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Abstract

This technical report examines the fundamental ambiguities and uncertainties inherentin recov-
ering structure from motion. By examining the eigenvectors associated with null or small eigen-
values of the Hessian matrix, we can quantify the exact nature of these ambiguities and predict how
they affect the accuracy of the reconstructed shape. Our results for orthographic cameras show that
the bas-relief ambiguity is significant even with many images, unless a large amount of rotation
is present. Similar results for perspective cameras suggest that three or more frames and a large
amount of rotation are required for metrically accurate reconstruction.
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1 Introduction 1

1 Introduction

Structure from motion is one of the classic problems in computer vision and has received a great
deal of attention over the last decade. It has wide-ranging applications, including robot vehicle
guidance and obstacle avoidance, and the reconstruction of 3-D models from imagery. Unfortu-
nately, the quality of results available using this approach is still often very disappointing. More
precisely, while the qualitative estimates of structure and motion look reasonable, the actual quan-
titative (metric) estimates can be significantly distorted.

Much progress has been made recently in identifying the sources of errors and instabilities in
the structure from motion process. It is now widely understood that the arbitrary algebraic manip-
ulation of the imaging equations to derive closed-form solutions (e.g., [LH81]) can lead to algo-
rithms that are numerically ill-conditioned or unstable in the presence of measurement errors. To
overcome this, statistically optimal algorithms for estimating structure and motion have been devel-
oped [SA89; WAH89; Hor90; TK92b; SK94]. Itis also understood that using more feature points
and images results in better estimates, and that certain configurations of points (at least in the two
frame case) are pathological and cannot be reconstructed.

An example of an algorithm which generates very good results is the factorization approach of
Tomasi and Kanade [TK92b]. This algorithm assumes orthography and is implemented using an
object-centered representation and singular value decomposition. It uses many points and frames,
and for most sequences, a large amount of object rotation (usié@Hy. However, when only a
small range of viewpoints is present (e.g., the “House” sequence in [TK92b], Figure 7), the recon-
struction no longer appears metric (the house walls are not perpendicular).

In this technical report, we demonstrate that it is precisely this last factor, i.e., the overall ro-
tation of the object, or equivalently, the variation in viewpoints, which critically determines the
quality of the reconstruction. The ambiguity in object shape due to small viewpoint variation of-
ten looks like it might be g@rojectivedeformation of the Euclidean shape, which is interesting—
several researchers have argued recently in favor of trying to recover only this projective structure
[Fau92; HGC92; MQVB92; Sha93]. Infact, we show that the major ambiguity in the reconstruction
is a simple depth scale uncertainty, i.e., the clasagreliefambiguity which exists for two-frame
structure from motion under orthographic projection [LH86].

! The bas-relief ambiguity is even more pronounced in shape from shading, and forms the basis of classical friezes
and bas-relief sculptures.
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To derive our results, we use eigenvalue analysis of the covariance matrix for the structure and
motion estimates. This assumes that we can compute a near optimal solution, and that the error in
the solution is due to linear perturbations arising from small amounts of image noise (feature point
mislocalization). This kind of analysis has not previously been applied to structure from motion,
and yet it is a very powerful way to predict the ultimate performance of structure from motion al-
gorithms.

Our results are significant for two reasons. First, we show how to theoretically derive the ex-
pected ambiguity in a reconstruction, and also derive some intuitive guidelines for selecting imag-
ing situations which can be expected to produce reasonable results. Second, since the primary am-
biguities are very well characterized by a small number of modes, this information can be used to
construct better on-line (recursive) estimation algorithms.

Our technical report is structured as follows. After reviewing previous work, we present our
formulation of the structure from motion problem and develop our technique for analyzing ambi-
guities using eigenvector analysis of the information (Hessian) matrix. We then present the results
of our analysis for a series of camera models: 1-D and 2-D orthographic cameras, and 1-D and 2-D
perspective cameras. We conclude with a discussion of the main sources of errors and ambiguities,
and directions for possible future work.

2 Previouswork

Structure from motion has been extensively studied in computer vision. Early papers on this sub-
ject [LH81; TH84] develop algorithms to compute the structure and motion from a small set of
points matched in two frames using essential parametapproach. The performance of this ap-
proach can be significantly improved using non-linear least squapém@l estimatioptechniques
[WAHB89; WAH93; SA89; Hor90; SA91].

Recent research focuses on extraction of shape and motion from longerimage sequences [KTJ89;
DA90; CWC90; TK92b; CT92]. Cui, Weng, and Cohen [CWC90] use an optimal estimation tech-
nigue (non-linear least squares) between each pair of frames, and an extended Kalman filter to accu-
mulate information over time (see also [THO93; SPFP93]). Azarbayejahi[AHP93] also use a
Kalman filter-based approach to recover rigid (object-centered) depth and motion directly from the
sequence of image measurements. Tomasi and Kanade [TK92b] use a factorization method which
extracts shape and motion from an image stream without computing camera-centered depth. Their
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approach formulates the shape from motion problem in object-centered coordinates, assumes or-
thography, and processes all of the frames simultaneously. Chen and Tsuji [CT92] relax the as-
sumption of orthography by analyzing the image sequence throughits temporal and spatial subparts.
Taylor and Kriegman [TKA91; TK92a] formulate the shape from motion task as a non-linear least
squares problem in which the Euclidean distance between the estimated and actual positions of the
points in the image sequence is minimized using the Levenberg-Marquardt algorithm. Szeliski and
Kang [SK94] extend this approach approaches to general 3-D structure and also to projective struc-
ture and motion recovery.

Another line of research has addressed recovering affine [KvD91; SZB93] or projective [Fau92;
HGC92; HG93; MVQ93] structure estimates. Most of these techniques rely on identifying and
tracking a small number of feature points in the image sequence, using these points to form a basis
set for the geometric description, and also only use 2 frames to recover the geometry. However,
Mohr et al. [MVQ93] and Szeliski and Kang [SK94] use as many points and frames as possible to
recover the geometry and motion, thus producing more reliable estimates.

The nature of structure and motion errors, which is the main focus of this technical report, has
also previously been studied. Weeitpl. perform some of the earliest and most detailed error anal-
yses of the two-frame essential parameter approach [WAH89; WAH93]. Adiv [Adi89] and Young
and Chellappa [YC92] analyze continuous-time (optical flow) based algorithms using the concept
of the Cramer-Rao lower bound. Oliensis and Thomas [OT91; THO93] show how modeling the
motion error can significantly improve the performance of recursive algorithms.

In this technical report, we extend these previous results using an eigenvalue analysis of the
covariance matrix. This analysis can pinpoint the exact nature of structure from motion ambiguities
and the largest sources of reconstruction error. We also focus on multi-frame optimal structure from
motion algorithms, which have not been studied in great detail.

3 Problem formulation and uncertainty analysis

Structure from motion can be formulated as the recovery of a set of 3-D structure pargmeters
and time-varying motion parametats; from a set of observed image featutes In this section,

we present the forward equations, i.e., the rigid body and perspective transformations which map
3-D points into 2-D image points. We also show how the Jacobians of the forward equation can
be used to estimate the inverse covariance matrix for the parameters being recovered, how this can
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be used to quantify expected reconstruction errors, and how our results relate to classical structure
from motion ambiguities.

