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Abstract

This paper examines the construction of a 3-D surface model of an object rotating in

front of a camera. Previous research in depth from motion has demonstrated the power of

using an incremental approach to depth estimation. In this paper, we extend this approach

to more general motion and use a full 3-D surface model instead of a 21�2 -D sketch.

The algorithm starts with a flow field computed using local correlation. It then projects

individual measurements into 3-D points with associated uncertainties. Nearby points from

successive frames are merged to improve the position estimates. These points are then

used to construct a finite element surface model, which is itself refined over time. We

demonstrate the application of our new techniques to several real image sequences.

Keywords: Computer vision, 3-D model construction, image sequence (motion) analysis,

optic flow, Kalman filter, surface interpolation, computer aided design, computer graphics

animation.
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1 Introduction 1

1 Introduction

This paper examines the construction of a 3-D surface model from image sequences of an

object rotating in front of a stationary camera. Because the motion of the object between

frames is known, we can use traditional depth from motion techniques to directly recover

the depth of points in the image. Our approach uses a large number of images, where the

motion between successive images is small. This makes it much easier to compute flow

(the stereo correspondence problem is avoided), but makes individual flow measurements

much less reliable. To compensate for this, we use an incremental estimation algorithm to

integrate measurements from successive frames and reduce the uncertainty over time.

The incremental approach to depth estimation was previously developed by Matthies

et al. [1989]. In this paper, we extend their work to true 3-D surface models. A simpler

method for creating such models is to use the object silhouettes to “carve out” a bounding

volume for the model (this method is presented in a companion report [Szeliski, 1990]).

However, to obtain a more detailed description, we need to use the optic flow of the

texture marks to give us a dense estimate of surface shape. Our newshape from rotation

algorithm builds such a model, and also provides us with a framework within which

we can explore a number of important issues in computer vision. These include flow

estimation, uncertainty modeling, incremental estimation, 3-D surface representation and

reconstruction, and massively parallel algorithms.

In addition to being an interesting research topic, the automatic acquisition of 3-D object

models is important in many applications. These include robotics manipulation, where the

object must first be described and/or recognized before it can be manipulated; Computer

Aided Design (CAD), where automatic model building can be used as an input stage to the

CAD system; and computer graphics animation orvirtual reality, where it facilitates the

task of an animator, allowing him easy access to a large catalog of real-world objects. All

of these applications become much more interesting if the acquisition can be performed
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quickly and without the need for special equipment or environments. Our aim is to build

such a system, by using the motion of the turntable and object to provide most of the system

calibration automatically. Because we also intend our system to eventually run in real-time,

finding efficient parallelizable algorithms will be important.

1.1 Previous work

Some of the early work in object motion estimation [Hallam, 1983; Broida and Chellappa,

1986; Riveset al., 1986; Matthies and Kanade, 1987] identified Kalman filtering as a

viable framework for incremental estimation, because it incorporates representations of

uncertainty and provides a mechanism for incrementally reducing uncertainty over time.

Applied to depth from motion, this framework was at first restricted to estimating the

positions of a sparse set of trackable features such as points or line segments [Faugeras

et al., 1986; Matthies and Shafer, 1987] (see also [Ullman, 1984] for an incremental

approach to the related structure from motion problem). Another line of work addressed

the problem of extracting denser depth or displacement estimates from image sequences

(Figure 1). However, these approaches either were restricted to two frame analysis [Horn

and Schunck, 1981; Anandan, 1989] or used batch processing of the image sequence, for

example via line fitting [Bolleset al., 1987; Baker and Bolles, 1989] or spatio-temporal

filtering [Heeger, 1987]. The work of [Matthieset al., 1989] overcame these limitations by

combining a recursive estimation procedure with dense flow measurement. This work has

recently been extended to more general motion by Heel [1990].

Because the camera motion in [Matthieset al., 1989] was a pure translation perpen-

dicular to the line of sight, the resulting image flow was always one-dimensional. Under

more general camera motion, the image flow is two-dimensional and has a spatially varying

uncertainty, which can be characterized using either a two-dimensional confidence measure

[Anandan, 1989] or a 2� 2 covariance matrix [Szeliski, 1989]. When the camera motion
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a b

Figure 1: Spatio-temporal image sequence data: (a) first image in 500 frame sequence, (b)

horizontal slice through spatio-temporal cube. The average inter-frame rotation is 0�72�.

is known, each flow measurement from the image can be converted into a 3-D position

estimate in the scene, and an associated 3� 3 uncertainty (covariance) matrix can be com-

puted. As we will show in this paper, these measurements can be integrated over time

(along with the intensity value associated with each points), and 3-D surfaces can be fitted

to these points.

3-D shape modeling has long been one of the fundamental research areas in computer

vision. The problem is to come up with representations that are sophisticated enough to

model interesting objects, yet simple enough to permit recognition or construction from

images or other sensor data. A variety of surface-based models have been proposed,

including generalized cylinders [Brookset al., 1979], superquadrics [Pentland, 1986], and

deformable finite-element models [Terzopouloset al., 1987]. Volumetric models such as

octrees [Jackins and Tanimoto, 1980; Meagher, 1982] have also been used. One popular

approach to constructing such volumes has been to intersect multiple silhouettes of the
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object seen from different views (see [Chen and Huang, 1988; Szeliski, 1990] for a review).

