C tae
Firefly Programmer's Reference Manual S lan Cotpm

_____________________________________ Ser L ev o

Roy Levin b werd f no—urncb —ollieade
ﬁ4é¢/ - p@m@qﬂhamuts ?
) - Om«n;l&%ﬂ%7

Last Modified On Fri Sep 14 16:15:19 1984 By levin QM7#%5¢Lf7 ks

This document describes the details necessary for programming the
Firefly hardware. The reader should (is assumed to) be familiar with
the details of the 68010 architecture as described in

M68000 16/32-Bit Microprocessor Programmer's Reference Manual
Fourth Edition, 1984
Prentice-Hall, Englewood Cliffs, NJ 07632

The information in this manual is largely derived from conversations
with the hardware implementors, Chuck Thacker and Phil Petit.

0. Overview of the Firefly

The Firefly is a closely-coupled multiprocessor with a central main
memory shared by five processor-cache subsystems. The processors are
all the same; in the current 1mplementatlon, they are Motorola
68010's. Each processor has its own cache. The caches communicate
with each other over a common bus, the M-bus, to which the 8Mbyte
main memory is also connected. One of the processors has access to
all the I/0 devices.

+——— +-——+ +=———+ ==t +-——+
| P | I P | I p | I P | I P |
+—-+—-4+ +-4+—+ +=+—+ +—+-+ +=—+—+
I I I | |
I I | | T +
-—+—+ +-4-+ +—+—+ +—t+-+ +=+-+ | |
C | | C | | C | | C | lc | | to———t————+
-t -+ +-+—+ -+ +-t-+ +=+—-+ | |Other 1/0]|
N | | | I #ommmm o +
| I | I I |
B e s L L e e I
M-bus | I
| b —m——
———— - + | Q—bus +t===co=cc=cocs=—=======
| Main | to——m - +
| Memory |
e +

Section 1 of this document describes the operation of the cache
subsystem, which provides virtual memory mapping and data caching
facilities, and the use of the M-bus for memory accesses. Section 2
describes the inter-processor (actually, inter-cache) communication
on the M-bus that doesn't involve main memory. Section 3 describes
the I/0 devices and related miscellaneous topics.

Throughout this document, addresses are expressed in hexadecimal, and
all other quantities are expressed in decimal notation, unless

otherwise indicated.

1. The Cache/Virtual Memory Subsystem

—— —————————————————— — —— —————————————— ———

1.1 Overview

The cache/virtual memory subsystem consists of four memories and
related control. Two of these memories, A and D, comprise the cache
section; the other two, AS and T, implement a simple memory mapping
facility. Conceptually, the processor makes a memory reference using
a virtual address, which is translated by the mapping mechanism to a
real address. The real address is then passed to the cache, which
interacts with the main memory and other caches (if necessary) to
satisfy the reference. (This is a slightly simplified description;
the truth will emerge though the remainder of this section.)

To understand the operation of the cache and virtual memory, we must
recall several characteristics of the 68010 memory interface. The
68010 emits 24 bits of byte address and 3 bits of function code.
Although software running on the 68010 can cause any value of the
function code to be emitted, only five values are defined by the
architecture: supervisor program, supervisor data, user program,
user data, and CPU space (sometimes called "interrupt acknowledge").
The 68010 also classifies a memory reference as read, write, or
read-modify-write. The 68010 expects that the memory system will
either perform the indicated memory reference or will request that a
bus error trap occur. In the latter case, it is the responsibility
of the software trap handler to determine the cause of the bus error,
eliminate it (if possible), and restart the failed memory reference
(if appropriate). For more details, consult chapter 4 of the M68000
Programmer's Reference Manual.

1.1.1 Virtual Memory Mapping

The virtual memory portion of the cache subsystem consists of two
memories, AS and T, and related control. Together they support a
virtual memory system that can implement 128 address spaces of 2724
bytes each. Each address space is subdivided into 4096 pages of 4096
bytes each.

The AS memory comprises 16 bytes and is divided into two independent
8-byte parts, called the "CPU" and the "DMA" parts. 'The former is
used by processor-generated memory references, the latter by
QO-bus-generated DMA references. Only the CPU part participates in
the virtual memory mapping.

When the processor makes a memory reference, the mapping mechanism
uses the 3-bit function code supplied by the 68010 to index the CPU
part of the AS memory. The 8-bit entry contains a l-bit flag and a
7-bit address space number. If the flag is set, the reference is
said to be "transparent" (i.e., no mapping is to occur), in which
case the address space number is ignored and the unmodified address
is passed to the cache, which interprets it as a real address.
Otherwise, the address is virtual. (There is also a mode in which
all addresses are treated as transparent; see section 2.1.)

The T (for "translation") memory maps virtual page numbers to real

page numbers. However, it doesn't hold the complete map. Rather,

the T memory serves as the equivalent of a "translation look-aside
Y

buffer"” in other virtual memory implementations. If an address
translation cannot be performed by the T memory, the memory reference
is aborted and a bus error trap occurs in the processor. It is the
responsibility of software to analyze the offending address, alter
the T memory appropriately, and restart the memory reference. Thus,
the T memory is a cache of recently-used memory map entries, and
cache replacement occurs completely under software control.
Consequently, the mapping hardware knows nothing about the data
structures used to maintain the virtual-to-real page mapping.

Address translation occurs as follows. The T memory consists of 4096
entries, each of which contains

* a 7-bit address space number,
a "not-present" flag,
a "write-enabled" flag,
a "trap-on-user-reference" flag, and
9-bits of real address.
The high-order 12 bits of a virtual address (the page number) are
"hashed" with the address space number (from the AS memory entry) to
form a 12-bit index into the T memory. The address space number from
the entry is compared with the one from the AS memory entry; if they
differ, the memory reference is aborted and a bus error trap ensues.
If the address space numbers are equal, the three flag bits are
inspected, and a bus error trap occurs if

* the "not-present"” flag is set, or '

* the memory reference is a write (or the write portion of a

read-modify-write) and the "write-enabled" flag is not set, or
* the function code is "user program" or "user data" and the
"trap-on-user-reference"” flag is set.

If none of these conditions holds, the virtual memory reference is
acceptable (however, see section 1.5) and a real address is formed by
taking the low- order 14 bits of the original virtual address and
appending them to the 9 bits in the selected T memory entry. This
23-bit real address is then passed to the cache section.

* % * ¥

Note that the low-order bits of the real address include the two
low-order bits of the virtual page number. This unusual arrangement
results from an interaction between the mapping mechanism and the
cache, and will become clear after the details of the cache have been
presented. ‘

lvl 2 The Cache

The cache provides the interface between the processor (and I/0
devices) and the main memory bus (the M-bus). The collection of
caches on the M-bus cooperate to present a consistent view of main
storage to their associated processors. Data transferred on the
M-bus is 32 bits wide; addresses on the M-bus always refer to 4-byte,
aligned quantities. The main memory can hold 2723 bytes, thus, a
real (byte) address is 23 bits wide (although only 21 bits actually
appear on the M-bus).