3.1 Problem formulation

The equation which projects thth 3-D pointp; into thejth frame at locatiom;; is
u; =P (T'(p:;my)). @)

The perspective projectioh (defined below) is applied to a rigid transformation
T'(pi;m;) = R;pi + t;, )

whereR,; is a rotation matrix antl; is a translation applied after the rotation. A variety of alternative
representations are possible for the rotation matrix [Aya91]. In this technical report, we primarily
use a quaternioq = [w, (¢, g1, ¢2)] representation, with a corresponding rotation matrix

1—2¢; —2¢5  2qoq1 +2wqa  2qog2 — 2wqy
R(q) = | 2q¢1 —2wqs 1 —2q5 —2¢5 2q1q2 + 2wqo (3)
2q0q2 + 2waqy 2q1q2, — 2wqq 1 — 2q3 — 2q%

since this representation has no singularities. The rotation paramgtars), also have a natural
interpretation (for small values) as the half-angles of rotation around,thheand= axes. For our
one-dimensional examples, we use the rotation angle around the vertical axis.

The standard perspective projection equation used in computer vision is

Dol

wheref is a product of the focal length of the camera and the pixel scale factor (assuming that pixels
are square). An alternative object-centered formulation, which we introduced in [SK94] is

Z
u §—E
( ):7»2 y E( +) ©
v . ST4s
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Figure 1: Sample configuration of cameras;§, 3-D points p;), image planes(;), and screen
locations (1;;)

Here, we assume that the, y, =) coordinates before projection are with respect to a reference frame
11, that has been displaced away from the camera by a distaateng the optical axis, witkh =
f/t.andn = 1/t (Figure 1). The projection parametecan be interpreted assaale factorandy
as aperspective distortion factoOur alternative perspective formulation allows us to model both
orthographic and perspective cameras using the same model.

A variety of techniques (reviewed in Section 2) can be used to estimate the unkfyowns }
from the given image measuremenis; }. In our previous work [SK94], we used the iterative
Levenberg-Marquardt algorithm, since it provides a statistically optimal solution [WAH89; SA89;
TK92a; SK94]. The Levenberg-Marquardt method is a standard non-linear least squares technique
[PFTV92] which directly minimizes a merit or objective function

Cla) =32 ey — ()", (6)
v

whereu,; is the observed image measureménta) = u(p;, m;) is given in (1), and the vector
a contains all of the unknown structure and motion parameters, including the 3-D pqinke
motion parameters;, and any additional unknown calibration parameters. The wejght (6)
describes the confidence in measurenmegntand is normally set to the inverse variangg (it can
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be set to zero for missing measurements).

3.2 Uncertainty analysis

Regardless of the solution technique, the uncertainty in the recovered parameters—assuming that
image measurements are corrupted by small Gaussian noise errors—can be determined by comput-
ing the inverse covariance orformationmatrix A [Sor80]. This matrix is formed by computing

outer products of thdacobiansof the measurement equations

ofL of;;
A= : 7
ZZC] Oda 6aT (7)
For notational succinctness, we use the symbol
E
Hij= | o
om;
T

to denote the non-zero portion of the full Jacob%n.
If we list the structure parametefgp, } first, followed by the motion parametefsn;}, the A
matrix has the structure

A Apm
A= P wpm | (8)
AT | A
The matricesA, andA,, are block diagonal, with diagonal entries
ofL of;; otl of;
Am 9
Z ap; 8p2 ! Z om; 6m] ©)
respectively (assuming, = 1), while A, is dense, with entries
ofl of;
= — 10
P11, apZ amz“ ( )

The information matrix has previously been used in the context of structure from motion to de-
termineCramer-Rao lower bounds the parameter uncertainties by taking the inverse of the diag-
onal entries [Adi89; YC92]. The Cramer-Rao bounds, however, can be arbitrarily weak, especially
whenA is singular or near-singular. In this technical report, we use eigenvector analysioof
find the dominant directions in the uncertainty (covariance) matrix and their magnitudes, which
gives us more insight into the exact nature of structure from motion ambiguities.
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3.3 Estimating reconstruction errors

An important benefit of uncertainty analysis is that we can easily quantify the expected amount of
reconstruction (and motion) error for an optimal structure from motion algorithm. For example, the
expected sum of squared error in reconstructed 3-D point positions is

S;os = <Z HISZ - ij2> ’ (11)

wherep; are the estimated (recovered) positions phdhe true positions. The positional uncer-
tainty matrixC, can be computed by inverting and looking at its upper left block (the block
corresponding to thp; variables} If we perform an eigenvalue analysis@f,, we obtain

Cp = EgApEpv (12)

whereE, is the matrix of eigenvectors, an, is the diagonal matrix containing the eigenvalues
of C,. Sinces? . is a Euclidean norm, its value is unaffected by orthogonal coordinate transfor-
mations such ak,. The value ofS,, can thus be computed as either the trac€gbr the trace
of Ap, i.e., the sum of the eigenvalues©f.

In practice, we do not need to compuig. Instead, the sum of squared reconstruction and

motion error,
= (00wt + X o — ). (13
¢ J

can be computed directly summing ihgerseeigenvalues of the information matrx. By choos-

ing an appropriate scaling for the parameters being estimated (say scaling positions to be in the
range[—100. .. 100] and rotations in the rande = . . . 7]), we can make the mean Sf; be close

to the mean ob,.,. Note that for general 3-D camera motion, positional errors in the motion esti-
mates will be on the same scale as 3-D reconstruction errors, and may sometimes dominate (if the
absolute distance of the camera is ill determined).

What is the advantage of this approach, if computing eigenvalues is just as expensive as invert-
ing matrices? First, we can compute the first few eigenvalues more cheaply (and in less space) than
the matrix inverse, and these tend to dominate the overall reconstruction error. Second, it justifies
the approach in the technical report, which is to look at the minimum eigenvalue as the prime in-
dicator of reconstruction error. We can therefore study how much certain ambiguities (such as the

“Note that this is1otthe same as simply inverting,,.
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bas-relief ambiguity) contribute to the overall reconstruction error. We can also obtain much tighter
lower bounds on the reconstruction error than would be possible by using the Cramer-Rao bounds.

3.4 Ambiguitiesin structure from motion

Because structure from motion attempts to recover both the structure of the world and the camera
motion without any external (prior) knowledge, it is subject to certain ambiguities. The most fun-
damental (but most innocuous) of these is the coordinate frame (also known as pose, or Euclidean)
ambiguity, i.e., we can move the origin of the coordinate system to an arbitrary place and pose and
still obtain an equally valid solution.

The next most common ambiguity is the scale ambiguity (for a perspective camera) or the depth
ambiguity (for an orthographic camera). This ambiguity can be removed with a small amount of
additional knowledge, e.g., the absolute distance between camera positions.

