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Abstract

Recovering the shape of an object from two views fails at occluding contours of smooth objects
because the extremal contours are view dependent. For three or more views, shape recovery is
possible, and several algorithms have recently been developed for this purpose. We present a new
approach to the multiframe stereo problem which does not depend on differential measurements in
the image, which may be noise sensitive. Instead, we use a linear smoother to optimally combine
all of the measurements available at the contours (and other edges) in all of the images. This allows
us to extract a robust and dense estimate of surface shape, and to integrate shape information from
both surface markings and occluding contours.
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1 Introduction 1

1 Introduction

Most visually-guided systems require representations of surfaces in the environment in order to

integrate sensing, planning, and action. The task considered in this paper is the recovery of the 3D

structure (shape) of objects with piecewise-smooth surfaces from a sequence of profiles taken with

known camera motion. Theprofile (also known as theextremal boundary or occluding contour) is

defined as the image of thecritical set of the projection map from the surface to the image plane.

Since profiles are general curves in the plane without distinguished points, there is noa priori

pointwise correspondence between these curves in different views. However, given the camera

motion, there is a correspondence based on theepipolar constraint. For two images, i.e., classical

binocular stereo, this epipolar constraint is a set of straight lines which are the intersection of the

epipolar planes with the image plane. The epipolar plane through a point is determined by the

view direction at that point and the instantaneous camera translation direction.

In the case of contours that are not view dependent, e.g., creases (tangent discontinuities) and

surface markings, many techniques have been developed for recovering the 3D contour locations

from two or more images under known camera motion [Marr and Poggio, 1979; Mayhew and

Frisby, 1980; Arnold, 1983; Bolleset al., 1987; Baker and Bolles, 1989; Matthieset al., 1989].

Techniques have also been developed for simultaneously estimating contour locations and camera

positions [Tsai and Huang, 1984; Faugeraset al., 1987; Horn, 1990]. However, for smooth curved

surfaces, the critical set which generates the profile is different for each view. Thus, the triangulation

applied in two-frame stereo will not be correct along the occluding contour for smooth surfaces.

For the same reason, it is often not possible to determine the camera motion from the images unless

some assumptions are made either about the surface or the motion [Arborgast and Mohr, 1992;

Giblin et al., 1992]. On the other hand, the fact that the critical sets sweep out an area means that

the connectivity of the surface points can be determined, i.e., one obtains a surface patch rather

than a set of points.

The problem of reconstructing a smooth surface from its profiles has been explored for known

planar motion by Giblin and Weiss [Giblin and Weiss, 1987] and subsequently for more general

known motion by Vaillant and Faugeras [Vaillant, 1990; Vaillant and Faugeras, 1992] and Cipolla

and Blake [Blake and Cipolla, 1990; Cipolla and Blake, 1990; Cipolla and Blake, 1992]. These

approaches are either based on a differential formulation and analysis, or they use curve fitting but

still only use three frames. First order temporal derivatives are usually computed as differences from
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pairs of frames, and second order derivatives from triples. Unfortunately, determining differential

quantities reliably from real images in this way is difficult. Even fitting curves to data from three

images can be unsatisfactory. This has led Cipolla and Blake to use relative measurements in

order to cancel some of the error due to inadvertent camera rotation. Their approach approximated

image contours with B-snakes which require initialization for each contour that is tracked. In

addition, B-snakes implicitly smooth the contours in the image. Since the recovery of 3D points is

a linear problem (as we will show in this paper), the smoothing can be done in 3D on the surface,

where more context can be used in the detection of discontinuities so that detailed structure can be

preserved.

It is natural to consider surface reconstruction as an optimal estimation problem. To overcome

the limitations of previous algorithms, the approach we develop in this paper applies standard

techniques from estimation theory (Kalman filtering and smoothing) to make optimal use of each

measurement without computing differential quantities. First, we derive alinear set of equations

between the unknown shape (surface point positions and radii of curvature) and the measurements.

We then develop a robust linear smoother ([Gelb, 1974; Bierman, 1977]) to compute statistically

optimal current and past estimates from the set of contours. Smoothing allows us to combine

measurements on both sides of each surface point.

