The Firefly Workstation

Charles Thacker

Systems Research Center
130 Lytton Avenue
Palo Alto, Ca., 94301

1. Introduction

Firefly is a personal multiprocessor workstation being
designed at the DEC Systems Research Center (SRC). The
system consists of five Motorola 68010 processors, each with
an associated sixteen kilobyte cache and address translation
unit, eight megabytes of main storage, and controllers for
disks, bitmap display, Ethernet, and other miscellaneous
input-output devices. The Firefly is packaged in a floor
pedestal cabinet 8" wide by 24" high by 28" deep, and is

intended for use in an ordinary office environment.

Firefly is being built for two reasons: First, it provides
a significant amount of computing power to a single user in
a compact and affordable package. Most SRC staff members
are engaged 1in research in the areas of operating systems,
user interfaces, programming languages and hardware design;
these activities require large amounts of computing.
Second, we want to experiment with a system of tightly
coupled multiprocessors. If a modest number of processors
can be efficientfy applied to the computing needs of a
single user, multiprocessors provide an attractive
alternative to a high speed time-shared processor, since
high speed technologies tend to have low packaging densitf

and éignificant power and cooling problems. Although the

DRAFT of September 22, 1984

present Firefly is implemented with off-the-shelf
components, if our initial experience with the system is
positive we plan to build a more ambitious version using

LSI.

The most noteworthy architectural feature of the Firefly is
that the caches associated with each processor are

consistent, in that stores done by one processor are

reflected immediately in all other caches. This makes it
possible to construct parallel programs that share memory
directly without being concerned with issues of stale data
in other caches. The method we have chosen to ensure
consistency, referred to as "conditional write- through", is
efficient both in the amount of logic required for its
implementation and in the bus bandwidth required to support

it.

The remainder of this report describes the Firefly hardware,

with emphasis on the cache and its consistency protocol.

2. Hardware Overview

The Firefly, shown in block form in figure 1, consists of
eight printed circuit cards. Each card with the exception
of the Ethernet controller is 8" by 10" in area and can hold

approximately 160 dual-inline integrated circuit packages.

DRAFT of September 22, 1984

The Ethernet controller is half this size. Standard DEC
controllers are used for the disks (RQDX1) and Ethernet
(DEQNA). The system can be Configured with two 5.25" full-
height rigid or floppy disks in any combination. The I/0
controllers are connected via the standard DEC Q22 bus to a
card that contains a Q bus DMA interface, a single processor
and its associated cache and address translation wunit, a
controller for a mouse, keyboard, and RS232 communications
channel, a DES encryption chip, a battery powered time-of-
year clock, and a high resolution interval timer. This
card also contains the system bootstrap code in EPROM. The
Q bus processor is responsible for initializing the system

and starting the other processors.

A second card type contains two processors, their caches and
address translation units. The two processor/cache units
are identical to each other and essentially identical to the
processor and cache on the Q bus board. There are two of

these cards in the system, for a total of five processors.

The Q bus is wused only for input/output transfers. A
private 10 Mbyte/second bus (the M bus) connects the
processor/cache gafas to each other and to two 4 Mbyte
storage boards. This bus is carried across the rear edge of

the cards on flat ribbon cable.

DRAFT of September 22, 1984

2.1. Storage Cards

The Firefly contains up to eight Mbytes of storage, packaged
on two four Mbyte boards. 256Kbit dynamic RAMs are used as
the storage element. One of the boards contains the timing
and control logic for both boards, as well as a parity
generator/checker and the system clock. The second board
contains only storage chips and data and address receivers

and drivers.

The caches always transfer four bytes at a time on the M
bus, and this is the width of a storage word. Each storage
word also contains a single parity bit. Parity 1is checked
only on the contents of storage; transfers on M are not
checked, nor are the contents of the caches. Parity errors
are not reported with interrupts. Instead, the address of
the 1Mbyte bank in error is saved 1in a register when an
error occurs. It is the responsibility of the software to

poll this register frequently and take action on an error.