In this paper, we will use locally parametrized deformable surface models. Our long-term

goal is to build higher-level (parts) descriptions from these surfaces.

The study of incremental shape from rotation is becoming particularly interesting be-

cause of the dramatic increase in computer processing speed, both through the availability

of massively parallel architectures [Hillis, 1985], and the appearance of fast RISC micro-

processors [Hennessy and Patterson, 1990]. Eventually, many of the low-level processing

algorithms used in our research could be implemented using analog processing [Kochet al.,

1986; Hutchinsonet al., 1988]. One of the focuses of our research is the use of fine-grained

parallel algorithms [Poggioet al., 1985; Little et al., 1989]. However, unlike much of

the current research in low-level vision—which embeds the computation in a 2-D plane

of processors—our 3-D models will require more complex representations and processor

topologies.

1.2 Framework

The shape from rotation algorithm developed in this paper converts a series of images into

a 3-D model of the object whose accuracy improves with time. The initial estimates of the

object’s shape are crude because the object motion between successive image pairs is small.

Fortunately, modeling the uncertainty in these estimates allows us to refine them as more

images are seen. Since we wish to build a full 3-D model, we cannot just “forget” a part of

the surface when it becomes occluded. Therefore, a simple 21�2 -D depth map, such as was

used in [Matthieset al., 1989], is not an adequate representation. On the other hand, as the

object continues to rotate, we will see each view more than once, so it is not necessary to

make optimal use of the information in each image.

Before we begin our 3-D surface model construction, we use a preprocessing stage to

calibrate the system and to adapt to the background. The camera parameters (relative to the
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turntable) are determined by imaging a known 3-D reference model such as a calibration

cube (Figure 2 a). We use a binary Gray code painted on the rim of the turntable to

automatically determine its rotation angle without any additional sensors (Figures 2b and

2c). These steps are described in a companion report [Szeliski, 1990], along with an

algorithm for computing a bounding volume for the object from its silhouettes (Figure 2d).

The actual shape from rotation algorithm operates in the following stages. First, the 2-D

optical flow between successive image pairs is extracted over the whole image (Section 2).

The correlation surface corresponding to the Sum of Squared Differences (SSD) measure

is used to compute both the best flow estimate at each point and its 2-D uncertainty. Next,

using the known object motion, we project this flow into a 3-D position measurement

with an associated 3� 3 uncertainty at each point (Section 3). This “cloud” of intensity-

tagged depth values is then refined by merging nearby points from successive frames whose

uncertainties overlap sufficiently (Section 4). A locally parametrized surface is then fitted

to this collection of points (Section 5). This stage reduces the noise in nearby measurements

(using a regularization-based weak smoothness constraint [Poggioet al., 1985]) and fills

in the data where there is unreliable flow information (e.g., in areas of uniform intensity).

The surface model, along with its associated intensities, are then refined as more images

are acquired.

In Section 6 we present some experiments with real image sequences acquired in our

lab. In Section 7 we compare our approach with alternative shape acquisition techniques,

and we suggest a number of extensions to our work, including higher-level surface models

and the merging of multiple object poses.
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a b

c d

Figure 2: Image adaptation, thresholding, and bounding volume computation.

A calibration cube (a) is used to compute the camera parameters during a setup phase.

Next, the system is adapted to a blank turntable to locate the Gray-code position encoding

ring and to memorize the background. Each image (b) is then thresholded, yielding an

object/background (black/white) segmentation (c). The Gray-code ring is used to compute

the turntable angle. An incremental octree construction algorithm is used to produce the

bounding volume (d). See [Szeliski, 1990] for details.
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2 Optical flow

Given two or more images, we can compute a two-dimensional vector field called the

optic flow which measures the interframe motion of each pixel in the image. A number of

different algorithms have been developed previously for extracting the optic flow. In this

paper, we use a variant of correlation called theSum of Squared Differences (SSD) measure

[Anandan, 1989], since it provides us not only with flow estimates but also with uncertainty

estimates for each measurement. Alternative approaches to computing optic flow include

gradient-based techniques [Horn and Schunck, 1981; Lucas, 1984; Nagel, 1987], spatio-

temporal filtering [Adelson and Bergen, 1985; Heeger, 1987; Fleet and Jepson, 1989], and

direct depth estimation [Heel, 1990] (see [Nagel, 1987; Anandan, 1989] for a comparison

of several of these techniques).