Our technique produces a complete surface description, i.e., a network of linked 3D surface

points, which provides us with a much richer description than just a set of 3D curves. Some parts

of the surface may never appear on the profile. In some cases this is due to occlusion either by the

same surface or another one. In other cases, it is due to limitations of the camera trajectory [Giblin

and Weiss, 1994]. Since the method presented here also works for arbitrary surface markings

and creases, a larger part of the surface can be reconstructed than from occluding contours of the

smooth pieces alone. Our approach also addresses the difficult problem of contours that merge and

split in the image, which must be resolved if an accurate and complete 3D surface model is to be

constructed.

The method we develop has applications in many areas of computer vision, computer aided

design, and visual communications. The most traditional application of visually based shape

recovery is in the reconstruction of a mobile robot’s environment, which allows it to perform

obstacle avoidance and planning tasks [Curwenet al., 1992]. Visually based shape recovery can

also be used to develop strategies for robotics grasping and manipulation tasks, or as an off-

line technique to automatically “learn” object descriptions for object or pose recognition tasks.
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In less traditional applications, our system could be used to performreverse engineering, i.e.,

to automatically acquire 3D computer aided design (CAD) description of real-world objects or

prototypes, or even to construct a “3D fax” for transmitting 3D object descriptions and images

between desktops.

Our paper is structured as follows. We begin in Section 2 with a description of our edge

detection, contour linking, and edge tracking algorithms. In Section 3, we discuss the estimation of

the epipolar plane for a sequence of three or more views. Section 4 presents the linear measurement

equations which relate the edge positions in each image to the parameters of the circular arc

being fitted at each surface point. Section 5 then reviews robust least squares techniques for

recovering the shape parameters and discusses their statistical interpretation. Section 6 shows

how to extend least squares to a time-evolving system using the Kalman filter, and develops the

requisite forward mapping (surface point evolution) equations. Section 7 extends the Kalman filter

to the linear smoother, which optimally refines and updates previous surface point estimates from

new measurements. Section 9 presents a series of experiments performed both on noisy synthetic

contour sequences and on real video images. We close with a discussion of the performance of our

new technique and a discussion of future work.

2 Contour detection and tracking

The problem of edge detection has been extensively studied in computer vision [Marr and Hildreth,

1980; Canny, 1986]. The choice of edge detector is not crucial in our application, since we

are interested mostly in detecting strong edges such as occluding contours and visible surface

markings.1 For our system, we have chosen thesteerable filters developed by Freeman and

Adelson [Freeman and Adelson, 1991], since they provide good angular resolution at moderate

computation cost, and since they can find both step and peak edges. We have used both theG1

and�G2�H2� sets of filters, with the default parameters suggested by Freeman and Adelson. An

example of our edge detector operating on the input image in Figure 1a is shown in Figure 1b.

Once discrete edgels have been detected, we use local search to link the edgels into contours.

We find the two neighbors of each edgel based on proximity and continuity of orientation. Note

that in contrast to some of the previous work in reconstruction from occluding contours [Cipolla

1Unlike many edge detection applications, however, our system provides us with a quantitative way to measure the

performance of an edge detector, since we can in many cases measure the accuracy of our final 3D reconstruction.
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(a) (b)

(c)

n

n

s

nepi

(d)

Figure 1: Input processing steps

(a) sample input image (dodecahedral puzzle), (b) estimated edgels and orientations (maxima in

jG1j2), (c) tracked edgels, (d) correspondence of points on the occluding contours using the epipolar

constraint.
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and Blake, 1990; Cipolla and Blake, 1992; Blakeet al., 1993], we do not fit a smooth parametric

curve to the contour since we wish to directly use all of the edgels in the shape reconstruction,

without losing detail.2 The curve fitting problem is essentially one of detecting outliers. Since the

3D reconstruction provides more context, smoothing in 3D should be preferred.

We then use the known epipolar line constraints (Section 3) to find the best matching edgel in

the next frame. Our technique compares all candidate edgels within the epipolar line search range

(defined by the expected minimum and maximum depths), and selects the one which matches most

closely in orientation, contrast, and intensity (see Figure 1c). Once an initial estimate for the 3D

location of an edgel has been computed, the search range can be dramatically reduced (see Section

5.3).

Since contours are maintained as a list of discrete points, it is necessary to resample the edge

points in order to enforce the epipolar constraint on each track. We occasionally start new tracks if

there is a sufficiently large (2 pixel wide) gap between successive samples on the contour. While we

do not operate directly on the spatiotemporal volume, our tracking and contour linking processes

form a virtual surface similar to theweaving wall technique of Harlyn Baker [Baker, 1989]. Unlike

Baker’s technique, however, we do not assume a regular and dense sampling in time.

