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Abstract

AudioFile isa portable, device-independent, network-transparent system for
computer audio systems. Similar to the X Window System, it provides an abstract
interface with a simple network protocol to support a variety of audio hardware
and multiple simultaneous clients. This report describes our approach to digital
audio, the AudioFile protocol, the client library, the audio server, and some client
applications. It also discusses the performance of the system and our experience
with using standard network protocols for audio. A source code distribution is
available for anonymous FTP.
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1 Introduction

Audio hardware is becoming increasingly common on desktop computers, such
as workstations, PCs, and Macintoshes. In 1990, the authors began a project at
Digital’s Cambridge Research Laboratory to explore desktop audio. 1 One of us
(Levergood) designed aTURBOchannel % 1/0 modulecalled LoFi, with capabilities
for telephony and both low and high-fidelity audio. Once that hardware was
available, we began work on software. The result of our efforts is the AudioFile
System.

It was clear from the outset that audio on the desktop should have the same
flexibility that users have come to expect of the display. Similar to the X Win-
dow System[14], AudioFile was designed to allow multiple clients, to support a
variety of underlying hardware, and to permit transparent access through the net-
work. Since itsoriginal implementation, AudioFile has been used for a variety of
applications and experiments with desktop audio. These applications include au-
dio recording, playback, video teleconferencing, answering machines, voice mail,
telephone control, speech recognition, and speech synthesis. AudioFile supports
multiple audio data types and samplerates, from 8 KHz telephone quality through
48 KHz high-fidelity stereo.

Currently, AudioFilerunson Digital’sRISC DECstationsunder ULTRIX, Digital’s
Alpha AXP systems under DEC OSF/1 for Alpha AXP, Sun SPARC systems
under SunOS, and Silicon Graphics Indigo workstations under IRIX. A source
code distribution is available by anonymous FTP over the Internet.

Like the X Window System, AudioFile has four main components:

e The Protocol. The AudioFile System defines a wire protocol that links the
server with client applications over a variety of local and network commu-
nication channels. The semantics of the protocol commands and responses
define what servers are expected to do and what services clients can expect.

¢ Client Library and API. The AudioFile client library and applications pro-
gramming interface (API) provide a means for applications to generate pro-
tocol requests and to communi cate with the server using aprocedural instead
of amessage-passing interface.

e The Server. The AudioFile server contains all code specific to individual

1 And video, but that is another story.
2TURBOchannel isthe 1/0 bus used on Digital’s DECstation and Alpha AX P workstations.



2 1 INTRODUCTION

devices and operating systems. It mediatesaccess to audio hardware devices
and exports the device-independent interface to clients.

e Clients. The AudioFile distribution includes several out-of-the-box appli-
cations which make the system immediately usable and which serve as
illustrationsfor more complex applications.

This report begins with a discussion of the design goals and the fundamental

principles of AudioFile. We then place this work into the historical context of
earlier desktop audio efforts and other more recent audio work. Following a
discussion of some of the hardware used for desktop audio, we discussthe network
protocol, the client library, and the server implementationin some detail. Then we
describe a sampling of applicationsthat use AudioFile, followed by an analysis of

AudioFile's performance. We conclude with a brief discussion of plansfor future
work and explain how to get the software.

1.1 Design Goals

AudioFile was designed with several goalsin mind. Theseinclude:

o Network transparency. Applicationscan run on machines scattered through-
out thenetwork. Thisproperty isdesirablefor several reasons: anapplication
may be licensed to run only on a specific machine, or it may require comput-
ing resources not available on every desktop. Network transparency allows
such constrained applicationsto run anywhere but still interact with the user.
Another quite different benefit of network transparency is that it enables
applications to use audio on several systems at once. Teleconferencing is
such an application; it must communicate with multiple audio servers.

e Device-independence. Applicationsneed not be rewritten to run on new au-
dio hardware. The AudioFile System provides a common abstract interface
to the real hardware, insulating applications from the messy details. Fur-
thermore, aswewill describe in Section 8, some applications can operate on
generic audio, without worrying about details such as sampling rate, number
of channels, or encoding.

e Support for multiple simultaneous clients. Applications can run concur-
rently, sharing access to the actual audio hardware. Two audio applications
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running on asingle computer should behavejust like those same applications
running on separate computersin the same room. 3

¢ Support awide range of clients. It should be possible to implement applica
tionsranging from audio biff 4 to multiuser teleconferencing. We have chosen
toimplement afew very general-purpose mechanismsthat permit awide va-
riety of applications, including both aggressively real-time applications and
those which are more easygoing.

e Simplicity. Adding ssimple audio to an application should be easy. Simple
play and record clientsshould require very littlecode. Complex applications
should be possible, but one should not burden simple clients with massive
mechanism.

e Quick timeto implement. We wanted to start building applications quickly.
We chose to leverage as much existing mechanism as we could, and we
tried to put as little as possible into the operating system kernel. Although
debugging kernel device driversis possible, it is neither a rewarding nor a
time-efficient process.

1.2 Fundamental Principles

In addition to our goals, we designed AudioFile with afew fundamental principles
in mind. These include:

e Computersare fast. Modern machines are fast enough to handle avariety of
signal processing and real-time problems. There is no need to be frightened
by arequirement that the computer look at every audio sample. Unnecessary
copies of data are to be avoided, but it is frequently better to copy data than
to corrupt the structure of an application. We assume an ADC/DAC model
for the audio hardware device and do not depend on intelligent controllers.

e Client control of time. Clientsare responsiblefor specifying the exact timing
of recording and playback. This puts a minor additional load on the clients,
but greatly simplifiesthe server and makes the AudioFile System capable of
handling applications requiring a wide range of real-time behavior. Explicit

3We do think that there is room for something like an “audio window manager” which would
impose a policy on multiple applications, but so far we havenot found it necessary to implement one.
In any case, we think the core system should “ provide mechanism, not policy”.

4hiff isa Berkeley UNIX program that notifies a user when new mail arrives.
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control of time also makes it very easy to construct applications requiring
synchronization of multiple activities.

e Norocket science. AudioFiledoesnot require specialized low-level network
protocolsor multithreaded environments. Thesefacilitieswere not necessary
to achieve our goals and using special protocols or threads would impede
the portability of the system. Consequently, the AudioFile server is single
threaded, we use standard TCP/IP, and no operating system support more
complex than the select() system call is required. °

¢ Simple applications should be simple. Complicated applications should be
possible. In other words, simple applications should not have to pay aprice
in complexity when they need only simple functionality. ©

1.3 Implementation

The parts of theimplementation of AudioFile that are not specific to audio, such as
client/server communications, are based on X11 Release 4. The code was freely
available and provided awell-understood communicationsinfrastructure. 7 While
we considered several languagesfor theimplementationof AudioFile, startingwith
the MIT X11R4 source code tipped the scalesin favor of the C language.

Of course, traveling this route caused us to carry extra baggage. For example,
the origina MIT source code is written with C preprocessor commands, mostly
used by the client library, that conditionally build code with or without function
prototypes. At least one well known vendor of big-endian computers does not
support function prototypeswith their stock C compiler. Function prototypes have
proven to be quite useful for devel oping large portable systemsin C. Unfortunately,
“portable” sometimesmeans“lowest common denominator” — so our codeisalso
cluttered with left-justified chicken scratches [19]. 8

We should emphasize the fact that AudioFile is not an addition to an X Window
System server. The AudioFile server is a separate entity which borrowed some

51t seemslikely that amultithreaded server would permit aslightly cleaner implementationin the
server, but we felt the performance and portability risks did not justify it.

5This is really important — notice that simplicity is both a goal and an abiding principle. Our
thinkingisthat if onegetsthecorefunctionality right, then an explosion of complexity canbeavoided.

"Why start from a clean sheet of paper? For more information on how to steal code, consult
Spencer[15].

8The next AudioFilereleasewill requirea compiler that supports function prototypes.



common source code to build the implementation. Contrary to others, we believe
that audio services should be separate from graphics.

2 Audio Abstractions

This section describes the fundamental abstractions used by AudioFile. These
providethe view of audio availableto clientsand guided the design of the protocol,
client library, and audio server. We model an audio device asan entity that produces
and consumes sampled data at aregular rate known as the sampling frequency. The
sample dataisoneof severa predefined typesand consistsof one or more channels.
The actual hardware is based on Analog to Digital (ADC) and Digital to Analog
(DAC) converters. The important abstractions discussed here are time, the audio
input and output models, and events.

21 Time

The concept of audio device time is critical to understanding the design of all
AudioFile components. We expose audio device time in the protocol and at the
clientlibrary API. Itisalso fundamental to the correct operation of the audio server.
All audio recording and playback operations in the AudioFile System are tagged
with time values that are directly associated with the relevant audio hardware.

This section discusses our decision to use device time, the time abstraction, and
how to calculate with audio device times, then finishes with a brief discussion of
alternative approaches.

In multimedia systems, exact timing is necessary to synchronize the different
aspects of a presentation or to relate the occurrence of multiple events. AudioFile
permits clientsto express the precise timing of individual digital audio samples.

Why device time?

There are aremarkable number of clocksin amodern distributed computer system.
A simple desktop system might have four different time sources: the time-of-day
clack, the interval timer, the display refresh, and the audio clock. Each clock has
its own uses. the time-of-day clock might be used to schedule overnight backup,
theinterval timer might be used to schedul e program counter sampling for profiling
a program, the display clock might be used to schedule cursor tracking, and the
audio clock is used by the audio hardware to schedule the recording and playback
of individual digital audio samples.
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Each computer system in a network has its own clocks. There are network proto-
cols, such as NTP[8], which keep the time-of-day clocks approximately synchro-
nized, but no existing systems we are aware of keep interval timers, display, or
audio clocks synchronized. Each of these many clocks has anominal rate at which
“ticks’ occur, and if these rates were exact, then one could easily convert from
time as shown by one clock to time as shown by another. Unfortunately, all these
clocksvary from their nominal rates, and the exact rates are subject to change with
the age of the equipment, temperature, and other environmental factors.

Inprinciple, it ispossibleto use any clock for audio synchronization. However we
wanted to be able to specify audio down to the individual sample, so we chose to
use audio device time. When a server supports multiple audio devices, it traffics
in device timefor each device separately. AudioFile does not provide a complete
infrastructure for synchronization; rather, it supplieslow-level timing information
toitsclients. Client applications can build conversion mechanismssuitableto their
own needsfor synchronizing multimediastreams, relating eventsto thereal world,
or simultaneously communicating with multiple audio devices.

We envision adding standard client library and server mechanismsfor synchroniz-
ing multiple clocks and for providing clock conversion services to clients, but we
have not yet encountered a compelling need to do so.

The device time abstraction

The underlying implementation of the audio device clock is the oscillator that
controls the hardware sample rate. This clock may be directly accessible to the
audio server, or only indirectly as the running total of audio samples generated
or accepted by the hardware. In either case, the server maintains a representation
of the clock in a“time register” for scheduling all audio events for the particular
device.

Converting time values

There is no absolute reference value for a device time; the value is set to 0 when
the server is initialized and advances thereafter. Thisisin contrast to the usual
computer method of handling time-of-day, in which the binary representation is
something like the number of seconds since January 1, 1900. The AudioFiletime
can not be algorithmically converted to a calendar date and time.

One can establish a correspondence between two clocks. Given clocks A and B,
and a pair of values (T,, T3) of the two clocks that occurred “at the same time,”
and the rates of advance of thetwo clocks R, and Ry, then given afuture value of
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clock A, say t,, one can compute the corresponding value t; according to clock B:

ty = Ty + Ry * ((ta — Ta)/Ra)

Although there isno exact relationship between device time and time measured by
the system real -time clock or to time shown by the clock on the office wall, because
the rates are not known to infinite precision, there is an approximate relationship
which isgood enough to permit reasonably accurate conversions between different
clocks. The audio device sampling rate is used to move between time in sample
ticks and time in seconds. For example, at 8 KHz, four secondsin the future maps
to the current device time plus 32000 ticks. Thisis sufficiently accurate for most
purposes, even though the exact sampling rate might be 7999.96 Hz rather than
8000.00.

Representation

Audio device time is represented by a 32-bit (finite length) unsigned integer that
increments once per sample period and wraps on overflow. These time values are
specific to a particular audio device.

Figure 1: Circular representation of audio time

It is convenient to map this representation of time onto a circle, as shown in
Figure 1. Inthisdiagram, thetimet is marked with the clock hand that sweeps out
clockwise. The circumference of the circle is the range of the time counter, or 232
samples.

Because the 32-bit numbers eventually wrap, one cannot simply compare two val-
uesto establishtheir ordering. Serversand clientsoften have to make comparisons
between two times and decide their relative positions. Thisisdone by dividing all
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possible time values into the equally sized past and future regions. The division
point ¢ (equal to ¢ + 231) is marked on Figure 1. Any time from ¢ clockwiseto ¢
is considered to be after ¢, and any time from ¢ clockwise to ¢ is considered to be
before .

Time comparisonsare easy toimplement. Giventwo timevalues, a« and b, compute
their 32-bit two's complement difference a — 5. The most significant bit of the
result gives the result of the comparison. If it is set, then b isin the future relative
to a. Otherwise, b isin the past. Thiscomputation is easily made by casting the
difference to a signed datatype. The following exampleisfor a device running at
8000 samples per second.

if ((int) (b- a >0) /* time b is later than time a. */
if ((int) (b- a <0 /* time b is earlier than tinme a. */
if ((int) (b- a ==8000) /* time b is one second later than tinme a */

There is a problem, of course, when the difference approaches 231. A timein
the distant past may suddenly switch over to the distant future as time advances.
Programs that deal with time must be careful not to make comparisons between
widely separated time values. However, thisisusually not a problem since even at
a 48 KHz sampling rate, 23! samples represents about 12 hours of audio. At 8000
samples per second, this period isabout 3 days.

Usually, an audio device supports both input and output. However, AudioFile
supportsonly onetimeregister for each audio device. Thismeansthat if the actual
hardware uses different sampling rates for input and output, then the server will
present distinct unidirectional audio devices for input and output.

Client use of explicit time

Each play and record request carries with it an exact timestamp. The implemen-
tation of this abstraction is accomplished by buffering future playback and recent
record data in the server. Continuous recording or playback is accomplished by
advancing the requested device time for a request by the duration of the previous
request.

Explicit control of time provides the mechanism needed for rea -time applications.
As long as playback requests reach the server before their requested start times,
playback will be continuous. A leisurely application will schedule playback for
well in thefuture, while an aggressive real-time application will schedule playback
requestsfor the very near future. The server will buffer requests up to four seconds
in the future.® Both applications must supply audio at the same rate, but the real-

SWe use four secondsto be concrete; the precise size of the server buffer is availableto clientsas
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time application must assure a much lower variance in latency. For example, if an
application is scheduling audio for one second in the future, any individual block
can be delayed for up to one second without disturbing the playback. In contrast,
an application scheduling audio for 50 millisecondsin the future has to assure that
blocks cannot be delayed for more than 50 milliseconds.

The fact that the server buffers audio for future playback also alows clients to
schedule playback asynchronously. This permits single threaded clients to handle
audio in addition to their other activities.

Recording is a much easier problem than playback. The server buffers all device
input, typically for the past four seconds. Therefore, unless a record request fails
to reach the server until four seconds after its requested start time, no data will be
lost. Of course an application making real-time use of the record data must make
record requests close enough to current time to satisfy its real-time constraints.

Because the server buffers al device input, clients can request recording at times
“in the past” and deliver the appearance of instantaneous response. For example,
consider an application that displays a “Record” button. There is some delay
between the time that the user presses the button and when the record request
reaches the audio device. By recording from the recent “past,” the application can
begin recording at the instant the button was hit. Thisisamore natural interaction
than requiring the user to wait for some indication, such as a visual display or
audible beep, that recording has begun.

Alternate designs

In contrast to AudioFile's design, the usual way to handle sequential data such as
audio in computersis as a stream, just a sequence of values. The stream isa very
simple abstraction, but for audio work, it failsthree crucial tests:

e Streams do not permit synchronization. It is usually necessary to employ
complex out-of-band mechanismsto find out how much data is buffered in
a stream or to find out if a stream is running or blocked. Consequently, an
application using a stream mechanism will have difficulty establishing the
moment a particular sound will emerge from the loudspeaker or the moment
a particular sample was recorded.

¢ Streams do not solve real-time problems. Streams tend to obscure issues of
bandwidth and latency that are critical to real-time applications. The idea
is good: the application merely writes audio data into the stream, and the

an attribute of the audio device.
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sound will emerge from the speaker without gaps. In fact, the application
must still keep up, but it has no way of telling how much margin thereis.

e Streams do not deliver any additional simplicity to the application. In the
abstract, audio is just an unending sequence of samples and might seem to
be a good match for streams, but in practice, applications dea with the data
in blocks anyway, so al streams do is force applications and services to
continually create and discard the blocking information.

Instead of dealing with streams of audio samples, the fundamental operations in
AudioFile are block-oriented, and specify exact times at which the blocks are to
be recorded or played. ©

2.2 Output Model

The output model we use for an audio device is shown in Figure 2. In general,
clients can schedule playback at any time from the present to four secondsinto the
future. Playback datathat fallsin the past is silently discarded. Playback data that
fallsin the futureis buffered unlessit also falls beyond four secondsin the future.
Playback requests that fall beyond the four-second buffer are suspended until time
advances to within four seconds.

