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Abstract

This technical report examines the fundamental ambiguities and uncertainties inherent in recov-

ering structure from motion. By examining the eigenvectors associated with null or small eigen-

values of the Hessian matrix, we can quantify the exact nature of these ambiguities and predict how

they affect the accuracy of the reconstructed shape. Our results for orthographic cameras show that

the bas-relief ambiguity is significant even with many images, unless a large amount of rotation

is present. Similar results for perspective cameras suggest that three or more frames and a large

amount of rotation are required for metrically accurate reconstruction.
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1 Introduction

Structure from motion is one of the classic problems in computer vision and has received a great

deal of attention over the last decade. It has wide-ranging applications, including robot vehicle

guidance and obstacle avoidance, and the reconstruction of 3-D models from imagery. Unfortu-

nately, the quality of results available using this approach is still often very disappointing. More

precisely, while the qualitative estimates of structure and motion look reasonable, the actual quan-

titative (metric) estimates can be significantly distorted.

Much progress has been made recently in identifying the sources of errors and instabilities in

the structure from motion process. It is now widely understood that the arbitrary algebraic manip-

ulation of the imaging equations to derive closed-form solutions (e.g., [LH81]) can lead to algo-

rithms that are numerically ill-conditioned or unstable in the presence of measurement errors. To

overcome this, statistically optimal algorithms for estimating structure and motion have been devel-

oped [SA89; WAH89; Hor90; TK92b; SK94]. It is also understood that using more feature points

and images results in better estimates, and that certain configurations of points (at least in the two

frame case) are pathological and cannot be reconstructed.

An example of an algorithm which generates very good results is the factorization approach of

Tomasi and Kanade [TK92b]. This algorithm assumes orthography and is implemented using an

object-centered representation and singular value decomposition. It uses many points and frames,

and for most sequences, a large amount of object rotation (usually	���). However, when only a

small range of viewpoints is present (e.g., the “House” sequence in [TK92b], Figure 7), the recon-

struction no longer appears metric (the house walls are not perpendicular).

In this technical report, we demonstrate that it is precisely this last factor, i.e., the overall ro-

tation of the object, or equivalently, the variation in viewpoints, which critically determines the

quality of the reconstruction. The ambiguity in object shape due to small viewpoint variation of-

ten looks like it might be aprojectivedeformation of the Euclidean shape, which is interesting—

several researchers have argued recently in favor of trying to recover only this projective structure

[Fau92; HGC92; MQVB92; Sha93]. In fact, we show that the major ambiguity in the reconstruction

is a simple depth scale uncertainty, i.e., the classicbas-reliefambiguity which exists for two-frame

structure from motion under orthographic projection [LH86].�

�The bas-relief ambiguity is even more pronounced in shape from shading, and forms the basis of classical friezes

and bas-relief sculptures.
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To derive our results, we use eigenvalue analysis of the covariance matrix for the structure and

motion estimates. This assumes that we can compute a near optimal solution, and that the error in

the solution is due to linear perturbations arising from small amounts of image noise (feature point

mislocalization). This kind of analysis has not previously been applied to structure from motion,

and yet it is a very powerful way to predict the ultimate performance of structure from motion al-

gorithms.

Our results are significant for two reasons. First, we show how to theoretically derive the ex-

pected ambiguity in a reconstruction, and also derive some intuitive guidelines for selecting imag-

ing situations which can be expected to produce reasonable results. Second, since the primary am-

biguities are very well characterized by a small number of modes, this information can be used to

construct better on-line (recursive) estimation algorithms.

Our technical report is structured as follows. After reviewing previous work, we present our

formulation of the structure from motion problem and develop our technique for analyzing ambi-

guities using eigenvector analysis of the information (Hessian) matrix. We then present the results

of our analysis for a series of camera models: 1-D and 2-D orthographic cameras, and 1-D and 2-D

perspective cameras. We conclude with a discussion of the main sources of errors and ambiguities,

and directions for possible future work.

2 Previous work

Structure from motion has been extensively studied in computer vision. Early papers on this sub-

ject [LH81; TH84] develop algorithms to compute the structure and motion from a small set of

points matched in two frames using anessential parameterapproach. The performance of this ap-

proach can be significantly improved using non-linear least squares (optimal estimation) techniques

[WAH89; WAH93; SA89; Hor90; SA91].

Recent research focuses on extraction of shape and motion from longer image sequences [KTJ89;

DA90; CWC90; TK92b; CT92]. Cui, Weng, and Cohen [CWC90] use an optimal estimation tech-

nique (non-linear least squares) between each pair of frames, and an extended Kalman filter to accu-

mulate information over time (see also [THO93; SPFP93]). Azarbayejaniet al. [AHP93] also use a

Kalman filter-based approach to recover rigid (object-centered) depth and motion directly from the

sequence of image measurements. Tomasi and Kanade [TK92b] use a factorization method which

extracts shape and motion from an image stream without computing camera-centered depth. Their



3 Problem formulation and uncertainty analysis 3

approach formulates the shape from motion problem in object-centered coordinates, assumes or-

thography, and processes all of the frames simultaneously. Chen and Tsuji [CT92] relax the as-

sumption of orthography by analyzing the image sequence through its temporal and spatial subparts.

Taylor and Kriegman [TKA91; TK92a] formulate the shape from motion task as a non-linear least

squares problem in which the Euclidean distance between the estimated and actual positions of the

points in the image sequence is minimized using the Levenberg-Marquardt algorithm. Szeliski and

Kang [SK94] extend this approach approaches to general 3-D structure and also to projective struc-

ture and motion recovery.

Another line of research has addressed recovering affine [KvD91; SZB93] or projective [Fau92;

HGC92; HG93; MVQ93] structure estimates. Most of these techniques rely on identifying and

tracking a small number of feature points in the image sequence, using these points to form a basis

set for the geometric description, and also only use 2 frames to recover the geometry. However,

Mohr et al. [MVQ93] and Szeliski and Kang [SK94] use as many points and frames as possible to

recover the geometry and motion, thus producing more reliable estimates.

The nature of structure and motion errors, which is the main focus of this technical report, has

also previously been studied. Wenget al. perform some of the earliest and most detailed error anal-

yses of the two-frame essential parameter approach [WAH89; WAH93]. Adiv [Adi89] and Young

and Chellappa [YC92] analyze continuous-time (optical flow) based algorithms using the concept

of the Cramer-Rao lower bound. Oliensis and Thomas [OT91; THO93] show how modeling the

motion error can significantly improve the performance of recursive algorithms.

