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Abstract

The simultaneous recovery of 3D shape and motion from image sequences is one of the more
difficult problems in computer vision. Classical approaches to the problem rely on using algebraic
techniques to solve for these unknowns given two or more images. More recently, a batch analysis
of image streams (the temporal tracks of distinguishable image features) under orthography has
resulted in highly accurate reconstructions. We generalize this approach to perspective projection
and partial or uncertain tracks by using a non-linear least squares technique. While our approach
requires iteration, it quickly converges to the desired solution, even in the absence ofa priori
knowledge about the shape or motion. Important features of the algorithm include its ability to
handle partial point tracks, to use line segment matches and point matches simultaneously, and to
use an object-centered representation for faster and more accurate structure and motion recovery.
We also show how a projective (as opposed to scaled rigid) structure can be recovered when the
camera calibration parameters are unknown.
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squares fitting.
c�Digital Equipment Corporation 1993. All rights reserved.

1The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213-3890





Contents i

Contents

1 Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1

2 Previous work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 2

3 General problem formulation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 3

3.1 Rigid body transformations� � � � � � � � � � � � � � � � � � � � � � � � � � � � 3

3.2 Perspective projection� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 4

3.3 General projection equations� � � � � � � � � � � � � � � � � � � � � � � � � � � � 5

3.4 Ambiguities in the recovered parameters� � � � � � � � � � � � � � � � � � � � � 6

4 Least squares minimization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 6

4.1 The Levenberg-Marquardt algorithm� � � � � � � � � � � � � � � � � � � � � � � 7

4.2 Statistical interpretation and robust estimation� � � � � � � � � � � � � � � � � � � 8

5 Using line segment correspondences � � � � � � � � � � � � � � � � � � � � � � � � � � 9

6 Image streams: feature detection and tracking � � � � � � � � � � � � � � � � � � � � 9

7 Camera calibration � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 10

7.1 Experimental setup� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 10

7.2 Results� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 14

8 Experimental results: synthetic data � � � � � � � � � � � � � � � � � � � � � � � � � 16

8.1 Pure rotation� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 16

8.2 General motion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 19

8.3 Line matching � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 20

8.4 Projective structure recovery� � � � � � � � � � � � � � � � � � � � � � � � � � � � 20

9 Experimental results: real image sequences � � � � � � � � � � � � � � � � � � � � � � 22

10 Discussion and Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 22

A Elemental transform derivatives � � � � � � � � � � � � � � � � � � � � � � � � � � � � 29

B Matrix layout and LDU decomposition � � � � � � � � � � � � � � � � � � � � � � � � 30



ii LIST OF TABLES

List of Figures

1 Transformation between camera and object coordinate frames� � � � � � � � � � � 5

2 Application of the monotonicity operator - cube scene� � � � � � � � � � � � � � � 11

3 Application of the monotonicity operator - coke can scene� � � � � � � � � � � � 12

4 Setup for camera calibration� � � � � � � � � � � � � � � � � � � � � � � � � � � � 13

5 Calibration pattern and the track paths for 50 frames� � � � � � � � � � � � � � � 13

6 Convergence rates of focal length estimation and estimation errors.� � � � � � � � 15

7 Synthetic point tracks� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 16

8 Side view of 3D point position estimates� � � � � � � � � � � � � � � � � � � � � 17

9 Reconstruction error vs. iteration number� � � � � � � � � � � � � � � � � � � � � 18

10 Reconstruction error vs. iteration number� � � � � � � � � � � � � � � � � � � � � 18

11 Reconstruction error vs. iteration number� � � � � � � � � � � � � � � � � � � � � 19

12 Synthetic line tracks� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 20

13 Reconstruction error vs. iteration number� � � � � � � � � � � � � � � � � � � � � 21

14 Reconstruction error vs. iteration number for projective structure recovery (PSR)� 21

15 Recovered points and transform for the cube scene using 96 frames� � � � � � � � 23

16 Recovered points and transform for the coke can scene using 96 frames� � � � � � 24

List of Tables

1 Comparison of camera calibration results for 1 frame and 48 frames.� � � � � � � 15



1 Introduction 1

1 Introduction

This paper addresses the problem of extracting both 3D structure (shape) and object or camera

motion simultaneously from a given image sequence. Recovering shape and motion is a difficult

but important task, and has wide applicability in many areas such as robot navigation, non-tactile

parts inspection, manipulation, and CAD.

Approaches to this problem range from the classical methods which use only two frames and

a few points [Ullman, 1979; Longuet-Higgins, 1981; Tsai and Huang, 1984] to methods which

use many frames and points [Debrunner and Ahuja, 1990; Tomasi and Kanade, 1991; Tayloret

al., 1991]. Tomasi and Kanade [1991] have obtained highly accurate results using a factorization

method to extract object-centered shape and motion under orthography. More recently, Taylor,

Kriegman, and Anandan [1991] developed a non-linear least squares fitting algorithm for 2D shape

and motion recovery under perspective.

