignable
data item with its own location. The variable’s location is unique across all data items
declared by value-declarations and variable-declarations in blocks that are active at the
same time.

There are two forms of variable-declaration:

B complete-variable-declaration

ALIASED H,

[VARIABLE] { identifier } : type-specification [= initializer } [[SHARED

M exiernal-variable-declaration

ALIASED]])

[VARIABLE] { identifier } ... : type-specification EXTERNAL [[SHARED

The keyword VARIABLE must be present unless the variable-declaration immediately
follows another variable-declaration or variable-completion.

If a complete-variable-declaration contains an initializer, the initializer is interpreted with
the name’s declared type (provided by the type-specification) as its target type; the resulting
value is the initial value of the declared variable.

74 Values and Variables

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only -

An external-variable-declaration (which can only occur at module level) declares a variable
whose storage (and possibly initial value) must be given by a variable-completion in the
module-level block of an implementation module, or can be supplied by being implemented
in a module written in another language.

The data item defined by a variable-declaration exists for as long as its containing block is
active. The storage class of a variable data item is given in Section 8.1.

" The keywords SHARED and ALIASED are only allowed on variable-declarations at module
level. Their meanings are defined in Section 8.2.

7.3.1 Variable Completions

A variable-completion provides the storage (and possibly initial value) for a name declared
by an external-variable-declaration. A variable-completion is allowed only at module level;
its name must be specified as an implemented name (in one of the module’s implement-
sections, either explicitly or using wildcard notation). The variable-completion itself is not
a declaration of the name.

B variable-completion
[VARIABLE] identifier [= initializer] ;

The keyword VARIABLE must be present unless the variable-declaration immediately
follows another variable-declaration or variable-completion.

The initializer, if present, is interpreted with the name’s declared type (the name denoted by
the identifier) as its target type, and the resulting value is the initial value of the declared
variable. '

7.4 BIND Declarations
A bind-declaration declares a new data item (called a BIND item) that does not have a

unique location, but has the same location or value as an existing data item.
B bind-declaration
[BIND] identifier = data-reference ;

The keyword BIND must be present unless the bind-declaration immediately follows another
bind-declaration.

The data-reference (see Chapter 9) is interpreted at the entry to the local-block at whose
level it is declared to yield a location or value. The location or value of the BIND item is the
location or value obtained by interpreting the data-reference. The BIND item is assignable
only if the data-reference is assignable.

The identifier is declared as the name of a BIND item, which denotes the assignable or
nonassignable data item denoted by the data-reference.

Note that the data-reference in a bind-declaration can contain expressions. These
expressions need not be simple, unlike expressions in declarations in general.

Values and Variables 75

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

Bind-declarations are not allowed at module level; they are allowed only at local-block level.
The value of a BIND item must not be referred to in another declaration in the same local-
block, unless the referring declaration is another bind-declaration or a define-declaration.
Therefore, in the following example the declaration of - ‘s valid, but that of y is not valid
because it is a non-bind-declaration that refers to the v. .ue of a:

BIND a p.table;
BIND x a{f(n)]; ! £(n) is not simple; this is all right.
VALUE y = a[l];

One particular fact about bind-declarations should be noted: because of when a bind-
declaration is interpreted, a bind-declaration captures the location (if its data-reference
has a location) or value (if its data-reference has no location) of its data-reference. (A
bind-declaration does not, however, capture the value of the location of its data reference.)
That is, the values of all the expressions on which the data-reference depends are captured
(remembered) and cannot change while the block (in which the bind-declaration is declared)
is active. Therefore, in the following example, if i has the value 2 in a given call to p, the
bind-declaration x refers to a/2], even after i’s value is modified:

PROCEDURE p (IN OUT i: integer):;

VARIABLE
a: ARRAY [1..10] of integer;

BIND
x = af{i’

BEGIN
i=1i+1;

END p;

7.5 DEFINE Declarations

A define-declaration declares a DEFINE item that does not have a unique location, but has
the same location or value as an existing data item. Each interpretation of a DEFINE item
yields a possibly different data item.

B define-declaration

[DEFINE] identifier = data-reference ;

The keyword DEFINE must be present unless the define-declaration immediately follows
another define-declaration.

The data-reference (see Chapter 9) must be a simple reference; it is interpreted whenever
the DEFINE item is encountered in one of the following contexts:

e A statement
¢ A non-define-declaration
¢ The interpretation of another DEFINE item

76 Values and Variables

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The data-reference is interpreted, in these contexts, to yield a location or value. The location
or value of the DEFINE item (which can change with each interpretation of the DEFINE
item) is the location or value obtained by interpreting the data-reference. The DEFINE item
is assignable if and only if the data-reference is assignable.

The identifier is declared as the name of a DEFINE item, which denotes the assignable or
nonassignable data item denoted by the data-reference.

Note that the data-reference in a define-declaration can contain expressions. In contrast
to expressions in bind-declarations, the expressions in define-declarations must be simple
expressions. In addition, the expressions in module-level define-declarations are not
restricted to being constant expressions.

The value of a DEFINE item must not be referred to in another declaration in the same local-
block, unless the referring declaration is another define-declaration or a bind-declaration.
Therefore, in the following example, the declaration of y is not valid because it is a non-
define-declaration that refers to the value of a:

DEFINE a = p.table;
VALUE y = afl];

One particular fact about define-declarations should be noted that contrasts them with
bind-declarations: because of when a define-declaration is interpreted, a define-declaration
does not capture the location or value of its data-reference. That is, the values of all the
expressmns the data-reference depends on are re-evaluated every time the define-declaration
is used; they can therefore change while the block (in which the define-declaration is
declared) is active. Therefore, in the following example if i has the value 2 in a given
call to p, the define-declaration x refers to a/2] before i’s value is mochﬁed but it refers to
a[3] after i’s value is modified:

PROCEDURE p (IN OUT i: integer):;

VARIABLE
a: ARRAY [1..10] of integer:;

DEFINE

x = a[il;
BEGIN
i=13i+1;
END p;

Values and Variables 77

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

CHAPTER 8
STORAGE ALLOCATION

8.1 Storage Classes
A data item has a storage class, which is automatic, static, readonly, or dynamic.

Automatic storage is associated with the invocation of a local-block. A data item with
automatic storage has a different address in each active invocation of the local-block in
which the data item is declared.

A data item with static storage has the same address throughout the execution of a process,
and can be modified. Programs that use static storage are not reentrant.

A data item with readonly storage has the same address throughout the execution of a
process, but cannot be modified.

Dynamic storage is allocated by the programming environment, not by Pillar, and can only
be accessed through pointers.

The storage class of a declared data item is determined by one of the following rules.

* Avariable declared in a local-block has automatic storage. A variable declared at module
level has static storage.

* A named value declared in a local-block has readonly storage if it is initialized to a
constant value, and has automatic storage otherwise. A named value declared at module
level has readonly storage.

* The members of an environment have automatic storage associated with local-blocks
that enable the environment.

* Named constants do not have a storage class.
® Procedures do not have a storage class.

e AnIN, OUT, or IN OUT local parameter or a local result parameter can have automatic
storage, or it can have the storage class of the corresponding argument.

e A BIND local parameter has the storage class of the corresponding argument.
* A BIND item has the storage class of the data item to which it is bound.

e A DEFINE item has the storage class of the data item it denotes. \\\ Each use of a
DEFINE variable can denote a different data item. \\\

Storage Allocation 79

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

8.2 Data Sharing and Aliasing
Pillar has rules about data sharing that reflect assumptions the compiler can make about
data access.

* A data item passed to an IN parameter of a procedure must not be modified during the
invocation of the procedure, either through a pointer or through a declaration outside
the procedure.

* Adata item passed to an OUT or IN OUT parameter of a procedure must not be accessed
within the procedure except through the parameter declaration.

e A Pillar variable whose address is made available to Pillar from code written in another
language must be declared at module level with the ALIASED option.

e A variable declared at module level that can be accessed in more than one thread must
be declared with the SHARED option.

e If a data item that can be modified can be accessed in more than one thread, access to
it must be through an atomic operation or must be within a guarded critical region.

8.3 Environments

Environments provide a mechanism for global variables without static storage. Proper use
is to declare an environment whose members are a program’s global variables, enable the
environment in the main procedure of the program, and supply the environment to all
procedures that reference global variables. If a program is organized into subprograms,
each subprogram can organize its global variables into an environment that extends the
environment of the main program, and enable its environment in its main procedure.

8.3.1 Environment Declarations

B environment-declaration
ENVIRONMENT identifier [EXTENDS (name)] ;

[member-variable-declaration]...
END ENVIRONMENT ;

An environment-declaration can only occur at module level. The identifier is declared as an
environment.

If EXTENDS occurs in the declaration of an environment env, the name must denote an
environment envl, and all of the members of envl become members of env (while remaining
members of envI). Env is said to extend envl, and also to extend any environments that
envl extends.
B member-variable-declaration

{ identifier } ,... : type-specification ;
Each identifier is declared as a member of the enclosing environment, and has the type
obtained by interpreting the type-specification.

80 Storage Allocation

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

8.3.2 Properties of Environments

Environments are not data items, but their members are. The declaration of an environment
does not allocate storage for its members. Storage for the members of an environment is
allocated by beginning the execution of a block that enables the environment.

An environment is accessible within the main statement-sequence and the handler sections
of a block that enables the environment, and within the body of a procedure that requires
the environment. Only if an environment is accessible is it possible to:

* Refer to a member of the environment using a dot-qualified-reference
* Refer by name to a procedure that requires the environment

¢ Enable an environment that extends the environment

8.3.3 Enabling an Environment
The enable-section of a local-block b can enable an environment env.
* Env must not be accessible at entry to b.

* If env extends environment envl, envl must be accessible at entry to b.

The effect is to allocate automatic storage for the members of env, and to make env accessible
within the main statement-sequence and handler sections of b.

8.3.4 Procedures and Environments

A procedure type t can specify that a procedure of type ¢ requires an environment. If
procedure p requires environment env, then:

e Env is accessible within the body of p, as are any environments that env extends.
* Env must be accessible at each reference to p.

Storage Allocation 81

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

CHAPTER 9
DATA REFERENCES

This chapter describes Pillar data references.

9.1 Syntax of Data References

A data reference refers to data.

B data-reference

name
procedure-function-reference
built-in-function-reference
indirect-reference $
dot-qualified-reference
indexed-element-reference
substring-reference
type-cast-reference J

9.2 Interpretation of References

The interpretation of a data-reference (also called simply a reference) yields a typed location
or value; that is, a reference ref denotes location loc or value val of type t.

9.2.1 Locations and Values

A location loc is an address with a type t.

e 1Iftis a record type, and f is a field of ¢ with offset o and type f%, field f of loc is the
location loc + o, with type f%.

e Iftis an array, string, blank_DATA, or set type with element type! et, element n of loc
is the location loc + the offset of element n in ¢, with type et.

A location is assignable or nonassignable. If a location is assignable, its elements or fields are
also assignable. If a location is nonassignable, its elements or fields are also nonassignable.

A value val is data with a type ¢.

e Iftis arecord type, and fis a field of ¢ with offset o0 and type f, field f of val is the data
in val at offset o, with type ft.

1 The element type of a string type is CHARACTER,; the element type of a set type is BIT.

Data Reterences 83

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

e Iftis an array, string, blank_DATA, or set type with element type et, element n of loc
is the data in val at the offset of element n in ¢, with type et.

9.2.2 The Value of a Reference Rule

If a reference ref that denotes a location loc of type ¢ occurs in a context requiring a value,
loc is converted to a value val of type ¢t1 by the following rules:

e Iftis ANYTYPE, ref is in error.

e Iftis VARYING_STRING, val is the data at the body field of loc, and ¢I is STRING(n),
where n is the value of the length field of loc.

* Otherwise, val is the data at loc, and ¢1 is ¢.

If a reference ref that denotes a value val with type ¢ occurs in a context requiring a value,
val is converted to a value vall of type t1 by the following rules:

e If ¢t is VARYING_STRING, vall is the body field of val, and {1 is STRING(n), where n
is the length field of val.

¢ Otherwise, vall is val, and ¢1 is ¢.

9.3 Reference to a Named Data Item

A name can occur as a data reference if it names a data item. Any use of a name as a data
reference not assigned a meaning by one of the following sections is in error.

9.3.1 Reference to a Named Constant

Interpretation of a reference to a named constant ¢ yields the value of ¢, with the type of c.

9.3.2 Reference to an Element of an Enumerated Type

Interpretation of a reference to element e of enumerated type ¢ yields the value of e, of type
t.

9.3.3 Reference to a Named Value

Interpretation of a reference to a named value v yields the location of v, which is
nonassignable, with the type of v.

9.3.4 Reference to a Variable

Interpretation of a reference to a variable v yields the location of v, which is assignable,
with the type of v.

9.3.5 Reference to a Bind ltem

Interpretation of a reference to a BIND item v yields the location or value to which v is
bound, with the type of the location or value to which v is bound.

84 Data References

Digital Equipment Corporation - Confidential and Proprietary
For internai Use Only

9.3.6 Reference to a Define ltem

Interpretation of a reference to a DEFINE item v yields the result of interpreting the
reference that is the definition of v.

9.3.7 Reference to a Loop Control Variable

Interpretation of a reference to a loop control variable i yields the value of i, with the type
of i. \\'\ Note that the name of the control variable is not interpreted as a reference during
the initialization of a loop. \\\

9.3.8 Reference to an IN Parameter

Interpretation of a reference to an IN parameter p of a procedure type ¢ within the parameter
list of ¢, which can only occur during the interpretation of an invocation of a procedure of
type ¢, yields the value of the argument corresponding to p, with the type of p. Parameter
p must not be LIST or OPTIONAL, and must have an ordinal type.

9.3.9 Reference to an IN Local Parameter

Interpretation of a reference to an IN local parameter arg of procedure p within the body of
D, yields the value of arg, with the type of arg. Parameter arg must not be LIST. A range
violation occurs if arg is OPTIONAL and not present.

9.3.10 Reference to an OUT, IN OUT, BIND, or Resuit Local Parameter

Interpretation of a reference to an OUT, IN OUT, or BIND local parameter, or a local result
parameter arg of procedure p, within the body of p yields the location of arg, which is
assignable, with the type of arg. Parameter arg must not be LIST. A range violation occurs
if arg is OPTIONAL and not present.

8.3.11 Reference to a Procedure

Interpretation of a reference to a procedure p yields the value of p with the type of p. The
value of p is closed over the current activation of p’s parent local-block if p is a subprocedure,
and over p’s environment if p requires an environment.

9.3.12 Reference to a Condition

Interpretation of a reference to a condition ¢ yields a value s, of type STATUS. The severity
of s is the same as the severity of ¢, and the condition of s is c.

9.4 Reference to the Value of a Procedure Invocation

B procedure-function-reference

procedure-invocation

Interpretation of a procedure-function-reference yields the result of interpreting the
procedure-invocation, which must produce a value.

Data References 85

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

9.5 Reference to the Value of a Built-in Function Invocation

M built-in-function-reference

built-in-function-invocation

M built-in-function-invocation
name ([argument-list J)

The name denotes a built-in function. Interpretation of a built-in-function-reference yields
the result of interpreting the built-in-function-reference as an expression.

9.6 Indirect Reference

M indirect-reference

data-reference®
The interpretation of an indirect-reference ptr_ref” proceeds as follows. Ptr_refis interpreted
to obtain a value ptr_val of type pt. Pt must be a pointer type, with associated type ¢.

Interpretation of the indirect-reference yields the location loc of type loc_type obtained by
dereferencing ptr_val.

9.6.1 Dereferencing a Pointer Value

Dereferencing a value ptr_val of a pointer type with associated type ¢ yields a location loc .
of type loc_type by the following steps:

* Loc is the location given by ptr_val. A range violation occurs if ptr_val is NIL. An error
with unpredictable consequences occurs if ptr_val is an invalid address.

* Loc_type is obtained from ¢ and loc, as follows:

— Ift has captured extents, values for the extents are obtained by referring the data
at loc. A range violation occurs if an obtained value is inconsistent with the type of
the corresponding extent. Loc_type is t with the obtained extent values.

— Otherwise, loc_type is t.

9.6.2 Implicit Dereferencing

A location or value base_ref of type ¢ can be implicitly dereferenced to yield base_refI (which
can be a location or value) of type ¢I by the following rule:

e If ¢t is a pointer type, ptr is the value of type pt obtained by applying the value
of a reference rule to base_ref, and base_refl is the location of type t1 obtained by
dereferencing ptr.

e Otherwise, base_refl is base_ref, and t1 is t.

9.7 Dot-qualified Reference

There are two forms of dot-qualified-references. The first is the general form; the second is
the special form:

86 Data References

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

B dot-qualified-reference

{ data-reference.identifier }
name.identifier

A dot-qualified-reference decl_name.i is of the special form if decl_name denotes a type, a
parameter, a LIST parameter, a local parameter, or an environment; otherwise, it is of the
general form.

The interpretation of a dot-qualified-reference ref.i of the general form proceeds as follows:
1. Ref is interpreted to obtain base_ref (which can be a location or a value), of type ¢.

2. Iftis a bound-flexible-type, and i is the name of an extent of £, the dot-qualified-reference
is interpreted as a reference to extent i of £.

Base_ref is implicitly dereferenced to obtain base_refl of type ¢1.

If t1 is a bound-flexible-type, and i is the name of an extent of ¢t1, the dot-qualified-
reference is interpreted as a reference to extent i of ¢1.

5. Iftlis arecord type, and i is the name of a field in ¢1, interpretation of the dot-qualified-
reference yields the field i of base_refl, with the type of i in £1.

6. If none of the previous steps yields a result, the dot-qualified-reference is in error.
The interpretation of a dot-qualified-reference decl_name.i of the special form depends on

what decl_name denotes. Any dot-qualified-reference of the special form not assigned a
meaning by one of the following sections is in error.

9.7.1 Reference to an Element of an Enumerated Type

If, in enum.i, enum denotes a root enumerated type ¢, and i is a name of an element of ¢,
interpretation of the dot-qualified-reference yields the value of i in ¢, with type ?.

9.7.2 Reference to an Extent of a Named Type

If, in type_name.i, type_name denotes a bound flexible type ¢, and i is the name of an extent
of ¢, interpretation of the dot-qualified-reference yields the value of i in ¢, with the type of i
in ¢.

9.7.3 Reference to an Extent of a Parameter

If, in param.i, param denotes a parameter with bound flexible type ¢ of a procedure type pt,
and i is the name of an extent of ¢, the dot-qualified-reference is interpreted as a reference
to extent i of ¢£. Param cannot be LIST or OPTIONAL. Interpretation of a reference to an
extent of a parameter of a procedure type pt can occur only during the interpretation of an
invocation of a procedure of type pt.

9.7.4 Reference to the Length of a LIST Parameter or Local Parameter

If, in list_param.i, list_param denotes a LIST parameter or local parameter and i is
LENGTH, interpretation of the dot-qualified-reference yields a value equal to the number
of elements in list_param, with the type INTEGER [0 ..].

Data References 87

Digital Equipment Corporation - Confidential and Proprietary
For Internai Use Only

9.7.5 Reference to an Element of an Environment

If, in env.i, env denotes an accessible environment and i is the name of an element of env,
interpretation of the dot-qualified-reference yields the location of i in env, with the type of
i in env.

9.8 Indexed Referen-ce

There are two forms of indexed-element-references. The first is the general form, the second,
the special form.

B indexed-element-reference

data-reference [{ expression } ,...]
name [expression]

An indexed-element-reference decl_name/expression] is of the special form if decl_name
denotes a LIST local parameter; otherwise, it is of the general form.

The interpretation of an indexed-element-reference ref fexpression} ,...] of the general form
proceeds as follows:

1. Refis interpreted to obtain base_ref (which can be a location or a value), of type ¢.
2. Base_ref is implicitly dereferenced to obtain base_refl of type ¢1.
3. One of the following cases applies:

* Iftl is an array type with n dimensions and element type et, there must be exactly
n expressions. For each dimension %, the array type contains a range ry, and the
kth expression is interpreted with ri as a target range, resulting in an n-tuple of
values that selects an element e of baserefl. Interpretation of the indexed-element-
reference yields e, of type et.

* If ¢tI is a set type with range r, there must be exactly one expression, which
is interpreted with r as a target range to obtain the value v. Interpretation
of the indexed-element-reference yields the element of base_refl that represents
containment of v, of type BIT.

e If ¢t1 is STRING(n) or blank_DATA(n), there must be exactly one expression,
which is interpreted with INTEGERI(1 .. n] as a target type to obtain a value v.
Interpretation of the indexed-element-reference yields the vth element of base_ref1,
of the element type of ¢1.

e If ¢1 is VARYING_STRING(n), there must be exactly one expression, which
is interpreted with INTEGER[1 .. n] as a target type to obtain a wvalue wv.
Interpretation of the indexed-element-reference yields the vth element of the body
field of base_refl, of type CHARACTER.

¢ Otherwise, the indexed-element-reference is in error.

The interpretation of an indexed-element-reference decl_namefexpression] of the special form
depends on the what decl_name denotes. Any indexed-element-reference of the special form
not assigned a meaning by one of the following sections is in error.

