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Abstract

Most complexity measures for concurrent algorithms for asynchronous shared-
memory architectures focus on process steps and memory consumption. In
practice, however, performance of multiprocessor algorithms is heavily in-
fluenced by contention, the extent to which processes access the same loca-
tion at the same time. Nevertheless, even though contention is one of the
principal considerations affecting the performance of real algorithms on real
multiprocessors, there are no formal tools for analyzing the contention of
asynchronous shared-memory algorithms.

This paper introduces the first formal complexity model for contention
in multiprocessors. We focus on the standard multiprocessor architecture in
which n asynchronous processes communicate by applying read, write, and
read-modify-write operations to a shared memory. We use our model to de-
rive two kinds of results: (1) lower bounds on contention for well known
basic problems such as agreement and mutual exclusion, and (2) trade-offs
between latency (maximal number of accesses to shared variables performed
by a single process in executing the algorithm) and contention for these
algorithms. Furthermore, we give the first formal performance analysis of
counting networks, a class of concurrent data structures implementing shared
counters. Experiments indicate that certain counting networks outperform
conventional single-variable counters at high levels of contention. Our anal-
ysis provides the first formal explanation for this phenomenon.

A preliminary version of this work appeared in the 1993 ACM Symposium
on Theory of Computing.

(©Digital Equipment Corporation, IBM Corporation, and Orli Waarts 1993.
All rights reserved.
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1 Introduction

Most complexity measures for concurrent algorithms for the asynchronous
shared-memory model focus on process steps and memory consumption. In
practice, however, performance is heavily influenced by contention, the extent
to which processes access the same location simultaneously. Because of lim-
itations on processor-to-memory bandwidth, performance suffers when too
many processes attempt to access the same memory location simultaneously.
In shared-bus architectures, for example, simultaneous attempts to access the
same shared variable may saturate the bus, resulting in substantial delay [4].
In a network-based architecture, simultaneous attempts to access the same
memory module may overload certain network switches, also resulting in de-
lay. The phenomenon of memory contention is well-known to practitioners,
and a variety of ad-hoc mechanisms are used in practice to reduce contention!.
Nevertheless, even though contention is one of the principal considerations
affecting the performance of real algorithms on real multiprocessors, no for-
mal theoretical tools are available to analyze the contention produced by
asynchronous shared-memory algorithms. Consequently, although the stan-
dard shared-memory model is useful for developing concurrent algorithms, it
does not provide a satisfactory performance model.

This paper introduces for the first time a formal complexity model for
contention in shared-memory multiprocessors. We use our model to derive
two kinds of results: (1) lower bounds on contention for well known com-
mon problems such as agreement and mutual exclusion, and (2) trade-offs
between latency (maximal number of accesses to shared variables performed
by a single process in executing the algorithm) and contention for these
problems. Informally, if you want to reduce contention when concurrency is
high, you must pay a certain cost even when concurrency is low, and vice-
versa. Moreover, we give for the first time a formal performance analysis of
counting networks, a class of concurrent data structures that provide efficient
high-concurrency shared counters that has been the subject of much recent
research [2, 7, 29, 30, 32].

More specifically, we focus on a multiple instruction/multiple data (MIMD)
architecture in which n asynchronous processes communicate by applying

!Examples include test-and-test-and-set locks [39], exponential backoff [4, 36], combin-
ing networks [25, 37], and clever algorithms for spin locks and barriers [4, 27, 35].
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read, write, and read-modify-write operations to a shared memory. A read-
modify-write operation atomically reads a value v from a memory location,
writes back f(v), where f is a predefined function, and returns v to the
caller. Nearly all modern processor architectures support some form of
read-modify-write for interprocess synchronization. Common read-modify-
write instructions include test-and-set, memory-to-register swap, fetch-and-
add [25], compare-and-swap [31], and load-linked/store-conditional instruc-
tions [13, 41]. Asynchrony means that there is no bound on processes’ rel-
ative speeds. In real shared-memory multiprocessors, sources of asynchrony
include page faults, cache misses, scheduling preemption, clock skew, varia-
tion in instruction speeds, and perhaps even processor failure.

In our model, simultaneous accesses to a single memory location are seri-
alized: only one operation succeeds at a time, and other pending operations
must stell. Our measure of contention i1s simply the worst-case number of
stalls that can be induced by an adversary scheduler. This model (like all
complexity models) is an abstraction of how real machines actually behave.
Nevertheless, we believe it is accurate enough to make useful comparisons,
and simple enough to be tractable. In particular, this model is well-suited for
comparing alternative algorithms, and for deriving lower and upper bounds.

We analyze contention in several fundamental shared-memory algorithms.
First, we derive tight or, in some cases, nearly tight asymptotic bounds on
the contention produced by several classes of counting networks studied in
the literature. In each case we show that the contention in the counting
network is indeed substantially lower than the contention incurred by the
conventional single-variable implementation of a shared counter. Experi-
ments have shown that certain counting networks outperform conventional
single-variable counters at high levels of concurrency [7, 29]. Our results
explain this phenomenon.

The consensus problem [23] is fundamental to synchronization without
mutual exclusion and lies at the heart of the more general problem of con-
structing highly concurrent data structures [28]. We give the first bounds
on contention in shared-memory algorithms for consensus. The bounds are
tight: ©(n) stalls per process, where n is the number of processes participat-
ing in the protocol. Bounds for consensus imply lower bounds for a variety
of more complex data structures and protocols. The randomized consensus
problem [1, 5, 6, 8,10, 11, 19, 38] is a variation of consensus which is required
to terminate in finite expected time (instead of finite time). Randomization
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has a surprising effect: it allows contention to be traded against latency.
The contention ¢ can vary from ©(n) to ©(1), but the latency is at least
(n—1)/c.

Next we show lower bounds on contention for n-process mutual exclusion,
and we show that this problem also has an inherent latency/contention trade-
off. In contrast to consensus, mutual exclusion is not required to be non-
blocking: processes are allowed to wait for each other. In fact, any solution
to the mutual exclusion problem necessarily requires waiting. Intuitively, this
will yield a weaker latency/contention trade-off. We define one-shot mutual
exclusion, a subproblem of mutual exclusion that must be solved by any
mutual exclusion protocol, but that does not a fortior: require waiting, and
show that for any one-shot mutual exclusion algorithm with contention ¢ the
latency is at least Q(logn/c).

The remainder of the paper is organized as follows. Section 2 describes our
formal model of contention. Section 3 presents our performance analysis of
the bitonic, periodic, and linearizable counting networks, and compares their
performance with the naive single shared-variable solution. Section 4 derives
lower bounds for contention and latency/contention trade-offs inherent in
consensus. Section 5 analyses the latency/contention trade-offs inherent in
mutual exclusion. Section 6 closes with a discussion.