The Sum of Squared Differences method integrates the squared intensity difference

between two shifted images over a small area to obtain an error measure

et�u� v;x� y� �
Z Z

w��� ���ft�x� �� y � �� � ft�1�x� u� �� y � v � ���2 d� d�� �1�

whereft�1�x� y� andft�x� y� are the two successive image frames, andw�x� y� is a win-

dowing function. The SSD flow estimator selects at each pixel�x� y� the flow�ũ� ṽ� which

minimizes the SSD measure. In Anandan’s algorithm, a coarse-to-fine technique is used to

limit the range of possible flow values. In our shape from rotation work, a single-resolution

algorithm is used since the range of possible motions is small.

The error surfaceet�u� v;x� y� can be used not only to determine the best displacement

estimate�ũ� ṽ�, but also to determine the confidence in this estimate. Anandan and Weiss

[1985] observed that the shape of the error surface differs depending on whether both, one,

or none of the displacement components are uniquely computable (corresponding to an

intensity corner, an edge, or a homogeneous area). They proposed a method for computing

the confidence measures based on the principal curvatures and the directions of the principal
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axes in the vicinity of the error surface minimum. Matthieset al. [1989] showed how for a

one-dimensional displacement, the variance in the displacement estimate can be computed

from the second derivative of a parabola fit to the error curve. This result was extended to

two dimensions in [Szeliski, 1989], thus providing a statistical justification for the heuristics

developed by Anandan and Weiss.

The derivation in [Szeliski, 1989] involves modeling the two image framesft andft�1

as displaced versions of the same image corrupted with additive white Gaussian noise with

variance�2
n. A quadratic of the form

e�t�u� v;x� y� �
�
u� ũ v � ṽ

�
A

�
�� u� ũ

v � ṽ

�
��� c �2�

is fitted to the error surface defined by (1) by finding the values ofA, ũ, ṽ, andc which

minimize the weighted least squared error from the measurede�u� v;x� y� values. We then

set the disparity estimate at�x� y� to �ũ� ṽ�, and set the variance of this measurement to

2�2
nA

�1. This simple model does not account for occlusions, disparity gradients or other

optical effects. It is thus only valid over small windows, and breaks down in certain areas

such as at occlusion boundaries. In the context of shape from rotation, we expect the flow

estimates to be most reliable when a surface point is locally translating in front of the

camera, and less reliable as it recedes and disappears (because of excessive warping and

occlusion effects)1. The analysis presented in [Szeliski, 1989] can also be used to derive

the correlation between adjacent flow estimates and between flow estimates obtained from

successive frames.

To help differentiate between pixels which are part of the object and those in the

background, it may be useful to distinguish valid flow measurements on the object’s surface

from all other measurements. A very simple approach to this problem is to use the

1Under rotation, almost every image patch is warping (undergoing a non-translation affine transformation)

at every instant. However, the amount of this warping is usually very small if the images are tightly spaced

in time.
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background values before the object was placed on the turntable to threshold the image

into foreground and background regions [Szeliski, 1990]. This approach will often fail,

however, due to effects such as shadows, specularities, and nearby object/background gray

levels. Another approach is to detect areas with zero optical flow by computing the SSD

measure for�u� v� � �0�0� and classifying the pixel as background if this is smaller than any

other SSD value. This test may fail to find some background pixels (because of imaging

noise), and may erroneously classify some object pixels as background pixels, either in

homogeneous areas, or at points where the motion is purely vertical (points lying on a

plane parallel to the image plane passing through the rotation axis). The latter kind of

error is fairly harmless, since we do not require or even expect a truly dense estimate of

flow over the whole objects (e.g., areas of constant intensity will always yield little or no

information).

Two additional indicators for suspect flow values suggested by Anandan [1989] are a

high value for the minimum ofet�u� v;x� y�, and a difference in shape betweenet�u� v;x� y�

and the image autocorrelation at�x� y�. In practice, we have found it unnecessary to

explicitly compute regions of zero or bad flow, since we can use the temporal integration

phase (Section 4) to discard erroneous measurements.

3 Constrained flow and depth recovery

The general 2-D flow estimator described in the previous section is a useful first step in

determining shape from motion when the object motion (egomotion) is unknown. In shape

from rotation, however, we know the angular position of the turntable in each frame, and

therefore the relative 3-D motion of the object (or equivalently, of the camera). This makes

the problem of depth recovery easier, and obviates the need for additional assumptions

such incremental rigidity [Ullman, 1984]. Using the known motion, we can compute for

each pixel a constraint line for the flow at that point, with the actual (ideal) flow observed
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Figure 3: Object, camera, and screen coordinates

depending only on the depth of the surface at that pixel. Furthermore, we can compute a

bounded segment for each flow constraint line from the minimum and maximum expected

depth values (e.g., from a bounding volume or cylinder).

