HPL,”RESFq? . (&
BUILDING #;;LCH LIBRARY °

P.0. BOx 104
: A 10430
PALO AL7 O, ca 94303-0971

Analyzing Distributed Commitment
By
Reasoning About Knowledge

Murray S. Mazer Frederick H. Lochovsky*
Digital Equipment Corporation
Cambridge Research Lab

CRL 90/10 30 November 1990

Abstract

We present an analysis of distributed, negotiated commitment. This is the problem of
ensuring that processes in a distributed negotiation commit consistently to the outcome, even
in the face of system failures. Our analysis is based on reasoning in a temporal, epistemic logic
about the knowledge of the processes in any solution to the problem.

In our analysis, we present necessary levels of knowledge for commitment in settings that
admit process or communication failures; we also consider settings that must be nonblocking or
guarantee termination. From the necessary knowledge, we derive interprocess communication
requirements, via a result linking knowledge and communication; this yields the underlying
communication structure in any protocol that supports negotiated commitment. We then give a
message lower bound for achieving commitment and several other impossibility results, showing
that certain desirable commitment behaviours cannot be supported by any protocol. These
results are based on new techniques, which use the knowledge and communication requirements
that we derive from the specification of negotiated commitment.

This paper contributes a detailed and precise specification and analysis of the generalized
distributed commitment problem. Further, the paper shows new ways in which one can use
reasoning about knowledge to gain insight into distributed problems.

Keywords: Commitment, fault tolerance, process knowledge, logic of knowledge, knowledge and
communication, negotiation, bidding.
(©Digital Equipment Corporation 1990. All rights reserved.

*Department of Computer Science and Computer Systems Research Institute, University of Toronto,
Toronto ON, Canada M5S 1A4.

Think globally, act locally.
Environmental credo and

distributed systems slogan,

1 Introduction

Negotiation is a useful form of coordination in distributed computer systems, for dynamically
establishing commitments to joint courses of action. Forms of computer-based negotiation have
appeared or been proposed in the literature for various purposes, such as resource allocation,
task allocation, task scheduling, transaction atomic commitment, distributed planning, stock
trading, security pass allocation, and travel reservations (see [Maze89] for a survey). The
problem of negotiated commitment is to ensure that the processes in a distributed negotiation
commit consistently to the outcome, even in the face of unpredictability, such as system failures.
All negotiating systems must solve this problem. Previous appearances of computer-based
negotiation, however, lacked a formal definition of commitment, used an informal model of
computation, or did not clearly state systems assumptions.}

We give a formal specification and analysis of negotiated commitment, using a modal logic
of knowledge as the main analysis tool. Distributed problems are typically stated in terms of
global behaviours, yet processes must act locally, based on their inherently incomplete view
of the global state of the system. The abstraction of knowledge is simply a precise way to
reason about the extent to which a process’s local state accurately reflects important aspects of
the global state. Several researchers have demonstrated the value in reasoning formally about
the knowledge of processes in distributed computations, as a precise way to specify, analyze,
and derive protocols for distributed problems (see, for example, [Hadz90, Halp87, HaMo90,
HaZu89, Maze89, Maze90, MoTu88, Tutt89]). From a knowledge-theoretic perspective, a group
of processes acquires and disseminates knowledge about the system, through various events, as
a system computation evolves. Intuitively, a process’s actions depend on its knowledge, and its
knowledge changes as a result of actions [HaFa89].

Reasoning formally about knowledge may offer a useful conceptual abstraction and an ele-
gant formalism for expressing reasoning which is often either intuitive and operational or formal
but opaque [HaMo090]. For example, informal arguments often proceed as follows: “The coordi-
nator must send a message to each of the others, so that each may learn the joint decision. Each
must know the decision in order to carry out the corresponding actions. Once the coordinator
has received an acknowledgement from a participant, it knows that the participant knows the

”

decision and” Such reasoning, if formalized, is transformed into complex combinatorial
arguments which obscure the relationship to the problem specification and the knowledge of

the participants. Qur approach seeks to retain, in the formal reasoning process, the relationship

!The exception is atomic commitment—see below.

2 §1 Introduction

between the problem specification and the informal reasoning. For a distributed problem, one
first shows, formally, the knowledge each process requires to solve the problem, and then one
derives communication requirements from the knowledge requirements.

This approach helps the protocol designer in several ways. By determining the knowledge
required by processes to solve a distributed problem, one gains insight into the propositional
structure of the set of possible protocols for the problem. Further, deriving interprocess com-
munication requirements from the knowledge requirements yields insight into the underlying
communication structure of any protocol to solve the problem. By using the knowledge and
communication requirements derived from a problem specification, one can then show impossi-
bility results and design protocols for the given problem.

The problem of negotiated commitment involves two kinds of processes: (1) a distinguished
process, historically called the manager, which coordinates the commitment; and @) the set of
contractors, or bidders. Each of the contractors chooses whether to bid or not on an announced
contract. The manager selects from among the bidding contractors to establish a dependency
set, representing those contractors which the manager wants to commit to performing the
announced task. The manager then relays its decision to the contractors, and the dependency
set members commit accordingly. The period of contractor uncertainty about the manager’s
decision, and the potential for process or communication failures, makes consistent negotiated
commitment nontrivial to achieve.?

Negotiated commitment is related, but incomparable, to the problem of atomic commitment
in distributed transaction systems [BeHG87, Gray79, Lamp81]; they differ in two main aspects.
First, in negotiated commitment, the manager coordinates the commitment; in atomic commit-
ment, there need not be a single coordinator. Second, in negotiated commitment, commitment
may be established among subsets of the participating processes; in atomic commitment, a
commitment must include all processes. The specifications of these two problems reflect these
differences (cf. [Hadz90]). Throughout this paper, we comment on how results on negotiated
commitment translate to results on atomic commitment.

Our analysis yields several kinds of results. First, we show the levels of knowledge each
process requires to achieve different kinds of commitment behaviour. Second, we identify re-
strictions on distributed computations, including underlying communication patterns, needed
to facilitate the identified states of knowledge. Third, we give a message lower bound for
achieving commitment, based on the impossibility of achieving the required knowledge in fewer
messages than the lower bound. Fourth, we show the impossibility of achieving commitment
under certain assumptions of system characteristics; these results are based on the impossibility
of the infinite communication needed to achieve the required knowledge transfer. We include
settings that admit process recovery from failures, that must be nonblocking, or that must guar-
antee protocol termination. In particular, we show the impossibility of commitment protocols

2 Agynchrony, regardless of system failures, also makes commitment nontrivial to achieve, but we focus our
analysis on systems which admit failures; cf. [Maze89].

§2 A Model of Distributed Systems 3

which (1) support independent process recovery, (2) are terminating under process recovery and
bounded communication time, (3) are nonblocking under permanent communication failures,
or (4) are nonblocking and terminating under communication failures.

Impossibility result (2) is new. Dwork and Skeen (1983) showed the message lower bound
for the related problem of atomic commitment, basing their arguments on the message passing
graphs produced by a “best-case,” failure-free instance of an atomic commitment protocol.
Impossibility results (1) and (3) have proofs for atomic commitment, based upon an examination
of the plausible state transitions in atomic commitment protocols given in a finite state machine
model [Skee82, SkSt83]. One cannot always easily determine, however, how the combinatorial
proofs reflect the problem being solved. Unlike these proofs, our knowledge-theoretic proofs first
determine the propositional content [RoKa86] of the problem solutions, based on the problem
specification. From this semantic analysis, we then argue that certain message passing patterns
are needed. By using this approach, we have derived results that hold for more circumstances
than the previous results. Hadzilacos (1987, 1990) gives a knowledge-theoretic treatment of
atomic commitment. He shows the minimum knowledge levels that hold in two-phase and
three-phase atomic commitment protocols, the impossibility of nonblocking protocols under
the assumptions in (3) and (4) above, and a message lower bound. Our treatment is similar
to that of Hadzilacos, although it differs in several important ways. For example, we allow
processes to recover from process failures, and we admit systems in which messages may spend
only a limited time in transit. Qur treatment of negotiated commitment attacks in more depth
a problem slightly different from atomic commitment, and the results for atomic commitment
follow naturally from the results for negotiated commitment. We prove our results using a
uniform underlying strategy which differs from that used by Hadzilacos for his results.

The paper proceeds as follows. In Section 2, we give a model of distributed computa-
tion. Section 3 presents a logic of knowledge in which one can express problem specifications
that include temporal and epistemic (that is, knowledge) assertions; we also show some useful
properties of systems. In Section 4, we specify negotiated commitment. In Section 5, we an-
alyze the specification to determine knowledge requirements. We use these results in Section
6 to determine the communication requirements for commitment. In Section 7, we give the
impossibility results, which follow from some further knowledge and communication analysis.
Section 8 discusses knowledge requirements in general nonblocking systems, and Section 9 is

Our summary.

2 A Model of Distributed Systems

In this section, we give a model of distributed computation in which we will ground the definition
of knowledge and our analysis of negotiated commitment.

4 §2 A Model of Distributed Systems

2.1 Executions

Adapting [Hadz90], we consider distributed systems which comprise two types of elements: @)
processes, which execute events (let II represent the set of n processes); and @) a communication
system, A, which contains a set of message packets (of the form (p,m,q,1), representing the
message m sent from p to ¢ at time i). The events are of two kinds: communicative and
noncommunicative. The communicative events are SEND(m, q) (the executing process sends
message m to process g, where m € M, a message vocabulary) and RECV(m, q) (the executing
process receives message m from process ¢; m may be the null message A or a message from
M). These are the only two events by which a process may communicate externally; all other
process events are local and have no effect on the communication system.

A possible joint behaviour over time of the processes and the communication system is
modelled by an ezecution (or run). Each execution e is a function mapping time to a global
state tuple of the form (time, history,;, history,y, . . ., history,,, packets). time represents the
time at which the system is observed; history,,; represents the finite sequence of events executed
by process p; in execution e up to the observation instant; and packets is the set of message
packets in transit at that instant. As is common, we take “time” to be the natural numbers,
N. The points of an execution set £, Pts(£), are {(e, f) | e € £ and f € N}.

Here is some notation on executions, required for the sequel. Throughout this paper, we use
the letter ‘e’ to refer to an execution. ‘p’ and ‘q’ refer to processes. We use other letters, notably
‘f’, ‘g’, and ‘¢’, to refer to times. Any of these may appear superscripted or subscripted. For
p € II, we write e(f, p) for history,, p’s history element in the tuple at point (e, f); similarly,
we write e(f, V) for packets, the set of message packets in the communication system at point
(e,f). d - e(f,p) asserts that d is the last event in the sequence history, at point (e, f);
d € e(f,p) indicates that event d appears in the sequence; | e(f,p) | indicates the number of
events in the sequence; and e(f,p) - d indicates the concatenation of event d to the sequence.
We write d C (e, f + 1,p) to say that process p has just executed event d at point (e, f + 1),
le, dC (e, f+ 1,p) iff e(f+ 1,p) = e(f,p) - d. e(f+1,p) > e(f,p) denotes that p’s event
sequence up to time f 4+ 1 in e has, as a prefix, p’s event sequence up to f in e. For P,Q C II,
e(f, NP, Q1% (p,m, q,%) € e(f,N) | p € P and q € Q}. That is, e(f,N)[P,Q] is the set of

: ; ; ; ; : — def
messages in transit from processes in P to processes in @ at instant f of execution e. P =

I\ P.

For each p € II, a relation ~, on the points in system £ captures when p has the same
event sequence in two points. For (e, f), (€, g) €Pts(£), we write (e, f)~p(e',g) iff e(f,p) =
e'(g,p). For process set P C II, (e, f)~p(e',g) iff (e, f)~p(e',g) for all p € P. Similarly, the
communication system is the same in both points, written (e, f)~p(¢/,), iff e(f,N) = €'(g,N).

Given two executions e’,e €€ and instant f € N, (€', f) and (e, f) are historically equivalent,
written (e, f) = (e, f), iff the two executions have the same global states through time f: iff,
for all 0 < g < f, €'(g) = e(g). A point (¢',g) extends (e, f), written (e',g) > (e, f), iff
(e',f) =(e,f)and g > f. An execution e’ eztends a point (e, f) iff (¢, f) = (e, f).

§2.2 Systems of Executions 5

Executions conform to the following informal operational behaviour. At the beginning of
time (system initialization), the communication system is empty, and no process has executed
any events. Each process executes at most one event between successive observation instants.
A message is removed from the communication system if the message is received or lost. Only
messages which were sent but not yet removed may appear in the communication system. We

describe this behaviour axiomatically in [Maze89].

2.2 Systems of Executions

Informally speaking, one often characterizes the behaviours of a distributed protocol by a set
of executions £ over II and N (see [HaFa89, Maze89| for more discussion). In order to link
communication to knowledge gain (in Section 6.1), we require an execution set to exhibit some
natural closure properties which ensure that, if the set represents certain behaviours, then it
represents certain other behaviours; these properties capture the ways in which one process’s
event sequence and the behaviour of the communication system affect another process’s event
sequence. We call such a closed execution set a system. Intuitively, the ability of a process p to
execute some event should not depend on the events executed so far by other processes or on
the behaviour of the communication system, unless p’s event is a receive—a process can execute
a RECV event only if there is an appropriate message in the communication system, and such

a message must have been sent by some process. We give the three required closure properties
in Appendix A.

2.3 System Characteristics

We now describe the system characteristics we will consider in our analysis. Informally, a
system £ is weakly terminating if every point of £ can be extended to a point beyond which

no process executes any more events in any extension [KoTo88].

Definition 1 A system £ is weakly terminating if, for each point (e, f) €Pts(£), there is (¢/,g)
extending (e, f) such that, for all p € II and all (", k) €Pts(€) extending (¢’,g), e"(h,p) =
e'(g,p). (¢',9) is a terminating eztension of (e, f) and a terminating point of £. &

We capture process crash failures and message loss by another set of closure properties. Infor-
mally, a system is subject to process failuresif any process subset may fail at any time. A failure
of process p is modelled by a FAIL event in an event sequence for p. We define fail(e, 0, P) = @,
for all e € £ and P C II (no process is initially failed). For f > 0 and p € II, we collect
into fail(e, f, P) each execution €’ in an execution set £ such that @ e’ extends (e, f — 1); @
processes other than those in P execute the same events at (€, f) as at (e, f); @ each nonter-
minated member of P is failed; and (@) any message that p € P sends at (e, f) does not appear
in e/(f,N), and any message that p € P receives at (e, f) appears in €'(f,).

