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Abstract

In this technical report, we address the problem of quasi-Euclidean reconstruction (i.e., close
to scaled Euclidean but not necessarily exact) using an uncalibrated camera with a specific known
type of motion, namelyunknown but complete orbital motion. By orbital motion, we mean pure

rotation about a fixed arbitrary axis. Exact scaled Euclidean reconstruction for orbital motion is
not possible because of the 2 degree-of-freedom ambiguity [22]. We bypass the usual intermediate

stages of projective or affine reconstruction and recover 3-D structure directly from point corre-
spondences obtained from a two-stage bidirectional tracking process. 3-D reconstruction is done

by applying the iterative Levenberg-Marquardt algorithm to minimize error between actual point
tracks and projected point tracks. We show that reconstruction from complete orbital motion is

superior to that from partial orbital motion. This work also investigates the sensitivity of recovered
quasi-Euclidean reconstruction, tilt, and object rotation to the actual camera tilt.
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1 Introduction

In this technical report, we address the problem of quasi-Euclidean reconstruction using an un-
calibrated camera with the specific known type of motion, namelyunknown but complete orbital

motion. By orbital motion, we mean pure rotation about a fixed arbitrary axis. Exact scaled
Euclidean reconstruction for orbital motion is not possible because of the 2 degree-of-freedom

ambiguity [22]. We bypass the usual intermediate stages of projective or affine reconstruction and
recover direct 3-D structure from point correspondences. The feature point correspondence are ob-

tained from a two-stage bidirectional tracking process. 3-D reconstruction is done by applying the
iterative Levenberg-Marquardt algorithm to minimize error between actual point tracks and pro-

jected point tracks. Initialization is based on estimating the tilt by fitting ellipses on point tracks
and assuming equal angular rotation between frames. Convergence is speeded up by adopting an
object-centered representation. This work is an extension of [25] with the projection function hav-

ing the option of using all five camera intrinsic parameters (focal lengthf , aspect ratior, image
skew�, and principal point�u�� v��). We also demonstrate that results from complete orbital mo-

tion are superior to those of partial orbital motion. This work also investigates the sensitivity of
quasi-Euclidean reconstruction to the actual camera tilt during orbital motion.

1.1 Prior work

There is a large body of work done on 3-D reconstruction from images using an uncalibrated
camera. One of the first steps taken prior to actual 3-D reconstruction is usually the process of

camera calibration. Particularly germane to 3-D reconstruction using an uncalibrated camera is
self-calibration. Self-calibration refers to recovery of camera parameters based only on corre-

spondences of images taken at different poses. Most work done on self-calibration rely on known
motions of the cameras, such as pure translational motion [2], known camera rotation angles [3],

rotation about an unknown but fixed arbitrary axis [25], and pure rotation about the camera center
[7].

The traditional approach to 3-D reconstruction with multiple images using an uncalibrated
camera is to apply affine and projective reconstruction techniques (such as [4, 20, 6, 8]). The
traditional approach to reconstruct scaled Euclidean structure is usually from known camera pa-

rameters. For example, Szeliski [23] and Matsumotoet al. [14] recover Euclidean structure from
object rotation (or equivalently, camera orbital motion) using the assumption that the camera pa-

rameters and object motion are known. Niem and Wingberm¨uhle [16] use a grided annulus pattern
inside which the object is placed. Camera parameters are extracted from the detected pattern, and
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the object is recovered from silhouettes. Zhang [26] proposes a closed-form solution for scaled
Euclidean reconstruction with known intrinsic camera parameters but unknown extrinsic camera

parameters. However, this technique assumes the existence of four coplanar correspondences that
are not collinear.