The simplest way to compute these constraint lines is to use homogeneous coordinates

[Newman and Sproull, 1979]. Given a point in object-spacep � �X�Y�Z�1�, we can

convert it to screen coordinatesq � �x� y� z�1� using a linear matrix transformM followed

by a projection operationP (Figure 3). First, we multiplypbyM to obtain the camera-based

coordinatesp�,

Mp �

�
���������

X �

Y �

Z �

W �

�
���������
� p�� �3�

The transformation matrixM encodes all of the information about the perspective and

screen transformations such as the focal length and the aspect ratio. Next, we use the

parameter-free projection operatorP to computeq,

P
�
p�
	
�

1
W �

p� �

�
���������

X ��W �

Y ��W �

Z ��W �

1

�
���������
� q� �4�
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The above equations describe theforward projection from 3-D object space to screen

(image) space. If we know thedepth buffer valuez for a given pixel�x� y�, we can recover

its 3-D location usingbackprojection (Appendix A),

p � P


M�1q

�
� �5�

Computing the flow constraint line for each pixel is therefore straightforward. From

our knowledge of the camera calibration and turntable rotation, we can precompute the

projection matricesMt�1 andMt for the previous and current frames. A pixel in the

current frameqt should appear at

qt�1 � P


Mt�1P



M�1

t qt
��

� P


Mt�1M

�1
t qt

�
�6�

in the previous frame (Appendix A). Of course, for each pixel, we do not know the correct

value ofzt, but we can project the minimum and maximum expected depth valuesz�t and

z�t (e.g., from the depths at the front and back of the turntable). We therefore obtain two

endpoints�x�t�1� y
�
t�1� z

�
t�1� and�x�t�1� y

�
t�1� z

�
t�1� for the segment describing the expected

previous point position. This constrains the possible flow values to lie on a line between

�u�� v�� � �xt � x�t�1� yt � y�t�1� and�u�� v�� � �xt � x�t�1� yt � y�t�1�.

Figure 4 shows a set of flow constraint segments computed for the standard imaging

setup shown in Figure 1 and a 2� rotation of the turntable. Notice how the flow is generally

upward at the right edge of the image and downward at the left edge. This is as expected

for a scene spinning counterclockwise in front of the camera. Notice also how the flow

constraint lines in a given row line up almost perfectly. This effect is even more pronounced

for the smaller rotations (0�5� to 1�5�) which we use in practice.

In the case of general motion, the flow constraint line at each pixel defines the�u� v�

values along whiche�u� v;x� y� should be searched for a minimum. For our particular

imaging setup—with the vertical axes of the camera and turntable aligned, and small

inter-frame displacements—we can use a near-epipolar line constraint to further reduce the
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Figure 4: Flow constraint segments for 2� rotation. The dot indicates the pixel center

(subsampled every 16th pixel), and the two ends of the tee indicate the minimum and

maximum expected flow values.
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computational complexity of our algorithm and to make it more regular. For each pixel in

a given row of the current image, the pixel corresponding to a zero horizontal displacement

�0� v� is extracted from the previous image, thus forming the approximate epipolar line2.

The two rows are then passed to a 1-D flow extraction algorithm similar to that used in

[Matthieset al., 1989], which we describe below.

The flow extraction algorithm we use is designed to compute the flow estimateũ to sub-

pixel (floating-point) precision, and a confidence (variance) estimate for this measurement.

Each row is first interpolated by a factor ofr � 4 using a Hermite cubic interpolator

[Szeliski and Ito, 1986] resulting in a smoother error surface at each point. For each

horizontal displacement in the range�u�� u�� (in 1�r steps), the discrete squared difference

measure is computed

e�u;x� �
b�r�1��2cX
k�b�r�2c

�gt�rx� k�� gt�1�r�x � u� � k��2�

wheregt�x� andgt�1�x� are the interpolated rows. The weighted summation over a square

patch is implemented using iterated two-dimensional box filtering [Burt, 1981]

e�i��u;x� y� �
1
9

1X
k��1

1X
l��1

e�i�1��u;x� k� y � l��

This gives us a discrete approximation to the SSD measure at each pixel.

To extract the horizontal component of the flow at each pixel, we find the discrete

valueumin which minimizese�u;x� y�. A parabola fit to the three pointse�umin � 1;x� y�,

e�umin;x� y�, ande�umin � 1;x� y�,

e�u;x� y� � a�u� umin�
2 � b�u� umin� � c� �7�

(Figure 5) is used to compute the sub-pixel flow estimate

ũ � umin � b�2a �8�

2Since we know the motion between the two frames, i.e., we know therelative orientation [Horn, 1990]

of the two cameras, we could instead use the standard epipolar geometry to find the set of corresponding

epipolar lines in the two images [Bolleset al., 1987].
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Figure 5: Parabolic fit to SSD error surface. The large circles indicate discrete values of

e�u;x� y�; the dotted line is the parabola fit to the three lowest values.

and its variance

�2
u � 2�2

n�a� �9�

where�2
n is the variance of the image noise [Matthieset al., 1989]. The image noise can be

estimated locally using�2
n � c�2, which has the advantage of increasing the flow variance

estimate in regions with a large minimum SSD value.