Client specified

Client gain Gli]
data

—t Conversion G[0] Server play buffer

’ mixing by default’
Transmit audio

Client
data

— Conversion ’ G[n]
(Samplerate, data type)
Figure 2: AudioFile server output model

After aplayback request isreceived by the server several stages of processing take
place. The sample data will be one of the several sample types supported by the

O\We may have mentioned this before, but it isimportant.
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abstract device, but possibly different than the data type supported by the actual
hardware. The dataisfirst passed through a conversion module that trand ates the
data type received by the server to the data type supported by the audio hardware.
Frequently, the client data type is the same as the audio hardware data type and
this conversion stage is not necessary. The server support for conversion modules
will also be used to handle compressed audio data types. In designing AudioFile
we envisioned this module handling sample rate conversion aswell, but the design
for resampling is not complete. 1

Once the datais in the form required by the audio hardware, it is adjusted by a
client specified gain value before being mixed into a common server buffer. The
client gain is stored in an audio context (see Section 7) and defaultsto O dB. The
mixed data staysin the server buffer until its scheduled playback time approaches.
As the sample data is drawn from the output buffer and sent to the hardware, a
final gain stage isapplied. Thismaster gain acts as a volume control for the mixed
version of all client data sources. Frequently, this volume control isimplemented
by the audio hardware.

The server is responsible for ensuring that the samples in the output buffer are
sent to the DAC at their corresponding values of the time register. Sincetimeis
exposed at the client library AP, client applications are able to manipulate data at
arbitrary sample boundaries within the server.

The output model specifies that silence is emitted during periods of time in which
no client data has been written to the output buffer. This means that applications
need not transport “silent” data from client to server. Instead, a client simply
advances its playback time accross the silent interval before resuming playback.
This mechanism can reduce network bandwidth requirements.

2.3 Input Mode

The input model for an audio device is shownin Figure 3. Like the output model,
the input model buffers four seconds of sample data. However, the input model
is conceptually simpler since there are no dependencies between clients such as
those introduced by the mixing stage for playback.

Asshownin Figure 3, therecorded dataismodified by an input gain which isoften
implemented by the hardware. The data is placed into a server buffer indexed by

1 Actually, we still need to add the support of multiple audio sample data types by a single audio
device. We were not able to implement this aspect of the AF2R2 design in time for the release of
thekit.
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Client
data

-«—— Conversion

Server record
buffer

_ Receive audio
Time

[ J
Client
data
~+— Conversion

(Sample rate, data type)

Figure 3: AudioFile server input model

the current value of time.

Clients requesting input data older than four seconds in the past are given silence.
Record reguests within the past four seconds return the buffered data. Record
reguests in the future cause the client connection to block until time advances far
enough to service the request.

The system also supports a non-blocking record interface. If the client chooses
not to block, the server will reply with as much data as it can supply immediately.
With either blocking or non-blocking recording, the client application can record
consecutive blocks by advancing the requested record time by the duration of the
previous block.

The input model al so supports amodule which converts the native audio hardware
data typeto aclient requested data type.

We did not include a per-client gain modification on recording since the data will
always be replayed through a path where gain modification is supported.

2.4 Events

In aclient/server system, the server usually waits for the client to ask for service,
then responds. An event isthe exception: an asynchronous message from server to
client. Eventsmay be caused by adevice or asasideeffect of someclient’srequest.
An event isnever sent unless a client registers an interest in receiving notification.
Clients can register for various classes of events such as atelephone deviceringing
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or a change in a property used for inter-client communications. Protocol events
are discussed in Section 5.2; the way the client library handles events is described
in Section 6.1.

3 Background

Computer handling of digital audio isnot new. The important historical points of
referencearethose of signal processing, telephoneintegration, device-independence,
and network-transparency.

3.1 Signal Processing

Research groups have used analog-to-digital (A/D) and digital-to-analog (D/A)
converters for computer recording and playback of speech and audio for many
years. For the most part, this “data acquisition” has been accomplished with ex-
pensive and specialized hardware and software intended for the laboratory instru-
mentation market, rather than for general use. We would categorize these systems
as device-dependent and standalone (not networked). However, essentialy all
existing technology for audio signal processing was developed thisway.

3.2 Etherphone

In the early 1980’s, the Xerox Palo Alto Research Center built a telephone sys-
tem in which voice was transmitted over an Ethernet. This system was called
Etherphone [16]. Besides its utility as a telephone system, the Etherphone sys-
tem had capabilities for workstation recording and playback, voice storage, and
it was certainly network transparent. Each workstation was associated with a
nearby Etherphone, which was a dedicated computer directly connected to the
office phone line, local audio devices, and the Ethernet. The Etherphone system
was used primarily to explore issues of multimedia documents and telephone in-
tegration. Etherphone audio was entirely telephone-quality. In addition, because
audio was passed directly from Etherphoneto Etherphone, without intervention by
more powerful computers, there was little opportunity for signal processing.
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33 Firefly

In the mid 1980’s, the Firefly multiprocessor workstation[18], developed at Dig-
ital’s Systems Research Center, had simple telephone-quality audio. An audio
server on the Firefly buffered the previous four seconds of recorded data and the
next four seconds of playback data; it exported a simple remote procedure call
(RPC) interface to applications. The Firefly audio system was primarily used for
applications such as teleconferencing and multimedia presentations. The Firefly
audio capability was primarily used for applications such as teleconferencing and
multimedia presentations.

We would categorize this system as network-transparent, but it was still device-
dependent. The Firefly audio system pioneered explicit client control of time.

34 VOX

Inthemidtolate 1980's, the MIT Media L ab and the Olivetti Research Labin Palo
Alto collaborated on a project called VOX[4]. VOX was an audio server based
on a model in which essentially all audio related functions were included in the
server, with the client mainly handling control those functions. The VOX server
was responsible both for record and playback functions and for establishing direct
connections between disparate devices.

VOX was partly constrained by a view that audio would be primarily sourced
and sunk by external devices, possibly with direct connections between them. In
addition, the view was that audio was such a real-time compute intensive data type
that clients could not manage the load. Instead, all details of audio handling were
subsumed into the server.

Wewould categorizethissystem asdevice-independent, but not network-transparent.

3.5 Reated Work

Other projects similar to AudioFile were underway at about the same time.

XMediaToolg 3], aDigital product, was somewhat moreambitiousthan AudioFile,
using a more complex protocol and putting more emphasis on implementing ap-
plications within the server. In contrast, AudioFile emphasizes simplicity of the
protocol and the server, leaving more complicated actions to be performed by
clients. As described in Section 10, our experience to date indicates that the
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resulting performance is quite good.

Terek and Pasquale at UCSD developed an audio conferencing system based on a
modified X server [17]. In contrast, we chose not to incorporate audio into the X
server. Our approach has several advantages: AudioFileis independent of X and
can be used when X isnot, server implementorsneed not understand theintricacies
of the X server, and clientsdo not suffer because of the scheduling decisionsthat the
X server makesin servicing graphicsrequests and input events. If synchronization
between audio and graphicsis necessary, it can be performed by the clients or by
using the X synchronization extension.

Sonix[12] is a network-transparent sound server developed at Bellcore. It was
also inspired by X and is similar to XMedia in design, with “patchcords’ to
internally connect audio devices or to bypass the Sonix server itself. AudioFile
takes a different view of time and emphasizes doing work in clients, rather than
manipulating the flow of audio data within the server. Sonix includes minimal
support for synchronization.

4 AudioHardware

This section describes the audio hardware currently supported by AudioFile.

41 LoFi

In 1990, as part of the Cambridge Research Lab’s overall goals of exploring net-
worked audio and video, one of us (Levergood) designed a TURBOchannel audio
module called LoFi[7]. 1? Later, Digital’s Multimedia Engineering organization
released the design asthe product DECaudio. Theresearch “LoFi” and the product
“DECaudio” are substantially identical; we will use “LoFi” to refer to this device
in the rest of this document.

L oFi supportstwo 8 KHz tel ephone quality CODECSs, one connecting to atelephone
lineand oneconnectingtolocal audio devices. LoFi also containsaM otorola56001
DSP chip with 32K 24-bit words of memory shared with the host processor. The
56001 serial port supports a 44.1 KHz stereo DAC and can also be used with

2\Wecalledit LoFi primarily becauseit wasn't. LoFi alwaysincluded highfidelity audio capability,
but we chose the name to obscurethis fact, because we knew we wouldn't get around to writing the
HiFi support software for a while and we wanted to defuse expectations. The high fidelity support
software was completed in 1992.
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external DSP port devices including stereo A/D and D/A converters operating at
sample rates up to 48 KHz.

Thetelephoneinterface on L oFi enables applicationssuch asvoice mail and remote
information access. We seeno difficulty in adding AudioFile support for other kinds
of telephone interfaces, such asISDN or PhoneStation [20].

4.2 JVideo

JVideo isa TURBOchannel module developed at Digital Equipment Corporation
for experiments in desktop video. Like LoFi, JVideo has a Motorola 56001 DSP
processor with shared memory, but JVideo also hasstereo ADC and DAC hardware
that is capable of variable sample rates. However, JVideo has neither telephony
capability nor an external DSP port.

4.3 Integral Workstation Audio Devices

The Personal DECstation series, the Alpha AXP-based DEC 3000/300, 3000/400
and 3000/500, and the Sun SPARCstation-2 all include 8 KHz CODEC deviceson
their system modules.

44 LineServer

The LineServer is an Ethernet peripheral. It is a Motorola 68302 microcomputer
system with 128K ROM and 64K RAM, an Ethernet controller, high speed V.35
serial line interface, and an 8 KHz ISDN CODEC. We use LineServer within
Digital’s research labs for remote Ethernet bridging and IP network routing over
both dedicated digital circuits and dial-up ISDN circuits.

The LineServer version of the AudioFile server is interesting because the server
runs on a nearby Ethernet host, not on the LineServer itself. The audio server
exchanges low-level device-specific network messages with the LineServer.

45 SGI Indigo

Recently Guido van Rossum of CWI in the Netherlands contributed AudioFile
device support for the Silicon Graphics Indigo workstation. The Indigo supports
stereo audio at a variety of sample rates up to 48 KHz.



17

5 Protocol Description

The AudioFile protocol isdesigned on the same basic principles as the X Window
System protocol. Control and audio data are multiplexed over asingle byte-stream
connection between client and server. A single connection can carry more than
one audio stream. Multiple clients, potentially running on multiple machines of
different architectures, can use the same server at the same time.

5.1 DataTransport

AudioFileis intended to be used over amost any transport protocol, though their
behavior may affect rea -time audio performance (see Section 11 for some perfor-
mance analysis).

Asin X, the AudioFile protocol presumes that the data transport between the client
to the server is reliable and does not reorder or duplicate data. Any transport
mechanism fulfilling these criteria could be used. AudioFile takes advantage of
streaming when possible, though we believe thisislesscommonthaninthe X case.
The current version of AudioFile supports TCP/IP and UNIX-domain sockets.

We believethat the programming model AudioFilepresentsmay reduce the number
of audio applications needing low-latency communications, because clients can
control exactly when audio will appear or when it was recorded.

5.2 Events

Asin X, events have afixed size. Only five event types are currently defined: four
for telephone control and one for interclient communications. Some details of the
telephone events are discussed below in Section 5.5.

All deviceeventscontain both the audio devicetime of thedeviceand theclock time
of the host of the server. The host clock time may be needed when synchronizing
with other media on the same host (for example, video being displayed by the
window system).

5.3 Protocol Requests

All protocol requests have a length field (16 bits, expressed in 32-bit quantities),
an opcode (one byte), and an optiona opcode extension (one byte). The shortest
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possible request is therefore four bytes long. The length field limits the longest
request to 262144 bytes, though in practice AudioFile'slongest request is substan-
tially shorter. All datain the requests are kept naturally aligned inside the request
header; requests that use additional data are padded to a 32-bit boundary.

There are 37 requests in the AudioFile protocol. Most of these are related to
audio, although only two deal with audio data. The remaining requests are used for
housekeeping purposes, such as access control, inter-client communications, and
extensions (although no extensions are implemented today). |n comparison, the X
Window System has 119 requests in the core protocol.

At connection setup, the client and server exchange versioninformation and clients
providethe server authentication information, exactly asin the X Window System.
Table 1 summarizes AudioFile's protocol requests.

5.4 AudioDevice Attributes

An abstract audio device has severa attributes that are visible to clients. The
sampling rate, sample data type, and buffer size have been discussed in previous
sections. Thisand other informationisreturned for each device at connection setup
time. The additional information includes the number of channels for record and
playback and whether a channel is connected to a telephone device.

An audio device may have multipleinputs or outputs. For example, some devices
may have both line-in and microphone-in connectors which share a single ADC,
and line-out and speaker-out connectors driven from acommon DAC. The abstract
audio device encodes these capabilities of the audio hardware in two quantities
indicating the number of inputsand outputsand two masksindicating which inputs
and outputs are connected to a telephone line interface.

We intend to modify AudioFile to make the sample data type attribute a prioritized
list rather than a single enumerated type. This change would permit the system to
have several conversion modules per audio device. These conversion modulescan
translate one or the enumerated data types to the native audio hardware data type.
We will probably extend the same scheme to handle various popular compression
methods.
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Audio and Events

SelectEvents

Select which events the client wants

CreateAC Create an audio context
ChangeACAttributes | Change the contents of an audio context
FreeAC Free an audio context
PlaySamples Play samples
RecordSamples Record samples
GetTime Get the audio device'stime

Telephony QueryPhone Get telephone state
EnablePassThrough | Enable telephone passthrough
DisablePassThrough | Disable telephone passthrough
HookSwitch Control hookswitch
FlashHook Flash hookswitch
EnableGainControl Not for general use
DisableGainControl Not for general use
DialPhone Obsolete, do not use

1/O Control SetlnputGain Set input gain
SetOutputGain Set output gain (volume)
QuerylnputGain Find out current input gain
QueryOutputGain Find out current output gain
Enablelnput Enable input
EnableOutput Enable output
Disablelnput Disable input
DisableOQutput Disable output

Access Control SetAccessControl Set access control
ChangeHosts Change access control list
ListHosts List which hosts are permitted access

Atoms and Properties | InternAtom Allocate unique ID
GetAtomName Get name for ID
ChangeProperty Change device property
DeleteProperty Remove device property
GetProperty Retrieve device property
ListProperties List al device properties

Housekeeping NoOperation Non-blocking NoOperation
SyncConnection Round-trip NoOperation

QueryExtension
ListExtensions

KillClient

Not yet implemented
Not yet implemented
Not yet implemented

Table 1. AudioFile protocol requests
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5.5 Telephony

While we have evolved the design of AudioFile and added support for severa
devices, LoFi is still the only device supported by AudioFile that has an analog
telephone line interface.

LoFi’stelephonelineinterfaceincludesalinejack, aset jack, hookswitchrelay, ring
detection circuitry, loop current detection circuitry, Dua Tone Multi-Freguency
(Touch-Tone) decoding circuitry, and output power limiting circuitry. With suitable
software this hardware allows applicationsto originate callsusing DTMF or pulse
dialing, receive calls, receive DTMF events, monitor the extension phone status
(on-hook or off-hook), and source and sink audio to/from the telephone line for
applications such as voice mail and remote information access.

While the current protocol includes a DialPhone request, it is not used, because
we found it difficult to meet FCC timing requirements for dialing by using our
internal tasking system in the server. Instead, the client library implements client
side tone dialing by generating appropriate tones and using device time to play
them at exactly the right time. We do not support pulse dialing, though the LoFi
hardware could in principle do so.

Client applications can learn of state changes in the telephone line interface by
monitoring the telephone events. DTMF detect, loop current detect, hookswitch,
and ring detect events can be generated by the server each time there is a change
in state. DTMF detection can be used to receive information from aremote caller.
Loop current detection (PhoneLoop) can be used to indicate if the extension phone
ison-hook or off-hook. Loop current detection together with DTMF detection can
be used to track numbers dialed manually on the extension phone. Hookswitch
events (HookSwitch) can be used to determine if the telephoneline interface ison-
hook or off-hook. Finally, ring detect events (PhoneRing) can be used to determine
whether there is an incoming call.

Other than the support for events and device control, there are no specia audio
arrangements for supporting telephony in the AudioFile design.

5.6 Audio Contexts

Rather than specifying all parametersfor play and record with each request, aclient
uses an “audio context” (AC) to encapsulate most of these parameters. The AC
includesthe play gain (relative to the 0 dB point of all clients, independent of user
volume control) and preemption flag. The client AC data structure also stores the
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number of channels, sample type, and byte order. ACs simplify the programming
interfaces for play and record considerably.

5.7 GetTime, Play, and Record

GetTime isthe protocol request which returns the audio device time. PlaySamples
and RecordSamples requests also return the device time as a convenience to the
application programmer.

The PlaySamples and RecordSamples protocol requests are almost symmetric.
Both pass the start time for the play or record to begin, the number of samples
to use, the number of channels in the data, and the data type, with a flag bit to
indicate the byte order of the data. An audio context specifies the device, gain
parameters, and in the PlaySamples case, a preemption flag that controls mixing.
In addition, PlaySamples uses a flag to specify whether the server should suppress
the usual time reply, because the client library does not need intermediate replies
during a series of contiguous play requests. RecordSamples uses another flag to
control whether the server should block the client if not all the requested data can
be returned immediately.

At theclient library interface, long play and record requestsare “ chunked” into 8K
byte pieces, so that no single request will take very long for the server to process.

5.8 Input and Output Gain, and 1/O Control

Each audio device may have multipleinput or outputs. AudioFile providesrequests
to select inputs and to enable or disable outputs. In addition, the gain can be
controlled for each input or output device for use as end user volume control.