A third ambiguity, and the one we focus on in this technical report, ib#serelief ambiguity
In its pure form, this ambiguity occurs for a two frame problem with an orthographic camera, and
is a confusion between thelative depthof the object and the amount of object rotation. In this
technical report, we focus on theeakform of this ambiguity, i.e., the very larges-relief uncer-
tainty which occurs with imperfect measurements even when we use more than two frames and/or
perspective cameras. A central result of this technical report is that the bas-relief ambiguity cap-
tures the largest uncertainties arising in structure from motion. However, when examined in detail,
it appears that a larger class of deformations (i.e., projective) more fully characterizes the errors
which occur in structure from motion.

To characterize these ambiguities, we will use eigenvector analysis of the information matrix,
as explained in Section 3.2. Absolute ambiguities will show up as zero eigenvalues (unless we add
additional constraints or knowledge to remove them), whereas weak ambiguities will show up as
small eigenvalues.

4 A two parameter example

To develop an intuitive understanding of the basic bas-relief ambiguity, we start with a simple two-
parameter example. Assume that we have an orthographic scanline camera which measures the
component of 2-D point§e, z). Furthermore, assume that we already know the shape up to a scale
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Figure 2: Constraint lines and energy surface for simple two-parameter example-akisis the
angleA# and they-axis is the scale factar.

factor in depth,
p: = (l’u azi)

and that the rotation angles are uniform,
0, = jAO.

The projection equation is then

Uiy = CjT; — S5;424 (14)

with ¢; = cos§; ands; = sin 6.

What happens when we try to estimate the scale factord the angle\d from a set of noisy
measurement$u;; }? First, let's examine the very simplest case, which is a single point, say at
(z,z) = (1,1). Each new image gives us a constraint of the form

_ e L .
cj—as;=c¢; —a's; +n; (15)

wherec?, s%, anda” are the true values and is random noise. Figure 2a shows the two constraint
lines for; = +1 assuming the noise-free case (with= 1 andA# = 0.1 rad). Figure 2b shows
the constraint lines fot_, = n; = 0.01. As can be seen, the estimate f&9. «) is very sensitive
to noise. This can also be seen in the contour plot of the energy surface (Figure 2c) which can be

computed by summing the constraints in (15).
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To characterize the shape of the error surface near its minimum, we compute the information
matrix A. The Jacobian fofa, A§) is straightforward,

Duyj o
H. = Er _ 5% ~ _ 4
K Duyj o ) o e ~J
N —jlacjz; + sjx;)

if we assume small rotation anglég;| < 1, so thats; ~ jAf andc; ~ 1. The inverse covariance
(information) matrix is then

. (16)
az; + A0z,

A~ I 7 (17)

N a0 ]
alAl o —I—AGQ%

whereJ, =3, 7%, J, =3, 7% X =X, 27, andZ = Y, 27 (assuming thal; j = 0). Assuming

72

that A9? < a?, we can compute (Appendix A) the approximate eigenvalue’s aé
Amin & A0V X/a*  and Aoy ~ JyZa’. (18)

The eigenvalues of the information matrix describe an “elliptic” approximation to the error sur-
face (and hence posterior probability distribution), which matches the true “banana shaped” surface
near the optimal solution but not far away from it. To determine if the additional nonlinearities in
the reconstruction process result lower or higher overall uncertainties than those predicted by the
information matrix, we would have to resort to numerical simulations. In practice, we expect these
secondary effect to be much smaller than the large variations in eigenvalues which explain most of
the uncertainties (ambiguities) associated with structure from motion.

5 Orthography: single scanline

Let us now turn to a true structure from motion problem where both the structure and motion are
unknown. For simplicity, we analyze the orthographic scanline camera first, where the unknowns
are the 2-D point positions; = (z;, z;) and the rotation anglegs.” The imaging equations are

Uiy = CjT; — 5524 (19)

with ¢; = cos§; ands; = sin 6.

3We do not estimate the horizontal translation since it can be determined from the motion of the centroid of the
image points [TK92b].
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The Jacobian for the 1-D orthographic camera is
ouig T T
56, } - { ¢ 5 ‘ —(cjzi + s5;) } ) (20)

and the entries in the information matrix are

R Ouij Auij
H” - dx; Dz;

Ay, Sl B B (21)
X6 ;5 -D S
[ 2 s
Apimj _ C]ZZ Cjisz ] : (22)
i cjsjzi—l—iji
An, = [ Sileiz + sjag)? } = [ c?Z—I—Zq;yW—I—s?X } , (23)

with C' =37, c?, D=3%cis;, S =3 3?, Z=%,22 W =%, zz;,,andX =3, z2.

Before analyzing the complete information matrix, let us look at the two subblaglesidA ,,, .

If we know the motion, the structure uncertainty is determinedhRyand is simply the triangula-
tion error, i.e.o? o C~! ando? < S~! (note that for small rotations;? is generally much smaller
thano?). If we know the structure, the motion accuracy is determinedhy and is inversely
proportional to the variance in depth along the viewing directignc; ).

What about ambiguities in the solution? Under orthography, the traditional scale ambiguity does
not exist. However, translations along the optical axis cannot be estimated, and an overall pose
(coordinate frame) ambiguity still exists. Unless we add some additional constraints, we can always
rotate the coordinate system byA# and add the same amount to #fte}. This manifests itself as

the null (zero eigenvalue) eigenvector

eo:{zo —T9 -+ ZN —J}N‘l 1}T.

5.1 Two frames. the bas-relief ambiguity

Let us say we only have two frames, and we have ftked 0,co = 1,50 = 0,0, =0,¢; = ¢, 81 =
s (Figure 3). Then

2
Ap, = ljcz _SZS ] (24)
Apm = [ —ctz — esay (25)
' | sz + 32:1;2'
Ay = | A7 4 2esW + s2X } . (26)
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06

(a) stationary first frame (b) antisymmetric cameras

Figure 3: Orthographic projection, two frames.
The solid lines indicate the viewing rays, while the thin lines indicate the optical axes and image
planes. The diagonal dashed lines are the displaced viewing rays, while the ellipses indicate the
positional uncertainty in the reconstruction due to uncertainty in motion (indicat&t).as

The bas-relief ambiguity manifests itself as a null eigenvector
T
ey = [ 0 czg+sxg 0 -+ czy+ sy ‘ —3 } ,

as can be verified by inspection. This is as we expected, i.e., the primary uncertainty in the structure
is entirely in the depthz) direction, and is a scale uncertainty (proportionat foNote however
that this uncertainty is proportional to + sz rather than, as can be seen by inspecting Figure 3a.
An alternative parameterization of the two-frame problem is tdget —6, (Figure 3b), in
which case we have

_202 0
A, = 27
= 252] (27)
- s,
Apm = | ] (28)
I 2¢sz;

Am = [207 428X |. (29)
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In this case, the null eigenvector is

2

ey = S"Xo —CzZi

2

S

9 T
TN —CZN‘CS}.

13

(30)

This is also very illuminating. It shows that the primary effect of the bas-relief ambiguity is a
“squashing” of the: values for a small increase in motion, with a much smaller “bulging” inithe
values (at least for small inter-frame rotatiofis)his squashing and bulging is an affine deforma-

tion of the true structure.