The last 4Kbyte page of the real address space is reserved
for interprocessor and processor-to-storage communication.
A processor can read the storage error register (and
simultaneously clear it) by doing a read to either of two
locations in this page. The location used determines

whether even or odd parity will be subsequently generated

DRAFT of September 22, 1984

and checked (this is provided for diagnostics).

2.2. Display Control

3. Cache Structure

The Firefly cache is direct mapped, and contains 4096 four-
byte lines. The principal memories comprising the cache are
the A (address) and D (data) memories (see figure 2). The
virtual memory of the system consists of 128 address spaces,
each containing 4096 pages of 4096 bytes. The address
translation units support paging - any additional

structuring is transparent to the hardware.

In a direct-mapped cache, there is a one-to-one
correspondence between a line in main storage and a line in
the cache. A cache entry contains the line's data, the high
order address bits that do not participate in the selection
of the line or the data within the line, and flag bits
indicating the status of the 1line. A single comparison.
between the requested address and the high order address
bits contained in the entry 1is sufficient to determine
whether the cache contains the requested line of storage.
Since the 68010 provides byte addresses, the two low order
address bits select the byte within a line and bits 13..2

select the line in the A and D memories. The A memory holds

DRAFT of September 22, 1984

the real address of the line, as well as two status bits.
The ASh (AShared) bit is used by the consistency mechanism,
and indicates that this line may be present in one .or more
other caches. The ADirty bit indicates that the line
contains the only valid copy of the datum, which
necessitates writing the 1line to main storage before

reassigning it to some other address.

The consistency mechanism requires that the cache be
accessed using real, as opposed to virtual addresses. This
means that the virtual addresses emitted by the processor
must be translated before being used to access the data
cache. The translation is done by the AS (address space)
and T (translation) memories, which together constitute a
4096 entry direct-mapped cache for address translations.
The translation is done in parallel with the access of the A
and D memories. Unlike the data cache, a translation miss
does not cause automatic reloading of the entry. Instead, a
trap is caused, and reloading of the appropriate T entry and’
restarting the reference is the resppnsibility of the system
software. The hardware has no knowledge of the data

structures used for address translation.

The first stage in the translation is done by the AS memory,

which maps the function codes (FC2..0) emitted by the 68010

DRAFT of September 22, 1984

into an address space number (AS6..0). The correspondence
between address spaces and function codes is maintained by
the system software; the AS memory must be reloaded by the
CPU when it switches processes. Each AS entry also contains
a bit (Transp') that indicates that the address provided by
the 68010 is to be treated as a reél address and the

translation ignored - this is "transparent mode".

The T memory contains the actual translations. | T |is
addressed by the virtual page number (V23..12), exclusive-
~ ORed with three bits of the address space number. The
address space number is included so that translations for up
to eight address spaces that contain identical page numbers
but do not wuse all of the virtual space can coexist in T
simultaneously. Each entry in T is composed of three parts:
An address space number (TAS6..0) that is compared with
AS6..0 to form the translation hit (THit) signal indicating
that the requested translation is present, the real address
corresponding to the requested virtual address (TR22..14),
and three flag bits.. The TWE (write enable) bit indicates
that the page may be written, the TTU (trap user) bit causes
a trap 1if the 68010 attempts to access the page from user
mode (FC2 = 0), and the TNP (not present) bit causes a trap

if any access to the page is attempted.

DRAFT of September 22, 1984

Note that a T memory entry does not contain the full real
page number - the two low order bits are elided. Similarly,
the A memory entries contain dnly the nine bits of the real
address that are not used to address the D and T memories.
Since the processor indexes A and D with the low 14 bits of
the wvirtual address while accesses done to maintain cache
consistency use real addresses, the implementation requires

that the two low order bits of the virtual and real page

numbers must be identical. This requirement establishes a

constraint on‘the software that manages real memory: A page
with virtual page nﬁmber V must be placed in a page frame
with real page address R such that V MOD 4 = R MOD 4. Since
we do not anticipate that software will need to mép the same
page to different virtual addresses, this constraint, which

simplifies the design, is not considered serious.