Recently, however, there has been interesting work done in reconstructing scaled Euclidean
structure from images using an uncalibrated camera. In a work that is probably the closest to ours,

Heyden and Astrom [9] propose a technique to reconstruct scaled Euclidean structure under con-
stant but unknown intrinsic camera parameters. They showed that in general, it takes a minimum

of 3 images to recover a unique solution to the intrinsic camera parameters and scaled Euclidean
structure. This is done by considering theKruppa constraints[13, 15]. Their technique of scaled
Euclidean reconstruction is based on recovering an intermediate projective structure. They then

use an optimization formulation that is based on the Frobenius norm of a matrix. However, this is
not equivalent to the more optimal metric of minimizing feature location errors in the 2-D image

space. In a later work, they also show that scaled Euclidean reconstruction under known image as-
pect ratio and skew but varying and unknown focal length and principal point is also possible [10].

The assumption is that the camera is undergoing general motion, as it is not possible to reconstruct
scaled Euclidean structure under constrained motion such as pure translational or orbital motion.

A two-step approach is used to recover scaled Euclidean structure from multiple image se-
quences with unknown but constant intrinsic parameters [18]. The first stage involves affine cam-

era parameter recovery using the so-calledmodulusconstraint. This is followed by conversion to
scaled Euclidean structure. This approach is subsequently extended to remove the assumption of
fixed camera focal length [17].

Hartley devises an algorithm for camera self-calibration from several views [5]. He uses a
two-step approach to recover scaled Euclidean structure. His algorithm first recovers projective

structure before applying a heuristic to search for extract the five intrinsic camera parameters. The
heuristic involves iterating over several sets of initialization values and checking for convergence.

A detailed characterization ofcritical motion sequences(CMS) is given by Sturm [22]. A
critical motion sequence is a camera motion sequence that results in ambiguities in reconstruction

when camera parameters are unknown. For example, only affine structures can be extracted from
pure camera translational motion. Of particular relevance to our work is the Sturm’s determination

that there is a two degree of freedom projective ambiguity for orbital motions (i.e., pure rotation
about a fixed arbitrary axis).



1.2 Quasi-Euclidean reconstruction from unknown but complete orbital motion 3

1.2 Quasi-Euclidean reconstruction from unknown but complete orbital mo-
tion

As Sturm as demonstrated [22], there exists a 2 degree-of-freedom ambiguity in scaled Euclidean

reconstruction. There are three options in recovering scaled Euclidean structure from orbital mo-
tion: (1) fix two intrinsic camera parameters, (2) impose structural constraints (e.g., orthogonality,

parallelism, known 3-D locations of fiducial points), or (3) get the “best” reconstruction without
(1) or (2). We choose to option (3), though option (1) is another convenient option as well. In
particular, for option (1), we can assume that the aspect ratior to be 1.0 and the image skew� to

be 0. In practice, these parameters are usually fixed for a camera and need to be determined only
once.

We recover 3-D structure and orbital motion from relatively sparse sequence of images (typ-
ically between 30-50 images in a sequence). The unknowns are the camera intrinsic parameters,

global camera tilt, local rotation axis, amount of local rotation between successive frames, and the
3-D positions associated with the tracked point features.

The assumptions that we have made for our work are the following:

� The image sequence is a “closed loop” sequence (i.e., featuring complete object rotation),

� The object surface has sufficient texture for interframe feature tracking,

� The object rotation is about an unknown but fixed axis, and

� The camera either does not have significant radial distortion, or the radial distortion factor is
known so that the images can be corrected first.

The advantages of using our approach of recovering structure and motion from complete object

rotation (or equivalently, complete camera orbital motion):

� The set-up is extremely simple and cheap (using a camera, tripod stand, and a turntable
would do),

� The global tilt angle, local rotation angles, and quasi-Euclidean structure can be extracted

simultaneously,

� Calibration of camera is not required,

� Initialization of the system is simple due to the known type of motion,
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� Recovery of the intermediate affine or projective structure is not necessary, and

� The method exhibits fast convergence and is stable.