5.9 Inter-Client Communications

AudioFile adopted from X the same extensible atom type system and property
list mechanism to enable clientsto communicate. Atoms are short unique integer
handles for strings. There are a set of built-in atoms for commonly used types
and property names such as sample types, time, and so on. New types or property
names can be added by “interning” new stringsto create new atoms. Named, typed
data (called “properties’) can be associated with a device, given a name and type,
and stored and retrieved from the server. Table 2 summarizes AudioFile'sbuilt-in
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atoms. Clients can register to be notified by event when properties are changed by
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other clients.
Primitive types
ATOM Uniqueid for astring
CARDINAL Unsigned integer
INTEGER Integer
STRING String
AC Audio context ID
DEVICE Device number
TIME Time
MASK Bit vector, often inputs or outputs
TELEPHONE Telephone device type
COPYRIGHT Copyright string
FILENAME Filename string
Encoding types

SAMPLE_MU255 u-law
SAMPLE_ALAW A-law
SAMPLE_LIN16 16-bit linear
SAMPLE_LIN32 32-bit linear
SAMPLE_ADPCM32 ADPCM compressed
SAMPLE_ADPCM?24 ADCPM compressed
SAMPLE_CELP1016 CELP compressed
SAMPLE_CELP1015 CELP compressed

Properties
LAST_NUMBER_DIALED \ Type STRING, containslast number dialed

Table 2: AudioFile built-in atoms

For example, the property LAST_NUMBER_DIALED can be used by cooperating
applications for storing the last telephone number dialed. It would have type
STRING and its name would be LAST_NUMBER_DIALED, with the convention
that any client dialing the telephone should update the value of this property. Other
clients interested in tracking telephone activity would register for notification of
changes. In this way, a directory of recently used numbers could acquire all
numbers dialed by al telephone applications.

Clients can use such facilities to coordinate use of resources (like the telephone)
and to cooperate among themselves, allowing a collection of small applicationsto
implement compl ex functions, rather than requiring asingle monalithic application.
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6 Client Libraries

We have developed two libraries for use by clients of AudioFile. The first is
a “core’ library that provides the standard interface to an AudioFile server. The
second isautility library that includes common functionsrequired by many clients.

The client libraries perform two functions. The first is as the sole interface to
the protocol. These functions include connection management, local maintenance
of data structures such as the client-side copy of the audio context and device
data, trandation of client requests into protocol requests, demultiplexing of the
reply/event stream, and buffer management of the communications channel. The
second main function of the client libraries is to provide language bindings of
the requests, events, and functions suitable for a particular client programming
environment. We currently supply bindings only for C language and semantics,
but other languages could be added.

6.1 CorelLibrary

The core client library is the standard interface for AudioFile clients. Some
of its functions provide interfaces to the AudioFile protocol; others provide an
interface to the library’s internal data structures. Tables 3 and 4 summarize the
library functions. The header file AFlib.h contains the necessary definitions and
declarations while the library libAF.a contains the implementation.

6.1.1 Connection Management

AFOpenConnection() opens aconnection to the audio server. The user can specify
which server to usein thefollowing ways: explicit argument on the command line,
the AUDIOFILE environment variable, or the DISPLAY 2 environment variable.
DISPLAY is used as a convenient fallback, since the user’s workstation usually
has both audio and graphics systems. AFAudioConnName() returns the name of
the connection as used by AFOpenConnection().

AudioFile provides asimpleaccess control scheme based on host network address.
The access control functions allow programmers to add or remove hosts from the
access list and to enable or disable access control entirely.

1BDISPLAY is used by the X Window System for specifying a particular graphics display.
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6.1.2 Error Handling

Several functions modify the behavior of library functions when errors occur. The
default actionisto exit the application. AFSetErrorHandler() can be used to specify
an application-specific error handler instead. An application can handle system call
errors by supplying a new handler with AFSetlOErrorHandler(). AFGetErrorText()
translates a protocol error code into a string. Thisis commonly used to provide
useful error messages to the user.

6.1.3 Synchronization

Some of thelibrary functions, such asAFGetTime(), require an immediate response
from the server; others, such as AFCreateAC(), do not. In the former case, the
library blocks until a reply is received. When a response is not needed right
away, the library may delay sending the request to the server and put it on an
outgoing request queue. In these cases, the library function will return to the client
immediately. Certain operations, including the synchronous functions, flush the
outgoing request queue; these are noted below.

Sometimesit is necessary to force synchronous operation for all protocol requests,
particularly when debugging. AFSynchronize() is used to enable or disable syn-
chronous operation with the server. If synchronous operation is enabled, every
library function that normally generates an asynchronous protocol request cals
AFSync() beforereturning. AFSync() flushesall output to the server and usesasyn-
chronous protocol request to wait for the server’sreply. If an application requiresa
different synchronization procedure, it can specify oneusing AFSetAfterFunction().

AFFlush() flushes the output buffer. Most client applications will not need to call
this, because the output buffer is flushed as needed by calls to AFPending() and
AFNextEvent(). Any eventsgenerated by the server are put onto the library’s event
queue.

6.1.4 Events

The library filters events out of the data stream from the server and keeps them
on aprivate queue. Thisallows eventsto be interspersed on the audio connection
with other traffic from server to client.

Several functions can be used to examine and manipulate the library’s event queue.
The most important one is AFNextEvent(), which returns the next event in the
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gueue. If the queueisempty, it will flush the output buffer and block until an event
arrives. AFEventsQueued() checks the queue for pending events. Depending
upon itsarguments, it may check only previously read events, unread but available
events, or it may flush the output buffer and try to read new events. AFPending()
issimilar, but it returns only the number of pending eventsthat have been received
but not yet processed.

Occasionally a client may wish to block until a specific event occurs. To do
this, the client calls AFIfEvent() with a predicate procedure. AFIfEvent() blocks
until the predicate returns True for an event in the queue. The matching event is
removed from the queue and copied into a client-supplied AEvent structure. If
the client does not wish to block when checking for a specific event, it can use
AFCheckIfEvent(), which removesamatching event (if thereisone) from the queue
and copiesitinto aclient supplied AEvent structure. Asan aternative, aclient can
call AFPeekIfEvent(), which is like AFCheckIfEvent(), but it does not remove the
event from the queue.

6.1.5 AudioHandling

AFPlaySamples() is used by an application to play back digital audio. The block
of samplesin the given buffer isplayed back starting at the specified time.

ATi me AFPI aySanpl es(AC ac, ATine startTinme, int nbytes, unsigned char *buf)

A client can use the startTime parameter of a call to AFPlaySamples() to schedule
samples to be played at any timein the near future. The time parameter specifies
when theinitial sample of the request isto be played. The precise behavior of the
server depends upon the requested time:

e Past. If part or al of therequest is scheduled for the past , the server discards
that part of the request and plays any remaining samples beginning with the
current time.

e Near future. If any part of the request is scheduled for the interval between
“now” and four secondsin thefuture, the server copiesthat part of the request
directly to the appropriate location in the playback buffer.

¢ Beyond near future. If any part of the request is scheduled for the interval
beyond four seconds in the future, the server will block the client until the
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rest of the request can be safely copied into the playback buffer. Thisisthe
only case in which AFPlaySamples() will not immediately return control to
the client application.

Theclient isalso alowed to modify any scheduled playback material right up until
the moment the samples have been played. If no client request is received for a
giventimeinterval, the server plays silence.

AFPlaySamples() returnsthe current AudioFile device time, as would be returned
by a call to AFGetTime(). This is done as a convenience to programmers. We
noticed that many applicationswould alternately call AFPlaySamples() and AFGet-
Time(). Addingthereturn valuemakesapplication programming easier and reduces
client/server communications.

AFRecordSamples() is used by an application to capture sound in digital form.
A block of samples beginning at the time specified is filled into the given buffer.
AFRecordSamples() also returns the current devicetime.

ATi me AFRecor dSanpl es(AC ac, ATine startTinme, int nbytes,
unsi gned char *buf, ABool bl ock)

A client may use AFRecordSamples() to request samplesfrom either the past or the
future. If block isABlock, then AFRecordSamples() blocksuntil all of the requested
data is available. If block is ANoBlock, it returns whatever data is immediately
available; the returned time can be used to compute how many samples were
actually returned. The precise behavior of the server depends upon the requested
time:

e Distant past. If part or al of the request isfor samples from more than four
seconds in the past, that part of the request isfilled by samples representing
silence. Thisisdatano longer retained by the server.

e Recent past. If part or al of the request is for samples from the interval
between four seconds ago and the present, that part of the request is filled
by the appropriate samples from the record buffer. If the entire request isin
thisinterval, the call to AFRecordSamples() will return without blocking.

“The server should probably return an error indication for the “distant” future, because such
requests usually indicate programming errors.
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e Future. If part of the request isfor samples from the future, AFRecordSam-
ples() will block until the datais available, but will return as soon asthe last
requested sample becomes available.®

6.2 Client Utility Library

The AudioFiledistributionalsoincludesautility library libAFUtil.a, whose contents
are described in the header file AFUtils.h.

The utility library provides a number of facilities that are used by several clients.
Two kinds of facilities are provided: tables and subroutines. Table 5 summarizes
the library tables and Table 6 summarizesthe library subroutines.

6.2.1 Utility Tables

The AudioFile System handles a variety of digital audio dataformats, particularly
u-law and A-law, the eight-bit-per-sample companded formats used in the US
and European telephone industries, respectively. These formats are described
by CCITT recommendation G.711. They are similar logarithmically companded
formats resembling 8-bit floating point numbers. The p-law (A-law) format is
roughly equivalent to a linearly encoded format of 14 (13) bits. For mixing
and gain control, the AudioFile server and some clients need to convert these
formats to and from linear encoding. It is possible but time consuming to do this
algorithmically; fortunately, it is very easy to do the necessary conversions by
table lookup. Conversion from p-law or A-law to linear requires tables containing
256 16-bit entries. Gain control for a specific gain requires only a 256 byte table.
Tablesfor conversion from linear to p-law or A-law requires 16,384 bytes.

Another frequent operation is the computation of the signal power of a block
of samples. The utlity library provides tables AF _power uf and AF _power af to
translate p-law and A-law values to the square of the corresponding linear value.

As discussed further below, table lookup is a very powerful method of generating
sinewavesor other wave shapesat variousfrequencies. Thelibrary providesinteger
and floating point sine wave tables, AF sine_int and AF _sine float, for this purpose.
Finally, the library makes a first attempt to describe various encoding formats that
AudioFile supportstoday or may support inthe future. The table AF_sample sizes
is an array of AFSampleTypes structure indexed by AEncodeType, which is an

BAswith AFPlaySamples(), the notion of future should probably be bounded.
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enumerated type describing various digital audio encodings.

struct AFSanpl eTypes {
unsi gned int bits_per_sanp;
unsi gned int bytes_per_unit;
unsi gned int sanps_per_unit;
char *nane;

H

Many encoding types do not have integral numbers of bytes per sample, so AF-
SampleTypes hastwo fieldsfor bytes per_unit and samps_per_unit. Together these
fields can describe any fixed-length encoding format. (The field bits_per_samp is
only ahint).

6.2.2 Utility Procedures

The AudioFileutility library gatherstogether anumber of useful subroutines. With
the exception of AFDialPhone(), these procedures do not directly interact with the
AudioFile protocol.

Two procedures, AFMakeGainTableU() and AFMakeGainTableA(), are supplied
to compute on-the-fly translation tables for gain modification of p-law and A-law
encoded samples. Applicationsmay find it more convenient to use the precomputed
tables (AF_gain_table_u and AF_gain_table_a), but the procedures are provided for
those situations calling for gain values outside the range -30 dB to +30 dB or for
clients without enough memory to store al 61 tables.

Two procedures, AFTonePair() and AFSingleTone(), are supplied for generating
tones or tone pairs. These procedures use the technique of direct digital synthesis,
where sample values are produced by stepping through a wave table at a rate
proportional to the requested frequency. The requested frequency isdivided by the
sample rate to produce a phase increment value. The phase increment is added to
a phase accumulator, and the fractional valueis used to index the wave table.

AFSingleTone() is used to generate afloating point tone into a buffer, with agiven
peak value. AFSingleTone() accepts an initial phase and returns the final phase,
allowing multiple calls to AFSingleTone() to produce asignal that is continuous at
block boundaries.

doubl e AFSi ngl eTone(doubl e freq, doubl e peak, double phase,
float *buffer, int |ength)
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AFTonePair() isused to generate a u-law tonepair into abuffer. Thetwo frequencies
are individually specified, with individual power levels relative to the “digital

milliwatt”, which in turn is 3.16 dB down from digital clipping level. A specia

parameter, gainramp, controls how the toneswill ramp up to full volume and ramp
down at the end. Thisreduces the frequency splatter associated with switching the
signal on and off. Two-tone signals are frequently used in telephony, for Touch-
Tone, ringback, busy, and dialtone sounds. Table 7 shows some of the telephony
related signalsrepresented by tone pairs. Thetable showsthe frequenciesin Hertz
and power levelsin dB relative to the digital milliwatt of the two tones, and the
on- and off- timesin milliseconds. An off-time of O represents a continuoustone.

voi d AFTonePair(double f1, double dBgainl,
doubl e f2, doubl e dBgai n2,
int gainranp,
unsi gned char *buffer, int |length);

AoD() stands for “Assert Or Die”. A common idiom in programming is to check
a condition and exit with an error message if the condition does not hold. AoD()
simply capturesthisidiominto alibrary procedure. Thefirst argument isaboolean
expression. If the expressionistrue, AoD() returnsright away. If the expressionis
false, therest of the arguments are interpreted as aformat string and arguments for
fprintf(stderr,...) after which AoD() calls exit(1).®

voi d AoD(int bool, char *errmsg, ...);

Finally, AFDialPhone() encapsulates the operations necessary to generate Touch-
Tone dialing sequences on a telephone device.

16This should be in amore general library, but it isn't.
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Connection Management

AFOpenAudioConn Open a connection to the audio server
AFCloseAudioConn Close the audio connection
AFSynchronize Synchronize with the audio server
AFSetAfterFunction Set a synchronization function

Audio Handling
AFGetTime Get the devicetime of adevice
AFPlaySamples Play digital audio samples
AFRecordSamples Record digital audio samples

Audio Contexts
AFCreateAC Create anew audio context
AFChangeACAttributes | Modify an audio context
AFFreeAC Free resources associated with an audio context

Event Handling
AFEventsQueued Check for events
AFPending Returns number of unprocessed events
AFIfEvent Find and dequeue a particular event (blocking)
AFCheckIfEvent Find and dequeue a particular event (non-blocking)
AFPeekIfEvent Find a particular event (blocking)
AFNextEvent Return the next unprocessed event
AFSelectEvents Select events of interest

Telephone

AFCreatePhoneAC Create an audio context for atelephone device
AFFlashHook Flash the hookswitch on a telephone device
AFHookSwitch Set the state of the hookswitch
AFQueryPhone Returns the state of the hookswitch and loop current

Table 3: AudioFile client library functions
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1/O Control

AFEnablelnput
AFDisablelnput

Enable inputs on an audio device
Disable inputs on an audio device

AFEnableOutput Enable outputs on an audio device
AFDisableOutput Disable outputs on an audio device
AFEnablePassThrough | Connect local audio to the telephone
AFDisablePassThrough | Remove the direct local audio/telephone connection
AFQueryInputGain Get minimum/maximum input gains for a device
AFQueryOutputGain Get minimum/maximum output gainsfor a device
AFSetinputGain Set the input gain of a device
AFSetOutputGain Set the output gain of adevice

Access Control
AFAddHost Add a host to the access list
AFAddHosts Add a set of hoststo the access list
AFListHosts Return the host access list
AFRemoveHost Remove a host from the access list
AFRemoveHosts Remove a set of hostsfrom the access list
AFSetAccessControl Enable or disable access control checking

AFEnableAccessControl
AFDisableAccessControl

Enable access control checking
Disable access control checking

Properties

AFGetProperty
AFListProperties
AFChangeProperties
AFDeleteProperty
AFInternAtom
AFGetAtomName

Manipulate properties

Get alist of existing properties
Modify a property

Delete a property

Install anew atom name

Fetch the name of an atom

Error Handling

AFSetErrorHandler
AFSetlOErrorHandler

Set thefatal error handler
Set the system call error handler

AFGetErrorText Trangdlate error code to astring
Miscellaneous

AFNoOp Don’'t do anything

AFFlush Flush any queued requeststo the server

AFSync Default synchronization function

AFAudioConnName

Return the name of the audio server

Table 4: Additional AudioFileclient library functions
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Conversion Tables
AF_comp_u 13-bit linear to u-law
AF_comp_a 13-bit linear to A-law
AF_exp_u p-law to 13-bit linear
AF_exp_a A-law to 13-bit linear
AF _cvt u2s u-law to 16-bit linear
AF _cvt u2a A-law to 16-bit linear
AF _cvt u2f u-law to floating point
AF_cvt_a2f A-law to floating point
AF _cvt u2a u-law to A-law
AF _cvt a2u A-law to p-law
Mixing Tables
AF_mix_u Mix two u-law samples
AF_mix_a Mix two A-law samples
Gain Tables
AF _gain_table.u | p-law gain
AF _gain_table.a | A-law gain
Sine Wave Tables

AF sine_int 1024 entry 16-bit integer sine wave
AF _sine float 1024 entry floating point sine wave

Encoding Information Tables
AF_sample_sizes | Datatypeinformation

Table 5: AudioFileclient utility library tables

Gain Control Procedures
AFMakeGainTableU | Generate au-law gain table
AFMakeGainTableA | Generate an A-law gain table

Signal Generation Procedures

AFTonePair Generate atwo-tone signal

AFSingleTone Generate a precise sine wave

AFSilence Generate silence

AFDialPhone Generate tone dialing signals
Utility Procedures

AoD | Assertion checking

Table 6: AudioFile client utility library functions
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Name | fl|dBl| f2]|dB2 | Timeon | Timeoff
Call Progress Tones
dialtone | 350 | -13 | 440 | -13 1000 0
ringback | 440 | -19 | 480 | -19 1000 3000
busy 480 | -12 | 620 | -12 500 500
fastbusy | 480 | -12 | 620 | -12 250 250
DTMF Tones
1 697 -4 | 1209 -2 50 50
2 697 -4 | 1336 -2 50 50
3 697 -4 | 1477 -2 50 50
4 770 -4 | 1209 -2 50 50
5 770 -4 | 1336 -2 50 50
6 770 -4 | 1477 -2 50 50
7 852 -4 | 1209 -2 50 50
8 852 -4 | 1336 -2 50 50
9 852 -4 | 1477 -2 50 50
* 941 -4 | 1209 -2 50 50
0 941 -4 | 1336 -2 50 50
# 941 -4 | 1477 -2 50 50
A 697 -4 | 1633 -2 50 50
B 770 -4 | 1633 -2 50 50
C 852 -4 | 1633 -2 50 50
D 941 -4 | 1633 -2 50 50

Table 7: Tone pairsfor telephony
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7 Server Design

The AudioFile server isresponsible for managing the audio hardware and present-
ing abstract device interfaces to clients via the AudioFile protocol. This section
discusses some of the important issues in the server’s design, the implementation
of buffering to provide the audio device abstraction, and some other details of the
server’s implementation.