Physically, the cache consists of the A memory, which holds 40396
11-bit entries, and the D memory, which holds 4096 32-bit entries.
Logically, they form a single memory of 4096 "lines", each of which
has
* bits of address residue,
"dirty" bit,
"shared" bit, and
32-bit word of data.

*
*
*

oo

The "dirty" and "shared" bits are used in the cache consistency
algorithm, which is described in section 1.4.

The cache employs a direct-lookup scheme (sometimes called "l-way
associative”) to map an incoming real address to a cache line, as
follows. Bits 13-2 of the real address select the cache line and
bits 22-14 are compared with the address residue bits in the cache
line. If these quantities are equal, a "hit" has occurred,
otherwise, a "miss" has occurred. If a memory read was requested, a
cache hit causes the data to be supplied from the selected cache line
in the D memory without any traffic occurring on the M-bus. A miss

- causes the selected cache entry to be replaced with the data from the
requested main memory location, which is obtained by an M-bus read
cycle. (If the cache line was "dirty", it will first be written back
to main memory; see section 1.4.) If a memory write was requested, a
cache hit causes the appropriate portion of the selected line in the
D memory to be overwritten, with write-through occurring only if
needed by the consistency algorithm (section 1.4). A cache miss
causes an implicit read of the requested location (which triggers
cache replacement as described above), followed by a retry of the
write (which will then experience a cache hit).

We can now explain the peculiar construction of a real address
described at the end of section 1.1.1. Conceptually, the mapping
mechanism performs its job, then passes the resulting real address to
the cache. However, for speed, we would like to perform lookups in
the T and A memories in parallel. If the bits used to index the
cache didn't depend on the address bits involved in the mapping
mechanism, we could do parallel lookups without any difficulty.
Unfortunately, bits 13-12 of the virtual address are used in both
mappings. To permit parallel lookups, therefore, we require that the
software ensure that bits 13-12 of a virtual address equal bits 13-12
of the real address to which it maps. The hardware assumes this
requirement is satisfied and therefore stores only real address bits
22-14 in each T memory entry.

1.2 The AS Memory

The AS memory is read by the mapping hardware as described in section
1.1.1. It may be written (but not read) by software through certain
locations in CPU space (i.e., function code 7) using the 68010's
MOVEC and MOVES.W privileged instructions. Even though the AS memory
is only one byte wide, the MOVES instruction must specify a halfword
(16-bit) operand. The format of this halfword is different for the
CPU and DMA parts of the AS memory, as described below.

To write location i of the AS memory, software accesses location
(i 1sh 4)+4 in CPU space. Locations 0-7 of AS are the DMA part,
locations 8-F are the CPU part. '
At power-up time, the contents of the AS memory are undefined.

1.2.1 The CPU Part

Locations 8-F are used for processor references and are indexed by
the 68000's 3-bit function code. The following table restates the
correspondance between CPU space addresses and AS locations:

Function Name AS - CPU Space

Code Location Address
0 (Reserved) 8 84
1 User Data 9 94
2 User Program A A4
3 (Reserved) B B4
4 (Reserved) C (of!
5 Supervisor Data D D4
6 Supervisor Program E E4
7 CPU Space F F4

The 16-bit data value written to the AS memory location is

15 14 13121110 9 8 7 6 5 4 3 2 1 O

pmmpm— et pm b m—pm b m—pm—fm—pmm b —— b ——t——F——+—— ¢

| ignored ITR| address space no.' |
pomtpmmtpmm b mpmmp b e pmmpm—mpm—d——p——t——d——F——+

where TR is the transparent mode flag (0 = address is virtual, 1 =
address is real), and the low-order seven bits are the complement of
the address space number (ignored if TR = 1).

1.2.2 The DMA Part

The DMA part of the AS memory is logically unrelated to the CPU part;
it has nothing to do with address spaces. The two parts are packaged
together for implementation convenience.

Unlike CPU references, all DMA references made by devices refer to
real addresses. Q-bus DMA devices can only supply 22 address bits
for their memory references. Since the real memory has 23 bits of
address, some form of mapping is necessary to permit Q-bus DMA
devices to access all of real memory. The DMA part of the AS memory
is used for this purpose. During a DMA transfer, the 3 high-order
bits of the Q-bus address are used to index the DMA part of the AS
memory. Four bits are taken from the selected AS location and
prepended to the remaining 19 bits of Q-bus address, forming a 23-bit
real address. Note that, while this mapping mechanism makes all of
real memory addressible by Q-bus devices, only half of it is
accessible at any given instant. Note also that DMA transfers across
2~19 byte boundaries require multiple entries in the DMA part of the
AS memory to be properly set up. The following table summarizes DMA
addressing:

Q-bus DMA AS CPU Space

Address ' Location Address
000000-07FFFF 0 ‘ 04
080000-0FFFFF 1 14
100000-17FFFF 2 24
180000-1FFFFF 3 34
200000-27FFFF 4 44
280000-2FFFFF 5 54
300000-37FFFF 6 64
380000-3FFFFF 7 74

The 16-bit data value written to the AS memory location is

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

tm—t——t——tm—tm—pm—dm—p—mt——t——b——t -ttt ——F——+

I ignored | reserved | ADDRHIGH' |
Vb mmt b bt e e m b md et m— b mmpm

where ADDRHIGH' is the complement of the high-order 4 bits of real
address supplied to the shared memory (i.e., real address bits
22..19).

1.3 The T Memory

The T memory consists of 4K entries. Recall from section 1.1.1 that
the T memory is addressed by the result of a hash function that
combines the high-order 12 bits of the virtual address and the 7-bit
address space number from the appropriate entry in the CPU part of
the AS memory. More precisely,

HV = VP xor ((AS[8+FC] and 7) 1lsh 9)

where HV is the hash value, VP is the virtual page number (bits 23-12
of the virtual address), AS is the AS memory, and FC is the function
code.

Software can read or write an entry in T by making a halfword
(16-bit) reference in CPU space to location:

23 12 76543210
e R D ittt Tk et ek, Sy (P (i S U S S,
I ; VP [olololol1IFIFIFIOfOlLION
I N T T A B2 1 1 T Y R
e et it Tk ok DT Iy T I R S

The hardware will compute HV by the formula above, using F2..F0 to
index the AS memory and extract a (complemented) address space
number. (The observant reader will have noticed that bits

7-4 of this address are the AS memory address.) It will then use HV
as the T memory address. Since any explicit read or write of T
implicitly accesses an entry in AS, software must ensure that the
selected location. in AS has the proper value.