Our approach applies a similar non-linear least squares technique to recover 3D shape and

motion from image streams (the temporal tracks of point-like image features) withouta priori

information about the shape or motion. Least squares makes optimal use of each measurement

and guarantees a statistically optimal estimate in the vicinity of the true solution. Furthermore,

it avoids the potentially unlimited noise amplification which may occur with arbitrary algebraic

manipulation. The least squares formulation also enables us to deal easily with perspective or

arbitrary camera models, partial and/or uncertain tracks, and even to simultaneously use point

and line correspondences. Finally, it has the virtue of simplicity, since we use a general-purpose

optimization technique (Levenberg-Marquardt) [Presset al., 1992] which only requires an error

computation and error gradient backpropagation at each step.

Our results on both synthetic and real data indicate that the algorithm normally converges

even when noa priori information about shape or motion is given. However, the choice of

parametrization and order of solution can be important. We have also found that simultaneously

solving for structure and motion (unlike [Tayloret al., 1991]) increases the convergence rate

towards the solution.

We begin the paper with a brief review of previous work in structure from motion (Section

2). In Section 3, we present the equations governing how image points depend on the structure

and motion parameters. Section 4 reviews the Levenberg-Marquardt algorithm and derives the

equations necessary for its implementation. Section 5 extends our formulation to include line
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correspondences. Section 6 presents the tracking algorithms we use to compute the image streams.

In Section 7, we demonstrate how our algorithm performs on the easier problem of camera

calibration (i.e., known structure). We then present results on synthetic data for pure rotation and

general motion (Section 8), and on real image sequences (Section 9). We close with a discussion

of the algorithm’s performance and topics for future research.

2 Previous work

The structure from motion problem has been extensively studied in computer vision. Early papers

on this subject [Longuet-Higgins, 1981; Tsai and Huang, 1984] develop algorithms to compute

the structure and motion from a small set of points matched in two frames. Longuet-Higgins

[1981] presents a closed-form solution to the problem using eight 3D points and two frames with

the assumption that the correspondence problem has been solved. Tsai and Huang [1984] present

similar work, but in addition consider the uniqueness issues in the determination of the motion

parameters. Others have extended the essential parameter approach to lines [Faugeraset al., 1987;

Spetsakis and Aloimonos, 1990], performed more detailed error analyses [Wenget al., 1989a;

Wenget al., 1993], and developed non-linear least squares (optimal estimation) techniques for the

two-frame problem [Wenget al., 1989b].

Recent research focuses on extraction of shape and motion from longer image sequences

[Kumar et al., 1989; Debrunner and Ahuja, 1990; Cuiet al., 1990; Tomasi and Kanade, 1990;

Tomasi and Kanade, 1991; Chen and Tsuji, 1992]. Debrunner and Ahuja [1990] provide closed-

form expressions for shape and motion assuming that motion is constant over the sequence (see

also [Broida and Chellappa, 1991; Kumaret al., 1989; Wenget al., 1993]). Incremental solutions

for multiple motions are computed by taking advantage of the redundancy of measurements. Cui,

Weng, and Cohen [1990] use an optimal estimation technique (non-linear least squares) between

each pair of frames, and an extended Kalman filter to accumulate information over time.

Tomasi and Kanade [1991] use a factorization method which extracts shape and motion from

an image stream without computing camera-centered depth. Their approach formulates the shape

from motion problem in object-centered coordinates, unlike the more conventional camera-centered

formulation. Tomasi and Kanade’s method is based on the assumption of orthography and processes

all of the frames simultaneously, i.e., it is abatch approach. Chen and Tsuji [1992] relax the

assumption of orthography by analyzing the image sequence through its temporal and spatial
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subparts.

Taylor, Kriegman and Anandan [1991] formulate the shape from motion task as a non-linear

least squares problem in which the Euclidean distance between the estimated and actual positions

of the points in the image sequence is minimized. They restrict their analysis to a 2-D environment

(a mobile robot moving horizontally in a room) and a 1-D retina, and use the Levenberg-Marquardt

algorithm to compute the locally optimal solution starting with motion estimates based on odometry.

Our approach is a combination of several of the above techniques. We apply least squares

(optimal estimation) directly to the whole image sequence and use an object-centered representation

[Tomasi and Kanade, 1991]. We use perspective projection [Tayloret al., 1991] and partial point

tracks, extend the formulation to include lines, and show that the algorithm converges without

requiring an algebraic reconstruction technique for initialization (as in [Wenget al., 1989b]).

Within our framework, camera calibration can be viewed as a simplified version of structure

from motion, where the structure component is knowna priori. Tsai [1987] presents a good

review of the camera calibration literature. Our approach is related to [Gennery, 1979; Tsai, 1987;

Gennery, 1991], which all employ iterative least squares to recover camera parameters.

3 General problem formulation

The problem addressed in the paper is the recovery of a set of 3-D structure parametersp i and

time-varying motion parametersTj from a set of observed image featuresuij. In this section, we

present the forward equations, i.e., the rigid body and perspective transformations which map 3D

points into 2D image points, and discuss potential ambiguities in the recovered parameters. In

Section 4 we will discuss how to estimate thepi andTj which best satisfy these forward equations.