5.2 Morethan two frames, equi-angular motion constraint

To simplify the analysis, we assume for the moment that we know we have an equi-angular image
sequence, i.e., that the rotation angles are givefy by A0, j € {—J,...,J}, J = % where
F'is the total number of frames (imagine Figure 3b with more cameras). In this case, we have

H) = [¢ —si|—ilcjz+sm) | (31)
(s 0 ] [co o]

A, = | Y = , (32)
|0 i L0 S

Apw = | e TR (33)
I 2. JCi8i% | I Ez |

Am = [ 022+ 5, %X |=[ 02+ 9% |, (34)

with £ = 3, jejs;, O = 32, 5%, 8" = X0, j%s3, andC, D, S, Z, W, X defined as in (22-23). In

j
this case, the smallest eigenvalue eigenvector has the form
T
ary —fzy ‘1 } . (35)

€0 = { ary —fBz

This will be an eigenvector if we can satisfy the matrix equatdan= Je, i.e.,

[ AP Apm
AT | Aw

|

aXg

—Bz0

—5ZN
1

aXg

—Bz0

—5ZN
1

“Note that compared to the previous example where frame 0 was fixed, the total interframe rotatiofids now
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which reduces to the following three equations:

aoC — F = al
6S —FE = (X
(S"—aE)X +(C'—BEYZ = A

Substitutingr = 72 and3 = £ into the third equation, we obtain a cubicin

(S=N(S"(C =N = EHX +(C-=N)C(S=XN)—FE)Z—(S=M)(C—-M)A=0, (36)
which can be solved analytically using a package sudiasematicg [Wol91].

Assuming that the smallest eigenvalue is very small, we can use the approximaticfato
obtain a quadratic in,

(S = M(S'C— E)X +C(C'(S = \) = EX)Z — (S — A\)CA = 0. (37)

Furthermore, using the small angle approximatianisy: 5,1 = Jo, S & A@*Jy, B ~ AbJ,,
C' =~ Jy, andS’ ~ Ab?J,, we obtain after some manipulation (Appendix A)

N AOX Ty ( oy — J2)
T JodaZ 4 A [X (Jo s — JE) + Jods]

Amin (38)

Notice that the minimum eigenvalue is related to the fourth powaspi.e., doubling the inter-
frame rotation reduces the RMS (root mean square) error by a factor of 4 (assumingthat)?).
Increasing the extent of the compared to the; directly increases the minimum eigenvalue, i.e.,
it decreases the structure uncertainty. This result is somewhat surprising, and suggests that flatter
objects can be reconstructed better.

We can numerically compute the values\dbr a range of/ andA# values (Figure 4). For ex-
ample, with/ = 1, A0 = 0.1 rad~ 6°,andX = Z = 1, we have\ = {0.0000664436, 1.98064, 3.0193 }.
For the smallest eigenvalug, = 0.0000664436, we have a corresponding = 0.0666676 and
4 =10.0001.

Once the smallest eigenvalue and eigenvector have been computed, we can easily determine
some additional eigenvectors. Any vector which consists purely of z; values which is also
orthogonal toA ,,,,, iS an eigenvector, e.g.,

e=[a1 0 —2 0 -~ 0]0].



5.2 More than two frames, equi-angular motion constraint

Figure 4: Plot oflog;, Amin @S a function of/ € [1,8] andAd € [0.1,1.5].

Amin =2 F=3 =4 F=5 =6 =1 =28
Ot = 11.5° | 0.000000 0.000067 0.000079 0.000088 0.000096 0.000104 0.000112
Ot = 22.9° | 0.000000 0.001087 0.001283 0.001418 0.001547 0.001677 0.001810
Ot = 34.4° | 0.000000 0.005618 0.006597 0.007277 0.007931 0.008594 0.009269

Otor = 45° | 0.000000 0.016854 0.019688 0.021673 0.023596 0.025552 0.027547
Otor = 60° | 0.000000 0.054679 0.063442 0.069678 0.075782 0.082017 0.088389
Oeor = 90° | 0.000000 0.272977 0.316453 0.348500 0.380039 0.412200 0.444997

Table 1: Minimum eigenvalues for 1-D orthographic known equi-angular motion

15

The eigenvalues corresponding to the pureigenvectors aré’, while thez eigenvalues are'.

In other words, once the global bas-relief uncertainty has been accounted for (squashamglin
smaller bulging inz), the variance in: position estimates is proportional¢o! and inz positions

is proportional taS™*, i.e., exactly the expected triangulation error for known camera positions.

For the above example with = 1 (3 frames),Af = 0.1rad =~ 6°, andX = Z = 1, the
values forC' and S are2.98 and0.0199, respectively. From this, we see that the correlated depth
uncertainty due to the motion uncertainty is a factar.6£99/0.00006644 = 300 times greater than
the individual depth uncertainties. A full table &f;, as a function of’ = 2.J + 1 (the number of
frames) and... = (I — 1)Ad (the total rotation angle) is shown in Table 1.
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Amin =2 F=3 =4 F=5 =6 =1 =28
Otor = 11.5° | 0.000000 0.000067 0.000079 0.000087 0.000095 0.000103 0.000111
Ot = 22.9° | 0.000000 0.001080 0.001263 0.001391 0.001513 0.001636 0.001762
Ot = 34.4° | 0.000000 0.005537 0.006377 0.006971 0.007549 0.008136 0.008731

Ot = 45° | 0.000000 0.016450 0.018596 0.020163 0.021721 0.023311 0.024924
Otor = 60° | 0.000000 0.052521 0.057558 0.061612 0.065825 0.070179 0.074598
Otor = 90° | 0.000000 0.254859 0.261589 0.273769 0.288362 0.303857 0.319541

Table 2: Minimum eigenvalues for 1-D orthographic equi-angular motion with no constraint

5.3 Morethan two frames, without motion constr aint

If we take the same data set as above, but remove the additional knowledge of equi-angular steps,
we end up solving for each motion (angle) estimate separately. The equatioys féx,, ., and
A, are givenin (22-23), witth = 0. Let us guess that the bas-relief ambiguity eigenvector has
the form

eo=[arg —fz - | —d o T] (39)

The requirements for this to be an eigenvector are similar to those we derived before,

aCl —F = al (40)
BS—E = BA (41)
HJZ —aW) + ¢;s;(2jW — aX — BZ) + s1(jX — W) = Aj. (42)

In this case, we do not have a closed form solution, since wethawe3 equations in 3 unknowns.

However, if we assume a small angle approximation @hd- 0 (i.e., that the 3-D point cloud is

rotationally symmetric with respect to the middle frame), therthe 1 equations of the form (42)

are equivalent and we get the same eigenvectors as with the known equiangular motion constraint.
This behavior can be verified numerically (Table 2), where the results are quite similar to those

shown in Table 1. To obtain these results, we computeditimeatrix explicitly using a set of 9

points sampled on the unit square, i+, z),z,z € {—1,0,1}}, and then computed the eigen-

values. Note, however, that for an example whigfe£ 0, i.e., by adding one additional point at

(2,2) to the previous example, we get an eigenvector which is not of the form hypothesized in (39).