88 Data References

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

9.8.1 Reference to an Eilement of a LIST Local Parameter

If, in list_arglexpression], list_arg denotes a LIST local parameter of length n, the expression
is interpreted with INTEGER [1 .. n] as a target type to obtain a value v. Interpretation of
the indexed-element-reference yields the vth element of list_arg (which is a value iflist_arg
is IN and a location otherwise), with the type of list_arg.

8.9 Substring Reference
B substring-reference

data-reference [range-specification]

The interpretation of a substring-reference reffrange_spec] proceeds as folows:
1. Ref is interpreted to obtain base_ref (which can be a location or a value), of type ¢t.
2. Base_ref is implicitly dereferenced to obtain base_refl of type t1.

3. Typetl must be STRINGn, blank_DATAn, or VARYING_STRINGn. Range_spec is inter-
preted with INTEGER [1 .. n] as a target type to obtain the range INTEGER [first .. last].

o If t1 is STRINGn, interpretation of the substring-reference yields a substring of
base_refl beginning with element first, of type STRING(last - first + 1).

e If ¢tI is blank DATAnR, interpretation of the substring-reference yields a substring
of base_refl beginning with element first, of type blank_DATA(last - first + 1).

» If ¢t is VARYING_STRINGn, interpretation of the substring-reference yields a

substring of the body field of base_refl beginning with element first, of type
STRING(last - first + 1).

* Otherwise, the substring-reference is in error.

9.10 Type Cast Reference
H type-cast-reference
data-reference :: { named-type [TRUNCATE 1 }

The interpretation of a type-cast-reference ref:{typename [TRUNCATE]} proceeds as
follows:

1. Ref is interpreted to obtain base_ref (which can be a location or a value), of type z.
Base_ref has alignment al, which is derived during the interpretation of ref if ref is a
type-cast-reference, and is otherwise the alignment requirement of ¢.

Typename is interpreted to obtain the type ¢I, with alignment requirement all.
If t is a bit-class type, tI must be a bit-class type.

4. Iftl is ANYTYPE, the TRUNCATE option is not allowed. Interpretation of the type-
cast-reference yields base_ref, with type ANYTYPE and alignment al.

5. Iftis ANYTYPE, t1 cannot have matching extents, and the TRUNCATE option is not
allowed. Interpretation of the type-cast-reference yields base_ref, with type £I and an
alignment of the maximum of al and all.

6. Neither ¢ nor tI may be an unrevealed ocpaque type.

Data References 89

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

7.

10.

1.

12.
13.

14.

15.

If either ¢ or ¢1 is a procedure type, both must be procedure types, and the TRUNCATE
option is not allowed. Interpretation of the type-cast-reference yields base_ref, with type
t1 and alignment al.

If either ¢ or ¢1 is a pointer type, both must be pointer types, and the TRUNCATE option
is not allowed. Let at be the associated type of ¢, and atI be the associated type of 1.
Then:

1. If atl is blank_DATA(*), at must have a size (at cannot be ANYTYPE). The size of
at in the size units of atl replaces the matching extent. A range violation occurs if
the size of at is not integral in the size units of atl.

2. Ifeither at or atl is ANYTYPE, interpretation of the type-cast-reference yields base_
ref, with type t1 and alignment al.

Neither at not a1 may be an unrevealed opaque type.
Neither at nor atl may be a pointer type.
If either at or atl is a procedure type, both must be procedure types.

O

If both at and atl are record types, and one extends the other, interpretation of the
type-cast-reference yields base_ref, with type t1 and alignment al.

At and atl must have the same size and alignment requirement.

Interpretation of the type-cast-reference yields base_ref, with type ¢I and alignment
al.

Al must not be less than all.

Ift1 is blank DATA(*), £ must have a size (¢ may not be ANYTYPE), and the TRUNCATE
option is not allowed. The size of ¢ in the size units of ¢1 replaces the matching extent. A
range violation occurs if the size of ¢ is not integral in the size units of t1. Interpretation
of the type-cast-reference yields base_ref, with type ¢1 and alignment al.

If both ¢ and ¢1 are record types, and one extends the other, interpretation of the type-
cast-reference yields base_ref, with type ¢t1 and alignment al.

If either ¢ or t1 is a record type, it must have an explicit layout.

If t1 has captured extents, its extents are replaced by values obtained from base_ref,
treating base_ref as if it were of type £1.

A range violation occurs if the TRUNCATE option is specified and the size of £1 is greater
than the size of ¢, or if the TRUNCATE option is not specified and the size of ¢ is not
equal to the size of £1.

Interpretation of the type-cast-reference yields base_ref, with type I and alignment al.

9.11 Simple References

A data-reference sr is a simple reference if it has the following properties:

Sr is not a built-in-function-reference or a procedure-function-reference.
Any data-reference contained within sr is a simple reference.

Any expression contained within sr is a simple expression.

90 Data References

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

CHAPTER 10
EXPRESSIONS

This chapter describes Pillar’s expressions and arithmetic, boolean, ordinal, set, character
string, pointer, and type operators.

10.1 Syntax of Expressions

B expression

literal-constant
set-constructor
data-reference
(expression)
relational-expression
infix-operator-expression
prefix-operator-expression
array-constructor
record-constructor

NIL

The expression’s interpretation is the value and type of the contained construction (literal-
constant, set-constructor, and so forth). If the expression is interpreted with a target type, so
is the contained construction. If the contained construction is a data-reference, the reference
is interpreted as a value-producing reference.

M relational-expression

subexpression T subexpression

B subexpression
expression

Neither of the subexpressions can be a relational-expression; for example:
x <y <z ! This is invalid.

Note: There is no target type for the interpretation of the subexpressions; they can be any
kind of expression except a relational-expression.

Expressions 91

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

The rules for relational operations, given later in this chapter, are classified by data type;
for example, the character string operator is discussed in Section 10.9.

M infix-operator-expression
*

ik

+

/

(+)
AND
OR
XOR
MOD

subexpression subexpression

The subexpressions can be any kind of expression.

Pillar’s associativity for infix operators is left to right. If the first subexpression is
an infix-operator-expression, its operator’s precedence must equal or exceed that of the
surrounding infix-operator-expression. If the second subexpression is an infix-operator-
expression (regardless of whether the first subexpression is), its operator’s precedence must
exceed that of the surrounding infix-operator-expression.

Infix Operator Precedence

highest -

*, 1, MOD

+ = (+)

<, <=, ==, <>, >=, >

AND
lowest OR, XOR
Examples:
Expression Equivalent Parenthesized Expression
xX+2"y xX+(2"y)
X+y+2z x+y)+2z
(-)z/3*k (=x/3)*k

The rules for infix operations, given later in this chapter, are classified by data type. Note:
There is no target type for the interpretation of the subexpressions.

B prefix-operator-expression
+ literal-constant
![-]l data-reference
NOT (subexpression)

The rules for prefix operations, given later in this chapter, are classified by data type. Prefix
operators have higher precedence than infix operators. Note: There is no target type for the
interpretation of the subexpression.

92 Expressions

Dlgltal Equipment Corporation - Confidential and Proprietary
For internal Use Only

10.2 Simple and Constant Expressions

An expression occurring in a Pillar declaration (that is, not as part of an executable
statement) must be a simple expression, except when stated otherwise in this manual
Furthermore, if the declaration is at module level, the expression must generally be a
constant expression.

The rules for what can occur in simple expressions are summarized in Section 10.2.1. The
rules for what can occur in constant expressions are summarized in Section 10.2.3.

There are some places in the syntax where the requirement for a constant or simple
expression can be shown explicitly using the constant-expression or simple-expression
category.

B constant-expression

expression

B simple-expression

expression

10.2.1 Summary of Simple Expression Rules

The restrictions on simple expressions have been chosen so that the expression can easily
be computed at compile time when the operands are constants, and so that the class of
expressions is sufficient for effective use of Pillar’s flexible type facility.

A simple expression can be:

* A simple reference that can be interpreted to produce a value with an ordinal type (see
Section 10.2.2 for the rules governing nonconstant values.)

* One of the arithmetic, Boolean, or ordinal operations defined in Sections 10.5 to 10.7, if
the operands to the operation are simple expressions

¢ MAX (¢) or MIN (¢t), where ¢ is a name denoting an ordinal type

e DATA_TYPE_SIZE (units, item) or FIELD_OFFSET (units, item, field-name), where
item is a name denoting a type (not a data-item)

10.2.2 Dynamic Values in Simple Expressions

A name in a simple expression can denote a nonconstant value only in the following cases:

* Within the declaration of a flexible type, the name can denote the value of one of the
type’s extent parameters.

e Within a declaration that is local to a local-block, the name can denote a value known at
entry to the local-block. (The value is captured at entry to the local-block.) However, this
value cannot be a value depending on an OPTIONAL or LIST parameter of a procedure.
\\\ This does not disallow referring to the length of a local LIST parameter x using the
simple reference “x.length” in a simple expression, because there actually is no reference
to x in this case. \\\

* Within a procedure-type-constructor, the name can denote:
— The value of a non-OPTIONAL, non-LIST IN parameter of the procedure

Expressions 93

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

— The value of an extent (of the flexible type) of a required parameter of any mode

10.2.3 Summary of Constant Expression Rules

If the values referred to in a simple expression are named constants or literals, the simple
expression is constant. When an operation applies to a type, the type must be constant.

Expressions that are not simple can be constant if all operands in the expression are
constant. \\\ Exact rules TBS. It might be necessary to rule out some operators. \\\

10.3 Principles of Expression Evaluation

In general, the compiler treats an expression as a formula specifying a value, rather than as
a sequential computation rule. The compiler’s goal is to generate code that will efficiently
compute the specified value; Pillar programmers should understand the implications of this
regarding expressions that cause exceptions or produce side effects through function calls.

10.3.1 Order of Evaluation

For a typical Pillar construction, the description of the construction’s interpretation (as
presented in this manual) implies an order for performing operations and interpreting
subexpressions. These descriptions might seem to define a strict order for all the operations
in a program, but such is not the case. The actual order of evaluation can differ from
the implied order. Within a simple statement (one not containing other statements nested
within it), the order in which expressions and subexpressions are evaluated is arbitrary. (Of
course, the operands of an operator or function call must be evaluated before the operator
or function can be evaluated.)

Within a statement-sequence (and any nested statement-sequence), an operation can be
performed out of order if the only possible side-effects are changing the particular exception
that occurs, or changing the point at which it occurs. This reordering will not cause an
exception in a statement-sequence that would otherwise complete without an exception.

Here is an example of order-sensitive code:

w= 1/z;
y[i MOD k] = £(k);

The assignment-statement’s rules imply that the reference y/i MOD k] will be interpreted
before the function f(%k) is invoked; this implication is false. If the function f increments the

argument k as a side effect, £ can be incremented before or after it is used in the subscript
calculation.

If z or k£ has the value zero, a range violation—most likely a zero-divide exception—occurs.
The division 1/z is not necessarily performed before i MOD k is evaluated. Hence, if both z
and k are zero, either a floating- or integer-zero-divide exception can occur. Also, note that
if the function f sets & to zero, this can cause an exception, depending upon whether % is set
before or after it is used in the subscript calculation.

94 Expressions

Digital Equipment Corporation - Confidential and Proprietary
" For Internal Use Only

10.3.2 Incomplete Evaluation

The Pillar compiler might not evaluate a subexpression if its value is not needed to determine
the value of a containing expression. This is true even if a function can have a side effect.
For example:

0;
0:
y * (random () + 1/z);

Y
z

it wn

The function random might not be called (this is true regardless of whether random is an
inline procedure), and the zero-divide exception resulting from the evaluation of 1/z might
not occur.

10.3.3 Evaluation of Integer Operations

Integer operations are exact, but overflow can occur; that is, the true result of an expression
can be outside the range of the result’s type. Pillar does not directly define the cases
in which integer overflow causes an exception; instead, integer overflow is treated as an
implementation-dependent problem that is to be avoided (by the compiler) if possible. The
actual behavior depends on whether range checking is enabled.

If range checking is enabled, the compiler ensures that a range violation (by the true value) is
detected explicitly unless an exception, such as overflow, occurs in evaluating the expression.
When range checking is disabled, the compiler can transform integer expressions under
algebraic laws, and it can use instructions that do not cause integer overflow. If an integer
expression’s true value is within the range required by its target context, the compiled code
will yield the correct value.

The compiler will not transform an expression that does not cause overflow into one that
does. Compile-time evaluation of expressions always uses the expression in original form,
and overflows are always detected.

10.3.4 Evaluation of Floating-Point Operations

Floating-point operations are performed with overflow enabled. Underflow detection is
disabled by default, with underflow producing a result of zero. Underflow detection can
be enabled for all expressions in a local-block (see Chapter 12).

As with all exceptions, Pillar treats an arithmetic exception as a serious error. It is
impossible to continue execution from the point of exception; exception handling must be
performed.

10.4 Interpretation with a Target Type

Interpretation of an expression e with a target type ¢ has the following effects:

e Should the interpretation of e require a target type, ¢ is available.

* The type of e must be assignment compatible to ¢.

* The value of e is converted to ¢ according to the rules in Section 5.16.4.
Interpretation of an expression e with a target range r has the following effects:
* E is interpreted with the base ordinal type of r as a target type.

Expressions 95

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

* A range violation occurs if the value of e is outside of r.

10.5 Arithmetic Operations
This section describes Pillar’s arithmetic operators and built-in functions.

Unless specified otherwise, an operand can have any arithmetic type. The result’s type is
the common arithmetic type of the operands, and operands are converted to the common
type as required. The common type of a set of arithmetic types is the highest of the types
of the operands according to the following order:

highest DOUBLE
REAL
LARGE_INTEGER
lowest INTEGER

For the purpose of determining the common arithmetic type, the base ordinal type of integer
types is used.

An arithmetic operation can result in a range violation if the result is out of the target’s
range. As with any range violation, these range violations will not be detected at run time
unless the module is compiled with range checking enabled. Arithmetic instructions that
do not detect overflow will be generated by the compiler unless range checking is enabled
at compile time.

10.5.1 Negation Operator

result = -z ;

10.5.2 Addition Operator

result =z +y;

10.5.3 Subtraction Operator

resut =z -y ;

10.5.4 Multiplication Operator

result =z =y ;

10.5.5 Division Operator

result = z/y ;

A range violation (typically a hardware division-by-zero exception) occurs if the value of y
is zero. For an integer division, the result satisfies this mathematical relation:

z=yx*result+r

96 Expressions

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

where r is the remainder and satisfies:
ABS(r) < ABS(y)

SIGN(r) = SIGN(z)

10.5.6 Integer MOD Operator

result = £ MOD y ;

The types of x and y must be integer types. The result has the common type of x and y, and
is the integer satisfying:

T =m%*y+result

O<result < y

where m is an INTEGER or a LARGE_INTEGER.

A range violation occurs if y < 0.

10.5.7 Arithmetic Comparison Operators

A

A
n

result = z = v,
<>

>=
>

The operands can have any arithmetic types. The comparison is performed in their common
type. The result type is BOOLEAN.

10.5.8 Absolute Value Built-in Function

result = ABS (x) ;
The result is the absolute value of x.

10.5.9 Integer Exponentiation Operator

result = z * *y ;

The types of the operands must be integer types. The exponent, y, must be a constant-
expression whose value > 0, and x¥ must not exceed the maximum value in x’s base ordinal
type (which is INTEGER or LARGE_INTEGER).

Expressions 97

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

10.5.10 SIGN Bullt-in Function

result = SIGN (x) ;
The argument x can have any arithmetic type. The type of the result is INTEGER,; the
valueis 1ifx>0,0ifx =0, and -1ifx < 0.

10.5.11 ODD Buiit-in Function

result = ODD (x) ;
The argument x must have an integer type. The type of the result is BOOLEAN; the value
is TRUE if x MOD 2 == 1, FALSE otherwise.

10.5.12 MAX Built-in Function

resuit = MAX (X1, Xo [, X3...]) ;

The arithmetic MAX function accepts two or more arguments. The result’s value is the
value of the maximum argument, and the result’s type is the common arithmetic type of the
arguments.

10.5.13 MIN Built-in Function

result = MIN (x4, X2 [, x3...]) ;

The arithmetic MIN function accepts two or more arguments. The result’s value is the
value of the minimum argument, and the result’s type is the common arithmetic type of the
arguments.

10.6 Boolean Operations

For all the operations in this section, the operands must have a base ordinal type of
BOOLEAN, and the result type is BOOLEAN.

10.6.1 Boolean Compiement Operator

result = NOT a ;
If a is FALSE, the result of this operation is TRUE,; otherwise, the result is FALSE.

10.6.2 AND Operator

resuit =a AND b ;

If both a and b are TRUE, the result of this operation is TRUE; otherwise, the result is
false.

This operation is conditional. If the value of operand a is FALSE, then operand b will not
be evaluated in any way that can cause an exception or invoke a function with side effects;
for example:

98 Expressions

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

IF p <> NIL AND p“.rank > 0 THEN .

If the value of p is NIL, it will not be used as an address to access the field p~.rank.

10.6.3 OR Operator

resut=aORDb ;

If both @ and b are FALSE, the result of this operation is FALSE; otherwise, the result is
TRUE.

This operation is conditional. If the value of operand a is TRUE, then operand b will not be
evaluated in any way that can cause an exception or invoke a function with side effects; for
example, this code will not cause a zero-divide exception:

IF x == 0 OR y/x > 1 THEN ...

10.6.4 Boolean Comparison Operators

A
oA

result = a

[}
o

v
I

The ordinal values of @ and b are compared. Note that, for this comparison, FALSE < TRUE.

10.6.5 Boolean Exclusive OR Operator

result =a XOR b ;

If a is FALSE and b is TRUE, or if a is TRUE and b is FALSE, the result of the operation
is TRUE,; otherwise, it is FALSE.

10.7 Ordinal Operations
10.7.1 Ordinal MAX Built-in Function

result = MAX (x4, X2 [, X3...] } ;

The ordinal MAX function accepts two or more arguments. They must have the same base
ordinal types, but not INTEGER or LARGE_INTEGER (these are handled by the arithmetic
MAX). The result’s value is the value of the maximum argument, and the result’s type is
the base ordinal type of the arguments.

10.7.2 Ordinal MIN Buiit-in Function

result = MIN (xy, x2 [, X3...]) ;

Expressions 99

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The ordinal MIN function accepts two or more arguments. They must have the same base
ordinal types, but not INTEGER or LARGE_INTEGER (these are handled by the arithmetic

MIN). The result’s value is the value of the minimum argument, and the result’s type is the
base ordinal type of the arguments.

10.7.3 Ordinal Comparison Operators

result = a

The ordinal values of a and b are compared; they must have the same base ordinal type.

10.8 Set Operations

The operands of set operators must have set types with the same range. (Requiring that the
set ranges be identical eliminates situations that produce very complex code; the CONVERT_
SET function [see Section 10.11.5.4] can be used to explicitly adjust ranges.) Unless specified
otherwise, the result’s type is a set type with the same range as the operands.

10.8.1 Set Complement Operator

result=-x ;
The result contains exactly those elements that are not members of x.
10.8.2 Set Union Operator

result =x +y;
The result contains every element that is a member of x or y or both.
10.8.3 Set Intersection Operator

result=x "y ;
The result contains every element that is a member of both x and ¥.
10.8.4 Set Difference Operator

resut=x -y ;

The result contains every element that is a member of x but not a member of y.

100 Expressions

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

10.8.5 Set Exciusive OR Operator
result=x (+) y;

The result contains every element that is a member of x or y, but not both.

10.8.6 Set Comparison Operators

resut =x { © Yy

The result is BOOLEAN. Sets are compared by set inclusion; x <y is TRUE if every member
of x is a member of y, and y has at least one member that is not a member of x.

The set comparison operators produce a result of TRUE in the following cases, and FALSE
otherwise:

X==y Every member of x is a member of y and every member of y is a member of x.

X<>y There exists a member of x that is not a member of y, or there exists a member of y that is not a
member of x.

X<=y Every member of xis a member of y.

X<y Every member of x is a member of y, and y has at least one member that is not a member of x.

X>=y Every member of y is a member of x. '

x>y Every member of y is a member of x, and x has at least one member that is not a member of y.

10.9 Character String Operations

Except as otherwise specified, the operands of character string operators must have the
type STRING or CHARACTER, and the result’s type is STRING. (An operand of type
CHARACTER is treated as being STRING(1).) Note that when a data-reference, S, of type
VARYING_STRING is interpreted as a value (as happens for operands), the value’s type is
STRING{(n), where n is the current value of S.LENGTH.

10.9.1 String Concatenation Operator

resut =x +vy;

The result’s type is STRING(m + n), where m is the length of x, and n is the length of y.
The result is the characters of x followed by the characters of y:

result[t] = zfz], for:i=1.m

resultim +1] = y[t], for:1 = 1.n

Expressions 101

Digitai Equipment Corporation - Confidential and Proprietary
For internal Use Only

10.9.2 FIND_MEMBER Built-in Function

The FIND_MEMBER function is used to find the position, in a string, of the first character
in a specified set of characters.

result = FIND_MEMBER (s, charset [, start]) ;
Arguments
s. This argument is a string that is searched for characters contained in charset.
charset. This argument must be of a set type whose base ordinal type is CHARACTER.

start. This optional argument is an integer; if present, its value must be > 0 and <
s.LENGTH. If start is omitted, the value one is used. The start argument gives the character
position in the string at which the search begins.