A read of the T memory returns the following halfword of data:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

e i e it D e i TorT Ty SN S (Y

lundef | TH|OK|WE|TU|NP| real address 22..14 I
R it e T R i ik St T T G I T S

where
TH 1is 1 if the address space number stored in the selected T entry
matches the address space number in the selected AS entry,
OK 1is 1 if the read actually worked (see below), :
WE 1is 1 if writes to the selected real page are permitted,
TU is 1 if user-mode references to the selected page are
prohibited, and
NP is 1 if the selected page is not present.
Note that, because of various internal races, the read may "fail", in
which case OK = 0. Thus, software must repeatedly read the desired T
memory location until OK comes back as 1.

To write an entry in T, software constructs the CPU space address as
described above and supplies the following data

15 14 13 121110 9 8 7 6 5 4 3 2 1 0

s et St St bl Dl Dbl bk et ks S

| ignored |WE|TUINP| real address 22..14 |
B N i i St bl ek Sk dshrh st Sebb 4

where WE, TU, and NP are as described above. The hardware will fill
in the address space number in the T entry from the AS memory
location specified in bits 7-4 of the CPU space address.

At power-up time, the T memory/has undefined contents. After the AS
memory has been initialized, software should write each location of
the T memory with a well-defined value (presumably with NP = 1).

1.4 The Cache Consistency Algorithm

The material in this section is not essential for programming the
Firefly; it describes the algorithms employed by the caches to ensure
that main memory appears consistent to all processors.

Each cache is connected to a processor and to the M-bus, and monitors
memory requests on each. Thus, each processor communicates with
precisely one cache, but all caches communicate with each other (and
with the main memory) over the M-bus. Processor requests to read and
write data are called PFetch and PStore, respectively; M-bus cycles
are called MRead and MWrite. PFetch and PStore transfer 16-bits of
data, while MRead and MWrite transfer 32 bits. All addresses involved
are real addresses. Each cache action involves precisely one cache
line, which is selected by bits 13-2 of the real address (see section
1.1.2).

When a cache performs an MRead cycle, each other cache inspects the
address and, if it "hits", the cache puts the data for the addressed
location on the M-bus and asserts MShared. (MShared is a signal line
on the M-bus whose role in the consistency algorithm will become
clear shortly.) If no cache supplies data, then the main memory
does. All caches that assert MShared also set the "shared" bit in
the cache line corresponding to the addressed location, as does, the
cache that performed the MRead cycle.

When a cache performs an MWrite cycle, each other cache inspects the
address and, if it "hits"™, the cache takes the data from the M-bus,
writes it into the cache line corresponding to the selected location,
and asserts MShared. The main memory also writes the data into the
addressed location. All caches, including the one that originated
the MWrite, clear the "dirty" bit in the cache line corresponding to
the addressed location. The originating cache may or may not pay
attention to MShared, as shown in the table below.

The "shared" and "dirty" bits in each cache line are used to control
the consistency algorithm. If the "shared" flag is set in a cache
entry, the cache believes that one or more other caches have a copy
of the same line. If the "dirty" flag is set, then the data in the
cache line is newer than the data in the corresponding main memory
location. More precisely, the following invariants hold (between
M-bus cycles): '

[11] 1If the same memory location appears in more than one cache, then
every cache that holds the location has the same data and has

the "shared" flag set.

[12] A location can be flagged "dirty" in at most one cache, and will
be flagged dirty if and only if the. value in the cache is newer
than the value stored in main memory.

Let us now examine the detailed operation of a cache. On every
memory reference (PFetch, PStore, MRead or MWrite), the cache
interprets the real address, selecting a cache line, determines "hit"
or "miss", then behaves as follows:

(1) If "hit", the cache manipulates the selected line according
to the state transition diagram below.
(2) 1I1f "miss" then:
(2a) If MRead or Merte, do nothing.
(2b) 1f PFetch or PStore then:

(2bl) 1f the selected line is dirty (i.e., has its "dirty" flag
set), the cache performs an MWrite cycle, writing the data
in the selected line back to main memory. It then clears
the dirty flag. The cache ignores the MShared signal on
write-backs.

(2b2) The cache performs an MRead to the desired real address and
stores the address residue and data from the M-bus in the
selected line. The cache sets the "shared" flag in the
selected entry from the MShared signal on the M-bus, as
described above.

(2b3) The cache completes the PFetch or PStore by manipulating the

selected line according to the state transition diagram below.

read beloa wnde 4 wnde Mo te

Operation

dommm e mmm——————— B bt S et +
Initial State | PFetch | PStore | MRead [A]IMerte [B]I
e tmm———————— Frmmm—————— pm——————— o ———————— +
| 0 (D',S') | 0 I 2 | 1 I [D] l
- e ————— pm—m——————— fmm————————— o ————— - +
| 1 (D',S) I 1 10 or 1 [C]I 1 | 1
o Fmmmm—————— fmm——————— tmm——————— o +
| 2 (D,S') | 2 | 2 I 3 | [D] |
tmm e o ———— tmm mm e ——— - o m +
| 3 (D,S) | 3 |10 or 1 [c]l 3 | 1 [E] |
- e e o ——————— +
D dirty; S = shared; ' = "not"
Notes:

[A] A cache that hits asserts MShared and puts the data from the
selected line on the M-bus, as described earlier.

[B] A cache that hits asserts MShared and replaces the data in the
selected line with the data on the M-bus, as described earlier.

[C] A write-through occurs. The cache performs an MWrite cycle,
and sets the "shared" bit of the selected line from the MShared
line on the M-bus. Thus, if another cache asserts MShared, the
selected line ends up in state 1, otherwise, it ends up in
state 0. ‘

[D] This situation cannot occur, because a PStore that produces a
write-through is always preceded by an MRead (see case 2b2,

- above), which will cause "shared" to be set.

[E] This transition reflects the fact that main memory is updated

when write-through occurs.

1.5 A Note on Read-Modify-Write

The previous section ignored the atomicity requirements of the
68010's test-and-set (TAS) instruction. When a cache receives a
PFetch request, it doesn't know whether or not it is the read portion
of a read-modify-write cycle (which is only generated by the TAS
instruction). It discovers the read-modify-write only when the
subsequent PStore request occurs; a flag (generated by the cache
control logic) accompanies the PStore signalling the
read-modify-write. If an MWrite cycle "hit" the selected cache
location between the PFetch and the PStore, the atomicity of the
read-modify-write would be compromised. To prevent this from
happening, the cache watches for the sequence

PFetch A ;
<an M-bus cycle that hits in the cache>
PStore A (with both read-modify-write flag and "shared" set)

If this sequence occurs, the cache aborts the PStore, causing a bus
error trap. Thus, software must also be prepared to take a bus error
trap on a TAS instruction.

Note that this is a conservative implementation, since the PStore
needs to be blocked only if the intervening M-bus cycle is an MWrite
that hit location A in the cache. However, the scheme above requires
less hardware to implement.

1.6 A Note on Cache Subsystem Performance

For a memory reference that "hits" in both the T and A memories and
doesn't require write-through, the cache subsystem can complete the
reference with no wait states in the 68010. That is, the timing
numbers that appear in Appendix F of the Programmer's Reference
Manual accurately describe the performance in this case. For each
memory reference required, 3 cycles of delay are introduced, which
must be added to the timings in Appendix F.