3.1 Rigid body transformations

The general equation linking a 2D image feature locationuij in framej to its 3D positionpi (i is

the track index) is

uij � P
�
T
�K�
j ���T

�1�
j pi

�
�1�

where the perspective projection transformationP�� (defined in 3.2) is applied to a cascaded series

of rigid transformationT �k�
j . Each transformation is in turn defined by

T
�k�
j x � R

�k�
j x� t

�k�
j �2�
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whereR�k�
j is a rotation matrix andt�k�j is a translation applied after the rotation. We represent

each rotation by a quaternionq � �w� �q0� q1� q2�� with a corresponding rotation matrix

R�q� �

�
BBB�

1� 2q2
1 � 2q2

2 2q0q1 � 2wq2 2q0q2� 2wq1

2q0q1� 2wq2 1� 2q2
0 � 2q2

2 2q1q2 � 2wq0

2q0q2 � 2wq1 2q1q2� 2wq0 1� 2q2
0 � 2q2

1

�
CCCA �3�

(alternative representations for rotations are discussed in [Ayache, 1991]). The cascaded nature of

equations (1) and (2) allow for both object- and camera-centered transformation.

Within each of the cascaded transforms, the motion parameters may be time-varying (thej

subscript is present) or fixed (the subscript is dropped). A less general form of (1) that we use in

many of our experiments is given by

uij � P
�
R
�
Rj�pi � c� � tj�

�
� t

�
�4�

whereR gives the camera tilt relative to the object,c is the object’s displacement from the axis of

rotation, andt is the (fixed) distance to the intermediate motion frame (Figure 1). The time varying

motion parametersRj andtj are represented relative to an intermediate frame (Figure 1), but this

could easily be modified to a strictly object-centered or camera-centered reference frame. As an

example, if we are trying to calibrate a camera by looking at a known object rotating on a turntable

(Section 7, Figure 4), we can settj � 0 and restrictRj to have rotation only around thez axis.

3.2 Perspective projection

The standard perspective projection equation used in computer vision is

�
� u

v

�
A � P1

�
BBB�

x

y

z

�
CCCA �

�
� f x

z

f y

z

�
A �5�

wheref is a product of the focal length of the camera and the pixel array scale factor (we assume

that pixels are square, since this has been verified experimentally for our camera).

An alternative formulation which we use in this paper is

�
� u

v

�
A � P2

�
BBB�

x

y

z

�
CCCA �

�
� s x

1��z

s y

1��z

�
A �6�
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Figure 1: Transformation between camera and object coordinate frames

Here, we assume that the�x� y� z� coordinates before projection are with respect to a reference

frame that has been displaced away from the camera by a distancetz along the optical axis,1 with

s � f�tz and� � 1�tz. The projection parameters can be interpreted as ascale factor and� as

a perspective distortion factor. Our alternative perspective formulation results in a more robust

recovery of camera parameters under weak perspective, where� � 1 andP�x� y� z�T � �sx� sy�T ,

sinces can be much more reliably recovered than� (in the old formulation,f andtz are very highly

correlated).

3.3 General projection equations

An alternative to the rigid motion plus fixed perspective projection equations presented above is

a formulation which only attempts to recover theprojective structure of the world [Mohret al.,

1992; Faugeras, 1992; Shashua, 1992; Shashua, 1993]. In this formulation, we use the imaging

1If we wish, we can viewtz as thez component of the original global translationt which is absorbed into the

projection equation, and then set the third component oft to zero.
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equations

uij � P2
�
Mjpi � tj

�
�

�
�

m00xi�m01yi�m02zi�tx
m20xi�m21yi�m22zi�1
m10xi�m11yi�m12zi�ty
m20xi�m21yi�m22zi�1

�
A �7�

whereMj � �mpq� are arbitrary (non-orthogonal) matrices,tj � �tx� ty�0�T , ands � � � 1

in (6). The structure in this case is recovered to within an unknown projective transform of

the true structure. This alternative formulation may be acceptable in certain applications (e.g.,

recognition, or the testing of co-planarity). The projective structure can be converted into the

true Euclidean structure given sufficient domain knowledge (e.g., the knowledge about the angles

between recovered planes and/or distances between points). Alternatively, the rigid structure might

also be recovered by applying apost hoc rigidity constraint to the recovered (non-rigid) motion

parameters. A more detailed description of our projective reconstruction algorithm can be found

in [Szeliski, 1993].

3.4 Ambiguities in the recovered parameters

The set of imaging equations introduced in sections 3.1 to 3.3 are very general. This allows us to

easily specialize the equations to a particular setting (e.g., the calibration problem) and to study the

tradeoffs between various parametrizations (by fixing or eliminating certain parameters). However,

it is often the case that there are more free parameters than can theoretically be recovered from the

data. Since we are using a stabilized local gradient descent, the extra degrees of freedom should

not affect the quality of the final solution, and, in our experience, often help speed the convergence

to a good estimate. If such ambiguities are not acceptable in a given application, the equations can

always be specialized until a unique solution is guaranteed (up to unavoidable ambiguities, such as

the scale ambiguity in pure structure from motion [Longuet-Higgins, 1981]).