2 Model

We consider a multiple instruction/multiple data (MIMD) architecture in
which n asynchronous processes communicate by applying read, write, and
read-modify-write operations to a shared memory. A read-modify-write op-
eration atomically reads a value v from a memory location, writes back f(v),
where f is a predefined function, and returns v to the caller. Asynchrony
means that there is no bound on processes’ relative speeds.

Algorithms in this model are often viewed as a game played between a
set of processes and an adversary scheduler. Each process takes two kinds of
steps:

1 Invocation: A process may initiate a memory operation. Once initiated, an
operation is pending. A process may have only one pending operation
at a time.
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2 Response: A process may receive the response to a pending memory oper-
ation.

An adversary scheduler chooses how steps of different processes are inter-
leaved. At each step, the scheduler selects the next process to run. The
scheduler can take into account the system history and the processes’ inter-
nal states.

To model contention, we introduce a third kind of step:

3 Stall: A process with a pending operation may be delayed by contention
with other processes simultaneously trying to access the same location.

Although the adversary scheduler can dynamically exploit knowledge of
the processes’ algorithms and states, it is nevertheless subject to the following
basic constraint. If process P has an operation pending to a variable v, then
P incurs a stall if and only if a process ¢, with an operation pending at v,
receives a response. Informally, the adversary cannot stall everyone; it must
allow one process at a time to succeed. If several processes have operations
pending at v and one of them receives a response, then all the others incur
a stall.

Stall steps are our measure of contention. An adversary scheduler max-
imizes contention by maximizing the number of stalls. More formally, an
n-process algorithm is an algorithm in which up to n concurrent processes
may participate. We define the contention of an n-process algorithm as the
worst case over all executions of the ratio of the number of stalls that can
be induced by an adversary scheduler divided by n. The performance of an
algorithm may also be limited by conflicts at certain widely-shared memory
locations, often called hot spots [37]. Thus we define the variable-contention
of an n-process algorithm to be the worst case number of concurrent ac-
cesses to any single variable occurring during an execution of the algorithm.
Variable-contention can also be viewed as the contribution of a single vari-
able to the overall contention of the algorithm. Next, the contention of a
concurrent object with concurrency n is defined as the worst case, over all
executions of at most n concurrent processes, of the ratio of the number of
stalls occurring over multiple (potentially concurrent) accesses to the object,
divided by the number of accesses to the object. The performance of a con-
current object depends mainly on the amortized contention, defined as the
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limit to which the contention of the object goes when the number of accesses
goes to infinity.

To illustrate our measures, note that if n processes apply a read-modify-
write operation to variable v at the same time, then the cost of completing all
these operations, measured in stalls, is at least n(n —1)/2, or O(n?). With n
pending operations the adversary can charge n—1 stalls, but it must allow one
pending operation to return. With the n — 1 remaining pending operations,
the adversary may then charge n — 2 stalls, and so on. Performance may be
worse if processes whose operations have responded return to apply additional
operations to v, but the total cost is always O(n) stalls per access. Clearly
this bound 1is tight. Therefore, we say that the amortized contention of a
read-modify-write operation is 8(n). In other words, our model implies that
the performance of read-modify-write operations degrades linearly with the
degree of concurrency, behavior that has been observed experimentally [4].
We assume that concurrent operations applied to the same memory location
are not combined (cf. [25]), although it is straightforward to adapt our model
to such architectures.

Finally, for any asynchronous algorithm, the latency of the algorithm is
the maximal number of accesses to shared variables performed by a single
process in executing the algorithm.

3 Counting Networks

Many fundamental multiprocessor coordination problems can be expressed
as counting problems: processors collectively assign themselves successive
values from a given range, such as addresses in memory or destinations on
an interconnection network. Applications include implementing a shared
counter, load balancing, and barrier synchronization. Counting networks are
a class of concurrent data structures that can be used to count.

In this section, we give a formal performance analysis of several counting
networks. First, we show that the amortized contention of the bitonic count-
ing network [7] is much lower than the conventional solution in which all n
processors increment a single shared variable using a read-modify-write oper-
ation. This result explains why counting networks outperform single-variable
counters in experiments [7, 29]. We also give tight bounds for contention in
linearizable counting networks [30], an extension of the standard counting



3 COUNTING NETWORKS 6

networks in which the order of the values assigned reflects the real-time or-
der of the assignment operations, and nearly tight bounds for the periodic
counting network [7].

3.1 Brief Review

This section gives a brief informal review of counting networks. For more
details, see [7].

A counting network, like a sorting network [15], is a directed graph whose
nodes are simple computing elements called balancers, and whose edges are
called wires. Each token (input item) enters on an input wire, traverses
a sequence of balancers, and leaves on an output wire. Unlike a sorting
network, tokens can enter a counting network at arbitrary times, they may
be distributed unevenly among the input wires, and they propagate through
the network asynchronously.

A balancer can be viewed as a computing element with two input wires
and two output wires, referred to as the upper and lower wires. Informally, a
balancer is a toggle, sending input tokens alternately to the upper and lower
wires.

A balancing network of width w is a collection of balancers, where out-
put wires are connected to input wires, having w designated input wires
Lo, &1, .., Tyw—1 (Which are not connected to output wires of balancers), w des-
ignated output wires yo,¥1,..,Yw—1 (also unconnected), and containing no
cycles. The safety and liveness of the network follow naturally from the
above network definition and the properties of balancers, namely, that it is
always the case that Y% ' z; > % !y,, and for any finite sequence of m
input tokens, within finite time the network reaches a quiescent state, i.e.
one in which 3% 'y, = m.

In a MIMD shared-memory multiprocessor, a balancing network is im-
plemented as a data structure, where balancers are records and wires are
pointers from one record to another. Each of the machine’s n asynchronous
processors runs a program that repeatedly traverses the data structure, each
time shepherding a new token through the network. Tokens generated by
processor P enter the network on input wire P mod w, and a processor can
push at most one token through the network at any time. Thus, the limita-
tion on the number of concurrent processors translates into a limitation on
the number of tokens concurrently traversing the network:
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Sedte — Yy <nm.

The depth of a balancing network is the maximal depth of any wire,
where the depth of a wire is defined as 0 for a network input wire, and
1 4+ max;eo,1} depth (z;) for the output wires of a balancer having input wires
z;, 1 € {0,1}. A layer of depth d is defined as the set of balancers at depth
d.

A counting network of width w is a balancing network whose outputs
Yo, .-, Yw—1 have the step propertyin quiescent states: 0 <y, —y; <1 for any
1< 7.

The bitonic counting network [7] is a specific counting network that is iso-
morphic to Batcher’s bitonic sorting network [9]. It is constructed recursively
as follows: to construct a bitonic network of width 2w, one first constructs
two separate bitonic networks of width w each and then merges their two
output sequences using a width 2w balancing network called a merger. The
merger is constructed to guarantee the step property on its outputs in a qui-
escent state, provided each of its input sequences has the step property. This
construction gives a network consisting of O(log?w) layers, each consisting
of w/2 balancers. Note that a single balancer is both a merger and a counter
of width 2.