3 Reconstructing surface patches

The surface being reconstructed from a moving camera can be parametrized in a natural way by two

families of curves [Giblin and Weiss, 1987; Cipolla and Blake, 1990]: one family consists of the

critical sets on the surface; the other is tangent to the family of rays from the camera focal points.

The latter curves are calledepipolar curves and together with the critical sets form theepipolar

parametrization. This parametrization can always be used except when the profile is singular or

when the normal to the surface is perpendicular to the direction of camera translation [Giblin and

Weiss, 1994]. For a pair of stereo images, each viewing direction together with the translation

vector from one camera center to the other determines a plane called anepipolar plane. The same

construction holds in the case of motion: in the limit, as the time between samples goes to zero,

the plane determined by a view direction and the camera translation velocity will also be called an

epipolar plane. For a more detailed discussion of epipolar curves see [Giblin and Weiss, 1994].

2However, we do perform a small amount of curvature-dependent smoothing along the curves to reduce noise. This

can be viewed as part of the edge extraction stage.
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The problem is that any smooth surface reconstruction algorithm which is more than a first order

approximation requires at least three images and, that in general, the three corresponding tangent

rays will not be coplanar. However, there are many cases when this will be a good approximation.

One such case is when the camera trajectory is almost linear. If the camera trajectory is linear, then

the epipolar planes form a pencil of planes containing that line. Under orthographic projection, if

the camera motion is planar, then all of the epipolar curves will be planar as well.

Cipolla and Blake [Cipolla and Blake, 1990; Cipolla and Blake, 1992] and Vaillant and Faugeras

[Vaillant, 1990; Vaillant and Faugeras, 1992] noticed that to compute the curvature of a planar curve

from three tangent rays, one can determine a circle which is tangent to these rays. See Figure 2.

The assumption that one needs to make is that the surface remains on the same side of the tangent

rays. This is true for intervals of the curve which do not have a singularity or zero curvature.

Given three or more edgels tracked with our technique, we would like to compute the location

of the surface and its curvature by fitting a circular arc to the lines defined by the view directions

at those edgels. In general, a non-singular space curve will have a unique circle which is closest

to the curve at any given point. This is called theosculating circle, and the plane of this circle

is called theosculating plane. It is easy to see that if the epipolar curve is non-singular, then the

epipolar plane is an estimate of its osculating plane [Cipolla and Blake, 1992], and the lines defined

by the view directions are close to this plane and can be projected onto it. The accuracy of the

computation of the radius of curvature depends on the conditioning of this projection. Since in the

limit, the epipolar plane is the osculating plane for the epipolar curve, the epipolar curves should

be the most robust to reconstruct by projecting onto this plane.

The relationship between the curvature of a curve such as the epipolar curve and the curvature

of the surface is determined by the angle between the normal to the curve and the normal to the

surface. The curvature of the curve scaled by the cosine of this angle is thenormal curvature. The

curvature of a surface can be thought of as a function which assigns to every tangent directionv

a value which is the curvaturekv of the normal slice in that direction. Ifv is the tangent to the

epipolar curve,kepi is the curvature of the epipolar curve, and� is the angle between the epipolar

plane and the plane containingv and the surface normal, then the relationship among them is given

by the equation

kv � kepi cos� (1)

This gives Meusnier’s Theorem which says that the normal curvature is the same for all curves on

the surface with a given tangent direction. Since the normal to the surface can be determined from
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Figure 2: Local coordinate axes and circle center point calculation

In this figure, the pointspi andqi are coincident. In general, theqi will lie somewhere along the

tangent rays, and thepi will be the points of tangency to the osculating circle.

the image, the normal curvature can be obtained from the epipolar curve.

4 Measurement equations

Once we have selected the epipolar plane as the reconstruction plane for fitting the circular arc, we

must compute the set of lines in this plane which should be tangent to the circle. This can be done

either by projecting the 3D lines corresponding to the linked edgels directly onto the plane, or by

intersecting the tangent planes (defined by the edgels and their orientations) with the reconstruction

plane.

We represent the 3D line corresponding to an edgel in framei by a 3D pointqi and a direction�ti.

The pointqi is chosen to be the intersection of the viewing ray with a reference planez � z0. The

direction is given by�ti � N �qi � ci�, whereci is the camera center andN �� normalizes a vector.