Definition 2 A system £ is subject to process failures if, for any (e,) €Pts(£):
(any process subset may fail) for any P C II, fail(e, f, P) # 0. &

6 §2 A Model of Distributed Systems

Let Failed(e, f) represent the set of failed processes at point (e, f):
Failed(e, f) = {p |p € 11 and FAIL H¢(f,p)}.
A system is subject to process failures and recovery if, at any time, any process subset may

fail, and any subset of failed processes may recover.
Definition 3 A system £ is subject to process failures and recovery if, for any (e, f) €Pts(&):
o the system is subject to process failures, and

e for each nonempty P C Failed(e, f), there is (e',g) €Pts(€) properly extending (e, f)
such that FAIL A ¢'(g,p), forall p € P .&

Some thought will show that, in any system £ subject to process failures and recovery, no
terminated process is failed: if p € II has terminated at (e, f) €Pts(&), then p ¢ Failed(e, f).
A system is subject to communication failures if any subset of messages in transit at any
time may be lost. Let M be a subset of the messages in transit at point (e, f): M C e(f,N).
We collect into the set lose(e, f, M) the set of executions e’ €€ such that e’ extends (e, f — 1),

(e’a f)NI'I(eaf)} and e,(faN) = E(f,N) \ M.

Definition 4 A system £ is subject to communication failures if, for any (e, f) €Pts(€) and
any M C e(f,N): lose(e, f, M) # 0. &

In a system which is subject to permanent communication failures, any subset of messages
in transit at any time may be lost, and, for any subset of processes at any time, it is possible
that all messages sent to that subset from that time forward will be lost.

Definition 5 A system &£ is subject to permanent communication failures if:
e the system is subject to communication failures, and

e for any (e, f) €Pts(£) and P C II, there is some e; extending (e, f) such that, for all
g2 f,e(g, N)II,P]=0. &

As we shall see, permanent communication failures preclude certain behaviour, such as
nonblocking behaviour in commitment systems. What if we assume that communication failures
are never permanent, but instead are transient? In a system which is subject to transient
communication failures, any subset of messages in transit at any time may be lost but, for each
execution, there is a point beyond which no more messages are lost. We call (e, f) a lossless
point if no messages are lost at (e, f), i.e., if

e(f,N)=e(f - 1,N)U{{p,m,q, f) | ,q € Il and SEND(m, q) C (e, f,p)} \

{(p,m,q,1) | p,q € Il and RECV(m,p) C (e, f,9)}.
noloss(e, f) is the set of executions which are historically equivalent to e up to time f, except
that no messages are lost at time f: noloss(e, f) = {e; | e; extends (e, f — 1) such that

(e1, f)~n(e, f) and (eq, f) is a lossless point}. Note that e is not necessarily in noloss(e, f).

§3 Problem Specifications and a Logic of Knowledge 7

Definition 8 A system £ is subject to transient communication failures if

e the system is subject to communication failures

e for all e € £, there is f > 0 such that, for all g > f, e € noloss(e, g)&

This is a strong assumption about the behaviour of the communication system, because it
guarantees, for example, that if any message is sent repeatedly, it can eventually be received
[KoTo88]. As we shall see, even though some behaviours which are impossible under perma-
nent communication failures are possible under transient communication failures, certain other
system behaviour is still unattainable under transient communication failures.

In the sequel, if a system under discussion is not explicitly identified as being subject to a
kind of failure, we assume that the system is free of those failures.

We also model systems in which a message has a maximum lifetime in transit. Informally,
a system is k-transit bounded if any message sent disappears from the communication system
at most k time units after being sent.

Definition 7 A system £ is k-transit bounded (for some finite £ > 0) if, for any m € M,
gpell,e€&: if SEND(m,q) C (e, f,p), then (p,m,q, f) € e(f + k,N). &

Round-based protocols typically assume k-transit bounded systems.

3 Problem Specifications and a Logic of Knowledge

To specify a problem to be solved, one gives a set of properties which any protocol solving
the problem must exhibit. We will express those properties in the epistemic (knowledge) logic
of Halpern and Moses (1990). The intuition used for defining knowledge is based on possible
worlds: at any given moment, an agent considers several worlds, including the real one, to be
possible, because the agent is uncertain of the state of other parts of the system. Informally,
we say that, in a given state of the system, an agent p knows a fact ¢ if ¢ is true in all
worlds p considers possible (that is, in all global states in which p has its current local state).
Epistemic specifications are surprisingly common: any problem specification which asserts that
a property or value is private to some process is an epistemic specification, because it asserts
that the property or value depends only on the process’s local state (for example, a contractor’s
bid choice). We are also interested in epistemic propositions to capture assertions on the extent
to which a process’s local state accurately reflects the system state, such as “the manager knows
whether the contractors have bid.” The logic also allows one to express temporal properties, in
order to capture assertions about the behaviour of a system over time, such as “the protocol
eventually terminates” or “the contractor eventually knows the manager’s decision.”

8 83 Problem Specifications and a Logic of Knowledge

3.1 A Logic of Knowledge

The language of the logic has the following symbols: a set & of primitive propositions; a finite
set Il of process names; {-,V,0,(,)}; {Kz | ¢ € II}; and {Kx | X CII, X # 0}. The set of
well-formed formulae (or wffs) £(®) is the smallest set such that (1) every member of @ is a
well-formed formula, and (2) if ¢ and ¢ are well-formed formulae, then so are (~¢), (¢ V %),
O¢, O, K¢, Kx$. We abbreviate (~((-) v () by (¢ A $) and ((<6) V) by (¢ D ¥)°.

We interpret wifs via possible worlds semantics relative to an interpreted system (or model),
a structure M = (£,7) in which £ is a system over IT and A/, and T:3— 2Pt8(%) is an interpre-
tation mapping each primitive proposition to the set of points in £ in which the proposition
holds. Intuitively, £ represents the set of possible executions of a protocol of interest, and 7
interprets primitive propositions of interest with respect to £ .* The points of the system are
the possible worlds. Knowledge is based on a complete history interpretation [HaMo90|; that
is, each process’s view of the system consists of all of the events it has executed, and so each
process knows as much as it can—no other encapsulation of a process’s state can give a process
more knowledge.

Given a model M, we write (M,e, f)E ¢ to express that wif ¢ holds in point (e, f) of the
model. (If M is understood from context, we write (e, f) = ¢.) We define |= as follows (assume
% € Ln(®)):

[Primitives] For ¢ €@, (M, e, f) |= ¢ iff (e,) € Z(9).

[Negation] (Mye, f) |= (—¢) iff (M, e, f) = ¢ does not hold.

[Disjunction] (M,e, f) = (¢V ¥) iff (M,e, f) = ¢ or (M, e, f) = ¥ (inclusively).

[Eventually] (M,e, f) = <@ iff, for all e’ €€ such that (e, f) = (¢, f),

there is some h > f such that (M,e’,h) = @. (“eventually ¢” holds in point (e, f)
iff ¢ is true now or will be in any execution extending (e, f), i.e, iff ¢ will hold at some
future point no matter what the future is.)
[Henceforth] (M,e, f) |= O¢ iff, for all e’ €€ such that (e, f) = (¢, f),
(M,e',g) =@ forall g > f. (“henceforth ¢” holds in point (e, f) iff ¢ holds now and
in any possible extension of (e, f).)

[Process Knowledge| Forp € II, (M, e, f) |= Kp¢ iff (M, €', g) = ¢, forall (¢', g) ePts(&)
such that (e, f)~p(e’,g). (“p knows ¢” iff ¢ is true in all points which look to p
similar to the current one.)

3In the sequel, we elide the parentheses “" and “)* in the usual way in formulae in which no ambiguity
results. Furthermore, for clarity, we sometimes use “[” for “(” and “]” for “)". “((¢ D> ¥)A(¥ D ¢))” abbreviates
“¢g = 9" (1read “¢ is equivalent to ¥”). To discuss a formula which appears repeatedly, once for each member
of a set of processes or process sets, we use the following abbreviations. For X = {z1,z2,...,zm}, and Y(a) &
wif mentioning 2, Azex(¥(a)) is defined as Y(asa1) A ¥(afez) A--. A(z/em); that is, the conjunction of instances
of 4 with all appearances of z in each instance of 9 replaced uniformly by an element of X. For example,
Aeex FAILED, expresses that all of the processes in X are failed. Similarly, Veex(t(s)) is defined as $(az1) V
Yaje2) V- VW ajem). If X is the empty set, then Asex(¥(s)) and Vaex(¥(s)) are defined to be trivially true.

*The interpretation is usually simple and straightforward, based on a mapping of each primitive proposition
to the set of global states in which it holds.

§3.2 Useful Properties of Models 9

[Collective Knowledge] For P CII, (M,e, f) = Kpo iff (M, €, g) = ¢,
for all (e, g) €Pts(€) such that (e, f)~p(e',g). (“the members of P collectively know
¢” iff ¢ holds in all points which the members of P collectively think possible.)
A wif ¢ is valid in structure M, written M = ¢, iff (M, e, f) |= ¢ for all points (e, f) ePts(£).
A problem specification is a set of wifs, each of which must be valid in any model which purports
to solve the problem.
Note that processes in this logic have the introspection property: for any wif ¢, P C II, and
model M, M |= Kpd: D KpKpdpand M [: "!Kpgf) .} Kp'iKp(ﬁ.
Lemma 8 states that, if 9 is necessary for ¢ and p knows ¢, then p knows 7. The proof of
this simple lemma illustrates the use of the possible worlds definition of knowledge.

Lemma 8 For any model M, p € II, wits ¢,%,if M |= ¢ D 9, then M |= Kp¢d D Kypip.

Proof: Assume by way of contradiction (bwoc) that there is (e, f) €Pts(€) such that
(e, f) = KppA—Kpip. Therefore, there is (e1,g) €EPts(€) such that (e1,g)~p(e, f) and (e1,9) =
-1, By the semantics of knowledge, (e1,9) |= ¢ A -9, violating the antecedent. &

3.2 Useful Properties of Models

For any system which we will henceforth model, we include in the set of primitive propositions
the following ones: (@) for each p € II, FAILED,, which is interpreted to mean that p is currently
failed; @ FAILURE, which is interpreted to mean that a process failure or a communication
failure has occurred [Hadz90]; @ PROCFAIL, which is interpreted to mean that any of the
processes has failed at some point up to the current one; (@ INIT, representing the assertion
that the system is in an initial state [Lamp80]; and @) for each p € II, TERM,, which is
interpreted to mean that p has terminated. Precisely,

Definition 9 (Standard Interpretation)
Given any model M = (£,7), 7 is a standard interpretation iff

I(FAILED,) = {(e, f) | (e, f) €Pts(£) and FAIL 4 e(f,p)}.
Z(PROCFAIL) = {(e, f) | (e, f) €Pts(€) and there is p € II such that
FAIL € e(f,p)}.
I(FAILURE) = {(e, f)| (e, f) €Pts(€) and, for some p € I, FAIL € e(f,p) or,
for some ¢,p € II, message m, SEND(q, m) € e(f,p),
RECV € e(f,q), and (p,m,q) & e(f,N')}.
I(INIT) = {(e,0) | e € £ }.
I(TERM,) = {(e, f) | for all e; extending (e, f), for all g > f, e1(g,p) = e(f,p)}. &

We will henceforth assume that all models are standard interpretations. Note that INIT,
PROCFAIL, FAILED, for all p € II, and FAILURE are all initially false in any model.

We now identify a set of useful and important properties of formulae in interpreted systems;
propositions in the specification and analysis of negotiated commitment will exhibit these prop-

erties. We also relate these concepts to each other.

10 83 Problem Specifications and a Logic of Knowledge

Stable: A wif ¢ is stable (in M) if the following property holds: M = ¢ D O¢. A stable
wif stays true forever after it becomes true [ChLa85]. Stability is useful for expressing
immutable properties and decisions, such as a system deadlock or the choice to commit
to a contract. Note that FAILURE, PROCFAIL, and TERM, are stable.

Local: A formula ¢ is local to P (in M), for P CII,if M |= Kp¢ V Kp-¢. That is, P always
knows the truth value of ¢ [ChMi86]. Local formulae are intended to model predicates
whose value is controlled by or locally testable by the actions of the processes to which
the formulae are local. If P = {p}, we write that ¢ is local to p instead of {p}. Note that
FAILED, and TERM,, are local to p.

P-failure-dissociated: A formula ¢ is called P-failure-dissociated (in M), for P C TI, if,
whenever ¢ is false, ¢ remains false as long as a process in P is failed [Hadz90]. That
is, for any (e, f) €Pts(£), if (e, f) = —¢ and FAIL 4 e(f + 1,p), for any p € P, then
(e, f+1) = —~¢. If P = {p}, we write that ¢ is p-failure-dissociated instead of {p}-failure-
dissociated.

P-receive-dependent: A formula ¢ is called P-receive-dependent (in M) if, when it is false,
it can become true only if some process in P receives a nonnull message from a process
not in P [Hadz90]. That is, for any (e, f) €Pts(£), if (e, f) = ¢ and (e, f + 1) |= ¢,
then RECV(m, q) C (e, f+1,p),forsomep€ P, m# X, and ¢ € P. i P = {p}, we write
that ¢ is p-receive-dependent instead of {p}-receive-dependent.

Nontrivial: A formula ¢ is called nontrivial (in M) iff, whenever it is false, it could stay false
forever; i.e., M |= ~¢ D ~O¢. That is, for any (e, f) ePts(&), if (e, f) = =¢, then there
is ¢’ €€ such that ¢’ extends (e, f) and (¢/,g9) = ¢ for all ¢ > f.

Pointwise nontrivial: A formula ¢ is called pointwise nontrivial (in M) iff, whenever it is
false, it may remain false in the next time instant; i.e., for any (e, f) €Pts(&), if
(e, f) |= @, then there is e’ €€ such that e’ extends (e, f) and (¢/, f + 1) |= ~¢.

Note that any nontrivial formula is perforce pointwise nontrivial, but not vice versa. Lemma
10 shows that a nontrivial formula is eventually true exactly when it is true (note that Lemma

10 does not hold for pointwise nontrivial formulae).

Lemma 10 Let M be a model, ¢ a nontrivial formula, and (e, f) €Pts(&).