In this technical report, we extend these previous results using an eigenvalue analysis of the

covariance matrix. This analysis can pinpoint the exact nature of structure from motion ambiguities

and the largest sources of reconstruction error. We also focus on multi-frame optimal structure from

motion algorithms, which have not been studied in great detail.

3 Problem formulation and uncertainty analysis

Structure from motion can be formulated as the recovery of a set of 3-D structure parameterspi

and time-varying motion parametersmj from a set of observed image featuresuij . In this section,

we present the forward equations, i.e., the rigid body and perspective transformations which map

3-D points into 2-D image points. We also show how the Jacobians of the forward equation can

be used to estimate the inverse covariance matrix for the parameters being recovered, how this can
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be used to quantify expected reconstruction errors, and how our results relate to classical structure

from motion ambiguities.

3.1 Problem formulation

The equation which projects theith 3-D pointpi into thejth frame at locationuij is

uij � P �T �pi�mj

 � (1)

The perspective projectionP (defined below) is applied to a rigid transformation

T �pi�mj
 � Rjpi � tj� (2)

whereRj is a rotation matrix andtj is a translation applied after the rotation. A variety of alternative

representations are possible for the rotation matrix [Aya91]. In this technical report, we primarily

use a quaternionq � �w� �q�� q�� q�
� representation, with a corresponding rotation matrix

R�q
 �

�
BBB�

� � 
q�� � 
q�� 
q�q� � 
wq� 
q�q� � 
wq�


q�q� � 
wq� �� 
q�� � 
q�� 
q�q� � 
wq�


q�q� � 
wq� 
q�q� � 
wq� � � 
q�� � 
q��

�
CCCA (3)

since this representation has no singularities. The rotation parametersq�� q�� q� also have a natural

interpretation (for small values) as the half-angles of rotation around thex, y, andz axes. For our

one-dimensional examples, we use the rotation angle around the vertical axis.

The standard perspective projection equation used in computer vision is

�
� u

v

�
A � P�

�
BBB�

x

y

z

�
CCCA �

�
� f x

z

f y

z

�
A � (4)

wheref is a product of the focal length of the camera and the pixel scale factor (assuming that pixels

are square). An alternative object-centered formulation, which we introduced in [SK94] is

�
� u

v

�
A � P�

�
BBB�

x

y

z

�
CCCA �

�
� s x

���z

s y

���z

�
A � (5)
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uij

ip

mj

m
0

0

j

Figure 1: Sample configuration of cameras (mj), 3-D points (pi), image planes(�j), and screen

locations (uij)

Here, we assume that the�x� y� z
coordinates before projection are with respect to a reference frame

�j that has been displaced away from the camera by a distancetz along the optical axis, withs �

f�tz and� � ��tz (Figure 1). The projection parameters can be interpreted as ascale factorand�

as aperspective distortion factor. Our alternative perspective formulation allows us to model both

orthographic and perspective cameras using the same model.

A variety of techniques (reviewed in Section 2) can be used to estimate the unknownsfpi�mjg
from the given image measurementsfuijg. In our previous work [SK94], we used the iterative

Levenberg-Marquardt algorithm, since it provides a statistically optimal solution [WAH89; SA89;

TK92a; SK94]. The Levenberg-Marquardt method is a standard non-linear least squares technique

[PFTV92] which directly minimizes a merit or objective function

C�a
 �X
i

X
j

cij j�uij � fij�a
j� � (6)

where�uij is the observed image measurement,fij�a
 � u�pi�mj
 is given in (1), and the vector

a contains all of the unknown structure and motion parameters, including the 3-D pointspi, the

motion parametersmj, and any additional unknown calibration parameters. The weightcij in (6)

describes the confidence in measurementuij , and is normally set to the inverse variance���ij (it can
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be set to zero for missing measurements).

3.2 Uncertainty analysis

Regardless of the solution technique, the uncertainty in the recovered parameters—assuming that

image measurements are corrupted by small Gaussian noise errors—can be determined by comput-

ing the inverse covariance orinformationmatrixA [Sor80]. This matrix is formed by computing

outer products of theJacobiansof the measurement equations

A �
X
i

X
j

cij
�fTij
�a

�fij
�aT

� (7)

For notational succinctness, we use the symbol

Hij �

�
��

�fTij

�pi
�fT

ij

�mj

�
��

to denote the non-zero portion of the full Jacobian
�fTij

�a
.

If we list the structure parametersfpig first, followed by the motion parametersfmjg, theA

matrix has the structure

A �

�
� Ap Apm

AT
pm Am

�
� � (8)

The matricesAp andAm are block diagonal, with diagonal entries

Api �
X
j

�fTij
�pi

�fij
�pTi

and Amj
�
X
i

�fTij
�mj

�fij
�mT

j

� (9)

respectively (assumingcij � �), whileApm is dense, with entries

Apimj
�

�fTij
�pi

�fij
�mT

j

� (10)

The information matrix has previously been used in the context of structure from motion to de-

termineCramer-Rao lower boundson the parameter uncertainties by taking the inverse of the diag-

onal entries [Adi89; YC92]. The Cramer-Rao bounds, however, can be arbitrarily weak, especially

whenA is singular or near-singular. In this technical report, we use eigenvector analysis ofA to

find the dominant directions in the uncertainty (covariance) matrix and their magnitudes, which

gives us more insight into the exact nature of structure from motion ambiguities.
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3.3 Estimating reconstruction errors

An important benefit of uncertainty analysis is that we can easily quantify the expected amount of

reconstruction (and motion) error for an optimal structure from motion algorithm. For example, the

expected sum of squared error in reconstructed 3-D point positions is

S�
pos �

	X
i

k �pi � p�i k�


� (11)

where �pi are the estimated (recovered) positions andp�i the true positions. The positional uncer-

tainty matrixCp can be computed by invertingA and looking at its upper left block (the block

corresponding to thepi variables).� If we perform an eigenvalue analysis ofCp, we obtain

Cp � ET
p�pEp� (12)

whereEp is the matrix of eigenvectors, and�p is the diagonal matrix containing the eigenvalues

of Cp. SinceS�pos is a Euclidean norm, its value is unaffected by orthogonal coordinate transfor-

mations such asEp. The value ofS�pos can thus be computed as either the trace ofCp or the trace

of �p, i.e., the sum of the eigenvalues ofCp.