In experiments, the bitonic counting network substantially outperformed
conventional techniques for implementing a shared counter, such as spin locks
and queue locks on a single shared variable, or software combining trees,
on several different multiprocessor architectures [7, 29]. We now present
theoretical analysis of this phenomenon.

3.2 Contention in the Bitonic Counting Network

In this section we show tight asymptotic bounds for the amortized contention
in the bitonic network. In particular, we show that for a bitonic network of
width w with n concurrent processors, the amortized contention of a layer
is O(n/w). In other words, the worst case number of stalls occurring at this
layer when m tokens traverse the counting network, divided by m, goes to
O(n/w) when m goes to infinity. Since a token traverses exactly ©(log”w)
layers when it traverses the network, the amortized contention of the network
is at most O(Zlog? w). (That is, the worst case number of stalls occurring
at the network when m tokens traverse the counting network, divided by m,
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approaches O(glog2 w) when m goes to infinity.) In a separate argument,
we show an execution with amortized contention Q(2 log® w), so the bounds
are tight. By comparison, in a single-variable counter, up to n processes may
be performing concurrent increments, so one increment has contention ®(n).

Having bounds on the amortized contention, the overall performance of
the bitonic counting network can now be compared with that of the single-
variable solution as follows. The amortized cost of traversing the network
is the sum of the number of shared variables a process has to access and
the amortized contention. In the single-variable solution, where the network
consists of just the one shared variable, this cost is ©(n). In the bitonic
counting network, our result on the amortized contention shows that the
overall amortized cost is (9(glog2 w). This cost is minimized when w = n,
yielding ©(log®n).

Notice that the temporary contention of a layer may be quite high. It is
always possible to accumulate all n concurrent processors on one balancer.
For example, take a bitonic network with eight input wires and eight proces-
sors. Let eight tokens traverse it. Two of them must arrive at the rightmost
upper balancer; halt them and let the others exit the network. Next re-enter
the other six processors. Two of them will reach the contended balancer; halt
these two and let the others exit. Now we have accumulated four tokens at
one balancer. We can continue in this fashion until all » processors contend
for the same balancer, thereby reaching contention of 2(n) at that layer. In
fact, temporary contention of {2(n) can similarly be created for any counting
network. Nevertheless, the amortized contention remains low. The intuition,
which must be proved, is that if the adversary creates locally high contention,
it must have let many tokens traverse the network, yielding a low amortized
contention.

Henceforth, we consider a bitonic network of width w with n concurrent
processors. We will show that the amortized contention of a layer is O(n/w).
Since the number of layers is O(log?w) the bound of O(Z log?w) follows.
Recall that on its way through a network of width w, a token first passes
through a counting network C'w of width %, and then through a merger M,
of width w. If we continue to unwind the recursive construction of C'w, and
recall that Cy = M, consists of a single balancer, we see that the token
passes sequentially through a series of logw mergers My, My, My, ..., M,,. 1t
therefore suffices to show that, for any 2 < k < w, where k is a power of
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2, and any layer £ of My, a token encounters “on average” at most O(n/w)
stalls as it passes through a balancer at layer £ of Mj.

More specifically, for any merger My in the recursive construction, and
any layer £ of Mj, we argue as follows. By construction, the number of
balancers in layer £ is k/2. We define ny = k7, and partition the tokens
arriving at layer £, over the lifetime of the system, into generations of size
k. We will show that as a group, each generation of tokens at layer £ causes
O(ng) stalls to other tokens. It then follows that an average generation
receives O(ng) stalls. (If 10 people each throw 5 balls into the air, and all the
balls are caught, then the average person catches 5 balls.) Dividing by the
number of tokens in a generation, it follows that the average token passing
through £ receives O(%:) = O(n/w) stalls.

A layer I of My of Ci has the balancer i-smoothing property if for every
pair of balancers b, in [, when C} is in a quiescent state, the absolute value
of the difference between the total number of tokens that have passed through
b and the total number of tokens that have passed through & is bounded by
1. A layer [ of a balancing network has the input wire 1-smoothing property
if for any two wires w and w’, inputs to layer I, when the network is in a
quiescent state the total number of tokens that have arrived at level [ on wire
w and the total number of tokens that have arrived at level [ on wire w' differ
by at most 2. The output wire balancing property is defined analogously.

Lemma 3.1 Fiz a network Cy in the recursive construction of C,, and let
My, be the merger of Cy. Then every layer | of My has the balancer 2-
smoothing property.

Proof: We split the proof into two cases, according to whether [ is the first
layer of My or is a later layer.

Claim 3.1 The first layer of My has the balancer 1-smoothing property.

Proof: Let b and & be any two balancers of layer [. Since [ is the first layer
of My, both b and b’ have one input wire from the upper Cy/, and one from
the lower Cj/2. When Cj is in a quiescent state, all the enclosed subnetworks
are quiescent, so in particular both copies of C}/, are in a quiescent state and
therefore their outputs enjoy the step property. Without loss of generality, let
the upper input wire of b be higher than (have smaller index than) the upper
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input wire of b'. By the construction of My, this means that the lower input
wire of b is lower than (has greater index than) the lower input wire of 4'. Let
z and y denote the total number of tokens that entered b on its upper and
lower input wires, respectively. Similarly, let z and w denote the number of
tokens that entered &' on its upper and lower input wires, respectively. Since
the upper input wires come from the upper copy of Cy/, we have by the step
property that £ > z > z — 1; similarly, by the step property of the lower
copy of Cj2, w >y > w — 1. The total number of tokens that pass through
bis z + y, while the total passing through &' is z + w. From the inequalities
wegetz+y > z+w—1and z+w > (z— 1) +y, from which we get a
maximum difference of 1, so the claim holds. [ ]

Since the balancers at the first layer of M}, have the 1-smoothing property,
the output wires at the first layer have the output-wire 1-smoothing property.
Consider any two balancers b and b', through which, respectively, c and ¢—1
tokens have passed. Then the number of tokens leaving b on the upper output
wire is [¢/2], while the number of tokens that have left on the lower output
wire of b’ is [(¢—1)/2], which differ by at most 1. Moreover, since the output
wires of the first layer are precisely the input wires to the second layer, we
have that layer 2 of M} has the input wire 1-smoothing property. In general,
if layer [ has the input wire 1-smoothing property then it has the balancer
2-smoothing property. The lemma thus follows from the following claim.

Claim 3.2 In any balancing network, if layer | has the input wire 1-smoothing
property, then so does layer [+ 1.