Resuit

The result is the minimum positive integer & such that s{start + & - 1] is a member of charset,
and s[start + i - 1] is not a member of charset, for all i < k.

If s is the null string, or if no characters of s[start..] are in charset, the result is zero.

10.9.3 FIND_NONMEMBER Buiit-in Function

The FIND_NONMEMBER function is used to find the position, in a string, of the first
character that is not in a specified set of characters.

resuit = FIND_NONMEMBER (s, charset [, start]) ;
Arguments
s. This argument is a string that is searched for characters contained in charset.
charset. This argument must be of a set type whose base ordinal type is CHARACTER.

Result

start. This optional argument is an integer; if present, its value must be > 0 and <
s.LENGTH. If start is omitted, the value one is used. The start argument gives the character
position in the string at which the search begins.

The result is the minimum positive integer & such that s[start + & - 1] is not a member of
charset, and s[start + i - 1] is a member of charset, for all i < k.

If s is the null string, or if all characters of s[start..] are in charset, the result is zero.
10.9.4 FIND_SUBSTRING Built-in Function
result = FIND_SUBSTRING (s, pattern) ;

Arguments
s. This argument is a string that is searched for the string contained in pattern.

pattern. This argument is the string to be searched for.

102 Expressions

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Result

The result is an INTEGER that is the index of the first occurrence of pattern in s; that is, if
k is the result, and m is the length of pattern, then: s [k+i-1] = pattern [i], for alli = 1..m.
The relationship above is false for any smaller value of k.

The result is zero if pattern has nonzero length and does not occur in s, or if pattern is longer
than s. The result is 1 if pattern is the null string, regardless of s’s value.

10.9.5 TRANSLATE_STRING Function

result = TRANSLATE_STRING (string, new [, OLDCHARS = old]) ;

Arguments
string. This argument is a string to translate.

new. This argument is a string that supplies the characters to swap in.

old. This optional argument is a string that dictates which characters in string are converted
to the characters in new. If old is present, new and old must be character-string-literals
or named constants of the same length, with none of old’s characters appearing more than
once in old.

Note that this argument can only be supplied using keyword notation.

Result

The TRANSLATE_STRING function converts certain characters in string. Together, new
and old determine a string that is used as a translation table to create the result string.
The translation table is constructed as follows:

¢ If old is omitted, new is used as the translation table.

e Ifold is present, the compiler constructs a 256 character translation table that contains
a translation for each character, ¢, in the character set. If ¢ appears in old, then the
translation for c is the corresponding character in new. If ¢ does not appear in old, then
c is its own translation.

The compiler constructs a translation table for all 256 characters. The table translates each
character in old into the character in the corresponding position in new (other characters
remain unchanged); for example:

r = TRANSLATE_STRING (S, "ABCDEFGHIJKLMNOPQRSTUVWXYZ",
OLDCHARS = "abcdefghijklmnopgrstuvwxyz");

The variable r will contain the letters of S translated to uppercase.

The result is a STRING(n), where n is the number of characters in string. The result string
is obtained by taking the integer value of a character in string, and using that as an index
into the translation table, ¢. That is, for i from 1 to n:

resultfi] = t(ORD(s[z]))

A range violation occurs if the index, ORD (s[i]), exceeds the length of the translation table
or if new’s length exceeds 256. (Note that the first kind of range violation is possible only if
old is not specified.)

Expressions 103

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

10.9.6 String Comparison Operators

result = x Yy,

The operands are compared lexically, based on the characters’ ordinal values. If one operand
is shorter, it is considered to be extended by blanks for comparison. If x and y have equal
length, and contain the characters x;..xn and y;..yn, then x < y only if for some m in 1..n,
ORD (xm) < ORD (ym) and x;, = yy, for all & < m. The result’s type is BOOLEAN.

10.10 Pointer Operations
10.10.1 Pointer Addition Operator

result=p +n;

The operand p must have a pointer type. The operand n must have the type INTEGER.

The result is the sum of p and n, where both are treated as integers according to the system’s
treatment of addresses. The result’s type is that of p. A range violation occurs if the result
lies outside the range of addresses (if, for example, an address wraps around from a high
value to a low value).

10.10.2 Pointer Subtraction Operator

result=p — x;

The operand p must have a pointer type. The operand x must have a type that is equivalent
to the type of p, or have the type INTEGER.

If p is a pointer and x is an integer, the result’s type is that of p. The result is the difference
p — x, where p and the result are treated as integers according to the system’s treatment of
addresses. A range violation occurs if the result lies outside the range of addresses (if, for
example, an address wraps around from a high value to a low value).

If p and x are both pointers, the result is an INTEGER. The result is the difference p - x,
where p and x are treated as integers according to the system’s treatment of addresses. A
range violation occurs if the result lies outside the range of INTEGER.

10.10.3 ADDRESS Built-in Function
result = ADDRESS (reference) ;

Argument

reference. This argument is interpreted as a data-reference to obtain a location loc with type
t, which must not be a bit-class type.

104 Expressions

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

Result
The result is loc, with type POINTER t.
If reference denotes a non-BIND parameter of procedure p, the address obtained from the

ADDRESS function must not be used after the current invocation of p terminates. Violation
of this rule is an error with unpredictable consequences.

10.10.4 CONTAINING_RECORD Built-in Function
result = CONTAINING_RECORD (field_address, record_type, field_name) ;

Arguments

field_address. This argument is a pointer value and it must be the address of the specified
field within an existing instance of record_type (if not, the consequences are unpredictable).
The type of field_address must be POINTER ¢, where ¢ is the type of the named field.

record_type. This argument must be a name denoting a record type.

field_name. This argument must be the name (unqualified) of a field in record_type. The
field must have a constant offset.

Resuit

The result is the address of the record denoted by record_type; its type is POINTER record_
type.

10.10.5 Pointer Comparison Operations

result=p { ° q;

The operands p and g, which must have equivalent pointer types, are interpreted as integers
according to the system’s treatment of addresses. The result’s type is BOOLEAN.

NOTE

Except for the operators “==" and “<>,” the result is system dependent; the use of
one of the other operators could produce different results in separate runs of a
program, even on the same system with the same input datal

Also, a comparison between pointers that address parts of the same record (or other
allocation unit) are unreliable because distinct fields can have the same address if
one field is zero-sized.

1 Should Pillar even allow comparison operators other than == and <> on pointers?

Expressions 105

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

10.11 Operations Related to Types

10.11.1 MAX Buiit-in Function

result = MAX (tname) ;

The argument tname must be a name denoting an ordinal type, . The result is the highest
value in ¢’s range, and has the type of #’s base ordinal type.

10.11.2 MIN Builit-in Function

result = MIN (tname) ;

The argument ¢tname must be a name denoting an ordinal type, ¢. The result is the lowest
value in ¢’s range, and has the type of #s base ordinal type.

10.11.3 DATA_TYPE_SIZE Built-in Function
The DATA_TYPE_SIZE built-in function provides the size of an item.
result = DATA_TYPE_SIZE (units, item [, extent-value-list]) ;

Arguments

units. This argument must be one of the names BIT, BYTE, WORD, LONGWORD, or
QUADWORD.

item. This argument must be a named-type or a data-reference.

extent-value-list. This optional argument is a list of one or more expressions. If item is not
the name of a flexible type, then extent-value-list must not be present. If item is the name

of a flexible type, then extent-value-list must contain exactly as many arguments as there
are extents in item. For example, the value of DATA_TYPE_SIZE (BYTE, STRING, 10) is
10.

Resuit

The result is the size of item’s type in the specified units. The specified units must not
exceed the size units of item’s type as determined by Pillar’s data representation rules; for
example, if item’s type is LONGWORD_DATA, units can be BYTE, but not QUADWORD.

10.11.4 FIELD_OFFSET Bulilt-in Function
The FIELD_OFFSET built-in function provides the magnitude of an item’s offset.
result = FIELD_OFFSET (units, item, field_name [,extent-value-list]) ;

Arguments

units. This argument must be one of the names BIT, BYTE, WORD, LONGWORD, or
QUADWORD.

item. This argument must be a named-type denoting a record type, or a data-reference
whose type is a record type.

field_name. This argument must be the name of a field in the record type.

106 Expressions

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

extent-value-list. This optional argument is a list of one or more expressions. If ifem is not
the name of a flexible type, then extent-value-list must not be present. If item is the name
of a flexible type, then extent-value-list must contain exactly as many arguments as there
are extents in item.

Result

The result is the offset of item from the record origin in the units specified by the argument
units. The specified units must not exceed the units of field_name’s offset in item. (This
offset is determined by the layout rules if item is specified with a layout option; otherwise,
it is determined by the compiler.)

10.11.5 Conversion Functions

The built-in conversion functions provide controlled conversions between data types.

CONVERT_ORDINAL
CONVERT_POINTER
CONVERT_ARITHMETIC

result = CONVERT _SET (source_value [, option...] [, TARGET = target_type]) ;
CONVERT_STRING
CONVERT_UNTYPED
Arguments

source_value. This argument is the expression whose value is to be converted.

option. These optional arguments are names, and vary among conversion functions. An
option cannot be specified more than once. A specific option is allowed only in the cases
indicated in the definitions of the individual conversion functins.

target_type. This optional argument is a named-type specifying the target type for the
conversion. If it is not present, context must provide the target type for the conversion.

Resuit

The result is the source value converted to the target type according to the rules for the
specified function.

10.11.5.1 CONVERT_ORDINAL Buiit-in Function

Source_value must have an ordinal type, and the target type must be an ordinal type. No
options are allowed.

The result’s ordinal value is the ordinal value of source_value, and the result’s type is that
of the target type. A range violation occurs if the result’s value lies outside the target type’s

range.

10.11.5.2 CONVERT_POINTER Built-in Function

Source_value must have a pointer type with associated type at, and the target type must be
a pointer type with asssociated type atl.

The options allowed are IGNORE_ALIGNMENT and IGNORE_SIZE.

Expressions 107

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

This function allows the conversion between pointers with different associated types without
changing the representation of the source. The pointer conversion alignment rule requires
that one of the following must hold:

* The alignment requirements of at and atl are the same.
* Either at or atl is ANYTYPE.
* The IGNORE_ALIGNMENT option is specified.

The pointer conversion size rule requires that one of the following must hold:
® The sizes of at and atl are equal.

* Either at or atl is ANYTYPE.

* Atf and atl are both record types, and one extends the other.

* The IGNORE_SIZE option is specified.

10.11.5.3 CONVERT_ARITHMETIC Built-in Function -
Source_value must have an arithmetic type, and the target type must be an arithmetic type.

The mutually exclusive options ROUND and TRUNCATE can be specified. If either is
specified, the source or target or both must be floating point.

If no option is specified, the normal conversion rules apply, as defined in Chapter 5.

If ROUND or TRUNCATE is specified and an actual value conversion is necessary, then
rounding or truncation is used instead of the default.

10.11.5.4 CONVERT_SET Built-in Function
Source_value must have a set type, and the target type must be a set type.

This function allows conversion between set types with different ranges. The target and
source types must have equivalent base ordinal types, but their ranges can differ.

The only option allowed is TRUNCATE. If TRUNCATE is specified, the source value can
have elements outside the target type’s range, and they are simply ignored. If TRUNCATE
is not specified, then all the elements in the source value must lie in the target type’s range;
otherwise, a range violation occurs.

10.11.5.5 CONVERT_STRING Built-in Function
Source_value must have a string type, and the target type must be a string type.

The only option allowed is TRUNCATE. A range violation occurs if the TRUNCATE option
is not specified and the length of source_value is greater than the length of the target type.
If the TRUNCATE option is specified, source_value is truncated to the length of the target
type if necessary.

VARYING_STRING cannot be explicitly specified as the target type.

108 Expressions

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

10.11.5.6 CONVERT_UNTYPED Built-in Function

This function provides the ability to retype a value without changing its internal
representation except for an adjustment in size.

The options allowed are TRUNCATE, ZERO_EXTEND, and SIGN_EXTEND. No more than
one option can be specified. If no option is specified, a range violation occurs if source_value
and the target type have different sizes.

If TRUNCATE is specified, only the first n bits of source_value are used, where n is the size
in bits of the target type. A range violation occurs if the size of source_value is greater than
the size of the target type.

If ZERO_EXTEND or SIGN_EXTEND is specified, source_value’s internal representation is
sign- or zero-extended to the size of the target type. This happens regardless of what source_
value’s internal representation is; source_value might or might not be data that contains a
sign bit. A range violation occurs if the size of source_value is greater than the size of the

target type.

The target type of CONVERT_UNTYPED cannot be VARYING_STRING (neither implicitly
nor specified explicitly). There are no other type restrictions on the target type or source_
value, since the CONVERT_UNTYPED function is concerned only with the size of the target
and source.

10.11.6 INITIALIZE_FIELDS Built-in Function

INITIALIZE_FIELDS (pointer, [, extent-value-list]);

The INITIALIZE_FIELDS function allows the initialization of record fields declared with
an initializer and captured extents.

Arguments

pointer. This argument supplies a value of type POINTER ¢, where ¢ is a record type that
is declared as having captured extents or as having an initializer on at least one field.

extent-value-list. This optional argument is a list of one or more expressions. It must be
present if and only if the type ¢ (defined above) is a type with captured extents. If present,
extent-value-list must contain exactly as many arguments as there are captured extents in
t.

INITIALIZE_FIELDS initializes the following fields in the record addressed by pointer:

* Each argument in extent-value-list is assigned (in the order that the captured extents
appear in #'s declaration) to one of the record’s captured extents.?

e Each of the fields that is specified in #’s declaration with an initializer is assigned the
value specified in that initializer.

2 Should Pillar allow the extent-value-list in INITIALIZE_FIELDS, DATA_TYPE_SIZE, and FIELD_OFFSET to be specified
using keyword notation?

Expressions 109

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

10.12 Miscellaneous Built-in Functions
10.12.1 ZERO Built-in Function

result = ZERO ([TARGET = target_type |);

Arguments

target_type. This optional argument is a named-type specifying a target type. If it is not
present, context must provide a target type.

Result

The result’s type is that of the target type. The result has all bits zero, except for any
captured extents present in the target type.

10.12.2 ARGUMENT_PRESENT Built-in Function
result = ARGUMENT_PRESENT (parameter) ;

Argument

parameter. This argument is a name denoting an OPTIONAL parameter of a procedure
containing this invocation of ARGUMENT_PRESENT.

Result

The result type is BOOLEAN. The result value is TRUE if an argument was passed to the
parameter in the current invocation of the procedure, FALSE otherwise.

10.12.3 VALIDATE_VALUE Built-in Function

The VALIDATE_VALUE built-in function is used to ensure that a value is in the range
required by its type definition. This value is always an ordinal value in Pillar.

This function is especially useful in system services because many of their input values
(direct and indirect through data structures) are ordinal values: buffer lengths, string
lengths, counts, and various codes. The system service must check that the actual value it
receives is within the range of the item’s declared ordinal type. If it does not check, and
such a value is out of range when input, the service can fail in an unpredictable manner.
The programmer of a system service must not make any assumptions about the effects of a
range discrepancy. This range problem is not peculiar to system services, however; it occurs
whenever a programmer constructs a routine to be called from other languages that are
invulnerable to invalid arguments.

result = VALIDATE_VALUE (reference [, type-name]) ;
Arguments
reference. This argument is a data-reference whose type is an ordinal type.

type-name. This optional argument is the name of an ordinal type, t. If type-name is omitted,
t is taken to be the exact ordinal type of reference.

110 Expressions

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Resuit

The function compares the actual integer value of reference with the range of integer values
defined by the ordinal type ¢, and returns a BOOLEAN result: TRUE if the value is in
range, FALSE otherwise. For example:

PROCEDURE p(IN s : string(*)) RETURNS STATUS;
BEGIN
IF NOT validate_value(s.length) THEN
RETURN some_status_code;
END IF; -

10.12.4 VALIDATE_ALIGNMENT Built-in Function

The VALIDATE_ALIGNMENT built-in function is used to verify that a data item has the
correct alignment.

The Pillar language defines an alignment requirement for each data type, and the compiler
assumes that a data item satisfies the alignment requirement of its type, unless the item is
a record field that is explicitly dealigned by use of a LAYOUT option. If the actual alignment
of a data item is less than the compiler’s assumed alignment, accessing the item can cause
an alignment fault on some systems.

For some routines, such as system services, the requirement of correct data alignment should
be enforced. Other routines might also want to check for unaligned input data and take
special action.

result = VALIDATE_ALIGNMENT (reference [, type-name]) ;

Arguments

reference. This argument is a data-reference to an item whose alignment is to be validated.
This argument must be addressable; it cannot have a bit-class type or a pointer type.?

type-name. This optional argument is the name of a type. This argument does not have to
be the type of reference; it can be any type except for bit-class data types and ANYTYPE. If
type-name is omitted, the type is taken to be the type of reference. The type-name argument
cannot be omitted if reference’s type is ANYTYPE.

Result

The function compares the actual alignment of reference with the the alignment requirement
of the type specified by type-name, and returns a BOOLEAN type result; the result value is
TRUE if the alignment is at least that required, FALSE otherwise. For example:

PROCEDURE p(IN Q : POINTER quadword data(*)) RETURNS STATUS;
BEGIN
IF Q==NIL THEN
NOTHING;
ELSEIF NOT validate_value(Q.length) THEN
RETURN some_status_code;
ELSEIF NOT validate_alignment (Q*) THEN
RETURN some_status_code;
END IF;

3 Pointer types are prohibited in order to detect the error of specifying “p” rather than “p*” as reference.

Expressions 111

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

As stated above, reference cannot be a pointer type. To check the alignment of a pointer (as
opposed to the data it addresses, which is a more usual case), type casting can be used; for
example, the following call validates the pointer p as being longword aligned:

result = VALIDATE ALIGNMENT (p::{ANYTYPE}, longword):

112 Expressions

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

CHAPTER 11
STATEMENTS

This chapter describes all of Pillar’s statements, including compound statements and
statement-sequences.

11.1 Control Flow and Statement Sequences

To explain the effects of nonsequential control flow, execution of an individual statement is
- said to terminate sequentially, with an exit-loop, with a procedure return, with a GOTO, or
with an exception. In a set of nested constructions, a nonsequential termination ripples up
to the construction containing its target; for example:

LOooP
BEGIN

IF ... THEN EXIT LOOP; END IF;
END

! more of the loop
END LOOP;

The statement EXIT LOOP:; is said to terminate with an exit-loop. The containing if-
statement and the main statement-sequence of the BEGIN-END local-block terminate in
the same way. At this point we have reached the loop-statement to which the exit-loop-
statement applies, and the loop-statement simply terminates sequentially.

Of course, the code does not really do all this. Normally (if there is no unwind handler
as described in Section 12.6 to invoke), the EXIT LOOP will simply generate a branch
instruction to the code following the loop.

In the description of individual statements, nonsequential termination is discussed only
when it is directly related to the particular statement. For a compound-statement (that
is, one that contains a statement-sequence), nonsequential termination of a contained
statement-sequence terminates the compound-statement in the same way, unless stated
otherwise. Expression evaluation can cause a statement to abruptly terminate with an
exception or nonlocal GOTO. Also, range violations in a statement’s own semantics cause it
to terminate with an exception, if range checking is enabled.

Sequential control flow occurs within a statement-sequence, which is the only syntactic
category that refers to the statement category.

Statements 113

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

B statement-sequence
{ [identifier :] statement } ...

The identifiers are declared as names of labels. The scope of the declaration is the statement-
sequence.

The statements are executed in order until the last statement has been executed, a condition
occurs, or a statement terminates nonsequentially. If the last statement is executed and
terminates sequentially, the entire statement-sequence terminates sequentially.

If a statement terminates with a GOTO to a label declared in the same statement-
sequence, execution of the statement-sequence continues from the label. In all other cases
of nonsequential termination of a contained statement, the statement-sequence terminates
in the same manner as the terminating statement.

If a condition occurs, execution of the statement-sequence is suspended and a condition
handler is found. Depending on the handler, one of the following will occur:

* The suspended statement continues after the handler’s execution terminates.

e The suspended statement terminates with a nonlocal GOTO executed by the handler
(or a routine called by the handler).

e The suspended statement terminates with an exception, then the exception handler is
invoked; this is the normal case in Pillar.

Condition and exception handling is discussed further in <REFERENCE>(Local_Blocks_Ex_
Hand_SECTION).

B statement

assert-statement
assignment-statement
built-in-function-call-statement
case-statement
compound-statement
exit-loop-statement
W goto-statement

if-statement
loop-statement
nothing-statement
procedure-call-statement
raise-statement
\ return-statement)

The interpretation of each statement category is described in its own section in this chapter.

11.2 ASSERT Statement

An assert-statement is used to make assertions. Violations of the assertions are treated in
the same manner as range violations.

114 Statements

Digital Equipment Corporation - Confidential and Proprietary
‘ For internal Use Only

B assert-statement
ASSERT { expression [ELSE character-string-literal] } ;

The expression’s type must be BOOLEAN. To execute an assert-statement, each assertion
expression is evaluated. If any assertion’s value is FALSE, an exception occurs. Note that
if more than one of the assertions is false, any one of the false assertions can be picked as
the failing assertion.