2. M-bus Communication

For the purposes of this section, participants in conversations on
the M-bus are called "hosts". They are the several processor-cache
subsystems and the main memory subsystem. Each processor-cache
subsystem has a 3-bit host number:

0 Processor-cache subsystem on the I/0 processor
1-4 Other processor-cache subsystems
5-7 (Reserved)

The processor-cache subsystems use these addresses to communicate
with each other, as described in section 2.1. The main memory
subsystem is "addressed" specially, as described in section 2.2,

2.1 Interprocessor Communication and Control

‘Hosts communicate by writing locations in the last page of the real
address space. To cause some action to occur on target host number
'‘i', software on a host (possibly the same one) writes (real)
location 7FF000+(i 1lsh 2) with

15 14 13 121110 9 8 7 6 5 4 3 2 1 O
4ttt — e m b m b e b mm b m—bmm b b~ — ¢
l ignored IMODE |SClignd |
t——d——t——t——dp b — bbb m— b m e —— b f—— b —— +

where
SC is 1 to set or 0 to clear the mode indicated by MODE,
MODE selects a mode on the target host, which is to be set or
cleared as determined by SC.

MODE = 0 selects the interrupt mode. In this mode, the target
host's cache subsystem requests an interrupt through the 68000
autovector for priority 1. It will continue to request interrupts
until the interrupt mode is explicitly cleared. (For convenience,
it is also possible for a processor to clear this mode in its own
cache by writing arbitrary data to location 6 in CPU space.)

MODE = 1 selects the processor reset mode. In this mode, the
processor is held in a reset state until the mode is cleared, at
which time the processor loads its reset interrupt vector as
described in the 68000 manual. (Exception: the reset mode doesn't
work on the host number 0, the boot processor.) At power-up time,
processor reset mode is enabled on all processors (except

processor 0). ’

MODE = 2 selects cache miss mode. In this mode, all memory
references will miss in the cache, and all cache entries are
treated as not-dirty. Thus, reads will get data from main

memory without causing a write-back. Cache miss mode is intended
to be used to initialize the cache. At power-up time, cache miss
mode is enabled on all processors. On each processor, software
initializes the cache by performing a 32-bit read of location

(i 1sh 2), for all i in [0..4095]. (See section 1.1.2.) This
suffices to initialize the address residue and the "shared" and
"dirty" flags in each cache entry. After completing these reads,

software clears cache miss mode.

MODE = 3 selects transparent mode. In this mode, all addresses
presented to the cache subsystem by the processor are treated as
real addresses, and the mapping provided by the AS and T
memories is bypassed. At power-up time, transparent mode is
enabled on all processors.

It is important to note that, when a write reference is made to any
address in the last page of real memory, the cache forces a
write-through (by asserting the "shared" signal). This ensures that
inter-cache operations will actually cause an M-bus cycle.

2.2 Main Memory Control

The main memory maintains a parity bit for each 32-bit word. This
bit checks the word only while it is in the memory; the M-bus is
unchecked. The memory control logic contains a register holding
parity error information, which can be accessed by a read cycle to
any location in the last page of the physical address space, e.g.,
7FF000. (By convention, software accesses the memory's error
register at location 7FFFDC. In addition, bit 5 of the address has
other significance; see below.) Reading the error register produces
the following:

15 14 13121110 9 8 7 6 5 4 3 2 1 O
pm—t——F——t——t——t——p——tm—dm—t——tm—t——t——t——Ft——+——+
|PE|CD|BANK | undefined I
$——t——t——t=—t——t——t -t m—pm—fp bt — =t ——F+——+-—+

where
PE is 0 if a parity error has occurred, and is 1 otherwise,
CD if PE = 0, CD is the card on which the parity error occurred,

BANK if PE = 0, BANK is the memory bank on card CD in which the
error occurred. »

Once an error has occurred, the contents of the error register are
*"frozen". Reading the error register clears an error condition
{i.e., it sets PE to 1).

" The memory will compute and check either even or odd parity under
software control. Software encodes its choice in the address it uses
to read the error register; bit 5 of the address selects even parity
if it is zero, odd parity if it is one. Thus, reading location
JFFO03C returns a 16-bit quantity of the above form, resets any parity
error, and selects odd parity generation and checking for subsequent
memory cycles. Reading location 7FF01C behaves identically except
that it selects even parity. At power-up time, the main memory
{including parity bits) and control register have undefined contents.
Software should initialize the memory and control register (including
even/odd parity selection) as follows. Following power-up and
initialization of the cache on the boot processor (see the
description of cache miss mode in section 2.1), software should read
the parity error register, thereby selecting even or odd parity, as
desired. Software then must write every location in real memory to
set the parity bits correctly. This is slightly tricky, since the
cache won't do write-throughs, only write-backs. The simplest way to
ensure that every main memory location gets written is to sweep
memory from lowest to highest address, then write the first 16K bytes

again. Finally, software reads the error register again (using the
.same address) to clear the parity error flag.

Note that a parity error does not trigger an interrupt and that
potentially incorrect data will be supplied to the requesting cache
without any error indication. Software must periodically check the
error register and respond to parity error indications as best it can.

The cache takes no special actions on a read of the last page in real
memory. (Recall from section 2.1 that the cache will force a
write-through on every write to the last page of real memory.) In
particular, if the read hits in the cache, no M-bus cycle will occur.
Thus to ensure that the error register in the main memory is actually
read, software must force a cache miss. That is, software must first
read or write a memory address that maps to the same cache line as
the address used to access the error register. When the error
register is subsequently read, the cache will miss and the necessary
M-bus cycle will occur.

3., I/0 and Miscellaneous Functions

On the Q-bus processor, superv1sor program space locations
000000-00FFFF and supervisor data space locations 010000-01FFFF are
not interpreted by the cache and memory system. Instead, they access
the following hardware:

Supervisor Supervisor Device

Program Data
Addresses Addresses

000000-007FFF 010000-017FFF Boot ROM
008000-0087FF 018000-0187FF Interval counter
008800-008FFF 018800-018FFF Serial I1/0 (MC68701)
009000-0097FF 019000-0197FF Control register
009800-009FFF 019800-019FFF Encryption (AMD9518)
00A000-00AFFF 01A000-01AFFF Clock chip (MC146818)
00B000-00BFFF 01B000-01BFFF Q-bus interrupt vector
00CO00-0QFFFF 01CO000-01FFFF Q-bus address space

In the subsequent descr1pt10n, some 16-bit registers are described as
"non-byte-swapped". This is intended to emphasize that, unlike Q-bus
data transfers (see section 3.11), the 16-bit values read from or
written to these registers appear in normal, 68000 order.