Proof: Let b and b’ be arbitrary balancers in layer [. Let b receive zg and
z1 input tokens on its upper and lower input wires, respectively. Similarly,
let o' receive z and z] tokens on its input wires. The maximum number
of tokens leaving on one of b’s output wires is at most max{zo,z;}, while
the minimum number of tokens leaving on one of 4'’s output wires is a least
min{zy,z}}. But since layer ! has the input wire 1l-smoothing property,
max{zo,z1} — min{zy, zi} < 1, so layer [ has the output wire 1-smoothing
property. Since the output wires of layer [ are the input wires of layer [ + 1,
the claim follows. |

This completes the proof of the Lemma. [ ]
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Let Mj be as in the Lemma, and let b be a balancer in layer [ of M. We
say that a token belongs to the gth generation of tokens arriving at b if it is
either the (2g — 1)th or the (2g)th token to arrive at b. The gth generation of
[ is the set of gth generation tokens of the balancers in layer [. Note that the
gth generation of [ has k£ tokens. We say that by time ¢, the gth generation
has completed its arrival at [ if for each balancer b; in [, both tokens of the
gth generation have already arrived by that time. Finally, we say that at
time ¢ there are f tokens of the gth generation missing at layer [ if by time
t exactly £ — f tokens of generation g have arrived at [.

Fact 1: Let C} be in a quiescent state, and let g be the mazimum generation
such that some balancer b in layer | of My, has received at least one generation
g token. Then all balancers in | have received at least one generation g — 1
token.

Proof: Let cbe the number of tokens that have arrived at b. By Lemma 3.1,
layer | has the balancer 2-smoothing property, so every other balancer b’
has received at least ¢ — 2 tokens. If ¢ = 2¢ then b has received both its
generation g tokens and hence every other balancer b’ has received at least
29 — 2 = 2(g — 1) tokens, and has therefore completed generation g — 1. If
¢ = 2g—1 then every other balancer in [ has received at least c—2 = 2(g—1)—1
tokens. Thus in either case, every balancer in [ has received at least one
generation g — 1 token. |

Recall that n; = k. Note that nj is the maximum number of tokens
that can be traversing C} at any time.

Fact 2: Lett be the time at which the first gth generation token arrives at [.
Then the number of tokens of generations strictly less than g — 1 stuck at [,
plus the number of tokens of generations strictly less than g — 1 still missing
from layer [, is at most ny.

Proof: Run the network to quiescence from its state at time ¢t. Let ¢’ be
the maximum generation such that some balancer in layer [ has received at
least one generation ¢’ token. Clearly, ¢’ > g. By Fact 1, every balancer has
received at least one token from generation g'—1 > g—1. Thus, Fact 2 follows
immediately from the fact that at most ny tokens (the maximum number of
tokens in Cy at any time) were involved in moving Cf to a quiescent state. m
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Recall that the number of tokens in the gth generation at [ is exactly
k. As described above, to complete the proof it is enough to show that the
number of stalls caused in layer | of M} due to the gth generation is O(ny),
since from this it follows that the average (over all generations) number of
stalls incurred by a generation is O(ny ), and therefore that the average token
incurs O(%:) = O(n/w) stalls at each layer (because a token passes through
just one balancer at layer [).

First recall that when a token passes through a balancer, it causes stalls
to all tokens that are waiting at this balancer. By stalls caused at layer
[ by generation g to generation g we refer to stalls incurred by tokens of
generation ¢’ when they are waiting at some balancer of layer [ and some
token of generation g passes. By stalls caused at layer | between generation
g and generation g’ we refer to stalls caused by generation g to generation
g', and vice versa. To complete the proof we show:

Lemma 3.2 Consider the gth generation passing through layer [ of My. The
mazimal number of stalls caused between this generation and generations less
than or equal to g at this layer s at most dng.

Proof: Consider the first token of generation g to arrive at [. Say it arrives
at time ¢. By Fact 2, the total number of tokens of generation less than g —1
stuck at [ or missing from [ is at most ng. A generation g token can encounter
(and hence cause a stall to or be stalled by) (1) these tokens of generation
less than g — 1, (2) generation g — 1 tokens, and (3) generation g tokens.
There are at most ny tokens of type (1), and at most wy each of types (2)
and (3). The number of stalls occurring between each token of generation g
and tokens of generation less than or equal to g — 1 is at most the number of
tokens of these generations that this token encounters at its balancer. Each
token of generation less than or equal to ¢ — 1 can be encountered by up to
two tokens of generation g. Each token of generation g can be encountered
by at most one token of generation g. Summing, we get 2ng, 2wy, and wy, for
stalls of types (1), (2), and (3), respectively, for a total of at most 5ny stalls.
|

We have shown that the amortized contention endured by a token at any
layer is O(n/w). Amortized contention of Q(n/w) is easily seen to occur in
an execution where on each balancer we have 2n/w tokens proceeding in lock
step. We have therefore proved the following theorem.
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Theorem 3.1 The amortized contention of a layer of bitonic network of
width w and concurrency n is O(n/w). n

Corollary 3.1 The amortized contention of the bitonic network of width w
and concurrency n is O(2 log? w). ]

3.3 Contention in Linearizable Counting Networks

In this section, we observe that the amortized contention of the folded lin-
earizable counting network of width w [30] is also ©(2 log® w). More specifi-
cally, a linearizable counting network is a counting network in which the order
of the values assigned to processes is consistent with the real-time order of
the execution. For example, if process P is assigned a value (leaves the count-
ing network) before process @) requests one (enters the counting network),
then process P’s value must be less than ()’s. Linearizable counting lies
at the heart of a number of basic problems, such as concurrent time-stamp
generation, concurrent implementations of shared counters, FIFO buffers,
snapshots, and similar data structures (e.g. [21, 22, 26]).

Certain counting networks are not linearizable, and there is no linearizable
counting network with finite width [30]. Two linearizable counting networks
are constructed in [30]. The general idea in their approach is to have tokens
first pass through an ordinary (non-linearizing) counting network and then
use the resulting value (the value returned by the counter) to select an input
wire into an infinite-width linearizer. Thus, if implemented directly in terms
of balancers, these networks would have infinite size. However the infinite
linearizers can be “folded” onto finite data structures. The folded network
is a width w by depth d array of multibalancers. For this section only, let
us define layer 7 of the linearizer to be the set of balancers with lower input
wire of depth ¢. Let ¢, ; denote a multibalancer in the folded network whose
upper input wire is wire ¢ and whose layer is j; similarly, let b, ; denote
a balancer in the infinite network whose upper input wire is + and whose
layer is . Then the folded network simulates the original network by simply
having c; ; simulate balancers b, ;, b;44 ;, biy2w,; and so on. Like a balancer,
a multibalancer can also be represented as a record with toggle, upper, and
lower fields. The upper and lower fields are still pointers to the neighboring
multibalancers or counters, but the toggle component is more complex, since
it encodes the toggle states of an infinite number of balancers.
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Note that, since each balancer in the infinite linearizer is traversed by
only two tokens, the linearizer in the infinite construction does not have high
contention. However, the folding of the network introduces contention since
tokens passing through different balancers in the original network may end
up passing through the same multibalancer in the folded network. Here we
will argue that this contention is low.