We choose one of these lines as thereference frame ��n0��t0� centered atq0 (where�n0 � �t0� �nepi),

e.g., by selecting the middle ofn frames for a batch fit, or the last frame for a Kalman filter. This

line lies in the reconstruction plane defined by�nepi.
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If we parameterize the osculating circle by its centerc � �xc� yc� and radiusr (Figure 2), we

find that the tangency condition between linei and the circle can be written as

cixc � siyc � r � di (2)

whereci � �ti ��t0, si � ��ti ��n0, anddi � �qi�q0� ��ni. Thus, we have a linear estimation problem

in the quantities �xc� yc� r� given the known measurements �ci� si� di�. This linearity is central to

the further developments in the paper, including the least squares fitting, Kalman filter, and linear

smoother, which we develop in the next three sections.

5 Least squares fitting

While in theory the equation of the osculating circle can be recovered given the projection of three

non-parallel tangent lines onto the epipolar plane, a much more reliable estimate can be obtained

by using more views. Given the set of equations (2), how can we recover the best estimate for

�xc� yc� r�? Regression theory [Albert, 1972; Bierman, 1977] tells us that the minimum least

squared error estimate of the system of equationsAx � d can be found by minimizing

e � jAx� dj2 �
X
i

�ai � x� di�
2� (3)

This minimum can be found by solving the set ofnormal equations3

�ATA��x � ATd (4)

or

�
X
i

aia
T
i ��x �

X
i

aidi�

A statistical justification for using least squares will be presented shortly (Section 5.1).

In our circle fitting case,ai � �ci� si�1�, x � �xc� yc� r�, and the normal equations are
�
����

P
i c

2
i

P
i cisi

P
i ciP

i sici
P

i s
2
i

P
i siP

i ci
P

i si
P

i 1

�
����

�
����

xc

yc

r

�
���� �

�
����

P
i cidiP
i sidiP
i di

�
���� � (5)

3Alternative techniques for solving the least squares problem includesingular value decomposition [Presset al.,

1986] and Householder transforms [Bierman, 1977].
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If we solve the above set of equations directly, the estimates forxc and r will be very highly

correlated and both will be highly unreliable (assuming the range of viewpoints is not very large).

This can be seen both by examining Figure 2, where we see that the location ofc is highly sensitive

to the exact values of thedi, or by computing the covariance matrixP � �ATA��1 (Section 5.1).

We cannot do much to improve the estimate ofr short of using more frames or a larger camera

displacement, but we can greatly increase the reliability of our shape estimate by directly solving

for thesurface point �xs� ys�, wherexs � xc � r andys � yc.4 The new set of equations is thus

cixs � siys � �1� ci�r � di� (6)

While there is still some correlation betweenxs andr, the estimate forxs is much more reliable

(Section 5.1). Once we have estimated�xs� ys� r�, we can convert this estimate back to a 3D surface

point,

p0 � q0 � xs�n0 � ys�t0� (7)

a 3D center point

c � q0 � �xs � r��n0 � ys�t0 � p0 � r�n0� (8)

or a surface point in theith frame

pi � c� r�ni � p0 � r��ni � �n0�� (9)

where

�ni � �ti � �nepi

is the osculating circle normal direction perpendicular to lineli (Figure 2).

5.1 Statistical interpretation

The least squares estimate is also theminimum variance andmaximum likelihood estimate (optimal

statistical estimate) under the assumption that each measurement is contaminated with additive

Gaussian noise [Bierman, 1977]. If each measurement has a different variance�2
i , we must weight

each term in the squared error measure (3) bywi � ��2
i , or, equivalently, multiply each equation

ai � x � di by ��1
i .

4While the point�xs� ys� will not in general lie on the line�q0�
�t0�, the tangent to the circle at�xs� ys� will be

parallel to�t0.
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In our application, the variance ofdi, �2
i , can be determined by analyzing the edge detector

output and computing the angle between the edge orientation and the epipolar line

�2
i � �2

e���li � �nepi�
2 � �2

e��1� � �mi � �nepi�
2��

where�e is the variance ofqi along the surface normal�mi. This statistical model makes sense if

the measurementsdi are noisy and the other parameters (ci, si) are noise-free. This is a reasonable

assumption in our case, since the camera positions are known but the edgel locations are noisy.

The generalization to uncertain camera locations is left to future work.