All interrupts from I/O devices use the 68000's autovectoring
mechanism, according to the following table:

Priority Vector Offset Used by Section
1 64 M-bus communication 2.2
2 68 Clock chip 3.6
3 6C Serial I/0 . 3.3
4 70 Q-bus devices 3.11
5 74 Clock chip 3.6
6 78 - Power failure 3.7

3.1 Boot ROM

The boot ROM is accessed as a normal read-only memory. However, it
has the sllghtly peculiar characteristic that, when accessed for
program, it appears at location 0, but when accessed for (read-only)
data, it appears at location 10000 This apparent craziness
accommodates the 68010's treatment of 1nterrupt vectors, since the
"reset" vector is defined to reside at supervisor program locations
0-3 and all other vectors reside in supervisor data space
beginning at location 4.

3.2 Interval Counter
The interval counter is a read-only, 16-bit, non-byte-swapped counter
that increments once every 80 chip cycles. Thus, with a 10 MHz

clock, the counter ticks once every 8 microseconds. It wraps around
in 8*64K microseconds, or approximately 0.5 seconds.

3.3 Serial 1/0

Serial I/0 is controlled by a dedicated processor (MC68701) that
supplies a full-duplex communication channel to the keyboard, mouse,
and a UART (RS232C). The mouse is strictly an input device. The
keyboard generally provides input, but accepts output for control
functions, such as altering the way in which key transitions are
reported or illuminating the LEDs on the keyboard. The UART provides
bidirectional data transmission and also responds to some control
functions, such as altering the transmission rate.

All of the registers used to communicate with the serial I/0
processor are non-byte-swapped.

' The serial 1/0 processor has a read-only, 16-bit, non-byte-swapped
status register at location 18800:

1514 13121110 9 8 7 6 5 4 3 2 1 0

S E T T A e B et i it it S ek St T TP S

|IA|OP]| undef ined |
do— bt ottt —d——b——b——b——dm—bm b m b et

where
IA is 0 if the I/0 processor has input available, or 1 otherwise.

If input interrupts are enabled (see section 3.4), an
interrupt will be requested when IA = 0, However, the IA flag
does not necessarily become 0 as soon as input becomes
available; the I/0 processor normally sets IA to zero at most
once every 10 milliseconds. It will do so more often if
explicitly requested to do so (see section 3.3.2.3), or if

its internal buffers become uncomfortably full (because
software has been too leisurely in processing input messages),
or if it otherwise feels inclined to interrupt.

OP is 0 if the I/0 processor is ready to receive output, or 1
otherwise. If output interrupts are enabled (see section 3.4),
an interrupt will be requested when OP = 0. Software is
permitted to send a byte to the I/0 processor only when OP = 0,
as discussed in section 3.3.2. :

3.3.1 Serial Input

The input side of the serial I/O processor uses two 16-bit,
non-byte-swapped registers named P and A, at locations 18802 and
18804, respectively. Software can read input from the I/0 processor
only when both IA and OP in the status register are 0. (That is, the
1/0 processor must tell software that it is finished processing the
current output byte before software can request an input message.

See section 3.3.2 for a description of the serial I/0 processor's
output side.) Software then reads the P register, obtaining a
"message" of the following form:

15 14 13121110 9 8 7 6 5 4 3 2 1 O

d——t——F——Fm b m— b m—p——fm— b —— b —— b —— ==+

|1A|OPI undefined | fmt-dependent | FORMAT |

e e e i e e e e e e e e S i ik el o
IA and OP are the same as the corresponding bits in the status
register. FORMAT describes the nature of the input. Bits 7-3 are
format-dependent and will be explained in subsequent subsections.

The IA and OP bits also appear as bits 15 and 14, respectively, in

the A register.
3.3.1.1 Keyboard Status

When the FORMAT field of the message in the P register is 001, the
I1/0 processor is reporting a state change on the keyboard. 1In this
case, the P register has the following form:

15 14 13 121110 9 8 7 6 5 4 3 2 1 0

$omtbmmt——pmmpmmpmm b mmpmmpmmpm— b ——f——pm— b ——t——t——+

j1Aa|0P| undefined IKOICHIO 0 1 |
E h bt T S e e e e e et et D

~ where

KO is 1 if the keyboard is ready to accept output (see section.
3.3.2.1) and 0 otherwise.
CH is 1 if the keyboard has a character to supply and 0

otherwise. If CH = 1, the A register holds the character
in its least significant 8 bits.

Software must always read the A register, even if CH = 0. It is the
read of the A register that notifies the hardware that software
has finished reading the keyboard status message.

Normally, CH will be 1, since the I/0 processor does not normally
notify the software when KO changes from 0 to 1. However, software
can force the I/0 processor to supply the keyboard status; see
section 3.3.2.3.

3.3.1.2 Mouse Status

When the FORMAT field of a message in the P register is 010 or 011,
the I1/0 processor is reporting a state change on the mouse. In this
case, the P register has the following form:

15 14 1312 1110 9 8 7 6 5 4 3 2 1 0

s T T e e i bt R S e e

|1AlOP| undefined |UCIUR|BUTTONS (0 1 Y |
il e e e e e e e e el Rl it Rl el Rt o

where
uc is the UART's "carrier" signal (see section 3.3.1.3).
UR is the UART's "ring" signal (see section 3.3.1.3).

BUTTONS encode the state of the mouse buttons (***the correspondance
between the bits and the buttons, including up/down sense,
is TBD).

Y if Y = 0, the A register contains the change in the mouse's X
coordinate since the last time it was reported by the I/0
processor. If Y = 1, the A register contains the change in
the mouse's Y coordinate since the last time it was reported
by the I/0 processor. In either case, the A register
contains the value as a signed 8-bit quantity in its least
significant byte.

3.3.1.3 UART Input
When the FORMAT field of a message in the P register is 100 or 101,

the I/0 processor is reporting that input is available from the UART.
In this case, the P register has the following form:

1514 13121110 9 8 7 6 5 4 3 2 1 0

et e R St s i it Tt (R AL S SR SR A

|IA|OP| undef ined I[UCIURIundeflC3|1 0 C2|

R ik Bt e e s b T LTy T PRI P Y

where

uc is the UART's "carrier" signal (***details TBD).

UR is the UART's "ring" signal (***details TBD).

C2,C3 indicate whether 1, 2, or 3 characters of UART input are
available. 1In any case, software reads the first character
of input from the least significant byte of the A register.
If C2 = 1, either one (C3 = 0) or two (C3 = 1) additional
characters are available. Software reads the P register
again, obtaining the third character (from the least
significant byte) if C3 = 1 or discarding the result if
C3 = 0. Finally, software reads the A register again,
obtaining the second character from the least significant
byte. This slightly peculiar order of character presentation
simplifies the hardware, at the cost of a slightly unintuitive
software interface.

The baud rate for input and output is identical and can be set by an
output message (see section 3.3.2.2).