In practice, we do not need to computeCp. Instead, the sum of squared reconstruction and

motion error,

S�
all �

	X
i

k �pi � p�i k� �
X
j

k �mj �m�

jk�


� (13)

can be computed directly summing theinverseeigenvalues of the information matrixA. By choos-

ing an appropriate scaling for the parameters being estimated (say scaling positions to be in the

range����� � � � ���� and rotations in the range��	 � � � 	�), we can make the mean ofSall be close

to the mean ofSpos. Note that for general 3-D camera motion, positional errors in the motion esti-

mates will be on the same scale as 3-D reconstruction errors, and may sometimes dominate (if the

absolute distance of the camera is ill determined).

What is the advantage of this approach, if computing eigenvalues is just as expensive as invert-

ing matrices? First, we can compute the first few eigenvalues more cheaply (and in less space) than

the matrix inverse, and these tend to dominate the overall reconstruction error. Second, it justifies

the approach in the technical report, which is to look at the minimum eigenvalue as the prime in-

dicator of reconstruction error. We can therefore study how much certain ambiguities (such as the

�Note that this isnot the same as simply invertingAp.
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bas-relief ambiguity) contribute to the overall reconstruction error. We can also obtain much tighter

lower bounds on the reconstruction error than would be possible by using the Cramer-Rao bounds.

3.4 Ambiguities in structure from motion

Because structure from motion attempts to recover both the structure of the world and the camera

motion without any external (prior) knowledge, it is subject to certain ambiguities. The most fun-

damental (but most innocuous) of these is the coordinate frame (also known as pose, or Euclidean)

ambiguity, i.e., we can move the origin of the coordinate system to an arbitrary place and pose and

still obtain an equally valid solution.

The next most common ambiguity is the scale ambiguity (for a perspective camera) or the depth

ambiguity (for an orthographic camera). This ambiguity can be removed with a small amount of

additional knowledge, e.g., the absolute distance between camera positions.

A third ambiguity, and the one we focus on in this technical report, is thebas-relief ambiguity.

In its pure form, this ambiguity occurs for a two frame problem with an orthographic camera, and

is a confusion between therelative depthof the object and the amount of object rotation. In this

technical report, we focus on theweakform of this ambiguity, i.e., the very largebas-relief uncer-

taintywhich occurs with imperfect measurements even when we use more than two frames and/or

perspective cameras. A central result of this technical report is that the bas-relief ambiguity cap-

tures the largest uncertainties arising in structure from motion. However, when examined in detail,

it appears that a larger class of deformations (i.e., projective) more fully characterizes the errors

which occur in structure from motion.

To characterize these ambiguities, we will use eigenvector analysis of the information matrix,

as explained in Section 3.2. Absolute ambiguities will show up as zero eigenvalues (unless we add

additional constraints or knowledge to remove them), whereas weak ambiguities will show up as

small eigenvalues.

4 A two parameter example

To develop an intuitive understanding of the basic bas-relief ambiguity, we start with a simple two-

parameter example. Assume that we have an orthographic scanline camera which measures thex

component of 2-D points�x� z
. Furthermore, assume that we already know the shape up to a scale
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(a) Noise-free (b) Noise = 0.01 (c) Contour plot

Figure 2: Constraint lines and energy surface for simple two-parameter example. Thex-axis is the

angle�� and they-axis is the scale factora.

factor in depth,

pi � �xi� azi


and that the rotation angles are uniform,

�j � j���

The projection equation is then

uij � cjxi � sjazi (14)

with cj � cos �j andsj � sin �j.

What happens when we try to estimate the scale factora and the angle�� from a set of noisy

measurementsfuijg? First, let’s examine the very simplest case, which is a single point, say at

�x� z
 � ��� �
. Each new image gives us a constraint of the form

cj � asj � c�j � a�s�j � nj (15)

wherec�j , s
�

j , anda� are the true values andnj is random noise. Figure 2a shows the two constraint

lines forj � �� assuming the noise-free case (witha � � and�� � ��� rad). Figure 2b shows

the constraint lines forn�� � n� � ����. As can be seen, the estimate for���� a
 is very sensitive

to noise. This can also be seen in the contour plot of the energy surface (Figure 2c) which can be

computed by summing the constraints in (15).
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To characterize the shape of the error surface near its minimum, we compute the information

matrixA. The Jacobian for�a���
 is straightforward,

Hij �

�
� �uij

�a
�uij

���

�
� �

�
� �sjzi
�j�acjzi � sjxi


�
� � �j

�
� ��zi

azi � j��xi

�
� (16)

if we assume small rotation angles,j�jj � �, so thatsj � j�� andcj � �. The inverse covariance

(information) matrix is then

A � J�Z

�
� ��� a��

a�� a� ���� J�X
J�Z

�
� (17)

whereJ� �
P

j j
�, J� �

P
j j

�, X �
P

i x
�
i , andZ �

P
i z

�
i (assuming that

P
j j � �). Assuming

that��� � a�, we can compute (Appendix A) the approximate eigenvalues ofA as

�min � ���J�X�a
� and �max � J�Za

�� (18)

The eigenvalues of the information matrix describe an “elliptic” approximation to the error sur-

face (and hence posterior probability distribution), which matches the true “banana shaped” surface

near the optimal solution but not far away from it. To determine if the additional nonlinearities in

the reconstruction process result lower or higher overall uncertainties than those predicted by the

information matrix, we would have to resort to numerical simulations. In practice, we expect these

secondary effect to be much smaller than the large variations in eigenvalues which explain most of

the uncertainties (ambiguities) associated with structure from motion.

5 Orthography: single scanline

Let us now turn to a true structure from motion problem where both the structure and motion are

unknown. For simplicity, we analyze the orthographic scanline camera first, where the unknowns

are the 2-D point positionspi � �xi� zi
 and the rotation angles�j.� The imaging equations are

uij � cjxi � sjzi (19)

with cj � cos �j andsj � sin �j.

�We do not estimate the horizontal translation since it can be determined from the motion of the centroid of the

image points [TK92b].
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The Jacobian for the 1-D orthographic camera is

Hij �
h

�uij

�xi

�uij

�zi

�uij

��j

iT
�
h
cj �sj ��cjzi � sjxi


iT
� (20)

and the entries in the information matrix are

Api �

�
� P

j c
�
j �Pj cjsj

�Pj cjsj
P

j s
�
j

�
� �

�
� C �D
�D S

�
� � (21)

Apimj
�

�
� �c�jzi � cjsjxi

cjsjzi � s�jxi

�
� � (22)

Amj
�

h P
i�cjzi � sjxi


�
i
�
h
c�jZ � 
cjsjW � s�jX

i
� (23)

with C �
P

j c
�
j , D �

P
j cjsj, S �

P
j s

�
j , Z �

P
i z

�
i , W �

P
i zixi, andX �

P
i z

�
i .