7.1 Implementation Considerations

Performance was our primary concern for the implementation of an AudioFile
server. We wanted the server to run continuously in the background, so we
felt that the quiescent server should present a negligible CPU load. Further,
load due to the server with a few clients running should leave most of the CPU
available for applications. Otherwise, users would not be inclined to use audio-
based applications because they would not get any work done. While server
performance was a primary focus, we realized the overall design must be kept in
balance so that an efficient server was not compromised by an inefficient client or
client library.

We considered using threads to implement the server, but were apprehensive about
the performance and portability of existing thread packages. Although theinternal
structure of the server might be dightly cleaner with threads, we took the safer
route and designed the server as a single-threaded process.

The server must be fair in its processing of client requests, in order to meet the
real-time constraints of the applications. To satisfy our fairness goal, the server
is designed such that one client cannot dominate the processing time within the
server and preclude the server from gettingwork done on the behalf of other clients.
The server attemptsto achieve fairness by servicing active client connectionsin a
round-robin fashion and by breaking large requests into smaller chunks.

7.2 Buffering

In Section 1, we mentioned the existence of audio device input and output buffers.
There are several buffering details that merit further examination. Figure 4 pic-
torially represents the input and output buffers along a time line centered around
now, the current value of the time register.
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Update Regions
Record buffer | | ------------------ dseconds  --snemonosoenoes
------------------- N et Play buffer
T Time
Now

Figure 4: AudioFile server buffering

Play or record requests that correspond to points on the time line that map to
unshaded portions of the buffers are handled trivially. Record requests can be
serviced from the record buffer and play request data can be ssmply mixed into the
play buffer.

Requests that correspond to the shaded regions of the buffers are treated as special
cases by the server. The shaded “updateregions’ represent wherethe server buffers
may be inconsistent with the audio hardware buffers. If arecord request fals into
the shaded region, the server performs a record update operation which makes
the input record buffer consistent until now. *’ Once the input record buffer has
been updated, recent data can be delivered to the client. If a play request falls
into the shaded region, the server writes the data through the server buffer into the
audio hardware (or low level software) in order to ensure that sample data for the
near-future isimmediately availableto the DAC without intervention by the server.

In these descriptions of how the server buffers data, we have described how client
regquests cause movement to occur in the input and output buffers. It should be
clear that a piece of the buffering picture is missing. There must be a mechanism
which periodically moves data between the audio hardware and the server buffers
independent of any client request activity. This mechanism is an update task that
keeps the hardware buffer consistent, such that the hardware buffer aways reflects
the server’s buffer at the time the hardware consumes an output sample.

Figure 5 illustrates the server record and play buffers before and after the update
task executes. At each invocation, the update task moves new record data (since

0Or very closeto now. It ispossiblethat therecord updatetask can only makethe buffer consistent
through atime that occurred a few sampleticks in the past depending upon the latency in the audio
hardware.
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timeRecLastUpdated) from the hardware buffer to the server buffer, and moves
the next batch of playback data (starting at the “ before” timeNextUpdate) from the
server buffer to the hardware buffer.

| Record buffer
Before 7 Play buffer
ti meRecLast Updat ed :
}V ti meNext Updat e Time
| Record buffer
After | Play buffer |
Now

Figure 5: AudioFile periodic update task

If arecord request falls after timeRecLastUpdated, the server performs an update
before handling the request. If aplayback request fallsbefore timeNextUpdate, the
server writes the data all the way through to the hardware.

Since the update task generally copies all data (whether any client sample was
written to the output buffer or not), the server buffer must be initialized with
silence data. In general, the server’s buffers are implemented as circular buffers.
Therefore, the silence data iswritten by the update task in the segment (now stale)
from the time of the last update until now. This places a constraint on the server’s
play handler; it must consider the server’s play buffer as ending at the devicetime
of the last update plusthe server buffer size.

The server was designed to mix output data from multiple clients by default. We
believe thisis the natural case. However, it isimportant that a client can preemp-
tively play sample data, such as in an urgent warning message. Clients specify
preemption through the audio context used in the play request. If preemptionis
specified, the play datawill overwrite any data already in place. 1

In cases where hardware buffer accesses are expensive, the server should attempt
to minimize the number of hardware accesses for each sample played. At one
extreme, the server could perform an access for each client playing at timeT'. The

Bwe have yet to devise a CPU and memory efficient scheme that supports a stacking order for
clients playing data. Imagine that the relative mixing levels are controlled by the client’s location
on the stack with each level mixing 6 dB lower than the previouslevel for example. A design that
supports this would require unique server buffersfor each active client.
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minimum is one access for al clients playing audio at time T'. For recording, the
server always performs one access per sample.

The number of accesses per output sample is approximately one for the periodic
update task access asthe server’s buffer didesinto the update interval, plusone for
each client playing in the update interval. A large number of applicationswill play
audio by getting the current time and begin playing immediately and quickly move
outside the update interval because they run faster than real-time (for example:
abiff, background music, audio announcements). These clients enable the server
to approach the minimum number of accesses desired. This may not be true for
low-latency applicationswhich always schedul e playback just ahead of the current
time.

7.3 Server Implementation

An AudioFile server is organized like an X server. It includes device independent
audio (DIA), device-dependent audio (DDA), and operating system (OS) compo-
nents. The DIA sectionisresponsi blefor managing client connections, dispatching
on client requests, sending replies and events to clients, and executing the main
processing loop. The DDA section is responsible for presenting the abstract inter-
face for each supported device and contains all device-specific code. Finally, the
OS section includes al the platform or operating system-specific code. Much of
the OS and DIA code is based on X11R4.

The remainder of this section describes some of the functionsprovided by the DIA,
DDA, and OS components as well as presenting some example DDA servers. The
discussion is detailed; the interested reader may wish to refer to the source code.
Because much of the OS and DIA infrastructure is based on X11R4 code, various
documents describing the implementation of the X Window System server [1, 2,
13, 14] may be helpful.

7.3.1 Device-Independent Audio Server

Interoperability

The server contains code to support byte-swapping when communicating with
clients on a machine with the opposite byte order. Each protocol request may
have a companion swap procedure that interprets the contents of the request and
byte-swapsthe necessary fields. Play and record requests specify the byte order of
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the sample data; by default, the AudioFile library uses the byte order of the client
unless told otherwise by the application.

Tasks

Instead of using threads, we implemented a simple task mechanism which allows
procedures to be scheduled for execution at future times, outside the main flow of
control. The task mechanism isused by the server’s update mechanism and by the
dispatcher to resume execution of partially completed client requests.

A task includes the address of a procedure (proc()), the system time to execute
(systime), and closure data (p, time, len, ssize, mask, aDev, ac). 1° Procedures can
create anew task, initialize the task, and add the task to the run list.

typedef struct tTask {

struct Task *next; /* Next task on free list. */
ClientPtr client; /* Pointer to client struct. */
fd_set f dmask; /* Save fd mask for processing |oop.*/
poi nter request; /* Cient request information. */
ATi me time; /* ATinme at which to process task. */
Voi dPr oc proc; /* Procedure to call. */
poi nter p; /* Pointer to the task data. */
int | en; /* Amount of data left. */
int ssi ze; /* sanple size of remmining data */
int mask; /* request mask: endi an-ness */
Audi oDevi cePtr aDev; /* Pseudo devi ce handl e. */
ACPt r ac; /* Audi o context handle. */
struct tinmeval systine; /* Systemtime (for scheduling). */

} Task;

/* Exported procedures. */

voi d AddTask( Voi dProc proc, TaskPtr task, int ns);

TaskPtr NewTask(voi d) ;

Here isacode example from the Alofi server that usesthetask interface. The update
procedure is named codecUpdateTask(). During the server initialization sequence,
the DDA createsanew task, attaches an audio device structure to the task structure,
and schedules codecUpdateTask() to run MSUPDATE millisecondsfrom now.

TaskPtr task;
Audi oDevi cePtr aDev;

task = NewTask();

t ask->aDev = aDev;

task->tine = 0;

AddTask(codecUpdat eTask, task, MSUPDATE /* 100 */ );

1¥This data should be private to proc().
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The codecUpdateTask() procedure will be invoked once system time has advanced
beyond the task’s expiration time. As shown by this example, the update task
reschedules itself for execution MSUPDATE millisecondsinto the future, causing
this procedure to execute periodicaly. codecUpdateTask() calls codecUpdate()
which does the actual work of updating the server buffers.

voi d
codecUpdat eTask( TaskPtr ol dTask)
{

TaskPtr newTask=NewTask() ;
Audi oDevi cePtr aDev=ol dTask- >aDev;
*newTask = *ol dTask; /* Task for next tinme. */
/* Get the current device tinme and update audi o device tine. */

CODEC_UPDATE_TI ME( aDev) ;

/* Performthe wite-back update with silence fill. */
codecUpdat e(aDev) ;

newTask->ti ne = aDev->ti ne0; /* Mark new task with old time. */
AddTask(codecUpdat eTask, newTask, MSUPDATE /* 100 */);

Main Loop

At the core of the DIA section is the main control loop. Inside of this loop the
procedure WaitForSomething() is called when the server does not have anything
to do. WaitForSomething() returns when a client, audio device, or task needs
attention. WaitForSomething() relies heavily on the select() system call. select()
is called with file descriptors for client connections and open devices, aswell as a
timeout argument for the next task which needsto execute. When select() returns,
the server runsany pending tasks and then handlesinput events and client requests.

Client requests are processed by the dispatcher. The request type is used to index
into atable of protocol request handler procedures. All handlers are implemented
by the device-independent part of the server, but audio requests are passed to the
device-dependent part. When necessary, the request handler calls into the DDA
using interfaces that are defined below.

7.3.2 Device-Independent and Dependent Server Interfaces

This section describes the interfaces shared between the device independent (DIA)
and device-dependent audio (DDA) server components. Theinterfacesincludethe
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procedures exported by the DDA and the DIA aswell asthe shared datastructures:
AudioDeviceRec and AC.

Exported DDA Interfaces

When the components of an AudioFile server are linked while excluding the DDA
library, the linker complains about six unresolved symbols. The six symbols,
described in detail below, are InitDevices(), ProcessinputEvents(), ddaGiveUp(),
AbortDDA(), ddaUseMsg(), and ddaProcessArgument().

InitDevices() iscalled during server initialization from dia/main.c.?° Thisprocedure
creates and initializes an AudioDevice structure for each (abstract) audio device
supported by the DDA. The DDA can perform any necessary hardwareinitialization
at thistime.

The DDA registersfiledescriptorsfor open devicesthat may deliver eventswiththe
DIA to be used in generating the argumentsto select(). If select() returns because a
hardware device becomesready for 1/0, the DIA will call the ProcessinputEvents()
procedure within the DDA. The ProcessinputEvents() procedure in the DDA is
called from dia/dispatch.c when there are events pending and it is time to process
them. The DDA removes pending events from a device driver input queue and
then poststhem to the DIA’s FilterEvents() procedure for further processing before
being sent to interested clients.

The ddaGiveUp() procedure is invoked by the dispatcher in dda/main.c if dis-
patchException masked with DE_TERMINATE is true. > The DDA should close
any open devices and tear down its state.

TheAbortDDA() procedureisinvoked fromwithin AbortServer() in os/4.2bsd/utils.c.
Any fatal server error will cause AbortServer() to be invoked and subsequently,
AbortDDA(). The DDA should close any open devices and tear down its state.

The ddaUseMsg() procedure isinvoked from within os/4.2bsd/utils.c if the server
command line could not be parsed successfully. The DDA server should use
ErrorF() to print formatted error messages indicating the list of DDA-specific
server command line switches.

The ddaProcessArgument() procedure is invoked from within os/4.2bsd/utils.c if
the command line argument is not understood by the DIA server. The DDA server
should check to seeif thisisa DDA-specificargument. If itis, the DDA should con-
sumethisargument and any subsequent rel ated arguments that follow immediately.

Dpgthnames are rel ative to the server directory in the AF sub-treewithin the AudioFile sourcekit.
2lWe do not think this can happen.
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ddaProcessArgument() should return the number of arguments consumed.
Exported DIA Interfaces

The device-independent audio section of the server exports several procedures to
the device-dependent audio section. These procedures are briefly described below.

The DDA creates an audio device by using the MakeDevice() procedure. MakeDe-
vice() returns a pointer to a newly created AudioDeviceRec structure (described
below).

The AddEnabledDevice() and FilterEvents() procedures are used by DDA imple-
mentations that produce events. The DDA informs the DIA of open devices
through AddEnabledDevice(). The DDA hands events to the DIA from the Pro-
cesslnputEvents() procedureby calling FilterEvents() with apointer toaninitialized
event structure and an audio device number.

The exported interfaces to the task mechanism are the NewTask() and AddTask()
procedures. NewTask() is used to allocate a task structure. Once the DDA adds
its private data to the structure, it schedules it for execution by passing the task
structure to AddTask().

The Xalloc() and Xfree() procedures allocate and free memory.

The DDA uses ErrorF() to output formatted warnings and informational messages.
The FatalError() procedure is called to output an informational message and then
die

Audio Device Sructure

The AudioDeviceRec structure is used to share information between the DIA and
DDA components. This structure encapsulates the information specific to an
abstract audio device. For convenience, similar fields within this structure are
grouped together and described separately.

The first grouping in the AudioDeviceRec structure includes general fields for
dealing with the audio device. For example, index indicates the audio device
number and type indicates the type of enumerated audio device. The remaining
elementsin thisgroup are privateto the audio deviceand arelocated in thisstructure
for convenience. userProps is used only by the DIA. devPtr and privPtr are only
used by the DDA.

typedef struct _Audi oDevice {
[* o000

int i ndex; /* I ndex of audiodev device. */
DevType type; /* Codec, H-Fi ... */
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[* *]

PropertyPtr user Props; /* Properties for this device.*/
/* DDA hangs a physical device structure here */
poi nter devPtr;

/* Audi odev device private information is attached here. */
poi nter privPtr;

[* .00 %

} Audi oDevi ceRec;

This next grouping contains the elements to maintain the audio device time. The
server’scopy of thetimeregister isheld intime0 and representsthe server’sview of
current time. dsptime and oldDevTime are used by the server to maintain time0. If
the hardware maintainsatime register that is narrower than 32 bits, the server uses
the difference between two consecutive hardware time register values to update
time0. The previous hardware time register is held in oldDevTime. dsptime is
the current view of the hardware time register and is only maintained here for
implementation convenience. If the hardware timeregister isa32-bit register, then
timeO can be a copy of that register.

/* Some tine information. */
ATi me timeo; /* Last conputed. */
ATi me ol dDevTi ne; /* Ad device tine for delta. */
ATi me dspti nme; /* Holds dsp tine at update. */

The input and output capabilities are described by the next grouping of Au-
dioDeviceRec structure fields. numberOfinputs and numberOfOutputs indicate
the number of input and output connections that can be selected by clients. in-
putsFromPhone and outputsFromPhone are masks to indicate which of the input
and output connections source/sink audio to/from atelephonelineinterface. These
fields contain abinary 1 inthe bit position represented by the audio device number
if that input or output is connected to the phone.

/* Describe the |/O capability. */
int nunber O | nputs; /* Nunber of input sources */
int nunmber O Qut puts; /* Nunber of output destinations */
unsi gned int i nput sFronPhone; /* Mask of inputs conn. to phone line */

unsi gned i nt out put sToPhone; /* Mask of outputs conn. to phone line */

The play and record features of the audio device are specified by the next grouping
of fields. These fields indicate the sampling rate, native audio hardware data type,
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number of channels, and the buffer size in samples. The buffer size in secondsis
computed by dividing the the buffer size by the sampling rate.

/* Describe the play buffer type and size. */
unsi gned int pl aySanpl eFreq; /* Sanpling frequency. */
AEncodeType pl ayBuf Type; /* Data type supported. */
unsi gned i nt pl ayNSanpl esBuf; /* Length in sanples of play buffer. */
unsi gned int pl ayNchannel s; /* Nunber of channels. */
/* Describe the record buffer type and size. */
unsi gned int recSanpl eFr eq; /* Sanpling frequency. */
AEncodeType r ecBuf Type; /* Data type supported. */
unsi gned int recNSanpl esBuf; /* Length in sanples of record buffer*/
unsi gned int recNchannel s; /* Nunber of channels. */

The update task uses the next grouping of fieldsto manage the movement of sample
data between the audio hardware and the server buffers. This processis described
in the discussion of server buffering in Section 7.2.

/* Server Update |nfornmation. */
ATi me ti meLast Updated; /* Tine of |ast update. */
ATi me ti meNext Update; /* Tine at start of next update. */
ATi me timeLast Valid; /* Time of last valid play data */
ATi me ti meRecLast Updated; /* time of |ast record update. */

/* reference counts */
int r ecRef Count ; /* Number of open record streans */

/* Server Buffer Data */
poi nter pl ayBuf; /* Server’'s play buffer. */
poi nter r ecBuf; /* Server’'s record buffer. */

Lastly, this next grouping of fields contain function pointers that are used by the
DIA toinvoke device dependent proceduresin the DDA usually asaresult of client
protocol requests. The procedure pointersare further grouped into setsthat support
time, AC, telephoneinterface, and device control functions. These procedures are
specific to an audio device and do not have client-specific state.