3.3.1.4 UART Output Flow Control

The serial 1/0 processor provides for limited buffering of output to
the UART. To prevent its buffer from being overrun by the CPU, the
I/0 processor sends the CPU explicit "credits" for output to the
UART. Software is permitted to send a byte to the (output side of
the) UART only when it has a non-zero credit balance, and every byte
sent decreases the credit balance by one. Software must keep track
of its balance; the I/0 processor may not respond gracefully if
presented with a byte for the UART when the credit balance is zero.

At initialization time, software sets the UART output credit balance
to zero. It increments the balance by a variable amount whenever the
FORMAT field of a message in the P register is 110, i.e.,

1514 13 1211 10 9 8 7 6 5 4 3 2 1 0

e e T e b e e e st Ttk Tt T AP Y

|1aloP| undefined IUCIUR| undef |1 1 0 |
to—t——tm—t——pmm bbb b m—b——fm—t——b——t——+

where
uc is the UART's "carrier" signal (see section 3.3.1.3).
UR is the UART's "ring" signal (see section 3.3.1.3).

After software reads this message from the P register, it reads the A
register, which contains in its least significant byte an increment
to the credit balance (in units of bytes). Software should add this
value to its credit balance. :

3.3.2 Serial Output

In general, output to the serial I/0 processor consists of multi-byte
"messages". However, the hardware path to the I/0 processor is only
one byte wide. For each byte of an output message, software places
the byte in the least significant 8 bits of a 16-bit halfword, then
writes the resulting value to the B register. The B register is a

16-bit, non-byte-swapped register that responds to any even address
in the range 18800-18806. (By convention, the B register is taken to
be location 18806.) As described earlier, software is permitted to
load the B register only when the OP bit of the status register is 0.
Furthermore, as described in section 3.3.1.4, output may be sent to
the UART only when the credit balance is greater than zero.

In the following subsections, we will describe the output
messages that the I/0 processor accepts without repeating the
preceding rules by which the message is actually transmitted.

3.3.2.1 Keyboard Output

software sends a byte to the keyboard by sending a two byte message
whose first byte is A

7 6 5 4 3 2 1 0
R ik dadnd el Lol 4
o 11 1 ignored |

e Batat aatal Ll Dbl o

and whose second byte holds the desired value. (***The semantics of
the byte are TBD.) This is the only way to output values to the
keyboard; each byte must be contained in a separate message.

The keyboard processes output more slowly than the I/0 processor and
cannot buffer output data. Therefore, software must not send an
output message to the keyboard unless it knows the keyboard is ready
to accept it. The keyboard reports its willingness to receive data
via the KO bit of a keyboard status message (see section 3.3.1.1),
which the I/O processor generates (with KO = 1) after the keyboard
finishes processing an output byte. In addition, software can poll
the KO bit by forcing the I1/0 processor to send a keyboard status
message, using one of the commands described in section 3.3.2.3
(OPCODE = 6).

3.3.2.2 UART Output

To send a sequence of bytes to the output side of the UART, software
sends a message whose first byte is

7 6 5 4 3 2 1 0
bt ——t——t -t ——t—-—+
|1 |ig!|BAUD | NBYTES |
ettt ==t ——F——t——t+-—+

where ‘

BAUD is the baud rate to which the UART is to be set (both input
and output sides of the UART operate at this rate), encoded
as follows: :

0 unchanged from previous value
1 9600 baud

2 1200 baud

3 300 baud :

NBYTES is the number of bytes that follow.

Following the first byte are NBYTES of data to be send to the UART.
Note that NBYTES can be zero, permitting software to set the baud
rate without performing output. At power-up time, the baud rate is
set to 9600.

‘Recall that UART output is subject to flow control, as described in
section 3.3.1.4.

3.3.2.3 Miscellaneous Commands

If the first byte of a message has the form
7 6 5 4 3 2 1 0

b m—tm—t——t——t——t——+-—+

10 |10 |10 | OPCODE |0 |0 |

D e et Dt R e e

the serial I/0 processor decodes OPCODE as indicated below. In all
cases except OPCODE = 7, the output message is a single byte.

OPCODE Interpretation
0 No operation.
1 Set the UART DTR line to 0. (***semantics TBD)
2 Force the I/0 processor to generate a mouse status

input message (with FORMAT = 010). In addition, any
status changes on keyboard and/or UART will also be
: reported.
3 Force the I/0 processor to send any pending input
messages without waiting for the usual time interval
(see the description of the IA bit in the status
register, section 3.3). 1If the status of the mouse
and UART have not changed since they last supplied
input messages, this command has no effect.
Reserved. ,
Set the UART DTR line to 1. (***semantics TBD)
Force the I/0 processor to generate a keyboard status
input message (FORMAT = 001). This command is used in
conjunction with keyboard output (section 3.3.2.1).
7 Treat subsequent output bytes as 68701 code. The
first byte following the command is a count of the
number of bytes of code, which immediately follow
the count byte. The code is loaded into an internal
buffer and executed; the size of this buffer is
determined by available space in the I/0 processor's
internal RAM and is likely to be modest. A
description of the operating environment for this
code and the rules to which it must adhere are
beyond the scope of this document.

N U

3.4 Control Register

The control register is a write-only, 16-bit, non-byte-swapped
register laid out as follows:

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

et e e e e el el e el Stk el Sl bl Stk sl dn bt o
| undefined lorl11|CPl|

fomtbm— bbb pm e pm—t——p——tm—pm— b —— b= b=t

where
CP is written with a 0 to cause interrupts from the clock chip
(see section 3.6) to occur at priority 2, or is written with
a 1 to cause interrupts at priority 5. In either case,

the 1nterrupt uses the 68000 autovector for the appropriate
pr1or1ty. Note that CP does not actually enable the clock
interrupt; this is done by direct interaction with the clock
chip (see section 3.6).

11 is written with a 1 to enable interrupts from the input side
of the serial I/0 processor (see section 3.3), or is written
with a 0 to disable interrupts.

oI is written with a 1 to enable interrupts from the output side
of the serial 1/0 processor (see section 3.3), or is written
with a 0 to disable interrupts.

Serial I/0 interrupts, both input and output, occur at priority 3,
using the 68000's autovectoring mechanism.

At power up time, the control register has undefined contents. It is
software's responsibility to initialize the control register properly.

3.5 Encryption

The encryption facilities are provided by an AMD 9518 chip, which
offers a bewildering variety of ciphering facilities. The hardware
interface provided in the Firefly makes a subset of these facilities
available; only these are discussed here. It is the intent of this
section to make it unnecessary for a programmer to read the chip
documentation; however, the intrepid and/or curious may find some
additional useful information there. Both the chip description and
this document assume a knowledge of the Data Encryption Standard
(DES) .

To the 68010, the encryption chip appears to have four control
registers and six data registers. The control registers are 8 bits
wide and are named ADDR, MODE, COMMAND, and STATUS. The data
registers are 64 bits wide and are called INPUT, OUTPUT, E, D, IVE,
and IVD. At any given instant, only ADDR and one of MODE COMMAND
STATUS, INPUT, or OUTPUT are accessible to the 68010.