Before analyzing the complete information matrix, let us look at the two subblocksAp andAm.

If we know the motion, the structure uncertainty is determined byApi and is simply the triangula-

tion error, i.e.,��x � C�� and��z � S�� (note that for small rotations,��x is generally much smaller

than��z ). If we know the structure, the motion accuracy is determined byAmj
and is inversely

proportional to the variance in depth along the viewing direction�sj� cj
.

What about ambiguities in the solution? Under orthography, the traditional scale ambiguity does

not exist. However, translations along the optical axis cannot be estimated, and an overall pose

(coordinate frame) ambiguity still exists. Unless we add some additional constraints, we can always

rotate the coordinate system by a�� and add the same amount to thef�jg. This manifests itself as

the null (zero eigenvalue) eigenvector

e� �
h
z� �x� � � � zN �xN � � � � �

iT
�

5.1 Two frames: the bas-relief ambiguity

Let us say we only have two frames, and we have fixed�� � �� c� � �� s� � �� �� � �� c� � c� s� �

s (Figure 3). Then

Api �

�
� � � c� �cs

�cs s�

�
� (24)

Apim �

�
� �c�zi � csxi

cszi � s�xi

�
� (25)

Am �
h
c�Z � 
csW � s�X

i
� (26)
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(a) stationary first frame (b) antisymmetric cameras

Figure 3: Orthographic projection, two frames.

The solid lines indicate the viewing rays, while the thin lines indicate the optical axes and image

planes. The diagonal dashed lines are the displaced viewing rays, while the ellipses indicate the

positional uncertainty in the reconstruction due to uncertainty in motion (indicated as
�).

The bas-relief ambiguity manifests itself as a null eigenvector

e� �
h
� cz� � sx� � � � � czN � sxN �s

iT
�

as can be verified by inspection. This is as we expected, i.e., the primary uncertainty in the structure

is entirely in the depth (z) direction, and is a scale uncertainty (proportional toz). Note however

that this uncertainty is proportional tocz� sx rather thanz, as can be seen by inspecting Figure 3a.

An alternative parameterization of the two-frame problem is to set�� � ��� (Figure 3b), in

which case we have

Api �

�
� 
c� �

� 
s�

�
� (27)

Apim �

�
� �
csxi


cszi

�
� (28)

Am �
h

c�Z � 
s�X

i
� (29)
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In this case, the null eigenvector is

e� �
h
s�x� �c�zi � � � s�xN �c�zN cs

iT
� (30)

This is also very illuminating. It shows that the primary effect of the bas-relief ambiguity is a

“squashing” of thez values for a small increase in motion, with a much smaller “bulging” in thex

values (at least for small inter-frame rotations).� This squashing and bulging is an affine deforma-

tion of the true structure.

5.2 More than two frames, equi-angular motion constraint

To simplify the analysis, we assume for the moment that we know we have an equi-angular image

sequence, i.e., that the rotation angles are given by�j � j��, j � f�J� � � � � Jg, J � F��

�
, where

F is the total number of frames (imagine Figure 3b with more cameras). In this case, we have

HT
ij �

h
cj �sj �j�cjzi � sjxi


i
(31)

Api �

�
� Pj c

�
j �

�
P

j s
�
j

�
� �

�
� C �

� S

�
� � (32)

Apim �

�
� �Pj jcjsjxiP

j jcjsjzi

�
� �

�
� �Exi

Ezi

�
� � (33)

Am �
h P

j j
�c�jZ �

P
j j

�s�jX
i
�
h
C �Z � S�X

i
� (34)

with E �
P

j jcjsj , C
� �

P
j j

�c�j , S
� �

P
j j

�s�j , andC�D� S� Z�W�X defined as in (22–23). In

this case, the smallest eigenvalue eigenvector has the form

e� �
h
�x� ��z� � � � �xN ��zN �

iT
� (35)

This will be an eigenvector if we can satisfy the matrix equationAe � �e, i.e.,

�
� Ap Apm

AT
pm Am

�
�

�
����������

�x�

��z�
...

��zN
�

�
����������
� �

�
����������

�x�

��z�
...

��zN
�

�
����������
�

�Note that compared to the previous example where frame 0 was fixed, the total interframe rotation is now��.
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which reduces to the following three equations:

�C � E � ��

�S � E � ��

�S� � �E
X � �C � � �E
Z � ��

Substituting� � E

C��
and� � E

S��
into the third equation, we obtain a cubic in�,

�S � �
�S��C � �
� E�
X � �C � �
�C ��S � �
� E�
Z � �S � �
�C � �
� � �� (36)

which can be solved analytically using a package such asMathematicaR� [Wol91].

Assuming that the smallest eigenvalue is very small, we can use the approximation� � E

C
to

obtain a quadratic in�,

�S � �
�S�C � E�
X � C�C ��S � �
� E�
Z � �S � �
C� � �� (37)

Furthermore, using the small angle approximations,C � P
j � � J�, S � ���J�, E � ��J�,

C � � J�, andS� � ���J�, we obtain after some manipulation (Appendix A)

�min � ���XJ��J�J� � J�� 


J�J�Z �����X�J�J� � J�� 
 � J�J��
� (38)

Notice that the minimum eigenvalue is related to the fourth power of��, i.e., doubling the inter-

frame rotation reduces the RMS (root mean square) error by a factor of 4 (assuming thatZ 	 ���).

Increasing the extent of thexi compared to thezi directly increases the minimum eigenvalue, i.e.,

it decreases the structure uncertainty. This result is somewhat surprising, and suggests that flatter

objects can be reconstructed better.

We can numerically compute the values of� for a range ofJ and�� values (Figure 4). For ex-

ample, withJ � �,�� � ��� rad� ��, andX � Z � �, we have� � f����������	�� �������� 	����	g.
For the smallest eigenvalue,� � ����������	�, we have a corresponding� � ��������� and

� � �������.

Once the smallest eigenvalue and eigenvector have been computed, we can easily determine

some additional eigenvectors. Any vector which consists purely ofxi or zi values which is also

orthogonal toApm is an eigenvector, e.g.,

e �
h
x� � �x� � � � � � �

i
�
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Figure 4: Plot oflog�� �min as a function ofJ � ��� �� and�� � ����� ����.