/* ATinme and M sc. */
ATi me (*CGetTime)();
/* AC */

ABool (* CreateAC) ();
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| * Tel ephone Specific Procedures */
i nt (*Dial)();

i nt (*HookSwi tch) ();

i nt (*Fl ashHook) () ;

i nt (*HookSwi t chState) ();

i nt (*LoopCurrent State) ();

int (*TLI Craft HookSwi t chEvent) () ;

/* Device control procedures. */
voi d (*ChangeCQut put) () ;

voi d (*Changel nput) () ;

voi d (*ChangePassThr ough) () ;

i nt (*QueryQut put Gai n) () ;

int (*Queryl nputGain)();

i nt (*Sel ect Qut put Gai n) () ;

int (*Sel ectl nputGain)();

Audio Contexts

The context inwhich aclient playsor records audio dataisheld in the AC structure.
The server maintainsplay and record conversion procedure pointersfor each audio
context. The procedure pointers are used by the DIA to invoke the appropriate
audio context handler in the DDA. For example, play and record requests are
handled by context-specific procedures supporting the design of the output and
input conversion modules described earlier. Conceptualy, the AC encapsulates
audio device attributes and handlers for individual clients.

typedef struct _ACOps {
int (* ConvertPlay)();
int (* ConvertRec)();
} ACOps;

typedef struct _AC {
Audi oDevi cePtr abDev;
AEncodeType pl ayType;
AEncodeType recType;

int pl ayGai n;

int recordGai n;

ABool pr eenpt ; /* Whether it should preenpt. */
[* .00 %

ACFuncs *funcs;

ACOps *ops; /* DDA context specific handlers. */
int recRef; /* Record reference count. */

} AC

Each client’s play or record request contains a handle to an audio context main-
tained within the audio server. The audio context is used to determine the client’s
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sample data type and the output gain (prior to mixing) and preemption mode for
play requests. When the audio context structure AC is created, the DDA server ini-
tializes theinput and output conversion procedure pointersin the contained ACops
structure. If the client data type is identical to the hardware data type, then the
DDA may chooseto bypass the conversion stage. Upon receipt of aplay or record
client request, the dispatch handler invokes the DDA through the ACops structure
permitting the DDA to implement conversion modules on a per AC basis.

7.4 Device-Dependent Server Examples

We have written servers for a variety of systems and audio hardware. These
examples range from the simple 8 KHz base-board audio CODEC on Alpha AXP
workstations and SPARCstations to the LoFi with two CODECs, a HiFi DAC,
and a NeXT compatible DSP port. In addition to these direct connected audio
hardware devices, we have implemented a server for a detached audio device
named LineServer. This section describes some of the implementation details for
these servers.

7.4.1 Alofi

Asdescribedin Section 1, the LoFi hardwarehastwo 8 KHz CODECS, aDSP56001
processor, and HiFi hardware. TheAlofi server presentsfiveaudio devicestoclients:
two CODEC audio devices and three DSP port audio devices. Each of these audio
devices has a separate notion of time.

DSP Firmware

The LoFi module has a DSP processor, with 32K 24-bit words of memory shared
between the host workstation and the DSP. The DSP runs a simple program written
in DSP56001 assembler language that isloaded by the AudioFile server at startup.

The DSP firmware maintains several important structures in shared memory. De-
vice time counters for the CODEC and HiFi devices are incremented once per
sample. The DSP maintainsthe countersin 24-bit registersin shared memory. The
server software updates its view of time by the difference between the previous
and current samples of the DSP’s counter.

The DSP aso maintains input and output buffers for each audio device. The host
performsaudio I/O by reading and writing thesebuffers. Thereare4 circular buffers
for the CODEC devices. a play and record buffer for each of the two CODECs.
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Currently, we store one 8-bit samplein each 24-bit word. One optimizationwould
be to double or triple the CODEC buffer sizes by packing multiple samples per
word, at the expense of more complex (and slower) firmware. There are aso 4
circular buffersfor the stereo HiFi device: aplay and record buffer for each channel
with one 16-bit samplein each 24-bit word.

The buffer sizes are set by the server startup code, before enabling the DSP. Each
CODEC buffer contains 1024 samples(about 125 millisecondsat 8 KHz), and each
HiFi buffer contains 4096 samples (about 85 millisecondsat 48 KHz). These sizes
were chosen to be as large as possible given the size of the DSP static memory and
to allow approximately equal buffering time for the CODEC and HiFi devices. %
The server startup code aso sets the initial configuration for the DSP port, such
as sample rate and framing details. Currently, there is no way to change the
configuration while the server is running.

After the DSP firmware isinitialized, it goes into an infinite wait loop. All of the
work isdone by two interrupt routines; one each for the CODEC and HiFi devices.
The CODEC interrupt routine fires at the CODEC rate (8000 Hz) and performsthe
following functions (for each of the CODEC devices): 23

e Write play sample from play ring buffer to CODEC registers
e Backfill play buffer with silence.
e Read record buffer from CODEC register to record ring buffer

e Increment device time counter.

The HiFi interrupt fires at twice the HiFi rate, or once per channel. This routine
performsthe samefunctionsasthe CODEC update, except that the update alternates
between the left and right channels.

The interrupt routines are optimized for execution speed. At high sampling rates,
the overhead of processing interrupts must be minimal. For example, at a 48
KHz sampling rate, the HiFi interrupts occur every 10 microseconds. This gives
an upper bound of about 280 DSP cycles (or 140 instructions, not counting time
to access memory) between HiFi interrupts. To reduce overhead, the firmware
minimizes memory accesses by keeping global valuesin registers.

22gjincethe current implementation usesthe circul ar addressing modessupported by the DSP56001,
the buffer sizes are al so constrained because they must be a power of two.
2Both CODEC devices can be serviced at the sametime since their interrupts are synchronized.
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One feature that is not yet implemented is device gain control for the HiFi device.
Because many HiFi hardware devices have no mechanism for manipulating the
device gain, it must be done in software. Fortunately, such a mechanism would be
easy to implement on the DSP chip where integer multipliesare inexpensive.

HiFi Details
The HiFi section of the DDA is similar to the section supporting the 8 KHz
CODECs. The differences that do exist are described bel ow.

The HiFi section of the LoFi server supports two modes of operation. The server
supports output at 44.1 KHz through the LoFi’s built-in stereo DAC. The server
also supportsexternal devices, such asthe Ariel ProPort, attachedto L oFi’sexternal
DSP port. External devices may provide input as well as output at a variety of
sample rates.

The sample rate and operating mode are selected at server startup and cannot be
changed by client applications. Currently, the only sample type supported by the
server is 16-bit linear.

In our server, we implemented a single stereo device that represents both the left
and right channels. (By convention, left and right samples aternate in the data
stream, so a stereo “sample” consists of a 16-hit left sample and a 16-bit right
sample). To support mono channel operations, we also implemented two audio
devices that represent the separate left and right channels of the stereo device.

In the server, everything isimplemented in stereo because it is the most common
mode of operation, and it is more efficient to move stereo samplesaround asa unit
than as two independent mono channels. The mono channel devices are built on
top of the server’s stereo buffers. A mono play request issimply written (or mixed)
into the appropriate channel in the stereo buffers, and arecord request simply reads
from the appropriate channel.

Performance Considerations

To date, we have only optimized the HiFi part of the server. The memory band-
width and CPU load requirementsfor supporting the CODECs does not justify the
optimizationsfor that part of the DDA server.

Most of the time in the server is spent moving high-fidelity samples around in the
play and record buffers. The server’s periodic updates (the routines that move
samples between the server’s buffers and the hardware) can consume quite a few
CPU cycles, especially at high samplerates. We had to spend sometimeoptimizing
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the update procedures to achieve adequate performance.?*

The record update only needs to run if there is a client that wants record data.
AudioFile has no explicit mechanism for clients to indicate their intent to record,
but it is likely that clients that record once are likely to record again. The first
record operation performed under a context marks the context as recording. Each
device maintains a count of recording contexts: as long as there is one or more,
the record update code runs. Note that this optimization breaks clientsthat start up
and immediately want to start recording in the past.

Similarly, the play update should run only if there are samplesto play. To accom-
plish this, the server maintains a variable for each device, timeLastValid, with the
time of thelast valid playback samplewritten by any client. The play update code
only runs when this variableis in the future relative to the current device time.

A second possible play update optimization has to do with back-filling silence.
AudioFile's playback model saysthat periodswith no playback data are filled with
silence. Our first implementation achieved this by filling the play buffer with
silence immediately after the play data was sent to the device. While this method
was easy to implement, it doubles the memory bandwidth requirements to the play
buffer. When playing continuous stream (the common case), the samples in the
play buffer got written twice; once with silence, and once again with the playback
data.

The solution isto fill silence only when absolutely necessary. This can be simply
achieved with thetimeLastValid variable. If aclient play request startsin the future
relative to timeLastValid, then the region from timeLastValid to the start of the play
request must be silencefilled. The play dataisthen mixed or copied into the server
buffer. If a play request is preemptive, the data is copied into the server buffer.
Otherwise, samplesbefore timeLastValid are mixed and samplesafter timeLastValid
are copied. In both cases, timeLastValid is updated if necessary to reflect the time
of the last valid sample. Note that in the common case of contiguous playback
requests, silencefilling is never necessary.

Pass-Through
The L oFi hardwareisabletodirectly route audio data between the CODEC devices.
This turned out to be a very useful feature that permitted users to communicate

through the telephone line interface from the local audio device with very low
latency. While thisis not a general mechanism, AudioFile supports this feature

2\We should point out that when audio hardware with DMA support appears, this should be less
of aproblem.
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with a device control primitive that connects the inputs and outputs of two audio
devices.

7.4.2 Aaxp and Asparc

The audio servers for the base-board audio on Alpha AXP workstations and
SPARCstations use device drivers with similar interfaces. As a result these two
servers are nearly identical. They differ from other audio servers in that the DDA
does not directly talk to the audio hardware but rather use akernel device driver.

Thebase-board audio hardwareisan 8 KHz CODEC. The devicedriver implements
read and write entry points for recording and playing audio data. The hardware
update procedure in the DDA writes a block of data to the device driver which
is then responsible for seeing it is delivered to the CODEC. Similarly, the update
procedure reads a block of data from the device driver and stores it in the server
buffer.

Because the kernel devicedriversdo not maintain atimeregister for the base-board
CODEC:s, the server must maintain an estimated value using the system clock and
must occasionally resynchronize the message queue in the device driver.

743 Als

For the LineServer, an AudioFile server running on a nearby workstation uses a
private UDP-based protocol to communicate with the device. The LineServer runs
simple firmware that processes incoming packets and moves samples to and from
theaudio hardware. Ontheworkstation, aperiodic update task movesdata between
the server’s buffers and the LineServer’s buffers using the private protocol. The
server makes every attempt to minimize access to the LineServer, since crossing
the network isarelatively expensive operation. Only requestsin the update regions
require network traffic. For requeststhat requirereturning adevice time, the server
generates an estimate.

An AudioFileserver running on theworkstation drivesthe hardware using aspecia
UDP-based protocol between the workstation and the LineServer. There are six
packet types, supporting the following functions:

e Play samples

¢ Record samples
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Read CODEC registers
¢ Write CODEC registers

Loopback (for testing)

o Reseat

Reguest and reply packets have the same format, with four header fields: sequence
number, audio time, function code, and parameter. Any extrabytesafter the header
are considered data bytes.

The LineServer only sends packets as replies to requests from the workstation.?
All requests generate replies which consist of the original command packet header
with the time updated to the current LineServer audio device time and any data
bytes (if applicable).

The LineServer firmware is very simple. There are two threads of control: a
network thread and an update thread. The network thread is a loop that reads
regquest packets, processes them, then sendsthe reply back to the workstation. The
LineServer maintains small (2048 samples, or 1/4 second at 8 KHZz) record and
playback buffers, and play or record requests write or read samples from these
buffers. The CODEC read and write requests manipulate the CODEC registers
on the LineServer. The update routines are interrupt driven, and copy play and
record samples between the buffers and the CODEC. A loopback request returns
the original request packet.

Client play and record requests that can be completely satisfied in the server’s
buffers are completed without touching the LineServer at al. Only requests that
cover the update regions need to go through to the LineServer. For regquests that
require returning a device time (like play and record), the server generates an
estimate of the LineServer time from the time stamp of the last LineServer packet
and the local server time.

Other client requests, such as adjust output gain, are converted into the appropriate
CODEC read or write command and sent through to the LineServer.

No attempt is made to retry play or record packets (by then, it is probably too late
anyway). CODEC read and write requests are retried by the server, if necessary.

BThere is something to be said for peripherals that speak only when spoken to.
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8 AudioFileClients

The AudioFile System includes two suites of application programs. These ap-
plications are called “clients’ after the fashion of the X Window System. This
is because in a client-server system like AudioFile, the application programs are
clients of the facilities provided by the AudioFile server.

Thefirst suiteof clientsinclude coreapplicationsfor recording, playback, telephone
control, device control, and access control. These applications have very few
dependencies, so they are easily ported to new systems, yet they have enough
functionality that they can be used to build useful applications. Table 8 showsthe
coreclients, grouped by their functionsof accesscontrol, device control, inter-client
communications, and audio handling.

Access control
ahost \ AudioFile server access control
Device control
ahs Telephone hook switch control
aphone | Telephone dialer
aset Device control

aevents | Report input events

Inter-client communications

alsatoms | Display defined atoms

aprop Display and modify properties

Audio handling

apass Record from one AF server and playback on another
aplay Playback from files or pipes

arecord | Record tofiles or pipes

Table 8: AudioFilecore clients

The AudioFile System distribution aso includes a suite of “contributed” appli-
cations, shown in Table 9. These applications tend to be more complex or have
dependencies on other software packages which are not ubiquitously available.
In particular, many of the contributed clients have graphical user interfaces using
the Tcl language [10] and Tk toolkit [11] developed by John Ousterhout at the
University of California, Berkeley. %6 Section 11.3 explainshow to get Tcl and Tk.

B\We havefound Tk to be avery effective toolkit, yet onewhichis much easier to understand than
any of the standard X Window System toolkits. We recommend Tcl and Tk to anyoneinterested in
graphical user interfaces.
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Device control
adial Tk telephone dialer

axset Tk version of aset

afxctl X-based event display and device control
Audio handling

abiff Incoming email notification by audio

abob Tk-based multimedia demonstration

radio Multicast network audio

xplay An X-based sound file browser
abrowse | Tk-based sound file browser
Signal processing utilities

afft Tk-based real-time spectrogram display
afxpow | X display of audio signal power
autil Stdio-based signal generators

Table 9: AudioFile contributed clients

In the remainder of this section we describe the audio handling core clientsin some
detail, in order to illustrate the smplicity of the AudioFile client library API.

8.1 aplay — A Play Client

aplay isthe primary client of the AudioFile System. It reads digital audio from a
file or from standard input and sendsthe audio datato the audio server for playback.
aplay has several options, which are discussed below.

When used to play back from afile, aplay can serve as the core of a sound-clip
browser or voice mail retrieval program. When used to play from the standard
input, aplay can serve asthefinal stageinasignal processing pipeline. For example,
the output of our software implementation of the DECtalk speech synthesizer can
connect directly to the input of aplay.

At this writing, aplay handles only “raw” sound files. It would be appropriate to
extend aplay to handle a variety of popular sound file formats. aplay does not
process the file data at al; it simply passes the data to the server. It isthe user’s
responsibility to assure that the data is of an appropriate type for the audio device
specified. One interesting benefit of this approach is that aplay is extraordinarily
general purpose. It needs no modification to work on any fixed-size encoding or
for any number of channels. On the other hand, the user must know the format of
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the file and choose an appropriate server devicein order to play it back.

8.1.1 aplay Options

The command line for aplay looks like this, with optional elements enclosed in
sguare brackets:

aplay [-d <device>] [-t <time>] [-g <gain>] [-f] [-c] [-b] [-]] [<file>]

aplay supports a number of command line options; some of them are summarized
here.

-d device Specifieswhich audio deviceto play the sound filethrough.
If not specified, aplay defaults to the first device that is
not connected to the telephone. This is usually correct,
becausethefirst non-telephonedeviceisusually connected
to the local loudspeaker. In the current implementation,
the audio deviceiswhat specifies the sample rate, number
of channels, and encoding. The manual page for each
AudioFile server explains what devices exist.

-t time Specifies how far in the future the sound will start to play
relative to the current device time. A positive value of
timewill begin playing time secondsin the future. If time
is negative, time seconds of sound data will be thrown
away. The default is 0.1 seconds.

Incidentally, if one desiresto play only a portion of a sound file, existing utilities
such as dd(1) can be used. For example, if the sampling rate were 8000 Hz, the
following command would skip the first second of sound, then play the next two
seconds, then stop.

dd if=sound-file bs=8000 skip=1 count=2 bs=1000 | apl ay

-ggan A gainin dB can be used to attenuate or amplify the sound
data prior to mixing in the audio server. This permitsrel-
ative gain adjustmentswithout changing the server global
gain controls and can be used to correct for low or high
recording levelsin the sound file.
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-f Thisswitchturnson flush mode. Normally, aplay will exit
several seconds before the last sound is played, because
of buffering in the server. Thisswitch forces aplay to wait
until the last sound has been played before exiting. This
is very useful when writing shell scripts. For example,
“aplay -f sound-file” followed by “arecord”.

For some data types, the sound file may be in big-endian or little-endian format.
Normally, aplay assumes the format of the client machine. Two options, -b and -|
explicitly specify abig-endian or little-endian input format. The server convertsto
its byte order as appropriate.

There are several opportunities for enhancements to aplay. We have already
mentioned that it would be desirable for aplay to understand and interpret avariety
of popular self-describing sound file formats. In addition, it would be interesting
and straightforward to add the capability for aplay to begin playback at a specified
absolute time, related to the wall clock, rather than simply a relative time related
to the moment aplay beginsto execute. This capability would make it possible to
synchronize severa instances of aplay.