It is, however, an affine transform of tle;, z;) coordinates.
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Sall F=2 F=3 F=4 F=5 F=6 F=7 F=8
Oiop = 11.5° 00 123.61 113.80 108.18 103.50 99.34 95.60
Oiop = 22.9° 00 31.81  29.46 28.02 26.80 25.71 24.73
Oiop = 34.4° 00 14.88 13.88 13.21 12,62 12.09 11.62

Biop = 45° 00 9.32 8.74 8.30 7.92 7.58 7.27
Biop = 60° 00 6.01 5.65 5.35 5.08 4.85  4.64
Bior = 90° 00 3.94 3.62 3.37 3.16 2.99 2.84

Table 3.5, estimates for 1-D orthographic equi-angular motion with no constrdint, 7 = 100,

oc=1.

We can also estimate the expected reconstruction grrooy summing the inverse eigenval-
ues. Using the same parameters as for Table 2, butMith /7 = 100 to make structure errors
dominate, we obtain the results in Table 3. This table shows how the bas-relief ambiguity dominates
the reconstruction error. At small viewing angles, doubling the angle results in a fourfold reduction
in the sum of squared errof,;. Adding more frames is much less effective than increasing the
effective baseline of the system.

6 Orthography: full 3-D reconstruction

The situation with a regular orthographic camera (2-D retina, 3-D world) is quite similar to the
scanline camera. In this case, we use unit quaternions to represent the rotation matrices,

Uij = To0jT; + To1;Yi + T02;% (43)

Vij = Ti0;T; F T1Ys + iz, (44)

where the entries in the rotation matrix are given in (3).
To obtain a qualitative feel for the bas-relief ambiguity, let us examine the known equiangular
motion case with a small amount of rotation around a fixed axis (say in-thglane),

q; ~ [17 (OvaIvaZ)]v (45)

whereq; is the incremental rotation around theaxis, andy, is the rotation about the (optical)
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axis. As before, we ignore camera translations under orthography, since these can be recovered
from the motion of the point centroid.
The Jacobian matrix is now

Ouiy  Ouiy  duiy | Ouyy  Duiy
Hy = | O ‘_ _] (46)
L Oz Ay, dz; dq1 dq2
~ 1 2jq2  —2jq | =477 — 25z —452 qai + 2jy; (@7)
22 1 27 25% g2z —2jx; — A7 gy + 257 iz
The entries in the information matrix are
0 0
Ap, ~ 0 Jo —25q142 | » (48)
0 200140 4)aq)
_—4J29151?i —2J2q97;
Apm, =~ —2J2q22;  2Jaqiz; | s (49)
| dhqiz —4haquy
A, = ALY ALYy | zow ] (50)
| A yis 4y i@} + i) WX 4Y

with Y =3, y?, W’ = 3, y;2;, and other terms as defined before.

These equations are similar to those for the orthographic scanline camera (22—23) awith
S ~ Jyql, E =~ Jyq, andC’ =~ J,. In the absence of positional uncertainty, the accuracies of
theq; andq, estimatesA;}J) are inversely proportional tg and X + Y/, respectively, as is to be
expected. Similarly, with known motion, the triangulation errar () are inversely proportional
to the number of frameg, for x andy, and proportional to the squared rotation angle’ for .

Notice that a non-zero tilt of the rotation axig (# 0) confounds some of the andz positional
uncertainties.

Instead of trying to find an analytical solution to the eigenvalue problem, we present a brief ex-
ample showing the dependence\gf, on¢; andqg, (Table 4). For this example, we used a 15-point
data set consisting of the 8 corners of a unit cube, the 6 cube faces, and the origin. The eigenvalues
for the no-tilt caseq, = 0) are almost identical to the results of 1-D analysis (Table 2). The eigen-
values for the tilted case/¢; = tan 30°) are similar in shape but show the effect of the overall
decrease ig; values. By examining the eigenvectors (not shown here), we observe thwitior
cases, the minimum eigenvector hasynmmponents.
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Amin =2 F=3 =4 F=5 =6 =1 =28
Ot = 11.5° | 0.000000 0.000067 0.000079 0.000088 0.000096 0.000104 0.000112
Ot = 22.9° | 0.000000 0.001092 0.001267 0.001410 0.001531 0.001665 0.001792
Ot = 34.4° | 0.000000 0.005677 0.006405 0.007189 0.007747 0.008452 0.009065

Otor = 45° | 0.000000 0.017153 0.018653 0.021226 0.022638 0.024838 0.026500
Otor = 60° | 0.000000 0.056333 0.056757 0.067148 0.069948 0.078044 0.082245
Otor = 90° | 0.000000 0.287619 0.203405 0.320241 0.268727 0.343410 0.318149

Table 4: Minimum eigenvalues for 2-D orthographic equi-angular motion with no constraint, rota-
tion aroundy axis (g = sin 2, ¢, = 0).

Amin =2 F=3 =4 F=5 =6 =1 =28
Ot = 11.5° | 0.000000 0.000046 0.000055 0.000061 0.000066 0.000072 0.000077
Ot = 22.9° | 0.000000 0.000750 0.000873 0.000971 0.001056 0.001148 0.001236
Ot = 34.4° | 0.000000 0.003857 0.004392 0.004919 0.005316 0.005795 0.006224

Otor = 45° | 0.000000 0.011507 0.012731 0.014410 0.015451 0.016919 0.018101
Otor = 60° | 0.000000 0.036927 0.038640 0.044940 0.047420 0.052530 0.055737
Otor = 90° | 0.000000 0.170400 0.150632 0.200555 0.196403 0.233575 0.235277

Table 5: Minimum eigenvalues for 2-D orthographic equi-angular motion with no constraint, rota-

tion aroundy axis tilted30° (¢; = cos 30° sin %, G2 = sin 30° sin %)

7 Perspective: single scanline

Before analyzing the perspective camera in 3-D, let us briefly look at a perspective scanline (1-D)
camera. We can use this model to develop some intuitions, but unfortunately we cannot use it to
predict the performance of the full two-frame algorithm, since even under perspective, the scanline
camera has a bas-relief ambiguity. This can be shown by a simple parameter counting argument:
there are N unknowns for the 2-D coordinatése;, z;) } and 1 (or more) unknowns for the motion,

but only2/N measurements. In other words, we can place the cameras arbitrarily, and the intersec-
tions of the optical rays will determine the location of the 2-D points. This argument obviously does
not carry over to 3-D, but it is suggestive of why two-frame structure from motion may be poorly
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Amin =2 F=3 =4 F=5 =6 =1 =28
Ot = 11.5° | 0.000000 0.000080 0.000094 0.000104 0.000114 0.000124 0.000133
Ot = 22.9° | 0.000000 0.001274 0.001498 0.001655 0.001807 0.001960 0.002116
Ot = 34.4° | 0.000000 0.006421 0.007489 0.008257 0.009006 0.009768 0.010544

