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Abstract

We prove tight bounds on the time needed to solvek-set agreement. In this prob-
lem, each processor starts with an arbitrary input value taken from a fixed set, and halts
after choosing an output value. In every execution, at mostk distinct output values may
be chosen, and every processor’s output value must be some processor’s input value.
We analyze this problem in a synchronous, message-passing model where processors
fail by crashing. We prove a lower bound ofbf�kc� � rounds of communication for
solutions tok-set agreement that toleratef failures, and we exhibit a protocol proving
the matching upper bound. This result shows that there is an inherent tradeoff between
the running time, the degree of coordination required, and the number of faults toler-
ated, even in idealized models like the synchronous model. The proof of this result
is interesting because it is the first to apply topological techniques to the synchronous
model.
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1 Introduction

Most interesting problems in concurrent and distributed computing require processors
to coordinate their actions in some way. It can also be important for protocols solv-
ing these problems to tolerate processor failures, and to execute quickly. Ideally, one
would like to optimize all three properties—degree of coordination, fault-tolerance,
and efficiency—but in practice, of course, it is usually necessary to make tradeoffs
among them. In this paper, we give a precise characterization of the tradeoffs required
by studying a family of basic coordination problems calledk-set agreement.

In k-set agreement [Cha91], each processor starts with an arbitrary input value and
halts after choosing an output value. These output values must satisfy two conditions:
each output value must be some processor’s input value, and the set of output val-
ues chosen must contain at mostk distinct values. The first condition rules out trivial
solutions in which a single value is hard-wired into the protocol and chosen by all
processors in all executions, and the second condition requires that the processors co-
ordinate their choices to some degree. This problem is interesting because it defines
a family of coordination problems of increasing difficulty. At one extreme, ifn is the
number of processors in the system, thenn-set agreement is trivial: each processor
simply chooses its own input value. At the other extreme,�-set agreement requires that
all processors choose the same output value, a problem equivalent to theconsensus
problem [LSP82, PSL80, FL82, FLP85, Dol82, Fis83]. Consensus is well-known to
be the “hardest” problem, in the sense that all other decision problems can be reduced
to it. Consensus arises in applications as diverse as on-board aircraft control [W�78],
database transaction commit [BHG87], and concurrent object design [Her91]. Between
these extremes, as we vary the value ofk fromn to �, we gradually increase the degree
of processor coordination required.

We consider this family of problems in asynchronous, message-passing model with
crash failures. In this model,n processors communicate by sending messages over a
completely connected network. Computation in this model proceeds in a sequence
of rounds. In each round, processors send messages to other processors, then receive
messages sent to them in the same round, and then perform some local computation
and change state. This means that all processors take steps at the same rate, and that
all messages take the same amount of time to be delivered. Communication is reliable,
but up tof processors can fail by stopping in the middle of the protocol.

The primary contribution of this paper is a lower bound on the amount of time
required to solvek-set agreement, together with a protocol fork-set agreement that
proves a matching upper bound. Specifically, we prove that any protocol solvingk-
set agreement in this model and toleratingf failures requiresbf�kc � � rounds of
communication in the worst case—assumingn � f � k � �, meaning that there are at
leastk�� nonfaulty processors—and we prove a matching upper bound by exhibiting a
protocol that solvesk-set agreement inbf�kc�� rounds. Since consensus is just�-set
agreement, our lower bound implies the well-known lower bound off � � rounds for
consensus whenn � f � � [FL82]. More important, the running timer � bf�kc� �
demonstrates that there is a smooth but inescapable tradeoff among the numberf of
faults tolerated, the degreek of coordination achieved, and the timer the protocol
must run. For a fixed value off , Figure 1 shows that 2-set agreement can be achieved
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Figure 1: Tradeoff between rounds and degree of coordination.

in half the time needed to achieve consensus. In addition, the lower bound proof itself
is interesting because of the geometric proof technique we use, combining ideas due
to Chaudhuri [Cha91, Cha93], Fischer and Lynch [FL82], Herlihy and Shavit [HS93],
and Dwork, Moses, and Tuttle [DM90, MT88].

In the past few years, researchers have developed powerful new tools based on
classical algebraic topology for analyzing tasks in asynchronous models (e.g., [AR96,
BG93, GK96, HR94, HR95, HS93, HS94, SZ93]).

The principal innovation of these papers is to model computations as simplicial
complexes (rather than graphs) and to derive connections between computations and
the topological properties of their complexes. This paper extends this topological ap-
proach in several new ways: it is the first to derive results in the synchronous model,
it derives lower bounds rather than computability results, and it uses explicit construc-
tions instead of existential arguments.

Although the synchronous model makes some strong (and possibly unrealistic) as-
sumptions, it is well-suited for proving lower bounds. The synchronous model is a
special case of almost every realistic model of a concurrent system we can imagine,
and therefore any lower bound fork-set agreement in this simple model translates into
a lower bound in any more complex model. For example, our lower bound holds for
models that permit messages to be lost, failed processors to restart, or processor speeds
to vary. Moreover, our techniques may be helpful in understanding how to prove (pos-
sibly) stricter lower bounds in more complex models. Naturally, our protocol fork-set
agreement in the synchronous model does not work in more general models, but it is
still useful because it shows that our lower bound is the best possible in the synchronous
model.

This paper is organized as follows. In Section 2, we give an informal overview
of our lower bound proof. In Section 3 we define our model of computation, and in
Section 4 we definek-set agreement. In Sections 5 through 9 we prove our lower
bound, and in Section 10 we give a protocol solvingk-set agreement, proving the
matching upper bound.
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2 Overview

We start with an informal overview of the ideas used in the lower bound proof. For
the remainder of this paper, supposeP is a protocol that solvesk-set agreement and
tolerates the failure off out ofn processors, and supposeP halts inr � bf�kc � �
rounds. This means that all nonfaulty processors have chosen an output value at timer
in every execution ofP . In addition, supposen � f � k � �, which means that at
leastk � � processors never fail. Our goal is to consider theglobal states that occur at
time r in executions ofP , and to show that in one of these states there arek � � pro-
cessors that have chosenk � � distinct values, violatingk-set agreement. Our strategy
is to consider thelocal states of processors that occur at timer in executions ofP , and
to investigate the combinations of these local states that occur in global states. This
investigation depends on the construction of a geometric object. In this section, we use
a simplified version of this object to illustrate the general ideas in our proof.