Once the flow estimate has been determined from the image pair, we can compute the

current screen depthzt by linear interpolation

zt � z�t �
z�t � z�t
u� � u�

�u� u�� �10�

and the variance in this estimate from

�2
zt �

�
z�t � z�t
u� � u�


2

�2
u� �11�

This gives us a dense estimate of depth and uncertainty at each pixel in the image. At

this point, we could throw away the measurements corresponding to background points,
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occlusion boundaries, and homogeneous areas by thresholding on the variance. We could

also try to reduce the noise in the depth measurements by using regularization-based

smoothing, as was done in [Matthieset al., 1989]. In our current experiments, we are able

to obtain good results without the use of either background point removal or image-based

smoothing. It remains to be seen if these additional steps would improve the quality of our

estimates.

To convert these screen-based measurementsqt � �xt� yt� zt�1� into 3-D object space

locationspt � �Xt� Yt� Zt�1�, we use backprojection

pt � P


M�1

t qt
�
�

This gives us a collection of points in 3-space consistent with the flow measurements we

computed.

For each 3-D point, we also need to compute a 3� 3 covariance matrix

Cpt
�
D
�pt � pt��pt � pt�

T
E
�

which characterizes the shape and magnitude of the point’s positional uncertainty. Com-

puting this covariance matrix is tricky, since the projection operator is non-linear. If the

covariance in the original measurementCqt
is sufficiently small, we can use the approxi-

mation

Cpt
�

�
�b

�qt



Cqt

�
�b

�qt


T

� �12�

where

b�q� � P


M�1

t q
�

is the backprojection operator (the Jacobian�b��qt can be decomposed into a gradient of

the projection operator times the inverse transform matrixM�1
t ). In the above formula,

we set the positional uncertainty inx andy to some small value (for example,�2
x � �2

y �

�1/2 pixel�2).
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A simpler approach, which we used in our experiments, is to backproject the original

point plus one standard deviationq�
t � �xt� yt� zt � �zt�1� to get the vector

rt � p�t � pt � P


M�1

t q
�
t

�
�P



M�1

t qt
�
� �13�

This vector is the major axis of the covariance ellipsoid. The other two axes of the ellipsoid

st andtt can be chosen arbitrarily and their length (standard deviation) set to a suitably

chosen constant value�0 (say, corresponding to the size of a1�2 pixel projected into the

middle of the object). We can then form the covariance matrix using

Cpt
� RtR

T
t with Rt �

�
rt st tt

�
� �14�

Note that sinceCpt
can be derived fromrt and�0, it is sufficient to keep a list off�pt� rt�g

vector pairs to fully describe the locations and uncertainties of the points computed from

the current optic flow field.

4 Incremental estimation (points)

The result of our two-frame optic flow analysis and backprojection into object space gives

us a “cloud” of uncertainty-tagged points lying on the surface of the object (each point also

carries along with it the intensity of the associated pixel3). As the object continues to rotate

and more points are acquired, point collections from successive frames must be merged in

order to reduce the noise in point location estimates. Our collection of 3-D surface points is

a less restrictive representation than the previously used depth map representation [Matthies

et al., 1989; Heel, 1990], which would not allow us to build a full 3-D model since it is

univalued at each image pixel.

To represent the 3-D position of the points, we use anobject-centered coordinate

reference frame rather than a camera-centered frame. The origin of this frame is fixed to the

3In theory, we could estimate the covariance between the intensity and the point location�x� y� from the

local gradient.



4 Incremental estimation (points) 17

screen

�x� y�

A
A

A
A

A
A

A

� � � � � � � � � � A
A

�

�

z

�
�

�z s
s

ss
s

Figure 6: Merging uncertainty ellipses.

top of the turntable and rotates with it (Figure 3). This makes the estimates of 3-D position

much more reliable, especially when information is being integrated over multiple frames

[Tomasi and Kanade, 1990].

The question of how and when to merge neighboring 3-D points from different frames

is in general quite difficult. We start by using an uncertainty-weighted distance measure

dij � �pi � pj�
T �C�1

i �C�1
j ��pi � pj�� �15�

If this distance is sufficiently small, we can merge the two points and replace them with a

single measurement

pk � Ck�C
�1
i pi �C�1

j pj� �16�

with a reduced uncertainty

Ck � �C�1
i �C�1

j ��1� �17�

The problem with this approach is that there may be many candidate matches for a

given point, especially if one elongated uncertainty ellipsoid overlaps several other points

(whose own ellipsoids are distinct). Consider for example the points in the upper right of

Figure 6. The points with the nearly horizontal uncertainty ellipses were measured much

earlier, and the rotation of the turntable has rotated their ellipses. It is unclear with which

point(s) the new measurement (with the vertical uncertainty ellipse) should be merged. It

is better to inhibit merging in this case, since we cannot determine which match is correct.
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A simpler and more conservative combination rule is to limit merges to points whose

uncertainty ellipsoid major axes are nearly parallel and which also meet the previous

distance criteria (middle of Figure 6). In this case, it is much easier to determine which

of the nearby points is the best candidate for a merge. In practice, we make the merging

step even simpler by re-projecting the 3-D locations and their uncertainties into the camera

image plane (�x� y� z� and�z in Figure 6). Two points are merged if their image plane

centers lie within a small distance of each other (say,1�2 pixel) and their depths overlap

sufficiently (using a 1-D version of the uncertainty-weighted distance). The thresholds for

merging points are set high enough so that neighboring measurements from the same frame

are not merged (we want our final model to be at least as accurate as the input image) but

low enough so that oversampling (the density of 3-D points per image pixel) is not too

great.