Code will not be generated for an assert-statement unless assertion checking is enabled when
the module is compiled. However, if the expression is constant and FALSE, it will always
be detected by the compiler and treated as a range violation involving constant expressions.
Also, the compiler can treat the assertion as true, for code optimization purposes, even if
assertion checking is disabled.

If the assertion is of the form expression ELSE "character-string-literal”, the string literal is

used as the substitution argument for the Pillar condition that is raised. The condition name
PILLAR$_ASSERT is defined by the compiler as though it had the following declaration:

CONDITION
PILLARS_ASSERT : ERROR = "!";

Note that there is also a predeclared BOOLEAN constant, ASSERT_CHECK_ENABLED,
whose value is TRUE if a module is compiled in a mode that guarantees the checking
of assert-statements. ASSERT_CHECK_ENABLED can be used, in conjunction with an
assert-statement or RAISE ERROR, to control checking of conditions too complicated to be
specified by a simple assert-statement.

11.3 ASSIGNMENT Statement
An assignment-statement is used to assign a value to a variable.

B assignment-statement

-data-reference = expression ;

The data-reference is interpreted to yield a location that must be assignable (see Chapter 9).
The location has a type ¢, which is used as the target type while evaluating the expression.
Evaluating the expression can cause the expression’s value to be converted to type ¢, as
described in Section 5.16.4. The value (possibly converted) of the expression is assigned to
the location.

11.4 CASE Statement

A case-statement is used to select one of several statement-sequences for execution according
to the value of an ordinal expression. The use of a case-statement suggests the use of a jump
table of some sort. The compiler will generate a different style of code for some special cases,
but usually it uses a jump table.

B case-statement

CASE expression ‘

{ WHEN set-of-values THEN statement-sequence } ...
[WHEN OTHERS THEN statement-sequence]

END CASE ;

Statements 115

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

The selector expression after CASE must have an ordinal type. Each “WHEN set-of-
values THEN” specifies a selector set for the statement-sequence following the THEN. All
expressions and ranges used in the set-of-values must be constant, and all must have base
ordinal types that are equivalent to the base ordinal type of the selector expression. There
is no target type for interpretation of the set-of-values.

The selector sets must be disjoint so that a particular ordinal value will select only one of
the contained statement-sequences; a given ordinal value cannot occur or be contained in
more than one selector.

To execute a case-statement, the selector expression is evaluated. If the resulting value is
in one of the selector sets, the associated statement-sequence is executed; otherwise, there
must be a “WHEN OTHERS THEN?” (if not, range violation), and the statement-sequence
following it is executed.

11.5 Compound Statement

A compound-statement is used to establish a scope for declarations and exception handling.
However, compound-statements do not have a stack frame or any similar run-time structure.

B compound-statement
[WITH] local-block ;

WITH is used only if the local-block contains a local-block-declaration-section or an enable-
section.

To execute a compound-statement, the local-block is executed.

11.6 EXIT LOOP Statement

The exit-loop-statement is used to terminate the execution of the innermost containing loop-
statement.

B exit-loop-statement
EXIT LOOP ;

The exit-loop-statement must be contained in a loop-statement, but the containment can be
through one or more levels of statement-sequence nesting.

The exit-loop statement terminates with an exit-loop.
11.7 GOTO Statement .
A goto-statement is used to transfer control to a labeled point in a statement-sequence.

B goto-statement
GOTO identifier ;

The identifier is interpreted as a reference. The reference must denote a label. The goto-
statement terminates with a GOTO to the specified label.

116 Statements

Digital Equipment Corporation - Confidential and Proprietary
For internai Use Only

Pillar’s scope rules ensure that the target label belongs either to the current statement-
sequence, or to one at a higher level. A jump to a label in a statement-sequence can occur
only when control is already within the statement-sequence.

A GOTO can jump out of the current procedure. However, such a nonlocal GOTO can
only jump to a label in the main statement-sequence of a local-block containing the current
procedure (at some level of nesting).

11.8 IF Statement

An if-statement is used to conditionally execute a statement-sequence. The syntax provides
a convenient form for sequential selection using BOOLEAN test expressions.

B if-statement

IF expression THEN statement-sequence

[ELSEIF expression THEN statement-sequence] ...
[ELSE statement-sequence]

END IF ;

The test expressions after IF and ELSEIF must have type BOOLEAN.

When an if-statement executes, the test expressions are evaluated in order until one yields
the result TRUE, or all have been evaluated. Tests expressions following the one yielding
TRUE are not evaluated.

If some test expression yields TRUE, the statement-sequence introduced by the following
THEN is executed. Otherwise, if the if-statement contains ELSE, the statement-sequence
following the ELSE is executed.

11.9 LOOP Statement

A loop-statement is used to execute a statement-sequence zero or more times. Termination
can be controlled by an explicit loop-control or WHILE expression, or the loop can be
indefinite. In either case, nonsequential termination of the statement-sequence terminates
the loop. The simplest form of nonsequential termination is through an exit-loop-statement,
which terminates the innermost containing loop.

B loop-statement

ordinal-type-control

{[increment-or-decrement-control]] [WHILE expression]
general-control

LOOP

statement-sequence

END LOOP [identifier] ;

If a loop contains an ordinal-type-control, increment-or-decrement-control, or general-
control, then the identifier following END LOOP must be the name of the loop’s control
variable; otherwise, the identifier must not be present.

If the loop-statement contains a WHILE, the expression after WHILE must have type
BOOLEAN.

Statements 117

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

To execute a loop-statement, the following steps are performed:

1. If the loop-statement contains an ordinal-type-control, increment-or-decrement-control,
or general-control, the control is initially evaluated as described under its syntax
heading. If that evaluation specifies loop termination, the execution of the loop
statement terminates sequentially, and the statement-sequence is not executed.

2. Iftheloop-statement contains a WHILE, the expression after the WHILE is evaluated. If
the result is FALSE, execution of the loop-statement terminates sequentially; otherwise,
execution proceeds with step 3.

3. The statement-sequence is executed. If it terminates sequentially, execution of the loop
proceeds with step 4; otherwise, execution terminates.

If the statement-sequence terminates with an exit-loop, execution of the loop-statement
terminates sequentially. If the statement-sequence terminates with a procedure
return, GOTO, or exception, the loop-statement terminates in the same manner as the
statement-sequence.

4. If the loop-statement does not contain a control, execution proceeds with step 2. If there
is a control, it is evaluated for continuation as described under its syntax heading. If that
evaluation specifies loop termination, the execution of the loop-statement terminates
sequentially; otherwise execution proceeds with step 2.

11.9.1 Loop Control by an Ordinal Type

An ordinal-type-control is used to perform the body of a loop with a control variable taking
on all values in an ordinal type’s range. In this case, only the ordinal-type-control can assign
a value to the control variable.

M ordinal-type-control
FOR identifier IN named-type

The identifier is declared as the name of a control variable. The scope of this declaration is
the entire loop-statement containing this control.

Initial Evaluation

Initial evaluation applies at the beginning of a loop (step 1 in Section 11.9). The named-
type is interpreted; it must be the name of an ordinal type, and this is made the type of
the control variable. The minimum value in the type’s range is made the initial value of
the control variable. The maximum ordinal value in this type’s range must be less than the
maximum value in the range of the type INTEGER (otherwise, range violation).

Evaluation for Continuation

Evaluation for continuation applies at the end of the loop (step 4 in Section 11.9). If the
current value of the control variable is the maximum value in its type’s range, the loop
terminates; otherwise, the next value in the range is made the value of the control variable.

118 Statements

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

11.9.2 Loop Control by Increment or Decrement

An increment-or-decrement-control is used to perform the body of a loop with an ordinal
control variable taking on equally spaced values. The direction in which the values change
must be explicitly specified by use of TO or DOWN TO.

By default, the ordinal value of the control variable changes by one on each iteration of the
loop. However, a different spacing can be specified using the keyword BY. The value of the
spacing is always given as a positive integer.

Only the increment-or-decrement-control can assign a value to the control variable.

B increment-or-decrement-control

FOR identifier [: named-type] = expression
[BY expression J [DOWN] TO expression

The identifier is declared as the name of a control variable. The scope of this declaration is
the entire loop-statement containing this control. The name must not be referred to within
the loop-control.

Initial Evaluation
Initial evaluation applies at the beginning of a loop (step 1 in Section 11.9).

If a named-type is given, it must be the name of an ordinal type that is the control variable’s
type. The initial expression (the expression after the “=”) is evaluated with the control
variable’s type as a target type, and the resulting value is the initial value of the control
variable. '

If no named-type is given for the control variable, its type is INTEGER. The initial
expression, which denotes the control variable’s initial value, must also have the type
INTEGER.

If BY is used, the expression after BY is evaluated to yield the increment value. The type
of the expression must be INTEGER, and the increment value must be greater than zero
(otherwise, range violation). If BY is not used, the increment value is one.

The expression after TO is evaluated to yield a limit value. The type of this expression must
be compatible with the control variable’s type, and its value must lie within the range of
the control variable’s type (otherwise, range violation).

The initial value of the control variable is compared with the limit value. If DOWN TO is
used, and the initial value is less than the limit value, the loop terminates. If only TO is
used, and the initial value is greater than the limit value, the loop terminates. :

Evaluation for Continuation
Evaluation for continuation applies at the end of the loop (step 4 in Section 11.9).

A new ordinal value for the control variable is determined using the current value and the
increment value; the increment value is determined during the initial evaluation of the
increment-or-decrement-control. If DOWN TO is used, the increment-value is subtracted
from the current value; otherwise, the increment-value is added to the current value. The
new ordinal value must lie within the range of the control variable’s type (otherwise, range
violation).

Statements 119

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The new value of the control variable is compared with the limit value. If DOWN TO is
used, and the new value is less than the limit value, the loop terminates. If only TO is used,
and the new value is greater than the limit value, the loop terminates.

11.9.3 General Loop Control

A general-control is used to perform the body of a loop with a control variable whose value—
after the first iteration—is determined by repeatedly evaluating an expression. A general-
control does not, by itself, terminate the loop.

In this case, only the general-control can assign a value to the control variable.

B general-control
FOR identifier [: named-type] = expression
NEXT expression

The identifier is declared as the name of a control variable. The scope of this declaration is
the entire loop-statement containing this control. The control variable must not be referred
to within the initial expression. However, it can be referred to in the expression following
"NEXT.

Initial Evaluation
Initial evaluation applies at the beginning of a loop (step 1 in Section 11.9).

If a named-type is given, it is interpreted to yield the type of the control variable. The initial
expression (the expression after the “=”) is evaluated with the control variable’s type as a
target type, and the resulting value is the initial value of the control variable.

If no named-type is given for the control variable, its type is INTEGER. The initial
expression, which gives the initial value of the control variable, must also have the type
INTEGER.

Evaluation for Continuation
Evaluation for continuation applies at the end of the loop (step 4 in Section 11.9).

The expression after NEXT is evaluated with the control variable’s type as its target type.
The resulting value is made the current value of the control variable.

11.10 NOTHING Statement

B nothing-statement
NOTHING ;

Execution of a NOTHING statement has no effect.

11.11 Built-in Function Call Statement
B built-in-function-call-statement
built-in-function-invocation ;

If the built-in function is one that returns a result, the result’s type must be STATUS. In
this case, an exception occurs if the returned status is not success.

120 Statements

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The interpretation of a built-in-function-invocation is described separately for each built-in-
function. The predeclared built-in-functions that do not return a result are described in the
following subsections.

11.11.1 READ_REGISTER Buiit-in Function

The READ_REGISTER built-in function performs a reference that is guaranteed to occur in
an atomic operation, and will not be removed or altered by any optimizations the compiler
carries out. Such an operation is necessary when accessing a device register, for example
(hence the name).

READ_REGISTER (target, source) ;

Arguments
target. This argument is interpreted as a variable data-reference.

source. This argument is interpreted as the value of a variable data-reference, but it cannot
be an automatic variable. The source argument’s type must be constant and compatible with
the type of target. The rules for internal representation of data must assign BYTE, WORD,
LONGWORD, or QUADWORD size units to source’s type, and the size in these units must
equal one. The value’s actual alignment in storage must be consistent with the size units
(otherwise, range violation).

Result

The source value is obtained from storage in a single atomic operation. It is then assigned to
target, and converted, if necessary, according to Pillar’s compatibility rules (see Section 5.16).

Data items for which an atomic read can be performed are specific to the target system.
(Some target systems might be able to support atomic read up ¢o a quadword, others only
up to a longword.)

11.11.2 WRITE_REGISTER Built-in Function

In contrast to READ;REGISTER, WRITE_REGISTER performs an atomic assignment to
storage. WRITE_REGISTER also provides a convenient means of constructing a record
value.

WRITE_REGISTER (target, source, field_name, = valuey, field_name, = valuey,...) ;

Arguments

target. This argument, which cannot be an automatic variable, is interpreted as a variable
reference. The rules for internal representation of data must assign BYTE, WORD,
LONGWORD, or QUADWORD size units to source’s type, and the size in these units must
equal one. The target’s actual alignment in storage must be consistent with the size units
(otherwise, range violation).

source. This argument is mutually exclusive with the field_name arguments. Either, but
not both, must be present. It is interpreted as a value reference, and its type must be
compatible with target’s type; the value is converted to target’s type if necessary.

value,. These arguments are mutually exclusive with source. If specified, farget’s type must
be a record type, and field_name, must be the name of a field in that record.

Statements 121

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

When the arguments field_namen=valuen are specified, a source value with target’s type is
built by initially assigning ZERO, and then assigning each valuen to the corresponding field.
The type of value, must be compatible with the field’s type; the value is converted to the
field type if necessary.

Resuit

The source value (converted or constructed, as required) is assigned to the target item in
a single atomic operation. The class of data items for which such an atomic write can be
performed is the same as for atomic reads (see Section 11.11.1).

As an’example of using WRITE_REGiSTER to comstruct a record value, suppose the
following declarations exist:

TYPE
control status_register: RECORD
unit_number: integer [0..255] size(byte);
go: boolean;
clock_enable: boolean;
error_flag: boolean;
LAYOUT
unit_number;
£i1111: filler (bit,5);
gos
£ill2: filler(bit,2):;
clock_enable;
error_flag;
£i113: filler(bit,50);
END LAYOUT;
END RECORD;

VARIABLE
csr: control_status_register;

Then the following call to WRITE_REGISTER can be used to assign to csr in an atomic
operation:

WRITE_REGISTER (csr, go = true, unit_number = 5) ;

11.12 Procedure Call Statement

A procedure-call-statement is used to invoke a procedure that does not return a value or
that returns a value of type STATUS. In the latter case, the returned status is automatically
checked; if it is not success, an exception occurs.

M procedure-call-statement
procedure-invocation ;
If the procedure is one that returns a result, the result’s type must be STATUS.

The procedure-invocation is interpreted as described in Section 13.4. If the procedure is one
that returns a result of type STATUS, and a nonsuccess status is returned, an exception
occurs.

122 | Statements

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

11.13 RAISE Statement
A raise-statement is used to raise an exception or report. There are several forms:

B raise-statement

ERROR [character-string-literal }

RAISE { EXCEPTION
REPORT

VECTOR data-reference

} data-reference [argument] , ... ;

11.13.1 RAISE ERROR

A raise-statement of the form RAISE ERROR is used to cause an exception; this is the most
memory-efficient method for causing a nonspecific error exception. RAISE ERROR is not
intended for reporting specific errors to users. '

If the raise error is of the form RAISE ERROR "character-string-literal” the string literal is
used as the substitution argument for the Pillar condition that is raised. The condition name
PILLAR$_ERROR is defined by the compiler as though it had the following declaration:

CONDITION
PILLARS_ERROR : ERROR = "!";

The other forms of the raise-statement are used to signal a specified condition, and an
argument for the condition’s associated message can be given.

11.13.2 RAISE EXCEPTION and RAISE REPORT

The form RAISE EXCEPTION is used to signal a condition that will be treated as an
exception. This means that a condition handler for this condition is not allowed to return
control to this statement (that is, to continue); the system or the Pillar run time prevents
it. An exception caused by an instruction is treated the same way.

RAISE REPORT is similar to RAISE EXCEPTION, except that it signals a condition that
need not be treated as an exception; a condition handler is allowed to return control to the
raise-statement, in which case sequential statement execution continues.

The data-reference in RAISE REPORT or RAISE EXCEPTION must be either a name
declared as a condition or a reference of type STATUS.

The number of arguments present in RAISE REPORT or RAISE EXCEPTION must be
exactly the number of substitution parameters in the condition’s message. Any arguments
present must be string expressions.

Condition handling is discussed in <REFERENCE>(Local_Blocks_Ex_Hand_SECTION).

11.13.3 RAISE VECTOR

The RAISE VECTOR form of this statement is provided because the condition to be signaled
might already be specified by the contents of a message vector (described in Section 12.2.3).
In the RAISE VECTOR statement, data-reference is a reference of type $condition.message_
vector (the $condition module is described in Section 12.2). A handler invoked for this signal
gets a message vector with the same contents as data-reference. A procedural handler (see

Statements 123

Digital Equipment Corporation - Confidential and Propﬂetary
For Internal Use Only

Section 12.4 on OZIX/OSF gets data-reference itself without any copying. The message
handle in data-reference should -denote a condition, not just a message.

A range violation occurs if the severity in the message vector is severity.no_severity (see
Section 12.2.1).

11.14 RETURN Statement

A return-statement is used to return control from the current procedure-invocation. If
the procedure is one that returns a result, the returned value can be given in the return-
statement or taken from the procedure’s result variable.

B return-statement
RETURN [expression] ;

The following rules cover the interaction of RETURN statements, result-variables, and the
RETURNS option in procedure declarations: '

¢ Executing a RETURN statement that does not contain an expression is treated the same
as executing the END statement of a procedure (also called sequential termination).

* A procedure declared without a RETURNS option cannot contain a RETURN statement
that contains an expression.

* A procedure declared with a RETURNS option‘can contain a RETURN statement that
contains an expression. :

* A procedure declared with a RETURNS option that does not have a result-variable must k
contain at least one RETURN statement that contains an expression.

e A procedure declared with a RETURNS option can contain a RETURN statement that
does not contain an expression only if the procedure has a result variable.

* If a procedure declared with a RETURNS option executes a RETURN statement that
does not contain an expression, then its result variable must have been assigned a value
(otherwise, range violation). The Pillar compiler might not detect this violation. One
implication of this rule is that a range violation always occurs if the END statement
is executed in a procedure declared with a RETURNS option, if that procedure has no
result variable.

* Taking the address of a result-variable or passing it to a BIND parameter is not
permitted.

Execution of the return-statement terminates with a procedure return.

124 Statements

Digital Equipment Corporation - Confidential and Proprietary
For Internat Use Only

CHAPTER 12
LOCAL BLOCKS AND EXCEPTION HANDLING

12.1 Local Blocks

Local-blocks occur as procedure bodies and as compound statements.

B local-block

[{ local-block-declaration-section } ...]
[enable-section]

BEGIN

statement-sequence

[exception-handler-section] ...

[unwind-handler-section]

[subprocedure-section]

END

The statement-sequence immediately contained in a local-block is the block’s main
statement-sequence.

12.1.1 Decfarations in a Local Block

B local-block-declaration-section

normal-type-declaration
flexible-type-declaration
complete-opaque-type-declaration
procedure-type-declaration
constant-declaration
complete-value-declaration
complete-variable-declaration
bind-declaration
define-declaration
complete-message-declaration
complete-condition-declaration

Local Blocks and Exception Handling 125

Digital Equipment Corporation - Confidential and Proprietary
For internail Use Only

12.1.2 Subprocedures

B subprocedure-section
SUBPROCEDURES { complete-procedure-declaration } ...

A subprocedure-section is only allowed in the local-block of a procedure.

A procedure declared in the subprocedure-section of a procedure p is a subprocedure of p. A
subprocedure can contain a subprocedure-section.

The name of each procedure declared in a subprocedure-section has a scope that is the same
as the local-block in which it is declared.

12.1.3 Termination of a Statement Sequence
A termination state is continue, unwind, or an exception.

Execution of a statement-sequence s within a local-block b produces a termination state ¢
relative to & by the following rules:

* If s terminates with an exception e, ¢ is e.
* If s terminates with an explicit or implicit unwind of b, ¢ is unwind.

® Otherwise, ¢ is continue.

12.1.3.1 Explicit Unwinding

A statement-sequence s within local-block & terminates with an explicit unwind of b if
a statement within s explicitly transfers control to a point outside b. More concretely, s
explictly unwinds & at the execution of:

* A return-statement, unless b is a procedure body
* An exit-loop-statement, if b occurs within the loop to exit
* A goto-statement, if the target of the goto-statement is outside of &

12.1.3.2 Implicit Unwinding

A statement-sequence s within local-block b terminates with an implicit unwind of b if there
is an implicit branch! or other transfer of control (that terminates s) from within s to a point
outside of b caused by procedural condition handling.

12.1.4 Interpretation of a Local Block

The execution of a local-block & proceeds as follows:
1. If b is a procedure body, then:
1. Local parameters are bound to their corresponding arguments.