Only two points in the construction of the linearizable counting networks
of [30] are necessary for the contention analysis. First, since the input to
the linearizer is the output of a counting network, each layer of the folded
linearizer has the input wire 1-smoothing property. Second, the tokens at
a balancer may be partitioned into generations as follows. Intuitively, we
view each “wave” of tokens leaving the non-linearizable counting network as
a generation of inputs to the infinite linearizer. Thus, the first generation of
tokens to enter layer 1 of the infinite linearizer is the set of tokens entering
at wires 1 to w of the infinite linearizer, the next generation of tokens to
enter layer 1 is the set of tokens arriving at wires w + 1,...,2w, and so
on. In general, the gth generation to enter a layer of the infinite network 1is
the set of tokens entering the layer on wires (¢ — 1)w + 1,...,gw. In the
case of the folded network, this translates as follows: a token arriving at
a multibalancer c; ; belongs to generation g of layer j if the multibalancer
simulates balancer b(g_1)uw,; for this token. The above two facts immediately
imply that generation g tokens encounter at most n tokens from previous
generations (because the number of tokens of generations at most g — 1
missing or stuck at any time can be at most n, the upper bound on the
concurrency), and at most w tokens from their own generation (because a
generation contains at most w tokens by definition). Thus, Lemma 3.2 can
be employed to show that the amortized contention of one layer of the folded
network is O(n/w).

Again, amortized contention of (n/w) per layer occurs in an execution
in which all n processors proceed in lock step, and hence the above bound is
tight.

3.4 Contention in Other Counting Networks

First, observe that the techniques used to analyze the contention in the
bitonic and linearizable counting networks consist of three main ideas:
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1 Determine sequences of balancers in the network such that each se-
quence has the balancer k-smoothing property for some k.

2 Partition the tokens entering each substructure into generations.

3 Compute the number of stalls caused between a generation and its
previous generations using the fact that at each substructure, tokens
from generation g encounter at most m tokens from generations smaller
than [g — k/2], where m is the number of concurrent processors that
can enter the substructure.

It turns out that this method is widely applicable. For example, con-
sider the periodic counting network [7]. It is isomorphic to the balanced
periodic sorting network [18]. In particular, a periodic network of width
w consists of a sequence of logw identical subnetworks each of which is of
depth logw and called Block/w]. An easy induction on the depth of the
layer shows that each block has the output wire logw-smoothing property.
Consequently, Claim 3.2 implies that each layer of depth greater than logw
has the input wire log w-smoothing property. Almost identical reasoning to
that of Section 3.2 immediately shows that the amortized contention of each
layer of the periodic counting network is at most O(n/w + logw). (To com-
pute the above we need to distinguish between the first block and the later
blocks.) Hence the amortized contention of the complete periodic network is
O(2 log? w + log® w) which is minimized when w = n, yielding O(log® w).

Block[w] has the output wire log w-smoothing property. Thus, we can
guarantee that any counting network can be modified to have low contention
by filtering its inputs through Block|w].

4 Consensus

In this section, we give lower bounds for contention and latency-contention
trade-offs inherent in consensus. Consensus is fundamental to synchroniza-
tion without mutual exclusion and hence lies at the heart of the more general
problem of constructing highly concurrent data structures [28]. Thus the
bounds and trade-offs derived here imply bounds and trade-offs for a variety
of more complex data structures and protocols.
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The consensus problem [17, 20, 23] is a decision problem in which each
of n asynchronous processes starts with an input value 0 or 1 not known to
the others and runs until it chooses a decision value and halts. The protocol
must be consistent: no two processes choose different decision values; and
valid: the decision value is some process’ input value. In addition it should
satisfy some form of wait-freedom. For this matter it is distinguished between
wait-free consensus in which each process decides after a finite number of its
own steps (accesses to shared memory) regardless of other processes’ halting
failures or relative speeds; and randomized wait-free consensus in which each
process decides after a finite ezpected number of its own steps regardless again
of other processes’ halting failures or relative speeds.

It has been shown [17, 34] that on machines that support only reads and
writes but no form of read-modify-write, consensus cannot be solved by a
wait-free protocol but it does have a randomized wait-free solution [1, 5, 6,
8, 11, 19]. However, as pointed out, most real machines do have some form of
read-modify-write. In Section 4.1 we show that even when read-modify-write
is available, wait-free consensus has high price: its contention (and hence its
cost) is inherently high. In Section 4.2 we show that for randomized wait-free
consensus the contention can be traded off against latency.

4.1 Wait-Free Consensus

In this section we show that wait-free consensus has contention of ®(n).
(Recall that contention of an n-process algorithm is defined as the worst
case ratio of the number of stalls that can occur in an execution of the
algorithm divided by n.) In addition, the cost of an n-process algorithm can
be naturally defined as the worst case, over all executions of the algorithm,
of the ratio of the sum of the number of stalls and the number of invocations
of read-modify-write occurring in the execution, divided by n. It will follow
that also the cost of wait-free consensus is ©(n).
As has been observed earlier:

Lemma 4.1 Forn processes to do a concurrent read-modify-write to a single
location has contention and cost ©(n).

We show that any wait-free consensus protocol in our model has inher-
ently high contention by showing that the adversary can force all n processes
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to simultaneously access a single shared variable. Intuitively, using a tech-
nique introduced by Fischer, Lynch, and Patterson [23], we construct a con-
figuration of the system from which both 0 and 1 are still possible decisions
but from which a step by any single process will determine the outcome.
Symmetry and commutativity conditions then imply that all steps from this
configuration must in fact access the same shared variable.

Following [23], a protocol state is bivalent if either decision value is still
possible, i.e., the current execution can be extended to yield different decision
values. Otherwise it is wnivalent. An z-valent state, for z € {0,1}, is a
univalent state with eventual decision value z. A decision step is an operation
that carries a protocol from a bivalent to a univalent state. The following
lemma was first proved in [23].

Lemma 4.2 For every consensus protocol there exists a bivalent initial con-
figuration.

Theorem 4.1 Consensus among n processes has contention ©(n).

Proof: For the lower bound, consider the following scenario. By Lemma 4.2,
there exists a bivalent initial configuration. Beginning with the system in
this configuration, the adversary repeatedly chooses some process that is not
about to take a decision step, and allows that process to execute a com-
plete operation (invocation/response pair). This execution cannot proceed
forever, since the protocol is wait-free, so eventually the protocol must en-
ter a state where every process is about to execute an operation that will
carry the protocol to a univalent state. Since the protocol is still in a bivalent
state, there must be some process P about to carry the protocol to a 0-valent
state, and some process () about to carry the protocol to a 1-valent state.
If P and @ are not about to execute a read-modify-write operation on the
same location, then the 0-valent state in which P’s operation precedes Q)’s
is indistinguishable from the 1-valent state in which )’s operation precedes
P’s, a contradiction. Therefore P and () must be about to operate on the
same location. By symmetry, all n processes are about to operate on the
same location. By Lemma 4.1, the adversary can, by scheduling all these
processes concurrently, force contention Q(n).