This simplified framework has two additional advantages. First, the image plane can

be used as a natural binning structure to group nearby points together for merging. Second,

we can continue to use thef�pt� rt�g (location� 1-D uncertainty) representation for all of

the 3-D points. What we give up in this case is the ability to increase the resolution in the

point locations orthogonal tort over time (e.g., if the points in the upper right of Figure 6

had been merged, the uncertainty would be small in all directions). This is not a problem,

however, because our surface interpolation stage will smooth the surface and further reduce

the positional uncertainty.

5 Local surface fitting

Once the 3-D point estimates acquired from multiple frames have been integrated suffi-

ciently to make them reliable, we can start building a 3-D surface model. This model serves

both to reduce the noise in the position estimates (through smoothing) and to fill-in areas on

the object surface where no reliable flow information is available. The 3-D surface model
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Figure 7: A 3D surface model. This surface can either be described using a finite element

model, or using a spring-mass system. The behaviors of the two models are similar.

not only provides us with a detailed description of the object’s shape, but also tells us the

intensity (albedo) of each point on the surface (ignoring, for now, the variation of shading

with object orientation).

The surface model which we use is a finite element model, i.e., a collection of 3-D nodal

variables roughly corresponding to the set of 3-D position measurements. This model can

be viewed as either a true surface model composed of polygonal facets or simply as a

neighborhood graph defined over the nodal variables (Figure 7). In either case, we start

with the 3-D position measurements and add or remove points to obtain a smooth and

continuous surface. Each point has a list of neighbors, which can be chosen either by

finding the closest neighbors or by using the original topological relationship between the

pixels that generated these points.

Generating a complete mesh for the surface from a sparse and scattered collection of

points is in general quite difficult. For example, we could use Sha’ashua’s [1988] Structural
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Figure 8: Oriented particle system with global and local coordinate frames.

Saliency theory, but this requires a dense (in this case 3-D) network of points, which would

be computationally prohibitive. A simpler solution is to allow surface points to move into

gaps in the surface. However, we have to be careful not to fill across true holes in the model,

such as the handle in a cup (here, the bounding volume computed by [Szeliski, 1990] would

be useful). Another possibility is to use the points on the surface of the bounding volume

as candidates for mesh points.

To circumvent these difficulties, we have developed a new 3-D surface interpolation

model based on interactingoriented particles [Szeliski and Tonnesen, 1991]. These parti-

cles, which represent local surface patches, have energy functions which favor the alignment

of tangent planes of neighboring particles, thus endowing the surface with an elastic resis-

tance to bending. The particles also have a preferred inter-particle spacing distance, which

encourages a uniform sample density over the surface.

Each particle is represented by 6 state variables, 3 for position, and 3 for orientation

(Figure 8). This is similar to theDarboux frames used by Sander and Zucker [1990], except

that no local curvature information is kept. Within each particle’s local coordinate frame,

the energy function defining its interactions with other particles is

Eij � �1�
r2

a2
�exp�

1
2

�
r2

b2
�

z2

c2



where r2 � x2 � y2�
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andqij � �x� y� z� is the local coordinate of particlej in particlei’s coordinate frame,

qij � R�1
i

� �pj � pi��

whereRi denotes the orientation of particlepi. In addition to the inter-particle smoothness

forces, we use external forces to attract surface particles to the original sparse data [Szeliski,

1989].

Once a reasonably accurate surface model has been constructed, we can dispense with

the optic flow computation altogether. As each new image arrives, it directly modifies the

deformable surface model and its associated intensities by making small local changes which

better register the model and the image. The data constraint energy between the surface

model and the sparse data points is therefore replaced with a direct intensity matching

energy

EI �
1
2

Z �
f�x�u� v�� y�u� v��� I�u� v�

�2 �������x� y���u� v�

����� du dv� �18�

wheref�x� y� is the new image,x�u� v� andy�u� v� are the projected screen coordinates of

the surface model, andI�u� v� is its intensity.

6 Experimental results

We have performed a number of experiments with our shape from rotation algorithms on

both live and off-line (“canned”) image sequences. The experimental setup consists of a

spring-wound microwave turntable with a position encoding grid taped to its side (Figure 1)

and a stationary camera mounted on a tripod (General Imaging MOS-5300 Video Camera

with a Fujinon 12.5-75mm TV zoom lens). A rough calibration of the intrinsic and extrinsic

camera parameters can be obtained by locating the ellipse that defines the turntable top and

measuring the camera to turntable distance. A more exact calibration can be obtained using

multiple images of a calibration cube [Szeliski, 1990] (Figure 2a).
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The live experiments involve building an octree bounding volume of the object, pro-

cessing a 512� 480 monochrome image every 3.4 seconds on a RISC-based workstation

[Szeliski, 1990]. The algorithm is first adapted to the empty turntable while it is spinning,

both to memorize the background, and to locate the position encoding ring. After the object

is placed on the table, each new image is then thresholded and the turntable angle computed

from the binary codes averaged over 32 columns (accurate to about 0�1�). The bounding

volume is then computed from the object silhouettes (Figures 2b–d).