The T, A, and D memories are high speed (45ns) 4K by 4 bit
static MOS RAMS. The AS memory is composed of 25ns 16 by 4
bit bipolar RAMS. In addition to the sixteen chips of
memory, the cache has thirty-three chips of logic in its

data paths, plus twenty chips of control logic.

3.1. Busses

The processor sends twenty-four bit virtual addresses to the

cache on the V bus, and transfers data on the sixteen-bit

DRAFT of September 22, 1984

bidirectional D bus. Communication between the caches and
main storage takes place on the thirty-two bit M bus. M is
synchronous and 1is time-multiplexed between data and
addresses. The ,width of a cache line, the data bus, and a
main storage word are identical, so only one bus cycle is
required for a data transfer (although four cycles are
required for the entire M operation). The M bus consists of

the following forty-four signals:

Thirty-two data and address lines,
six Request lines, one for each cache (plus a spare),

an MBusy line that indicates that a memory cycle is in
progress,

a Read/Write line that specifies the request type,

the MShared line used to maintain cache consistency,

an IORef line, asserted by the storage boards when a
reference is made to the last page of the real address
space,

‘a global Reset line, asserted by the master processor
during power-up, and
the system clock.

The M bus protocol is discussed in section 5.

3.2. 1/0 Addressing

Addressing is slightly more complex on the board containing

the Q bus interface. The 32 Kbyte bootstrap EPROM, the I/0

DRAFT of September 22, 1984

- 10 -

devices on this board, and the upper 8 Kbytes of the Q bus
address space are mapped into two identical 64 Kbyte regions
of the 68010 address space. The first region is at location
zero of supefvisor program space, so that the 68010 reset
vector will be in the proper location. The second region
starts at location 10000 (hex) in supervisor data space, so
that the 68010 can access the I/0 devices with normal data
access instructions. Since the 68010 byte ordering is
reversed from that of the PDP-11, for which Q bus I/0
controllers were designed, the Q bus interface swaps the

bytes of the data path.

3.3. DMA

The system supports word references to I/0 registers in the
last 8Kbyte page of Q bus address space, as well as DMA
transfers done by Q bus devices into main storage. DMA
devices acquire the V and D busses using the 68010 BG/BGACK
protocol provided for this purpose, and do their data
transfers through the cache. Since the 68010 1is not
prepared to handle a translation fault during a DMA
transfer, devices must use real addresses and operate the
cache in transparent mode. Because the Q bus 1is only
capable of addressing 4 Mbytes of storage while the system

contains 8 Mbytes, an extra address bit must be provided.

DRAFT of September 22, 1984

- 11 -

This is done by using the eight unused locations in the AS
memory as a set of mapping registers. The top three bits of
the Q bus address are used to index this memory during a DMA
access, and four bits of the output are used as the top four
bits of the real address. The Q bus interface is composed

of approximately thirty integrated circuits.

4. Cache Operation

The cache and address translation unit respond to Fetch and
Store requests from the processor. During a Fetch, the
cache supplies a 16-bit datum in response to a the request.
During a Store, the cache accepts a 16 bit datum plus two
signals, UDS and LDS, that indicate the yalidity of the two
bytes of the datum. In both operations, a three-bit
function code indicates the address space to be referenced.
Defined spaces are User Program, User Data, Supervisor
Program, Supervisor Data, and CPU Space. The defined spaces
are referenced as a part of normai program execution, but
the 68010 has a privileged instruction that allows it to
generate references wusing any function code value. CPU
space references are treated specially, . in that they are

used to read and write the registers of the cache itself.

A processor operation proceeds as follows: The function

DRAFT of September 22, 1984

- 12 -

code is used to index the AS memory to obtain the address
space number, and three bits of this value are XORed with
bits 23..12 of the virtual address and used to index the T
memory. If TAS6..0 (from T) are equal to AS6..0 (from AS),
or if the AS entry or a cache mode control bit (described
later) specifies transparent mode, the THit signal is
generated. THit indicates that the real address on TR22..14
is a valid translation. 1In normal mode, TR22..14 and the
TWE, TTU, and TNP flag bits come from the T memory. 1In
transparent mode, TR22..14 are taken from V22..14, and the
flags are forced to TWE=1, TTU=0, TNP=0, allowing the CPU to

access real addresses directly.