For the upper bound, simply initialize a memory location to the distin-
guished value |, and have each process execute compare-and-swap(location, | input).
|
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Observe that in the proof of the above theorem we used the wait-freedom
property to construct the critical bivalent configuration from which any step
would bring the system to univalence. Randomized consensus is not wait-free,
and thus, the proof of Theorem 4.1 breaks down. We address randomized
consensus in Section 4.2.

A concurrent object is a data structure shared by concurrent processes.
A concurrent object X solves n-process consensus if there exists a consensus
protocol in which the n processes communicate by applying operations to a
shared X. A wait-free implementation of a concurrent data object is one that
guarantees that any process can complete any operation in a finite number
of steps, regardless of the execution speeds of the other processes. Theorem
4.1 implies that any wait-free implementation of an object that solves n-
process consensus has high contention. This implies, for example, that wait-
free implementations of the fetch-and-add, compare-and-swap and the load-
linked /store-conditional operations in terms of any other primitive must have
high contention.

4.2 Randomized Wait-Free Consensus

The proof of Theorem 4.1 also shows that the variable-contention of wait-
free consensus is {)(n). (Recall that variable-contention of an algorithm was
defined as the worst case number of concurrent accesses to any single variable
occurring during the execution of the algorithm.) In this section we show
that this lower bound does not hold for randomized wait-free consensus. In
fact, we can construct randomized consensus protocols with O(1) variable-
contention. Nevertheless, we show that there is a trade-off between variable-
contention of an algorithm and its latency.

First we show how to construct a randomized consensus algorithm with
low variable-contention. The randomized consensus algorithms in the liter-
ature [1, 5, 6, 8, 11, 19] were designed as a way of coping with the impos-
sibility of consensus in a model without read-modify-write [17, 34]. Thus,
these algorithms require a weaker communication primitive abstracted in the
literature as a single-writer multi-reader atomic register. Each such register
can be written only by one process, its owner, but all processes can read it.
The atomicity property says that reads and writes can be viewed as occur-
ring at a single instant of time. Clearly an algorithm that uses multi-reader
atomic registers may have high variable-contention if in some execution all n
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readers are concurrently accessing the same register. However, there are well
known constructions of single-writer multi-reader registers out of n single-
writer single-reader atomic registers [33, 40] (a single-reader register can be
read by at most one process). Therefore, to achieve randomized consensus
with low variable-contention, simply take one of the algorithms that uses a
multi-reader register and replace each such register by n single-reader regis-
ters. Clearly the resulting algorithm has O(1) variable-contention.

Recall that the latency of the algorithm is the maximum number of
steps (accesses to shared memory) that a process must take in any exe-
cution. We now show a latency-contention trade-off inherent in randomized
consensus. Although randomization was introduced in the literature to re-
place read-modify-write, our latency-contention tradeoff holds regardless of
whether or not read-modify-write is assumed.

Theorem 4.2 Consider any randomized consensus algorithm. Let p be any
process. Let £ be the minimum number of variables accessed by p in an
ezecution prefiz E in which p has input value 0 and reaches a decision before
any of the other processes become active. Let ¢ be the variable-contention in
any ezecution of the algorithm. Then £ > (n —1)/c.

Proof: We actually prove a stronger statement. Let the preferred path of
p be the series of variables accessed by p in F, without repetitions. Thus if
p first accesses v then v’, and then v again, the preferred path is just v,v'.
Let the preferred path be vy, vs,...v,. We show that £ > ”C;l Observe that
p must decide 0 in E. Now, consider the following execution E’ in which p
is initially crashed and all other processes, call them gy, ..., ¢,_1 have initial
value 1. Note that the decision in E' must be 1. Run process ¢; alone until
it accesses the preferred path of p. Note that it must do this, since if not
then ¢; cannot distinguish between E’ and an extension of E, but in any
extension of E it would have had to decide 0. Temporarily suspend ¢; just
before it accesses the preferred path.

Now run process g, until it too is about to access the preferred path.
Note that g, may see variables written by ¢;, but since these are written by
g1 before it can distinguish E’ from an extension of E, ¢, cannot yet make
that distinction either. Moreover, g, cannot wait to see things that g; might
write after g; has accessed the preferred path because ¢; might have failed.
In this way, we continue constructing E’, until all n — 1 processes ¢ # p are
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poised to access the preferred path. Let ¢; denote the number of processes
poised to access v;. Then Yf_,¢; > n — 1. Now, let all n — 1 processes g
access the preferred path together, and the theorem is proved. [ ]

Since the latency of an algorithm is no smaller than the worst case number
of variables accessed by any single process when it runs in isolation, Theo-
rem 4.2 immediately implies that the contention of a randomized consensus
algorithm is at least (n — 1)/4, where £ is its latency.

A similar argument [30] shows part (1) of the following theorem.

Theorem 4.3 The same trade-off holds for any linearizable counting net-
work, randomized or not, using any primitive (including primitives more pow-
erful than simple balancers). For linearizable counting networks, the trade-
offs are tight.

5 Mutual Exclusion

In this section we study contention in solutions to the mutual exclusion prob-
lem. In this problem, processes must repeatedly access a critical section in
such a way that at any given time there is at most one process in the crit-
ical section. A solution must satisfy the following liveness property: in any
execution of the protocol in which no process crashes, if any process tries to
enter the critical section then eventually some process succeeds to do so.

Like consensus, mutual exclusion is an abstraction of many synchroniza-
tion problems. The most common example of the need for mutual exclusion
in real systems is resource allocation. In contrast to consensus, however, mu-
tual exclusion is not required to be wait-free nor randomized wait-free; rather
processes may actually wait for failed processes. (In this case processes may
not even terminate with probability 1.) While this feature may not be very
desirable, it allows more efficient and simpler implementations. In particu-
lar, observe that the lower bounds on the contention and latency-contention
trade-off previously derived for consensus may not hold for mutual exclusion:
a c-ary tournament tree clearly satisfies the liveness condition with at most
log,. n accesses to shared variables for any single process (in other words, with
contention ¢ and latency log,n), thereby violating the bounds for consensus
obtained in Theorems 4.1 and 4.2.
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More precisely, our results will be for one-shot mutual exclusion, which,
informally, allows exactly one of a number of initially competing processes to
enter the critical section, with no requirements of the other processes. Clearly
such bounds apply for mutual exclusion each time the latter is started from
scratch. An algorithm for the one-shot problem clearly satisfies the liveness
condition; however, unlike the case for the general mutual exclusion problem,
the one-shot problem can be solved (through a tournament tree) without
waiting. Thus, a lower bound here is in a sense a lower bound on achieving
the liveness condition for mutual exclusion, allowing us to sidestep issues
such as how waiting is implemented.?