4 Least squares minimization

To solve for the structure and motion parameters, we use the iterative Levenberg-Marquardt

algorithm. While Levenberg-Marquardt will only find a locally optimal solution, our experiments

indicate that it normally converges to the correct solution even with a very simple initialization

(Sections 8 and 9). In this section, we present the Levenberg-Marquardt algorithm, the equations
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for the required derivatives, our matrix layout and inversion algorithm, and techniques to analyze

and use the uncertainty in the estimates.

4.1 The Levenberg-Marquardt algorithm

The Levenberg-Marquardt method is a standard non-linear least squares technique [Presset al.,

1992] that works very well in a wide range of situations. It provides a way to vary smoothly

between the inverse-Hessian method and the steepest descent method.

The merit or objective function that we minimize is

C�a� �
X
i

X
j

cij juij � f�aij�j
2
� �8�

wheref�� is given in (1) and

aij �
�
pT
i �m

T
j �m

T
g

�T
�9�

is the vector of structure and motion parameters which determine the image of pointi in frame

j. The vectora contains all of the unknown structure and motion parameters, including the 3D

pointspi, the time-dependent motion parametersmj, and the global motion/calibration parameters

mg. The weightcij in (8) describes our confidence in measurementuij, and is normally set to the

inverse variance��2
ij .

An inherent feature of this formulation is its ability to cope with partial information (by simply

settingcij � 0 when information is unavailable). This is important, since in processing image

streams, only partial tracks corresponding to the motion of 3D points may be available, both

because the points may not be visible in all frames and because the tracking may be unreliable.

The Levenberg-Marquardt algorithm first forms the approximate Hessian matrix

A �
X
i

X
j

cij
�fT �aij�

�a

�f�aij�

�aT
�10�

and the weighted gradient vector

b � �
X
i

X
j

cij
�fT �aij�

�a
eij� �11�

whereeij � uij � f�aij� is the image plane error of pointi in framej. Given a current estimate of

a, it computes an increment�a towards the local minimum by solving

�A � �I��a � �b� �12�
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where� is a stabilizing factor which varies over time [Presset al., 1992]. Note that the matrixA is

an approximation to the Hessian matrix, as the second-derivative terms are left out. As mentioned

in [Presset al., 1992], inclusion of these terms can be destabilizing if the model fits badly or is

contaminated by outlier points.

To compute the required derivatives for (10) and (11), we compute derivatives with respect

to each of the fundamental operations (perspective projection, rotation, translation) and apply the

chain rule. The equations for each of the basic derivatives are given in Appendix A.

To solve the set of equations (12), we arrange the parameter vectora with all of the structure

termspi followed by the time varying motion termsmj followed by the global transform (camera)

parametersmg. This leads to a sparse and partially block diagonal Hessian matrixA (Appendix

B) which we store in the space-efficient skyline form [Bathe and Wilson, 1976]. We then use LDU

decomposition [Presset al., 1992], since this minimizes the amount offill-in during the system

solution [Bathe and Wilson, 1976].

4.2 Statistical interpretation and robust estimation

The weighted least squares formulation produces the minimum variance (and maximum likelihood)

estimate for the unknown parameters under the assumption that each measurement is contaminated

with additive Gaussian noise [Bierman, 1977]. In our structure from motion application, we can

quantify the amount of error in the tracked feature locations by analyzing the response of the tracker

(e.g., the shape of the correlation surface [Anandan, 1989]).

The statistical formulation enables us to make our technique morerobust, by discarding or down-

weighting measurements whoseresidual errors are too large [Huber, 1981]. In our implementation

of the Levenberg-Marquardt algorithm, after an initial convergence has been achieved, we robustify

the estimates by computing all of the residuals, throwing out measurements wherejeijj � 3�i, and

performing some more iteration.2 The statistical formulation can also be used to computeP, the

covariance matrix ofa, by simply inverting the Hessian matrixA (assuming that equations were

properly weighted withcij � ��2
ij ).

2This technique is called usingmetrically Winsorised residuals [Huber, 1981].
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5 Using line segment correspondences

Recovering structure and motion from line segment correspondences provides another powerful

mechanism for recovering the environment in situations where straight lines are preponderant (e.g.,

in man-made indoor environments) [Faugeraset al., 1987; Spetsakis and Aloimonos, 1990; Ayache,

1991]. In many cases, matching or tracking lines may be significantly easier than identifying reliably

trackable point features such as corners.