If the translation fails or if the T flags prohibit the
reference, a bus error trap is started immediately, aborting
the operation. Otherwise, TR22..14 is compared with
AR22..14, which was fetched from the A memory in parallel
with the AS and T accesses. If they are equal,l the cache
contains the requested datum. If not, the datum must be
read by doing an M access, but before the read, 1if the
ADirty flag in the selected cache entry is true, the non-

matching entry must be written back to main storage.

Cache consistency is maintained using the ASh bit. Whenever

an M bus operation is done, all caches inspect the A memory

DRAFT of September 22, 1984

- 13 -

entry corresponding to thg request. If they contain the
referenced line, they assert a signal, MShared, that is part
of the M bus, and simultaneously set the ASh bit in their a
entry. The Cache that originated the request sets the ASh
bit in the referenced line to the value on the MShared line.
If the M operation is Read, any cache that hits supplies its
data on M. The MShared line inhibits main storage during a
Read, so in this case the data comes from one or more other
caches. More than one cache may supply the data, but since
they do so at the same time and supply the same value, this
is not a problem. If the M operation is Write, any cache
that hits replaces 1its data with the data supplied by the
cache that originated the request. During a Write, main
storage also takes the data, so all caches that hit clear
their dirty bits in the matching entry. This ~ arrangement
insures that when a cache line is first assigned to a line
of main storage, all caches will be informed, and will set

their ASh bits if they also contain the line.

In the originating cache, if the operation is Read, no
special action is taken 1if the ASh bit is on in the
referenced line. The cache supplies the data to the
~processor and the reference terminates normally. On the
other hand, if the original processor request was a Store,

when the requested 1line 1is present in the cache (either

DRAFT of September 22, 1984

- 14 -

because the request hit or after the line is read by an M
Read operation), the action taken depends on ASh. If ASh =
0, then no other cache contains the line. The D memory
entry is updated with the datum supplied by the processor
and the reference is terminated. If ASh = 1, some othef
cache may contain the line, so an M Write is done and the
data supplied by the processor (as well as the balance of
the 1line contained in the D memory) is written to the other
caches and to main storage. The D memory is updated with the
data from the processor as a part of the M access, so at the

end of the Write, all caches will contain the same data.

Table I summarizes the actions taken by a cache as a result
of processor requests (PFetch, PStore) and M bus operations
(MRead, MWrite). The figure shows the four states that a
cache entry can assume, as well as the transitions between
the states. From the figure, it can be seen that in the
absence of sharing, the caches use write-back, but when data
are shared by more than one cache, the operation switches
automatically to write-through for the shared items. When a
datum is no longer shared (because the shared line was
reassigned in all but one of the caches), the last cache
that holds the datum will do only one unnecessary write-
through, at which point is will clear its ASh bit and return

to a write-back strategy. This conditional write-through

DRAFT of September 22, 1984

- 15 -

scheme is efficient in that it uses only slightly more bus
bandwidth than the minimum amount necessary to communicate
changes between the caches, and no additional communication

paths other than the single MShared line.

Table I
Cache States
Operation: PFetch PStore MRead MwWrite
0: not Dirty,) 0 2 1 - *1
not Shared
l: not Dirty, 1 0/1 *2 1 1
Initial Shared
State: 2: Dirty, 2 2 3 - *]
not Shared
3: Dirty, 3 0/1 *2 3 1 *3
Shared

The MRead and MWrite transitions only apply to entries
that match the M address.

*l: An MWrite will not hit in a cache unless Shared is
true, since an MRead must have preceded the write and
set Shared.

*2: A write-through is done. 1If another cache asserts
MShared, State := 1, otherwise State := 0.

*3 Dirty is cleared when a write-through is done,
since main storage takes the data.