1.3 Organization

In Section 2, we outline the general structure from motion problem and our approach to recov-
ering the solution specifically in the special case of unknown but complete orbital motion. The

bidirectional tracking scheme employed to recover the point tracks for a given image sequences is
described in Section 3. One of the important parameter in orbital motion is the amount of camera

tilt. Section 4 shows, through simulations, how sensitive recovered shape and camera parameters
are to the actual camera tilt. The results of reconstruction using image sequences of rotated sim-

ulated and real objects are given in Section 5. This section also illustrates the improvement in
results due to the knowledge of complete camera orbital motion (or object rotation). The method
and its results are discussed in Sections 6; finally, a summary of the method and its implications

are presented in Section 7 respectively.

2 General structure from motion

The formulation of recovering structure from motion is based on that of [25]. Essentially, we are
trying to recover a set of 3-D structure parameterspi and time-varying motion parametersTj from

a set of observed image featuresuij. The general equation linking a 2D image feature locationuij

in framej to its 3-D positionpi (i is the track index) is

uij � P
�
T

�K�
j ���T

���
j pi

�
(1)

where the perspective projection transformationP�� is applied to a cascaded series of rigid trans-

formationT �k�
j . Each transformation is in turn defined by

T
�k�
j x � R

�k�
j x� t

�k�
j (2)

whereR�k� is a rotation matrix andt�k�j is a translation applied after the rotation.

Within each of the cascaded transforms, the motion parameters may be time-varying (thej

subscript is present) or fixed (the subscript is dropped). The transformation associated with the

(horizontal) orbital motion that we are considering in our work is

uij � P �Rx��Rz��pi � t� (3)
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whereRx�� �Rz�� represent rotation about the x-axis by� and z-axis by� respectively. We assume
negligible cyclotorsion (rotation of camera about the viewing axis).

The general camera-centered perspective projection equation is

�
� u

v

�
A � P�

�
BB�

x

y

z

�
CCA �

�
�

fx��y

z
� u�

rfy

z
� v�

�
A (4)

wheref is a product of the focal length of the camera and the pixel array scale factor,r is the

image aspect ratio,� is the image skew, and�u�� v�� is the principal point.

An alternative object-centered formulation (a more general version of [25]) which we use is

�
� u

v

�
A � P�

�
BB�

x

y

z

�
CCA �

�
�

sx���y

���z
� u�

rsy

���z
� v�

�
A (5)

Here, we assume that the�x� y� z� coordinates before projection are with respect to a reference
frame that has been displaced away from the camera by a distancetz along the optical axis,1 with
s � f�tz and� � ��tz. The projection parameters can be interpreted as ascale factorand�

as aperspective distortion factor. Our alternative perspective formulation results in a more robust
recovery of camera parameters under weak perspective, where� � �, and assuming�u�� v�� �

��� �� and� � �, we haveP�x� y� z�T � �sx� rsy�T . This is becauses andrs can be much more
reliably recovered than�, in comparison with the old formulation wheref andtz are very highly

correlated.

2.1 Least-squares minimization

The Levenberg-Marquardt algorithm [19] is used to solve for the structure and motion parameters.
The merit or objective function that we minimize is

C�a� �
X
i

X
j

cij juij � f�aij�j
� � (6)

wheref�� is given in (1) and

aij �
�
pT
i �m

T
j �m

T
g

�T
(7)

1If we wish, we can viewtz as thez component of the original global translation which is absorbed into the
projection equation, and then set the third component oft to zero.
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is the vector of structure and motion parameters which determine the image of pointi in frame
j. The vectora contains all of the unknown structure and motion parameters, including the 3-D

pointspi, the time-dependent motion parametersmj, and the global motion/calibration parameters
mg. The weightcij in (6) describes our confidence in measurementuij, and is normally set to the

inverse variance���
ij . Implementational details are given in [25]. The primary difference between

their work and this work is that we incorporate the additional camera intrinsic parametersr, �,
u�, andv�. The extensions (calculating the required derivatives of the Hessian matrix and gradient

vector) are relatively straightforward.