Then (e, f) |= ¢ iff (e, f) |E ©9.
: Proof: ¢ D O¢ holds by definition. O¢ D ¢ holds by contraposition of the definition of
nontrivial. &

Intuitively, locality means that the proposition is “about” the process set to which the
proposition is local. For example, if we were modelling the outcome of a coin toss by process p,
and wif ¢ represents the proposition “p has flipped a heads”, then we expect ¢ to be local to p.

§3.2 Useful Properties of Models 11

Furthermore, we do not expect ¢ to become true while p is failed, so ¢ is p-failure-dissociated.
We expect the outcome of p’s coin toss to be fair and not forced to be either heads or tails, so ¢
is nontrivial (and, therefore, pointwise nontrivial). Finally, if another process ¢ must receive a
message sent by p after the flip in order for ¢ to learn that p flipped a heads, then the proposition
Kp¢ is g-receive-dependent.

As the following lemma shows, these concepts are strongly related.

Lemma 11 Given any model M, wif ¢, and P C II, ¢ is pointwise nontrivial in M if either of
the following holds:

e M is subject to process failures and ¢ is P-failure-dissociated.

e M is subject to communication failures and ¢ is. P-receive-dependent.®
Further, if M is subject to process failures and ¢ is P-receive-dependent, then ¢ is P-failure-

dissociated. &

In the interest of space, we omit this proof. The reader may find this and any other omitted
proofs in [Maze89).

Theorem 12 states that, in any weakly terminating system which is either (1) subject to
communication failures or (2) k-transit bounded and subject to process failures, every point
can be extended to a terminating point without any process receiving any further messages.
Koo and Toueg (1988) showed this for weakly terminating systems subject to communication
failures; instead of communication failures, we use the combination of k-transit boundedness
and process failures to ensure that messages may disappear without being received.

Theorem 12 Let M be either (1) a weakly terminating model subject to communication
failures, or (2) a weakly terminating model which is k-transit bounded and subject to process
failures. For any (e, f) €Pts(£), there is a terminating extension (ey, g) such that no process
receives a nonnull message after (eq, f).

Proof: Koo and Toueg (1988) showed the result for clause (1) as Theorem 3.1. (They proved
the result for asynchronous systems, but they note that the result holds for a system with any
synchrony property. Further, they prove the result for initial points (e, 0) for all e € £, but the
result generalizes for all points.) [Maze89, Theorem 4.2] shows the result for clause (2). @

Lemma 13 characterizes some system conditions under which a receive-dependent wif is

nontrivial and, therefore, eventually holds only when it holds already.
Lemma 13 In any model M which is
(1) subject to permanent communication failures,

(2) weakly terminating and subject to communication failures, or

5This also holds for models with asynchronous processes and ¢ local to P. We did not formally define models
with asynchronous processes, so we leave that case out of the statement of this result.

12 §4 Specification of Negotiated Commitment

(8) weakly terminating, subject to process failures and recovery, and k-transit bounded,

any wif which is g-receive-dependent, for some g € II, is nontrivial in M. (Consequently, by
Lemma 10, M | O¢ = ¢.)

Proof: Pick any (e, f) €Pts() such that (e, f) | ~¢. (If there is none, then ¢ is valid
and, therefore, nontrivial.) Because the system is subject to one of the three conditions, there
is e; €€ extending (e, f) such that (e1,g) | ¢, for all g > f (because ¢ does not receive at
or after (ej, f + 1) any message which would establish ¢; this is possible under each condition:
(1) because the message may be lost and no more messages received by g, (2) by Theorem 12,
or (3) by Theorem 12.) Therefore, ¢ is nontrivial. ©

4 Specification of Negotiated Commitment

The specification is a set of propositions which must be valid in the model of a system induced
by a protocol that solves the problem.® We call any such model a C-system.

We divide the processes in the system into two disjoint sets: the manager, {m}, and the
coniractors, or bidders, C. Informally, each of the contractors chooses whether to bid or not
on an announced contract. The manager selects from among the bidding contractors to estab-
lish a dependency set, representing those contractors which the manager wants to commit to
performing the announced task; contractors not in the dependency set must not carry out the
task. We represent contractor c¢'s choice to bid by a primitive proposition BID.; we represent
its choice not to bid by NO-BID.. We represent the manager’s possible dependency set choices
by the primitive propositions DEPENDZ, for each nonempty z C C. For each ¢ € C, we de-
fine the allowed dependencies set D. C {z | z € 2° and ¢ € z}. NOT-CHOSEE, represents
the manager’s choice not to make ¢ a codependent. The manager records locally a decision
outcome for each contractor, either AWARDS, , representing that m expects ¢ to carry out the
task, or REJECTY,, representing that m expects ¢ not to carry out the task. Similarly, each
contractor records locally a decision outcome, either ACCEPT,, representing that ¢ will carry
out the contract, or REFUSE,, that ¢ will not carry out the contract. Informally, the pro-
cesses reach consistent commitment if, for each ¢ € C, the manager decides AWARDE, and ¢
decides ACCEPT,, or m decides REJECT}, and c¢ decides REFUSE,. Each BID., NO-BID,,
ACCEPT,, and REFUSE, proposition is stable and local to ¢; BID, is also c¢-failure-dissociated.
Each DEPENDf,, NOT-CHOSE:,, AWARDE,, and REJECTE, proposition is stable and local
to m; each DEPENDZ, is also m-failure-dissociated. All of these propositions are initially false.

A C-system is an interpreted system, with the primitive propositions described above, which
satisfies the following additional properties of negotiated commitment under process or com-

munication failures.

®The specification of negotiated commitment is more complicated than that of atomic commitment (which
requires ten properties), because of the possibility of “subatomic” dependencies and the singularity of the
coordinator,

§4 Specification of Negotiated Commitment

Necessity properties

Dependent Acceptance: Forall c€C, M =ACCEPT.D Vgep, DEPENDE,.

(An accepted contractor must be a codependent.)

Dependent Award: ForallceC, M =AWARD: D Vyep, DEPENDE,.
(An awarded contractor must be a codependent.)

No Unilateral Dependencies: Forallc€ C, M |= Voep DEPENDZ DBID..

(A codependent must have bid.)

No Predetermined Bids: Forall ¢ € C, M |=INITS -(BID.VNO-BID,).

(No contractor starts with its bid choice made.)

No Predetermined Dependencies: Forallc€C,
M |=INIT> ~(Veep, DEPENDE v NOT-CHOSEE,).
(The manager starts without having made any dependency choices.)

Exclusivity properties

Exclusive Bid: Forall c€C, M |= ~(BID.ANO-BID,).

(A contractor may choose only one of the two bidding options.)

Exclusive Dependencies: Forallce C,
M |= ~(NOT-CHOSES A(Vzep DEPENDZ)).
(The manager may not both exclude ¢ from any dependency set in D,
and include ¢ in a dependency set.)

Nonintersecting Dependencies:
For each ¢ € C, for each pair =,y € D, such that ¢ # y,
M |= ~(DEPENDZ A DEPENDY,).
(¢ may be involved in at most one dependency set at any time in any

one negotiation.)
Total Decision Harmony: Forall c € C,

M k ~(AWARDS, AREFUSE,)
M k ~(REJECT:, AACCEPT,)

(The manager and each contractor can never decide inconsistently.)

M k ~(AWARDS, AREJECTE,)

M |= -(ACCEPT.AREFUSE,).
(Oxnly one of two possible decisions is allowed for each process.)

13

14 §4 Specification of Negotiated Commitment

For all z € |J.gc D, ¢, d € z,
M |=DEPENDZ, > -(AWARDS, AREJECTZ,).
(if contractors ¢ and d are both in the dependency set z,

then m cannot decide for them inconsistently . ..)

M |=DEPENDZ, O ~(ACCEPT.A REFUSEy)
(...and c and d cannot decide inconsistently with each other ...)

M =DEPENDZ, D -(AWARD:, AREFUSE,).
(...and m cannot award to ¢ and a codependent d refuse ...)

M =DEPENDZ, 5 ~(REJECT:,AACCEPT,).

(... and m cannot reject ¢ and a codependent d accept.)

Nontriviality properties

Nontrivial Process Failure:
Forall P C I, M |= ~Vpep FAILED,D ~OV,ep FAILED,,

(If a process is not failed, then it need not fail.)

Nontrivial System Failure:
M |= -FAILURED -OFAILURE.

(If no failure has yet occurred, then a failure does not have to occur.)

Jointly Nontrivial Bid Choice:
ForallceC, M= (ﬂBIDc/\ﬂNO-BIDc) i (ﬂOBIDc/\—IONO-BIDc).
(If ¢ has not yet chosen whether to bid, then both bid choices are open.)

Jointly Nontrivial Dependencies:
Forallce€C, M = (~Vzep. DEPENDEA-NOT-CHOSEE,) O
' (~OVzep DEPENDEA-ONOT-CHOSEE,)
(If the manager has not yet chosen to make ¢ a codependent, then m is not forced

either to make ¢ a codependent or to ensure ¢ will not be a codependent.)

System-failure-free Dependency Mix:
For all nonempty Q@ CC, P C Q,
M |= (~FAILUREA[Aceq (BID A-[Vzep, DEPENDE VNOT-CHOSES,])]) D
(~O-[-FAILUREA(Acep [Vzep. DEPENDE]) A (Aceq\p NOT-CHOSES,))).
(If a system failure has not yet occurred and m has not yet made its dependency choices
about some bidding subset @ of C, then, for all subsets P of those contractors, there is
an extension in which a system failure still has not occurred and each member P is a
codependent and each member of @ not in P is not chosen.)

§5 Initial Knowledge Analysis 15

Decision completion properties

Failure or Decision: M |= O(FAILUREV
[Acec(BID.VNO-BID,)A|
([Veep, DEPENDZ) A [AWARDS AACCEPT,])V
(NOT-CHOSES, A[REJECTS, AREFUSE,])]
1)
(If there are no failures, then all contractors should make a bid choice, all codependents
should establish commitments, and all noncodependents should establish “noncommit-

ments”.)

Post-Failure Termination: For all (e, f) €Pts(£),
if Failed(e, f) = @ and noloss(e, f) # 0, then there is e; € noloss(e, f) and h €N such
that there are no process or communication failures in (e;,g) for f< g< h
(i.e., Failed(e1,g) = 0 and e; € noloss(e;,g)) and
(e1,h) = Acec(ACCEPT.VREFUSE.)A Acec(AWARDE VREJECTE,).

(If there are presently no failures, then it is possible for no process or communication

failures to occur for sufficiently long that all processes decide.)

The following resulting properties of C-systems are straightforward: if no process has failed
yet, then no process is forced to fail; there are executions without failures; for each contractor
¢ € C, there is an execution in which ¢ establishes commitment without any system failures
having occurred and an execution in which c establishes noncommitment (i.e., refuses) without
any system failures having occurred; for each ¢ € C, neither commitment nor noncommitment is
predetermined; establishing commitment and establishing noncommitment is each possible for
each contractor in any C-system; each of the BID., NO-BID., DEPENDZ,, and NOT-CHOSE:,
propositions is nontrivial (and therefore each is pointwise nontrivial); and Vzep, DEPENDZ is
m-failure-dissociated and pointwise nontrivial.

5 Initial Knowledge Analysis

Given the specification of negotiated commitment, we now wish to determine levels of knowl-
edge which each process needs to commit. It is straightforward to show the following simple
knowledge requirements. The first one, for example, states that, for a dependency set ¢ which

includes contractor c, if a process p knows that the dependency set is established, then p knows
that ¢ bid.

Lemma 14 For any C-system M, c € C, p€ I,
1. M | Kp(Veep, DEPENDE) 5 K,BID..

2. M = K,AWARDE,D K,(Vzep, DEPENDE,).

16 §6 Communication Requirements

3. M |= K,AWARDE,D K,BID..
4. M |= K,ACCEPT.D Ko(Vzep, DEPENDE),
5. M |= K,ACCEPT.> K,BID..

Proof: Follows from: (1) Lemma 8 and No Unilateral Dependencies, (2) Lemma 8 and
Dependent Awards, (3) items 2 and 1, (4) Lemma 8 and Dependent Acceptance, and (5)
items 4 and 1. @

This matches our intuition about the problem; the important point is that we are able to
formalize and validate that intuition directly.” These knowledge requirements are also enough to
show the message lower bound. As we shall see in following sections, the knowledge requirements

(and the corresponding communication requirements) are not always so simple.

6 Communication Requirements

One of the goals of a problem analysis is to determine the message passing structure of proto-
cols to solve the problem. We now derive some communication requirements for commitment
solutions, based on the knowledge requirements of Lemma 14. First, we show the following
underlying communication structure for any negotiated commitment protocol: if P C C con-
tractors have accepted, then there must have been a message chain fromeachc € Ptomand a
subsequent message chain from m to each ¢. Then we show the following message lower bound
for commitment: if some subset P of contractors has accepted, then the number of nonnull
RECVs is at least twice the number of contractors which accepted; and if the manager has
awarded to some subset P of contractors, then the number of nonnull RECV events is at least
the number of awarded contractors.

To get these results, we need a theorem given by Mazer (1989) which identifies circumstances
under which processes in faulty distributed systems must communicate for one process to gain
knowledge about another. One can use this theorem as a high-level link between knowledge
and communication; the theorem hides detailed, combinatorial arguments from the high-level

view.

6.1 Message Chain Theorem

Informally, this result says that, if at some time a proposition ¢ about process p is false and at
some later time another process g knows that ¢ is true, then g received a message through some

chain of message passing which originated at p, given one of the following conditions: processes

"The analogous result for atomic commitment is that, for process p to commit, p must know that every site
voted to commit the transaction [Hadz90].

§6.1 Message Chain Theorem 17

can crash-fail and ¢ cannot become true while p is failed; or messages can be lost and ¢ is never
forced to become true.? The result is formalized as follows.
Given an execution e, a message chain from process p to process q in interval (e, f) to (e, g)
is a sequence of send/receive pairs such that (f < fi; fi < fiq1, for 1 <@ < 2n; fo, < g):
SEND(my,p1) C (e, f1,p); RECV(my, p) T (e, f2,p1); SEND(my, p2) T (e, f3,p1);
RECV(my,p1) T (e, fa;p2); - .. SEND(my, ¢) T (e, fan—1,Pn-1); RECV(myn, Pn-1) T (e, fon, q).
The abbreviation P —= () indicates a message chain of length at least one from P to Q
(execution and interval will be clear from context). We abbreviate {p} - {q} as p - q.
For any model M, e € £, nonempty process sets P C Il and @ C II such that PNQ =0,
and wif ¢ local to P, a ¢-message chain from P to Q in interval (e, f) to (e, %) is a message chain
from some p € P to some g € Q in an interval (e, g) to (e, %) such that f < g,(M,e,g—1) = -4,
(M, e,9) = ¢, and (M, e,7) |= Ko
Here is the knowledge gain result.