�min F � � F � � F � � F � � F � � F � � F � �

�tot � ����� 	�						 	�				�� 	�				�
 	�				�� 	�				
� 	�			�	� 	�			���

�tot � ���
� 	�						 	�		�	�� 	�		���� 	�		���� 	�		���� 	�		���� 	�		���	

�tot � ����� 	�						 	�		���� 	�		��
� 	�		���� 	�		�
�� 	�		��
� 	�		
��


�tot � ��
�

	�						 	�	����� 	�	�
��� 	�	����� 	�	���
� 	�	����� 	�	�����

�tot � �	
�

	�						 	�	����
 	�	����� 	�	�
��� 	�	����� 	�	��	�� 	�	����


�tot � 
	
�

	�						 	����
�� 	������� 	�����		 	���		�
 	�����		 	����

�

Table 1: Minimum eigenvalues for 1-D orthographic known equi-angular motion

The eigenvalues corresponding to the purex eigenvectors areC, while thez eigenvalues areS.

In other words, once the global bas-relief uncertainty has been accounted for (squashing inz and

smaller bulging inx), the variance inx position estimates is proportional toC�� and inz positions

is proportional toS��, i.e., exactly the expected triangulation error for known camera positions.

For the above example withJ � � (3 frames),�� � ��� rad � ��, andX � Z � �, the

values forC andS are
��� and������, respectively. From this, we see that the correlated depth

uncertainty due to the motion uncertainty is a factor of����������������� � 	�� times greater than

the individual depth uncertainties. A full table of�min as a function ofF � 
J �� (the number of

frames) and�tot � �F � �
�� (the total rotation angle) is shown in Table 1.



16 5 Orthography: single scanline

�min F � � F � � F � � F � � F � � F � � F � �

�tot � ����� 	�						 	�				�� 	�				�
 	�				�� 	�				
� 	�			�	� 	�			���

�tot � ���
� 	�						 	�		�	�	 	�		���� 	�		��
� 	�		���� 	�		���� 	�		����

�tot � ����� 	�						 	�		���� 	�		���� 	�		�
�� 	�		���
 	�		���� 	�		����

�tot � ��
�

	�						 	�	����	 	�	���
� 	�	�	��� 	�	����� 	�	����� 	�	��
��

�tot � �	
�

	�						 	�	����� 	�	����� 	�	����� 	�	����� 	�	�	��
 	�	���
�

�tot � 
	
�

	�						 	������
 	������
 	������
 	������� 	��	���� 	���
���

Table 2: Minimum eigenvalues for 1-D orthographic equi-angular motion with no constraint

5.3 More than two frames, without motion constraint

If we take the same data set as above, but remove the additional knowledge of equi-angular steps,

we end up solving for each motion (angle) estimate separately. The equations forApi,Apimj
, and

Amj
are given in (22–23), withD � �. Let us guess that the bas-relief ambiguity eigenvector has

the form

e� �
h
�x� ��z� � � � ��zN �J � � � J

iT
� (39)

The requirements for this to be an eigenvector are similar to those we derived before,

�C � E � �� (40)

�S � E � �� (41)

c�j �jZ � �W 
 � cjsj�
jW � �X � �Z
 � s�j �jX � �W 
 � �j� (42)

In this case, we do not have a closed form solution, since we have
J �	 equations in 3 unknowns.

However, if we assume a small angle approximation andW � � (i.e., that the 3-D point cloud is

rotationally symmetric with respect to the middle frame), then the
J�� equations of the form (42)

are equivalent and we get the same eigenvectors as with the known equiangular motion constraint.

This behavior can be verified numerically (Table 2), where the results are quite similar to those

shown in Table 1. To obtain these results, we computed theA matrix explicitly using a set of 9

points sampled on the unit square, i.e.,f�x� z
� x� z � f��� �� �gg, and then computed the eigen-

values. Note, however, that for an example whereW 
� �, i.e., by adding one additional point at

�
� 

 to the previous example, we get an eigenvector which is not of the form hypothesized in (39).

It is, however, an affine transform of the�xi� zi
 coordinates.
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Sall F � � F � � F � � F � � F � � F � � F � �

�tot � ����� � ������ �����	 �	���� �	���	 

��� 
���	

�tot � ���
� � ����� �
��� ���	� ����	 ����� �����

�tot � ����� � ����� ����� ����� ����� ���	
 �����

�tot � ��
�

� 
��� ���� ���	 ��
� ���� ����

�tot � �	
�

� ��	� ���� ���� ��	� ���� ����

�tot � 
	
�

� ��
� ���� ���� ���� ��

 ����

Table 3:Sall estimates for 1-D orthographic equi-angular motion with no constraint,X � Z � ���,

� � �.

We can also estimate the expected reconstruction errorSall by summing the inverse eigenval-

ues. Using the same parameters as for Table 2, but withX � Z � ��� to make structure errors

dominate, we obtain the results in Table 3. This table shows how the bas-relief ambiguity dominates

the reconstruction error. At small viewing angles, doubling the angle results in a fourfold reduction

in the sum of squared errorSall. Adding more frames is much less effective than increasing the

effective baseline of the system.

6 Orthography: full 3-D reconstruction

The situation with a regular orthographic camera (2-D retina, 3-D world) is quite similar to the

scanline camera. In this case, we use unit quaternions to represent the rotation matrices,

uij � r��jxi � r��jyi � r��jzi (43)

vij � r��jxi � r��jyi � r��jzi� (44)

where the entries in the rotation matrixrkl are given in (3).

To obtain a qualitative feel for the bas-relief ambiguity, let us examine the known equiangular

motion case with a small amount of rotation around a fixed axis (say in they-z plane),

qj � ��� ��� jq�� jq�
�� (45)

whereq� is the incremental rotation around they axis, andq� is the rotation about thez (optical)
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axis. As before, we ignore camera translations under orthography, since these can be recovered

from the motion of the point centroid.

The Jacobian matrix is now

HT
ij �

�
� �uij

�xi

�uij

�yi

�uij

�zi

�uij

�q�

�uij

�q�
�vij

�xi

�vij

�yi

�vij

�zi

�vij

�q�

�vij

�q�

�
� (46)

�
�
� � 
jq� �
jq� ��j�q�xi � 
jzi ��j�q�xi � 
jyi

�
jq� � 
j�q�q� 
j�q�zi �
jxi � �j�q�yi � 
j�q�zi

�
� � (47)

The entries in the information matrix are

Api �

�
����
J� � �

� J� �
J�q�q�

� �
J�q�q� �J�q��

�
���� � (48)

Apimj
�

�
����
��J�q�xi �
J�q�xi

�
J�q�zi 
J�q�zi

�J�q�zi ��J�q�yi

�
���� � (49)

Amj
�

�
� �J�

P
i z

�
i ��J�

P
i yizi

��J�
P

i yizi �J�
P

i�x
�
i � y�i 


�
� � �J�

�
� Z W �

W � X � Y

�
� � (50)

with Y �
P

i y
�
i , W

� �
P

i yizi, and other terms as defined before.