8.1.2 aplay Implementation

In this section, we take a look the code of aplay. The truth is somewhat more
complicated than we present here, but not much. Readers who wish all the details
should read the sources, which are included in the AudioFile distribution.

int flushflag = O; /* set fromcomand line */
AFAudi oConn *aud; /* connection to AF server */
AC ac; /* audi o context */
AFSet ACAttri butes attributes; /* AC attributes record */
ATime t, act, nact; /* Time */
apl ay()
{
attributes. play_gain = gain; /* set fromcommand |ine */
attributes. endian = endi an; /* set fromcommand |ine */

/* open a connection to the audio server specified by
the AUDI OFI LE environnent variable */

AoD ( (aud = AFQpenAudi oConn("")) != NULL,
"Os: can’t open connection.\n", argv[O0]);
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FindDefaultDevice() isnot reproduced here. Itsjobistolocate thelowest numbered
audio device that is not connected to the telephone. Thiswill usualy be the local
audio device. (FindDefaultDevice() is not used if the -d command line switch is
given).

devi ce = Fi ndDef aul t Devi ce(aud);

/* set up audio context, possibly setting the gain and endi an-ness */

ac = AFCreat eAC(aud, device, (ACPlayGain | ACEndian), &attributes)

At this writing, important properties of the audio device, such as sampling rate,

number of channels, and encoding type occupy fields in the device data structure.
There should be standard access procedures or macros for thesefields, but we have
not yet implemented them.

/* extract properties of the device */

srate = ac->devi ce->pl aySanpl eFreq; /* sanple rate */
type = ac->devi ce- >pl ayBuf Type; /* encoding type */
channel s = ac->devi ce- >pl ayNchannel s; /* nunber of channels */
ssize = AF_sanpl e_si zes[type]/8; /* bytes per sanple */

ssi ze *= channel s

/* allocate play buffer */
AoD( (buf = mal | oc(BUFSI ZE*ssi ze)) != NULL,
"Couldn’t allocate play buffer\n")

/* pre-read the first buffer-full fromthe file */
if((nbytes = read(fd, buf, BUFSIZE*ssize)) <= 0)
exit(0)

It is not logically necessary to pre-read the first file block, but doing so avoids
putting the latency of the file read between the call to AFGetTime() and the first
call to AFPlaySamples().

Thefollowing sectionisthe inner loop of aplay. It establishesthe current playback
time on the server, and schedules the exact server time for playback of the first
block of audio. Theresfter, it schedules each successive block to play directly
on the heels of the the previous block, so that playback will be uninterrupted
and continuous. After each call to AFPlaySamples(), the time pointer is simply
incremented by the number of samples played.

/* establish an initial AF server tinme */
t = AFGet Ti me(ac)
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/* schedule the initial playback for a short tine in the future.
toffset can be set fromthe comand |ine */
t =t + (toffset * srate);

do {
/* send sanples to the server */
nact = AFPl aySanpl es(ac, t, nbytes, buf);

/* figure how many sanples we read fromthe file,

and schedul e the next block to start after this one */
nsanpl es = nbytes / ssize;
t =t + nsanples;

/* At this point, the buffers in the AF server hold
the sanples fromtinme nact to tine t */

} while ( (nbytes = read(fd, buf, BUFSIZE*ssize)) > 0);

At this point, we' ve finished reading the file, and sent all the data to the server, but
alot of it has not yet been played out. If the command line specified -f, we now
wait until the server finishes the playback. sleep(l) isasloppy way to do this, but
it iseasy to program.

if (flushflag) {
while ((((int) AFGetTinme(ac)) - ((int) t)) < 0)
sl eep(1);
}
/* we're done! Just abandon the connection to the server, it wll
be cl eaned up autonatically. */

The only substantive code omitted above is the mechanism which allows aplay to
respond immediately to a control-C or interrupt signal. Without specia handling,
the signal would cause aplay to exit immediately, but the buffered audio in the
server would continueto play for several seconds. For control-C to cause aplay to
immediately halt, special handling is necessary. aplay sets up asigna handler for
SIGINT, that sets aflag. Each time around the main playback loop, aplay checks
the flag and if it is set, aplay breaks out of the loop, as though it had reached
end-of-file. If theinterrupt flag is set on loop exit, then aplay does the following:

if (int_flag)
/* fill the playback buffer with ‘‘silence’’ according to
the encoding type */
AFSi | ence(ac->devi ce->pl ayBuf Type, buf, BUFSI ZE*ssi ze);

/* turn on preenptive playback */
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attributes.preenpt = 1
AFChangeACAt tri but es(ac, ACPreenption, &attributes)

/* erase the buffered audio still held in the server, by
writing preenptive silence over top of it. This needs to
be done for the tine interval between tinme nact, ‘‘now’ and

time t, the time farthest in the future for which the
server is holding buffered audio. */

while (nact < t)
{

act = AFPl aySanpl es(ac, nact, nsanpl es*ssize, buf);
nact += nsanpl es;

}

Thiscode fragment isinteresting because it illustrates how explicit client control of
time allows aplay to take full advantage of all the buffering capacity of the server
during normal operation — insulating aplay from most real-time issues, yet still
allowsit to stop “on a dime” when necessary, by erasing the remaining buffered
audio.

8.1.3 Flow Control

Note that there is no explicit code in aplay for flow control. aplay merely reads
from its input with fread() and writes to the audio server with AFPlaySamples().
There is a fundamental, but unwritten, assumption in aplay that the file systemis
fast enough to supply audio data faster than it is required by the server. Assuming
that this is so, aplay will copy data from the input to the AudioFile server at a
speed limited only by file system performance and the performance of the transport
protocol to the server. The audio data will be buffered in the server, until aplay
gets about four seconds ahead of real-time. At that point, the server connection
(AFPlaySamples()) will block, providing flow control. Once the server buffers
are full, successive calls to AFPlaySamples() will return at intervals given by the
block size. This mechanism of providing flow control means that the file 1/0 side
of aplay could block for aslong as four seconds before there would be abreak in
the smooth playback of audio. Server buffering also givesrise to the need for the
-f flush flag and the interrupt code in aplay. The flush flag causes aplay to wait
until the audio is all played out before exiting, while the interrupt code in aplay

Z pctually, this is still not quite right. If aplay is running concurrently with other clients, the
preemptive playback will eraseall the other clients' sound aswell asthat buffered by thisinstance of
aplay.
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actually erases the “future” audio buffered in the server, so that playback halts as
soon as aplay isinterrupted.

8.2 arecord — An Record Client

arecord and aplay are complementary programs. arecord reads samples from
the audio server and writes the data to file, or to standard output if a file is not
specified. The sampling rate, encoding format, and number of channels are all
specified indirectly by the AudioFile server device. arecord always connects to
the server specified in the AUDIOFILE environment variable.

8.2.1 arecord options

The command line for arecord is as follows, with optional elements enclosed in
sguare brackets:

arecord [-d <device>] [-| <length>] [-t <time>] [-silentlevel <level (dB)>]
[-silenttime <time>] [-printpower] [-b] [-I] [<file>]

arecord has anumber of command line switcheswhich improveitsflexibility. The
following paragraphs describe these optionsin more detail.

-d device Specifies from which audio device to record. If not spec-
ified, arecord defaults to the first device that is not con-
nected to the telephone. The sample rate and recording
format are specified indirectly by the device selection.

arecord offers three methods of halting the record. It will record indefinitely if no
optionisspecified. It can record for aspecific length of time, viathe -1 switch, or it
can record until the input appears to be silent (viathe -silentlevel and -silenttime
switches).

- length length of sound data to record, specified in seconds.
-silentlevel level  level (in dBm) below which the sound is deemed to be

silent. The default value is -60. The 0 dBm reference
level isthe “digital milliwatt”.

-silenttime time  time (in seconds) of silence which will terminate the
recording. The default valueis 3.0.
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If either -silentlevel or -silenttime is set, then arecord will terminate recording
after so many seconds of "silence".

-printpower

-t time

file

Printinput power level indBm onthe standard error output
every block (8 timesasecond). Thisisadebugging option,
but it may be useful in figuring out proper values for the
-silentlevel option. arecord | apower will accomplish a
similar function.

time can be used to adjust the audio device time at which
the the arecord client begins to record the sound data. A
positivevalue of timewill begin recording time secondsin
the future. If timeisnegative, sound datawill be returned
from time seconds in the past. Generally, the AudioFile
server isalwaysrecording, and keepsthe past four seconds
in buffers. Thus arecord -t -2 will start recording two
seconds earlier than the time arecord begins to execute.
If the time offset istoo early (beyond the server buffering
capacity), silence will be returned. The defaultsis 0.125
seconds.

arecord writesdatato filein the current working directory.
If the file name is not specified, then arecord writes the
audio datato standard output.

Like aplay, arecord defaults to the byte order of the client machine. The-b and -I
optionswill explicitly set a big-endian or little-endian output format.

8.2.2 arecord implementation

This section discusses the implementation of arecord. The initialization of the
server connection are essentially the same as described for aplay, so those details
are not shown below. The reader is encouraged to study the full source code for
arecord, which is distributed with AudioFile.

arecord()

{

/* open a connection to the audio server and device specified. */

/* |If the user specifies the nunber of seconds to record, convert
the length into a nunber of sanples to record. */
if(length >= 0) nsanples = srate * length
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/* establish an initial AF server tinme, and schedule the initial
record request according to toffset. toffset can be set on the
command |ine */

t = AFGetTime(ac) + (toffset * srate);

while (nsanples > 0) {

/* If we are recording the last block of a timed record, then
the request will be shorter than BUFSI ZE */
int nb = (nsanples > BUFSI ZE) ? BUFSI ZE : nsanpl es;

/* Record nb sanples at server tine t */
AFRecor dSanpl es(ac, t, nb * ssize, buf, ABIock);

/* advance the tine pointer by the size of the current block */
t += nb;

/* decrenent the sanples to go (for a tined record) */
nsanpl es -= nb;

/* wite the sanples on the output stream*/
fwrite(buf, ssize, nb, f);
fflush(f);

The fflush() operation is not strictly necessary, but if arecord is used in a pipeline
leading into some real-time application, then we do not want to introduce any
excess latency.

If recording isto be terminated by silence, then the following code is active. The
program waits for a run of blocks of total length silent time, each of which has a
power level below silent level.

if (silent_level _flag)

{

/* conmpute the power of the block */

pow = power (buf, nb);

if (pow < silent_level)

silent_run += (nb / ((double) srate));

/* break will exit the record | oop */

if (silent_run >= silent_tine) break;

if (pow > silent_level) silent_run = 0.0;
}
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8.2.3 Flow Control

In arecord, flow control isprovided by the server. Innormal operation, each call to
AFRecordSamples() requests a block beginning slightly in the past and extending
intothe future. The server blocksthe call until therequested segment iscompletely
recorded, and the call returnsto the client dightly after the time corresponding to
the end of the block.

One very interesting property of the AudioFile System isthat the server isaways
listening. It is possible for AFRecordSamples() to request data from the recent
past (typicaly within four seconds). In this case, the call is fulfilled from the
server buffers and returns to the client right away. This capability permits voice
applications to omit the usual beep that means it is OK to start talking. Instead,
the user can invoke arecord with a small negative offset, and recording will start
“before” arecord begins execution.

8.3 apass— Copy From One Server to Another

apass isan AudioFileclient which records from adevice attached to one AudioFile
server and, after a small delay, plays back on adevice attached to another server.

One of our primary goalsin the devel opment of the AudioFile Systemwasto enable
experiments in teleconferencing. apass is not a teleconferencing application,
but it addresses some of the fundamental problems of network teleconferencing:
communications with multiple audio servers, management of end-to-end delay,
and management of multiple clock domains.

It is possible to record from one audio server and to route the audio to an output
device on the same or on a different audio server by piping arecord into aplay. (If
you have an AudioFile environment, try this). However, thisis not a satisfactory
solution for several reasons:

¢ In teleconferencing, it is important to have tight control over the end-to-
end delay of the audio connection. If, for example, the round trip delay
is over about 300 milliseconds, then humans begin to have difficulty with
conversational dynamics. apass setsup astrict delay budget, accounting for
the various factors involved.

¢ Inasystem with multiple audio devices, frequently the different devices will
be controlled by different sampling rate clocks. Even though both clocks



62

8 AUDIOFILE CLIENTS

nominally run at the same rate, the physical implementations are subject to
slight frequency errors. For example, crystal oscillators have tolerances of
perhaps 100 parts per million and they vary dightly with temperature. |f
the transmitting end samples faster than the receiving end, then the excess
samples will accumulate in buffers in between. This accumulation will
manifest itself as gradualy increasing end-to-end delay. If the transmit
clock is slower than the receive clock, the buffers will run dry and the
playback sound will be broken up. apass tracks the transmit and receive
clock rates and resynchronizes as necessary.

apass operates by reading blocks of samples from the transmit server, one after
another in real-time, and scheduling their playback on the receive server. The
overall delay between input and output is made up of three components:

o Packetization delay. Since apass dealsin blocks of samples, thelast sample

of a block must be recorded at the transmit end before the first sample can
be played back. Thusthe size of the block sets a minimal value of the end-
to-end delay. Thiscomponent of the overall delay is called the packetization
delay and is constant.

Transport delay. The blocks of samples are sent from the transmitting
server to apass, and from apass to the receiving server. The associated
transmission delay, plusall software overhead and rescheduling delays make
up the transport delay. This component of the overall delay isvariable.

¢ Anti-jitter delay. apass insertsextradelay at the receiving AudioFile server

by scheduling playback for a point in the near future, rather than as soon as
possible. Thisis possible because AudioFile permits explicit control over
playback time. The delay at the receiver serves to absorb variation in the
transport delay, provided that the variation in transport delay is not larger
than the anti-jitter delay.

Any additional end-to-end delay specified by the user is alocated to additional
anti-jitter delay.

8.3.1 apassOptions

Some command line optionsto apass serve mundane purposes— the specification
of input and output AudioFile servers and the input and output devices. The more
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interesting switches allow the user to specify the end-to-end delay, buffer size, and

anti-jitter delays.

The command line for apass is as follows, with optional elements enclosed in

sguare brackets.

apass [-ia <input-AF-server>] [-0a <output-AF-server>] [-id
<input-device>] [-od <output-device>] [-delay <seconds>] [-g
<anti-jitter-seconds>] [-buffering <buffering-seconds>] [-gain
<dB-gain>] [-log] [-f <parameter-file>]

If nooptionsare given, apass will “loop back” thefirst non-telephone audio device
connected to the server specified by the AUDIOFILE environment variable.

The various options are discussed below:

-ia server

-0a server

-id device

-od device

-delay seconds

-a) seconds

Specifies which audio server to record the sound from.
Defaults to the value of the AUDIOFILE environment
variable.

Specifieswhichaudio server to play the soundto. Defaults
to the value of the AUDIOFILE environment variable.

Specifies which audio device on the input server to record
the sound from. Defaults to the first device that is not
connected to the telephone, which is often the local mi-
crophone device.

Specifies which audio device on the output server to play
the sound to. Defaults to the first device that is not con-
nected to the telephone, which is often the local speaker
device.

Sets the record to playback delay. The default value is
0.3 seconds. This delay is made up of three components:
packetization, transport, and anti-jitter. The minimum
value of this parameter is buffering+aj and the maximum
is 3.0 seconds.

Sets the tolerance for clock drift between the input and
the output. If the input to output delay drifts from its
nominal value by more than this amount, the delay will
be resynchronized, probably resulting in an audible blip.
The default value is 0.1 seconds. Legal valuesare 0to 1
second.
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-buffering seconds

-gain dB-gain

-log

-f file
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This parameter sets the amount of audio read from the
input and written to the output as a single operation. It
sets a minimum value for delay. The default value is 0.2
seconds. Legal values are 0.1 to 0.5 seconds.

Controls the playback gain. The default value is 0 dB.
Lega values are from -30 to +30 dB.

If set, apass will print amessage on standard output when-
ever itisnecessary to resynchronize clocks between input
and output and whenever the record side of the program
takes longer than 400 milliseconds.

Whenever a SIGUSR1 isreceived, apass will read fileto
acquire parameters. The parameter file should contain one
or more lines. Each vaue should have a keyword and a
value. Legal keywords are delay, buffering, aj, and gain.

A typical parameter file might contain:

delay 0.3
buffering 0.2
aj 0.1

gain 0.0

The -f option alows another process to control apass. For example, a Tk program
or EMACS keybindings could ater the behavior of apass. This permits a multi-
process but single-threaded environment to act like a multi-threaded environment.
This feature permits the user to experiment with different delay configurations
without restarting the application.

8.3.2 apassImplementation

This section describes the inner loop of the apass application. Many details and
error checks are omitted. The interested reader can refer to the apass.c source
module, which isincluded in the AudioFile distribution.

int delay_in_sanpl es;
int delay_upper_limt;
int delay_lower_linmt;
float delay = 0. 2;
float aj = 0.1;

/* nom nal del ay except packetization */

/* nom nal delay + aj */
/* nom nal delay - aj */
/* seconds delay frominput to output */
/* anti-jitter tol erance */

float tine_bufsize = 0.1; /* data buffer, nmeasured in seconds */
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int sanpl es_bufsi ze; /* data buffer, nmeasured in sanples */

#define SLIPH ST 4
int slip, sliphist[SLIPH ST], nextslip; /* recent delay values */

apass()

/* open connections to the fromand to audi o servers */
faud = AFOpenAudi oConn(faf);
taud = AFOpenAudi oConn(taf);

/* set up audio contexts, find sanple size and sanple rate */
fac = AFCreat eAC(faud, fdevice, ACRecordGain, &attributes);
fsrate = fac->devi ce- >pl aySanpl eFr eq;
fssize = sanpl e_si zes[ f ac- >devi ce- >pl ayBuf Type] *

fac->devi ce- >pl ayNchannel s;

tac = AFCreateAC(taud, tdevice, ACPlayGain, &attributes);

/* establish a value for the delay fromrecord to playback */
delay_in_sanples = fsrate * del ay_i n_seconds;

/* get starting times for the two servers */
ft = AFGetTi ne(fac);

/* playback will start delay_in_sanples in the future */
tt = AFGetTine(tac) + delay_in_sanpl es;

for (;;) {
/* record sanples fromthe source server */
factt = AFRecordSanpl es(fac, ft, sanples_bufsize*fssize, buf, ABIock);
/* play them back on the sink server */
tactt = AFPl aySanpl es(tac, tt, sanpl es_bufsize*fssize, buf);

Note that AFRecordSamples() and AFPlaySamples() accept the parameters ft
(from-time) and tt (to-time) respectively, and return factt (from-actual-time) and
tactt (to-actual-time). Inapass, factt will beapproximately equal toft+samples bufsize,
because the pacing flow control of apass is provided by the source AudioFile
server. The full implementation checks for this, but that test is not included in this
abbreviated version.