Otot = 45° | 0.000000 0.018670 0.021580 0.023745 0.025885 0.028072 0.030305
Otor = 60° | 0.000000 0.057351 0.065494 0.071906 0.078373 0.085026 0.091834
Otor = 90° | 0.000000 0.255136 0.288877 0.317718 0.347360 0.377933 0.409211

Table 6: Minimum eigenvalues for 1-D perspective projection, equi-angular rotatiert. 2.

conditioned.
The projection equation for a scanline camera, using the new projection model introduced in
(5),is

Cix; — S:z; + 1y N
Uiy = ! / + / == —]. (51)
Ltn(s;zi +¢zi+ 1) Dy
The Jacobian matrix is
T Au; Au; Au; Au; Au;
HY = |52 52 |5 5= 5= (52)

= DL‘7 =gt —(s; 4 nesieg) | —(sjae+ gz + e — spz)ig) 1 =i |
wheret;; is the predicted value af;; computed by (51). In addition to the usual coordinate frame
ambiguity, we have a scale ambiguity, i.e., the z;) andt,; can be multiplied by a factar, andt.;
can be settet.; + (« — 1)/, without affecting the solution. As mentioned above, a full bas-relief
ambiguity also exists for 2 frames.

Rather than continuing our analysis with the construction of the Hessian mgtiet us just
look briefly at the form oH;;. In addition to the terms already present under orthography (20), we
have the extra terms involving as well as the partial with respectitg. These additional terms
are what will, in full 3-D, enable the two-frame problem to be solved by removing the bas-relief
ambiguity.

To see the effects of using a perspective camera instead of an orthographic camera, we show
in Table 6 the minimum eigenvalue as a function of total viewing angle and number of frames.
Compared to Table 2, we see that there is a small, but not dramatic, improvement in the size of
Amin-
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Amin =2 F=3 =4 F=5 =6 =1 =28
Otor = 11.5° | 0.000175 0.000214 0.000239 0.000269 0.000299 0.000331 0.000364
Ot = 22.9° | 0.000690 0.001289 0.001462 0.001633 0.001803 0.001981 0.002158
Ot = 34.4° | 0.001512 0.004372 0.004972 0.005491 0.006009 0.006510 0.007024

Otor = 45° | 0.002512 0.009905 0.011282 0.012020 0.012959 0.013460 0.014070
Oeor = 60° | 0.004234 0.020246 0.022853 0.021650 0.021870 0.020495 0.019727
Oeor = 90° | 0.008381 0.032074 0.032623 0.027976 0.026149 0.023367 0.021596

Table 7: Minimum eigenvalues for 3-D perspective projection, equi-angular rotation ay@us
n =0.1.

8 Pergspectivein 3-D

Let us finally analyze the most interesting case, that of a perspective camera operating in a 3-D
environment. Here, we know that the two-frame problem has a solution, although our results on
the simpler camera models suggest that the reconstructions may be particularly sensitive to noise.

The forward imaging equations are given in (1-3) and (5). We will not bother deriving the Ja-
cobian and Hessian matrices here, as they are complex and not particularly informative. Instead,
we present some numerical results)on, and RM S,.; and discuss their significance. (Note that
RMS,.s = Spes/+/n, Wheren is the number of points.) These results were obtained using the
Mathematicg package [Wol91], by analytically differentiating the forward projection equations,
and then substituting in the known structure and motion parameters. Numerical eigenvalue analysis
was then used to obtain our results. For these examples, we used the 15 points sampled on the unit
cube described in Section 6.

We presentresults for two special cases: pure object-centered rotation (which in camera-centered
coordinates is actually both rotation and translation), and pure forward translation. Ignoring the ef-
fects of motion across the retina, these two cases capture the basic motion cues available to structure
from motion.

8.1 Pureobject-centered rotations

To compute the minimum eigenvalue results, we used the same approach as for the orthographic 3-D
camera (Section 6). The computed eigenvalues are shown in Table 7. Compared to the orthographic
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Amin n=0.025 =005 n»n=01 =»=02 n=03 n=04 n=05>5
¢ =3° p=6° ¢=12° o =28° ¢H=46° ¢=67" ¢ =90°
Otot = 11.5° | 0.000010 0.000041 0.000175 0.000899 0.002648 0.003899 0.002947
Oeor = 22.9° | 0.000040 0.000161 0.000690 0.003505 0.010216 0.015504 0.011702
Ot = 34.4° | 0.000087 0.000354 0.001512 0.007578 0.021758 0.034461 0.025941
Otor = 45° | 0.000145 0.000591 0.002512 0.012402 0.035035 0.057861 0.043377
Otor = 60° | 0.000247 0.001002 0.004234 0.020494 0.056570 0.097234 0.072229
Otor = 90° | 0.000492 0.001993 0.008381 0.039718 0.105540 0.144799 0.111384

Table 8: Minimum eigenvalues for 3-D perspective projection, equi-angular rotation ay@wins)
two frames {' = 2), varyingn. ¢ is the camera’s field of view.

case (Table 4), we see some striking differences. First, the two-frame problem is now soluble (up
to a scale ambiguity, of course). Second, for small viewing angles, there is marked improvement
even for multiple frames. Third, the results for large viewing angles with syisadlre significantly
inferior to the orthographic results. This appears to be caused by ambiguities in camera motion
along the optical axist(), which are neglected in the orthographic case.

This table only shows us the results for a particular valug dihe dependence of,;, on is
presented in Tables 8 and 9 for the two and three frame problems. In these tables, the fields of view
equivalent to each were computed from the horizontal spread of the data points on the unit cube
and the distance of the cube from the camegrausing the formula) = 2 tan~! 1=, As can be
seen for the two-frame case, doubling the amount of perspective distgntesults in a fourfold
increase iN\,,,;, (and hence a halving of the RMS error). For the three-frame case, the results are
less sensitive tg.

What does a typical minimum eigenvector look like? Figure 5 shows the eigenvector corre-
sponding to the three-frame problem witk= 0.1 andé,,, = 11.5°. As we can see, the majority of
the ambiguity is indeed a depth scaling. Notice, however, that the eigenvector is not a pure affine
transform of the 3-D coordinates, since the tips of the vectors in a given row do not form a straight
line (this has also been verified numerically). Our conjecture is that the minimum eigenvector may
be aprojectivetransformation of the 3-D points, i.e., that the main ambiguity is projective, but we
have not yet found a proof for this conjecture.