These equations are similar to those for the orthographic scanline camera (22–23), withC � J�,

S � J�q
�
�, E � J�q�, andC � � J�. In the absence of positional uncertainty, the accuracies of

theq� andq� estimates (A��
mj

) are inversely proportional toZ andX � Y , respectively, as is to be

expected. Similarly, with known motion, the triangulation error (A��
pi

) are inversely proportional

to the number of framesJ� for x andy, and proportional to the squared rotation angleJ�q
�
� for z.

Notice that a non-zero tilt of the rotation axis (q� 
� �) confounds some of they andz positional

uncertainties.

Instead of trying to find an analytical solution to the eigenvalue problem, we present a brief ex-

ample showing the dependence of�min onq� andq� (Table 4). For this example, we used a 15-point

data set consisting of the 8 corners of a unit cube, the 6 cube faces, and the origin. The eigenvalues

for the no-tilt case (q� � �) are almost identical to the results of 1-D analysis (Table 2). The eigen-

values for the tilted case (q��q� � tan 	��) are similar in shape but show the effect of the overall

decrease inq� values. By examining the eigenvectors (not shown here), we observe that forboth

cases, the minimum eigenvector has noy components.
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�min F � � F � � F � � F � � F � � F � � F � �

�tot � ����� 	�						 	�				�� 	�				�
 	�				�� 	�				
� 	�			�	� 	�			���

�tot � ���
� 	�						 	�		�	
� 	�		���� 	�		���	 	�		���� 	�		���� 	�		��
�

�tot � ����� 	�						 	�		���� 	�		��	� 	�		���
 	�		���� 	�		���� 	�		
	��

�tot � ��
�

	�						 	�	����� 	�	����� 	�	����� 	�	����� 	�	����� 	�	���		

�tot � �	
�

	�						 	�	����� 	�	����� 	�	����� 	�	�

�� 	�	��	�� 	�	�����

�tot � 
	
�

	�						 	������
 	��	��	� 	���	��� 	������� 	������	 	������


Table 4: Minimum eigenvalues for 2-D orthographic equi-angular motion with no constraint, rota-

tion aroundy axis (q� � sin
�j

�
, q� � �).

�min F � � F � � F � � F � � F � � F � � F � �

�tot � ����� 	�						 	�				�� 	�				�� 	�				�� 	�				�� 	�				�� 	�				��

�tot � ���
� 	�						 	�			��	 	�			��� 	�			
�� 	�		�	�� 	�		���� 	�		����

�tot � ����� 	�						 	�		���� 	�		��
� 	�		�
�
 	�		���� 	�		��
� 	�		����

�tot � ��
�

	�						 	�	���	� 	�	����� 	�	����	 	�	����� 	�	��
�
 	�	���	�

�tot � �	
�

	�						 	�	��
�� 	�	����	 	�	��
�	 	�	����	 	�	����	 	�	�����

�tot � 
	
�

	�						 	���	�		 	���	��� 	��		��� 	��
��	� 	������� 	�������

Table 5: Minimum eigenvalues for 2-D orthographic equi-angular motion with no constraint, rota-

tion aroundy axis tilted	�� (q� � cos 	�� sin �j

�
, q� � sin 	�� sin �j

�
).

7 Perspective: single scanline

Before analyzing the perspective camera in 3-D, let us briefly look at a perspective scanline (1-D)

camera. We can use this model to develop some intuitions, but unfortunately we cannot use it to

predict the performance of the full two-frame algorithm, since even under perspective, the scanline

camera has a bas-relief ambiguity. This can be shown by a simple parameter counting argument:

there are
N unknowns for the 2-D coordinatesf�xi� zi
g and 1 (or more) unknowns for the motion,

but only
N measurements. In other words, we can place the cameras arbitrarily, and the intersec-

tions of the optical rays will determine the location of the 2-D points. This argument obviously does

not carry over to 3-D, but it is suggestive of why two-frame structure from motion may be poorly
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�min F � � F � � F � � F � � F � � F � � F � �

�tot � ����� 	�						 	�				�	 	�				
� 	�			�	� 	�			��� 	�			��� 	�			���

�tot � ���
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Table 6: Minimum eigenvalues for 1-D perspective projection, equi-angular rotation,� � ��
.

conditioned.

The projection equation for a scanline camera, using the new projection model introduced in

(5), is

uij �
cjxi � sjzi � txj

� � ��sjxi � cjzi � tzj

�

Nij

Dij

� (51)

The Jacobian matrix is

HT
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h
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(52)

�
�

Dij

h
cj � �sj�uij ��sj � �cj�uij
 ��sjxi � cjzi � ��cjxi � sjzi
�uij
 � ���uij

i

where�uij is the predicted value ofuij computed by (51). In addition to the usual coordinate frame

ambiguity, we have a scale ambiguity, i.e., the�xi� zi
 andtxj can be multiplied by a factora, andtzj
can be set toatzj ��a� �
��, without affecting the solution. As mentioned above, a full bas-relief

ambiguity also exists for 2 frames.

Rather than continuing our analysis with the construction of the Hessian matrixA, let us just

look briefly at the form ofHij. In addition to the terms already present under orthography (20), we

have the extra terms involving�, as well as the partial with respect totzj . These additional terms

are what will, in full 3-D, enable the two-frame problem to be solved by removing the bas-relief

ambiguity.

To see the effects of using a perspective camera instead of an orthographic camera, we show

in Table 6 the minimum eigenvalue as a function of total viewing angle and number of frames.

Compared to Table 2, we see that there is a small, but not dramatic, improvement in the size of

�min.
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Table 7: Minimum eigenvalues for 3-D perspective projection, equi-angular rotation aroundy axis,

� � ���.

8 Perspective in 3-D

Let us finally analyze the most interesting case, that of a perspective camera operating in a 3-D

environment. Here, we know that the two-frame problem has a solution, although our results on

the simpler camera models suggest that the reconstructions may be particularly sensitive to noise.