Since consensus is a special case ofk-set agreement, it is helpful to review the stan-
dard proof of thef �� round lower bound for consensus [FL82, DS83, Mer85, DM90]
to see why new ideas are needed fork-set agreement. Suppose that the protocolP is
a consensus protocol, which means that in all executions ofP all nonfaulty processors
have chosen the same output value at timer. Two global statesg� andg� at timer are
said to besimilar if some nonfaulty processorp has the same local state in both global
states. The crucial property of similarity is that the decision value of any processor
in one global state completely determines the decision value for any processor in all
similar global states. For example, if all processors decidev in g�, then certainlyp de-
cidesv in g�. Sincep has the same local state ing� andg�, and sincep’s decision value
is a function of its local state, processorp also decidesv in g�. Since all processors
agree withp in g�, all processors decidev in g�, and it follows that the decision value
in g� determines the decision value ing�. A similarity chain is a sequence of global
states,g�� � � � � g�, such thatgi is similar togi��. A simple inductive argument shows
that the decision value ing� determines the decision value ing�. The lower bound proof
consists of showing that all timer global states ofP lie on a single similarity chain. It
follows that all processors choose the same value in all executions ofP , independent
of the input values, violating the definition of consensus.

The problem withk-set agreement is that the decision values in one global state do
not determine the decision values in similar global states. Ifp has the same local state
in g� andg�, thenp must choose the same value in both states, but the values chosen
by the other processors are not determined. Even ifn � � processors have the same
local state ing� andg�, the decision value of the last processor is still not determined.
The fundamental insight in this paper is thatk-set agreement requires considering all
“degrees” of similarity at once, focusing on the number and identity of local states
common to two global states. While this seems difficult—if not impossible—to do us-
ing conventional graph theoretic techniques like similarity chains, there is ageometric
generalization of similarity chains that provides a compact way of capturing all degrees
of similarity simultaneously, and it is the basis of our proof.

A simplex is just the natural generalization of a triangle ton dimensions: for ex-
ample, a�-dimensional simplex is a vertex, a�-dimensional simplex is an edge linking
two vertices, a�-dimensional simplex is a solid triangle, and a�-dimensional simplex
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Figure 2: Global states for zero, one, and two-round protocols.
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Bermuda Triangle

Figure 3: Global states for anr-round protocol (showing the embedded Bermuda Tri-
angle).

is a solid tetrahedron. We can represent a global state for ann-processor protocol as
an �n � ��-dimensional simplex [Cha93, HS93], where each vertex is labeled with a
processor id and local state. Ifg� andg� are global states in whichp� has the same
local state, then we “glue together” the vertices ofg� andg� labeled withp�. Figure 2
shows how these global states glue together in a simple protocol in which each of three
processors repeatedly sends its state to the others. Each process begins with a binary
input. The first picture shows the possible global states after zero rounds: since no
communication has occurred, each processor’s state consists only of its input. It is easy
to check that the simplices corresponding to these global states form an octahedron.
The next picture shows the complex after one round. Each triangle corresponds to a
failure-free execution, each free-standing edge to a single-failure execution, and so on.
The third picture shows the possible global states after three rounds.

The set of global states after anr-round protocol is quite complicated (Figure 3),
but it contains a well-behaved subset of global states which we call theBermuda Trian-
gle B, since all fast protocols vanish somewhere in its interior. The Bermuda Triangle
(Figure 4) is constructed by starting with a largek-dimensional simplex, andtriangu-
lating it into a collection of smallerk-dimensional simplexes. We then label each vertex
with an ordered pair�p� s� consisting of a processor identifierp and a local states in
such a way that for each simplexT in the triangulation there is a global stateg con-
sistent with the labeling of the simplex: for each ordered pair�p� s� labeling a corner
of T , processorp has local states in global stateg.

To illustrate the process of labeling vertices, Figure 5 shows a simplified repre-
sentation of a two-dimensional Bermuda TriangleB. It is the Bermuda Triangle for
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Figure 4: Bermuda Triangle with simplex representing typical global state.
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Figure 5: The Bermuda Triangle for 5 processors and a 1-round protocol for 2-set
agreement.

a protocolP for � processors solving�-set agreement in� round. We have labeled
grid points with local states, but we have omitted processor ids and many intermediate
nodes for clarity. The local states in the figure are represented by expressions such
asbb	aa. Given� distinct input valuesa� b� c, we writebb	aa to denote the local state
of a processorp at the end of a round in which the first two processors have input valueb
and send messages top, the middle processor fails to send a message top, and the last
two processors have input valuea and send messages top. In Figure 5, following any
horizontal line from left to right acrossB, the input values are changed froma to b.
The input value of each processor is changed—one after another—by first silencing the
processor, and then reviving the processor with the input valueb. Similarly, moving
along any vertical line from bottom to top, processors’ input values change fromb to c.

The complete labeling of the Bermuda TriangleB shown in Figure 5—which
would include processor ids—has the following property. Let�p� s� be the label of
a grid pointx. If x is a corner ofB, thens specifies that each processor starts with the
same input value, sop must choose this value if it finishes protocolP in local states.
If x is on an edge ofB, thens specifies that each processor starts with one of the two
input values labeling the ends of the edge, sop must choose one of these values if it
halts in states. Similarly, if x is in the interior ofB, thens specifies that each processor
starts with one of the three values labeling the corners ofB, sop must choose one of
these three values if it halts in states.