For the off-line experiments, we first recorded onto videotape a number of image

sequences of different objects spinning on the turntable (Figures 9–11a). We then digitized

each sequence using the single-frame playback capabilities of our video recorder to obtain a

high resolution image sequence of about 500 frames (about 0�72� rotation between frames).

For the experiments presented in this paper, each image was subsampled from 512� 480

to 256�240 with only every second frame being used. The resulting interframe rotation is

about 1�44�, with a maximum horizontal flow (on the turntable edge) of about 2.9 pixels.

These image sequences were input into our optic flow extraction algorithm, whose

output was then backprojected into 3-D world coordinates. Figures 9, 10, and 11 show

three of the image sequences we are using and the results of these initial depth extraction

stages. The first image (a) in each figure shows the first frame of the input intensity image

sequence. The second image (b) shows an intensity-coded depth map extracted from the

first pair of images, where each local flow estimate has been converted to a screen-based

depth valuez (depth values with high uncertainty are not shown). The third image (c)

shows the inverse variance (certainty) at each pixel. This certainty is much higher in

textured areas and near strong intensity gradients. After eliminating the estimates whose

variance is too large, we project the depth estimates into 3-dimensional position estimates.

These are shown in the fourth part (d) of each figure, using a top view of the object to better

see its structure (the wireframe cube and axes are for reference only). Both the circular

structure of the turntable edge, and the rectangular structure of the tea box (Figure 9) and
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the domino cube (Figure 11) are roughly recovered. The structure of the dodecahedron

(Figure 10) is more difficult to see from the top view.

The next step in the shape from rotation algorithm consists of merging neighboring 3-D

points acquired from different viewpoints. Figures 12, 13, and 14 show the results of this

merging step, operating incrementally on the complete 250 image sequences. We present

this data as isolated points shown in 4 different projections: top, front, side, and oblique.

Unfortunately, it is somewhat difficult to gauge the true shape of the object using these flat

two-dimensional projections. In our own experiments, we can rotate the object interactively

to get a good sense of the depth and relationship of the points (kinetic depth effect). We also

use multiple colors to display points from different iterations (when examining the merging

step).

From these figures, we can see that the overall shape of the objects is recovered well,

although the exact surface data is not very smooth. Adding a small amount of image-plane

smoothing should help to reduce this effect [Matthieset al., 1989]. Of course, once a

complete surface model is fit to this sparse data, the resulting solution will also be smooth.

Figures 13b–d show that in some cases, shadows will be incorporated into the object model

(under many imaging and lighting geometries, the shadows form non-rigid structures, and

are therefore discarded by the temporal integration stage). To remove these shadow points,

we could either cut off the bottom of the model, or use a more sophisticated color-based

image preprocessing stage. More detailed examination of the data reveals that even after

integration over many frames, the depth estimates near horizontal edges are still poor. This

suggests a bias in our flow estimator, which could be reduced either by using more temporal

averaging (antialiasing), using using spatio-temporal filters [Fleet and Jepson, 1989], or

using variable-sized windows [Okutomi and Kanade, 1990].
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a b

c d

Figure 9: Flow computed fromassam image series

(a) first image in sequence (b) depth map from flow (darker is nearer) (c) certainty in depth

estimates��2
z (darker is higher certainty) (d) top view of 3-D point cloud
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a b

c d

Figure 10: Flow computed fromdodecahedron image series

(a) first image in sequence (b) depth map from flow (darker is nearer) (c) certainty in depth

estimates��2
z (darker is higher certainty) (d) top view of 3-D point cloud
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a

c d

Figure 11: Flow computed fromdomino image series

(a) first image in sequence (b) depth map from flow (darker is nearer) (c) certainty in depth

estimates��2
z (darker is higher certainty) (d) top view of 3-D point cloud
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a b c d

Figure 12: Final merged data fromassam image series: (a) top view (b) oblique view (c)

front view (d) side view

a b c d

Figure 13: Final merged data fromdodecahedron image series: (a) top view (b) oblique

view (c) front view (d) side view

a b c d

Figure 14: Final merged data fromdomino image series: (a) top view (b) oblique view

(c) front view (d) side view
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7 Discussion

The techniques we have described in this paper perform a shape construction task similar to

that usually associated with active range sensors [Agin and Binford, 1976; Woodham, 1981;

Besl and Jain, 1985]. An example of such a sensor, which can be used in short-distance

indoor environments, is structured light, where an encoded light pattern falling on the object

is used to give direct (and usually sparse) measurements of depth [Agin and Binford, 1976;

Vuylsteke and Oosterlinck, 1990]. Compared to active range sensors, our approach requires

a far less structured environment, since no special lighting sources are required, and the

calibration of the system is simple and fairly automatic. Our technique also has the potential

for better accuracy since our measurements are dense (at least in textured areas), and because

we see more views of the object. On the other hand, our flow-based approach will fail in

areas where the surface has a uniform albedo. An experimental comparison of these two

techniques should be performed to better quantify these effects. Combining structured light

with the shape-from-rotation paradigm should result in an algorithm that works under a

wider variety of conditions, but at the expense of increased hardware complexity.