4.1. Synchronization

The 68010 provides a test-and-set instruction as a
synchronization primitive. This 1instruction does a read-

modify- write reference (this is the only situation in which

DRAFT of September 22, 1984

- 16 -

the 68010 uses RMW), but it is not possible for the cache to
determine that an RMW is being done until the store is
started. This means that atomicity cannot be provided by
acquiring and holding the M bus between the fetch and the
subsequent store. Instead, the cache uses the normal
consistency-maintaining mechanism to determine if the
atomicity of an RMW has been compromised, and causes a trap
if it has. Since the 68010 restarts an RMW from the
beginning after a trap, the ‘operation will eventually
succeed. The implementation 1is as follows: Each cache
contains a flag that is set when an operation completes, and
is cleared when the 68010 deasserts its address strobe (AS)
signal. AS is asserted continuously between the fetch and
the store portion of an RMW, so at the start of a store if
this flag 1is set the operation is known to bevan RMW. The
cache also contains a secohd-flag, set if the first flag is
set and an M bus operation hits in the cache, and cleared
whenever AS is deasserted. When a store is done to a shared
line and both these flags are true, another cache may have
modified the target line since this cache read it. In this
case, a trap is started and the write is aborted. The
trap-handling software will retry the reference until it
succeeds. The test done by this logic is conservative,

'since there is no check that the M operation was done to the

DRAFT of September 22, 1984

- 17 -

same address as the CPU reference, but since such conflicts
are expected to be rare, the conservative (and inexpensive)

approach is satisfactory.

4.2. Cache Modes

Each cache in the systém contains a four-bit mode register
that is accessed as a location in the last page of real
memory. Ahy processor can set or clear the mode bits in any
cache including its own. The mode register is write-only,
and is used primarily to allow the master processor to bring
the other processors and caches into a known state during

initialization. The mode bits are:

Transparent mode: This mode causes the cache to bypass
the TLB and to treat an address presented by the CPU as
a real address. A bit in the AS memory can also force

individual address spaces into transparent mode.

Miss mode: This mode causes references done by the CPU
to miss in the cache, thereby reloading the entry from
main storage. Miss mode also inhibits write-back, so
.that main storage will not be corrupted during
initialization, when the contents of the cache D and A

memories are undefined.

Reset mode: When this mode is set, the associated CPU

DRAFT of September 22, 1984

- 18 -

is reset. In the master processor, reset is done
differently, since this processor is the source of
reset for the slaves, and is responsible for
initializing the system. In the master, reset is
caused by the restart button on the front panel, by the
power supply, or by the keyboard microprocessor (so
that a sequence of keystrokes can bootstrap the
system), After a reset, the master processor "begins
executing code from its EPROM, and all other processors
‘are halted. All processors including the master are
reset to Transparent = TRUE, Miss = TRUE. Software in
the master initializes its own cache, sets up main
Storage, then releases reset in the slaves. Each slave
(which can now execute code from main storage) then
sets up its cache and waits for an interrupt indicating

that it has work to do.

Interrupt mode: When this bit is asserted, a CPU
interrupt is requested. This bit cannot be cleared via
an M bus reference; the interrupted CPU clears the
request flag by referencing a location in CPU space.
In the slave processors, this is the only source of
intérrupts. In the master, the I/0 devices can also

initiate interrupts.

DRAFT of September 22, 1984

- 19 -

5. Cache Timing

A Fetch can cause zero, one, or two M bus references, since
it may have to reassign a cache line and may also have to
write the line's original contents back to main storage. A
store can cause up to three references - the two associated
with a fetch plus a write-through. If a request hits in the
cache, the 68010 proceeds at full speed, without wait
states. Three wait states are added by the first M
operation involved in handling a miss, and if more than-one
operation is required, each additional M reference adds four

wait states to the operation.