How do the 3-D (position) errorBM S,,,, vary with the number of frames and viewing angle?
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Amin n=0.025 =005 n»n=01 =»=02 n=03 n=04 n=05>5
¢ =3° p=6° ¢=12° o =28° ¢H=46° ¢=67" ¢ =90°
Otor = 11.5° | 0.000043 0.000075 0.000214 0.000956 0.002736 0.003908 0.002958
Oeor = 22.9° | 0.000502 0.000688 0.001289 0.004384 0.011565 0.015655 0.011874
Otor = 34.4° | 0.001399 0.002606 0.004372 0.011820 0.028129 0.035277 0.026838
Oeot = 45° | 0.001825 0.005074 0.009905 0.023998 0.052204 0.060488 0.046154
Otor = 60° | 0.002009 0.007177 0.020246 0.051574 0.103096 0.107273 0.082110
Oeor = 90° | 0.002098 0.008302 0.032074 0.121672 0.205362 0.215310 0.181425

Table 9: Minimum eigenvalues for 3-D perspective projection, equi-angular rotation ay@wins)
three framesK = 3), varyingy. ¢ is the camera’s field of view.

RMS,,, |I'=2 F=3 F=4 I'=s5 F=6 F=7 I'=38
Oiop = 11.5° | 20.78 19.08 18.04 17.02 16.12 15.32 14.62
Biop = 22.9° | 10.51  8.09 7.61 7.19 6.83 6.51 6.23
Oiop = 34.4° | 7.13 4.64 4.38 4.13 3.94 3.75 3.60

Biop = 45° 5.57 3.24 3.06 2.89 2.76 2.63 2.53
Biop = 60° 4.35 2.32 2.19 2.07 1.98 1.89 1.82
Bior = 90° 3.25 1.70 1.59 1.49 1.43 1.37 1.32

Table 10: RM S, for 3-D perspective projection, equi-angular rotation aroymatis,n = 0.1.

By computing the full covariance matrix (invertingy) and taking the trace of the positional co-
variance matrixC,, (as described in Section 3.2), we obtain the results shown in Table 10. These
numbers indicate the relative errors in reconstruction for a unit retina and unit noise. For example,
if the retina is actually 200 pixels wide & 100 in (5)) and the positional error in the tracked points

isco = 0.1, then the 3-D reconstruction errors would be 1000 times smaller than the values given
in Table 10. We see that this error decreases linearly with total viewing angle (for small viewing
angles), and varies only slightly with the total number of frames. This is similar to the results ob-
tained when computing,,,;, in Table 4 (remember that /S error should be proportional to the
square root of the inverse eigenvalues).
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(@) (b)

Figure 5: Minimum eigenvector for a three-frame perspective reconstruction problem: (a) top-
down view @-z), (b) frontal view ¢-y). While the main ambiguity is a scaling, the vector is
not exactly an affine transform of the 3-D points on the unit cube.

8.2 Looming

The motion of a camera forward in a 3-D world creates a different kind of parallax, which can also
be exploited to compute structure from motion. To compute the ambiguities in this kind of motion,
we used the same approach as before, except with no rotation and pure forward mction. (

Using our usual 15-point data set results in some unexpected behavior: four of the eigenvalues
are zero. This is because theoordinates of the three points on the optical axis cannot be recov-
ered as they lie on the focus of expansion. This is a severe limitation of recovering structure from
looming: points near the focus of expansion are recovered with extremely poor accuracy. For the
experiments in this section, we use a 12-point data set instead, i.e., the 15-point set with the three
points(x,y) = (0,0) removed.

Table 11 shows\.;, as a function of the number of framésand the total extent of forward
motiont, (the object being viewed is a unit cube with coordindtes, 1]°). These results are for
a camera withy = 0.3, i.e., a camera placed about 3.3 units away from the cube origin. As we
can see, the two-frame results are almost as good at the three frame results with the same extent of
motion. The value oA,,;, appears to depend quadratically on the total extent of motion. Overall,
however, these results are much worse than those available with object-centered rotation.

Table 12 shows,,;;, as a function of), i.e., the distance of the central frame to the object. It



9 Experimental results 25

Amin =2 F=3 =4 F=5 =6

t. =0.1]0.000007 0.000007 0.000007 0.000008 0.000009
t. = 0.2 0.000027 0.000027 0.000030 0.000033 0.000037
t. = 0.3 0.000060 0.000060 0.000067 0.000075 0.000084
t
t

»=0.40.000107 0.000107 0.000119 0.000134 0.000150
»=0.510.000168 0.000168 0.000187 0.000210 0.000235

Table 11: Minimum eigenvalues for 3-D perspective projection, pure forward translatien, 3.

Amin n=01 =02 n=03 n=04 n=0>5
p=12° ¢ =128 ¢ =46° o =67" ¢ =090°
> =0.1]0.000000 0.000002 0.000007 0.000013 0.000020
= 0.2 { 0.000001 0.000009 0.000027 0.000051 0.000078
= 0.3 | 0.000002 0.000020 0.000060 0.000115 0.000176
= 0.4 | 0.000004 0.000036 0.000107 0.000205 0.000314
> =0.51]0.000006 0.000057 0.000168 0.000320 0.000490

n

n

SR

Table 12: Minimum eigenvalues for 3-D perspective projection, pure forward translatien?,
varyingsm.

appears that,,;, depends cubically on, at least for small.s. To obtain reasonable estimates,
therefore, it is necessary to both use a wide field of view and a large amount of motion relative to
the scene depth.

Figure 6. shows the structural part of the minimum eigenvectors in particulasfdr.3, J = 1
(F = 3), andAt, = 0.2. eigenvector whose 3-D structure is shown in Figure 6. By inspection of
the complete eigenvector (not shown here), we can see that the ambiguity is between the amount
of x andy yaw andr andy translation, i.e., itis a classic bas-relief ambiguity.

9 Experimental results

To verify if the positional errors predicted by our analysis coincide with the errors observed in prac-
tice, we ran our iterative non-linear least squares algorithm on a 24-point sample data set [SK94].
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(@) (b)

Figure 6: Minimum eigenvector for a three-frame perspective reconstruction problem with pure
z translation: (a) top-down viewe€z), (b) frontal view (-y). The main ambiguity is a rocking
confusion between sideways camera translation and rotation, which affects the points furthest back.

The 24 points were four points @t0.4685, +0.4685) on the six faces of aunjit-1, +1]° cube. The
points were projected onto a 200 pixel wide retina=(100 in (5)) and 2-D noise witlax = 0.1 was
added to each projected poinfThe algorithm was then initialized with the correct 3-D structure
and run to completion.

The 3-D positional errors are shown in Tables 13 and 14. Three kinds of error are shown: the
Euclidean error, after registering the recovered and true 3-D data sets under the best possible sim-
ilarity transform (rigid+ scaling); the affine error (computing the best affine transform); and the
projective error (computing the best<x 4 homography). These errors were scaled by a factor of
1000 to make them “dimensionless” (i.e., unit retina, unit image noise). The RMS error predicted
by our uncertainty analysis (the trace of the positional covariance matrix) is also shown.