Time tt should be about delay .in_samples in the future relative to time tact (now).
The exact value of this difference is an instantaneous estimate of the current
end-to-end delay minus packetization and transport delays. apass averages four
consecutive values of this delay in order to compute “slip”. apass then checks
to see if dlip is within a range specified by a nominal delay plus or minus the
anti-jitter specification. If the receive clock is faster than the transmit clock, slip
will eventually drift below the lower end of the range. If the receive clock is
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slower than the transmit clock, then dlip will eventually drift above the upper end
of the allowable range. In either case, tt is reset to exactly the nomina delay,
resynchronizing the connection.

/* Record the delay in the circular history buffer. */
sliphist[nextslip++] = tt - tactt
if (nextslip >= SLIPHI ST) nextslip = 0;

/* conmpute an average of the recent del ays */

slip = 0;

for (i =0; i <SLIPHST, i += 1) slip += sliphist[i];
slip /= SLIPHI ST;

/* if the actual delay has drifted outside of the allowable
region, then resynchroni ze the connection */

if ((slip < delay_lower_limt) || (slip >= delay_upper_linmt))
tt = tactt + delay_in_sanples;

/* finally, update the start tine of the next block */
ft += sanpl es_bufsi ze;
tt += sanpl es_bufsi ze;

8.3.3 Discussion

apass uses the simplest imaginable agorithm for handling clock drift. 1t simply
resynchronizes the connection whenever the delay |eaves a tolerance band. There
is much room for more complicated algorithms — for example, the connection
could be resynchronized whenever the audio is quiet, or apass could use digital
signal processing to interpolate the digital audio at the receive sample rate. A
simple enhancement would be for apass to perform some simple averaging of the
waveform at the point of resynchronization. Thiswould tend to reduce the audible
blip caused by a waveform discontinuity.

The reader should note that time values from the two audio servers cannot be
directly compared, because they have different initial values and slightly different
rates. Instead, onemust comparedifferences. A calculationlike(ft2 — ft1)/(tt2 — tt1)
estimates the ratio between the two clock rates, provided that time “2” and time
“1" are sampled at the sametime according to athird clock. apass avoidssuch cal-
culations by instead allowing the overall flow control to be set by the transmitting
audio server. Then apass judges the necessity of resynchronization by tracking
the buffering available at the receiving server.
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8.4 Telephone Control

AudioFile suppliesa humber of core clientsfor control of atelephone connection:

e ahs provideshookswitch control. “ahs off” will take thetel ephone off-hook,
either answering a call or beginning the process of placing acall. “ahs on”
places the telephone back on hook, terminating a cal.

e aevents is a general-purpose application for printing events generated by
the AudioFile server. Most AudioFile events are generated by telephone
devices. aevents also has optionsto count rings.

¢ aphone isacore client which dials the telephone. aphone uses the AFDial-
Phone() library procedure to digitally synthesize the DTMF tones generated
by pushbutton telephones.

85 Miscdlaneous Clients

Besides the clients discussed so far, AudioFile is distributed with a few miscella-
neous clients:

e aset isagenera-purpose device control application

e ahost alows the user to add or delete hosts from the list of machines that
are alowed to make connectionsto the server. This provides a rudimentary
form of privacy control and security.

¢ alsatoms displaysalist of atoms defined by the server.
¢ aprop displayspropertiesattached to AudioFiledevicesand cantrack changes

to those properties.

8.6 A Trivial Answering Machine

The core clients can be used to construct interesting applications. This section
shows a very simple answering machine application as a shell script connecting
various core client applications. Thisisaparticularly simple example, because the
sequence of actionsfor an answering machine are fixed.
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The genera ideaisto usethe core clientsin astrict sequence, to wait for the phone
toring, to answer it, to play the outgoing message, to record the incoming message,
and to hang up the phone.

#!'/ bi n/ sh
#
# loop forever
#
while true; do
#
# wait for the phone to ring three tinmes
#
aevents -ringcount 3.0
#
# answer the phone using LoF
#
ahs of f
#
# play the outgoing nessage, then a beep fromthe effects library
#
aplay -f -d O outgoing_nessage. snd
aplay -f -d O beep.snd
#
# record up to 30 seconds, or until the caller stops talking
#
arecord -silentlevel -35.0\
-d 0 -silenttime 4.0 -1 30.0 -t -1.0 >>nessages. snd
#
# play a thank-you nessage, then hang up the phone
#
aplay -f -d 0 thanks. snd
ahs on
#
# add a date stanp to the nmessage file using a text to speech
# synthesizer (not part of AudioFile ...)
#
date | tts >>messages. snd
mai | ‘whoam ‘ -s "New voice mail received" </dev/nul
#
# done! Go back and get the next nmessage
#

done

9 Contributed Clients

The AudioFile contributed clients include a wide variety of things, and users are
encouraged to browse the manual pages in the AudioFile distribution to see what
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isthere. A sampling of the contributed clients are discussed below.

9.1 abob— A Tk Demonstration

abob isavery simplemultimediaapplication, combining audio with scanned image
and on-line help facilities. abob has a Tk user interface which allows the user to
play a prerecorded sound clip and to display an image of the performer. abob aso
includes a device selection menu, gain control, and help screens. Figure 6 shows
the main abob window together with atear-off menu for device selection. The Tk
toolkit makes this sort of application very easy to implement.

[« 1 Bob
BOb Output Devi - i .
tput Device --= Device 0: Mono u-law at 8000
file play help | Exit Device 1: Mono u-law at 3000
Device Z2: 3tereo 16-hit linear at 44100
Bob’s Controls Device 3: Mono 16-hit linear at 44100
Device 4: Mono 16-hit linear at 44100
1]
Gain

Figure 6: abob client

9.2 adial — A Screen-based Telephone Dialer

adial isasimple Tk based telephone dider. It uses the Tcl exec command to run
the standard core client programs ahs, aset, and aphone to control the hookswitch,
talking path, and dialing.

adial will dial a number entered in the entry field. If a name is entered instead of
a number, adial will attempt to translate the name to a number through a personal
phone directory stored in the file .phonelist in your home directory.

If the entry field of adial is blank, adial usesa Tk facility to retrieve the current X
Window System primary selection. In this way, adial can be used to establish a
telephone connection to anyone whose name or number isanywhere on the screen.
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File3,555-1214 dial | hangup

Figure 7: adial client

9.3 Device Control

axset and afxctl are interfaces to the device control capabilities of an AudioFile
server, based on the Tk and Xt toolkits, respectively. axset also illustrates the
power of the Tk toolkit, because it automatically adds controlsfor whatever audio

devices exist on the given server. The preferred application for device control is
axset, but afxctl has an event history log while axset does not.

9.4 xpow — Display Signal Power
xpow, shown in Figure 8, isasimple client that displays a calibrated line chart of

signal power. It can be used to help judge proper recording level.

(o 1 =pow

i
Ref O dBm m
=70

Figure 8: xpow client

9.5 afft — A Real-time Spectrogram Displayer

afft accepts audio data from one of several sources, executes a running Fourier
transform on the data, and displays the transform result. The display is updated
continuously in either “waterfall” or “spectrogram” format. Figure 9 shows afft in



9.5 afft — A Real-time Spectrogram Displayer 71

waterfall mode.

afft isinitially configured through command line switches. Many of the parameters
can be changed while the program is running via the graphical user interface, as
described below.

[® [2] Mew Real Time Fast Fourier Transform
Exit Colors Windows FFT Length Stride
;‘#HM TYY
' sk ke & Live Demo
i p-,# .
Y T
ey
il & Waterfall Spec
il NoDC o DC
% Log Linear
% Scope On Scope Off
Minimum (DB) Maximum (DB) Gain
[S] S|
-100 0 -27

Figure 9: afft client

The core of afftisa C program which reads audio samples from a file, from the
standard input, or fromaserver inreal-time. afftwindowsthedatausing aselectable
window function, then performs a Fourier transform on the data. The resulting
spectrogram is presented in an X Window System display in either the waterfall or
spectrogram format. An optional on-screen oscilloscope display shows the actual
waveform.

The C core of afft is surrounded by a Tk-based graphical interface, which allows
the user to ater anumber of parameters:

¢ Display colors. Theamplitudeof the spectral information can be presentedin
gray scale, bluethrough orange, or thetraditional bluethrough red “ spectral”
colors.
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¢ Window functions. The data can be windowed by Hamming, Hanning, or
triangular windows, or the windowing can be disabled.

e FFT length. The tradeoff between time and frequency resolution can be
atered by changing the transform block size in power of two steps from 64
to 512 samples.

e FFT stride. The poor effects of a large transform block on time resolution
can be ameliorated by overlapping the transforms of adjacent blocks. The
overlap can be adjusted from 64 to 512 samples.

e Logscae. Thedisplay can be presented in linear or logarithmic form.
¢ Display. The user is given the choice of waterfall or spectrogram displays.

e Livevs. demo. A built-in swept frequency sine wave is displayed when afft
is put into “demo” mode.

e Sliders. Slider controls govern the display gain, and permit the user to
compress the power levels shown by the display.

The command line for afft is shown below. Full details are in the manual page.

afft [-color] [-d <device>] [-file <file>] [-gain <gainvalue>] [-length
<fftlength>] [-log] [-min <minvalue>] [-max <maxvalue>]
[-nodc] [-noscope] [-nowindow] [-realtime] [-sine] [-spec]
[-stride <stridelength>]

Most of the command line switches are also available at runtime, but -file and
-realtime must be specified on the command line.

Thesource of theaudiothat i sdisplayed depends onthecommand lineasfollows: If
the -fileswitchisgiven, thentheaudio sourceisafile of u-law samples. Otherwise,
if the -sine switch is given, the audio source isa“canned” sine wave that sweeps
up and down the frequency spectrum. If neither -file or -sine are given, then afft
takesits audio data from the audio server local input.

When input is taken from a file, afft will continuously loop through the file from
beginning to end, rewind the file, and repeat. If fileisgivenas*“-", input is taken
from standard input. Since it is not possible to rewind standard input, afft will
terminate on end-of-file in this case.
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If afft can connect to the audio server, then the file is played through the audio
output device in synchronization with the fft display.

If the -realtime switch is given, afft attempts to stay synchronized with the audio
server in real-time. If afft cannot get enough CPU cycles to keep up with the
incoming audio stream, it may fall behind enough that it no longer captures valid
audio data. If the switch is not given, afft will discard audio samplesin order to
keep up with real-time.

9.6 Miscdlaneous Contributed Clients

Some of the other contributed clients in the AudioFile distribution include;

e abiff isthe audio analog to the Berkeley UNIX application biff. abiff uses our
DECtalk text to speech synthesizer to announce the from and subject field
of arriving electronic mail.

e radio is a network unidirectional multicast system. An application at the
transmitting end, radio_mcast, transmits audio using Ethernet multicast.
Many users can then run the receiving program, radio_recv, to listen in
to a multipoint broadcast. We have used these programs, for example, to
relay radio broadcasts into regions of our building where ordinary radio
reception is poor.

e abrowse and xplay are Tk and Xt toolkit, respectively, applications for
browsing and playing directories of audio sound files.

¢ apower and atone are standard 1/O-based signal processing utilities. apower
calculates u-law signal power relative either tothe CCITT “digital milliwatt”
or to asine wave 3.16 dB below the digital clipping level. atone isa p-law
signal generator that will create a specified frequency and power level sine
wave. “atone | aplay” isauseful technique for setting playback levels.

9.7 Other AudioFile Applications

There are dready a number of applications which use AudioFile but are not dis-
tributed with it. We mention some interesting examples here.
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9.7.1 Speech Synthesis

We built a software-only version of the DECtalk text-to-speech synthesizer[5]
which generates output via the AudioFile system.

The DECtak synthesizer isathree stage process: letter to sound trang ation, phone-
mic synthesizer, and the vocal tract model. Of these, the vocal tract model, which
generates the output digital waveform, consumes about 95% of the synthesizer’s
CPU time. However, the entire system uses only about 37% of the processing
power of the DECstation 5000 Model 200, which is based on a 25 MHz R3000
MIPS CPU.

9.7.2 DECspin

DECspin is a network audio and video teleconferencing product produced by the
Digital Equipment Corporation. DECspin uses AudioFile to provide audio tele-
conferencing facilities. An audio-only version of DECspin is generally available
for public FTP.

9.7.3 ARGOSEE

A group at Digital’s Systems Research Center in Palo Alto, Californiaisexploring
teleconferencing and collaborative work, using, among other things, AudioFile.

9.74 VAT

A team at the University of California, led by Van Jacobson, has built a network
teleconferencing application using IP multicast protocols. VAT can use AudioFile
for itsaudio /0.
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10 Performance Results

In this section, we present some performance resultsfor our implementation of the
AudioFile System. First, we measurethetimeto completeclient library operations.
Next, we measure the CPU load for recording and playback. Finally, we discuss
our experience using TCP as the transport protocol.

10.1 Server and Client Performance

We measured latencies and performance of our AudioFile implementation by the
timing variousclient library functions. We tested with two types of systems(MIPS
and Alpha) under six local and networked configurations:

al pha Alphalocal client & server
al pha/ m ps Alphaclient, MIPS server
al pha/ al pha Alphanetworked client & server
m ps MIPS local client & server
m ps/ m ps MIPS networked client & server
m ps/ al pha MIPS client, Alpha server

The testing environment was as follows:

e All testing was done with the LoFi server, Alofi, with a CODEC (8 KHz)
device.

e All MIPS systems were DECstation 5000/200s running ULTRIX 4.3. All
Alpha systems were DECstation 3000/400s running DEC OSF/1 for Alpha
AXPV1.2.

¢ All network testing took place on alightly loaded Ethernet (10 Mbit/sec).
¢ Unless stated otherwise, al functions were timed by measuring the time to

complete 1000 iterations, then computing the average time per iteration.

10.1.1 Basic Latency

The library function AFGetTime() is a good baseline case for measuring the time
to process AudioFile functions because it incurs minimal processing on the server
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and client side. 2 Figure 10 shows the time required for acall to AFGetTime() for
the different configurations.

mips/mips
mips/alpha
mips
alpha/mips
alpha/alpha
alpha

0.0 10 2.0 3.0

Time, ms

Figure 10: AFGetTime() function timings

This example shows the latency through the operating system network code and
over thewire. Most of this overhead is spent in the operating system and network
driver: the actual network latency isnegligible. The AFGetTime() function causes
an 8 byte request packet to be sent to the server and an 8-byte reply to be returned.
Adding the TCP, IP, and Ethernet overheads results in 66-byte request and reply
packets. At 10 Megabits/second, these packets spend less than 50 microseconds
on thewire.

10.1.2 Play and Record

The AudioFile library functions that move data have latencies that depend on the
length of the data. Figure 11 shows the time required to process various length
AFRecordSamples() requests on the different system configurations. The record
requests were scheduled to hit entirely in the server’s record buffer (and not block).

2|n this version of AudioFile, The no-op function AFNoOp() doesnot incur afull client-server
exchange.
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A record request packet is 20 byteslong, and the reply packet is 32 bytes plus the
returned samples.

The timing for short requests represents the basic overhead and correlate with the
base times for AFGetTime(). The jumps at approximately 8K bytes are due to
“chunking” performed in the client library. Regquests longer than 8K bytes (not
samples) are broken into 8K byte request chunksto better control interactionswith
the transport protocol heuristics and to simplify the server implementation. Each
request completes synchronously—the client library waits for the reply before
sending the next chunk. A 16K byte regquest therefore takes the same time as two
independent 8K byte requests.

Isthis overhead significant? For high samplerates, it might be. For 16-bit 48 KHz
stereo data, an 8K byte request is about 42 milliseconds worth of samples. In the
slowest configuration (mi ps/ m ps), handling an 8K byte request takes about 12
milliseconds, of which 2.5 milliseconds is the basic overhead. This means that
our slowest machines are only about three times faster than they need to be. This
example assumesthat the throughput for the HiFi device (as measured in bytes per
second) isthe same as the CODEC device's throughput.

The slopes of thelinesin Figure 11 give a measure of basic throughput. Table 10
shows the throughput for the six different configurations.

Configuration | Throughput
(client/server) | (K bytes/sec)
apha 4400
alpha/apha 980
alpha/mips 760
mips 2200
mips/alpha 770
mips/mips 580

Table 10: Record throughput

10.1.3 Preempt Play vsMix Play

The AudioFile play request is very similar to the record case: the request packet
isa 20 bytes plusthe play data, and the reply packet is 8 bytes. However, the play
request can be processed in one of two modes: Mix or Preempt, which may have
performance implicationsfor the server. A preemptive play request is usually the
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fastest, since the data is just copied into the server’s play buffers. A mixing play
reguest requires some processing to be done by the server as the new play samples
are mixed with the existing samples.

Figure 12 showsthetimeto compl ete preemptive play operationsof variouslengths.
In an early implementation, the play performance was nearly identical to record
performance because it used the same chunking algorithm. However, we realized
that many repliesin the play case were unnecessary. We modified the play protocol
request to | et the client specify if there should be a server reply for the request. We
then modified the play chunking code to request (and wait for) the server reply for
only thefinal chunk.