Theorem 15 (The Message Chain Theorem)[Maze89, Maze90]
Fix a model M, any nonempty P C Il and @ C II such that PN Q@ = @, and wff ¢ local to
P in M. Further, let one of the following two conditions hold: (1) M is subject to process
failures and ¢ is P-failure-dissociated in M, or (2) M is subject to communication failures and
¢ is pointwise nontrivial in M. Fix point (e, f) in £ and ¢ > f such that (M,e, f) |= ¢ and
(M, e,1) |= Koé.

Then there is a ¢-message chain from P to @ in (e, f) to (e,1). ©

Recall from Lemma 11 that, if ¢ is P-failure-dissociated in a model which is subject to
process failures, then ¢ is pointwise nontrivial. Pointwise nontriviality is a key concept in
understanding the Message Chain Theorem. Intuitively, pointwise nontriviality causes uncer-
tainty; @ requires a ¢-message chain in order to learn ¢ because @ must be able to distinguish
between worlds in which ¢ holds and those in which ¢ does not hold (these latter worlds are
possible because ¢ earlier did not hold and was not forced to hold). Without the ¢-message
chain, @ has ho basis upon which to make the required distinction. See [Maze89, Maze90] for
the detailed proof.

Corollary 16 and Lemma 17 below use the Message Chain Theorem and some earlier lemmas
to prove results about knowledge gain in three kinds of systems which we will examine again

later (in the context of commitment systems).

Corollary 16 Let M be any model which is either (1) subject to process failures or (2) subject
to communication failures. For any P C II and wif ¢ which is local to Q@ C P, Q-receive-
dependent, and initially false, Kp¢ is P-receive-dependent.

Proof: We treat the two cases separately:

®Chandy and Misra (1986) showed such a result for systems with asynchronous processes, regardless of failures.
We use a result which holds for systems with failures, regardless of synchrony.

18 §6 Communication Requirements

process failures: By Lemma 11, ¢ is Q-failure dissociated. Therefore, by the Message Chain
Theorem, ¢ requires a message chain ¢ B, P, so Kp¢ is P-receive-dependent.

communication failures: By Lemma 11, ¢ is pointwise nontrivial in M. Then, by the Mes-
sage Chain Theorem, ¢ requires ¢ 2, p. @

Lemma 17 In any model M which is

1. subject to permanent communication failures,
2. weakly terminating and subject to communication failures, or

3. weakly terminating, subject to process failures and recovery, and k-transit bounded,

for any P C II and wff ¢ which is local to @ C P, Q-receive-dependent, and initially false,
KpOdg is P-receive-dependent.

Proof: By Corollary 16, Kp¢ is P-receive-dependent. By Lemmas 13 and 10, ¢ = <.
Therefore, KpO¢ is P-receive-dependent. &

6.2 Communication Structure and Message Lower Bound

We now determine the communication structure, and a lower bound on the number of messages
required (excluding the contract announcements) to establish commitment, in any negotiated
commitment protocol. These results are important, because they tell the protocol designer
that any protocol that supports negotiated commitment must ensure that at least the lower
bound number of messages passes among processes, according to the determined communica-
tion structure; further, the propositional content of these messages comes from the knowledge
requirements.

Lemma 14 identified some of the knowledge a contractor needs to accept or a manager
needs to award. We now use the Message Chain Theorem, No Predetermined Bids, No
Predetermined Dependencies, the pointwise nontriviality of BID. and Vgzep, DEPENDZ ,
the specification of the primitive propositions, and the failure assumptions for C-systems, to
derive communication requirements from the knowledge requirements. It is easy to show, for
systems with process failures or communication failures, that, for process p to know that con-
tractor ¢ bid, there must be a message chain from ¢ to p (Lemma 18), and for ¢ to know that

m selected ¢ as a codependent, there must be a subsequent message chain from m to ¢ (Lemma

19).

Lemma 18 For any C-system M,ce€C,p€ Il such that p#¢,ec £,and i€ N,
if (e,%) = KpBID,, then there is a BID.-message chain ¢ 55 pin (e,0) to (e,7). B

Lemma 19 For any C-system M, ¢ € C, p € Il such that p # ¢, and (e, %) ePts(£),
if (e, 1) = KpVaep. DEPENDS,, then there is a Vo¢p, DEPENDZ,-message chain m — p
in (e, 0) to (e,). @

§6.2 Communication Structure and Message Lower Bound 19

Therefore, each of K;BID, and KyVeep, DEPENDE, is p-receive-dependent.

From this simple analysis and Lemma 14, we get the underlying communication structure
of any protocol which supports negotiated commitment: if P C C contractors have accepted,
then there must have been a message chain from each ¢ € P to m and a subsequent message
chain from m to each c.® Adapting the linear two-phase protocol for atomic commitment (see
[Gray79, BeHG87]) to negotiated commitment illustrates that the message chains required may
overlap; for example, the message chain from the manager to a contractor can include as a
subchain the message chain from the manager to a contractor earlier in the linear order. For
atomic commitment, the analogous result is that, for p to commit, there must be a message
chain from every other process to p; further, for the others to commit, there must be a message
chain from p to each other process. Centralized and linear two-phase commit protocols illustrate
that the chains may overlap or converge through a single coordinator; the decentralized two-
phase commit protocol illustrates that the message chains may be independent. Further, all of
the “flexible” two-phase atomic commitment protocols discussed informally by Biirger (1989)
implicitly respect this underlying communication structure.

Finally, we can get our lower bound result. First, if some subset P of contractors has
accepted, then the number of nonnull RECVs is at least twice the number of contractors which
accepted. Further, if the manager has awarded to some subset P of contractors, then the
number of nonnull RECV events is at least the number of awarded contractors. Note that the
proof is couched in terms of the high-level concepts of knowledge and message chains; much of
the combinatorial detail is hidden under these concepts.

Theorem 20 For any C-system M, (e, f) ePts(£), P CC,

1. if (e, f) = AcePACCEPT,,
then the number of nonnull RECV eventsin (e, f) is at least 2| P |.

2. if (e, f) = AcePAWARDE,,
then the number of nonnull RECV events in (e, f) is at least | P |.

Proof:

1. We note that (e, f) E Acep(KcVzep, DEPENDE)) (by locality of ACCEPT, and Lemma
14) and that a Vzep, DEPENDZ -message chain exists from m to each ¢ (by Lemma
19). Furthermore, because M |= (Vzep, DEPENDZ) D K BID,, there must be a BID,-
message chain ¢ - m for each ¢ (by Lemma 18). The V,e¢p, DEPENDZ,-message chain

?One could extend this analysis as follows. Ii is easy to show that M |= K,DEPENDZ,D A.c=K,BID..
Therefore, when dependency set z has accepted, for each pair ¢,d € z, K.BIDs holds and K4BID. holds.
Therefore there must be a BID.-message chain from ¢ to d and a BIDs-message chain from d to ¢. We do not
pursue this line of reasoning, because the BID.-message chain from ¢ to d is embedded in the BID.-message
chain from ¢ to m concatenated with the DEPEND;, -message chain from m to d (and symmetrically from d to

c).

20

§6 Communication Requirements

from m to any ¢ must strictly follow the BID.-message chain from that ¢ to m (i.e., there
are consecutive message chains ¢ N ¢)'%, Therefore, each ¢ € P must send a
message which is received (along c’s BID.-message chain to m), and each ¢ € P must

receive a nonnull message (along the V. ep, DEPEND?Z -message chain from m).

Let P = {c1,¢2,...,¢ck}. For each ¢; € P, call the message it sends on its BID-message
chain to m m,; g; also call the message it receives on the Vycp_ DEPENDZ, -message chain
from m m,; p. Therefore, in (e, f), there are the following nonnull, received messages:

Mey,BMez By - Mek, B
and
Mey,p2Mea Py - -y Meg p-

Therefore, there are 2 | P | distinct, nonnull messages received unless, for some distinct
¢, ¢ € P, my; g = mg; p; that is, if there are fewer than 2 | P | nonnull messages received,
then there must be at least one ¢;,¢; pair such that the bid message sent by ¢; is the
dependency message received by ¢;. We now show that, for such a ¢;,¢; pair, either
(e,f) E ~ACCEPT,;, contradicting the statement of the theorem, or other messages

must be received in (e, f).

m.; p is the message on the Vzep ; DEPENDE, -message chain from m to ¢; which allows
¢; to attain Kgj(Veep,; DEPENDE,). Therefore, ¢; receives a nonnull message m on the
(Vzep.; DEPENDE,)-message chain from m to ¢;. We note that m # m; p, because ¢;
receives m before initiating the BID-message chain from ¢; to m (with m, g), and ¢;
must receive m,; p after sending m,; g. Thus, we have an additional nonnull message m
received, which compensates for the distinct message “lost” by the fact that m; g = m,; p.

Therefore, we conclude that at least 2 | P | nonnull messages are received.

. We know that (e, f) = Acep KmBID, (by Lemma 14). Therefore, there is a BID.-message

chain ¢ - m in (e, 0) to (e, f) for each ¢ € P. Therefore, each ¢ € P must send a nonnull
message which is received (along ¢ 5 m), so there are at least | P | nonnull messages
received. &

For an atomic commitment, one in which all contractors commit, | P |= n — 1; Theorem 20

tells us that any execution in which all participants decide to commit requires at least 2(n — 1)

nonnull messages received. This matches the known result for atomic commitment, given first

by Dwork and Skeen (1983). To show their lower bound result, Dwork and Skeen (1983) use

a tightly synchronous computation model with permanent process failures and an argument

based on the message passing graphs produced by a “best-case,” failure-free instance of an
atomic commitment protocol. We suggest that the knowledge-theoretic approach yields a more

1%This is true because, by the definition of a Vaep, DEPENDZ -message chain, Vecp,DEPENDZ must hold
at the point (e, f) when m sends the first message in the chain. In that case, (e, f) |= KmBID., and thus the
RECV by which m learns BID. must occur earlier than time f.

§7 Impossibility Results 21

elegant and intuitive proof and a more generally applicable result (applicable under process
failures, communication failures, or asynchrony). Hadzilacos (1990) also gives a knowledge-
theoretic proof of this result for atomic commitment. Although his proof differs significantly
in approach from ours, Hadzilacos also determines requisite knowledge levels for decision and
message passing requirements for attaining the required knowledge, from which the lower bound

follows.

7 Impossibility Results

An impossibility result proves that no protocol can guarantee the behaviour addressed in the
result; for example, we will soon show that no protocol can guarantee that an undecided process,
recovering from a failure, can decide consistently without receiving further messages. Impossi-
bility results save the protocol designer from the futile effort of writing a protocol to support
the desired behaviour.

All of our impossibility proofs have the same form: (1) determine that the desired com-
mitment behaviour requires arbitrarily deeply nested knowledge in the specific type of system;
@) determine that establishing that knowledge requires arbitrarily many consecutive message
chains in any protocol; and (@) argue that the communication is unattainable. This common

structure demonstrates the power of the knowledge-theoretic approach.

7.1 Independent Recovery

Independent recovery is the ability of a process to decide consistently, upon recovery from a
process failure, without executing any nonnull receive events. Independent recovery is desirable,
because it allows failed processes, if they recover, to decide consistently based on local state,
without blocking and without communicating with others; processes that are not failed can
ignore failed ones. The lack of independent recovery means that at least one “live” process
must have the knowledge and longevity to assist recovering processes in deciding, regardless of
how long those processes can remain failed.

In this section, we show that no negotiated commitment protocol can support independent
recovery. The proof of this result proceeds as follows. First, we show that all processes have
decided at any terminating point of a system which supports independent recovery. Then we
derive knowledge levels required to establish a commitment (award or accept) in such a system.
Then we show that certain sequences of consecutive message chains are needed to attain the
relevant knowledge levels. Finally, we argue that establishing a commitment in a system which
supports independent recovery requires an infinite sequence of consecutive message chains.

In particular, we show that, in a C-system which supports independent recovery, @) an
accepting contractor ¢ must have arbitrarily deeply nested knowledge about the manager’s
knowledge about ¢’s knowledge that m made ¢ a codependent, and @) an awarding manager must
have arbitrarily deeply nested knowledge about ¢’s knowledge that m made ¢ a codependent.

22 §7 Impossibility Results

We show this, in Lemma 25, by induction on the knowledge nesting level. Then the Message
Chain Theorem allows us to show that the required knowledge cannot be gained in finite time
(Theorem 27), by showing that arbitrarily many consecutive message chains are needed to gain
the required knowledge (Lemma 26). In order to show Lemma 25, we must show @) how m’s
award to ¢ depends on ¢’s acceptance knowledge and ¢’s acceptance depends on m’s award
knowledge (Lemma 23), and @) that each of the nested levels of knowledge in Lemma 25 can
be attained only by message receipt (Lemma 24). Lemma 23 shows that (@) if ¢ must know a
c-receive-dependent proposition ¢ in order to accept, then an awarding m must know that c
knows ¢, and @) if m must know some m-receive-dependent proposition ¢ in order to award,
then, in order to accept, ¢ must know that m knows ¢. Lemma 23 and Lemma 24 allow us to
show the interleaved knowledge requirement in Lemma 25, using, as a basis, the fact that an
accepting ¢ must know that it is a codependent (Lemma 14).

Definition 21 A C-system M supports independent recoveryif M is subject to process failures
and recovery, and for all (e, f) €Pts(&), f > 0,

o if, forc€ C, FAILH e(f — 1,¢) and FAIL A e(f, ¢),
then either

@ there is ¢ > f such that (e,g) FACCEPT.VREFUSE,
and RECV(m,p) & e(g,c) —e(f — 1,¢)
for all messages m# A and p € IT\{c}, or

@ thereis a g > f such that FAIL - ¢(g,¢)

and

o if FAIL H e(f — 1,m) and FAIL A e(f, m),
then either

@ there is g > f such that (e, g) = Acec(AWARDS VREJECTS,)
and RECV(m, p) ¢ e(g,m) — e(f — 1,m)
for all messages m # A and p € II\{m}, or

@ thereis a g > f such that FAIL H e(g,m). &

We first prove that, in a C-system subject to process failures and recovery, all processes

have decided at any terminating point.