First we show, for any one-shot mutual exclusion algorithm of latency ¢
and variable-contention ¢, that £ € Q(k’%)

Our proof relies on the fact that Q(logn) is lower bound on the time
required to compute the logical OR of n values on the CREW PRAM? [14],
independent of the total number N of processes participating in the com-
putation. The key idea is roughly that a CREW PRAM can simulate an
algorithm whose variable-contention is ¢ so that each time ¢ processes access
the same shared variable in an execution of the original algorithm, they will
access 1t one by one in ¢ steps in the corresponding execution of the CREW
PRAM.

The structure of the argument is as follows. The first step argues that for
a CREW PRAM, any algorithm for one-shot mutual exclusion yields, with
one additional step, an algorithm for OR. In the second step, we show how
to construct a one-shot mutual exclusion algorithm for the CREW PRAM
that takes at most O(¢f) rounds, from any asynchronous algorithm for one-
shot mutual exclusion with variable-contention ¢ and latency £. The second
step proceeds as follows. First, we say that a specific execution of an asyn-
chronous algorithm is synchronous if it can be viewed as if it takes steps in
synchronous rounds during which each process that has not yet halted ac-
cesses one shared variable and processes accessing the same shared variable
(at the same round) succeed (receive responses) in increasing order of process
ID. Observe that each input determines exactly one synchronous execution.
To complete the second step, given an asynchronous one-shot mutual exclu-

2Confusion on this point in an earlier version of this paper was brought to our attention
by James Anderson [3].

3Concurrent read/exclusive write parallel random access machines. Note that PRAM’s
are synchronous.
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sion algorithm A, we show how to construct a CREW PRAM algorithm each
of whose executions simulates the synchronous execution of A that has the
same input. Moreover, each round of the synchronous execution of A will
be simulated by the corresponding execution of the CREW PRAM using no
more than ¢ rounds. Clearly, the resulting CREW PRAM algorithm takes
no more than ¢/ rounds, where £' is the maximum number of rounds of the
simulated synchronous algorithm. On the other hand, the latter is no larger
than A’s latency because for each synchronous execution of A, some process
must take a step, and hence access a shared variable, in each round.

Combining the two above steps we get that given an algorithm A that
achieves one-shot mutual exclusion among n processes with variable con-
tention ¢ and latency £, we can construct a CREW PRAM algorithm that
computes the OR of n values in O(¢f) rounds. Since Q(logn) rounds are
necessary for a CREW PRAM to compute the OR of n values, we have
£ € Qlogn/c).

Definition 5.1 One-shot mutual exclusion on n processes is defined as fol-
lows. There are any number N > n of processes. There are n Boolean input
variables z1,...,z,. (These variables can be either in shared memory loca-
tions 1 through n, respectively, or for 1 <1 < n, z; can be local to p;. Our
results apply to either version of the problem). Let S be the set of indices 1
such that z; = 1. At the end of each ezecution of the algorithm there is a
unique © € S, such that p; is a winner (that is, p; is in a special win state).
If S is empty then there is no winner.

Theorem 5.1 Let A be any algorithm for one-shot mutual ezclusion, and
let ¢ be its variable-contention and { its latency. Then £ € Q(logn/c).

Proof: The next lemma shows that given a one-shot mutual exclusion al-
gorithm for the CREW PRAM, we can get with one additional step an
algorithm for OR.

Lemma 5.1 Let S be a CREW PRAM algorithm for one-shot mutual exclu-
ston on n inputs, running in time s(n). We place no bound on the number
of processors, but the mutual exclusion is among p1,...,pn. Then there is a
CREW PRAM algorithm for logical OR on n inputs running in time s(n)+1.
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Proof: The algorithm for OR is as follows. Let result be a special memory
cell that is not used by algorithm S on any input and is initialized to zero. On
inputs z1, ..., %, run S(z1,...,z,). Let process i be the winner, if one exists.
Then at step s(n) + 1 process ¢ writes a “1” into memory location result.
Since by assumption result is initialized to zero we have that result will have
value 1 if and only if there is a winner to the one-shot mutual exclusion. The
definition of one-shot mutual exclusion implies that there is a winner if and
only if at least one process started with 1 and hence this PRAM algorithm
correctly computes the OR. ]

Next we show that given an asynchronous one-shot mutual exclusion al-
gorithm with variable-contention ¢ and latency £, we can construct a one-shot

mutual exclusion algorithm for the CREW PRAM that takes O(cf) rounds.

Lemma 5.2 Let A be any algorithm on n inputs running on an asynchronous
shared-memory machine, with variable-contention at most c, with latency £,
requiring at most N processes, and requiring at most m(n) > n shared vari-

ables. Then there exists an algorithm for the synchronous CREW PRAM

that requires at most N 4+ m(n) maX1§i§c{(]j)} processors and Tuns in time
at most O(cl).

Proof: We have observed that there is exactly one synchronous execution
of A for each value of the inputs. Therefore, it is enough to construct a
CREW PRAM algorithm S that will simulate executions of A in a step by
step fashion such that each execution of S with inputs I will have as its
corresponding execution of A the synchronous execution of A with inputs I.

For simplicity we first describe an algorithm that runs in O(c?£) rounds.
S 1s constructed as follows. It has a special set of simulating processors
Py, ..., Py whose job is principally to simulate, one for one, the processes
of A. For clarity, the processors of S will always be denoted by upper case
letters, while those of A will be denoted by lower case letters. The additional
m(n) maXlSiSc{(]j)} auziliary processors are dedicated to resolving write
conflicts at the m(n) shared variables of A. Hence, the auxiliary processors
are split into m(n) groups, one for each of the m(n) shared variables v of A
and denote by G, the group dedicated to location v. The processor in G,
with the smallest index is the leader of group G,.

We let M1 : m(n)] denote the first m(n) locations of the PRAM’s shared

memory. After each step s of the simulation, for each 1 < v < m(n),
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M]v] contains precisely the value of shared variable v after s rounds of the
corresponding synchronous execution of A. We define three additional ar-
rays in the PRAM’s shared memory: LOC[1 : N|, INDEX][1 : N], and
FLAGIL : m(n)]. Roughly speaking, when a simulating processor P; wishes
to simulate an access by p; to a shared variable v of A, it writes the loca-
tion v into the cell LOC[:]. The INDEX array is used to tell processor P,
wishing to access M[v] in a given simulated step, its index among the set
of processors that will access M[v] at this step. The FLAG array is used
in determining, for each shared variable v and each step in the synchronous
execution of A, the unique d-tuple of processes, for some 0 < d < ¢, that
attempt to access v concurrently in the given step.