When using least squares, the covariance matrix of the estimate can be computed fromP �

�ATA��1. We can perform a simple analysis of the expected covariances forn measurements

spaced� apart. Using Taylor series expansions forci � cosi� andsi � sini�, and assuming that

i � ��m� � �m�, n � 2m� 1, we obtain the covariance matrices

P c
3 �

�
����

6��4 0 �6��4

0 1
2�

�2 0

�6��4 0 6��4

�
���� and P s

3 �

�
����

1 0 �2��2

0 1
2�

�2 0

�2��2 0 6��4

�
����

whereP c
3 is the 3 point covariance for the center-point formulation, andP s

3 is the 3 point covariance

for the surface-point formulation. As we can see, variance of the surface point localx estimate

is four orders of magnitude smaller than that of the center point. Similar results hold for the

overdetermined case (n � 3). Extending the analysis to the asymmetrical case,i � �0 � � �2m�, we

observe that the variance of thexs andys estimates increases.

5.2 Robustifying the estimate

To further improve the quality and reliability of our estimates, we can applyrobust statistics

to reduce the effects ofoutliers which are due to grossly erroneous measurements as well as

large changes in the surface curvature [Huber, 1981]. Many robust techniques are based on first

computingresiduals, ri � di � ai � x, and then re-weighting the data by a monotonic function

���
i�

�2 � ��2
i g�jrij�

or throwing out measurements whosejrij � �i. Alternatively, least median squares can also be

used to compute a robust estimate, but at an increased complexity.
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In our application, outliers occur mainly from gross errors in edge detection (e.g., when adjacent

edges interfere) and from errors in tracking. Currently, we compute residuals after each batch fit,

and keep only those measurements whose residuals fall below a fixed threshold.

5.3 Predicting 2D locations for tracking

Once a 3-D estimate for an edgel location has been computed, this can be used to predict where the

edgel would appear in the next frame, and hence to improve the correspondence produced by the

tracking stage. When no 3-D information is available, we project the viewing ray passing through

a 2-D edgel into the next frame to give us the epipolar search line. We use the intersection of the

viewing ray with a minimum and maximum depth plane to determine the endpoints which limit the

search range.

When a 3-D position estimate is available, we project the 3-D position and covariance estimate

into the new reconstruction plane. The position on the screen of the edgel then gives us the middle

of the search range, while a multiple of the standard deviation in the localx direction (which is

parallel to the image plane and in the reconstruction plane and hence along the epipolar line) times

the epipolar line determines the limits of the search range. More formally, the endpoints of the

search line are

Pi�pi � ��x�n0�

wherePi projects points in 3-D onto theith frame, and�2
x is the variance in the localx direction.

Our approach is similar in spirit to thevalidation gate approach used by Blakeet al. for

their Kalman-filter snake tracking [Blakeet al., 1993]. Even more sophisticated data association

techniques could be used to disambiguate multiple intersecting tracks [Bar-Shalom and Fortmann,

1988].

6 Kalman filter

The Kalman filter is a powerful technique for efficiently computing statistically optimal estimates of

time-varying processes from series of noisy measurements [Gelb, 1974; Bierman, 1977; Maybeck,

1979]. In computer vision, the Kalman filter has been applied to diverse problems such as motion

recovery [Riveset al., 1986], multiframe stereo [Matthieset al., 1989], and pose recovery [Lowe,

1991]. In this section, we develop a Kalman filter for contour-based shape recovery in two parts:
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first, we show how to perform the batch fitting of the previous section incrementally; second, we

show how surface point estimates can be predicted from one frame (and reconstruction plane) to

another.

The update or data processing part of a Kalman filter takes a current estimate�xi with its

associated covariance�Pi and produces an updated estimate�xi and covariance�Pi by processing a

single measurement

di � ai � xi� (10)

The traditional Kalman filter formulation [Gelb, 1974] first computes a Kalman gain matrix

Ki � �Piai�a
T
i
�Piai � �2

i �
�1� (11)

where�2
i is the variance associated with measurementi. It then increments the state estimate by

adding a weighted residual

�xi � �xi �Ki�di � ai � �xi�� (12)

and decrements the covariance matrix

�Pi � �Pi �Kia
T
i
�Pi� (13)

Applying this Kalman filter to our circular arc fitting task is straightforward, since each of our

tangent lines is of the required form (10),di � ai �xi. More numerically stable or computationally

efficient forms of the Kalman filter have also been developed [Bierman, 1977], but we have not yet

implemented them to see if they improve our performance.