Lemma 22 In a C-system subject to process failures and recovery, if (e, f) is a terminating
point, then (e, f) = Acec(ACCEPT,VREFUSE,) A Acec(AWARDS, VREJECTS,).

Proof: Assume bwoc that (e, f) is a terminating point, so (e, f) = Apen TERM,, but
(e, f) E ~[Accc(ACCEPT.VREFUSE.) A Accc(AWARDE VREJECTS,)).

§7.1 Independent Recovery 23

Because no process is failed at a terminating point, Failed(e, f) = @. Without loss of
generality, assume noloss(e, f + 1) # 0 (this is without loss of generality because there is
a finite number of messages, say j, in transit at (e, f), so one of (e, f + 1), (e, f +2), ...,
(e, f + 7 + 1) must be lossless). Note that for any e; € noloss(e, f + 1), Failed(e;, f + 1) =
0 and (e, f + 1) | ApenTERMj (ie., all processes must also be terminated in the loss-
less points corresponding to (e, f + 1), because TERM, is a stable, local predicate). Also,
(e1, f +1) = ~[Aecc(ACCEPT.VREFUSE.) A Acec(AWARDE,VREJECTE,)], because ACCEPT,,
REFUSE., AWARDE,, and REJECTE, is each local to the (terminated) process subscripting it.

By Post-Failure Termination, there is e; € noloss(e, f 4+ 1) and A > f 4 1 such that
Failed(es,g) = 0 and ey € noloss(e,, g), for f+1 < g < h, and
(e2,h) = Accc(ACCEPT.VREFUSE.) A Accc(AWARDS VREJECTS,).

Therefore, at least one p € I executes an event in (ez, k) — (ez, f) (by the definition of
knowledge and some process’s local knowledge changing), and (ez, f) | “TERM,. Because
(e3, f)~g(e, f) and TERM, is local to g, for all ¢ € II, we have that (e, f) |= " TERM,, so (e, f)

is not a terminating point, contradicting cur assumption. @

Lemma 23 shows how (1) m’s award to ¢ depends on ¢’s acceptance knowledge, and ()
¢'s decision to accept depends on m’s awarding knowledge. The first part of Lemma 23 below
says intuitively that, in order for m to award to ¢ at some point, m must be sure that ¢ has
received enough information to accept. This is because otherwise ¢ may fail, recover, and need
to decide without receiving any more messages; then ¢ cannot gain the knowledge it needs to
accept and must therefore refuse, violating the Decision Harmony property.!! The second
part of Lemma 28 has the corresponding assertion needed for ¢ to accept.

Lemma 23 In any C-system M which supports independent recovery, for any ¢ € C,

1. if K ¢ is c-receive-dependent and M |=ACCEPT.D K ¢,
then M EAWARDE D K K 9.

2. if K;n¢ is m-receive-dependent and M =AWARDE D K¢,
then M =ACCEPT,D K. K.

Proof: We prove the first; the second follows analogously. We prove this result using a
series of three support claims (assume M =ACCEPT.D K 9, as stated above):

Claim 1: M |= (AWARDS AFAILED,) D [K.¢ vV OOCFAILED,).
(If the manager has awarded to ¢ and ¢ is failed,

then either ¢ knows ¢ or ¢ will keep failing (infinitely often).)

" Unlike “agreement” problems, in which the post-failure decisions of faulty processes are irrelevant [Hadz89],
commitment problems impose the same consistency requirements on all processes, whether they decide before or
after failures. This motivates m, when it awards to ¢, to know that ¢ has received enough information to decide
consistently.

24 §7 Impossibility Results

Claim 2: M |= (AWARDE AFAILED,) D K.¢.
(If m has awarded to ¢ and ¢ is failed, then ¢ knows ¢.)

Claim 3: M =AWARDE > K.
(If m has awarded to ¢, then ¢ knows ¢.)

Proof of claim 1: M = (AWARDEAFAILED,) D [K.¢ vV OOFAILED,).

(Because AWARD:, remains true in any extension, the only way to prevent a failed
¢ from needing to know ¢ (in order to accept independently) is by ensuring that ,
in every extension, fails infinitely often (and, therefore, need not decide)).

Assume bwoc that there is some (e, f) €Pts(£) such that

(e, f) FAWARDE AFAILED A~ K. ¢ A—~OOFAILED,. Therefore, there is (e;, g) ex-
tending (e, f) such that (e, g) |= “OFAILED.. Therefore, there is (es, k) extending
(e1,9) such that (ez, h’) |E =FAILED,, for all A* > h. Now (ez, k) extends (e, f),
and (ez, h) EAWARDE, (by stability).

[Find an “earliest” point at which ¢ recovers after (e, f); this is guaranteed to exist,
by the above.] Let (e,) extend (e, f) such that (e3, j) EFAILED,, forall f < j < 4,
(es,i) &= —-FAILED,, and there is no es extending (e, f) and f < k < ¢ such that
(es, k) |= ~FAILED,. Therefore, RECV(m,p) ¢ e3(i—1,c)—ea(f, ¢), for all messages
m# A and p € I\ {c}. Now, because ¢ is c-receive-dependent, (e3,i — 1) |= ~K.¢.
By stability, (es,7 — 1) FAWARDE,.

(*) Because M supports Nontrivial Process Failure, there is es extending (e3, %)
such that (es,7) | "FAILED,, for all j > 1.

(**) Because M supports independent recovery, there is & > i such that

(es, k) =ACCEPT.VREFUSE,, and RECV(m,p) ¢ es(k,c)—es(i—1,c), for all mes-
sages m # A and p € IT\{c} (i.e., c receives no message before it decides). Because
K. is c-receive-dependent, (es, k) = - K.¢. Therefore, (es,k) |FREFUSE,, and,
by stability, (es, k) =FAWARDS AREFUSE,, violating Decision Harmony .t}

Proof of claim 2: M |= (AWARDS AFAILED.) D K ¢.

In any system which is subject to process failure and recovery (Definition 3), any
subset of failed processes may recover. Therefore, given any point (e, f) €Pts(&)
such that (e, f) [FFAILED,, there is at least one point (e1,g) €Pts(£) extending
(e, f) such that (e;,g) | "FAILED.. By Nontrivial Process Failure, (e;,9) =
~OFAJILED,, and because (e1,g) extends (e, f), (e, f) E “OFAILED,. For any
point (ez, h) €Pts(€) such that (e, k) = ~FAILED,, (e, h) |= ~OFAILED,, by
Nontrivial Process Failure. Therefore, M |= ~OFAILED,, so M |= -OQFAILED..

§7.1 Independent Recovery 25

Therefore, M = (AWARDS AFAILED,) D [K.¢ vV OOFAILED,]
(from claim 1) reduces to
M = (AWARDS, AFAILED,) O K.¢. &

Proof of claim 3: M =AWARD: D K.¢.

Bwoc, assume there is (e, f) €Pts(€) such that (e, f) FAWARDSA-K 0. If
(e, f) =FAILED,, then we have a contradiction of claim (2). Assume, instead,
that (e, f) |= ~FAILED.,.

Take any e; € fail(e, f, {c}). (e1, f) EAWARD:, (because AWARDE, is local to m
and (e1, f)~m(e, f)). Further, either (e1, f) EFAILED,, or (e1, f) ETERM, (by
the definition of fail). In either case, (e, f) = " K.¢ (because K. ¢ is c-receive-
dependent, by hypothesis).

In the case that (eq, f) |[=FAILED,, we have (e1, f) =AWARDS, AFAILED A K¢,
violating claim (2). In the case that (e, f) =TERM,, we have (e1, f) FACCEPT.
(by Lemma 22 and Decision Harmony), but then (e, f) |= K.9, a contradiction.

Therefore, (e, f) |F K.¢.54

Therefore, M =AWARDS, D K.¢, and by the locality of AWARDE, to m and Lemma 8,
M |EAWARDE D K. K.¢. ©

For the purpose of following lemmas, we will call part 1 of Lemma 23 the Award Knowledge
Rule 23 and part 2 the Accept Knowledge Rule 23.

Henceforth, we abbreviate V;ep, DEPENDZ, by DEPENDZ,. Lemma 24 shows that @) c
must receive a message for the knowledge level (K. K,)' K. DEPENDZ!2, to hold; and @ m
must receive a message for (KmK.)* DEPENDZ, to hold.

Lemma 24 In a C-system M sub ject to process failures,
o (K.KYK.DEPENDE is c-receive-dependent and initially false, for all ; > 0; and
o (K, K.)'DEPENDZ, is m-receive-dependent and initially false, for all 4 > 1.

Proof: We prove the first by induction on the knowledge nesting level 7; the second follows
similarly by induction on the knowledge nesting level 1.

“For any p,¢g € II, j > 0, we abbreviate K K,KpK,...K;K.¢ by (KpK,)¢. Sim-
N N Sy o’
. 1 2 J
ilarly, we abbreviate H,OK,0 K ,OCK ,0...K,CK;0¢ by (K,OK,,O)jqﬁ. Finally, we abbreviate

1 2 i
+ 4+ + 4+ + + + + o+ N
pP— g —p—g—p—4q.—p—gbyp—rg(—p—yg).

L

~ ~ e
]

1 2

26 §7 Impossibility Results

Base case: 7 = 0. We claim that K, DEPENDE, is c-receive-dependent. This holds from the
requirement of a DEPENDZ, -message chain (Lemma 19). K.DEPENDEZ, is initially false
because DEPENDZ, is so (by No Predetermined Dependencies).

Inductive step: j > 0. Assume the inductive hypothesis holds for 7 — 1.

Therefore, (K.K,,)' "' K.DEPENDZ, is c-receive-dependent and initially false. We now
claim K K (K Kn) -t K.DEPENDZ, is c-receive-dependent. By Lemma 11, introspec-
tion, and the Message Chain Theorem, Kp(K K)~ K. DEPENDZ, is m-receive-dependent.
Further, Km(K:Kp) 'K .DEPENDE, is initially false, because DEPENDZ, is (by No
Predetermined Dependencies). Therefore, by Lemma 11, introspection, and the
Message Chain Theorem, K. Kn(K.K,») " K.DEPENDEZ, is c-receive-dependent; further,
K. Km(K Kn) " K.DEPENDZ, is initially false, because DEPENDZ, is (by No Prede-
termined Dependencies). ©

Lemma 25 shows that @ (KcKm)jKCDEPENDj';must hold for arbitrarily deep nesting in
order for ¢ to accept, and @ (KnK.)'DEPENDZ must hold for arbitrarily deep nesting in
order for m to award to c.

Lemma 25 For any C-system M supporting independent recovery,
1. M =ACCEPT.D (K.K..)'K.DEPENDZ,, for any ¢ € C and for all j > 0.
2. M =AWARD: D (K K.))DEPENDZ,, for any ¢ € C and for all 4 > 1.
Proof: We show the first; the second follows immediately. We prove this by induction on j.

Base case: j = 0. The claim that M FACCEPT.D K.DEPENDZ holds by locality of ACCEPT,
and Lemma 14.

Inductive hypothesis: 7 > 0. Assume the inductive hypothesis holds for j — 1. Therefore,
M =ACCEPT.> (K.Kn) 'K.DEPENDZ. We now claim that M EACCEPT.D
K. Kn(K.Kp) 'K .DEPENDE,. This holds immediately from (a) an application of the
Accept Knowledge Rule 23 on (K.K,)""!K.DEPENDZ, (which is c-receive-dependent
by Lemma 24), and (b) an application of the Award Knowledge Rule 23 on the result of
application (a) (which is m-receive-dependent, also by Lemma 24). @

Lemma 26 establishes that consecutive message chains are required to establish each knowl-

edge level in Lemma 25.
Lemma 26 In a C-system M subject to process failures,

e for all j > 0, if, for some (e, f) €EPts(€) and c €C, (e, f) = (K.Km) K. DEPENDZ,,
then there is a sequence of consecutive message chains m —» c(i» m - ¢)f in (e,0) to

(e, f); and

§7.1 Independent Recovery 27

o for all i > 0, if, for some (e, f) €Pts(€) and c € C, (e, f) |= (K K.)' DEPENDZ,,
then there is a sequence of consecutive message chains ¢ —» m(— ¢ = m)i in (e,0) to

(e, f).

Proof: We prove the first by induction on the length of the sequence of chains, 7; the second

follows analogously by induction on 7.

Base case: j = 0. The claim is that, for any (e, f) €Pts(£), if (e, f) |= K.DEPENDZ,, then
there is a DEPENDZ - message chain from m to ¢ in interval (e,0) to (e, f). This holds
by Lemma 19.

Inductive step: j > 0. Assume the inductive hypothesis holds for 7 — 1. Now we claim
that KeKm(KeKm) "1 K. DEPENDZ, requires a sequence of message chains m —— ¢(—5»
m =5 ¢)d. That is, if (e, f) = KcKm(KcKm)"*K.DEPENDZ,, then there is a se-
quence of comsecutive message chains m —— ¢(—5 m -5 ¢)7 in interval (e,0) to
(e, f). From the inductive hypothesis, we can assert the existence of the chain sequence
m -5 (5 m <5 €)i-1, required to establish (K.Km)1 K.DEPENDZ,. By Lemma
24, (K.K.;n)"1K.DEPENDE, is c-receive-dependent in M. Therefore, by Lemma 11,
(KK) 'K .DEPEND?Z, is c-failure-dissociated in M. By Lemma 24, (XK,)"~ K. DEPENDZ,
is initially false. By introspection, (K.Km)"!K.DEPENDZ is local to c. Therefore, by
the Message Chain Theorem, there is a (K K)'~! K. DEPENDZ -message chain ¢ — m
in (e, 0) to (e, f), to establish Kn(K K,) ' K. DEPENDZ,. Now this chain must strictly
follow m - ¢(— m -5 ¢)7~1, because (K. Km)i~ K. DEPENDZ, must hold at the start
of the new ¢ - m, and (KK)~ K.DEPENDZ, cannot hold any earlier than the end
of m = (< m =5 ¢)i~1. From this, we conclude the existence of m —5 ¢(—1 m 5
c)-""‘l =+, m. By similar reasoning, there is a Kp(K K)'~' K. DEPENDZ -message
chain, to establish K K,(K.Ky,)" 1 K. DEPENDE,. We can conclude the existence of
mHe(HmEe)yt Hm B orm - o(m o) @

Theorem 27 There is no C-system which supports independent recovery.