All shared variables except possibly the first n cells of memory, are ini-
tialized to zero. If the inputs to A are initially in shared memory, then we
assume they are initially in the shared memory of S. If the inputs to A
are initially known to the processes of A, then we assume they are initially
known to the corresponding processors of S.

Each P; has a special component of its state containing a simulated state
of p;. We prove inductively that for each P;, 1 <12 < N, this special compo-
nent of the state of P; is the same after s > 0 simulation steps as the state of
p; after s rounds of the corresponding synchronous execution of A; and that
for each 1 < v < m(n), M[v] contains after s simulation steps the contents of
v after s synchronous rounds in the corresponding synchronous execution of
A. By proper initialization the result clearly holds for s = 0. We now show
it holds for s + 1, assuming it holds for s.

Step s + 1 is simulated as follows. First, P; writes into LOC|[z], the
location (shared variable) that p; accesses in round s+ 1 of the corresponding
synchronous execution of A. This takes one PRAM step.

Recall that initially LOC is all zeros. If in the simulation of some step, P,
writes a location into LOC|z], then at the end of the simulation of this step
P; will set LOC|[z] back to zero. Thus, once the simulated p; has terminated,
P; can terminate as well, and LOC|¢] will have the correct “location” (that
is, the null location) for all subsequent steps of the simulation.

Let v be any shared variable. Since A has maximum contention ¢, at
most ¢ processors have written v into the array LOC. Each of (I:) pro-
cessors in G, is assigned a set of ¢ cells of LOC to examine to see if the
corresponding ¢ processes of A would all attempt to access v in round s + 1
of the corresponding synchronous execution of A. If so, then the processor
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sets FLAG/[v] := 1 to indicate that the write-set for v has been found. This
takes ¢ + 1 PRAM steps (c reads and 1 write). In the next PRAM step, all
the processors in G, check FLAGI/v] to see if the write set has been found.
If so, then they wait until the write sets of all other variables are found (this
takes a predetermined number of rounds, computed below). If not, then each
member of a predetermined subset of G, of size (CI_Vl) examines ¢ — 1 cells
of LOC to see if the corresponding ¢ — 1 processes of A would all attempt
to access v in round s + 1 of the synchronous execution of A, and, if so, sets
FLAG]v] := v. Again, all the members of G, check to see if a write-set has
been found. This continues until the write-set is found (or is found to be
empty). The write-set can be found in (¢+2)+(c+1)+...4+1 PRAM steps.

Once the write-set is found, the leader of G, sorts the members of the
write-set in increasing order of process id, and writes 2’s index in this sorted
list into INDEX{[:]. This takes ¢ PRAM steps.

In the next step, for each v the leader of G, sets FLAGJv] := 0, and for
each 7 processor P; resets LOCJz] := 0.

In the last ¢ PRAM steps but one in the simulation of step s + 1, each P,
simulates p;’s access to v in order, according to INDEX][:]. Finally, in the
last PRAM step of the simulation each P; sets INDEX]:] := 0.

Clearly, at most O(c?) steps are required for the simulation. Moreover, it
is not hard to see that a more careful use of the processors allows the write-
set for a shared variable to be determined in O(c) time, making the entire
simulation run in O(c) PRAM steps per simulated round of the synchronous
execution of A. |

Combining the two lemmas we get that given an algorithm A that achieves
one-shot mutual exclusion among n processors with variable-contention ¢
and latency £ we can construct a CREW PRAM algorithm that computes
the logical OR of n values in O(cf) rounds. The theorem now follows from
the fact that (logn) rounds are necessary for a CREW PRAM to compute
the logical OR of n values, independent of the number of processes that
participate in the computation [14]. [ |

We complete our analysis of mutual exclusion by showing that in any
execution of one-shot mutual exclusion there are at least {)(n) stalls, and
hence the contention is €(1). (The latter does not follow from the above

trade-off.)
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Theorem 5.2 One-shot mutual ezclusion among n processes has contention

Q(1).

Proof: It is enough to show that for each set of £ processes where 1 < k& <
n, there is an execution in which there are at least £ — 1 stalls and exactly one
of the participating processes enters the critical section. The proof proceeds
by induction on k. The base case of £k = 1 is trivial. Assume the claim
holds for & and we will show it holds for £ + 1. Consider a set of £ + 1
processes, pi,...,Pkt+1- By the inductive hypothesis, there is an execution
E of processes pi,...,pr in which they incur & — 1 stalls and exactly one
of them enters the critical section. Run process pgi; alone until it is about
to access one of the variables, say v, accessed in execution £. Note that it
must do this, since otherwise none of the £ + 1 processes pi,...,pr+1 can
distinguish between E and execution E’ in which pgy; runs in isolation until
completion. But in E’, pgy;1 enters the critical section, while in E it cannot
do it since one of py, ..., pr enters it. Temporarily suspend pgy1 just before
1t accesses v.

Next run processes pi,...,pr as in E and let pgiq try to access v at
the same time that the processes in E are trying to access it. There is an
extension of this execution in which pgi; is stalled and the other processes
proceed the same way as in E. Thus, the number of stalls occuring between
processes pi, ..., Pk is exactly the same as in F, and hence the total number
of stalls increases by one, and we are done. [ ]

Since in a binary tournament tree the contention is O(1), we have:

Theorem 5.3 One-shot mutual ezclusion among n processes has contention

o(1).

6 Discussion

This paper provides the first formal tools for analyzing contention in shared-
memory algorithms. Taking contention into account gives a more realistic
model of parallel computation. Similar considerations motivated the recent
work done in [12, 16, 24].

In particular, we introduce a formal complexity model for contention in
shared-memory multiprocessors and use it to provide the first formal analysis
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of the contention versus latency-contention trade-offs inherent in basic shared
memory problems such as consensus and mutual exclusion. The results match
our intuition: wait-free consensus seems to require more contention than (the
easier problem of) randomized consensus. Moreover, restricting our atten-
tion to variable-contention ¢, randomized consensus, which is non-blocking,
requires provably higher latency than one-shot mutual exclusion, a subprob-
lem (not requiring waiting) of the mutual exclusion problem whose solution
must involve waiting.

We also give the first formal performance analysis for counting networks.
In particular we show that the amortized contention of the bitonic counting
network is low. Our analysis clarifies experimental results showing that the
bitonic network outperforms the conventional single-variable solution at high
levels of contention. Using the same techniques, similar results are obtained
for linearizable counting networks [30] and the periodic counting network [7].

Our work raises many new questions. The contention (and hence the
performance) of many well known problems such as reader-writer synchro-
nization, snapshots and approximate agreement is still unknown. Further-
more, the contention of counting networks in general (as opposed to specific
constructions of counting networks) is also still a mystery. We believe the
techniques developed in this paper can be extended to answer these new
questions. We leave these issues for further research.
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