The forward imaging equations are given in (1–3) and (5). We will not bother deriving the Ja-

cobian and Hessian matrices here, as they are complex and not particularly informative. Instead,

we present some numerical results on�min andRMSpos and discuss their significance. (Note that

RMSpos � Spos�
p
n, wheren is the number of points.) These results were obtained using the

MathematicaR� package [Wol91], by analytically differentiating the forward projection equations,

and then substituting in the known structure and motion parameters. Numerical eigenvalue analysis

was then used to obtain our results. For these examples, we used the 15 points sampled on the unit

cube described in Section 6.

We present results for two special cases: pure object-centered rotation (which in camera-centered

coordinates is actually both rotation and translation), and pure forward translation. Ignoring the ef-

fects of motion across the retina, these two cases capture the basic motion cues available to structure

from motion.

8.1 Pure object-centered rotations

To compute the minimum eigenvalue results, we used the same approach as for the orthographic 3-D

camera (Section 6). The computed eigenvalues are shown in Table 7. Compared to the orthographic
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Table 8: Minimum eigenvalues for 3-D perspective projection, equi-angular rotation aroundy axis,

two frames (F � 
), varying�. � is the camera’s field of view.

case (Table 4), we see some striking differences. First, the two-frame problem is now soluble (up

to a scale ambiguity, of course). Second, for small viewing angles, there is marked improvement

even for multiple frames. Third, the results for large viewing angles with small�’s are significantly

inferior to the orthographic results. This appears to be caused by ambiguities in camera motion

along the optical axis (tz), which are neglected in the orthographic case.

This table only shows us the results for a particular value of�. The dependence of�min on� is

presented in Tables 8 and 9 for the two and three frame problems. In these tables, the fields of view

equivalent to each� were computed from the horizontal spread of the data points on the unit cube

and the distance of the cube from the camera��� using the formula� � 
 tan�� �

���
. As can be

seen for the two-frame case, doubling the amount of perspective distortion� results in a fourfold

increase in�min (and hence a halving of the RMS error). For the three-frame case, the results are

less sensitive to�.

What does a typical minimum eigenvector look like? Figure 5 shows the eigenvector corre-

sponding to the three-frame problem with� � ��� and�tot � �����. As we can see, the majority of

the ambiguity is indeed a depth scaling. Notice, however, that the eigenvector is not a pure affine

transform of the 3-D coordinates, since the tips of the vectors in a given row do not form a straight

line (this has also been verified numerically). Our conjecture is that the minimum eigenvector may

be aprojectivetransformation of the 3-D points, i.e., that the main ambiguity is projective, but we

have not yet found a proof for this conjecture.

How do the 3-D (position) errorsRMSpos vary with the number of frames and viewing angle?
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Table 9: Minimum eigenvalues for 3-D perspective projection, equi-angular rotation aroundy axis,

three frames (F � 	), varying�. � is the camera’s field of view.
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Table 10:RMSpos for 3-D perspective projection, equi-angular rotation aroundy axis,� � ���.

By computing the full covariance matrix (invertingA) and taking the trace of the positional co-

variance matrixCp (as described in Section 3.2), we obtain the results shown in Table 10. These

numbers indicate the relative errors in reconstruction for a unit retina and unit noise. For example,

if the retina is actually 200 pixels wide (s � ��� in (5)) and the positional error in the tracked points

is � � ���, then the 3-D reconstruction errors would be 1000 times smaller than the values given

in Table 10. We see that this error decreases linearly with total viewing angle (for small viewing

angles), and varies only slightly with the total number of frames. This is similar to the results ob-

tained when computing�min in Table 4 (remember thatRMS error should be proportional to the

square root of the inverse eigenvalues).
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(a) (b)

Figure 5: Minimum eigenvector for a three-frame perspective reconstruction problem: (a) top-

down view (x-z), (b) frontal view (x-y). While the main ambiguity is az scaling, the vector is

not exactly an affine transform of the 3-D points on the unit cube.

8.2 Looming

The motion of a camera forward in a 3-D world creates a different kind of parallax, which can also

be exploited to compute structure from motion. To compute the ambiguities in this kind of motion,

we used the same approach as before, except with no rotation and pure forward motion (tz 
� �).

Using our usual 15-point data set results in some unexpected behavior: four of the eigenvalues

are zero. This is because thez coordinates of the three points on the optical axis cannot be recov-

ered as they lie on the focus of expansion. This is a severe limitation of recovering structure from

looming: points near the focus of expansion are recovered with extremely poor accuracy. For the

experiments in this section, we use a 12-point data set instead, i.e., the 15-point set with the three

points�x� y
 � ��� �
 removed.

Table 11 shows�min as a function of the number of framesF and the total extent of forward

motiontz (the object being viewed is a unit cube with coordinates���� ���). These results are for

a camera with� � ��	, i.e., a camera placed about 3.3 units away from the cube origin. As we

can see, the two-frame results are almost as good at the three frame results with the same extent of

motion. The value of�min appears to depend quadratically on the total extent of motion. Overall,

however, these results are much worse than those available with object-centered rotation.

Table 12 shows�min as a function of�, i.e., the distance of the central frame to the object. It
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Table 12: Minimum eigenvalues for 3-D perspective projection, pure forward translation,F � 
,

varying�.

appears that�min depends cubically on�, at least for smalltzs. To obtain reasonable estimates,

therefore, it is necessary to both use a wide field of view and a large amount of motion relative to

the scene depth.

Figure 6. shows the structural part of the minimum eigenvectors in particular for� � ��	, J � �

(F � 	), and�tz � ��
. eigenvector whose 3-D structure is shown in Figure 6. By inspection of

the complete eigenvector (not shown here), we can see that the ambiguity is between the amount

of x andy yaw andx andy translation, i.e., it is a classic bas-relief ambiguity.

9 Experimental results

To verify if the positional errors predicted by our analysis coincide with the errors observed in prac-

tice, we ran our iterative non-linear least squares algorithm on a 24-point sample data set [SK94].
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(a) (b)

Figure 6: Minimum eigenvector for a three-frame perspective reconstruction problem with pure

z translation: (a) top-down view (x-z), (b) frontal view (x-y). The main ambiguity is a rocking

confusion between sideways camera translation and rotation, which affects the points furthest back.

The 24 points were four points at����������������
 on the six faces of a unit�������� cube. The

points were projected onto a 200 pixel wide retina (s � ��� in (5)) and 2-D noise with� � ��� was

added to each projected point.� The algorithm was then initialized with the correct 3-D structure

and run to completion.