Now let us “color” each grid point with output values (Figure 6). Given a grid
pointx labeled with�p� s�, let us colorx with the valuev thatp chooses in local states
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Figure 6: Sperner’s Lemma.

at the end ofP . This coloring ofB has the property that the color of each of the cor-
ners is determined uniquely, the color of each point on an edge between two corners is
forced to be the color of one of the corners, and the color of each interior point can be
the color of any corner. Colorings with this property are calledSperner colorings, and
have been studied extensively in the field of algebraic topology. At this point, we ex-
ploit a remarkable combinatorial result first proved in 1928:Sperner’s Lemma [Spa66,
p.151] states that any Sperner coloring of any triangulatedk-dimensional simplex must
include at least one simplex whose corners are colored with allk � � colors. In our
case, however, this simplex corresponds to a global state in whichk � � processors
choosek�� distinct values, which contradicts the definition ofk-set agreement. Thus,
in the case illustrated above, there is no protocol for�-set agreement halting in� round.

We note that the basic structure of the Bermuda Triangle and the idea of coloring the
vertices with decision values and applying Sperner’s Lemma have appeared in previous
work by Chaudhuri [Cha91, Cha93]. In that work, she also proved a lower bound
of bf�kc � � rounds fork-set agreement, but for a very restricted class of protocols.
In particular, a protocol’s decision function can depend only on vectors giving partial
information about which processors started with which input values, but cannot depend
on any other information in a processor’s local state, such as processor identities or
message histories. The technical challenge in this paper is to construct a labeling of
vertices with processor ids and local states that will allow us to prove a lower bound
for k-set agreement for arbitrary protocols.

Our approach consists of four parts. First, we label points on the edges ofB with
global states. For example, consider the edge between the corner where all processors
start with input valuea and the corner where all processors start withb. We construct
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a long sequence of global states that begins with a global state in which all processors
start witha, ends with a global state in which all processors start withb, and in between
systematically changes input values froma to b. These changes are made so gradually,
however, that for any two adjacent global states in the sequence, at most one processor
can distinguish them. Second, we label each remaining point using a combination of
the global states on the edges. Third, we assign nonfaulty processors to points in such
a way that the processor labeling a point has the same local state in the global states
labeling all adjacent points. Finally, we project each global state onto the associated
nonfaulty processor’s local state, and label the point with the resulting processor-state
pair.

3 The Model

We use a synchronous, message-passing model with crash failures. The system con-
sists ofn processors,p�� � � � � pn. Processors share a global clock that starts at� and
advances in increments of�. Computation proceeds in a sequence ofrounds, with
roundr lasting from timer � � to time r. Computation in a round consists of three
phases: first each processorp sends messages to some of the processors in the sys-
tem, possibly including itself, then it receives the messages sent to it during the round,
and finally it performs some local computation and changes state. We assume that the
communication network is totally connected: every processor is able to send distinct
messages to every other processor in every round. We also assume that communication
is reliable (although processors can fail): ifp sends a message toq in roundr, then the
message is delivered toq in roundr.

Processors follow a deterministicprotocol that determines what messages a pro-
cessor should send and what output a processor should generate. A protocol has two
components: amessage component that maps a processor’s local state to the list of
messages it should send in the next round, and anoutput component that maps a pro-
cessor’s local state to the output value (if any) that it should choose. Processors can be
faulty, however, and any processorp can simplystop in any roundr. In this case, pro-
cessorp follows its protocol and sends all messages the protocol requires in rounds 1
throughr� �, sends some subset of the messages it is required to send in roundr, and
sends no messages in rounds afterr. We say thatp is silent from roundr if p sends
no messages in roundr or later. We say thatp is active through roundr if p sends all
messages in roundr and earlier.

A full-information protocol is one in which every processor broadcasts its en-
tire local state to every processor, including itself, in every round [PSL80, FL82,
Had83]. One nice property of full-information protocols is that every execution of
a full-information protocolP has a compact representation called acommunication
graph [MT88]. The communication graphG for anr-round execution ofP is a two-
dimensional two-colored graph. The vertices form ann � r grid, with processor
names� throughn labeling the vertical axis and times� throughr labeling the hor-
izontal axis. The node representing processorp at timei is labeled with the pairhp� ii.
Given any pair of processorsp andq and any roundi, there is an edge betweenhp� i� �i
and hq� ii whose color determines whetherp successfully sends a message toq in
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Figure 7: A three-round communication graph.

roundi: the edge is green ifp succeeds, and red otherwise. In addition, each nodehp� �i
is labeled withp’s input value. Figure 7 illustrates a three round communication graph.
In this figure, green edges are denoted by solid lines and red edges by dashed lines.
We refer to the edge betweenhp� i� �i andhq� ii as theround i edge from p to q, and
we refer to the nodehp� i� �i as theround i node for p since it represents the point
at whichp sends its roundi messages. We define what it means for a processor to be
silent or active in terms of communication graphs in the obvious way.

In the crash failure model, a processor is silent in all rounds following the round in
which it stops. This means that all communication graphs representing executions in
this model have the property that if a roundi edge fromp is red, then all roundj � i��
edges fromp are red, which means thatp is silent from roundi��. We assume that all
communication graphs in this paper have this property, and we note that everyr-round
graph with this property corresponds to anr-round execution ofP .

Since a communication graphG describes an execution ofP , it also determines
the global state at the end ofP , so we sometimes refer toG as aglobal communica-
tion graph. In addition, for each processorp and timet, there is a subgraph ofG that
corresponds to the local state ofp at the end roundt, and we refer to this subgraph as
a local communication graph. The local communication graph forp at timet is the
subgraphG�p� t� of G containing all the information visible top at the end of roundt.
Namely,G�p� t� is the subgraph induced by the nodehp� ti and all earlier nodes reach-
able fromhp� ti by a sequence (directed backwards in time) of green edges followed by
at most one red edge. In the remainder of this paper, we use graphs to represent states.
Wherever we used “state” in the informal overview of Section 2, we now substitute the
word “graph.” Furthermore, we defined a full-information protocol to be a protocol in
which processors broadcast their local states in every round, but we now assume that
processors broadcast their local communication graphs instead. In addition, we assume
that all executions of a full-information protocol run for exactlyr rounds and produce
output at exactly timer. All local and global communication graphs are graphs at
timer, unless otherwise specified.