An alternative to the approach presented in this paper is to use the silhouette of the

object in each frame to construct a bounding volume for the object [Szeliski, 1990]. This

bounding volume can provide a non-linear (inequality) constraint on the position of surface

points. Tracking the silhouettes through three or more images can also be used to estimate

the location and curvature of points on the limb of the object [Giblin and Weiss, 1987;

Vaillant, 1990; Cipolla and Blake, 1990]. Combining silhouette-based and flow-based

approaches should yield an algorithm that works for a much wider variety of object shapes

and textures.

Our shape from rotation algorithm would be even more useful if we could change the

position of the camera and/or the object. The former case is easier to handle: we simply re-

calibrate the system, and continue processing with the new camera parameters. The change
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in object orientation caused by repositioning it on the turntable is also simple to handle if

the new object pose is known. Determining this new pose from the surface data itself is

more difficult. A three-dimensional generalization of an existing sparse range matching

algorithm [Szeliski, 1988] should help us here.

Additional visual cues for reconstructing the object’s shape should be added to our

algorithm to make it more generally applicable and more robust. Shape from shading

[Horn and Brooks, 1989] is a particularly interesting cue, since it provides information that

is usually complementary to optic flow (it works best in uniform albedo areas). Specularities

[Klinker et al., 1988], which create difficulties for the current algorithm, would also be a

powerful cue for shape computation [Healey and Binford, 1987]. To determine the lighting

characteristics of our environment, we could use a reflective sphere or cube placed on

the turntable during our calibration phase. While shape from shading and shape from

specularities could be applied to a single image at a time, they may prove to be even more

powerful when applied to a dynamic sequence.

The algorithm described in this paper builds a detailed locally parameterized surface

model of the object. The next step in processing would be to build a higher-level description

of the object, either for more efficient CAD/graphics manipulation, or for object recognition.

An example of such a model would be a superquadrics parts model, which could be fitted

directly to our sparse collection of 3-D points [Pentland, 1986]. However, if the part

model does not fit the data well, we may wish to use something in between a finite

element deformable model and a globally parameterized model, for example, adeformable

superquadric [Terzopoulos and Metaxas, 1990]. This kind of model could also “snap” into

a variety of preferred shapes such as cylinders or boxes [Terzopoulos and Metaxas, 1990].
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8 Conclusions

Shape from rotation is a practical approach to building 3-D models from a sequence of

images. The goal of this work is to produce a locally accurate model of shape and intensity

of an unknown object, which could later be used to build a high-level parts description. As

such, this technique should be useful in a variety of robotics and CAD tasks, as well as

providing a novel source of objects for computer animation systems.

The design of our algorithm is motivated both by the increasing availability of massively

parallel architectures for computer vision tasks, and the recent success of incremental

algorithms in building high-quality depth maps from motion sequences. This work can be

viewed as an extension of this recent work in 21�2 -D incremental depth estimation to full

3-D shape reconstruction.

The design of a complete shape from rotation system requires the solution of a number

of fundamental computer vision problems. These include flow estimation, uncertainty mod-

eling, incremental estimation, 3-D surface representation and reconstruction, deformable

(energy-based) models, and massively parallel algorithms. We have implemented and

tested the main stages of processing (flow constraints, flow estimation, backprojection into

3-D, and 3-D point merging), but much interesting work remains to be done (surface re-

construction and refinement, evaluation, and enhancements). We expect that shape from

rotation will prove to be an interesting and challenging problem to solve, as well as a good

framework for studying various important computer vision techniques.
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A Inverse perspective projection with homogeneous coor-

dinates

To compute the world (object) coordinates of a pointp given its screen coordinatesq, we

can use the projection operatorP after the inverse matrix transformationM�1. To see that

this is the case, we note from (4) that

p� � W �q

where the value ofW � is unknown. From (3) we have

p �M�1p� � W �M�1q�

But since we know that the fourth element ofp � �X�Y�Z�1� was originally 1, we can

simply normalizeM�1q to obtain the formula in (5)

p � P


M�1q

�
�

Similarly, if we wish to determine where the pixel at timetdenoted by screen coordinates

qt was at timet� 1 (denoted byqt�1), we have

p � W �
tM

�1
t qt

and

qt�1 � P (Mt�1p) � P


Mt�1M

�1
t qt

�

(since the projection operator is invariant to a uniform scaling of its input). Thus, even

for composite transformations of coordinates, we only have to perform one projection

operation at the end of the transformation,even if multiple perspective or inverse perspective

transformations have occured.
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