Theresulting play timingisanearly linear function of play request size. Thedlight
jumpsat 8K byte multiples are due to the (minimal) request overhead.

Figure 13 shows the timings for mixing play operations, and the cost of mixing
by the server is clearly evident. A mixing play operation is aways slower than a
preemptive play. Table 11 summarizes the throughput for mixing and preemptive
play requests.

Configuration | Throughput (K bytes/sec)
(client/server) Mixing Preempt
apha 2500 5500
alpha/apha 1000 1100
alpha/mips 660 940
mips 1100 2500
mips/alpha 950 1000
mips/mips 650 830

Table 11: Play throughput

10.1.4 Open Loop Record/Play

Thetimingsof various AudioFileoperations haveimplicationsfor applicationsthat
processaudio in real-time. Simple applications, such as playing afile, donot really
care how long the operationstaketo complete, aslong asthe throughput exceedsthe
audio data rate. However, other applications (such as a conferencing application
where audio streams are set up between participants) depend on minimizing the
time needed to handle samples.

To illustrate some of the fundamental limits, we coded aloopback test that reads
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samples from a device and then writes them back as quickly as possible. The test
uses a non-blocking record function that returns only what samples are available.
The agorithm is shown in this code fragment:

for(;:) {
now = AFRecor dSanpl es(ac, next, 8000, buffer, ANoBI ock);
I ength = now - next;
AFPI aySanpl es(ac, next+4000, |ength, buf);
next = now,

}

Therate at which thisloop iteratesis governed entirely by the AudioFile overhead,
and represents alimit for handling real-time audio. The average timesto complete
one iteration are shown in table 12.

Configuration | Time
(client/server) | (ms)
apha 0.87
alpha/apha 127
alpha/mips 217
mips 1.93
mips/alpha 215
mips/mips 345

Table 12: Loopback timing

AudioFile's overhead establishes a minimum latency for real-time applications.
However, webelievethat AudioFilewill beadequatefor al but the most demanding
real-time requirements. In a networked configuration AudioFile’'s overhead will
be dominated by the network delays. The latency for alink across North America
has a minimum 15 millisecond propagation time, not including transmission and
routing time.

10.2 CPU Usage

In this section, we investigate the CPU usage for playback and record operations.
Thetest were configured as before, with alocal configuration (the client and server
running on the same machine using UNIX domain sockets).

The tests consisted of playing and recording 100 seconds of audio at two sample
rates and types: 8 KHz y-law, and 44.1 KHz CD quality stereo. Table 13 sum-
marizes the server and client CPU usage for the two cases. Both user and system
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times (in seconds) are given. The total time can aso be viewed as a percentage

load.
Server Client

User | Sys | User | Sys | Total

Alpha 8 KHz playback 06 | 05| 00 | 01 | 1.2
pecsooooo | 8 KHz record 0.3 0.3 0.3 0.3 1.0
44.1 KHz playback | 100 | 74 | 01 | 16 | 19.2

44,1 KHz record 121 | 31 | 23 | 49 | 225

MIPS 8 KHz playback 06 | 04| 00 | 04 | 14
pecsooozoo | 8 KHz record 0.4 0.6 0.0 0.6 1.6
441 KHz playback | 55 | 65 | 03 | 98 | 221

44.1 KHz record 135|119 | 40 | 10.8 | 40.2

Table 13: CPU usage

Much of the server timeis spent moving samplesto and from the audio hardware.

The LoFi does not have DMA and must be accessed with programmed 1/0.

Table 14 summarizesthetimesto perform read and write operationsto L oFi’ sshared
memory. These timings were obtained by measuring the time to complete ten
millionoperations, then computing the average time per operation. These timings
were collected with LoFi’s DSP disabled. With the DSP enabled, contention for

the shared memory could increase these access times by up to 70%.

Reads are expensive because the processor stallsuntil the read datareturns. Writes
are fast because they are buffered; they run at nearly the full speed of the option

module.

One optimization we have not yet pursued is taking advantage of the Alpha's 64-
bit operations. An Alpha-specific version of the server could nearly double the
bandwidth to the TURBOchannel by performing 64-bit reads and writes.

Time per op.
System | Operation (ms)
Alpha | read 0.89
write 0.23
MIPS | read 0.66
write 0.25

Table 14: Read and write timingsfor LoFi
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10.3 Data Transport

AudioFile can be used over amost any transport protocol, though the details of
the protocol may affect real-time audio performance. This section discusses our
experience using TCP as the transport layer.

Although applications such as apass may exercise tight control over timing, most
do not have strong real-time requirements. TCP is usualy sufficient for these
applications because the delay caused by retransmission of lost packets is small
compared to the buffering of unplayed samples. On the other hand, applications
like teleconferencing do require timely delivery of the audio data.

We found that a naively implemented tel econferencing application displayed seri-
ous problems when used over atranscontinental TCP link. We observed frequent
and lengthy dropoutsin the audio stream, whichwere especially likely with bidirec-
tional datastreams. These stem from packet |osses caused by aphenomenonknown
as“ACK-compression” [9, 21], a subtle consequence of the use of window-based
flow control. The duration of each dropout is exacerbated by TCP's slow-start
algorithm [6], which comes into play when packets are dropped by the network.

A CK-compression occurs when the spacing between acknowledgmentsis changed
by delaysin the routers. This can cause cause TCP to send large bursts of packets,
which overrunthe buffersinarouter, causing packetsto be dropped. Unfortunately,
the TCP dow-start algorithm converts these losses into lengthy recovery periods
during which data flows more slowly. On a connection such as a long-haul T1
circuit, it can take several secondsto restore full throughput.

TCP is arguably the wrong transport protocol for applications such as teleconfer-
encing, since it tries to guarantee ordered packet delivery without any concern
for packet delay. Many applications instead need guarantees on bandwidth and
latency, but they may be prepared to accept somelost data. Networksand protocols
that provide such guarantees are active areas of research. To manage these issues,
all of the teleconferencing applications mentioned in Section 8 are split among
sites, using special protocols over long-haul paths, and only communicate locally
with AudioFile servers.
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The AudioFile System provides device-independent, network-transparent audio
services. With AudioFile, multiple audio applications can run simultaneously,
sharing access to the actua audio hardware. Network transparency means that
application programs can run on machines scattered throughout the network. Be-
cause AudioFile permits applications to be device-independent, applications need
not be rewritten to work with new audio hardware.

Development of AudioFile began in 1990 at Digital Equipment Corporation’s
Cambridge Research Laboratory. In February, 1993, we released a version for
public use. It supports both low and high-fidelity audio using a variety of audio
devices, and runs on several different computer architectures.

11.1 Areasfor Further Work

It is remarkably difficult to get something as big as AudioFile completely right.
We are very pleased with the basic design decisionswe made, but we do have alist
of itemswhich, if fixed or implemented, would make AudioFile still more useful.

¢ It should be possible for a device to support multiple sample rates and it
should be possible to support dynamic changes in sample rate. On the other
hand, it would seem like a mistake to add a lot of mechanism to handle
the confusion that would result when multiple clients which want to run
simultaneously but require different samplerates. In the long run, real-time
sample rate conversion may be the answer.

¢ Audio devices should have an ordered list of supported data formats, so that
clients can match against it and so that a device preference for one format
over another can be communicated.

¢ The protocol and library should offer improved support for synchronization
and conversion between clocks, including clock prediction routines and
the simultaneous reporting of al device clocks. This would aid aggressive
applicationsor those requiring synchronization with other mediaon the same
host.

¢ Thevariousaudio channels supported by a server are assigned integer device
numbers arbitrarily. There should be a symbolic way to refer to “the local
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loudspeaker” or “the telephone”. Device samplerate and datatypes are also
useful ways to select devices.

AudioFile clients which deal with disk files only know about uninterpreted
byte streams. There should be support for the various popular sound file
formats which automatically specify their data types.

We would like to add the capability for the server to play and record com-
pressed data types. There is a possibility that the current play and record
protocol interfaces are not adequate for complex compressed formats which
might include variable rate codes and unusual blocksizes.

The client library should provide support for sample rate conversion.

Right now we have separate serversfor each hardware device on a particular
machine. A single server should be able to support all configured devicesa
and should be able to support multipledevices of the samekind aswell. This
ishot a design issue, just implementation.

We should be able to use real-time services provided by the OS to good
advantage. DEC OSF/1, for example, supportsthe POSIX real-time library.

We should improve the error handling in the AudioFile libraries, before the
present inadequate error handling support becomes too widespread.

We have built theinfrastructure for inter-client communications using prop-
erties stored in the server, but the out-of-the-box clients do not yet use the
mechanism.

We need to include support for additional transport protocol s which meet the
needs of audio services.

11.2 Conclusions

We believethat AudioFilehas donewell in meeting our design objectives: network
transparency, device independence, simultaneous clients, simplicity, and and ease
of implementation. We also believe we our experience to date has validated our
principles:

¢ Client control of time. AudioFile permits both real-time and non real-time

audio applications using the same primitives. It is much easier to learn one
way to do something than to learn two ways.
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¢ Norocket science. Our decision to build on top of standard communications
protocolsand not to use threads, have improved the portability of the system.
It is aso arguable that AudioFile performs so well precisely because of its
minimalist underpinnings.

e Simplicity. Simple play and record clients require very little code. Indeed,
many applications can be constructed using independent AudioFile clients
organized by shell scripts.

e Computers are fast. We did not let fear of per-sample processing get in our
way. Our slowest implementation platform supports audio mixing playback
at telephone quality with less than 2% of the machine per connection.

11.3 How to Get AudioFile

TheAudioFiledistributionislocated at FTPsitecrl.dec.com (Internet 192.58.206.2)
in /pub/DEC/AF. The kit is contained in a compressed tar file named AF2R2.tar.Z.
Use anonymous FTP to retrieve the file.

% ftp crl.dec.com
ftp> cd / publ DEC/ AF

ftp> binary
ftp> get AF2R2.tar.Z

The kit is shipped as a compressed tar file. To unpack the kit,

% cd <audi o_r oot >
% zcat AF2R2.tar.Z | tar xpBf -

We also provide a samplekit of stereo sound bites. AF2R2-other.tar.Z. These high-
fidelity files should work with Hi-Fi capable AudioFile servers, such as the LoFi
and the SGI Indigo versions.

Other files available in this same directory are the release notes, copyright notice,
and aREADME file. Read these first!
We have set up an Internet mailing list for discussions of AudioFile:

af @rl . dec.com

Send a message to af-request@crl.dec.com to be added to thislist.

The Tcl and Tk distributionsmay be obtained from many FTP siteson the Internet,
including sprite.berkeley.edu (128.32.150.27) and gatekeeper.pa.dec.com.
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12 GLOSSARY

AC is an abbreviation for audio context. See Audio con-
text.

An AudioFile server maintains a list of hosts from which
client program can be run. By default, only programs
on the local host and hosts specified in an initial list read
by the server can use the server. This access control list
can be changed by clients on the local host. Some server
implementations can also implement other authorization
mechanismsin addition to or in place of this mechanism.
The action of this mechanism can be conditional based on
the authorization protocol name and data received by the
server at connection setup.

Analog to digital converter. A hardware device that con-
verts analog signalsinto digital form.

An atom is a unique ID corresponding to a string name.
Atomsare used to identify properties and types.

Variousinformation for audio input and output isstored in
an audio context (AC), such as the sample type, number
of channels, playback gain, record gain, and so on. An
audio context can only be used with the audio device on
which it was created.

An audio device is the abstraction AudioFile uses to de-
scribe the underlying audio hardware’'s ADC and DAC.
Attributes of an audio device include audio data type,
sampling rate, and server buffer size. A server may sup-
port multiple audio devices. Devices may support input,
output, or both.

For audio data, the client defines the byte order and the
server swaps bytes as necessary.

A client is an application program that connects to the
audio server by some interprocess communication (IPC)
path, such asa TCP connection or ashared memory buffer.
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Contraction of CODer and DECoder. As used in this
paper, aCODEC isan 8 KHz sampling devicewithintegral
ADC and DAC and anti-aliasing filtering. The CODEC
is generally used in telecommunications applications and
supports the CCITT G.711 p-law and A-law encoding
specifications.

The IPC path between the server and client program is
known as a connection. A client program typicaly (but
not necessarily) has one connection to the server over
which requests and events are sent.

Digital to analog converter. A hardware device that con-
verts digital signalsto analog form.

An abbreviation for decibel, which isameasure of relative
power level. Itisequal to 10timesthelog of apower ratio,
so that a signal twice as powerful as another is said to be
3 dB louder. One decibel is approximately the minimum
perceptible change in loudness.

See LOFi
Digital Signal Processor (or Processing).

The DSP port encapsulates two flexible serial interfaces
first found on the DSP56001 and used by NeXT on their
first workstation. This interface has become an industry
standard. Third party vendors such as Ariel and Applied
Speech Technol ogies make boxes that connect to the DSP
port and support flexible ADC and DAC sampling rates.

Dual Tone Multi-Frequency, also known as Touch-Tone.
This is the in-band signaling method for dialing push-
button telephones that use 16 tone pairs constructed from
two groups of four frequencies. In addition to its dialing
function, DTMF generation and decoding is frequently
used to control voice response systems.
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Event

Event mask

Extension

LineServer

L oFi

Property

Property list

12 GLOSSARY

Clients are informed of information asynchronously by
means of events. Events can be either generated from
devices or generated as side effects of client requests.
Events are grouped into types. The server never sends
an event to a client unless the client has specifically asked
tobeinformed of that type of event. Event timestampsare
reported relative to an audio device.

Events are requested relative to an audio device. The set
of event types a client requests is described by the event
mask.

Named extensions to the core protocol can be defined to
extend the system. Extensions can add both new requests
and new kinds of events.

The LineServer isan Ethernet peripheral. ItisaMotorola
68302 microcomputer system with 128K ROM and 64K

RAM, an Ethernet controller, high speed V.35 serial line
interface, and an 8 KHz ISDN codec. We use LineServer
within Digital’sresearch labsfor remote Ethernet bridging

and | P network routing over both dedicated digital circuits
and dial-up ISDN circuits.

LoFi isaTURBOchannel option modulethat containstwo
CODECs, aDSP56001 signal processor with static RAM,
a44.1 KHz stereo DAC, a DSP port interface, and analog
and digital (ISDN) telephonelineinterfaces. Thismodule
is available from DEC as PN AV01B-AA. (LoFi is the
research prototype version of DECaudio).

Devices can have associated properties that consist of a
name, atype, adata format, and some data. The protocol
places no interpretation on properties. They are intended
as a general-purpose haming mechanism for clients. For
example, clientsmight use propertiesto shareinformation
such asthe last telephone number dialed.

The property list of a device is the list of properties that
have been defined for that device. See also Property.
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Information requested by a client program using the Au-
dioFileprotocol issent back to theclient withareply. Both
eventsand repliesare multiplexed on the same connection.
Some requests do not generate replies.

A command to the server is called arequest. Itisasingle
block of data sent over a connection.

The frequency at which and audio signal is sampled; usu-
aly given in Hertz, or samples per second. Popular rates
are 8 KHz, for telephone quality audio and 44.1 KHz for
compact disc quality audio.

The encoding format of the sample data supported by an
audio device in the server. Popular encodings are 16-bit
linear PCM and p-law.

The server providesthe basic audio mechanism. It handles
connections from clients, multiplexes multiple requests
onto the audio devices, and demultiplexes input back to
the appropriate clients.

The Tool Command Language. Tcl isasmall, interpreted,
application-independent command language. See also Tk.

Audio devicetimeisrepresented by a32-bit (finitelength)
unsigned integer that increments once per sample period of
an audio device and wraps on overflow. The audio device
sampling rate is used to move between time in sample
ticks and time in seconds. As an example at 8 KHz, four
secondsin the future mapsto the current value in the time
register plus 32000 ticks.

An X toolkit which is an extension to Tcl. See also Tcl.
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preemption, 36 ddaProcessArgument, 4041
problems, 85 ddaUseMsg, 40
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AbortDDA, 40 fflush, 60

AbortServer, 40 fread, 57
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related work
Etherphone, 13
Firefly, 14
VOX, 14
XMedia, 14

reply, 93

request, 93

sample rate, 93

sample type, 93

server, 93
audio context, 44
AudioDeviceRec, 4143
buffers, 35
byte-swaps requests for clients, 37
chunkslargerequestsinto pieces, 34
DDA, 40
DIA, 4041
DIA and DDA interfaces, 39
initialization, 40
minimize data accesses, 36
performance, see also performance
preemption, 36
structure

AudioDeviceRec shared between
DDA and DIA, 41

tasks, 38, 41
tenet, 36
tenets, 34
update task, 39

signal processing, 13
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arecord can stop automatically, 59
emitted when no data written, 11
if dataismorethanfour secondsold,
12
streams
definition, 9
problems, 9-10
structure
AC, 40, 4445
ACops, 45
AEvent, 25
AFSampleTypes, 27-28
ASampleTypes, 27
AudioDevice, 40
AudioDeviceRec, 4042
supported systems
Digital Alpha AXP, 1, 49
Digital DECstation, 1
Silicon Graphics Indigo, 1
Sun SPARCdtation, 1, 49
SPARCstation, 49
telephone control, 20
telephone
diaing, 29
events, 20
tenets
complex apps. should be possible,
4
computers are fast, 3, 87
control of time, 3, 86
no rocket science, 4, 87
simple apps. should besimple, 4
simplicity, 87
time
carried with each play and record
request, 8
comparisons, 7
control vital for real-time apps., 8
explicit control by client, 8
exposed at library API, 11
representation, 7
transport protocols, 17, 84
TCP, 4, 17
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ABIlock, 26
ANoBIlock, 26
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X Window System, 1, 17, 51
AudioFilesimilar to, 1
freely available code, 4
synchronization extension, 15
Xt toolkit, 70, 73
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