2. If the procedure has a frame, the frame is established with a minimum chance of
causing an exception.

! An implicit branch is a transfer of control similar to a jump caused by a goto-statement, but has no constraints on its
target. The concept of an implicit branch is introduced only to define some of the more mysterious properties of procedural
condition handling.

126 Local Blocks and Exception Handling

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

3. If the procedure specifies argument probing, the arguments to the procedure are
validated. This will cause an exception if the arguments are not valid.

2. B’s declarations are interpreted to the extent necessary at run time. (Most of the work
is done at compile time.) This can involve expression evaluation, the initialization of
variables, and additional allocation of stack storage, so an exception can occur.

3. If b has an enable-section, the enable-section is interpreted. This can accomplish the
following (in order):

Enable an environment

Disable alerts

Lock a semaphore

Establish a procedural condition handler
Alter the state of underflow detection

4. B’s main statement-sequence is executed, producing a termination state sterm relative to
b. The execution of the statement-sequence can include the invocation of b’s procedural
condition handler (see Section 12.4).

5. If b has a procedural condition handler, the handler is annulled. Underflow detection
reverts to the state in force before the execution of b.

o kL b

6. If sterm is an exception for which b has a handler, the handler’s main statement-
sequence is executed and hterm is continue. Otherwise, hterm is sterm.

7. If hterm is unwind or an exception, and b has an unwind handler, the unwind handler
is executed to produce a termination state uterm relative to b. It is an error with
unpredictable consequences if uterm is not continue.

8. If b locked a semaphore, the semaphore is released. Alerts return to the state in force
before the execution of b.

8. B terminates in one of the following ways:

» Ifthe main statement-sequence of b or the statement-sequence of one of b’s exception
handlers terminates sequentially, then b terminates sequentially. If4 is a procedure
body, sequential termination of b causes an implicit return from the procedure;
otherwise, sequential termination of b transfers control to the statement lexically

succeeding b.

e If hterm is an exception, b terminates by propagating hterm to b’s nearest dynamic
ancestor.

e Ifb has a procedural condition handler pch, and pch is invoked and then terminates
with an exception e, b terminates by propagating e to b’s nearest dynamic ancestor.

e Otherwise, b terminates with an explicit transfer of control from within either the
main statement-sequence of b or one of b’s handlers to a point outside b. \\\ This
can unwind enclosing local-blocks. \\\

Steps 1 through 3 constitute b’s prologue.

Local Blocks and Exception Handling 127

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

12.1.4.1 The Enable Section of a Local Block
M enable-section

[lock-enable]

[alerts-enable]

[underflow-enable }

[condition-handier-enable]
[message-vector-enable]
{ environment-enable]

The order of the elements of an enable-section is fixed.

A local-block cannot have both a lock-enable and an alerts-enable.

12.1.4.1.1 Acquiring a Lock
W lock-enable
LOCK data-reference ;

If an enable-section of a local-block b contains a lock-enable, then, during ’s prologue:

1. The data-reference is interpreted to obtain a value sem of type USER_SEMAPHORE.
2. Alerts are disabled for b.

3. Sem is locked.

When b terminates, sem is unlocked.

12.1.4.1.2 Disabling Alerts
B alerts-enable
DISABLE ALERTS ;
If an enable-section of a local-block b contains an alerts-enable, then alerts are disabled
during &’s prologue.

If b does not contain an alerts-enable, then the state of alerts during the execution of b is
the same as for b’s dynamic ancestor.

When b terminates, alerts revert to the state in force prior to the execution of b.

12.1.4.1.3 Enabling and Disabling Underfiow

’

M underflow-enable

{ ENABLE

NDER ;
DISABLE } v FLOW;

If the enable-section of a local-block b contains an underflow-enable, then the detection of
floating-point underflow is disabled or enabled (as indicated) during &’s prologue.

If b does not contain an underflow-enable, then the state of underflow detection during the
execution of b is the same as for b’s dynamic ancestor.

When b’s main statement-sequence terminates, underflow detection reverts to the state in
force before the execution of b.

128 Local Blocks and Exception Handling

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

Underflow detection is initially disabled when a program begins execution.

12.1.4.1.4 Enabling a Condition Handier
M condition-handler-enable
ENABLE CONDITION HANDLER name ;

If the enable-section of a local-block b contains a condition-handler-enable, then the name
must denote a procedure p with type CONDITION_HANDLER. The name is interpreted
as a data-reference to obtain a procedure value pval. Pval is established as a procedural
condition handler for b during b’s prologue.

When b’s main statement-sequence terminates, p is annulled as a procedural condition
handler for 5.

12.1.4.1.5 Enabling a Message Vector
B message-vector-enable
ENABLE MESSAGE VECTOR name ;

If the enable-section of a local-block & contains a message-vector-enable, then:
e The name must denote an assignable data item mv of type MESSAGE_VECTOR.
e No local-block contained within 4 can have a message-vector-enable.

e Either b or a local-block contained within b must have an exception-handler-section.

Before the execution of an exception handler of or within b, information about the exception
that caused the handler to be executed will be stored at muv’s location.

12.1.4.1.6 Enabling an Environment
B environment-enable
ENABLE ENVIRONMENT name ;

If the enable-section of a local-block b contains an environment-enable, then the name must
denote an environment env. Local-block b enables env (see Section 8.3.3).

12.2 Contents of the $CONDITION Built-in Module

The $CONDITION module is built into Pillar and contains the following declarations:
* The type SEVERITY

¢ The type STATUS, and associated built-in functions

* The type MESSAGE_VECTOR, and associated built-in functions

¢ The type CONDITION_HANDLER

* The type CONDITION_DISPOSITION

e The type USER_SEMAPHORE, and associated built-in functions

Local Blocks and Exception Handling 129

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

12.2.1 SEVERITY
SEVERITY is an enumerated type whose definition follows:

TYPE
severity: (

warning,
success,
error,
informational,
fatal,
no_severity

)z

12.2.2 STATUS

A value of type STATUS contains a condition ¢ and a value sev of type SEVERITY. Sev need
not be equal to ¢’s SEVERITY value.

STATUS is a quadword-sized opaque type that receives special interpretation in the
following contexts:

® STATUS cannot be revealed.

* The relational operators == and <> are defined on values of type STATUS. The STATUS
values’ conditions are compared for equality or inequality, while the STATUS values’
SEVERITY values are ignored.

* A procedure with result type STATUS can be invoked as a procedure-call-statement (see
Section 13.3.1).

* The built-in functions GET_SEVERITY and SUCCESS_STATUS operate on values of
type STATUS.

12.2.2.1 GET_SEVERITY Built-in Function
result = GET_SEVERITY (status-value) ;

Argument
status-value. This argument is interpreted to obtain a value of type STATUS.

Result
This function returns the SEVERITY value of status-value.

12.2.22 SUCCESS_STATUS Built-In Function
result = SUCCESS_STATUS (status-value) ;

Argument
status-value. This argument is interpreted to obtain a value of type STATUS.

Result

This function returns a BOOLEAN value: TRUE if the severity of status-value is
severity.success or severity.informational; FALSE otherwise.

130 Local Blocks and Exception Handling

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

12.2.3 MESSAGE_VECTOR
A value mv of type MESSAGE_VECTOR contains the following components:

* A messagem
* A value of type SEVERITY

e An exception flag: TRUE if mv represents an exception, FALSE if mv represents a
report, and undefined if mv represents an expanded message

e Arguments to m, which are string values to be substituted for m’s substitution
parameters

MESSAGE_VECTOR is an opaque type that receives special interpretation in the following
contexts:

¢ MESSAGE_VECTOR cannot be revealed
e Assignment to a data item of type MESSAGE_VECTOR is disallowed
e The result type of a procedure type cannot be MESSAGE_VECTOR

* The built-in functions GET_SEVERITY, GET_STATUS, GET_EXCEPTION_FLAG, SET_
EXCEPTION_FLAG, SET_MESSAGE, EXPAND_MESSAGE_VECTOR, and COPY_MESSAGE_
VECTOR operate on locations and values of type MESSAGE_VECTOR

12.2.3.1 GET_SEVERITY Bulit-in Function
result = GET_SEVERITY (vector) ;

Argument
vector. This argument is interpreted to obtain a value of type MESSAGE_VECTOR.

Result

This function returns a result of type SEVERITY, which is the severity code contained in
vector.

12.2.3.2 GET_STATUS Built-in Function
result = GET_STATUS (vector) ;

Argument
vector. This argument is interpreted to obtain a value of type MESSAGE_VECTOR.

Result

This function returns a result of type STATUS, which contains vector’s condition and seventy
A range violation occurs if vector’s severity is severity.no_severity.

12.2.3.3 GET_EXCEPTION_FLAG Buiit-in Function

result = GET_EXCEPTION_FLAG (vector) ;

Argument
vector. This argument is interpreted to obtain a value of type MESSAGE_VECTOR.

Local Blocks and Exception Handling 131

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

Resuit
This function returns a BOOLEAN result that is the value of vector’s exception flag.

12.2.3.4 SET_EXCEPTION_FLAG Built-in Function
SET_EXCEPTION_FLAG (vector, boolean-value) ;

Arguments

vector. This argument is interpreted to obtain an assignable location of type MESSAGE_
VECTOR.

boolean-value. This argument is interpreted to obtain a BOOLEAN value.

Resuit
This function sets vector’s exception flag to the value given by boolean-value.

12.23.5 SET_MESSAGE Built-in Function
SET_MESSAGE (vector, name, [, string-arguments...]) ;

Arguments
vector. This argument is interpreted to obtain an assignable location of type MESSAGE_
VECTOR.

name. This argument is the name of a message, or is interpreted to obtain a value of type
STATUS.

string-arguments. This is a list of zero or more arguments to be interpreted to obtain a
list of string values for use as substitution parameters for the message component of name.
The number of string arguments supplied must equal the number of substitution paramters
required by the message component of name.

This function sets the message-, severity-, and arguments-components of vector. If name
denotes a message, the severity is severity.no_severity.

12.2.3.6 EXPAND_MESSAGE_VECTOR Bullt-In Function
EXPAND_MESSAGE_VECTOR (vector, target) ;

Arguments
vector. This argument is interpreted to obtain a value of type MESSAGE_VECTOR.

target. This argument is interpreted to obtain an assignable location of a string type.

Resuit

This function substitutes vector’s arguments into vector’s message, creating a string value s,
which is assigned to target. A range violation occurs if the length of target is less than the
length of s.

132 Local Blocks and Exception Handling

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

12.2.3.7 COPY_MESSAGE_VECTOR Built-in Function
COPY_MESSAGE_VECTOR (source-vector, target-vector) ;

Arguments
source-vector. This argument is interpreted to obtain a value of type MESSAGE_VECTOR.

target-vector. This argument is interpreted to obtain an assignable location of type
MESSAGE_VECTOR.

Result
This function copies all components of source-vector to target-vector.

12.2.4 CONDITION_HANDLER
CONDITION_HANDLER is a procedure type defined as follows:

TYPE
condition_handler: PROCEDURE {
IN v: message_vector
) RETURNS condition_disposition;

12.2.5 CONDITION_DISPOSITION
CONDITION_DISPOSITION is an enumerated type defined as follows:

TYPE
condition_disposition: (
resignal,
continue,
resignal exception

)z
12.2.6 USER_SEMAPHORE

A value of type USER_SEMAPHORE is a handle to a user-mode semaphore object.

USER_SEMAPHORE is an opaque type that receives special interpretation in the following
contexts:

¢ TUSER_SEMAPHORE cannot be revealed.

* The built-in functions ??? operate on locations and values of type USER_SEMAPHORE.
\\\ What operations are needed? \\\

12.3 Messages, Conditions, Exceptions, and Reports

A condition is an exception or a report. A condition is an exception if it has a nonsuccess
severity or is specially flagged as an exception; otherwise, it is a report.

A report that occurs during the execution of code within a (procedural condition, exception,
or unwind) handler and outside of any local-blocks within the handler is promoted to an
exception.

Local Blocks and Exception Handling 133

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

12.3.1 Promotion of a Condition

Condition c is promoted to exception e by the following rule:

If c is a report, e has all properties of ¢ except that e is specially flagged as an exception;
otherwise, e is c.

12.3.2 Message Declarations
B complete-message-deciaration
[MESSAGE] identifier = character-string-literal ;

The keyword MESSAGE must be present unless this complete-message-declaration imme-
diately follows another complete- or external- message-declaration.

The identifier is declared as a message whose text is the character-string-literal. The
character-string-literal can contain any number of exclamation point (!) characters, which
represent substitution parameters of the message text.

B external-message-declaration
[MESSAGE] { identifier } ,... EXTERNAL ;

The keyword MESSAGE must be present unless this external-message-declaration imme-
diately follows another complete- or external- message-declaration.

Each identifier is declared as a message, with a text to be supplied at link time.

12.3.3 Condition Declarations

A condition contains a message and a value of type SEVERITY. A condition declared by an
external-condition-declaration also contains system-dependent information.

B complete-condition-declaration
[CONDITION } identifier : condition-severity [= character-string-literal | ;

B condition-severity

SUCCESS
INFORMATIONAL
WARNING
ERROR

FATAL

The keyword CONDITION must be present unless this complete-condition-declaration
immediately follows another complete- or external- condition-declaration.

The identifier is declared as a condition, with the severity indicated by the condition-severity,
and the message text given by the character-string-literal. The character-string-literal
can contain any number of exclamation point (!) characters, which represent substitution
parameters of the message text. If the character-string-literal is omitted, the condition
acquires a default message which has no substitution parameters.

134 Local Blocks and Exception Handling

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

M externai-condition-declaration
[CONDITION } { identifier } ,... EXTERNAL ;

The keyword CONDITION must be present unless this external-condition-declaration
immediately follows another complete- or external- condition-declaration.

Each identifier is declared as a condition, with a severity and message text to be supplied
at link time.

12.4 Procedural Condition Handling

A condition is an event that interrupts the normal control flow of a program. A condition is
either a report, in which case a procedural condition handler can cause execution to resume
at the point where the condition occurred, or an exception, which forces termination of the
execution of the statement-sequence in which the condition occurred.

If a local-block & does not have a procedural condition handler, a report that occurs during
the execution of code within the main statement-sequence s of b and outside of any local-
blocks within & is promoted to an exception e, s terminates with an implicit unwind of b,
and e is propagated to the nearest dynamic ancestor of b. If a condition is propagated to b
from a dynamic descendant, the effect is as if b6 had a procedural condition handler whose
only action was to return resignal_exception.

A procedural condition handler pch enabled for a local-block b with main statement-sequence
s is invoked if a condition occurs while executing code that is within s and outside of any
local-blocks within b, or if an immediate dynamic descendant of b propagates a condition to
b. If a condition ¢ occurring during the execution of statement-sequence sl results in the
invocation of pch, the terminations of s and sI are defined in terms of the termination of
pch.

e If pch terminates with an exception e, s terminates with an implicit branch to the point
within pch where e occurred.

e If pch terminates with a goto-statement with target label lab, sI terminates with an
implicit branch to lab.

» If pch terminates by returning a CONDITION_DISPOSITION value disposition, then:
e If disposition equals resignal, c propagates to b’s nearest dynamic ancestor, without
terminating s1.
s Ifdisposition equals continue, and condition c is a report, the execution of sI resumes

immediately after the point at which the condition occurred. It is an error with
unpredictable consequences if ¢ is an exception.

e If disposition equals resignal_exception, condition c is promoted to exception e. If
sl is not s, sl terminates with an implicit branch to the last point in s, which
terminates with e.

12.5 Exception Handlers

B exception-handler-section
WHEN exception-list THEN statement-sequence

Local Blocks and Exception Handling 135

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

B exception-list
exception-name-ist
exception-others

For the local-block immediately containing the exception-handler-section, the statement-
sequence is an exception handler for all conditions designated in the exception-list.
B exception-name-list

EXCEPTION { name } ,...
Each name must be declared as a condition. A condition can be named only once in all
exception-handler-sections of a local-block. An exception-name-list designates each condition
named within it.
B exception-others

EXCEPTION OTHERS

An exception-others designates all conditions not designated by other exception-lists in
a local-block’s exception-handler-sections. An exception-handler-section that contains an
exception-others must be the last exception-handler-section in a local-block.

12.6 Unwind Handlers
W unwind-handler-section
WHEN UNWINDING THEN statement-sequence

The statement-sequence is an unwind handler for the local-block immediately containing the
unwind-handler-section. The statement-sequence must not contain either a goto-statement
with a target outside the statement-sequence or a return-statement.

\\\On some systems, most notably VMS, unwind handlers are not invoked if a program
terminates with an exception. On such systems, it is advisable for programs that have unwind
handlers to have an OTHERS exception handler for the main procedure. \\\

136 Local Blocks and Exception Handling

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

CHAPTER 13
PROCEDURES

This chapter describes Pillar procedures. Because the complete language for procedures
is rather elaborate, the form of straightforward declarations and calls might not be
immediately apparent from the syntax. A typical procedure returning a result and
containing subprocedures has the following form:

PROCEDURE name (parameter declarations)
RETURNS result description ;
local declarations
BEGIN
code
SUBPROCEDURES
declarations of subprocedures
END PROCEDURE name ; ’

The forms of parameter declarations are explained in Section 13.2. Note that parentheses are
present even if there are no parameters. The result description is explained in Section 13.3.
If the procedure does not return a result, RETURNS and result description are omitted.

Together, a procedure’s parameter‘declarations, its result description, its call linkage details,
and its environment determine a procedure’s type. In Pillar’s syntax, all these occur within
the category procedure-type-constructor.

A procedure heading always ends with a semicolon. The procedure’s name is repeated at
the end of the entire procedure declaration, which always ends with a semicolon.

The body is a local-block (see Section 12.1); it contains local declarations, code, and
subprocedure declarations. In the local-block of a procedure, subprocedures cannot
be declared in the local declarations position; they must be declared only after the
SUBPROCEDURES keyword. Subprocedure declarations are described in Section 12.1.2.

A procedure is invoked by the interpretation of a procedure-invocation whose form is:
data-reference (arguments)

This can occur as a procedure-call-statement or in an expression as a procedure-function-
reference, but the usage must be consistent with the procedure’s result type (if any).
Note that a procedure declared as returning STATUS can be invoked as a procedure-call-
statement, as discussed in Section 13.3.1.

The parentheses are always required in a procedure-invocation, even when there are no
arguments.

Procedures 137

Digital Equipment Corporation - Confidential and Proprietary
For Internai Use Only

Interpreting the arguments of a procedure-invocation is performed in two steps. First
the list of arguments is matched with the procedure’s parameter list to determine, for
each argument, the particular parameter to which it is passed. Pillar has rather flexible
conventions that allow keyword notation, optional arguments (with or without default
values), and list arguments (zero or more arguments passed to a single parameter). All
this is described in Section 13.4.

Once the arguments are matched with parameters, each argument is interpreted in
accordance with the parameter’s mode (IN, OUT, IN OUT, or BIND) and data type. This
yields a value in the case of an IN parameter, or an assignable location in the case of other
parameter modes. The parameter is then bound to the value or location.

Once the arguments have been interpreted, the procedure’s body (a local block) is
interpreted. This is called a procedure activation. Within the procedure activation, a
reference to a parameter denotes the value or variable to which the parameter was bound.
(There are some other possibilities for parameter binding, as explained in Sections 13.2 and
13.4.1.)

13.1 Procedure Declarations

B complete-procedure-declaration

[PROCEDURE] identifier procedure-type-specification
H INLINE [ONLY] H

WITH ARGUMENT PROBING
local-block PROCEDURE identifier ;

The keyword PROCEDURE must be present unless the complete-procedure-declaration im-
mediately follows another complete-procedure-declaration or external-procedure-declaration
(see Section 13.6).

The identifier in a complete-procedure-declaration is declared as the name of a new
procedure. The scope of the declaration is the entire module if the declaration is at module-
level. The scope is the containing local-block if the declaration is in a subprocedure-section
(described in Section 12.1.2). The procedure-type-specification describes the procedure’s
parameters and the type of its result (if it returns a result). The type specification can also
control some details of the linkage used to implement calls to the procedure All these topics
and the use of INLINE are described in this chapter.

The local-block in the complete-procedure-declaration is the procedure’s body. Note that the
identifier giving the procedure’s name is repeated following the local-block’s terminating
END, and the entire declaration ends with a semicolon.

13.1.1 Procedure Type Specifications and Constructors
B procedure-type-specification

procedure-type-constructor
procedure-type-reference

138 Procedures

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only
B procedure-type-constructor

parameter-list [procedure-result-specification }
[ENVIRONMENT (name)
[procedure-linkage-specification]

A procedure-type-constructor introduces a new procedure type. The prdperties of the type
are given by the constructor’s components (see Sections 13.2, 13.3, and 13.8). 1

B procedure-type-reference
parameter-repetition OF TYPE name

The name must be the name of a procedure type, and the type reference denotes that type.

13.1.1.1 Parameter Repetitions

When a procedure type is used in a procedure declaration, or the body of a procedure is
given in a procedure completion, the parameter-list is generally not visible to a reader of
the procedure’s body. For this reason, Pillar requires that the parameter’s names be repeated
where they can be seen by the reader.