From these results, we can see that the uncertainty analysis predicts the general variation of re-
construction error with viewing angle, perspective distortion, and number of frames. Unfortunately,
there remains a small but fairly consistent discrepancy between our predicted figures and the mea-
sured errors, which we have not been able to track down. We also see that the affine error is about
2 to 3 times lower than the Euclidean error (actually, this factor increases with decreasing viewing

>The results scale linearly with up to aboutr = 1, after which they increase sub-linearly (i.e., they less than
double wheny is doubled).
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RMS,s n=0.1 n=0.2
F =2 |predicted Euclidean affine projectiveredicted Euclidean affine projective
fior = 8° 35.02 58.98 20.41 19.02 19.68 34.43 21.68 20.48

Oiop = 16° | 18.21 35.70 10.27 9.39 9.93 16.63 10.39 9.75
Bior = 32° 9.28 15.70 5.10 4.78 5.13 9.15 5.34 4.98
Biop = 60° 5.24 8.47 2.89 2.72 3.02 4.69 3.01 2.82
Otot = 90° 3.85 5.36 2.03 1.93 2.37 3.32 2.15 2.04

Table 13: RMS errors (predicted and observed) for 3-D perspective projection, equi-angular rota-
tion aroundy axis, two frames, 24 point data set.

RMS,s n=0.1 n=0.2
F =3 |predicted Euclidean affine projectiveredicted Euclidean affine projective
fior = 6° 41.94 61.17 20.21 18.76 25.79 40.45 22.21 20.26

Opop = 12° 19.83 26.90 10.31 9.69 12.55 18.12 10.39 9.71
Oiop = 24° 7.42 11.34 4.99 4.76 5.75 8.08 5.23 4.91
Bpop = 48° 2.76 3.70 2.50 2.43 2.59 3.63 2.72 2.61
Bior = 90° 1.59 1.96 1.54 1.50 1.57 1.90 1.59 1.53

Table 14: RMS errors (predicted and observed) for 3-D perspective projection, equi-angular rota-
tion aroundy axis, three frames, 24 point data set.

angle, as predicted by our analysis). The projective errooisignificantly lower than the affine
error, which further supports our hypothesis that most of the error is in the bas-relief ambiguity.

10 Discussion

The results presented in this technical report suggest that in many situations where structure from
motion might be applied, the solutions are extremely sensitive to noise. In fact, despite dozens
of algorithms having been developed, very few results of convincing quality are available. Those

St is not suprrising that the projective error is always smaller than the affine error, as there are 3 more degrees of
freedom (15 vs. 12) in the projective fit used before the error computation.
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cases where metrically accurate results have been demonstrated almost always use a large amount
of rotation [TK92b].

This raises the obvious question: are any of the many structure from motion algorithms de-
veloped in the computer vision community of practical significance? Or, when we wish to perform
metrically accurate reconstructions from images, should be adopt the photogrammetrists’ approach
of using control points at known locations? This essentially reduces structure from motion to cam-
era pose estimation (and possibly calibration) followed by stereo reconstruction.

The situation is perhaps not that bad. For large object rotations, we can indeed recover accurate
reconstructions. Furthermore, for scene reconstruction, using cameras with large fields of view,
several camera mounted in different directions, or even panoramic images, should remove most of
the ambiguities. In any case, it would appear prudent to carefully analyze the expected ambiguities
and uncertainties in any structure from motion problem (or any other image-based estimation task)
before actually putting a method into practice.

The general approach developed in this technical report, i.e., eigenvalue analysis of the Hessian
(information) matrix appears to explain most of the known ambiguities in structure from motion.
However, there are certain ambiguities (e.g., depth reversals under orthography, or multiplicities of
solutions with few points and frames) which will not be detected by this analysis because they cor-
respond to multiple local minima of the cost function in the parameter space. Furthermore, analysis
of the information matrix can only predict the sensitivity of the resultsnallamounts of image
noise. Further study using empirical methods is required to determine the limitations of our ap-
proach.

Using the minimum eigenvalue to predict the overall reconstruction error may fail when the
dominant ambiguities are in the motion parameters (e.g., what appears to be happening under per-
spective for large motions). Computing thé/ S, error directly from the covariance matrix!
is more useful in these cases.

10.1 Futurework

In future work, we plan to compare results available with object-centered and camera-centered rep-
resentations (Equations 4-5). Our guess is that the former will produce estimates of better quality.
Similarly, we would like to analyze the effects of mis-estimating internal calibration parameters
such as focal length, and to study the feasibility of estimating them as part of the reconstruction
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process. The results presented here have assumed for now that feature points are visible in all im-
ages. Our approach generalizes naturally to missing data points. In particular, we would like to
study the effects feature tracks with relatively short lifetimes.

Finally, it appears that the portion of the uncertainty matrix which is correlated can be accounted
for by a small number of modes. This suggest that an efficient recursive structure from motion
algorithm could be developed which avoids the need for using full covariance matrices [THO93]
but which performs significantly better than algorithms which ignore such correlations.

11 Conclusions

This technical report has developed new techniques for analyzing the fundamental ambiguities and
uncertainties inherent in structure from motion. Our approach is based on examining the eigenval-
ues and eigenvectors of the Hessian matrix in order to quantify the nature of these ambiguities. The
eigenvalues can also be used to predict the overall accuracy of the reconstruction.

Under orthography, the bas-relief ambiguity dominates the reconstruction error, even with large
numbers of frames. This ambiguity disappears, however, for large object-centered rotations. For
perspective cameras, two-frame solutions are possible, but there must still be a large amount of ob-
ject rotation for best performance. Using three of more frames avoids some of the sensitivities asso-
ciated with two-frame reconstructions. Translations towards the object are an alternative source of
shape information, but these appear to be quite weak unless large fields of views and large motions
are involved.

When available, prior information about the structure or motion (e.g., absolute distances, per-
pendicularities) can be used to improve the accuracy of the reconstructions. Whether 3-D recon-
struction errors (for modeling) or motion estimation errors (for navigation) are most significant for
a given application determines the conditions which produce acceptable results. In any case, care-
ful error analysis is essential in ensuring that the results of structure from motion algorithms are
sufficiently reliable to be used in practice.
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A Approximate minimum eigenvalue computation

The eigenvalues of a matrix of the form
a? ab
ab b* + ¢

A — )\(a2 + 0+ 02) —a*c? =0,

are the solutions to

1
A= §(a2 + b0+t \/(a2 + b2 + )2 — 4a%c?)

orforc¢? <« a? + b?

a’c?

)\min N s
Cl2 _I_ b?

)\max ~ Cl2 + bz

Similarly, for a quadratic of the form

aX —bl+c=0
with ac < b?,
b—b? —4ac

%

SO

(53)

)\min —

2a
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To find the approximate minimum eigenvalue for the equiangular orthographic scanline camera,
we substitute the valugs ~ 3. 1 = Jy, S = 0°J,, E = 0J5, C' = J,, andS’ = 6% J,, into (37),

0 = OXN —(SCH+(S'C—E)X+CC'Z)A+ S(8'C — E)X +C(C'S — E*)Z
JoA2 = (Joda(0% + Z) + 02(JoJy — J2)X)A + 04Ty (Jods — JHX + 02Jo(J2 — J2)Z.

%

Using the approximation in (53), we obtain

04X Jy(Jods — J2)

)\min ~ .
TodoZ + O2[X (Jods — J2) + Joa]

(54)