The update part of the Kalman filter is derived directly from the measurement equation (2)

[Gelb, 1974]. It provides an incremental technique for estimating quantities in astatic system, e.g.,

for refining a set of�xs� ys� r� estimates as more edgels are observed. For our application, however,

we need to produce a series of surface points which can be linked together into a complete surface

description. If we were using batch fitting, we would perform a new batch fit centered around each

new 2D edgel. Instead, we use the complete Kalman filter, since it has a much lower computational

complexity. The Kalman filter provides a way to deal withdynamic systems where the statexi is

evolving over time. We identify each measurementxi with the surface point�xs� ys� r� whose local

coordinate frame is given by��ni��ti� �nepi� centered atqi in framei.

The second half of the Kalman filter requires asystem model or process model which predicts

the evolution of state variables over time [Gelb, 1974]. For our smooth surface model, we assume
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that r (the third component ofx) can vary slowly over time, but that the other two components

have no associated process noise, i.e.,s � �0�0� sr�.

The overall sequence of processing steps is therefore the following. Initially, we perform a

batch fit ton � 3 frames, using the last frame as the reference frame. Next, we convert the local

estimate into a global 3D position (7) and save it as part of our final surface model. We use this 3D

estimate to construct a reduced search range for edgels during the tracking phase. Then, we project

the 3D surface point and its radius onto the next frame, i.e., into the frame defined by the next

2D edgel found by the tracker.5 Then, we update the state estimate using the local line equation

and the Kalman filter updating equations. We repeat the above process (except for the batch fit)

so long as a reliable track is maintained (i.e., the residuals are within an acceptable range). If the

track disappears or a robust fit is not possible, we terminate the recursive processing and wait until

enough new measurements are available to start a new batch fit.

7 Linear smoothing

The Kalman filter is most commonly used in control systems applications, where the current

estimate is used to determine an optimal control strategy to achieve a desired system behavior

[Gelb, 1974]. In certain applications, however, we may wish to refine old estimates as new

information arrives, or, equivalently, to use “future” measurements to compute the best current

estimate. Our shape recovery application falls into this latter category, since the accuracy of the

estimate depends on the range of viewing angles for the measurements, and this can be increased

by taking measurements from both sides of the 3D curve corresponding to a given visible occluding

contour. In addition, it should be noted that if the curvature of the epipolar curve is not constant,

then for each interval over which it is monotonic, filtering rather than smoothing will introduce a

bias.

The generalization of the Kalman filter to update previous estimates is called thelinear smoother

[Gelb, 1974]. The smoothed estimate ofxi based on all the measurements between 0 andN is

denoted by�xijN . Three kinds of smoothing are possible [Gelb, 1974]. Infixed-interval smoothing,

the initial and final times 0 andN are fixed, and the estimate�xijN is sought, wherei varies from 0

toN . In this case, each point in the model is estimated from all of the data in a track. Infixed-point

5For even higher accuracy, we could use the 2D projection of our 3D surface point as the input to our tracker.
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smoothing, i is fixed and�xijN is sought asN increases. Each point is updated as new data is

obtained, i.e. there is a separate smoother for each point. Infixed-lag smoothing, �xN�LjN is sought

asN increases andL is held fixed. This has the advantage that each point is estimated within a

fixed amount of time from when it appears on the profile, and it is only estimated once. Since the

lag time is non-zero, information on both sides of the critical set are used.

For surface shape recovery, both fixed-interval and fixed-lag smoothing are of interest. Fixed-

interval smoothing is appropriate when shape recovery is performed off-line from a set of prede-

termined measurements. The results obtained with fixed-interval smoothing should be identical

to those obtained with a series of batch fits, but at a much lower computational cost. The fixed-

interval smoother requires a small amount of overhead beyond the regular Kalman filter in order to

determine the optimal combination between the outputs of a forward and backward Kalman filter

[Gelb, 1974; Bierman, 1977].

For our contour-based shape recovery algorithm, we have developed a new fixed-lag smoother,

which, while sub-optimal, allows us to predict the position of the contour in successive images and

simplifies the tracking problem. Our fixed-lag smoother begins by computing acentered batch fit

to n�� 3� frames. The surface point is then predicted from framei � 1 to framei as with the

Kalman filter, and a new measurement from framei � L, L � bn�2c is added to the predicted

estimate. The addition of measurements ahead of the current estimate is straightforward using the

projection equations for the least-squared (batch) fitting algorithm.

Our modified fixed-lag smoother and the optimal fixed-lag smoother incorporate the same

information into the current estimate, but use slightly different relative weightings of the data.