2.2 Two-stage approach

As Sturm has shown [22], there is a 2 degree-of-freedom ambiguity in scaled Euclidean reconstruc-

tion for orbital motion. A simple solution to this is to set two of the intrinsic camera parameters
to a constant (either as an assumption or through calibration). A good choice would be to fix the

image skew factor� (say to 0) and the aspect ratior (say to 1). However, in our work, we keep
these parameters unknown.

We use a two-step approach in acquiring the quasi-Euclidean structure:

� Fix � � u� � v� � � andr � � and apply the Levenberg-Marquardt algorithm until ter-
minating conditions are met. The termination conditions are either the number of iterations

exceeds a threshold (150 in our case) or the improvement in the objective function is too
small (���� in our case), whichever comes first.

� Set�� u�� v�, andr to be free variables and resume with Levenberg-Marquardt algorithm

(with the iteration number reset to 0) until the same termination conditions are again met.

In general, using this two-step approach has resulted in better convergence towards lower image
projection errors and better structure and motion recovery in comparison to not applying the first
step. This observation is based on more than 100 runs that involve synthetic image sequences and

about 6 runs involving real image sequences.

2.3 Initialization

The initialization of object motion for each frame is made simpler by the fact that we know that

object motion is a rotation about a unique (but unknown) axis. If there areNframe images in the
sequence, then the local rotation angle about the z-axis associated with imagej is initialized to
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����j
Nframe

. The camera tilt is estimated by fitting ellipses to the tracks. The estimated tilt used for
initialization is usually within 15� of the actual camera tilt (based on simulation results).

The scale factors and perspective distortion factor� are initialized to arbitrary values of 1.0 and
0.001 respectively. The algorithm does not appear to be too sensitive to these values, as changes

up to about an order of magnitude is tolerated.

3 Tracking

To produce tracks in a circular sequence as input to the iterative least-squares minimizing proce-

dure, we first mask out regions that do not change significantly in intensity through simple pairwise
image subtraction. This is effective in removing the static background and low object texture areas.

The tracking then proceeds by way of bidirectional tracking with three stages:

1. Pairwise global spline-based registration [24],

2. Automatic selection of spline node points with high local texture,

3. Multiframe Shi-Tomasi local tracking [21] of these spline nodes.

These three stages are necessary to incorporate the advantages of both spline-based registration and
local tracking techniques. While the spline-based registration technique is able to track relatively

significant motion, it is not able to deal with motion discontinuity very well due to its implicit
smoothness constraint. On the other hand, the local tracking technique performs very poorly for

significant motion but very well within the vicinity of the true track position. Because points
are tracked independently for local tracking, motion discontinuities can be handled. Since the

spline-based registration technique yields a reasonably good estimate of motion, the local tracking
technique can then make use of this estimate to improve on the new track image position, especially

if the position is within the vicinity of a motion discontinuity.
In the first stage, image flow between successive frames in the circular sequence is computed

in both directions using the spline-based registration technique. Then, in stage 2, for each frame,

points with high local texture (indicated by the minimum eigenvalue of the local Hessian) are
automatically chosen for tracking. Finally, at the third and final stage of tracking, for every frame,

the chosen points are then individually locally trackedin both directionsusing the flow estimates
from stage 1. The tracking stops (tracking in the two directions is independent) if any of the

following conditions is violated:

� Each trace continuously move in one direction,
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� The RMS pixel difference error is less than a threshold (15 in our case), or

� The minimum eigenvalue is above a threshold (500 in our case).

The problem with the first criterion above is that a complete track that is observable in all the
frames is not possible. However, the need to reject random noise is greater, and having a few more
redundant points is a relatively small price to pay. The tracks are postprocessed to remove those

that are deemed too short (we impose a minimum track length of 3).