-

An M Read operation requires a minimum of four clock cycles:
one for bus arbitration and address transmission (this cycle
is repeated if a higher priority requester acquires the M
bus), two cycles to access the data, and one cycle to
transport the data to the requester. An M Write requires
only three cycles: The arbitration cycle plus two cycles to
store the data. Write data is transported during the first
cycle after acquisition of the bus. During M operations,
all caches inspect their contents during the firstAcycle of
the operation. Accesses to the A memory done on behalf of
an M operation have priority over processor cycles - if

there is a conflict, the processor must wait for the next

DRAFT of September 22, 1984

- 20 -

cycle. Normally a 68010 memory access requires four clocks,
but the A memory 1is required during only one of these
cycles, so in the case of a conflict the processor access
will take five'réther than four cycles. If M operations are
taking place at full speed, conflicts will occur in an
average of one-fourth of all cycles, so the processor access
time will be increased from four cycles to (.75%4 + ,25%*5) =
4.25 cycles due to M conflicts. Things are slightly worse
than this simplified calculation implies, since some
fraction of the M operations will be Writes which take only
three cycles, thereby increasing the number of conflicts.
In addition, if an M operation causes a change in the state
of a cache entry, an extra A cycle must be taken to record
the change. These effects are difficult to quantify, since
they depend on the cache miss rates, the fraction of the
accesses that are writes, and on the degree of data sharing.

They are not expected to be significant.

DRAFT of September 22, 1984

- 21 -

Table 2
Actions resulting from an A cycle initiated by P
TTU
THit TNP and TWE AHit A ASh Action
Umode Dirty
P Read:
0 X X X X X X Trap
1 1 X X X X X Page Fault
1 0 1 X X X X . Protection Fault
1 0 0 X 0 1 X Write, ADirty := 0
1 0 0 X 0 0 X Read, P := MD *1
1 0 0 X 1 X X P := MD
P Write:

0 X X X X X X Trap
1 1 X X X X X Page Fault
1 0 1 X X X X Protection Fault
1 0 0 0 X X X Write Fault
1 0 0 1 0 1 X Write, ADirty := 0
1 0 0 1 0 0 X Read *1,2
1 0 0 1 1 X 1 Write *3
1 0 0 1 1 0 0 D := PD, ADirty := 1
1 0 0 1 1 1 0 D := PD

*1le

*2

*3:

ASh := MShared;

IF MShared THEN [ADirty := 0; retry] (the retry will cause. a Stor
ELSE [ADirty := 1; := PD];

Write-through to update memory and other caches that share
the line. -

ADirty := 0 in all caches that match the address, including the
originating cache.

Other caches that match assert MShared, and the originating
cache sets ASh := MShared (this will clear ASh in the
originating cache if the lihe is no longer shared).

DRAFT of September 22, 1984

68010 Cache
6ea1aQ Cache
e BT OTOTR : Storage
58910 Cache : 4 fibutes
- : H bus
| sa010 Cache : Storage
LT e R : 4 "b'JtES
68910 Cache
RS 232 - [ea701
keuhoard ‘AHicro- b
fMouse _{ computer
Encrupt —
clock |1 | 9 PUs .
—linterface
Timer]
EFRON [§ Q bus
Ethernet DERHA
Dizsks
RADX1
) Display
Display Control

Figure 1l: Firefly System

GB3..8 {enabl

e

Figure 2:

Firefly cache and TLB

DPmaEHRL’ . ns Hem ,
Fez..8 1 16x3 | 1EansP’ B ,
ur 4 o ad 1o ASE . . Comp
a . {137
CPUSP’ - GND 52..9 ——{“*——— THit
s " — THienors | asfotas’
y23. .21)] adz2. .0 .
5 S Ax13 DIo TA36. .9
Y208, .12 adit. .4
p1oLTHE. TTU. THP
1.9.9 ..
N22. .14 ..
e
? L
EnlTR [, M13..2
D11, .3 b A L"’f
2 4E AddrTol’
1§)
1s..9 B of ME2Z. .14
FFetoh odir? 245 A addrTol’
o EnDTR’ cenable’’]| v)
373 ARt oM’
M2z, 1S (8 (a1 TRZ2Z. .14 Come
Latchitaddr ...
(1 v AHi b
@ Hemory u&n’ —
PACycle apqq DIDpERZZ LS
ITER- ;
i ah. 1oty
T — GHID 1ol ERARRES farehiinata
=t I Dtolt’
373 () PACyzle’ T8
M31. .16
I Memoryd
b D10 il 372 373
245 (22 4k =32
1 ‘ | [
A e D19 373 373
245 (2) ! |
PFetch (dir) dzPACycle’ Hig..a