B parameter-repetition

([identifier], ...) [RETURNS [identifier]]
A parameter-repetition occurs in a procedure-type-reference or a procedure-completion. In
either case, an existing procedure type is being used. The identifiers in the parameter-

repetition must be exactly the same (in number and order) as the names of the parameters
of the procedure type. Note that parentheses are present even if there are no parameters.

If the procedure type being used returns a result, the keyword RETURNS must be presént,
as shown. In addition, if the procedure type has a named result, the identifier giving its
name must be repeated following RETURNS.

Example of a parameter-repetition:
(addendl, addend2, addend3) RETURNS sum;

This parameter-repetition would occur, for example, in a procedure-completion for a
procedure with this parameter-list and result-specification:

(IN addendl, addend2, addend3: integer) RETURNS sum: integer:;

13.2 Parameters

This section contains the general syntax for parameter-lists. Subsections give the detailed
rules for interpreting an argument in accordance with the declaration of its matching
parameter. The rules for argument-parameter matching are in Section 13.4.1.

M parameter-list
([parameter-deciaration J ...)

1 Possible future extensions to the language are preconditions and postconditions on procedures.

Procedures 139

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only ‘

B parameter-declaration

:I)“UT named-type
IN OUT { identifier } , ... : { subrange-type-constructor ; parameter-options ;
BIND set-type-constructor

The keywords IN, OUT, IN OUT or BIND (which specify parameter modes) can be omitted
only if this parameter-declaration immediately follows the declaration of another parameter
with the same mode. In other words, the occurrence of one of these keywords in a parameter-
list determines the mode of all succeeding parameters that appear before the next occurrence
of IN, OUT, IN OUT or BIND.

According to the syntax, each parameter-declaration terminates with a semicolon. However,
the semicolon can be omitted in the last parameter-declaration in a parameter list (that is,
in the parameter-declaration immediately preceding the right parenthesis terminating the
list).

As an example of a single parameter-declaration, consider the declaration of an integer input
parameter that must be supplied using keyword notation and that has a default value of
10:

IN count: integer = 10 KEYWORD;

A parameter-list occurs in a procedure-type-constructor that introduces a new procedure
type. The identifiers in each of its parameter-declarations are declared as names of
parameters of the procedure type. The scope of these declarations is the procedure-type-
constructor together with all the procedure-type-specifications and procedure-bodies that
depend on the type (these can be in other modules). The procedure type’s parameter
list contains all the parameters in the order in which their names occur in the original
parameter-list.

Within a single parameter-declaration, all the parameters have the same type, which is
given by the named-type, subrange-type-constructor, or set-type-constructor. Expressions
within these type specifications must be simple expressions, which can refer to the values
of IN parameters, the extents of a parameter of any mode, and certain other values that
depend on the procedure’s parameters. The exact rules are part of the definition of the class
of simple expressions.

A parameter’s type can be specified as a named-type containing matching extents. If so, the
values of extents are derived from the argument matching the first parameter named in the
list of identifiers; for example:
PROCEDURE p (

IN a, b: vector(¥*):;

OUT c¢: vector(a.n)):;
The argument passed to a determines the value of the matching extent. Therefore, only a
has matching extents; & does not. In this example, the extent’s name is n, and all three
parameters have the same type.

In contrast, consider the following example:
PROCEDURE p (
IN a: vector(*):

IN b: wvector(*):
OUT c: vector(a.n)):;

140 Procedures

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

In this example, the parameters a and b do not have the same type; rather, there are extents
(a.n and b.n) derived from both a and b. :

13.2.1 IN Parameters

An argument passed to an IN parameter is interpreted as an expression. Unless the IN
parameter’s type contains matching extents, the parameter’s type is the target type for
evaluating the argument expression. Thus, the rule for the argument’s type is that it must
be assignment compatible to the parameter’s type, and conversion to the parameter’s type
can occur.

An IN parameter with matching extents does not provide a target type. The argument’s
type must match the parameter type as described in Section 13.2.5. The net effect is that
the parameter will have the same type as the argument.

The type rules in the preceding paragraphs can be relaxed by use of the CONFORM
parameter option.

An IN parameter is bound to the value produced by evaluating the argument. It is not
possible to modify an IN parameter (attempting to modify an IN parameter through a
dereferenced pointer is an error with unpredictable consequences). To avoid the cost of
copying large values unnecessarily, a rule is imposed concerning the use of a variable as an
argument passed to an IN parameter:

If an argument passed to an IN parameter is a data-reference to an assignable data
item, and if the data-reference’s data type is not a small type (see Section 5.16.5), then
any modification of the data item’s value during the procedure’s execution is an error
with unpredictable consequences.

As an example:

VARIABLE s : STRING(100);

PROCEDURE p (IN x : STRING(*));
BEGIN

END PROCEDURE p;
p(s);

The behavior is unpredictable because p modifies the input argument s, which makes
references to the parameter x unpredictable.

This error is uncommon, and can sometimes be diagnosed by the compiler. This error does
not occur with parameters with small types, since they are always copied.

Procedures 141

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

13.2.1.1 Special Restrictions on IN Parameters

The type of an IN parameter is not allowed to be any of the following types (which would
make little or no sense in this context):

¢ VARYING_STRING
e BIT or BIT_DATA (this applies to all parameters)

13.2.2 OUT Parameters

An argument passed to an OUT parameter is interpreted as an assignable data-reference.
The parameter’s type must be assignment compatible to the argument’s type.

An OUT parameter is bound to an assignable data item. If the procedure activation
terminates normally (that is, with a RETURN), the parameter’s current value is assigned to
the argument. In other cases, the argument might not be modified. During the procedure’s
execution, accessing the argument (other than through the parameter) is an error with
unpredictable consequences.

It is likely that the compiler will use a temporary variable if the parameter’s data type
is small, but use the argument directly in other cases. However, this depends on system
conventions, data-type details, and the effects of such things as remote procedure calls.

13.2.3 IN OUT Parameters

An argument passed to an IN OUT parameter is interpreted as an assignable data-reference.
Its type must be compatible with the parameter’s type.

An IN OUT parameter is bound to an assignable data item, and the argument’s current value
is assigned to the variable. This assignment takes place before execution of the statement-
sequence in the procedure’s body. If the procedure activation terminates normally (that is,
with a RETURN), the parameter’s current value is assigned to the argument. In other
cases, the argument might not be modified. During the procedure’s execution, accessing the
argument (other than through the parameter) is an error with unpredictable consequences.

As ig the case for OUT parameters, it is likely that the compiler will use a temporary
variable if the parameter’s data type is small, but use the argument directly in other cases.
However, this depends on system conventions, data-type details, and the effects of such
things as remote procedure calls.

13.2.3.1 STRING and VARYING_STRING, OUT and IN OUT Parameters

For STRING and VARYING_STRING OUT and IN OUT parameters, the corresponding
arguments must meet the following requirements, in addition to being compatible with the
parameter:

e If the parameter’s type is STRING{(n), the argument’s type must also be STRING{(n).

¢ If the parameter’s type is VARYING_STRING{(n), the argument’s type must also be
VARYING_STRING{(n).

e If the parameter’s type is STRING(*), the argument’s type must be STRING(n).

e If the parameter’s type is VARYING_STRING(*), the argument’s type must be
VARYING_STRING(n).

142 Procedures

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The purpose of these rules is to allow the compiler to avoid making copies that are
unnecessary in the usual usage of these parameters.

13.2.4 BIND Parameters

An argument passed to a BIND parameter is interpreted as an assignable data-reference. Its
type must be equivalent to the parameter’s type. The parameter is bound to the assignable
data-item denoted by the argument. The argument can be accessed by other means during
execution of the procedure, and it can be shared with other threads of execution. A BIND
parameter should only be used when some sort of shared or indirect access is desired.

In a parameter declaration of a BIND parameter, the parameter’s type can be given only as
a named-type. A subrange-type-constructor or a set-type-constructor is not allowed.

13.2.5 Matching Extents

A parameter’s type can contain matching extents, whose values will be determined by
corresponding extents in the argument’s type; for example:

PROCEDURE reverse (IN s : STRING(*)) RETURNS STRING (s.LENGTH) ;

Matching extents can be used in other parameter types, and a parameter can have some
matching extents and some other extents; for example:

TYPE vector (n : INTEGER[1..]) : ARRAY([1l..n] OF REAL;
matrix (m, n : INTEGER[1l..]) : ARRAY[l..m, 1l..n] OF REAL;

VARIABLE row : vector(10); col : vector(20);
t : matrix (10, 20):;

PROCEDURE p (IN x : vector(*);
IN a : MATRIX(x.n, *):;
OUT y : vector(a.n));
BEGIN

END PROCEDURE p;

p (row, t, col};

The procedure p multiples a vector by a matrix to obtain another vector. The matrix’s row
dimension must equal the number of elements in the input vector, and its column dimension
must equal the number of elements in the output vector. Thus, only two extents need to be
determined by matching. In the illustrated invocation of p, x.n and a.m are equal to 10; a.n
and y.n are equal to 20.

The example has the matrix parameter a with one matching extent and one nonmatching
extent, just to illustrate this possibility. It is more natural to declare y as vector(*) and a as
matrix(x.n, y.n).

Note that there must be exactly one asterisk (in the parameter declaration) for each
matching extent.

Procedures 143

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

13.2.5.1 The Normal Extent-Matching Rule

Let x be a non-CONFORM parameter whose type is t(es,...en), where some or all of the ¢;
are matching extents (asterisks). If an argument y is passed to x, then y must also be of
type ¢, so y’s type has the form t(vy,...vn). A matching extent e; in x’s type takes on the value
v; from y’s type. Any nonmatching extent e; must be equal to the corresponding extent v;
(otherwise, range violation). The net result is both x and y have type t(v;,...vn).

The type of the argument y does not have to be exactly ¢; it can be another flexible type
derived from ¢; for example:

TYPE ~

square _matrix (m : integer[l..] : matrix(m, m)):
VARIABLE

y: square matrix(10);

PROCEDURE p (IN x: matrix(*, *));
BEGIN

END PROCEDURE p;
py):

The exact type of y is square_matrix(10), but this is derived from matrix(10,10), so y is
compatible with the parameter x.

Matching also applies to POINTER types. Thus, if x is a non-CONFORM parameter whose
type is POINTER t(e,,...ex), an argument, y, passed to x must have type POINTER t(v;,...un),
and each e; matches v;. As with non-POINTER types, y’s type can be derived from POINTER
t; for example: ‘

TYPE
node_type code : (symbol node_code, token node_code, ...):;
node (n_type : node_type code)
RECORD
VARIANTS CASE n_type
WHEN symbol node_code THEN ...
WHEN token_node_ code THEN ...

END VARIANTS;
END RECORD;

PROCEDURE p (IN g : POINTER node(*));

TYPE
symbel : POINTER node (symbol node_ code);

VARIABLE
x : symbol;
BEGIN
p (x); ! Within p, g.n_type is equal to symbol node_code

END PROCEDURE p:

144 Procedures

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

13.2.5.2 Extent Matchlng- for CONFORM Arrays

The CONFORM option can be specified for an array parameter whose type has matching
extents. In this case, if an argument does not satisfy the normal extent matching rule, the
compiler will determine a matching extent by comparing the argument’s array type with the
parameter’s type treated as a symbolic array type. This language feature permits expressin,
general array manipulation routines in Pillar; for example: :

MODULE array_ routines;
TYPE real_array (n : INTEGER[O..]) : ARRAY [l..n] OF REAL;

PROCEDURE real array sum (IN x : real_array(*) CONFORM)
RETURNS sum : REAL;
BEGIN
sum = 0;
FOR i = 1 TO x.n LOOP
sum = sum + x(i];
END LOCOP i;
RETURN;
END PROCEDURE real array_ sum;

This routine sums any one-dimensional array whose element type is REAL. Programmers
using this routine can ignore the type real_array in calls:

PROCEDURE main();

TYPE

my_array type: ARRAY [11..17] OF real;
VARIABLE

my_array: my_array_type;

x: real;

BEGIN
x = real_ array_sum(my_array);

END PROCEDURE main;

Programmers can also ignore the detailed definition of the CONFORM array feature. The
general idea is that the compiler expands the parameter’s declared type (a bound-flexible-

type) into its base array type yielding a type of the form:
ARRAY [1lbj..hby,...lbg..hby] OF elt-typ

Each matching extent, e, in the parameter type must occur in at least one of the following
forms in the expanded type:

1. . 1b;..e, where lb; is constant
2. [b;..e, where Ib; is not constant
3. e..hbi

An argument passed to the parameter must be an array with the same number of dimensions
and an equivalent element type. However, CONFORM also applies to the parameter’s
element type if it is exactly BYTE, WORD, LONGWORD, QUADWORD, or blank_DATA.

Procedures 145

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Let the argument’s array type be:
ARRAY [lyj..hyi,...lyn..-hyn] OF elt-typ

If a matching extent, e, occurs in form 1 in the expanded parameter type, its value is
determined by:

ORD(e) = ORD(hyj) - ORD(lyj) + ORD(lbj)

The effect is just to make e consistent with the number of elements in the corresponding
argument dimension. This is the most convenient value of e, because the declaration of the
procedure determines the origin for indexing within the procedure.

If a matching extent e, occurs in form 2 or 3 in the expanded parameter type, its value is
the corresponding argument bound, Ay; or ly;, respectively.

If a matching extent occurs in a suitable form in more than one place in the expanded
array type, it can be determined from any one of the occurrences. The resulting parameter
array type must have the same number of elements as the argument type in each dimension
(otherwise, range violation). If this is true, all computations of the extent yield the same
value.

13.2.6 Parameters with Captured Extents

As explained in Section 5.11.1, a flexible record type, ¢, can have “captured extents.” The
values of these extents are actually stored in the record, so when ¢ is used as a parameter
type, the extents need not be specified.

If an extent of a flexible type is captured, it cannot be a matching extent in a parameter
type. (Allowing such a matching extent would provide no additional capab1hty) Nor can
the value of the extent be specified in the parameter-list.

13.2.7 Parameter Optlons

Parameter options are used to extend and modify the basic rules for argument-parameter
matching and argument interpretation. The effects are described in a separate subsection
for each option.

B parameter-options

parameter-default-value
[CONFORM] || OPTIONAL [KEYWORD] [STATUS VECTOR]
LIST [[range-specification }]

13.2.8 The CONFORM Option

The CONFORM option is used to relax the normal type compatibility rules in argument
interpretation. It is useful for library routines and for routines that perform specific
functions whose implementation depends on data representation.

One use of the CONFORM option is with array parameters; this use is described in
Section 13.2.5.2. The other cases in which the CONFORM option can be used are as follows:

* The parameter’s type is BYTE, WORD, LONGWORD, or QUADWORD.

146 Procedures

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The argument’s type must have a constant size, and the same size in bits as the
parameter (otherwise, a range violation occurs). If the parameter’s mode is IN, OUT, or
IN OUT, there is no alignment requirement on the argument. If the parameter’s mode
is BIND, the argument’s known alignment must be at least as great as the parameter’s.

The parameter’s type is blank_DATA(¥).

The argument’s known alignment must equal or exceed the alignment requirement of
the blank_DATA type. The argument’s size in bits must be an exact multiple of 8, 16, 32,
or 64, in accordance with the particular blank_DATA type (otherwise, a range violation
occurs).

The parameter’s type is blank_DATA(n).

The rule is the same as for blank_DATA(*), except that the argument’s size in bits must
be exactly the same as the parameter’s (otherwise, a range violation occurs).
The parameter’s type is POINTER blank_DATA(*).

The argument’s type must be POINTER ¢ where ¢ is not ANYTYPE. The size of £ in
bits must be an exact multiple of 8, 16, 32, or 64, in accordance with the particular
blank_DATA type (otherwise, a range violation occurs). The alignment requirement of
¢ is restricted according to the parameter’s mode as follows:

— For an IN parameter, ¢’s alignment requirement must equal or exceed the alignment
requirement of the blank_DATA type.

— For an OUT parameter, t's alignment requirement must be less than or equal to the
requirement of the blank DATA type. This ensures that a pointer value assigned
to the OUT argument will point to storage with at least the expected alignment.

— For a BIND or IN OUT parameter, ¢'’s alignment requirement must be the same as
the requirement of the blank_DATA type.

The parameter’s type is POINTER blank_DATA(n).

The rules are the same as for POINTER blank_DATA(*) except that the size of the
argument’s type must be exactly the same in bits as the blank_DATA type.

‘The parameter’s type is POINTER ANYTYPE.
The argument’s type can be any POINTER type.

13.2.9 Parameter Default Values

A default value can be specified only for an IN parameter; for example:

IN count : INTEGER[O0..] = 0;

A parameter declared with a default value must have a constant type.

If an IN parameter has a default value, and a procedure-invocation does not contain an
argument matching the parameter, the compiler uses the default value. Note that the
parameter is not considered to be optional in the Pillar sense (and it does not appear as
optional to the called procedure) because it has a value in every activation of the procedure.

B parameter-default-value

= initializer

Procedures 147

Digital Equipment Corporation - Confidential and Proprietary |
For internal Use Only

13.2.10 OPTIONAL Parameters
A parameter can be specified as OPTIONAL; for example:
OUT second message : STRING(80) OPTIONAL;
A parameter specified as OPTIONAL cannot have matching extents.

If a procedure-invocation does not contain an argument matching an OPTIONAL parameter,
the parameter is not bound to an argument during the procedure’s invocation.

In general, within a procedure’s code, it is a range violation to interpret a data-reference to
an OPTIONAL parameter that is not bound to an argument. The only exception to this rule
is when the optional parameter occurs as the argument to the ARGUMENT _PRESENT
built-in function. (This function is used to test whether the parameter is bound to an

argument.)

Note that if an OPTIONAL parameter occurs as an argument in a procedure-invocation, and
is matched with an OPTIONAL parameter in the invoked procedure, the first OPTIONAL
parameter must be bound to an argument (otherwise, a range violation occurs). This is true
even though the second parameter is itself OPTIONAL.

An OPTIONAL parameter cannot be referred to within its containing procedure type or
within the local declarations of a procedure body governed by that type. The purpose of this
rule is to prevent the occurrence of exceptions (or unpredictable effects) in a block’s prologue
code.

13.2.11 LIST Parameters

A parameter can be specified as corresponding to a list of arguments by following its
declaration with the keyword LIST followed by an optional range-specification; for example:

PROCEDURE p (IN items : POINTER t LIST [2..5]); ! A list of 2 to 5 pointer values

The range-specification, if present, must be a constant range-specification. It specifies the
number of arguments, corresponding to the LIST parameter, that must be supplied in each
call to the procedure (if an incorrect number of arguments is supplied, a range violation
occurs). The range-specification is interpreted with a target type of INTEGER [0..].

If the range-specification is not present, then the parameter corresponds to a list of zero or
more arguments in any call to the procedure.

Within a procedure’s code, three forms of references to a list parameter, Ist, are allowed:

o The reference Ist.length yields the number of arguments in the list of arguments to
which the parameter is bound. ‘

* The reference Ist[n] is a reference to the nth argument in the list. It has the same
properties as a reference to a non-LIST parameter whose mode and type are the same
as those of the LIST parameter. This form of reference results in a range violation if n
is less than one or greater than the number of arguments in the list.

* The reference Ist is a reference to the entire list parameter. It can be used only to pass
the entire parameter as an argument to another list parameter, Ist1. Pillar allows this
only if the following conditions hold:

— Ist and Ist1 have equivalent types.

148 Procedures

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

— st and Ist1 have the same modt;.

— Ist and Istl are passed by the same mechanism. That is, if either is declared with
a linkage option, they must both be declared with that option.

— Neither Ist nor Istl is specified with the TRAILING LIST linkage option (see
Section 13.8.2).

¢ Passing the entire list parameter Ist is equivalent to passing all of the arguments Ist/(1]
through Ist[lst.length].

A LIST parameter cannot be referred to within its containing procedure-type-constructor or
within the local declarations of a procedure body governed by that type (but ist.length is
legal in these contexts). The purpose of this rule is to prevent the occurrence of exceptions
(or unpredictable effects) in a block’s prologue code.

A LIST parameter cannot have matching extents.?

13.2.11.1 Argument Interpretation for LIST Parameters

Section 13.4.1 explains how arguments are associated with a LIST parameter. Once the
parameter is matched with a list of arguments, each argument in the list is interpreted in
accordance with the LIST parameter’s mode (IN, OUT, etc.) and type; for example:
PROCEDURE p (IN locations: integer LIST;
OUT items : POINTER t LIST);
p (i1, i2, i3, items = ql, g2, 93);

Here the arguments il, i2, i3, are interpreted as integers, while g1, q2, q3 are interpreted
as pointer variables.

13.2.12 KEYWORD Parameters

Normally, an argument in Pillar can be supplied using positional or keyword notation. (The
syntax for both of these is shown in Section 13.4.1.) As an example, consider the procedure
declaration:

PROCEDURE sample (IN index: integer;
IN count: integer) EXTERNAL;

One could supply the arguments to sample positionally:
sample(il, <cl):
or using keyword notation:

sample(index = il,
count = cl);

or using a combination of the two notations, according to the rules in Section 13.4.1.