The least squares formulation developed in the previous section can easily be extended to take

advantage of tracked line segments. While many representations are possible for line segments

[Ayache, 1991], we choose to represent each segment by its two endpointspi andpi�1. We

replace selected terms in our weighted cost measure (8) with

cij��nij � �uij � f�aij���
2 �13�

where�nij is normal to the 2D line segment orientation observed for line segment�i� i�1� in frame

j. Thus, only the motion perpendicular to the line segment is used, which provides only a single

constraint (rather than the usual two) on the structure and motion parameters,3 making this problem

more difficult than point-based recovery.

A slightly more general form of (13) which can also work with (8) is

�uij � f�aij��
TCij�uij � f�aij�� �14�

whereCij is the inverse covariance matrix for each measurement. In the case of line segment

matches, we can make the constraint along the line segment to be much weaker (i.e.,��2
k � ��2

� ),

and still achieve some (weak) localization of 3D line segment endpoints.

6 Image streams: feature detection and tracking

To track point features from frame to frame, we use a relatively simple algorithm based on the

monotonicity operator [Kories and Zimmermann, 1986], which computes the number of neighbor-

ing pixels whose intensity is less than that of the central pixel. The monotonicity operator maps

each pixel in an intensity image into one of the nine classes. Pixels of the same class within the

3Under known motion, it constrains the endpoint to lie in a plane rather than along a line.
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same vicinity tend to form blobs. The centroids of these blobs can then be tracked for motion

detection, and in our case, for structure and motion recovery.

As in [Kories and Zimmermann, 1986], the image is first bandpass filtered to suppress both high

and low frequencies, which increases the stability of the blobs detected. In addition, we impose a

deadband of a few pixels (ndead) to reduce the effects of noise, i.e., we do not rely on a pixel if the

difference in the intensity between itself and its neighbors is less thanndead. While this results in

fewer blobs to track, most of the blobs created by noise are eliminated as well. Two examples of

point feature tracking using the monotonicity operator are shown in Figures 2 and 3.

7 Camera calibration

The general structure from motion algorithm developed in this paper can easily be specialized to the

simpler camera calibration problem by simply setting the 3-D point locations to their known values.

Camera calibration is often a necessary first step in many computer vision applications, including

structure from motion (but see, e.g., [Mohret al., 1992; Faugeras, 1992; Demeyet al., 1992;

Shashua, 1992; Shashua, 1993; Szeliski, 1993] for techniques that do not require calibration). This

simplified problem is also a good way to test out the general recovery algorithm and to determine

limits on its performance. Below, we present our methods for tracking the calibration pattern,

determining the focal length and distance to pattern (intrinsic parameters) and for computing object

motion (extrinsic parameters).

7.1 Experimental setup

The setup for camera calibration is shown in Figure 4. The camera is facing the turntable at an

oblique angle with the whole calibration pattern in its field of view. Referring to (4), the unknown

parameters areR, Rj for each frame,c, t andf , the focal length. The 3D point positions (pi’s)

are knowna priori while the translationstj ’s are set to zero, since only rotations are expected in

this procedure. To initialize the non-linear least squares, we compute a guess for the translations

and tilt angle from the locations of the center and corner dots.

The calibration pattern that we use is a flat 7 by 7 square grid of points with a spacing of 1.9 cm

(Figure 5). Prior to detecting and tracking each grid point, the image is first histogram equalized to

increase contrast between the dots and the white background. Detection of each dot is done using
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(a) (b)

(c) (d)

Figure 2: Application of the monotonicity operator - cube scene

(a) Original image at frame 10 (b) Bandwidth filtered image (c) Output of monotonicity operator

(d) Tracks found for the first 10 frames
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(a) (b)

(c) (d)

Figure 3: Application of the monotonicity operator - coke can scene

(a) Original image at frame 10 (b) Bandwidth filtered image (c) Output of monotonicity operator

(d) Tracks found for the first 10 frames
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Figure 4: Setup for camera calibration

Figure 5: Calibration pattern and the track paths for 50 frames
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a star-shaped template whose conical weight distribution is such that the weight is the smallest at

the center (weight of -8) and linearly increasing to 1 away from the center:

Tstar �
1
5
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In the first frame, the whole image is searched for potential dots. Those which are too small

or too large are filtered out. In subsequent frames, every potential dot is searched for within a

neighborhood of its previous position. The result of this procedure is shown in Figure 5. In this

figure, the tracks are drawn over the first image of the calibration pattern and turntable.

7.2 Results

The results of our calibration algorithm applied to the tracked point centers are given in Table 1.

From these results, we can see that the tilt and distance to the turntable are both recovered accurately,

even though the field of view is small (5.2” pattern / 59.4” distance� 5�). Our experiments also

indicate that the type of perspective projection function used significantly influences the rate of

convergence. This can be seen from Figure 6a, which compares how quickly the estimated focal

length settles to a constant value.