The crucial property of a full-information protocol is that every protocol can be
simulated by a full-information protocol, and hence that we can restrict attention to
full-information protocols when proving the lower bound in this paper:

Lemma 1: If there is ann-processor protocol solvingk-set agreement withf fail-
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ures inr rounds, then there is ann-processor full-information protocol solvingk-set
agreement withf failures inr rounds.

4 The k-set Agreement Problem

The k-set agreement problem [Cha91] is defined as follows. We assume that each
processorpi has two private registers in its local state, a read-only input register and a
write-only output register. Initially,pi’s input register contains an arbitrary input value
from a setV containing at leastk�� valuesv�� � � � � vk, and its output register is empty.
A protocol solves the problem if it causes each processor to halt after writing an output
value to its output register in such a way that

1. every processor’s output value is some processor’s input value, and

2. the set of output values chosen has size at mostk.

5 Bermuda Triangle

In this section, we define the basic geometric constructs used in our proof that every
protocolP solvingk-set agreement and toleratingf failures requires at leastbf�kc��
rounds of communication, assumingn � f � k � ��

We start with some preliminary definitions. Asimplex S is the convex hull ofk � �
affinely-independent1 points x�� � � � � xk in Euclidean space. It is ak-dimensional
volume, thek-dimensional analogue of a solid triangle or tetrahedron. The points
x�� � � � � xk are called thevertices of S, andk is thedimension of S. We sometimes
call S a k-simplex when we wish to emphasize its dimension. A simplexF is a face
of S if the vertices ofF form a subset of the vertices ofS (which means that the di-
mension ofF is at most the dimension ofS). A set ofk-simplexesS�� � � � � S� is a
triangulation of S if S � S� � � � � � S� and the intersection ofSi andSj is a face of
each2 for all pairsi andj. Thevertices of a triangulation are the vertices of theS i. Any
triangulation ofS induces triangulations of its faces in the obvious way.

The construction of the Bermuda Triangle is illustrated in Figure 8. LetB be thek-
simplex ink-dimensional Euclidean space with vertices

��� � � � � ��� �N� �� � � � � ��� �N�N� �� � � � � ��� � � � � �N� � � � � N��

whereN is a huge integer defined later in Section 6.3. TheBermuda Triangle B is a
triangulation ofB defined as follows. The vertices ofB are the grid points contained
in B: these are the points of the formx � �x�� � � � � xk�, where thexi are integers
between� andN satisfyingx� � x� � � � � � xk .

Informally, the simplexes of the triangulation are defined as follows: pick any grid
point and walk one step in the positive direction along each dimension (Figure 9).

1Pointsx�� � � � � xk are affinely independent ifx� � x�� � � � � xk � x� are linearly independent.
2Notice that the intersection of two arbitraryk-dimensional simplexesSi andSj will be a volume of

some dimension, but it need not be a face of either simplex.
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Figure 8: Construction of Bermuda Triangle.

Figure 9: Simplex generation in Kuhn’s triangulation.
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Thek � � points visited by this walk define the vertices of a simplex, and the trian-
gulationB consists of all simplexes determined by such walks. For example, the 2-
dimensional Bermuda Triangle is illustrated in Figure 5. This triangulation, known as
Kuhn’s triangulation, is defined formally as follows [Cha93]. Lete �� � � � � ek be the
unit vectors; that is,ei is the vector��� � � � � �� � � � � �� with a single 1 in theith coordi-
nate. A simplex is determined by a pointy� and an arbitrary permutationf�� � � � � fk of
the unit vectorse�� � � � � ek: the vertices of the simplex are the pointsyi � yi�� � fi
for all i � �. When we list the vertices of a simplex, we always write them in the
ordery�� � � � � yk in which they are visited by the walk.

For brevity, we refer to the vertices ofB as thecorners of B. The “edges” ofB are
partitioned to form the edges ofB. More formally, the triangulationB induces triangu-
lations of the one-dimensional faces (line segments connecting the vertices) ofB, and
these induced triangulations are called theedges of B. The simplexes ofB are called
primitive simplexes.

Each vertex ofB is labeled with an ordered pair�p�L� consisting of a processor idp
and a local communication graphL. As illustrated in the overview in Section 2, the cru-
cial property of this labeling is that ifS is a primitive simplex with verticesy�� � � � � yk,
and if each vertexyi is labeled with a pair�qi�Li�, then there is a global communica-
tion graphG such that eachqi is nonfaulty inG and has local communication graphL i

in G. Constructing this labeling is the subject of the next three sections. We first assign
global communication graphsG to vertices in Section 6, then we assign processorsp to
vertices in Section 7, and then we assign ordered pairs�p�L� to vertices in Section 8,
whereL is the local communication graph ofp in G.

6 Graph Assignment

In this section, we label each vertex ofB with a global communication graph. Actually,
for expository reasons, we augment the definition of a communication graph and label
vertices ofB with these augmented communication graphs instead. Constructing this
labeling involves several steps. We define operations on augmented communication
graphs that make minor changes in the graphs, and we use these operations to construct
long sequences of graphs. Then we label vertices along edges ofB with graphs from
these sequences, and we label interior vertices ofB by performing a merge of the
graphs labeling the edges.