All reads and writes of 8-bit quantities to and from the encryption
chip should be coded on the 68010 as halfword (i.e., 16-bit)
transfers. The least significant byte of the 16-bit halfword
contains the desired 8-bit value. Thus, the chip's 8-bit registers
appear as 16-bit, non-byte-swapped registers in which only (at most)
the low-order 8 bits are meaningful.

3.5.1 The ADDR Register

The ADDR register is an 8-bit, write-only, non-byte-swapped register
whose value determines what other control or data register is
accessible to the 68010. Most of the addressible registers are
either read-only or write-only, and a slightly unintuitive scheme is
used to access them. The hardware interface defines two locations in
supervisor data space, a "read register" address (location 19800) and
a "vrite register" address (location 19802). The 68010 can read one
of the chip's registers only at the "read register" address and can
write one of the chip's registers only at the "write register"
address. The following table shows the correspondance between values
in ADDR and accessible registers.

Value In Readable at Writable at
ADDR Read Register Write Register

0 OUTPUT INPUT
2 STATUS i COMMAND
6 MODE MODE

A value is stored in ADDR by writing an 8-bit value to supervisor
data space location 19800. The register(s) thus rendered addressible
are described in subsequent sections.

3.5.2 The MODE Register

The MODE register is an 8-bit, read-write, non-byte-swapped register
that determines the kind of ciphering operation to be performed. 1Its
format is

7 6 5 4 3 2 1 o0
e e il e e et LT)
| 0l Ol OIDEl 1| OICIPH |

e e e et Tr gy

where
DE is 0 for decryption or 1 for encryption, ‘
CIPH selects the ciphering mode: 0 = "electronic code book" (EBC),

1 = "cipher feedback", and 2 = "cipher block chain" (CBC).

(Readers of the AMD documentation: note that the port configuration
bits (bits 3-2) must be set as indicated to select single port mode.
The Firefly interface does not use the auxilliary or slave ports.)

3.5.3 The COMMAND Register

The command register is an 8-bit, write-only register that specifies
a particular operation that the chip is to perform. The operations
group into two classes, data movement and ciphering control.

3.5.3.1 Data Movement Commands

Each data movement command moves a 64-bit quantity between the 68010
and one of the chip's four internal data registers (E, D, IVE, IVD).
The INPUT and OUTPUT registers are used as intermediaries in these
transfers. 1In the table below, the notation {x}k means "take the
contents of register 'x' and decrypt it using electronic code book
(EBC) and the key in register 'k'". The notation k{x} means "take
the contents of register 'x' and encrypt it using electronic code
book (EBC) and the key in register 'k'". The numeric codes are
expressed in hexadecimal and are the values that software writes into
the COMMAND register to cause the specified data movement operation.

Direction

e e R e it +

| Store | Fetch |

: o ———— R tmm——————— e +
Operation | Code | Function | Code | Function |
————————————— o e e e b
Clear E | 11 | E := INPUT | -- | - |
Clear D | 12 | D := INPUT | -- l -- I
Clear IVE | 85 | IVE := INPUT I 8D | OUTPUT := IVE |
Clear IVD | 84 | IVD := INPUT I 8C | OUTPUT := IVD I
Encrypt IVE | A5 | IVE := {INPUT}E | A9 | OUTPUT := E{IVE} |
Encrypt IVD | A4 | IVD := {INPUT}D | A8 | OUTPUT := D{IVD} |
————————————— P e e e e e e e ey

In detail, then, software initiates a data movement operation by
writing the COMMAND register with the desired value from the table
above. Software then writes 0 to ADDR, which makes INPUT accessible
at the "write register" location and OUTPUT accessible at the "read
register" location. If the operation is a Store, software then
writes eight bytes, one at a time, to the "write register" location.
If the operation is a Fetch, software reads eight bytes, one at a
time, from the "read register" location. 1In either case, the most
significant byte is transferred first. ‘

3.5.3.2 Ciphering Control Commands

There are five control commands, three that initiate ciphering, one
that stops it, and one that resets the chip.

Start Encryption (hex 41), Start Decryption (hex 40), and Start (hex
C0) all cause ciphering to commence, using the mode specified in the
MODE register. Start Encryption first forces the DE bit of the MODE
register to 1 (encrypt), Start Decryption first forces the DE bit of
the MODE register to 0 (decrypt), and Start leaves the DE bit
unaffected. The ciphering section of the encryption chip will then
expect data, which is supplied as described in section 3.5.4. Stop
(hex EO0) causes the chip to cease expecting data, but ciphering
operations that are underway complete normally. Reset (hex 00)
forcibly resets the chip to its power-on state, which, from the
68010's point of view, is undefined.

3.5.4 Ciphering

The encryption chip is capable of "pipelined" operation, and when
programmed appropriately can achieve close to its maximum throughput.
We first describe the algorithm for ciphering a single 64-bit block
of data, then show how to cipher multiple blocks using the pipelining
feature.

To set up the chip for a ciphering operation, software first loads
the MODE register (section 3.5.2) to select the desired ciphering
mode. Software then loads E, D, IVE, and/or IVD as required by the
selected mode. (Since these registers are unchanged by ciphering
operations, they need only be loaded if they are not known to contain
the proper values.) Software then writes the COMMAND register with
one of the three ciphering control commands that initiate ciphering.
Finally, software writes the ADDR register with the value 0 to make
the INPUT and OUTPUT registers accessible. The chip is now ready to
cipher data.

Two locations in supervisor data space are used to communicate and
synchronize with the chip during ciphering. These are called the
flags register and the data register. The flags register (location
19806) is a read-only, 16-bit, non-byte-swapped register that
contains two status flags:

15 14 13 121110 9 8 7 6 5 4 3 2 1 O
e pmmdm—t et —pm bt ——t——t——t——p =t ===k ——+
jorP| 1Al undefined |

fomt et ——t——p——t——tm—b—— bt —f—— b ————F——t——+

where
oP is 0 when the chip is ready to accept a 64-bit block of data

and 1 otherwise,
IA is 1 when the chip is ready to supply a 64-bit block of data
and 0 otherwise.

The data register (location 19804) is a read-write, 16-bit,
non-byte-swapped register that is used to move data to and from the
chip. To cipher a 64-bit block, software first performs the set-up
sequence described above, then waits until the OP flag is 0. It then
writes four 16-bit words, one right after the other, to the data
register. Software then waits for IA to become 1, after which it
reads four 16-bit words, one right after the other, from the data
register. In both cases, the first word transferred is the most
significant one, and in each word the left byte is the more
significant one. (More simply, the bytes are passed in the natural
order for the 68010.) Finally, software writes the value 2 to the
ADDR register (making COMMAND accessible), then writes the Stop
operation code to COMMAND. ~

The preceding algorithm can be iterated with correct results, but
better performance results if the chip's pipelining feature is
exploited. Suppose that N blocks are to be ciphered. The software
performs the following algorithm:

<execute set-up sequence for ciphering>
until OP = 0 do end;
write block 1 (4 words) to the data register
for i := 2 to N do
until OP = 0 do end;
write block i (4 words) to the data register
until IA = 1 do end;
read block i-1 (4 words) from the data register
end;
until IA = 1 do end;
read block N (4 words) from the data register
<issue Stop command>

This algorithm reduces to the previous one for N = 1.