4 Sensitivity of reconstruction to tilt

To ensure that the ground truth is available, experiments were conducted using a collection of

synthetic 3-D points. The 3-D points were generated at random, and the only constraint on their
location is that they have to be within a radius of 25 from its local center. The object local center is

chosen to be a distance of 225 from the camera center. Each 3-D point is oriented, i.e., each point
has a normal associated with it. This allows “visibility” to be determined based on the camera

pose; a pointpi with normal �ni is visible under camera posej if �ni � �zj�cam � �. �zj�cam is the
jth unit camera viewing direction away from the camera. Tracking is not explicitly done here,
since we can calculate the 2-D image coordinates directly based on known camera and object

transformations. Structure from orbital motion is then performed on the artificial tracks, with
different image (Gaussian) noise levels.

The RMS error in recovered 3-D is calculated by finding

E � min
NpointsX
i��

jjpi�cor �mRpi � cjj� (8)

and taking the square root ofE . Npoints is the number of points, andpi�cor andpi the theoretically
correct and recoveredith point respectively.m is the global scale,R the global rotation, andc

the global translation; these parameters constitute the best rigid body transformation between the
theoretically correct and recovered set of points. We implemented Horn’s algorithm that uses a
closed-form solution for this least-squares problem [11]. An alternative method that can be used is

based on singular value decomposition (SVD) of a 3�3 matrix [1].

We ran experiments involving a variety of gaussian image noise, namely, 0.0, 0.1, 0.3, 0.5,
1.0, and 2.0 pixels. As a reference, the projected 3-D points are distributed within an area of

approximately 60�60 pixels. The results of the experiment are graphically shown in Figure 1. For
this figure, note that the local rotation is constrained to be about the z-axis. To reiterate, as a point
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of reference for the graph shown in Figure 1(a), the 3-D points are randomly distributed within a
ball of radius of 25, and the center of this ball is a distance of 225 away from the center of the

camera. The actual focal length is 324.
As can be seen in Figure 1, the error in recovered shape and tilt generally increases with the

camera tilt. There are two surprises: (1) the very gradual increase in error followed by a very sharp
increase in error with increasing actual camera tilt, and (2) the error in the local rotation angle
estimate does not seem to exhibit a consistent trend. The sharpness of the reciprocal trend in (1) is

somewhat attenuated by noise, as shown in Figure 1(a).

5 Results

In this section, we present results using a synthetic object as well as several real objects. In addi-

tion, we compare results obtained from complete rotation with those from the exact same sequence,
but without the completeness of rotation assumption. The initialization is the same for both cases.

5.1 Sequence of rotating synthetic cylindrical object

In the previous synthetic examples, the tracks were computed directly from known camera param-

eters. In this example, however, a textured cylinder was defined, rotated, and then rendered using
Rayshade. (Rayshade is a program for producing ray-traced color images [12].) The sequence of

images produced in this manner is then treated as a normal input sequence whose bidirectional
point tracks are recovered and fed into the “structure from complete orbital motion” module. The

camera tilt is maintained at��, and there are 40 frames in this sequence (two of which are shown
in Figure 2(a) and (b). Two views of the reconstructed 3-D points are shown in Figure 2(c) and (d).
The average (best-fit) cross-sectional radius of the recovered points is 0.823869, while the RMS

error of the fit in radius is 0.063680. Since the actual radius of cylinder is 1.0, the rescaled RMS
error of radius fit is 0.077293842. Because the distance of the cylinder from the camera is 8.0, the

rescaled RMS error of radius fit of the recovered set of 3-D points constitute only about 1% of the
camera distance.

5.2 Sequences of rotating real objects

In this section, we show results of applying the technique to four image sequences of real ob-

jects, namely a dodecahedron (Figure 3), a film box (Figure 4), a toy frog (Figure 5), and a cube
(Figure 6).