6.1 Augmented Communication Graphs

We extend the definition of a communication graph to make the processor assignment
in Section 7 easier to describe. We augment communication graphs with tokens, and
place tokens on the graph so that if processorp fails in roundi, then there is a token
on the nodehp� j � �i for processorp in some earlier roundj � i (Figure 10). In this
sense, every processor failure is “covered” by a token, and the number of processors
failing in the graph is bounded from above by the number of tokens. In the next few
sections, when we construct long sequences of these graphs, tokens will be moved be-
tween adjacent processors within a round, and used to guarantee that processor failures
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Figure 10: Three-round communication graph with one token per round.

in adjacent graphs change in a orderly fashion. For every value of�, we define graphs
with exactly� tokens placed on nodes in each round, but we will be most interested in
the two cases with� equal to� andk.

For each value� � �, we define an�-graph G to be a communication graph with
tokens placed on the nodes of the graph that satisfies the following conditions for each
roundi, � � i � r:

1. The total number of tokens on roundi nodes is exactly�.

2. If a roundi edge fromp is red, then there is a token on a roundj � i node forp.

3. If a roundi edge fromp is red, thenp is silent from roundi� �.

We say thatp is covered by a round i token if there is a token on the roundi node forp,
we say thatp is covered in round i if p is covered by a roundj � i token, and we
say thatp is covered in a graph ifp is covered in any round. Similarly, we say that a
roundi edge fromp is covered ifp is covered in roundi. The second condition says
every red edge is covered by a token, and this together with the first condition implies
that at most�r processors fail in an�-graph. We often refer to an�-graph as agraph
when the value of� is clear from context or unimportant. We emphasize that the tokens
are simply an accounting trick, and have no meaning as part of the global or local state
in the underlying communication graph.

We define afailure-free �-graph to be an�-graph in which all edges are green, and
all roundi tokens are on processorp� in all roundsi.

6.2 Graph operations

We now define four operations on augmented graphs that make only minor changes to
a graph. In particular, the only change an operation makes is to change the color of
a single edge, to change the value of a single processor’s input, or to move a single
token between adjacent processors within the same round. The operations are defined
as follows (see Figure 11):

1. delete�i� p� q�: This operation changes the color of the roundi edge fromp to q
to red, and has no effect if the edge is already red. This makes the delivery of the
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Figure 11: Operations on augmented communication graphs.
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roundi message fromp to q unsuccessful. It can only be applied to a graph ifp
andq are silent from roundi� �, andp is covered in roundi.

2. add�i� p� q�: This operation changes the color of the roundi edge fromp to q to
green, and has no effect if the edge is already green. This makes the delivery of
the roundi message fromp to q successful. It can only be applied to a graph ifp
andq are silent from roundi��, processorp is active through roundi��, andp
is covered in roundi.

3. change�p� v�: This operation changes the input value for processorp to v, and
has no effect if the value is alreadyv. It can only be applied to a graph ifp is
silent from round�, andp is covered in round�.

4. move�i� p� q�: This operation moves a roundi token fromhp� i� �i to hq� i� �i,
and is defined only for adjacent processorsp andq (that is,fp� qg � fp j � pj��g
for somej). It can only be applied to a graph ifp is covered by a roundi token,
and all red edges are covered by other tokens.

It is obvious from the definition of these operations that they preserve the property of
being an�-graph: ifG is an�-graph and� is a graph operation, then��G� is an�-graph.
We definedelete, add, andchange operations on communication graphs in exactly the
same way, except that the condition “p is covered in roundi” is omitted.

6.3 Graph sequences

We now define a sequence�
v� of graph operations that can be applied to any failure-
free graphG to transform it into the failure-free graphG
v� in which all processors
have inputv. We want to emphasize that the sequences�
v� differ only in the valuev.
For this reason, we define a parameterized sequence�
V� with the property that for all
valuesv and all graphsG, the sequence�
v� transformsG toG
v�. In general, we define
aparameterized sequence �
X�� � � � � X�� to be a sequence of graph operations with free
variablesX�� � � � � X� appearing as parameters to the graph operations in the sequence.

Given a graphG, let red�G� p�m� andgreen�G� p�m� be graphs identical toG ex-
cept that all edges fromp in roundsm� � � � � r are red and green, respectively. We define
these graphs only if

1. p is covered in roundm in G,

2. all faulty processors are silent from roundm (or earlier) inG, and

3. and all tokens are onp� in roundsm� �� � � � � r in G.

In addition, we define the graphgreen�G� p�m� only if

4. p is active through roundm� � in G.

These restrictions guarantee that ifG is an�-graph andred�G� p�m� andgreen�G� p�m�
are defined, thenred�G� p�m� andgreen�G� p�m� are both�-graphs.
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In the case of ordinary communication graphs, a result by Moses and Tuttle [MT88]
implies that there is a “similarity chain” of graphs betweenG andred�G� p�m� and be-
tweenG andgreen�G� p�m�. In their proof—a refinement of similar proofs by Dwork
and Moses [DM90] and others—the sequence of graphs they construct has the property
that each graph in the chain can be obtained from the preceding graph by applying a
sequence of theadd, delete, andchange graph operations defined above. The same
proof works for augmented communication graphs, provided we insertmove opera-
tions between theadd, delete, andchange operations to move tokens between nodes
appropriately. With this modification, we can prove the following. Letfaulty�G� be the
set of processors that fail inG.

Lemma 2: For every processorp, roundm, and set� of processors, there are se-
quencessilence��p�m� andrevive��p�m� such that for all graphsG:

1. If red�G� p�m� is defined and� � faulty�G�, then

silence��p�m��G� � red�G� p�m��

2. If green�G� p�m� is defined and� � faulty�G�, then

revive��p�m��G� � green�G� p�m��

Proof: We proceed by reverse induction onm. Supposem � r. Define

silence��p� r� � delete�r� p� p�� � � � delete�r� p� pn�

revive��p� r� � add�r� p� p�� � � � add�r� p� pn��

For part 1, letG be any graph and supposered�G� p� r� is defined. For eachi with
� � i � n, let Gi be the graph identical toG except that the roundr edges fromp
to p�� � � � � pi are red. Sincered�G� p� r� is defined, condition 1 implies thatp is covered
in roundr in G. For eachi with � � i � n, it follows thatGi�� is really a graph,
and delete�r� p� pi� can be applied toGi�� and transforms it toGi. SinceG � G�
andGn � red�G� p� r�, it follows thatsilence��p� r� transformsG to red�G� p� r�. For
part 2, letG be any graph and supposegreen�G� p� r� is defined. The proof of this part
is the direct analogue of the proof of part 1. The only difference is that since we are
coloring roundr edges fromp green instead of red, we must verify thatp is active
through roundr � � in G, but this follows immediately from condition 4.