We compared the recovered rotations using the least squares formulation with those extracted

using a program that tracks and interprets the Gray coded pattern on the side of the turntable

[Szeliski, 1990]. Our results indicate that the root mean squared (RMS) error in angle estimates

between the two techniques is about 0�2� (Figure 6b). It is unclear from these results which

algorithm has a greater error in motion estimation, but the worst-case RMS error of either algorithm

is at most 0�2�.
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Parameter 1 frame 48 frames

f 1569.0 1536.6

t (0.33, 2.29, 58.30) (0.31, 2.29, 57.22)

d = jtj (estimated) 58.3" 57.3"

d (measured) 59.4" 59.4"

c (0, 0, 0) (-0.02, 0.03, 0)

qx [0.537, (0.843, -0.022, 0)] [0.536, (0.844, -0.022, 0)]

�x (estimated) 115�0� 115�2�

�x (measured) 117�9� 117�9�

Table 1: Comparison of camera calibration results for 1 frame and 48 frames.

Note that the parameterc for one frame calibration has been set inactive, otherwise there will be

redundant degrees of freedom. The z-component ofc for the multiple frame calibration has been

set inactive for the same reason. The x- and y-components are not set inactive as there may be

some offset along the z-plane in the object frame.
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Figure 6: Convergence rates of focal length estimation and estimation errors.

(a) comparing convergence rates of focal length vs. iteration number forf andt z (P1), ands and

� (P2) perspective projection representations (48 frames used); (b) difference between Gray code

and calibration pattern angle estimates (angles range over 90�).
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(a) (b) (c)

Figure 7: Synthetic point tracks

(a) observed tracks; current track estimates (b) after 1 iteration and (c) after 5 iterations. 96 points,

8 frames,∆	 � 2�.

8 Experimental results: synthetic data

We now present the results of our algorithm running on synthetic motion sequences of objects

undergoing pure object-centered rotation and general motion. The case of pure rotation corresponds

to the problem solved (under orthography) by Tomasi and Kanade [1991] (see also [Sawhneyet al.,

1990] for the analysis of rotational motion). The 3D point locations are initialized by projecting

the 2D image point locations in the middle frame to a constant depth plane which passes through

the object coordinate frame. The rotation quaternions are set to unit scalars and the translations are

set to zero.

8.1 Pure rotation

Our synthetic data set consists of a set ofn points randomly distributed over the surface of a

sphere. The tracks resulting from rotating the sphere about itsz axis, with the camera located 45�

above thex-y plane, are shown in Figure 7a. Figures 7b and 7c show the image plane trajectories

corresponding to the current shape and motion estimates. The minimization of the squared distance

between the predicted and observed tracks is what drives our shape and motion recovery algorithm.

By observing the two sets of tracks simultaneously, we can gauge the speed of convergence of the

algorithm and observe potential local minima.

The reconstruction process can also be examined by viewing the 3D positions of the true and

estimated point locations using an interactive 3D display window. The initial estimate of the 3D

point locations is a plane, as can be seen from the side view in Figure 8a. When we start the
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(a) (b) (c)

Figure 8: Side view of 3D point position estimates

After (a) 0 iterations, (b) 2 iterations, and (c) 20 iterations. 96 points, 8 frames,∆	 � 2�.

reconstruction algorithm, the 3D shape quickly approaches the correct spherical shape (Figures 8b

and 8c).

To obtain a more quantitative measure of the algorithm’s convergence, we can plot both the

2D image plane error (8) and the 3D error between the true and estimated point positions (Figure

9a). The errors plotted are the average RMS errors per point, in pixels for 2D errors, and in world

coordinates for 3D errors (the sphere diameter is 100 units). While the true object motion is purely

rotational, we estimate both a rotation and translation for each frame, as in traditional structure

from motion. The recovered shape cannot therefore be recovered unambiguously, and is related to

the true shape by a scaled rigid transform [Longuet-Higgins, 1981]. The error after computing the

best scaled rigid match between the estimated and true point positions is shown in Figure 9a, along

with the errors after computing the best affine and projective transforms between the two data sets.

In this figure, we notice that the projective and affine structures are recovered better than

the scaled rigid structure, even though our algorithm specifically is designed to recover the rigid

structure (this difference is less obvious when more frames or larger displacements are used). We

also notice that the image plane error reduces to its final value relatively quickly (5–10 iterations),

while the 3D structure continues to improve. It is also interesting that the 3D structure does not

“wander away” too far from its initial planar estimate (Figure 8), and does not therefore acquire a

grossly erroneous estimate of scale.

To determine the error sensitivity of our method, we can vary the amount of noise added to

the image plane point positions (tracks). Figure 9b shows the scaled rigid matching error as a

function of iteration number and image plane noise. As expected, the amount of reconstruction

error increases with imaging noise.
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Figure 9: Reconstruction error vs. iteration number

(a) different error measures (b) varying image noise� (standard deviation in pixels). 96 points, 8

frames,∆	 � 1�, 90� 90 pixels projected image size.
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Figure 10: Reconstruction error vs. iteration number

(a) increasing rotation angles∆	 � r � 1�-8�, N � 8; (b) increasing number of frames∆	 � 1�,

N � 5-32.
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Figure 11: Reconstruction error vs. iteration number

(a) rotation and translation, (b) pure translation. 96 points, 8 frames,∆	 � 1� and 0�, ∆t �

�0�41��0�61�1�22�, sphere size = 100.