The 3-D positional errors are shown in Tables 13 and 14. Three kinds of error are shown: the

Euclidean error, after registering the recovered and true 3-D data sets under the best possible sim-

ilarity transform (rigid� scaling); the affine error (computing the best affine transform); and the

projective error (computing the best� � � homography). These errors were scaled by a factor of

1000 to make them “dimensionless” (i.e., unit retina, unit image noise). The RMS error predicted

by our uncertainty analysis (the trace of the positional covariance matrix) is also shown.

From these results, we can see that the uncertainty analysis predicts the general variation of re-

construction error with viewing angle, perspective distortion, and number of frames. Unfortunately,

there remains a small but fairly consistent discrepancy between our predicted figures and the mea-

sured errors, which we have not been able to track down. We also see that the affine error is about

2 to 3 times lower than the Euclidean error (actually, this factor increases with decreasing viewing

�The results scale linearly with� up to about� � �, after which they increase sub-linearly (i.e., they less than

double when� is doubled).
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Table 13: RMS errors (predicted and observed) for 3-D perspective projection, equi-angular rota-

tion aroundy axis, two frames, 24 point data set.
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Table 14: RMS errors (predicted and observed) for 3-D perspective projection, equi-angular rota-

tion aroundy axis, three frames, 24 point data set.

angle, as predicted by our analysis). The projective error isnot significantly lower than the affine

error, which further supports our hypothesis that most of the error is in the bas-relief ambiguity.	

10 Discussion

The results presented in this technical report suggest that in many situations where structure from

motion might be applied, the solutions are extremely sensitive to noise. In fact, despite dozens

of algorithms having been developed, very few results of convincing quality are available. Those

�It is not suprrising that the projective error is always smaller than the affine error, as there are 3 more degrees of

freedom (15 vs. 12) in the projective fit used before the error computation.



28 10 Discussion

cases where metrically accurate results have been demonstrated almost always use a large amount

of rotation [TK92b].

This raises the obvious question: are any of the many structure from motion algorithms de-

veloped in the computer vision community of practical significance? Or, when we wish to perform

metrically accurate reconstructions from images, should be adopt the photogrammetrists’ approach

of using control points at known locations? This essentially reduces structure from motion to cam-

era pose estimation (and possibly calibration) followed by stereo reconstruction.

The situation is perhaps not that bad. For large object rotations, we can indeed recover accurate

reconstructions. Furthermore, for scene reconstruction, using cameras with large fields of view,

several camera mounted in different directions, or even panoramic images, should remove most of

the ambiguities. In any case, it would appear prudent to carefully analyze the expected ambiguities

and uncertainties in any structure from motion problem (or any other image-based estimation task)

before actually putting a method into practice.

The general approach developed in this technical report, i.e., eigenvalue analysis of the Hessian

(information) matrix appears to explain most of the known ambiguities in structure from motion.

However, there are certain ambiguities (e.g., depth reversals under orthography, or multiplicities of

solutions with few points and frames) which will not be detected by this analysis because they cor-

respond to multiple local minima of the cost function in the parameter space. Furthermore, analysis

of the information matrix can only predict the sensitivity of the results tosmallamounts of image

noise. Further study using empirical methods is required to determine the limitations of our ap-

proach.

Using the minimum eigenvalue to predict the overall reconstruction error may fail when the

dominant ambiguities are in the motion parameters (e.g., what appears to be happening under per-

spective for large motions). Computing theRMSpos error directly from the covariance matrixA��

is more useful in these cases.

10.1 Future work

In future work, we plan to compare results available with object-centered and camera-centered rep-

resentations (Equations 4–5). Our guess is that the former will produce estimates of better quality.

Similarly, we would like to analyze the effects of mis-estimating internal calibration parameters

such as focal length, and to study the feasibility of estimating them as part of the reconstruction
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process. The results presented here have assumed for now that feature points are visible in all im-

ages. Our approach generalizes naturally to missing data points. In particular, we would like to

study the effects feature tracks with relatively short lifetimes.

Finally, it appears that the portion of the uncertainty matrix which is correlated can be accounted

for by a small number of modes. This suggest that an efficient recursive structure from motion

algorithm could be developed which avoids the need for using full covariance matrices [THO93]

but which performs significantly better than algorithms which ignore such correlations.

11 Conclusions

This technical report has developed new techniques for analyzing the fundamental ambiguities and

uncertainties inherent in structure from motion. Our approach is based on examining the eigenval-

ues and eigenvectors of the Hessian matrix in order to quantify the nature of these ambiguities. The

eigenvalues can also be used to predict the overall accuracy of the reconstruction.

Under orthography, the bas-relief ambiguity dominates the reconstruction error, even with large

numbers of frames. This ambiguity disappears, however, for large object-centered rotations. For

perspective cameras, two-frame solutions are possible, but there must still be a large amount of ob-

ject rotation for best performance. Using three of more frames avoids some of the sensitivities asso-

ciated with two-frame reconstructions. Translations towards the object are an alternative source of

shape information, but these appear to be quite weak unless large fields of views and large motions

are involved.

When available, prior information about the structure or motion (e.g., absolute distances, per-

pendicularities) can be used to improve the accuracy of the reconstructions. Whether 3-D recon-

struction errors (for modeling) or motion estimation errors (for navigation) are most significant for

a given application determines the conditions which produce acceptable results. In any case, care-

ful error analysis is essential in ensuring that the results of structure from motion algorithms are

sufficiently reliable to be used in practice.
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A Approximate minimum eigenvalue computation

The eigenvalues of a matrix of the form

�
� a� ab

ab b� � c�

�
�

are the solutions to

�� � ��a� � b� � c�
� a�c� � ��

i.e.,

� �
�



�a� � b� � c� �

q
�a� � b� � c�
� � �a�c�


or for c� � a� � b�

�min � a�c�

a� � b�

�max � a� � b�

Similarly, for a quadratic of the form

a�� � b�� c � �

with ac� b�,

�min �
b�pb� � �ac


a
� c

b
� (53)
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To find the approximate minimum eigenvalue for the equiangular orthographic scanline camera,

we substitute the valuesC �P
j � � J�, S � ��J�, E � �J�, C � � J�, andS� � ��J�, into (37),

� � C�� � �SC � �S�C � E�
X � CC �Z
�� S�S�C � E�
X � C�C �S �E�
Z

� J��
� � �J�J���

� � Z
 � ���J�J� � J�� 
X
� � ��J��J�J� � J�� 
X � ��J��J
�
� � J�� 
Z�

Using the approximation in (53), we obtain

�min � ��XJ��J�J� � J�� 


J�J�Z � ���X�J�J� � J�� 
 � J�J��
� (54)