Supposem � r and the induction hypothesis holds form��. Define� � � ��fpg
and define

set�m� �� pi� � move�m� �� p�� p�� � � �move�m� �� pi��� pi�

reset�m� �� pi� � move�m� �� pi� pi��� � � �move�m� �� p�� p���

Theset function moves the token fromp� to pi and thereset function moves the token
back frompi to p�.
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Defineblock�m� p� pi� to bedelete�m� p� pi� if pi � ��, and otherwise

set�m� �� pi�
silence���pi�m� �� delete�m� p� pi� revive���fpig�pi�m� ��

reset�m� �� pi��

Defineunblock�m� p� pi� to beadd�m� p� pi� if pi � ��, and otherwise

set�m� �� pi�
silence���pi�m� �� add�m� p� pi� revive���fpig�pi�m� ��

reset�m� �� pi��

Finally, define

block�m� p� � block�m� p� p�� � � � block�m� p� pn�

unblock�m� p� � unblock�m� p� p�� � � � unblock�m� p� pn�

and define

silence��p�m� � silence��p�m� �� block�m� p�

revive��p�m� � silence��p�m� �� unblock�m� p� revive���p�m� ���

For part 1, letG be any graph, and supposered�G� p�m� is defined and� �
faulty�G�. Sincered�G� p�m� is defined, the graphred�G� p�m � �� is also defined,
and the induction hypothesis form � � states thatsilence��p�m � �� transformsG
to red�G� p�m � ��. We now show thatblock�m� p� transformsred�G� p�m � ��
to red�G� p�m�, and we will be done. For eachi with � � i � n, let Gi be the
graph identical toG except thatp is silent from roundm � � and the edges fromp
to p�� � � � � pi are red inGi. Sincered�G� p�m� is defined, condition 1 implies thatp is
covered in roundm in G. For eachi with � � i � n, it follows thatG i really is a graph
and that�� � faulty�Gi�. Sincered�G� p�m � �� � G� andGn � red�G� p�m�, it is
enough to show thatblock�m� p� pi� transformsGi�� to Gi for eachi with � � i � n.
The proof of this fact depends on whetherp i � ��, so we consider two cases.

Consider the easy case withpi � ��. We know thatp is covered in roundm in G i��

since it is covered inG by condition 1. We know thatp is silent from roundm � �
in Gi�� since it is silent inG� � red�G� p�m � ��. We know thatpi is silent from
roundm�� in Gi�� sincepi � �� implies (assuming thatpi is not justp again) thatpi
fails in G, and hence is silent from roundm � � in G by condition 2. This means
thatblock�m� p� pi� � delete�m� p� pi� can be applied toGi�� to transformGi�� to Gi.

Now consider the difficult case whenpi �� ��. LetHi�� andHi be graphs identical
to Gi�� andGi, except that a single roundm � � token is onp i in Hi�� andHi.
Condition 3 guarantees that all roundm� � tokens are onp � in G, and hence inGi��
andGi, soHi�� andHi really are graphs. In addition,set�m� �� pi� transformsGi��
toHi��, andreset�m��� pi� transformsHi toGi. LetIi�� andIi be identical toHi��

andHi except thatpi is silent from roundm�� in Ii�� andIi. Processorpi is covered
in roundm � � in Hi�� andHi, soIi�� andIi really are graphs. In fact,pi does
not fail in G sincepi �� ��, sopi is active through roundm in Ii�� andIi, soIi�� �
red�Hi��� pi�m��� andHi � green�Ii� pi�m���. The inductive hypothesis form��
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states thatsilence���pi�m��� transformsHi�� to Ii��, andrevive���fpig�pi�m���
transformsIi toHi. Finally, notice that the only difference betweenI i�� andIi is the
color of the roundm edge fromp to p i. Sincep is covered in roundm andp andp i are
silent from roundm�� in both graphs, we know thatdelete�m� p� p i� transformsIi��
to Ii. It follows thatblock�m� p� pi� transformsGi�� to Gi, and we are done.

For part 2, letG be any graph and supposegreen�G� p�m� is defined and� �
faulty�G�. Sincegreen�G� p�m� is defined, letG � � green�G� p�m�. Now letH andH�

be graphs identical toG andG � except thatp is silent from roundm � � in H andH �.
Sincegreen�G� p�m� is defined, processorp is covered in roundm in G by condition 1
and hence inG �, soH andH� really are graphs. In addition, sincegreen�G� p�m� is
defined, processorp is active through roundm� � in G by condition 4, so processorp
is active through roundm in G � andH�. This means thatgreen�H�� p�m � �� is de-
fined, and in fact we haveH � red�G� p�m � �� andG � � green�H�� p�m � ��. The
induction hypothesis form � � states thatsilence��p�m � �� transformsG to H and
thatrevive���p�m��� transformsH� toG�. To complete the proof, we need only show
thatunblock�m� p� transformsH toH �. The proof of this fact is the direct analogue of
the proof in part 1 thatblock�m� p� transformsred�G� p�m � �� to red�G� p�m�. The
only difference is that since we are coloring roundm edges fromp with green instead
of red, we must verify thatp is active through roundm� � in the graphsH i analogous
to Gi in the proof of part 1, but this follows immediately from condition 4.

Given a graphG, let Gi
v� be a graph identical toG, except that processorp i has
inputv. Using the preceding result, we can transformG to G i
v�.