Intuitively, the optimal smoother weights the data most heavily towards the middle (inversely

proportional to the distance from the current estimate), while our modified smoother weights the

data most heavily towards the front (most recent measurement). For systems where the process

noise�2
s is much smaller than the measurement noise�2

i , the results should be similar. We examine

the relative performance of the batch estimator, Kalman filter, and sub-optimal linear smoother in

Section 9.

8 Building a complete surface description

The batch fitting, Kalman filter, and linear smoothers all produce a series of surface point estimates,

one for each input image. Because our reconstruction takes place in object space, features such as
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surface marking and sharp ridges are stationary in 3D (and haver � 0). For these features, we

would prefer to produce a single time-invariant estimate. While the detection of stationary features

could be incorporated into the Kalman filter or smoother itself, we currently defer this decision

to a post-processing stage, since we expect the estimates of position and radius of curvature to be

more reliable after the whole sequence has been processed. The post-processing stage collapses

successive estimates which are near enough in 3D (say, less than the spacing between neighboring

sample points on the 3D contour). It adjusts the neighbor (contour) and temporal (previous/next)

pointers to maintain a consistent description of the surface.

To fit a complete surface to the data while interpolating across small gaps, a variety of techniques

could be used. Traditionally, physically-based deformable models [Terzopoulos and Metaxas,

1991; Pentland and Sclaroff, 1991] have been used to fit such sparse and incomplete 3-D data. An

alternative, which does not suffer from the restrictions on topology imposed by previous techniques,

is to use a self-triangulating system of particles to model and interpolate the surface [Szeliskiet al.,

1993]. We plan to investigate the intergration of this system with our multiframe stereo algorithm

in future work.

9 Experimental results

To determine the performance of our shape reconstruction algorithm, we generated a synthetic

motion sequence of a truncated ellipsoid rotating about itsz axis (Figure 3). The camera is oblique

(rather than perpendicular) to the rotation axis, so that the epipolar curves are not planar, and the

reconstruction plane is continuously varying over time. We chose to use a truncated ellipsoid since

it is easy to analytically compute its projections (which are ellipses, even under perspective), and

since its radius of curvature is continuously varying (unlike, a cylinder).

When we run the edge images through our least-squares fitter or Kalman filter/smoother, we

obtain a series of 3D curves. The curves corresponding to the surface markings and ridges (where

the ellipsoid is truncated) should be stationary and have 0 radius, while the curves corresponding

to the occluding contour should continuously sweep over the surface.

We can observe this behavior using a three-dimensional graphics program we have developed

for displaying the reconstructed geometry. This program allows us to view a series of reconstructed

curves either sequentially (as an animation) or concurrently (overlayed in different colors), and to

vary the 3D viewing parameters either interactively or as a function of the original camera position



16 9 Experimental results

Figure 3: Four images from synthetic truncated ellipsoid sequence.

The top and left hand side are truncated (cut off), while the front and back sides are inscribed with

an ellipse (surface marking).
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Figure 4: Top view of reconstructed 3D curves.

The surface markings and ridges are stationary, while the occluding contours (ellipse) sweeps

around the object.

for each frame. Figure 5 shows all of the 3D curves overlayed in a single image. As we can see,

the 3D surface is reconstructed quite well. The left hand pair of images shows an oblique and top

view of a noise-free data set, using the linear smoother withn � 7 window size. The right-hand

pair shows a portion of the reconstructed surface, showing both the profile and epipolar curves.

To obtain a quantitative measure of the reconstruction algorithm performance, we can compute

the root median square error between the reconstructed 3D coordinates and the true 3D coordinates

(which are known to the synthetic sequence generating program). Table 1 shows the reconstruction

error and percentage of surface points reconstructed as a function of algorithm choice and various

parameter settings. The table compares the performance of a regular 3-point fit with a 7-point

moving window (batch) fit, and a linear fixed-lag smoother withn � 7. Results are given for the

noise-free and�i � 0�1 pixels case. The different columns show how by being more selective about
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Figure 5: Oblique and top view of reconstructed 3D surface (all 3D curves superimposed).

The left pair shows only the reconstructed profile curves, while the right pair shows the profiles

linked by the epipolar curves (only a portion of the complete meshed surface is shown for clarity).