10 5 RESULTS

0 10 20 30 40 50 60 70 80 90
Actual tilt (degrees)

0.0

5.0

10.0

15.0

20.0

R
M

S
 e

rr
or

 in
 e

st
im

at
ed

 s
ha

pe

2−D noise = 0.0
2−D noise = 0.1
2−D noise = 0.3
2−D noise = 0.5
2−D noise = 1.0
2−D noise = 2.0

0 10 20 30 40 50 60 70 80 90
Actual tilt (degrees)

0.0

2.0

4.0

6.0

8.0

10.0

E
rr

or
 in

 e
st

im
at

ed
 ti

lt 
(d

eg
re

es
)

2−D noise = 0.0
2−D noise = 0.1
2−D noise = 0.3
2−D noise = 0.5
2−D noise = 1.0
2−D noise = 2.0

(a) (b)

0 10 20 30 40 50 60 70 80 90
Actual tilt (degrees)

0.0

2.0

4.0

6.0

R
M

S
 e

rr
or

 in
 e

st
im

at
ed

 lo
ca

l r
ot

at
io

n 
(d

eg
re

es
)

2−D noise = 0.0
2−D noise = 0.1
2−D noise = 0.3
2−D noise = 0.5
2−D noise = 1.0
2−D noise = 2.0

0 10 20 30 40 50 60 70 80 90
Actual tilt (degrees)

0.0

250.0

500.0

750.0

1000.0

1250.0

E
rr

or
 in

 e
st

im
at

ed
 fo

ca
l l

en
gt

h

2−D noise = 0.0
2−D noise = 0.1
2−D noise = 0.3
2−D noise = 0.5
2−D noise = 1.0
2−D noise = 2.0

(c) (d)

Figure 1: Graphs illustrating sensitivity of recovered (a) shape, (b) tilt angle, (c) local rotation

angle, and (d) focal length, to the actual camera tilt during complete orbital motion. See text for a
description of the conditions to which the experiments were subject.
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(a) (b)

(c) (d)

Figure 2: Rotating synthetic cylinder (complete rotation, 40 frames): (a) 1st frame, (b) 5th frame,
(c) top view, and (d) side view of recovered 3-D points (2291 points).

As can be seen, the 3-D points for all these sequences have been recovered reasonably well.

The film box was the most difficult sequence, since the surface of the box is highly specular. This
resulted in noisier 3-D position estimates (Figure 4). In addition, it can be observed from Figures 3-

5 that the point traces are not all correct. Outlier rejection was used in the Levenberg-Marquardt
to remove points that may be wrongly tracked.

5.3 Complete rotation vs. incomplete rotation

Most work on structure from rotation do not use complete rotation. For the same number of frames,
it is logical to deduce that with complete rotation, with a circular sequence where the first and last
frames are adjacent, the reconstruction is better due to the extra constraints for feature points be-

tween these frames and their vicinities. As an illustration, Figure 7 shows the result of applying
normal structure from incomplete rotation. The errors in estimating the rotation angles are all

biased in one direction due to the single “open” chain of constraints, causing the “pinched” ap-
pearance. In comparison, the reconstructed 3-D points of the same object under complete rotation
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(a) (b) (c)

(d) (e)

Figure 3: Rotating film box (complete rotation, 31 frames): (a) 1st frame, (b) 5th frame, (c) point
tracks, (d)-(e) top, and side views of recovered 3-D points (1414 points).

(Figure 6) do not result in the same “pinched” appearance.

Another example is shown in Figure 8. Figure 8(a) shows the top view of the reconstructed 3-D

points for the case when complete rotation is assumed, while Figure 8(b) shows the same points
for the case when complete rotation is not assumed. In this case, each track that spans across the

first and last frames is first broken up into two shorter tracks. The longer of the two fragmented
tracks is used while the other is discarded. Not surprisingly, the reconstructed 3-D points for the

complete rotation case is better. There are 416 points on the cube, and the camera tilt is 45� for
both cases. The tracks were synthetically generated with no noise, and there were 45 frames with
equiangularly spaced object rotation. Initialization for both cases is exactly the same.