Proof: Bwoc, fix any C-system M which supports independent recovery. From Lemmas 25
and 26, we may conclude that, in order for ¢ to decide to accept, there must be an infinitely
long sequence of message chains from ¢ to m and back in M. If there is some (e, f) €Pts(£)
such that (e, f) FACCEPT,, the largest possible consecutive message chain length is %, s0
at most there exists m —— ¢(—» m -t C)it_l in (e, 0) to (e, f). By Lemma 25, however,
m . (5 m L c)? also exists in (e,0) to (e, f) for all j > % — 1. This is a contradiction.
Essentially, the required infinitely long sequence of message chains cannot occur in a finite
portion of execution e. Therefore, ¢ may never accept in M.

Accept decisions must be possible in M. Therefore, M is not a C-system. &

28 §7 Impossibility Results

7.2 Weak Termination, Process Recovery, and Bounded Time Communica-
tion

The result we give below states that there is no protocol for negotiated commitment which
guarantees weak termination in a system in which processes may fail and recover and in which
messages may spend a bounded amount of time in transit. If such protocols existed, then
a decided process could stop executing events (terminate) regardless of the state of other,
failed, processes. As with independent recovery, this impossibility result means that, in any
negotiated commitment protocol, at least one “live” process must have the knowledge and
longevity to communicate with recovering processes to help them decide, regardless of how long
those processes remain failed. The proof of this result uses lemmas similar to those in the proof
of the impossibility of independent recovery.

The first part of Lemma 28 below says intuitively that, in order for m to award to ¢ at
some point, m must be sure that ¢ has received enough information to accept. This is because
otherwise the system may terminate without any more messages being received (by Theorem
12), so that ¢ cannot gain the knowledge it needs to accept and must therefore refuse (by
Lemma 22), violating the Decision Harmony property. The second part of Lemma 28 has

the corresponding assertion needed for ¢ to accept.

Lemma 28 In any weakly terminating C-system M which is k-transit bounded and subject

to process failure and recovery, for any c € C,

1. if K.¢ is c-receive-dependent and M EACCEPT.D K.¢,
then M =AWARDS D K K.9.

2. if K,,¢ is m-receive-dependent and M =AWARDS D K. 9,
then M |=ACCEPT.D K.K.¢.

Proof: We prove the first; the second follows analogously. We use the following claim:
M =AWARDE,D K.¢.

Proof of clatm: Assume bwoc that thereis (e, f) €Pts(€) such that (e, f) FAWARDS A K ¢.
Therefore, (e, f) |F ~ACCEPT,. By Theorem 12, there is (e1,h) €Pts(€) which
is a terminating extension of (e, f) such that no process receives a nonnull message
after (e1, f). By Lemma 22, (e;, k) FACCEPT.VREFUSE,, and by K.¢ being c-
receive-dependent, (e1,h) EREFUSE.. Therefore, (e;,h) EFAWARDS AREFUSE,,

violating Decision Harmonytdy .., -

Because AWARDE, is local to m, whenever AWARDS, holds in a particular point, it holds
in all points which m considers similar. Therefore, K. ¢ also holds in those points, so
M =AWARD: D K, K ¢. B

For the purpose of the next lemma, we will call part 1 of Lemma 28 the Award Knowledge
Rule 28 and part 2 the Accept Knowledge Rule 28. Lemma 29 shows that @) (K.K)’ K.DEPENDE,

§7.2 Weak Termination, Process Recovery, and Bounded Time Communication 29

must hold for arbitrarily deep nesting in order for ¢ to accept, and 2) (Kch)iDEPEND?n must
hold for arbitrarily deep nesting in order for m to award to c.

Lemma 29 For any weakly terminating C-system M which is k-transit bounded and subject
to process failures and recovery,

1. M |EACCEPT.D (K.Km) K.DEPENDZ,, for any ¢ € C and for all § > 0;
2. M |EAWARD:,D (K K.))DEPENDE,, for any ¢ € C and for all i > 1;

Proof: This proof is the same as that for Lemma 25, except that the Award Knowledge
Rule 28 and the Accept Knowledge Rule 28 are used here. @

From the fact that commitment between ¢ and m requires infinitely long sequences of
message chains between ¢ and m and the fact that commitment must be possible in any C-

system, we conclude our impossibility result.

Theorem 30 There is no weakly terminating C-system which is k-transit bounded and subject
to process failures and recovery. &

There is a strong connection between a system supporting independent recovery and a sys-
tem being weakly terminating, k-transit-bounded, and subject to process failures and recovery.
The reader may have noticed the great similarities between Lemmas 23 and 28, Lemmas 25 and
29, and Theorems 27 and 30 (respectively). This strong connection is related to the possibility
in each system of deciding independently; see Appendix B.

The analogue of Theorem 30 for atomic commitment tells us the following: if a round-
based atomic commitment protocol is resilient to process failures and recovery and such that
a message may be received only in the round in which it is sent, then the protocol may run
forever.

From the knowledge levels in Lemma 29, one might think that one can prove Theorem 30
using common knowledge [HaMo90]. Indeed, another way to prove this theorem would be to
show that commitment in the given systems requires common knowledge among {z} and m of
DEPENDZ{,, which, as a direct corollary of the Message Chain Theorem, is impossible. The
current results on attaining common knowledge do not address systems with process failures
(although this extension should not be difficult). The Message Chain Theorem allows us to
reason about both finite and infinite knowledge levels in several kinds of systems, including sys-
tems in which one cannot attain common knowledge. Further, we can reason about incremental
gains in a process’s knowledge through communication. Finally, the Message Chain Theorem
applies to a broad class of problems.

We note that commitment under other system assumptions may require a variant of common
knowledge of some proposition; for example, [Hadz88] argues the analogue of Theorem 38 for

nonblocking atomic commitment by showing @ the need for eventual common knowledge of a

30 §7 Impossibility Results

particular proposition, and @) the impossibility of attaining that common knowledge in the given
systems. Theorem 38 uses our proof technique using nested knowledge levels and consecutive

message chains.

7.3 Nonblocking Behaviour, Termination, and Communication Failures

Informally, we say that a process is blocked when it must await the repair of failures before pro-
ceeding [Skee82, SkSt83, BeHG87]. Blocking is undesirable, because it may cause participants
to wait for an arbitrarily long time before deciding, making a contract undecided for arbitrarily
long, uselessly holding any resources which might be required for commitment. Therefore, non-
blocking commitment systems are preferred over blocking ones. We will show some conditions

under which nonblocking behaviour is impossible to achieve.
Definition 31 A C-system M is called nonblocking if

M |= AceeO(FAILED.VACCEPT.VREFUSE,)A
Acec O(FAILED,VAWARDE VREJECTS,). &

That is, in a nonblocking C-system, all nonfailed processes eventually decide one way or the
other. Notice that this covers a situation in which a process fails, recovers, and does not fail
again—such a process must decide.

We show here that no negotiated commitment protocol can achieve nonblocking behaviour
if the system is subject to permanent communication failures (shown in [Skee82, SkSt83] for
atomic commitment) or the system is weakly terminating and subject to (even transient) com-
munication failures (shown in [Hadz90] for atomic commitment). Call a system which has either
of these two properties a target system. The development of this result proceeds in essentially
two parts. Iirst, we demonstrate that we can derive from any target C-system a process-failure-
free counterpart target C-system, and then we derive knowledge levels required to establish a
commitment (award or accept) in a nonblocking, process-failure-free C-system. Second, we
show that certain sequences of consecutive message chains are required in order to attain cer-
tain relevant knowledge levels in any target C-system. Then, to bring the two parts together,
we argue that, in order to establish a commitment in a nonblocking target C-system, an infinite
sequence of consecutive message chains is required. Lemmas 32-34 constitute the first part of
the development, Lemmas 35-37 constitute the second part, and Theorem 38 establishes the
overall result.

Lemma 32 shows that, from any target C-system, we can derive another target C-system
. whose executions are process-failure-free and a subset of the executions of the original system,
and whose points support primitive propositions iff they did in the original system.

Lemma 32 Given any C-system M = (£,T), there is a process-failure-free C-system Mppp =
(prFr,ZprF) such that

1. &ppr CE,

§7.3 Nonblocking Behaviour, Termination, and Communication Failures 31

2. for any (e, f) € Pts(€ppr) and primitive proposition ¢ €@,
(MPFF:eaf) j: Qb iff (M':e:f) IZ 4’: and

3. Mprr E ~FAILED,, for all p € II.

Proof: We take Eppr = {e |e € £ and FAIL ¢ e(f,p), for all f € N and p € II}. Now
Eprr CE. Further, Eppr is a system. For any ¢ €&, we take Zprr(¢) = Z(¢) N Pts(Eprr)
(that is, any such primitive proposition ¢ holds in those points of £ (in which it held) which are
now in £ppp). Now it is straightforward to verify that £ is a system and that all specifications
hold in M pgp, because they hold in M. ©

In any process-failure-free C-system Mppp, the nonblocking property becomes Mppr =
Neec O{ACCEPT.VREFUSE:)A Acec O(AWARDE VREJECTS,). Lemma 32 implies that it is
enough, for our impossibility result, to show that there is no process-failure-free nonblocking
target C-system.

Now we identify some knowledge states required for decision in any process-failure-free
nonblocking C-system.!®* Lemma 33 shows how () c’s decision to accept depends on m’s

awarding knowledge; and @) m’s award to ¢ depends on ¢’s acceptance knowledge.’

Lemma 33 For any process-failure-free, nonblocking C-system Mppp, ¢ € C, and wif ¢,
1. if Mppp |=AWARD$"_D Kn¢, then Mppp =ACCEPT.D K. OKp¢; and
2. if Mprr |FACCEPT.D K. ¢, then Mppr EAWARDE D K, OK .

Proof: We prove the first; the second follows analogously. Assume bwoc that there is
some Mppp such that Mppp]:AWARD:'.’"D K¢, but Mppp l;‘:ACCEPTCD K. OK,,¢. Then
there is at least one (e, f) € Pts(€ppr) such that (e, f) FACCEPTA-K . OKyn¢. There-
fore, there is (e1,g)~c(e, f) such that (ey,g) [FACCEPTA~OKp,¢. Therefore, there is e,
extending (ej,g) such that (ez,h) = ~Kmo, for all b > g. Therefore, by the antecedent,
(es, h) | "AWARDE,, for all h > g. Therefore, for some 1 > g, (e2,1) FREJECTE, (because
the system is process-failure-free and nonblocking). But (e, 9) EACCEPT,, and ACCEPT., is
stable, so (eq,2) FACCEPT . AREJECTS,, violating Decision Harmony. @

For use in the next lemma, we call part 1 of Lemma 33 the Award Knowledge Rule 33, and
we call part 2 the Accept Knowledge Rule 33. Lemma 34 shows that, in a process-failure-free,
nonblocking C-system, in order to accept, ¢ must have arbitrarily interleaved knowledge about
m’s knowledge of ¢’s knowledge of the dependency. Similarly, to award to ¢, m must have

arbitrarily interleaved knowledge of c’s knowledge of the dependency.

131n Section 8, we develop the knowledge requirements in generalnonblocking C-systems. Note that Hadsilacos
(1990) assumes process-failure-free systems in proving his results on the impossibility of nonblocking atomic
commitment protocols; he does not give general knowledge requirements,

32 §7 Impossibility Results

Lemma 34 For any process-failure-free, nonblocking C-system Mpppr and c € C,
¢ Mprp EACCEPT.D (K.OCKnO) K.DEPENDZ,, for all j > 0.

o Mprr EAWARDE D K, O(KOK . O)' K .DEPEN
for any e € C and forall z > 1.

m?

Proof: We show the first; the second follows similarly. We prove this by induction on j.

Base case: j = 0. The claim that Mprr FACCEPT.D K.DEPENDE, follows from the lo-
cality of ACCEPT, and Lemma 14.

Inductive hypothesis: 7 > 0. Assume the inductive hypothesis holds for 5 — 1. Therefore,
Mprr EACCEPT.D (K. OK,O) ' K.DEPENDZ,. We now claim that
Mprr FACCEPT.D K OKnO(K OKnO)Y 1 K. DEPENDE,. This holds immediately
from (a) an application of the Accept Knowledge Rule 33 on
(K.OKn©) 1K . DEPENDZ,, and (b) an application of the Award Knowledge Rule 33
on the result of application (a). ©

From the existence of a dependency message chain (Lemma 19), ¢ must receive a message
to come to know DEPENDZ .

Lemma 35 In any C-system M subject to communication failures, for¢ € C, wiff K.DEPEND=

m

is c-receive-dependent. &

Lemma 36 shows that ¢ must receive a message to attain certain useful levels of interleaved
knowledge, namely, (K. OK,nO) K. DEPENDZ and m must receive a message for
K O(KOKnmO)Y K.DEPENDE, to hold.

Lemma 36 In any target C-system M,
1. (KcOKm<) K. DEPENDZ, is c-receive-dependent and initially false, for all j > 0.
2. K,,ﬂ<>(Ii'c<>fi',,;<>)"JR'CLLEP.E’NDﬁl is m-receive-dependent and initially false, for all z > 1.

Proof: We prove the first, by induction on the knowledge nesting level j (the second follows

analogously by induction on 2).

Base case: j = 0. That K. ODEPEND, is c-receive-dependent is shown in Lemma 35. K.DEPENDZ,
is initially false because DEPENDZ, is so (by No Predetermined Dependencies).

Inductive step: j > 0. Assume the inductive hypothesis holds for j — 1. Therefore,
(K.OKO) 1K .DEPENDZ, is c-receive-dependent and initially false. We now claim
that the same holds for
K OKnO(K OKnO)Y 1K . DEPENDZ,. (Kc<>Km<>)-""‘1K,:DEI:’EI\TI}‘";,,,1 is local to ¢, by in-
trospection. Therefore, by hypothesis and Lemma 17,

§7.3 Nonblocking Behaviour, Termination, and Communication Failures 33

K O(K OKnO)Y 1 K.DEPENDZ, is m-teceive-dependent. By hypothesis,
(KCOKmO)j‘lKCDEPENDﬁ,‘ is c-receive-dependent. Therefore, by Lemma 13 and Lemma
10, O(K K, O) K. DEPENDE = (K. OKnO) K. DEPENDZ,, which by hypothesis
is initially false. Therefore, KmO(KcOKmO)j‘lKCDEPENDfn is initially false.