Pillar also provides the KEYWORD option, which allows the author of a procedure to restrict
the coding style used in a call to the procedure. Declaring a parameter x with the KEYWORD
option means that in calls to that procedure, arguments for x and all parameters following it
in the parameter-list must be supplied, if at all, using keyword notation; positional notation

2 A possible future extension to the language is to allow matching extents on LIST parameters. When this is done, the option
MATCH INDIVIDUALLY can also be added, to signify that each argument in the list can have different extent values.

[

Procedures 149

Digitai Equipment Corporation - Confidential and Proprietary
For Internal Use Only

is never permitted for these arguments. Therefore, if the example above were declared this
way: '

PROCEDURE sample (IN index: integer KEYWORD:;
IN count: integer) EXTERNAL;

the call shown above using positional notation would not be valid.

The KEYWORD option itself can appear only once in a given parémeter-list. Specifying it
more than once would be a confusing redundancy, since it applies to the parameter it is
specified with and all following parameters.

13.2.13 STATUS VECTOR Parameters

As discussed in Section 13.3.1, a procedure declared as returning STATUS can be invoked
in a procedure-call-statement (thus not making use of the return value). If such a procedure
should return a nonsuccess status, this status will be signaled as an exception. In this case,
the STATUS VECTOR option can be used to obtain information on the condition.

The STATUS VECTOR option can be applied only to an OUT parameter of type
$condition.message_vector of a procedure that is declared as returning STATUS. If a
procedure is declared with a STATUS VECTOR parameter, and invoked in a procedure-
call-statement that returns a nonsuccess status, the entire message vector contained in the
STATUS VECTOR parameter is signaled.

Pillar enforces the following restrictions on STATUS VECTOR parameters:

e STATUS VECTOR can be applied only to one OUT parameter of type $condition.message_
vector (described in Section 12.2.3).

¢ Ifone of a procedure’s parameters has the STATUS VECTOR option, then the procedure
must return a result and the result type must be STATUS.

e If one of a procedure’s parameters has the STATUS VECTOR option, the procedure
cannot have a result-variable. (The STATUS VECTOR parameter itself serves as the
result variable.)

* If one of a procedure’s parameters has the STATUS VECTOR option, return-statements
within the procedure cannot specify a returned value. (Because the result value is taken
from the STATUS VECTOR parameter.)

* Pillar makes the same checks about assignment to the STATUS VECTOR parameter as
it would for the result-variable of a normal procedure. (These checks are described in
Section 11.14.)

The parameter with the STATUS VECTOR option is optional in any call. Note that
(unlike OPTIONAL parameters in Pillar) references to this parameter from inside the called
procedure will not cause an access violation if no argument was supplied, since the compiler
always provides a “dummy” argument in this case.

Here is an example of a usage of the STATUS VECTOR parameter option:

150 Procedures

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

PROCEDURE foo (v
OUT mv: MESSAGE_VECTOR STATUS VECTOR

)
RETURNS STATUS;
BEGIN

SET_MESSAGE (mv, ...}

RETURN;
END PROCEDURE foo;

13.3 Procedure Results

The result type of a procedure is specified following the parameter list of a procedure-type-
constructor; for example:

PROCEDURE p (...) RETURNS SET integer [0..31];

If a procedure has a result type, it must return a value of that type; if it does not have a
result type, it cannot return a result. A name can be declared for the result; for example:

PROCEDURE p (...) RETURNS output : LONGWORD_DATA(n) ;

Within the procedure’s code, output denotes a variable, and the value of output will be
used as the procedure’s returned value unless explicitly overridden by an expression in the
return-statement.

B procedure-result-specification

named-type
RETURNS [identifier : § { subrange-type-constructor

set-type-constructor

The named-type, subrange-type-definition, or set-type-definition gives the procedure result
type. The expressions within the procedure-result-specification must be simple expressions,
which can refer to the values of required IN parameters and the extents of a required
parameter of any mode. The exact rules are part of the definition of the class of simple
expressions. :

If present, the identifier in a procedure-result-specification is declared as a “procedure result
name.” The scope of the declaration is the procedure-type-constructor together with all the
procedure-type-specifications and procedure-bodies that depend on the type. (These can be
in other modules.)

The procedure result name cannot be referred to within the procedure-type-constructor or
local declarations of any procedure of the type having that named result.
13.3.1 Procedures Returning STATUS

If a procedure is declared as “RETURNS status” it gets special treatment in Pillar. Unlike
other result returning procedures, it can be invoked by a procedure-call-statement, for
example:

create_object (x};

Procedures 151

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

If this is done, and the procedure called returns a nonsuccess status, an exception is signaled.
The exception signaled is the condition denoted by the status value. This feature of Pillar
allows one to construct routines (system services, for example) that return status values
rather than signal exceptions. This feature can be used in conjunction with the STATUS
VECTOR option on a parameter, which is described in 13.2.13.

A procedure returning STATUS can also be invoked as a procedure-function-reference.

13.4 Procedure Invocations

A procedure-invocation can occur as a procedure-function-reference or as a procedure-call-
statement. It specifies the procedure to be invoked and the arguments (if any are supplied
in the invocation) to be passed to it. '

B procedure-invocation
data-reference ([argument-list])

Note that the parentheses must be present even if the argument-list is empty.

To determine the procedure to be invoked, the data-reference is interpreted, and this also
gives a type for the procedure. The type has a parameter list, and it has a result type if the
procedure is one that returns a value.

Once the procedure’s type is known, the arguments (if any) are interpreted in two steps.
First, arguments are associated with parameters as described in Section 13.4.1. Second,
each argument is interpreted in accordance with the parameter to which it is passed. This
second step determines the values and variables to which the parameters are bound. If an
argument is matched with an IN parameter, it is interpreted as an expression. For the other
kinds of parameters (OUT, IN OUT, and BIND), an argument must be a data-reference and
it is interpreted as an assignable reference. (The detailed rules for argument interpretation
are given in Section 13.2.)

Once the arguments have been interpreted, the procedure’s body (a local-block) is
interpreted. During interpretation of the body, a reference to a local parameter of the
procedure denotes the item bound to the parameter by the argument interpretation.

Execution of a return-statement or encountering the final END in the procedure terminates
the procedure-invocation normally. If the procedure is one that returns a result, and the
procedure-invocation occurs as a procedure-function-reference, the result value becomes the
value of the procedure-function-reference.

The methods used by the compiler to implement a procedure-invocation depend on the
circumstances. If the reference specifying the procedure is simply a name denoting an inline
procedure or any procedure whose body is in the current module, the compiler can compile
code specialized to the properties of the particular procedure. In other cases (EXTERNAL
procedures not in the current module, and general procedure values), the compiler uses a
standard call.

13.4.1 Argument Lists

This section explains how the parameters in a parameter list are matched with arguments
in an argument list.

152 Procedures

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

B argument-fist

argument
keyword-argument || ’

B argument

expression

B keyword-argument

identifier = { argument } , ...

In a keyword-argument, the identifier must be the name of one of the called procedure’s
parameters.

Parameters to which the KEYWORD option (see Section 13.2.12) applies must be supplied,
if at all, as a keyword-argument. Other parameters can be supplied in this fashion, but are
not required to be.

In an argument-list, any positional (nonkeyword) arguments must precede any keyword-
arguments. The positional arguments are matched with parameters in the order in which
the arguments and parameters occur in their respective lists. Unless a parameter has the
LIST option, each parameter matches one argument until the list of positional arguments
is exhausted.

If the positional matching reaches a LIST parameter, and there remains one or more
unmatched positional arguments, all the remaining positional arguments are combined into
one list that is matched with the LIST parameter. At this point, there must not be any
unmatched positional arguments. N

If the argument-list contains any keyword-arguments, they are now matched with
parameters.? ' -

The name in a keyword-argument must be the name of a parameter that has not already
been matched with an argument. If only one argument follows the “name =,” the parameter
is matched with that; if there is more than one, the parameter must have the LIST option.
All of the arguments within the keyword-argument are combined into one list that is
matched with the LIST parameter.

At this point, all arguments have been matched, or an argument that does not match any
parameter has been found (an error). If there are any unmatched parameters, they must
have a default value, be OPTIONAL, or be LIST parameters. If a LIST parameter has been
matched with no arguments or with a single argument, it is treated as being matched with
a list of zero or one arguments, respectively, unless the single argument it was matched
with is itself a LIST parameter.

% The compiler does this in the order of their occurrence in the argument list, but the order does not really matter.

Procedures 153

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

13.4.2 Argument List Validation

If a procedure is declared with the keywords WITH ARGUMENT PROBING preceding the
declarations in the procedure’s body, the procedure’s argument list is validated when it is
invoked. Pillar provides this primarily for executive entries in operating systems. Argument
list validation is built into the language because the validation involves calling mechanisms
that are hidden when one uses a higher-level language such as Pillar.

For example, the following procedure completed below will have its arguments validated on
invocation:

PROCEDURE k$foo(n,y,z);
WITH ARGUMENT PROBING:;
VARIABLE s : POINTER STRING(n);

BEGIN
END PROCEDURE k$foo;

The following restrictions on procedures declared with the WITH ARGUMENT PROBING
option are enforced by Pillar:

* The procedure must not be declared INLINE or INLINE ONLY.
* The procedure must be one that returns STATUS.
e The TRAILING LIST linkage option (see Section 13.8.2) is not allowed for a parameter.

e If an IN parameter’s data type is small (see Section 5.16.5), the REFERENCE linkage
option (see Section 13.8.2) is not allowed. (This avoids having to capture small by-
reference input values).

When WITH ARGUMENT PROBING is used, the procedure’s argument list is probed,
checked, and captured. If any violation is detected, the procedure immediately returns
with an appropriate failure status code. Any random exception during this process will also
cause immediate return with a failure status. Pillar will also set a "STATUS VECTOR"
output parameter if the procedure has one. ¢

The argument probing and capturing is done before execution of any prologue code related to
the procedure’s local declarations. The first two steps below capture the nonregister part of
the argument list® in the procedure’s local storage. The remaining steps validate individual
arguments.

1. If part of the procedure’s argument list is in memory, that part is probed for read access.
(All probes are made with respect to the previous mode as specified in the TCB.) The
argument list itself is then copied into local storage (that is, into the procedure’s stack
frame). If the list contains any immediate OUT or IN OUT parameters, the memory
occupied by the list will be probed for read/write access rather than read access. Note
that this step handles all of the immediate arguments in the in-memory argument list.
Any data referred to by those arguments will be probed in a later step (for example,
arguments passed by reference).

2. If an argument is passed by descriptor, then the descriptor is validated for quadword
alignment, probed for read access, and captured.

4 WITH ARGUMENT PROBING might not cause any code to be generated for some architectures. Special requirements on
the run-time environment required by procedures specified using WITH ARGUMENT PROBING are to be specified.

5 Which part of the argument list is passed in registers is system dependent.

154 Procedures

Digital Equipment Corporation - Confidential and Proprietary
For Iinternal Use Only

3. If an argument is a LIST argument, the list is probed for read access, validated for
longword alignment and copied into local storage. Elements of the list (if any) are then
processed (next three steps) as individual arguments.

4. If an IN argument is passed by reference, it is probed for read access, but it is not
captured, and hence can still change. (The immediate IN values have all been captured
by the preceding steps.) OPTIONAL IN parameters are only probed if they are present.

5. OUT and IN OUT parameters not passed immediately are probed for read/write access.
OPTIONAL parameters in this category are only probed if they are present.

BIND parameters are probed for read/write access.

In all cases where an argument’s memory is probed, the address is first checked for
correct alignment according to the argument’s data type. Note that the alignment of
lists and descriptors is also checked during steps 1, 2, and 3.

As part of the procedure’s common return code, any immediate OUT or IN OUT parameters
that are not in registers are copied back into the original in-memory lists.®

13.5 INLINE and INLINE ONLY Procedures

As shown in Section 13.1, a procedure can be declared as INLINE or INLINE ONLY. Note
that this is a property of a particular procedure, not of its procedure type. If the reference in
a procedure-invocation denotes a procedure declared as INLINE, the compiler has the option
of expanding the procedure’s body into code at the point of the call. If the reference in a
procedure-invocation denotes a procedure declared as INLINE ONLY, the compiler always
performs this expansion at the point of the call.

Procedures declared with either INLINE or INLINE ONLY are referred to as inline
procedures.

Here is an example of an inline procedure declaration:

PROCEDURE positive_result (
IN cli_status: integer)
RETURNS boolean
INLINE;

BEGIN
RETURN .
(local_flag AND (cli_status == cli$_locpres)) OR
(NOT local flag AND ((cli_status == cli$_present) OR
(cli_status == cli$_defaulted))):;
END PROCEDURE positive result;

The use of inline procedures will generally decrease program execution time because of
the elimination of the general procedure-call overhead, and because the compiler’s general
optimization methods apply across the expanded code. Inline procedures are especially good
for small procedures and functions, but it can be used advantageously on large ones as well.
A good practice is to compare execution times of inline and noninline procedures, or simply
inspect their resulting code.

A procedure declared as INLINE is subject to the following restrictions:

e Its body must not declare any subprocedures.

€ Pijllar’s argument list validation can be extended beyond this.

Procedures 155

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

e Its body must not specify WITH ARGUMENT PROBING.

A procedure declared as INLINE ONLY is subject to all the restrictions imposed on
procedures declared INLINE, plus the following restrictions:

e A reference to the procedure cannot be used for any purpose except to invoke the
procedure.

e The body of the procedure cannot refer to the procedure, either directly or through a
chain of invocations of other inline procedures. This would generate an infinite sequence
of in-line code expansions. Note that an inline procedure, p, can invoke a noninline
procedure that then invokes p.

An inline procedu.res type can have a linkage specx.ﬁcatmn but this has no effect on the
in-line code expansion.

An inline procedure does not appear in the call stack. Aside from this, and the restrictions
checked by the compiler, INLINE and INLINE ONLY have no effect on the meaning of a

procedure.

The use of inline procedures can cause difficulties in debugging because there is no stack
frame for an inline procedure and no debugger symbol table information for the expanded
procedure (variables or statement locations). The NOINLINE qualifier can be used on the
Pillar command, to force inline procedures to be compiled as normal procedures, with stack
frames and with debugger symbol table information. The NOINLINE qualifier applies only
to inline procedures declared in the compilation unit, not to those defined in other modules.

13.6 EXTERNAL Procedures

At the module-level, a procedure can be declared as EXTERNAL. In thls case, the module-
level of some module (usually a different module) completes the definition of the procedure
by use of a procedure-completion, which contains the procedure’s actual body.

B external-procedure-declaration

[PROCEDURE] identifier procedure-type-specification
[INLINE [ONLY]] EXTERNAL ;

The keyword PROCEDURE must be present unless the external-procedure-declaration im-
mediately follows another complete-procedure-declaration or external-procedure-declaration.

This declaration is allowed only in a procedure-section at module-level. The declaration’s
scope is the entire module.
13.6.1 Procedure Completions

B procedure-completion

[PROCEDURE] identifier parameter-repetition ; [WITH ARGUMENT PROBING ;] local-block
PROCEDURE identifier ;

WITH ARGUMENT PROBING is discussed in Section 13.4.2

156 Procedures

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

A procedure-completion is allowed only in an implementation module at module-level. The
identifier must be the name of an EXTERNAL procedure specified in an implement-section
of the module. The local-block is the procedure’s body. Note that the identifier giving the
procedure’s name must be repeated following the local-block.

For example, this procedure completion:

get_pext_file(root,
context,
handle);
BEGIN

END PROCEDURE get_next file;
is a completion for this declaration:

PROCEDURE get next file(IN root: POINTER ANYTYPE CONFORM;
IN context: integer;
OUT handle: longword) EXTERNAL;

13.7 Environments and Procedures

If a procedure-type-constructor contains ENVIRONMENT(name), then name must- be
the name of an environment. This syntax causes all procedures that are instances of
the type defined by the procedure-type-constructor to require the named environment.
(Environments are discussed in Section 8.3).

13.8 Procedure Linkages

The methods used to pass arguments from a call site (that is, from the point of a procedure-
invocation) to a called routine (that is, to the code of the invoked procedure) are inherently
system dependent. Also, regardless of system conventions, the compiler can use different
methods for code optimization if the compiler has control of the code for the called routine
and for all call sites.

The conventions described in this section give only the general Pillar approach.

13.8.1 Argument Passing Mechanisms and Pillar Conventions

The term argument item means an item passed from the call site to the called routine, to
represent the argument that is to be associated with a parameter in the called procedure.
Typically, a system has some standard convention for passing an argument list, a list of
argument items that correspond in order to parameters of the called procedure. In general,
the nature of an argument item is determined by which of four basic argument-passing
mechanisms is used for its parameter:

¢ Immediate mechanism—The para:heter is directly associated with the argument item;
for example, if the parameter is an INTEGER IN parameter, the argument item will be
an integer value.

e Reference mechanism—The argument item is an address. The parameter is associated
with the addressed data item or, in the case of an IN parameter, with the addressed
item’s value.

Procedures 157

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

* Descriptor mechanism—The argument item is the address of a descriptor. The
descriptor contains an address item (as in the reference mechanism) and information
about the item’s type, typically information derived from extent values for an argument
passed to a parameter with a flexible type.

e List mechanism—There are two argument items: The address of a list of n element
items and a count, n (n > 0). The elements themselves are otherwise like nonlist items
in the main argument list.

To the extent consistent with the system, Pillar uses the following conventions, but they can
be modified by a procedure-linkage-specification in a procedure type:
1. For a non-BIND parameter whose data type is small, the argument is passed by the

immediate mechanism, if that is consistent with system conventions 7 ; otherwise, the
reference mechanism is used.

2. If a parameter has a flexible type with n matching extents, these are treated as n
additional implicit parameters; the argument list contains a total of n+1 items, with the
extents following the main argument. The extents are always passed by the immediate
mechanism.

3. OPTIONAL parameters are always passed by reference.

For a LIST parameter, the list mechanism is used. The items in the list are in accordance
with conventions 1 and 2.

5. For OUT LIST parameters and IN OUT LIST parameters, Pillar uses the reference
mechanism for the items in the list.

13.8.2 Linkage Specifications

A procedure-type-specification can contain a procedure-linkage-specification to explicitly
control some aspects of the procedure call implementation.

B procedure-linkage-specification

IMMEDIATE ({ identifier } , ...)
REFERENCE ({ identifier } , ...)
DESCRIPTOR ({ identifier}, ...) ('™
TRAILING LIST (identifier)

If IMMEDIATE occurs, each identifier must be the name of one of the procedure type’s
parameters. The immediate mechanism will be used for the parameter. IMMEDIATE is
only allowed on parameters that would normally be passed by the immediate mechanism.?

If REFERENCE occurs, each identifier must be the name of one of the procedure type’s
parameters. The reference mechanism will be used for the parameter.

LINKAGE

7 The meaning of these system conventions needs to be defined for each system. It is probably the case that:

. Small OUT and IN OUT parameters are passed by the immediate mechanism on RISC architectures, but are
passed by reference on VAX.

Small IN parameters whose size is greater than 32 bits (this includes DOUBLE, QUADWORD, and LARGE_INTEGER) are
passed by the immediate mechanism on RISC architectures, but are passed by reference on VAX.

8 The only purpose of IMMEDIATE, then, is to note the fact that this mechanism is being used. A possible future extension
of the language is to allow it on types that would not ordinarily be passed immediately.

158 Procedures

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

If DESCRIPTOR occurs, each identifier must be the name of one of the procedure type’s
parameters. The parameter’s type must be one for which the system has a descriptor. The
descriptor mechanism will be used for the parameter. The only types to which DESCRIPTOR
applies are STRING(*), VARYING_STRING(*), and BYTE_DATA(*).

It is an error if, in all of the identifier lists following IMMEDIATE, REFERENCE and
DESCRIPTOR, a parameter is specified more than once. It is an error to specify the same
parameter as both DESCRIPTOR and TRAILING LIST.

If TRAILING LIST is specified, the name must be the name of the last parameter in the
procedure type’s parameter list, and that parameter must be a LIST parameter. The list
of argument items corresponding to the parameter will be passed as the last part of the
argument list. TRAILING LIST is only allowed on a parameter whose position in the
argument list is such that, without LIST, it would be passed in the memory argument
list rather than in a register.®

9 Therefore, the parameters on which TRAILING LIST is allowed is system dependent.

Procedures 159

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

CHAPTER 14
TARGET-SPECIFIC FEATURES

This chapter is not yet written.

Target-specific Features 161

APPENDIX A
COLLECTED SYNTAX

B alerts-enable
DISABLE ALERTS ;

B alignment-option

BYTE
WORD
ALIGNMENT
GNMENT (LONGWORD)
QUADWORD
B altemative
set-of-values union-field-list
WHEN { OTHERS } THEN { NOTHING ; }
B argument
expression

B argument-list
argument
keyword-argument || '

W array-constructor

element-list
“pn { selected-element-value

= v ene . “}"
selected-subarray-value }['OTHERS initializer] }

B array-selector
[{ constant-expression } ,...]