Lemma 3: For eachi, there is a parameterized sequence� i
V� with the property that
for all valuesv and failure-free graphsG, the sequence� i
v� transformsG to Gi
v�.

Proof: Define

set��� pi� � move��� p�� p�� � � �move��� pi��� pi�

reset��� pi� � move��� pi� pi��� � � �move��� p�� p��

and define

�i
V� � set��� pi�silence��pi� ��change�pi� V�revivefpig�pi� ��reset��� pi�

where	 denotes the empty set. Now consider any valuev and any failure-free graphG,
and letG � � Gi
v�. SinceG andG � are failure-free graphs, all round 1 tokens are onp �,
so letH andH� be graphs identical toG andG � except that a single round 1 token is
onpi inH andH�. We know thatH andH� are graphs, and thatset��� pi� transformsG
to H and reset��� pi� transformsH� to G�. Sincepi is covered inH andH�, let I
andI � be identical toH andH� except thatpi is silent from round 1. We know thatI
andI � are graphs, and it follows by Lemma 2 thatsilence��pi� �� transformsH to I
and thatrevivefpig�pi� �� transformsI � toH�. Finally, notice thatI andI � differ only
in the input value forpi. Sincepi is covered and silent from round 1 in both graphs,
the operationchange�pi� v� can be applied toI and transforms it toI �. Stringing all of
this together, it follows that�i
v� transformsG to G � � Gi
v�.

By concatenating such operation sequences, we can transformG intoG
v� by chang-
ing processors’ input values one at a time:
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Lemma 4: Let �
V� � ��
V� � � ��n
V�. For every valuev and failure-free graphG, the
sequence�
v� transformsG to G
v�.

Now we can define the parameterN used in defining the shape ofB: N is the length
of the sequence�
V�, which is exponential inr.

6.4 Graph merge

Speaking informally, we will use each sequence�
v i� of graph operations to generate
a sequence of graphs, and we will use this sequence of graphs to label vertices along
the edge ofB in theith dimension. Then we will label vertices in the interior ofB by
performing a “merge” of the graphs on the edges in the different dimensions.

Themerge of a sequenceH�� � � � �Hk of graphs is a graph defined as follows:

1. an edgee is colored red if it is red in any of the graphsH �� � � � �Hk, and green
otherwise, and

2. an initial nodehp� �i is labeled with the valuevi wherei is the maximum index
such thathp� �i is labeled withvi in Hi, or v� if no suchi exists, and

3. the number of tokens on a nodehp� ii is the sum of the number of tokens on the
node in the graphsH�� � � � �Hk.

The first condition says that a message is missing in the resulting graph if and only
if it is missing in any of the merged graphs. To understand the second condition,
notice that for each processorpj there is a integersj with the property thatpj ’s input
value in changed tovi by thesj th operation appearing in�
vi�. Now choose a vertex
x � �x�� � � � � xk� of B, and imagine walking from the origin tox by walking along the
first dimension to�x�� �� � � � � ��, then along the second dimension to�x�� x�� �� � � � � ��,
and so forth. In each dimensioni, processorp j ’s input is changed fromvi�� to vi
aftersj steps in this dimension. Sincex� � x� � � � � � xk, there is a final dimensioni
in which pj ’s input is changed tovi, and never changed again. The second condition
above is just a compact way of identifying this final valuev i.

Lemma 5: LetH be the merge of the graphsH�� � � � �Hk. If H�� � � � �Hk are�-graphs,
thenH is ak-graph.

Proof: We consider the three conditions required of ak-graph in turn. First, there arek
tokens in each round ofH since there is� token in each round of each graphH �� � � � �Hk.
Second, every red edge inH is covered by a token since every red edge inH corre-
sponds to a red edge in one of the graphsH j , and this edge is covered by a token inHj .
Third, if there is a red edge fromp in roundi in H, then there is a red fromp in roundi
of one of the graphsHj . In this graph,p is silent from roundi� �, so the same is true
in H. Thus,H is ak-graph.
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6.5 Graph assignments

Now we can define the assignment of graphs to vertices ofB. For each valuev i, letFi

be the failure-free�-graph in which all processors have inputv i. Letx � �x�� � � � � xk�
be an arbitrary vertex ofB. For each coordinatex j , let�j be the prefix of�
vj � consist-
ing of the firstxj operations, and letHj be the�-graph resulting from the application
of �j toFj��. This means that inHj , some setp�� � � � � pi of adjacent processors have
had their inputs changed fromvj�� to vj . The graphG labelingx is defined to be the
merge ofH�� � � � �Hk. We know thatG is a k-graph by Lemma 5, and hence that at
mostrk � f processors fail inG.

Remember that we always write the vertices of a primitive simplex in a canonical
ordery�� � � � � yk. In the same way, we always write the graphs labeling the vertices] of
a primitive simplex in the canonical orderG�� � � � �Gk, whereGi is the graph labelingyi.

6.6 Graphs on a simplex

The graphs labeling the vertices of a primitive simplex have some convenient proper-
ties. For this section, fix a primitive simplexS, and lety�� � � � � yk be the vertices ofS
and letG�� � � � �Gk be the graphs labeling the corresponding vertices ofS. Our first re-
sult says that any processor that is uncovered at a vertex ofS is nonfaulty at all vertices
of S.

Lemma 6: If processorq is not covered in the graph labeling a vertex ofS, thenq is
nonfaulty in the graph labeling every vertex ofS.