K O(K 0K O) ' K.DEPENDZ, is also local to m. Therefore, by Lemma 17,

K OKnO(K OKpC)Y K. DEPENDE, is c-teceive-dependent. Further, by m-receive-
dependency, Lemma 13, and Lemma 10,

OKnmO(K OKmO)Y 1K DEPENDE = K O(K OKmn®)Y 1 K. DEPENDZ,, which is ini-
tially false. Therefore, K. OKmnO(KOKmnCO) K. DEPENDZ, is initially false. @

Lemma 37 characterizes the sequence of consecutive message chains required to establish
the knowledge levels in Lemma 36.

Lemma 37 In any target C-system M,

1. for all § > 0, if, for some (e, f) €Pts(£) and c € C, (e, f) E (KO KmO)Y K. DEPENDZ,,
then there is a sequence of consecutive message chains m — ¢(—— m —— ¢)? in (e, 0) to

(e, f).

2. foralli > 0, if, for some (e, f) €Pts(£)andc € C, (e, f) E KmO(KOKmO) K. DEPENDZ,,

; : . + s+ +oni F
then there is a sequence of consecutive message chains m — ¢(— m — ¢)' — m in

(e,0) to (e, f).

Proof: We prove the first, by induction on the length of the sequence of chains, j (the

second follows analogously by induction on %).

Base case: j = 0. The claim is that, for any (e, f) €Pts(&), if (e, f) E K.DEPENDZ , then
there is a DEPENDZ, -message chain from m to ¢ in interval (e,0) to (e, f). This holds
by Lemma 19.

Inductive step: j > 0. Assume the inductive hypothesis holds for j — 1. Now we claim that
KCOKmO(KCOKm.O)j‘lKCDEPENDfn requires a sequence of message chains
m -5 (= m 5 ¢}, Thatis, if (e, f) | K OKmO(KOKm©) 1K DEPENDZ,, then
there is a sequence of consecutive message chains

m -5 ¢(= m -5 ¢)7 in interval (e, 0) to (e, f). From the inductive hypothesis, we can

assert the existence of the chain sequence m = c(—+—> m - c)j‘l, required to establish

(K.OKn©) "' K.DEPENDE, in (e,0) to (e, f)-

Consider KmO(K QK<) LK. DEPENDZ,. By introspection, (K. 0K ,,O) 1 K.DEPENDE,
is local to ¢. By Lemma 36, (KCOKmO)j‘iKCDEPEND:,. is c-receive-dependent in M.
Therefore, by Lemma 13, (K.OK,0)"'K.DEPENDZ, is nontrivial in M. Therefore,

by Lemma 10, M & (K. OK,$) 1 K.DEPENDZ = O(KOK,O)'K.DEPENDZ,. By
Lemma 36, {.K'c<>l»'(m(>)-""1KcDEPI*’.IND,?n is initially false in M. Therefore,

34 §8 Knowledge Levels in Nonblocking Commitment Systems

O(K.OKn©) 'K DEPENDZ, is initially false in M, nontrivial in M, and local to c.
Therefore, by the Message Chain Theorem, a

(K.OKnO) "' K.DEPENDZ -message chain ¢ -, m is required in (e,0) to (e, f) to es-
tablish K,nO(K.CKm©)? 1K . DEPENDE,.

Now this new chain must strictly follow m — ¢(—= m — ¢)7~1, because

(B.’COK,,,O)-‘F‘1KcDEPEI‘\TD;:“’n must hold at the start of the new ¢ — m, and
(KO Kpn©)~1K . DEPENDE, cannot hold any earlier than the end of m —= ¢(— m -
¢)?~1. From this, we conclude the existence of m — ¢(—> m -5 ¢)i~1 5 m. By sim-
ilar reasoning, there is a KmO(KCOKmO)j‘lKCDEPENDﬁ,-messa,ge chain, to establish
KCOKmO(KcOKmO)j‘lKCDEPEND”m. We can conclude the existence of m —» c(ip
m-t) Hm S orm (B m o) D
Theorem 38 There is no nonblocking C-system M which is either subject to permanent com-
munication failures or weakly terminating and subject to communication failures.

Proof: Bwoc, fix any nonblocking target C-system M. By Lemma 32, there is a process-
failure-free, nonblocking target C-system Mppr. From Lemmas 34 and 37, we may conclude
that, in order for ¢ to decide to accept, there must be an infinitely long sequence of message
chains from ¢ to m and back in Mpgp. That is, if there is some (e, f) €Pts(£) such that
(e, f) FACCEPT,, then there must be such an infinitely long sequence, which cannot occur in
a finite portion of execution e. Therefore, ¢ may never accept in Mppp.

Accept decisions must be possible in Mppp. Therefore, Mppp is not a C-system, a con-
tradiction. &

8 Knowledge Levels in Nonblocking Commitment Systems

In Section 7.3, we derived knowledge levels for process-failure-free, nonblocking commitment
systems. We now determine knowledge levels required for decision in general nonblocking
systems, which may admit process failures. As one might expect, the knowledge levels are more
complex in these systems than in those of Section 7.3.

We have shown (in Lemma 14) that a contractor ¢ which has accepted knows it is a
codependent; now it is also true that ¢ also knows that eventually everyone in the depen-
dency set will fail or know that it is a codependent. For P C II, we abbreviate by Fp¢
the formula Apep(K,9¢VFAILED,); that is, every process in P knows ¢ or is failed [Hadz87].
Now, for each z € D,, M E [ACCEPT.ADEPEND}| > K.OF.DEPEND{ . Further, an
accepting contractor must know that eventually each codependent will fail or will eventu-
ally know that each codependent will fail or will eventually know that it is a codependent:
M E [ACCEPT.ADEPENDZ] O K. O[FO[F.DEPENDZ |;and so on. More generally, the
following holds, for all 1 € N:

M |= [ACCEPT.ADEPENDZ] 5 K.o; (i), for i > 1

§8 Knowledge Levels in Nonblocking Commitment Systems 35

where 0g =DEPEND;,, and ;41 = OFoy, for i > 0.
Now we show that each member of this collection is valid in a nonblocking C-system.

Lemma 39 For any nonblocking C-system M, c € C, z € D,
M = [ACCEPT.ADEPENDZ] D K.o;, for all i > 1.
Proof: By induction on z.

Base case: i = 1. The claim is M |= [ACCEPT.ADEPENDZ] O K.OF.DEPENDZ, for all
c€C,z € D.. Assume bwoc that there is (e, f) €EPts(€) such that
(e, f) EACCEPT.ADEPEND; A—~K.OF ,DEPENDZ . Then there is (e1, g)~(e, f) such
that (e1,9) F ~OF,DEPENDZAACCEPT,. Therefore, in some execution e, extending
(e1,9), for some d € z, (e3,h) | ~(FAILED;VK4DEPENDE), for all A > g. There-
fore, there is some i > g such that (ez,7) EFREFUSE; (because the system is nonblock-
ing, and M supports Dependent Acceptance and Exclusive Dependencies), but
(e2,i) EREFUSE4AACCEPT,, violating Decision Harmony.

Inductive step: Assume the hypothesis is true for i— 1, so M = [ACCEPT.ADEPENDZ] D
K.o;_1; we show it for 7. The claim is M |= [ACCEPT.ADEPEND]| D K.0;,or M
[ACCEPT.ADEPENDZ] S5 K.OF,0:_1, or M =ACCEPT.ADEPENDE S K.O Ades
(Kd(T,;_.l VFAILED,{).

Bwoc, assume for some (e, f) that

(e, f) EACCEPT.ADEPENDZ A KO Adey (Kg0;—1VFAILED,). Then there is
(e1,9)~c(e, f) such that (ey,g9) FACCEPT.ADEPENDE A~O Agey (Kgoi—1VFAILED,).
Therefore, without loss of generality, for every h > g,

(e1,h) FACCEPT.ADEPENDZ A- Agey (Kgo;—1VFAILED,). There is thus a d € z such
that (e1,h) FACCEPTADEPENDZE A~(K40;-1VFAILED,) for all h > g. Because this
is a nonblocking system, d must decide in e;; in order not to violate Decision Harmony,
it must accept. Therefore, there is 2 > g such that

(e1,i1) FACCEPT.ADEPENDZ AACCEPT A~ Kq40;_1. violating the inductive hypothe-
sis. &

Nonblocking C-systems have a special interprocess knowledge property, illustrated above,
which we can characterize as follows. Essentially, a deciding process p must know that eventually
any process which must decide consistently with p must eventually fail or know enough to decide!

In particular (assume we have a specific ¢ € D.),

1. if an accepting contractor must know ¢, then the awarding manager must know that
eventually each codependent will know ¢ or will fail.
if M |= Acec(ACCEPT.D K .9)
then M = [AWARDS ADEPENDE] O K OF 9.

2. if an accepting contractor ¢ must know ¢, then ¢ must know that eventually each code-
pendent will fail or know ¢.

36 §8 Knowledge Levels in Nonblocking Commitment Systems

if M = Accc(ACCEPT.D K. ¢)
then M = [ACCEPT.ADEPENDZ] D> K.OF 4.

3. if a deciding manager must know ¢ to award to ¢, then an accepting ¢ must know that
eventually the manager will fail or know ¢.
if M E (AWARDS,D Kp¢)
then M ACCEPT.D K.OF 4.

For example, let ¢ =DEPENDZ,; item 2 yields the base case of Lemma 39.
For rejection and refusal, we have (assume we have a specific z € D)

4. if M |= Acec(REFUSE.D Kco)
then M |= [REJECTE, ADEPENDE] O KmOF 4.

5. if M |= Acec(REFUSE.D K.¢)
then M |= [REFUSE.ADEPENDZ > K.OF 4.

6. if M |= (REJECTS,D Kmo)
then M =REFUSE,D K.OF (rn}¢.

We call items 1 through 6 the Rule of Codependent Knowledge Necessitation. Lemmas 33 and
34 prescribe ACCEPT, and AWARDS, knowledge levels for process-failure-free nonblocking
C-systems; those results use special cases of the Rule of Codependent Knowledge Necessitation.

The need to achieve the knowledge levels required by the Rule of Codependent Knowledge
Necessitation seems to provide a daunting challenge to the protocol designer. After all, the
need to achieve the similar knowledge levels of Lemma 34 led to the nonblocking impossibility
results of Theorem 38, yet the three-phase atomic commitment protocol of Skeen (1982) is
nonblocking in systems free of communication failures. We will now discuss informally how
one might achieve these knowledge levels in a protocol. (That a particular protocol actually
achieves these levels must be proved formally with respect to that protocol.) Assume that
communication is failure-free and that a process ¢ will receive any message sent to it (as long as
g does not fail). Then process p knows, upon sending message m, that ¢ will eventually receive
m (as long as g does not fail).

Consider now that m has selected dependency set z. If m sends a “DEPENDZ” message to
each member of £ announcing the dependency set, then, under our assumptions, each member
of ¢ will (either fail or) receive the message and therefore know the dependency set. After send-
ing all | z | messages, then, K, OF.DEPENDZ, holds. For AWARDE, to hold for each ¢ € z,
K, OF OF;DEPENDZ must hold (by the Rule of Codependent Knowledge Necessitation). If
our protocol is so designed that m will now send a “K,,OF;DEPENDZ,” message to each mem-
ber of z, then (assuming for the moment that m does not fail) K,, OF,OF;DEPEND?Z, holds,
even before sending the messages. Now, for AWARDZ, to hold, K, OF;OF (3 OF. DEPEND{,
must also hold. Note, however, that when each ¢ € = receives “K,OF, DEPENDZ”, then

§8 Knowledge Levels in Nonblocking Commitment Systems 37

K .KnOF:DEPEND;, holds. Therefore, KnOF;OF (3 OF:DEPEND;, holds at the same
time that KnpOFOCF,DEPENDY, holds, which is before m even sends “K,,CF,DEPEND:."
(1). Continuing along this line of reasoning, we can conclude that m may achieve its AWARDS,
knowledge by first sending the | z | “DEPENDZ” messages and then being committed by the
protocol to send the | z | “K,,OF ,DEPEND}” messages (unless m fails).

Let us consider how ¢ gains its accepting knowledge. K. DEPEND?, holds when ¢ receives
“DEPENDZ” from m. For ACCEPT, to hold, the Rule of Codependent Knowledge Necessita-
tion tells us, K. OF(,} DEPEND7, must hold; the stronger K. K, DEPENDy, holds, however,
when K. DEPEND?, does. Upon receiving “K,, OF;DEPEND ", the required knowledge levels
K. OF;DEPEND;, and K.OF ;) OF;DEPEND{, both hold. Based on our discussion above
(see (1)), K.OF () OFOF,DEPENDY, also holds. Again, continuing this line of reasoning,
we may conclude that ¢ achieves its ACCEPT. knowledge by receiving “DEPENDZ” and then
“KnOF.DEPENDS.”.

Suppose m instead fails before sending all “K,, DEPENDZ " messages. Then the termination
technique used by the “live” processes must guarantee that each “live” member of z will receive
“OF;DEPENDL”. If the termination method is such, then again the informal reasoning above
suggests that the requisite knowledge levels are attained.

The point is that, if our protocol is designed properly, then the processes can achieve the
required infinitely nested knowledge levels in a small number of messages. This is the idea
used in the nonblocking, three-phase atomic commitment protocol [Skee82, BeHG87], in which
a PRECOMMIT message serves as a “DEPENDE.” message, and the COMMIT message serves
as “K,,OF . DEPENDZ".

In a discussion of atomic commitment (under permanent process failures), Dwork and Skeen
(1983) give a nonblocking protocol which uses 2(n — 1) nonnull messages (excluding the con-
tract announcements) in the failure-free case, which number they claim as a lower bound for
nonblocking atomic commitment. Based on our discussion above, one might expect a protocol
to require at least 3(n — 1) messages. Dwork and Skeen achieve their lower bound in a strictly
synchronous protocol which avoids (n — 1) messages (the set of messages that one might use, as
suggested in the preceding paragraphs, to establish K.OF:DEPENDE , for all ¢ € C) by asso-
ciating with the achievement of K.:()FcD}?}1:’}_*";1‘\T13ﬁ1 (actually K.:FCDEPENDCm) a null message
receipt in a particular step in the protocol, for each ¢ € C. In other words, the synchrony and
absence of messages yields the required knowledge states. The protocol as presented is nonin-
tuitive and difficult to understand. We found the protocol much easier to understand once we
assoctated the requisite levels of knowledge with each process at the appropriate step. [Maze89]
casts atomic commitment as negotiated commitment and shows how knowledge-theoretic results
for nonblocking commitment behaviour correspond to results of Skeen (1982).