Note that OP and IA need not (should not) be tested during the
four-word reads and writes; the timings of the 68010 and the chip
interface are such that no explicit handshake is necessary. On the
other hand, the 68010 is not required to read or write the data at
any particular rate; the interface is properly buffered and
synchronized internally in both directions. Thus, an interrupt in
the middle of a four-word transfer is perfectly acceptable.

3.5.5 The STATUS Register

The STATUS register is an 8-bit, read-only, non-byte-swapped register
that holds the status of the encryption chip. For the purposes of
the Firefly interface, these status bits are largely subsumed by the
flags register described in section 3.5.4. Therefore, we omit the
description of all but two bits of the status register.

Software reads the STATUS register by writing ADDR with the value 2,
then reading from the "read register" location. The format of the
resulting value is

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

i e it s B ek Sk T TN SN SR S S

| undefined IMP|SP|AP|PA|LPIB |CP|SS]
e e e b e R e R Rt Tt

where '

PA is meaningful only when a Store Clear E or Store Clear D data
movement operation is in progress and indicates the computed
parity of each byte of a key as it is loaded (0 = odd, 1 = even).

LP is meaningful upon completion of a Store Clear E or Store
Clear D data movement operation and contains the logical OR of
the eight byte parity bits.

All other bits of the STATUS register are uninteresting to the 68010;
they are explained in the AMD documentation.

3.6 Clock Chip

The clock chip includes time-of-day, alarm clock, and stable-storage
facilities. All of its functions are software-controlled by
accessing even locations 01A000-01A07E as halfword operands. Details
of the semantics of these locations appear in the specification for
the chip, MC146818, and are not repeated here. The programmer should
be aware that the Firefly hardware uses a 32.768kHz external
time-base, so the divider control bits DV2..0 in register A (location
01A014) should be set to 010. The Firefly has a battery (which
automatically recharges) that maintains the contents of the chip's
storage in the event of a power failure. :

One of the clock registers (register B, location 01A016) has the
interrupt enable bits for the various clock functions. The priority
of the interrupt to the 68010, and therefore the autovector it uses,
is determined by the control register (see section 3.4).

Data read from or written to the clock registers should appear in the
least-significant byte of a 16-bit, non-byte-swapped halfword.
Halfword transfers should be used to access the clock registers, even
though the registers themselves are only a byte in width.

3.7 Power Failure

On a power failure, an interrupt occurs through the 68000's
autovector for priority 6.

3.8 Disk Controller

The disk controller is the standard RQDX1l controller, accessed on the
Q-bus. Its programming is adequately described in the following
documents:

RODX1 Controller Module User's Guide (EK-RQDX1-UG-001)

‘UDA50 Programmer's Documentation Kit (QP905-GZ), especially:
Storage System Unibus Port Description (AA-L621A-RK)
MSCP Basic Disk Functions Manual Version 1.2 (AA-L619A-RK)

The Firefly's Q-bus interface affects the addresses and layout of
device registers, the layout of control blocks in main memory, and
interrupt handling. See section 3.11.

3.9 Ethernet Controller

The Ethernet controller is the standard DEQNA module, accessed on the
Q-bus. Its programming is adequately described in:

DEC Ethernet Q-bus Network Adaptor (M7504) Engineering Specification

(This is a company-confidential document. As of 8/11/84, there
doesn't appear to be a publicly-available version.)

The Firefly's Q-bus interface affects the addresses and layout of
device registers, the layout of control blocks in main memory, and
interrupt handling. See section 3.11.

3.10 Display Controller

TBD

3.11 Q-bus Interface

This section describes the I/0 interface between the processor-cache
subsystem and the Q-bus.

3.11.1 Addressing

Q-bus locations (usually device registers) are accessed through
supervisor data locations 01C000-0lFFFF. The detailed mapping of an
address is ‘ '

I I
23-17116 15 14 13 12 11 10 9 8/ 7 6 5 4 3 2 1 0

it Al e e e St ST AP gy P U I USRS

lall 0l 11 1] 11Q71Q61Q51041031Q21Q1| 11QCIQOBIQAIQSIQ8] 0

B et e e e e abarkol SIS SOt U Sy RS S

where QC-Ql are bits 12-1 of a PDP-11 I/0 page address. (From a
PDP-11's point of view, bits 17-13 of the address are 1's and bit 0

is 0.) For example, a PDP-11 expects the IP register of an RQDX1
controller to be at location 772150 (octal). 1In binary, this is

111 111 010 001 101 000

On the Firefly, this register wouid be addressed as

000 000 011 101 101 001 101 000 = 0000 0001 1101 1010 0110 1000
or location 01DA68 in supervisor data space.
Note that this mapping applies only to addresses of locations that are
implemented on the Q-bus. Main memory addresses (i.e., for DMA) are
handled differently; see section 1.2.2.
3.11.2 Data Transfers
All data transfers on the Q-bus consist of 16-bit halfwords. As each

halfword passes between the Q-bus and the processor-cache subsystem,
its bytes are swapped. That is, the bits on the Q-bus lines BDAL7..0

ill appear in the most significant byte of a 68000 halfword, and the
hits on BDAL15..8 will appear in the least significant byte of a
68000 halfword. Byte-swapping preserves PDP-11 byte addressing
order, so that the order of bytes in main memory matches the order of
bytes seen by a Q-bus device.

Note that byte-swapping applies to all data transfers (DMA or CPU)
between the Q-bus and the processor-cache subsystem. This implies
that the values that appear in device registers will have their bytes
swapped on both reads and writes. Furthermore, some controllers,
including the DEQNA and the RQDX1l, fetch their control blocks using
DMA transfers. Therefore, when constructing or interpreting the
values that appear in device registers or device control blocks,

" software must swap the bytes in each 16-bit halfword.:

One additional note: although it is possible for the processor to
write a single byte to a Q-bus address, it is recommended that all
processor references to Q-bus location be made using halfword
(16-bit) operands.

3.11.3 Interrupts

All interrupts from Q-bus devices occur through the 68000's
autovector for priority 4. The interrupt routine must read
supervisor data location 01B000 to determine which device is actually
requesting the interrupt. (More precisely, software can read any
even halfword in the range 1B000-1BFFE to determine the device.) The
read is required even if the interrupt routine doesn't care which
device is involved. The 16-bit value returned is the interrupt
vector offset (with its bytes swapped) that would have been used to
interrupt a PDP-11; depending on the peripheral, this may or may not
be under software control. The DEQNA and RQDX1 .controllers both
leave the choice of interrupt vector to the software.