M array-type-constructor
ARRAY [{ range-specification } ,...] OF type-specification

B assert-statement
ASSERT { expression [ELSE character-string-literal 1 }

M assignment-statement
data-reference = expression ;

Collected Syntax 163

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

B binary-literal
" { binary-digit-string }... " { ; }

B bind-declaration
[BIND] identifier = data-reference ;

B bound-flexible-type
name ({ expression })

B built-in-function-call-statement
built-in-function-invocation ;

B buiit-in-function-invocation

name ([argument-list J)

B built-in-function-reference

builtin-function-invocation

B case-statement

CASE expression

{ WHEN set-of-values THEN statement-sequence } ...
[WHEN OTHERS THEN statement-sequence }

END CASE ;

M character-string-literal

. || non-escaped-character .
escaped-character

B comment

T non-escaped-character
Y

L
b

B complete-condition-declaration
[CONDITION] identifier : condition-severity [= character-string-literal | ;

B complete-message-declaration
[MESSAGE Jidentifier = character-string-literal ;

B complete-opaque-type-deciaration
[TYPE] identifier OPAQUE [size-opfion] : type-specification ;

164 Collected Syntax

Digital Equipment Corporation - Confidential and Proprietary

B complete-procedure-declaration

[PROCEDURE] identifier procedure-type-specification
H INLINE [ONLY]]])

WITH ARGUMENT PROBING '
local-block PROCEDURE identifier ;

B complete-value-declaration
[VALUE] identifier : type-specification = initializer ;

M complete-variable-declaration

[VARIABLE] { identifier } ,... : type-specification [= initializer } [[

B component-list
{ identifier [*] }.--r

B components-layout
" (field-component
filler-component
union-layout

M compound-statement
[WITH] local-block ;

B condition-handler-enabie
ENABLE CONDITION HANDLER name ;

B condition-severity

SUCCESS
INFORMATIONAL
WARNING
ERROR

FATAL

B constant-expression
expression

M data-reference

name 1
procedure-function-reference
built-in-function-reference
indirect-reference
dot-qualified-reference
indexed-element-reference
substring-reference

\ type-cast-reference

ALIASED H.
SHARED

For Internal Use Only

Collected Syntax 165

Digitat Equipment Corporation - Confidential and Proprietary
For Iinternal Use Only

B decimal-literal
decimal-digit-string

B declaration-completion
opaque-type-completion
value-completion
variable-completion
procedure-completion

M define-declaration
[DEFINE] identifier = data-reference ;

B definition-module

MODULE identifier [module-identification] ;

[import-section }
general-module-level-declaration

{ complete-opaque-type-declaration }
external-declaration

[linkage-option-section]

END MODULE identifier;

M dot-qualified-reference
{ data-reference.identifier }
name.identifier
W element-list
[[{ [constant-expression OF] initializer } ,... [, OTHERS = initializer]
OTHERS = initializer
B enable-section

[lock-enable]
[alerts-enable]
[underflow-enable]
[condition-handler-enable]
[message-vector-enable]
[environment-enabie]

B enumerated-type-constructor

({ identifier } ,...) [QUALIFIED]

B environment-declaration
ENVIRONMENT identifier [EXTENDS (name) } ;

[member-variable-declaration]...
END ENVIRONMENT ;

B environment-enable
ENABLE ENVIRONMENT name ;

166 Collected Syntax

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

B escaped-character
\
\I
1 \(decimal-digit-string)
{ \(identifier)

B exception-handler-section
WHEN exception-list THEN statement-sequence

B exception-list

exception-name-list
exception-others

B exception-name-list
EXCEPTION { name } ,...

B exception-others
EXCEPTION OTHERS

B exit-loop-statement
-EXIT LOOP ;

B exponent

{ : } [[+]]decimal-digit-string

B expression

(literal-constant)
set-constructor
data-reference
(expression)
relational-expression
infix-operator-expression
prefix-operator-expression
array-constructor
L record-constructor

NIL /

B extent-parameter-declaration-list

S . [name R
({ { identifier } ,... : {subrange-type—constructor } } e i 1)

B external-condition-declaration
[CONDITION] { identifier } ,... EXTERNAL ;

Collected Syntax 167

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

B external-declaration

extemal-value-declaration

external-variable-declaration

external-message-declaration

external-condition-declaration

external-procedure-declaration

external-opaque-type-declaration
B external-message-declaration

[MESSAGE] { identifier } ,... EXTERNAL ;

B external-opaque-type-declaration
[TYPE] identifier OPAQUE [size-option] EXTERNAL ;

B external-procedure-declaration

[PROCEDURE] identifier procedure-type-specification
[INLINE [ONLY]] EXTERNAL ;

B external-value-declaration
[VALUE] identifier : type-specification EXTERNAL ;

B external-variable-declaration

ALIASED]] .
SHARED ||’

[VARIABLE] { identifier } ,... : type-specification EXTERNAL ﬂ

B field-component
identifier ,... [alignment-option] [position-option] ;

B field-declaration

{ identifier } ,... : type-specification [= initializer] ;
B field-list
' [[field-declaration ﬂ
union

[variant-part]

M filler-component

BIT
BYTE
identifier : FILLER ({ WORD .
' LONGWORD
QUADWORD

{ constant-expression })

168 Collected Syntax

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

M flexible-type-declaration
[TYPE] identifier(extent-parameter-declaration-ist) :

named-type
set-type-constructor
array-type-constructor
record-type-constructor

M floating-point-literal
decimal-digit-string exponent
decimal-digit-string . decimal-digit-string [exponent]
.decimal-digit-string [exponent]

B general-control

FOR identifier [: named-type] = expression
NEXT expression

B general-module-level-declaration

constant-declaration
normal-type-declaration
flexible-type-declaration
procedure-type-declaration
complete-value-declaration
complete-variable-declaration |
environment-declaration
define-declaration
complete-message-declaration
complete-condition-declaration
complete-procedure-declaration
\ external-declaration J

B global-synonym-option
{name = character-string-literal} ,... ;

B goto-statement
GOTO identifier ;

B hexadecimal-literal
. il ik _atrd .| X
{ hexadecimal-digit-string }... { X }

B identifier
letter :tter ’
$
- decimal-digit

Collected Syntax 169

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

M if-statement

IF expression THEN statement-sequence
[ELSEIF expression THEN statement-sequence J ...
[ELSE statement-sequence]
END IF ;
B implement-section

{ IMPLEMENT { module-implement } ... } ...

B implementation-module

MODULE identifier [module-identification] ;

{ implement-section }...

[import-section]
general-module-level-declaration
declaration-completion

[linkage-option-section]

END MODULE identifier;

B import-section
[IMPORT { module-import } ... § ...
[REVEAL { name} ... ;1
B increment-or-decrement-contro!
FOR identifier [: named-type] = expression
[BY expression] [DOWN] TO expression
B indexed-element-reference

data-reference [{ expression } ,...]
name [expression]

B indirect-reference
data-reference”

B infix-operator-expression

+

subexpression < /(+) > subexpression
AND
OR
XOR
MOD

M initializer
expression

170 Collected Syntax

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

B keyword-argument
identifier = { argument } , ...

B layout-list
[components-layout] ...
[variant-part-layout }
H line
[FF] [white-space] [token [white-space]]... [comment]

B linkage-option-section

LINKAGE OPTIONS

[qualified-globals-option]
[global-synonym-option]
[linker-value-option J

B linker-value-option
LINKER VALUE ({ name} ,...) ;

B literal-constant

decimal-literal
binary-literal
octal-literal
hexadecimal-literal
floating-point-literal
character-string-literal

[: named-type]

B locai-block

[{ local-block-deciaration-section } ...]
[enable-section]

BEGIN

statement-sequence

[exception-handler-section] ...

[unwind-handler-section]

[subprocedure-section]

END

M local-block-declaration-section

normal-type-declaration]
flexible-type-declaration
complete-opaque-type-declaration
procedure-type-declaration
constant-declaration

{ complete-value-declaration L
complete-variable-deciaration
bind-declaration
define-declaration
complete-message-deciaration
complete-condition-declaration

Collected Syntax 171

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

B lock-enabie
LOCK data-reference ;

B loop-statement

ordinal-type-control
ﬂ increment-or-decrement-control H [WHILE expression }
generai-control
LOOP
statement-sequence
END LOORP [identifier] ;
B member-variable-declaration

{ identifier } ,... : type-specification ;

B message-vector-enable
ENABLE MESSAGE VECTOR name ;

B module

program-module
definition-module
implementation-module

M module-identification

IDENTIFICATION (character-string-literal)

. I} module-implement
identifier COMPONENTS component-list ;

M module-import
identifier [COMPONENTS component-ist] ;

M name
unqualified-name
qualified-name
reserved-name
B named-type
[POINTER] name
bound-flexible-type
B normal-type-declaration
[TYPE] identifier :
type-specification .
enumerated-type-constructor |’
B nothing-statement
NOTHING ;

172 Collected Syntax

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

B octal-literal
. N . [0
{ octal-digit-string }... { 0 }
B opaque-type-completion
[TYPE] identifier : type-specification ;

B ordinal-type-control
FOR identifier IN named-type

B parameter-declaration

IN

ouT named-type

IN OUT { identifier } , ... : { subrange-type-constructor , parameter-options ;
BIND set-type-constructor

B parameter-default-value
= initializer
M parameter-list
([parameter-declaration § ...)

M parameter-options
parameter-default-value
[CONFORM] || OPTIONAL [KEYWORD] [STATUS VECTOR]
LIST [[range-specification |]
M parameter-repetition

([identifier], ...) [RETURNS [identifier]]
B position-option
BIT
, BYTE
POSITION ({ WORD , constant-expression)

LONGWORD
QUADWORD

M prefix-operator-expression
+ literal-constant
‘[-]l data-reference
NOT (subexpression)

B procedure-call-statement
procedure-invocation ;

M procedure-completion

[PROCEDURE 1] identifier parameter-repetition ; [WITH ARGUMENT PROBING ;] local-block
PROCEDURE identifier ;

Collected Syntax 173

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

B procedure-function-reference
procedure-invocation

M procedure-invocation
data-reference ([argument-list])

B procedure-linkage-specification

IMMEDIATE ({ identifier } , ...)
REFERENCE ({ identifier } , ...)
DESCRIPTOR ({ identifier } , ...) T
TRAILING LIST (identifier)

LINKAGE

B procedure-result-specification
named-type
RETURNS [identifier : § { subrange-type-constructor
set-type-constructor
B procedure-type-constructor

parameter-list [procedure-resuit-specification }
[ENVIRONMENT (name)
[procedure-linkage-specification]
B procedure-type-declaration
[TYPE] identifier :

PROCEDURE procedure-type-specification

B procedure-type-reference
parameter-repetition OF TYPE name

B procedure-type-specification
procedure-type-constructor
procedure-type-reference

B program-module

PROGRAM identifier ENTRY name [module-identification] ;
[import-section]
{ general-module-level-declaration }...
[linkage-option-section]
END PROGRAM identifier;
M qualified-globals-option
QUALIFIED GLOBALS;

B qualified-name
name . identifier

174 Collected Syntax

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

M raise-statement
ERROR [character-string-literal]

RAISE { EXCEPTION
REPORT
VECTOR data-reference

} data-reference [argument], ... ;

M range-specification
[expression] .. [expression]
expression : (expression)
named-type
B record-constructor
“g [[{ identifier = initializer } ,... [, OTHERS = DEFAULT] o
OTHERS = DEFAULT
B record-layout-option
LAYOUT [size-option]
layout-list
PACKED IN ORDER
ALIGNED IN ORDER
END LAYOUT ;

B record-type-constructor

RECORD [CAPTURE EXTENTS ;] [EXTENSIBLE ;]
[EXTENDS named-type ;]

{ field-list }
NOTHING;

[record-layout-option]
END RECORD ;

B relational-expression

subexpression <>‘ subexpression

o=

B reserved-name
identifier

B retumn-statement
RETURN [expression J ;

B selected-element-value
array-selector = initializer

B selected-subarray-value
array-selector = “{” element-list “}"

Collected Syntax 175

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

M set-constructor
[[set-of-values]] [: named-type]

M set-of-values

expression
range-specification | '

B set-type-constructor

{ SET name [range-specification] [size-option]
name size-option

B simple-expression

expression

M size-option
BIT

BYTE simple-expression
SIZE ({ WORD [[ple-exp]])

LONGWORD
QUADWORD

B statement

(assert-statement)
assignment-statement
built-in-function-call-statement
case-statement
compound-statement
exit-loop-statement

< goto-statement ;
if-statement
loop-statement
nothing-statement
procedure-call-statement
raise-statement

\ return-statement J

B statement-sequence
{ [identifier :] statement } ...

B subexpression
expression

M subprocedure-section
SUBPROCEDURES { complete-procedure-declaration } ...

M subrange-type-constructor

name [range-specification] [size-option]
name size-option

176 Collected Syntax

Digital Equipment Corporation - Confidential and Proprietary

B substring-reference
data-reference [range-specification]

B token

(identifier
compile-time-facility-symbol
decimal-literal

binary-literal

octai-literal
hexadecimal-literal
floating-point-literal
character-string-literal
punctuation-symbol

B type-cast-reference
data-reference :: { named-type [TRUNCATE] }

B type-specification
named-type
subrange-type-constructor
set-type-constructor
array-type-constructor
record-type-constructor

B underflow-enable

{ ENABLE

DISABLE } UNDERFLOW ;

W union
UNION CASE { identifier }

»

{ alternative } ...
END UNION ;
B union-field-list
{field—declaraﬁon }
union
M union-fayout

UNION [alignment-option] [position-option]}
{OVERLAY components-layout}...
END UNION;

B unqualiified-name
identifier
B unwind-handler-section
WHEN UNWINDING THEN statement-sequence

For Internal Use Only

Collected Syntax 177

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

B value-completion
[VALUE] identifier = initializer ;

B variable-completion
[VARIABLE] identifier [= initializer } ;

B variant

set-of-values field-list
WHEN { OTHERS }THEN { NOTHING ; }

B variant-part

VARIANTS CASE identifier
{ variant } ...
END VARIANTS;

B variant-part-layout

VARIANTS [alignment-option } [position-option]
{OVERLAY layout-list}...
END VARIANTS;

M white-space

(=).

178 Collected Syntax

GLOSSARY

actual type: That type which is hidden by an opaque type. It is the actual type that is made visible
when the opaque type is revealed.

argument item: A member of the machine argument list. It is an item passed from the call site to
the called routine, to represent the argument that is to be associated with a parameter in the
called procedure.

arithmetic type: An integer type or floating-point type, all of which are legal in arithmetic operations.

assignabie data item: A data item that can take on different values during the course of its existence.

assignable data reference: A reference to an assignable data item.

associated type: That type to which a pointer type points; that is, POINTER #’s associated type is ¢.

base ordinal type: 1. A primitive ordinal type or an enumerated type. 2. That type from which an
ordinal type is derived.

BIND item: That which is declared by a bind-declaration.

bit-ciass type: A nonaddressable type that occupies n bits, and is usable in declarations only as the
type of a record field or array element.

complete type: A tuple consisting of a type and a value for each of the type’s extent parameters and
free extents.

constant: A named constant or literal.

constant expression: An expression that is reducible to a constant by the rules of Pillar.
constant range: A range whose specification contains no nonconstant expressions.
constant type: A type that does not depend on nonconstant expressions.

data item: An object that can take on values. Some data items can occupy storage (and hence have
locations). Such data items can be assignable or nonassignable.

DEFINE item: That which is declared by a define-declaration.

element. 1. An individual item contained in an array, blank_DATA, or string type is an element of
that type. 2. Of a set type, one of the members that can be contained in that set type. 3. Of an
enumerated type, one of the named constants declared by that enumerated type.

empty range: A range that contains no values.

Glossary-179

exception: An event that happens during interpretation of a language construction, and terminates
the interpretation.

extension: If record type r extends record type ¢, that part of 7 not contained in .

extent parameter: One of the parameters of a flexible type.

flexibie type: A type declared with parameters that defines a family of types.

floating-point type: One of the types REAL or DOUBLE.

free extent: A nonconstant value, other than an extent parameter, on which a type depends.

index range: One of the ranges in the definition of an array type that defines values that a subscript
can assume.

inline procedure: A procedure declared as INLINE ONLY or INLINE, that the compiler must or might
expand using inline code, rather than a call.

integer type: A type having INTEGER or LARGE_INTEGER as its base ordinal type.
local-block: A compound-statement or the body of a procedure (including any subprocedures).
main statement-sequence: The statement-sequence immediately contained in a local-block.

matching extent: An extent value given as an asterisk; its value is derived from the type of another
item.

module: The unit of a Pillar compilation.
name: An identifier associated with an object.

named constant: A nonassignable data item declared by a CONSTANT declaration, or declared as an
element of an enumerated type.

named-type: A type that can be referred to by name, or a pointer to such a type, or (if the type is
flexible) a binding of such a type.

nonassignable data item: A data item whose value is fixed during the course of its existence.
nonassignable data reference: A reference to a nonassignable data item.

primitive type: One of the types that is part of the Pillar language, and does not have to be declared
by a user.

procedure activation: A run-time instance of a procedure being called.
range: A contiguous set of ordinal values delineated by a low and high value.
reference: A syntactic construction used to refer to a data item.

root type: That type to which a type can be reduced no further; used for the purpose of defining type
sameness and equivalence.

Usage: This is similar to what used to be called a base type.

scope: The module, modules, or parts of a module in which a declaration is known.

Glossary—-180

selector: The value that determines which alternative or variant is currently active (selected).

small type: A specified set of types, data items of which, in general can be contained in registers,
and can be operated on inexpensively.

target type: That type which, in a given context, specifies the type to which an expression must :be
converted, if the expression is not already of that type.

type: A property of a data item that specifies a set of values to be assumed by the item, and a set of
operations allowed on the item.

variable: An assignable data item declared by a VARIABLE declaration.

Glossary-181

index

A

Array-constructor, 68
Array-selector, 70
Assert-statement, 114

ASSERT_CHECK_ENABLED built-in constant,

115
Assignment-statement, 115
Atomic operation
READ/WRITE_REGISTER, 121

Binary-literal, 11
Built-in function

calling as statement, 120
Built-in-function-cali-statement, 120
BY

in loop, 119

o

Case-statement, 115
Character set, 5
Character-string-literal, 12
Comment, 10
Compllation unit, 21
Component-list, 24
Compound-statement, 116
Constant

literal, 65
constants, 65
Constructor, 67

D

Decimal-literal, 11
Declaration

EXTERNAL, 27
Default

as Initlalizer, 70

type of control variable, 119
DOWN TO

In loop, 119

E

Element-list, 69
ELSE, 117
ELSEIF, 117
END statement
executing in procedure, 124
Escaped-character, 12
EXIT LOOP statement, 116
Exponent, 12
External declaration, 27

F

Floating-point-literal, 12
FOR loop, 118, 119, 120

G

General-control
of loop, 120
GOTO-statement, 116

H

Hexadecimal-literal, 11

identifier, 9, 11
IF statement, 117
implement-section, 26
Import-section, 24
%INCLUDE, 13
Increment-or-decrement-control
of loop, 119
Initializer, 67
array, 68
record, 70

K

Keyword, 9

Index~1

L R

Label RAISE statement, 123
allowed as target of GOTO, 116 Range violation
deciaration of, 114 failed assertion, 114
Line, 10 in CASE statement, 116
Linkage-option-section, 29 in continuation of loop, 119
Linker value option, 31 in ordinal-type-control, 118
Literal in READ_REGISTER, 121
character string, 12 in return-statement, 124
floating point, 12 in statement-sequence, 113
numeric, 11 in WRITE_REGISTER, 121
Literal-constant, 65 loop increment value, 119
Loop loop limit value, 119
EXIT LOOP, 116 READ_REGISTER buiit-in function, 121
LOOP statement, 117 Record-constructor, 70
Record field
M ~ with WRITE_REGISTER, 122
Reserved word, 9
Mo:uflie d 21 Result-variable, 124
etined, RETURNS option, 124
N RETURN statement, 124
Row major
Named-type array initializer, 69
In FOR loop, 119
Nested declaration, 17 S
NEI)t(lTloo 120 Scope
P, defined, 17
M e Inttalizer, 67 nested, 17
N o:ISo :al GOTC'), 117 Selected-element-value, 69

Selected-subarray-value, 70
Selector expression
in CASE statement, 116

Nonsequential control flow, 113
NOTHING statement, 120

Set
o : literal source, 66
Octal-literal, 11 Set constructor, 67
Ordinal-type-control set-of-values
of loop, 118 In CASE statement, 116
Others Set-of-values, 68
in array constructor, 69 Source line, 8, 10
OTHERS Source module, 21
In CASE statement, 115 characters, 5
in record constructor, 70 defined, 8
Statement, 114
P Statement-sequence, 113
Subarray
PILLARS_ASSERT, 115
PILLARS_ERROR, 123 s :nrray constructor, 69
Procedure-call-statement, 122 ubrange
Punctuation, 13 field Initializer, caution, 71
T
TO
in loop, 119
token, 10
Token
defined, 9

index-2

U

Union
in record constructor,

\'}

70

Variant
in record constructor,

70

w

WHEN
in CASE statement, 115
WHEN clause
in CASE statement, 116
values, 68
WHILE loop, 118
White-space, 10
Wiidcard
in importing, 25
WITH
in compound statement, 116

WRITE_REGISTER built-in function, 121

Index-3