A total of 72 images spaced 5� apart were used.

which 3D estimates are considered valid (either by requiring more frames to have been successfully

fit, or lowering the threshold on maximum covariance), a more reliable estimate can be obtained at

the expense of fewer recovered points. For noisefree data, the 3 point algorithm is better because it

is less sensitive to curvature variation. However, for noisy data, the 7 point algorithms are better,

with batch fitting performing slightly better than linear smoothing.

We have also applied our algorithm to the four real image sequences shown in Figure 6.

These sequences were obtained by placing an object on a rotating mechanized turntable whose

edge has a Gray code strip used for reading back the rotation angle [Szeliski, 1991; Szeliski,

1993]. The camera motion parameters for these sequences were obtained by first calibrating the

camera intrinsic parameters and extrinsic parameters to the turntable top center, and then using the

computed turntable rotation. Figure 7 shows the edges extracted from each of these images.

Figure 8 shows two views of each set of reconstructed 3D curves. We can see that the overall

shape of the objects has been reconstructed quite well. We show only the profile curves, since

the epipolar curves would make the line drawing too dense for viewing at this resolution. Figure

9 shows both the profile curves and the epipolar curves for selected portions of the soda can and

coffee objects.

As a final example, Figure 10 shows some partial results (10 reconstructed profile curves) from

an image sequence of a coffee mug. This example demonstrates that our method can handle objects
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a b

c d

Figure 6: Sample real image sequences used for experiments

(a) dodecahedron (b) soda can (c) coffee (d) tea.
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a b

c d

Figure 7: Extracted edges

(a) dodecahedron (b) soda can (c) coffee (d) tea.
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a b

c d

Figure 8: 3D reconstructed points

(a) dodecahedron, (b) soda can, (c) coffee, and (d) tea.
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a b

c d

Figure 9: Profile and epipolar curves

(a–b) soda can (c–d) coffee.
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a b

c d

Figure 10: Another example: coffee cup.

Note that objects with interior holes (non-trivial topology) can be easily handled by this method.
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algorithm n �i nf � 3 nf � 7 nf � 7	 �2
x � 0�5

smoother 7 0.0 .0074 (77%) .0046 (45%) .0044 (38%)

smoother 7 0.1 .0114 (74%) .0054 (41%) .0051 (36%)

batch 7 0.0 .0042 (79%) .0036 (56%) .0035 (43%)

batch 7 0.1 .0074 (77%) .0054 (53%) .0051 (42%)

batch 3 0.0 .0008 (77%)

batch 3 0.1 .0159 (75%)

Table 1: Root median square error and percentage of edges reconstructed for different algorithms,

window sizes (n), input image noise�i, and criteria for valid estimates (nf : minimum number of

frames in fit,�2
x: covariance in localx estimate).

These errors are for an ellipse whose major axes are�0�67�0�4�0�8� and for a 128� 120 image.

with interior holes, since we are not limited to only following the external silhouettes of the objects.

In future work, we plan to study the events which occur when multiple silhouette curves obscure

each other in the image sequence (which corresponds to points of bitangency in 3D).

10 Discussion and Conclusion

This paper extends previous work on both the reconstruction of smooth surfaces from profiles

(edge-based multiframe stereo) and on the epipolar analysis on spatiotemporal surfaces. The

ultimate goal of our work is the construction a complete detailed geometric and topological model

of a surface from a sequence of views together with an estimate of uncertainty. Towards this end,

our observations are connected by tracking edges over time as well as linking neighboring edges

into contours. The information represented at each point includes the position, surface normal, and

curvatures (currently only in the viewing direction). In addition, error estimates are also computed

for these quantities. Since the sensed data does not provide a complete picture of the surface,

e.g., there can be self-occlusion or parts may be missed due to coarse sampling or limitations on

the camera trajectory, it is necessary to build partial models. In the context of active sensing and

real-time reactive systems, the reconstruction needs to be incremental as well.
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Because our equations for the reconstruction algorithm are linear with respect to the measure-

ments, it is possible to apply statistical linear smoothing techniques, as we have demonstrated.

This satisfies the requirement for incremental modeling, and provides the error estimates which are

needed for integration with other sensory data, both visual and tactile. The application of statistical

methods has the advantage of providing a sound theoretical basis for sensor integration and for the

reconstruction process in general [Szeliski, 1989; Clark and Yuille, 1990].

In future work, we intend to develop a more complete and detailed surface model by combining

our technique with regularization-based curve and surface models. We also plan to investigate

the integration of our edge-based multiframe reconstruction technique with other visual and tactile

techniques for shape recovery.
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