38 §9 Summary

9 Summary

We specified negotiated commitment systems and derived results on properties of these systems,
using a knowledge-theoretic approach. We determined both(@®) what knowledge states a process
needs to commit to an outcome and@) how to attain the required knowledge, that is, system be-
haviour, in terms of message passing and local computation, required to attain these knowledge
states. Using the knowledge results and the Message Chain Theorem, we gave several impos-
sibility results: a message lower bound, impossibility of independent recovery, impossibility of
termination under certain conditions, and impossibility of nonblocking behaviour under certain
conditions. The result showing the impossibility of a weakly terminating commitment system
under process failures and recovery and bounded communication time is new; the other impos-
sibility results used some new intermediate results, extended some previously known results,
and further demonstrated the utility of reasoning about knowledge in analyzing distributed
problems. The impossibility results have a common form: first, determine the knowledge re-
quired for commitment in the given setting; second, show that certain kinds of message chains
are required to achieve that knowledge; and third, show that the message chains (and therefore
the knowledge) are unattainable.

The reader should take away from this discussion the following general points about reason-
ing about knowledge: @) from a specification of a distributed problem, one can derive knowledge
requirements for solving the problem; @) from the knowledge requirements and system charac-
teristics, one can derive message chain requirements; and,@®) using the knowledge and commu-
nication requirements, one can prove impossibility results, derive underlying protocol structure,
and design protocols. Further, one uses high-level concepts that support the formalization of
some common kinds of informal, intuitive reasoning.

This paper contains a significant exploration of reasoning about knowledge to analyze dis-
tributed problems. We and others assert that reasoning about knowledge offers insight into
the nature of distributed computation, under various system assumptions. This approach also
offers a tool which supports the analysis of problem specifications to yielEi useful insights into
solutions. Often, one must appeal to intuition in formulating an approach to a solution to a
problem, or a proof to a theorem, but the translation of that intuition into a precise form, to
be manipulated and analyzed, can be difficult. Knowledge theory gives us a formal and direct
way to articulate, clarify, and verify our informal intuition about the extent to which the local
state of a process reflects important global states of the system. The use of knowledge theory
to analyze distributed problems is relatively new. By applying the abstraction of knowledge
to different kinds of problems, researchers are finding other “knowledge concepts” to be useful,
such as probabilistic knowledge [FaHa88] or resource-bounded knowledge [Mose88, HaMT88].
We encourage the use of reasoning about knowledge for examining other distributed problems.

A Closure Properties of Systems of Executions 39

A Closure Properties of Systems of Executions

The proof of the Message Chain Theorem requires three closure properties. Given a set of
executions £, points (€', g), (e,) €Pts(£), and process set P C II,

replace((e, g), P, (e, f)) is the set of executions e €€ which extend (e, g) such that

@ in e”, each member of P executes the same event at (", g + 1) as it did at (¢/, g + 1),

@ in e", the event executed by each member of P at (e/,g + 1) is replaced by the event it

executed at (e, f+ 1), and
® the messages from P to II are the messages not sent or received in e’ between g and g + 1,
plus any messages received in e’ at g+ 1 by p € P but not in e by p at f + 1, plus any messages
newly sent by P; and the messages from P to II are whatever was in e’ at g + 1, plus whatever
P received in e’ at g + 1, minus whatever P received in e at f + 1 or was lost in transit to P
in e at f + 1 [Hadz90].

The progress-closure properties we require here are these:14

S1 (Nonreceive Progress): The ability of a process to perform a nonRECV event depends on
the process’s behaviour only.

Let (e, f), (¢/,9) €Pts(€) and p € II be such that

. (e? f)NP(ef:.g)a
e RECV(m,q) IZ (e, f + 1,p), for any message m, g € II

Then replace((e’,), {p}, (e,)) # 0.

SA (Null Receive Progress): A process’ ability to receive a null message from another process
depends on the state of the former process, the messages sent to the recipient by the latter

process, and the behaviour of the communication system.

Let e,e’ €£, g € N, and ¢,p € II be such that

o (e,9)~p(e,9),
e €'(g,N)[{a},{p}] C e(g, N)[{a},{p}],

(There are no different messages in the communication system from ¢ to p
up to time g in €’ than in e), and

e RECV(A,q)C (e,9 + 1,p).
Then replace((e’, g), {p}, (e,9)) # 0.

S3 (Available Receive Progress): Once a process p has sent a message to another process g,
q’s ability to receive the message cannot depend on p’s subsequent behaviour; ¢’s ability

to receive the message does depend on the communication system.

“These closure properties correspond to a natural set of assumptions on the protocols which “produce” the
behaviours in the execution sets [Maze89)].

40 B Independent Recovery and Termination

Let e,e' €€, f,g € N, and gq,p € II be such that

o (e,9)~p(¢'s9)
e RECV(m,q) C (e, g+ 1,p),

o (¢g,m,p, f)ee(g,N) (the message is still available in e’ at g, as in e)
o let = {{g,m,p,%}| (g, m,p,4} € (g, V) and 0 < i < f};
1 C e(g,N)[{qa}, {p} (The set of messages available at (€, g), sent before

f + 1, and from g to p are a subset of those available at (e, g).)

Then replace((¢/, 9), {p} (e, 9)) # 0.

B Independent Recovery and Termination

We show a connection between a system supporting independent recovery and a system which
is weakly terminating, k-transit-bounded, and subject to process failures and recovery. First,
we weaken the definition of a C-system which supports independent recovery. In a system which
supports weak independent recovery, a failed process may recover and decide in some extension

without receiving a nonnull message.

Definition 40 In a C-system M which supports weak independent recovery, M is subject to
process failures and recovery, and for all (e, f) €Pts(€), f > 0,

o if, force C,FAILH e(f —1,c) and FAIL A e(f, ¢),
then there is (e1,g) extending (e, f) such that (e;,9) FACCEPT.VREFUSE.
and RECV(m, p) € e1(g,¢) — er(f — 1,¢)
for all messages m and p € II\{c}; and

e if FAIL 4 e(f — 1,m) and FAIL A e(f,m),
then there is (e1,g) extending (e, f) such that (e1,9) = Acec(AWARDS VREJECTS,)
and RECV(m,p) € e1(g,m) — e1(f — 1,m)
for all messages m and p € II\{m}. &

Therefore, any C-system which supports independent recovery also supports weak indepen-
dent recovery.

Now, the proof of the impossibility of independent recovery becomes the proof of the im-
" possibility of weak independent recovery, by the following changes to the proof of Claim 1 in
the proof of Lemma 23: first, delete the line marked “(*)”; second, in the line marked “(**)”,
change the phrase “independent recovery, there is k > ¢” to “weak independent recovery, there

is (es, k) extending (es,%)”. Therefore, we have

Proposition 41 There is no C-system which supports weak independent recovery. &

References 41

Proposition 42 Any C-system M which is subject to process failures and recovery, k-transit
bounded, and weakly terminating also supports weak independent recovery.

Proof: By Lemma 22, all processes are nonfailed and decided in any terminating point
in M. Further, by Theorem 12, any point in M has a terminating extension in which no
nonnull message is received. Pick any point (e, f) €Pts(€) such that Failed(e, f) # 0. There
is a terminating extension (e;,g) of (e, f) in which no nonnull messages are received and all
processes are nonfailed and decided. Failed(e, f) = Failed(e;, f). Therefore, for every process
p € Failed(ey, f), there is a time after f in e; such that p recovers (permanently) and p
decides: for all p € Failed(ey, f), there is k such that f < h < g and (e, h) |EFAILED, and
(e1,h') = ~FAILED,, for k' > h and

(if p=c) (e1,9) = (ACCEPT.VREFUSE,) and RECV(m, q) ¢ e1(g,p) — ex(f — 1,p), or
(if p=m) (e1,9) = Acec(AWARD; VREJECT;,) and RECV(m, q) € e1(g,p) — ea(f — 1,p).

Therefore, all p may recover independently. @

An alternate proof to Theorem 30 is now the following: Fix any weakly terminating C-system
M which is k-transit bounded and subject to process failures and recovery; by Proposition 42,
M supports weak independent recovery, but Proposition 41 shows that no such system exists,
a contradiction.

Acknowledgements

Many discussions with Vassos Hadzilacos greatly influenced the work reported here. Discussions
with Shaike Artsy, Joe Halpern, Manolis Koubarakis, Yoram Moses, Jonathan Rose, Ken Sevcik,
Mark Tuttle, Vic Vyssotsky, and Dave Wilkes helped us to clarify some important issues. This
research was partially supported by the Natural Sciences and Engineering Research Council of
Canada, under grant A3356, and by fellowships from Massey College, Trinity College, and the
School of Graduate Studies at the University of Toronto.

References

[BeHG87] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems, Reading MA: Addison-Wesley Publishing Company, 1987.

[Biirg89] U. Biirger. “A Flexible Two-Phase Commit Protocol.” Computer Networks and ISDN
Systems, 17, 1989, 175-85.

[ChLa85] K.M. Chandy and L. Lamport. “Distributed Snapshots: Determining Global States
of Distributed Systems.” ACM Trans. on Computer Systems, 8, 1 (February 1985),
63-75.

42 References

[ChMi86] K.M. Chandy and J. Misra. “How Processes Learn.” Distributed Computing, 1, 1
(1986), 40-52.

[FaHa88] R. Fagin and J.Y. Halpern. “Reasoning About Knowledge and Probability: Prelimi-
nary Report.” Proc. Conf. on Theoretical Aspects of Reasoning About Knowledge, 6-9
March 1988, Asilomar CA, 277-93.

[Gray79] J.N. Gray. “Notes on Data Base Operating Systems.” in Operating Systems: An
Advanced Course, Ed. R. Bayer, R.M. Graham, and G. Seegmiiller, Berlin: Springer-
Verlag, 1979, 393-481.

[Hadz87] V. Hadzilacos. “A Knowledge Theoretic Analysis of Atomic Commitment Protocols
(Preliminary Report).” Proc. ACM Symp. Principles of Database Systems, 1987,
129-34.

[Hadz88] V. Hadzilacos. Private communication.

[Hadz89] V. Hadzilacos. “On the Relationship Between the Atomic Commitment Problem
and Consensus Problems.” Proc. Workshop on Fault-Tolerant Distributed Computing
(March 1986, Asilomar CA), Eds. B. Simons and A. Spector, Springer-Verlag, 1989.

[Hadz90] V. Hadzilacos. “A Knowledge Theoretic Analysis of Atomic Commitment.” Submit-
ted for publication.

[HaFa89] J.Y. Halpern and R. Fagin. “Modelling knowledge and action in distributed systems.”
Distributed Computing, 3, 4 (1989), 159-77.

[Halp87] J.Y. Halpern. “Using Reasoning About Knowledge to Analyze Distributed Systems.”
in Annual Review of Computer Science, II, Ed. J.F. Traub, Annual Reviews, Inc.,
1987, 37-68.

[HaMo90] J. Halpern and Y. Moses. “Knowledge and Common Knowledge in a Distributed
Environment.” Journal ACM, 37, 3 (July 1990), 549-87.

[HaMT88] J.Y. Halpern, Y. Moses, and M.R. Tuttle. “A Knowledge-Based Analysis of Zero
Knowledge (Preliminary Report).” Proc. Symp. Theory of Computing, 2-4 May 1988,
Chicago IL, 132-47.

[HaZu89] J.Y. Halpern and L.D. Zuck. A Little Knowledge Goes A Long Way: Simple Knowledge-
based Derivations and Correctness Proofs for a Family of Protocols, Revised Research
Report RJ5857, IBM Research Laboratory, Almaden CA, 1989.

[KoTo88] R. Koo and S. Toueg. “Effects of Message Loss on the Termination of Distributed
Protocols.” Information Processing Letters, 27, 4 (1988), 181-88.

[Lamp80] L. Lamport. “‘Sometime’ Is Sometimes ‘Not Never’ (On the Temporal Logic of
Programs).” Seventh ACM Symposium on Principles of Programming Languages, 28-
30 January 1980, Las Vegas, 174-85.

[Lamp81] B. Lampson. “Atomic Transactions.” in Distributed Systems — Architecture and
Implementation, B.W. Lampson, M. Paul, and H.J. Siegert, Eds. New York NY:
Springer-Verlag, 1981. (ISBN 0-387-12116-1)

[Maze89] M.S. Mazer. A Knowledge-Theoretic Account of Negotiated Commitment, Ph.D. The-
sis, Department of Computer Science, University of Toronto, 1989 (available as Tech-
nical Report CSRI-237, Computer Systems Research Institute, University of Toronto,
1990).

References 43

[Maze90] M.S. Mazer. “Communication Requirements for Knowledge Gain in Unpredictable
Distributed Systems,” in preparation. (A preliminary version appeared as “A Link
Between Knowledge and Communication in Faulty Distributed Systems (Preliminary
Report).” Proc. Third Conference on Theoretical Aspects of Reasoning About Knowl-
edge, 4-7 March 1990, Asilomar CA, 289-304.)

[Mose88] Y.0. Moses. “Resource-bounded Knowledge (Extended Abstract).” Proc. Conf.
Theoretical Aspects of Reasoning About Knowledge, 6-9 March 1988, Asilomar CA,
261-76.

[MoTu88] Y.0. Moses and M. Tuttle. “Programming Simultaneous Actions Using Common
Knowledge.” Algorithmica, 3 (1988), 121-69.

[RoKa86] S. Rosenschein and L. Kaelbling. “The Synthesis of Digital Machines With Prov-
able Epistemic Properties.” Proc. Conf. on Theoretical Aspects of Reasoning About
Knowledge, 19-22 March 1986, Monterey CA, 83-98.

[Skee82] M.D. Skeen. Crash Recovery in a Distributed Database System. Ph.D. Thesis, De-

partment of Electrical Engineering and Computer Science, University of California,
Berkeley CA, 1982.

[SkSt83] D. Skeen and M. Stonebraker. “A Formal Model of Crash Recovery in a Distributed
System.” IEEE Transactions on Software Engineering, SE-9, 3 (May 1983), 219-28.
[Tutt89] M.R. Tuttle. Knowledge and Distributed Computation. Ph.D. Thesis, Department of

Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge MA, 1989.