Up to a certain point, we can improve the accuracy of our estimates by using a wider range

of viewpoints, either using larger inter-frame displacements (Figure 10a), or using more frames

(Figure 10b). However, for a very large range of viewpoints (typically� 60�), batch least squares

minimization sometimes becomes unstable. This is because the initial estimates of the rotation

and translation in the later frames are far from the true values. To alleviate this problem, we start

the algorithm with a smaller number of frames and points and incrementally add more frames and

points. The motions associated with the additional frames are estimated by linearly extrapolating

the estimated motion in the earlier frames. By adopting this technique, the modified least squares

technique has so far always converged on both simulated and real data to reasonable values. The

incremental frame/point scheme is used for the real image sequences analyzed in the next section.

8.2 General motion

Adding moderate amounts of translation to the object’s rotational motion does not affect the quality

of the reconstructed solution (Figure 11a, where the translational component of the image plane

motion� 2� rotational component). The algorithm also deals well with pure translation (Figure
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(a) (b) (c)

Figure 12: Synthetic line tracks

(a) observed tracks; current track estimates (b) after 1 iteration and (c) after 5 iterations. 15

segments, 8 frames,∆	 � 4�.

11b), as long as there is sufficient motion parallax.

8.3 Line matching

Our algorithm has also been tested on a collection of line segments. Here, we connect successive

pairs in our original point list into lines, and use only the error terms perpendicular to the projected

line segments in our least squares formulation (actually, to make convergence faster, we also

include the error component along the line, but weighted so thatck 
 0�005c�, whereck andc� are

the minimum and maximum eigenvalues ofCij in (14)). The viewed collection of line segments,

and the views of the reconstructed segments are shown in Figure 12. As can be seen, only the

projections of the line segments onto the measured lines are recovered. To measure the 2D and

3D errors, we modified our algorithm to only compute the error terms perpendicular to the line

segments. A plot of the convergence of the algorithm is given in Figure 13a.

8.4 Projective structure recovery

We have performed experiments in recovering projective structure and motion estimates using

the formulation presented in Section 3.3. In this case, it only makes sense to compute the image

plane (2D) error and the projective structure error, since the scaled rigid and affine errors can be

arbitrarily large. Using the same input data as in the previous experiments, we were able to very

quickly reduce the 2D errors and recover good projective structure estimates. Figure 13b shows

the errors corresponding to the same data as Figure 9a, while Figures 14a and 14b correspond to



8.4 Projective structure recovery 21

0 1 2 3 4 5 6 7
iterations

  1.00

  3.16

 10.00

 31.62

100.00

316.23

er
ro

r

error-2D
error-3D
best scaled rigid
best affine
best projective

(a)

0 2 4 6 8 10 12 14 16
iterations

  0.10

  0.32

  1.00

  3.16

 10.00

 31.62

100.00

er
ro

r

error-2D (PSR)
best projective (PSR)
error-2D
best projective

(b)

Figure 13: Reconstruction error vs. iteration number

(a) matching line segments, (b) projective structure recovery (PSR). 96 points (48 segments), 8

frames,∆	 � 1�. Results from Euclidean structure recovery and projective structure recovery

(PSR) are overlayed.
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Figure 14: Reconstruction error vs. iteration number for projective structure recovery (PSR)

(a) rotation and translation, (b) pure translation. 96 points, 8 frames,∆	 � 1� and 0�, ∆t �

�0�41��0�61�1�22�, sphere size = 100. Results from Euclidean structure recovery and projective

structure recovery (PSR) are overlayed.
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Figures 11a and 11b. From all of these plots, we can conclude that the projective structure recovery

is more rapid than with rigid structure estimation. A more detailed presentation of these results

can be found in [Szeliski, 1993].

9 Experimental results: real image sequences

We have applied our algorithm to real image sequences, using the monotonicity-based tracker

described in Section 6. Figures 15 and 16 show the results of our shape from motion least squares

algorithm applied to these tracks. We can see that the shape of the turntable sides, the cube, and the

soda can are all recovered quite well. Two of the cube sides are not quite parallel, which suggests

that the projective structure is recovered better than the Euclidean structure.4 This may be caused

by the limited length of the tracks produced by our tracker.

10 Discussion and Conclusions

In this paper, we have demonstrated that shape and motion can be recovered from extended

motion sequences by directly applying an iterative non-linear least squares minimization technique,

without the need for an initialization stage based on algebraic or linear reconstruction algorithms.

Our algorithm is based on a novel re-formulation of the perspective projection equations which

encourages the recovery of object-centered shape and motion parameters, and in the limit reduces

to the case of orthographic projection. To initialize our algorithm, we project the 2-D points in

the middle frame to a constant depth in 3-D. We then simultaneously solve for better structure

and motion estimates using the Levenberg-Marquardt algorithm combined with sparse matrix

techniques. Our experiments indicate that the algorithm usually converges to its final solution in

under a dozen iterations. Because we initialize our algorithm with such a simple (non-informative)

estimate of the true shape, the experimental results suggest that the region of convergence for our

iterative algorithm is quite broad, and that complicated initialization techniques are not required.