6 Discussion

Despite reconstruction ambiguities that exist to orbital motion, we have shown, through synthetic
and real scenes, that reasonable quasi-Euclidean reconstruction can be done. This is because in
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(a) (b) (c)

(d) (e) (f)

Figure 4: Rotating film box (complete rotation, 31 frames): (a) 1st frame, (b) 5th frame, (c) point
tracks, (d)-(f) top, front, and side views of recovered 3-D points (1414 points).

practice, the camera intrinsic parameters of principal point�u�� v��, image skew�, and aspect ratio
r do not usually deviate significantly from normally assumed values of (0, 0), 0, and 1 respec-

tively. We operate based on our preference of maximizing knowledge of the camera to directly
reconstructing 3-D shape, rather than converting to intermediate projective or affine representa-

tions.

Results of experiments with simulated tracks having varying degrees of image feature location
noise and actual camera tilt (relative to the vertical axis) were generally expected, with some

surprises. While errors in estimated reconstructed shape, camera tilt, and focal length increased
with actual camera tilt, the rate of increase in these errors is unexpected. The rate of increase in
error is generally gradual up until angles close to 90�, when the rate suddenly shoots up. This

suggests that any reasonable tilt angle is acceptable without significant degradation in the fidelity
of 3-D reconstruction and motion recovery. Another surprise is the insensitivity of errors (based on

their apparent randomness in the results) in estimated local rotation angles with both image noise
and actual camera tilt.



14 6 DISCUSSION

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Rotating toy frog (complete rotation, 43 frames): (a) 1st frame, (b) 5th frame, (c) 2260
point tracks, (d)-(f) top, front, and side views of recovered 3-D points, (g)-(i) corresponding views
of the actual toy frog.
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(a) (b) (c)

Figure 6: Rotating cube (complete rotation, 48 frames): (a) first frame, (b) top view of recovered
3-D points (2500 points), (c) side view of 3-D points.

(a) (b)

Figure 7: Rotating cube (not complete rotation): (a) First frame of the sequence, and (b) Top view
of recovered points for the cube scene using 96 frames and known camera parameters. (From [25].)

Notice the pinching effect.
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(a) (b)

Figure 8: Rotating synthetic cube: (a) Reconstruction from complete rotation, (b) Reconstruction
from incomplete rotation.

Finally, not surprisingly, results for experiments with the assumption that the object rotation (or

equivalently, camera orbital motion) spans a full 360� are better than those with no such assump-
tion. The better results are due to the addition constraints available in connection with the point

tracks that bridges the first and last frames of the (circular) image sequence. One can anticipate
that in the general case, structure and motion recovery from arbitrary but “closed loop” motion of

the camera would be more accurate than if there is no assumption of direct connectedness between
the first and last frames of the image sequence.

7 Summary

We have described a completely automatic method of recovering quasi-Euclidean structure from
unknown by complete object rotation (or equivalently, camera orbital motion). This method

starts with two-stage bidirectional tracking, followed by the application of iterative Levenberg-
Marquardt minimization of feature point error to recover structure and rotational motion simulta-

neously. Apart from the knowledge that the object was rotated completely about a unique axis, no
other camera parameters are assumed known.

This technique directly locally minimizes the error between the projected image feature posi-

tion and measured feature position, and no intermediate affine or projective reconstruction is done.
This technique usually converges toward the correct solution due to the assumption of complete

object rotation, which makes simplifies initialization. In addition, because we know the motion is
that of rotation, we can always make a good initial estimate of the camera tilt by fitting ellipses on
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the recovered tracks.

Simulations have indicated the surprising result that the recovered errors in shape, tilt, and

focal length exhibit a very sharp reciprocal relationship with respect to the actual camera tilt. The
sharpness is attenuated by 2-D feature location (gaussian) noise. Another interesting result of the
same simulations is the relative indifference of errors in recovered local rotation angles to both

actual camera tilt and noise. Applying the technique on image sequences of real rotated objects
has yielded very reasonable-looking results of recovered 3-D object feature distribution.
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