The shape and motion recovery algorithm developed in this paper has several advantages over

existing techniques. It can handle perspective (in fact, arbitrary) projection equations, partial

4Recall that under artibrary 3-D projective transformations, co-planar points remain co-planar, but parallel planes

do not necessarily remain parallel.



10 Discussion and Conclusions 23

(a) (b)

(c)

Figure 15: Recovered points and transform for the cube scene using 96 frames

(a) Side view (b) Top view (c) Tracks in 2D image space. The lines in (c) join backprojected

estimated points with the actual image points.
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(a) (b)

(c)

Figure 16: Recovered points and transform for the coke can scene using 96 frames

(a) Side view (b) Top view (c) Tracks in 2D image space. The lines in (c) join backprojected

estimated points with the actual image points.
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and uncertain tracks, and line segment matches in a unified framework. Additional information,

such as known calibration points or angular relationships (e.g., co-planarity of certain points, or

orthogonality between recovered lines) can easily be added. It makes optimal and robust use of the

data, since measurements can be individually weighted and outliers can be rejected. Solving for

the unknowns in a batch fashion leads to optimal estimates, while the computational costs are kept

reasonable by using sparse matrix techniques. Recovering object-centered shape is more reliable

than camera-centered shape, especially for narrow fields of view. Finally, the iterative recovery of

shape and motion without a special initialization stage makes this a particularly simple and general

technique for shape recovery.

During the development of the algorithm, we did observe occasional occurrences of depth

reversals, especially under weak orthography. These are simple to correct, by reflecting the shape

about a constant depth plane and checking if the image plane error is reduced. We also observed that

solving for the shape and motion parameters simultaneously instead of in alternation (as in [Taylor

et al., 1991]) significantly speeds up the convergence. Changing the perspective projection model

from a camera-centered projection (5) to a projection about an intermediate frame (6) makes the

recovery of camera parameters much quicker. It also speeds up the structure and motion recovery,

since the structure description is object-centered rather than camera-centered.

We have begun experiments in recovering projective structure and motion. Our preliminary

results indicate that this approach converges much more quickly than Euclidean structure. Many

approaches to projective structure recovery [Faugeras, 1992; Demeyet al., 1992] use only two

images and a small number of points, whereas our approach uses many frames and points and

tolerates incomplete correspondences (see also [Mohret al., 1992]). We also evaluate our structure

error by finding the best projective match between the estimated and true structures, whereas

previous approaches [Demeyet al., 1992] use either invariants or 2Dtransfer errors. In future

work, we plan to investigate a recursive formulation which models the correlation between the

structure and motion parameters. From the experimental side, we would like to validate our

approach on real data using known 3-D ground truth, and apply our techniques to more complicated

scenes.
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A Elemental transform derivatives

The derivatives of the two perspective projection functions (5) and (6) with respect to their 3D

arguments and internal parameters are straightforward:
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The derivatives of an elemental rigid transformation (2)

y � Rx� t
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(see [Shabana, 1989]). The derivatives of a screen coordinate with respect to any motion or

structure parameter can be computed by applying the chain rule and the above set of equations.
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B Matrix layout and LDU decomposition

We arrange the parameter vectora with all of the structure termsp i followed by the time varying

motion termsmj followed by the global transform (camera) parametersmg. The Hessian matrix

then has the form

A �
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where
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is the matrix of the point derivative terms,
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X
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�f�aij�
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is the local (time-varying) transform derivative term matrix,

M �
X
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X
j

cij
�fT �aij�

�mg

�f�aij�

�mT
g

is the global transform derivative term matrix, andN , O, andP are the cross-derivative term

matrices. Note thatK andL are block diagonal in our case as we assume both spatial and temporal

independence. They would be in general not be block diagonal if spatial or temporal regularization

was being used. MatrixN will normally be banded since points do not appear in all frames. The

weighted error gradient vectorb has a similar form, with terms involving 3D points followed by

terms involving time-varying transforms followed by the global terms.

The matrixA is stored in skyline form [Bathe and Wilson, 1976], where the skyline for each

column inA is the set of contiguous elements from the diagonal up to the “highest” non-zero element

(i.e., the non-zero element with the lowest row index). To solve the set of equationsA�a � b, we

use LDU decomposition [Presset al., 1992]. It is here that the skyline form of the matrix shows its

real advantage, since its form minimizes the amount offill-in (and hence computation performed)

during LDU decomposition and backsubstitution [Bathe and Wilson, 1976]. For example, if the

matrixN were zero and there were no global parameters (jmgj � 0), the system solution becomes

equivalent to solving for each structure and motion parameter independently [Tayloret al., 1991].

For non-zeroN andmg, we can still have significant computational savings if the number of frames
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is significantly less than the number of points (in the converse case, we can interchange the order

of pi andmj in A).