Proof: Let y� � �a�� � � � � ak� be the first vertex ofS. For eachi, let�i and�i�i be the
prefixes of�
vi� consisting of the firstai andai�� operations, and letHi andH�

i be the
result of applying�i and�i�i toFi��. For eachi, we know that the graphGi labeling
the vertexyi of S is the merge of graphsI i

�� � � � � I
i
k whereI ij is eitherHj or H�

j .
Supposeq is faulty inGi. Thenq must be faulty in some graphI i

j in the sequence of
graphsI i�� � � � � I

i
n merged to formGi, soq must fail in one of the graphsHj or H�

j .
Since�j and�j�j are prefixes of�
vj �, it is easy to see from the definition of�
vj �
that the fact thatq fails in one of the graphsHj andH�

j implies thatq is covered in
both graphs. Since one of these graphs is contained in the sequence of graphs merged
to formGa for eacha, it follows thatq is covered in eachGa. This contradicts the fact
thatq is uncovered in a graph labeling a vertex ofS.

Our next result shows that we can use the bound on the number of tokens to bound
the number of processors failing at any vertex ofS.

Lemma 7: If Fi is the set of processors failing inGi andF � �iFi, thenjF j � rk �
f .

Proof: If q � F , thenq � Fi for somei andq fails inGi, soq is covered in every graph
labeling every vertex ofS by Lemma 6. It follows that each processor inF is covered
in each graph labelingS. Since there are at mostrk tokens to cover processors in any
graph, there are at mostrk processors inF .
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We have assigned graphs toS, and now we must assign processors toS. A lo-
cal processor labeling of S is an assignment of distinct processorsq�� � � � � qk to the
verticesy�� � � � � yk of S so thatqi is uncovered inGi for eachyi. A global processor
labeling of B is an assignment of processors to vertices ofB that induces a local pro-
cessor labeling at each primitive simplex. The final important property of the graphs
labelingS is that if we use a processor labeling to labelS with processors, thenS is
consistent with a single global communication graph. The proof of this requires a few
preliminary results.

Lemma 8: If Gi�� andGi differ in p’s input value, thenp is silent from round�
in G�� � � � �Gk. If Gi�� andGi differ in the color of an edge fromq to p in roundt,
thenp andq are silent from roundt� � in G�� � � � �Gk.

Proof: Suppose the two graphsGi�� andGi labeling verticesyi�� andyi differ in
the input top at time t � � or in the color of an edge fromq to p in round t.
The vertices differ in exactly one coordinatej, so y i�� � �a�� � � � � aj � � � � � ak� and
yi � �a�� � � � � aj � �� � � � � ak�. For each�, let �� be the prefix of�
v�� consisting of
the firsta� operations, and letH�

� be the result of applying�� to F���. Furthermore,
in the special case of� � j, let�j�j be the prefix of�
vj � consisting of the firstaj � �
operations, and letH�

j be the result of applying�j�j toFj��.
We know thatGi�� is the merge ofH�

�� � � � �H
�
j � � � � �H

�
k, and thatGi is the merge

ofH�
�� � � � �H

�
j � � � � �H

�
k. If H�

j andH�
j are equal, thenGi�� andGi are equal. Thus,H�

j

andH�
j must differ in the input top at timet � � or in the color of an edge betweenq

andp in roundt, exactly asGi�� andGi differ. SinceH�
j andH�

j are the result of
applying�j and�j�j toFj��, this change at timet must be caused by the operation� j .
It is easy to see from the definition a graph operation like� j that (1) if �j changesp’s
input value, thenp is silent from round� in H�

j andH�
j , and (2) if�j changes the color

of an edge fromq top in roundt, thenp andq are silent from roundt�� inH �
j andH�

j .
Consequently, the same is true in the merged graphsG i�� andGi.

Lemma 9: If Gi�� andGi differ in the local communication graph ofp at timet, thenp
is silent from roundt� � in G�� � � � �Gk.

Proof: We proceed by induction ont. If t � �, then the two graphs must differ in
the input top at time�, and Lemma 8 implies thatp is silent from round� in the
graphsG�� � � � �Gk labeling the simplex. Supposet � � and the inductive hypothesis
holds fort � �. Processorp’s local communication graph at timet can differ in the
two graphs for one of two reasons: eitherp hears from some processorq in roundt in
one graph and not in the other, orp hears from some processorq in both graphs butq
has different local communication graphs at timet � � in the two graphs. In the first
case, Lemma 8 implies thatp is silent from roundt�� in the graphsG�� � � � �Gk. In the
second case, the induction hypothesis fort� � implies thatq is silent from roundt in
the graphsG�� � � � �Gk. In particular,q is silent in roundt in Gi�� andGi, contradicting
the assumption thatp hears fromq in roundt in both graphs, so this case can’t happen.
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Lemma 10: If p sends a message in roundr in any of the graphsG �� � � � �Gk, thenp
has the same local communication graph at timer � � in all of the graphsG �� � � � �Gk.

Proof: If p has different local communication graphs at timer � � in two of the
graphsG�� � � � �Gk, then there are two adjacent graphsGi�� andGi in which p has
different local communication graphs at timer� �. By Lemma 9,p is silent in roundr
in all of the graphsG�� � � � �Gk, contradicting the assumption thatp sent a roundr
message in one of them.

Finally, we can prove the crucial property of primitive simplexes in the Bermuda
Triangle:

Lemma 11: Given a local processor labeling, letq�� � � � � qk be the processors labeling
the vertices ofS, and letLi be the local communication graph ofq i in Gi. There is a
global communication graphG with the property that eachq i is nonfaulty inG and has
the local communication graphLi in G.

Proof: Let Q be the set of processors that send a roundr message in any of the
graphsG�� � � � �Gk. Notice that this set includes the uncovered processorsq�� � � � � qk,
since Lemma 6 says that these processors are nonfaulty in each of these graphs. For
each processorq � Q, Lemma 10 says thatq has the same local communication graph
at timer � � in each graphG�� � � � �Gk.

Let H be the global communication graph underlying any one of these graphs.
Notice that each processorq � Q is active through roundr�� inH. To see this, notice
that sinceq sends a message in roundr in one of the graphs labelingS, it sends all
messages in roundr�� in that graph. On the other hand, ifq fails to send a message in
roundr � � in H, then the same is true for the corresponding graph labelingS. Thus,
there are adjacent graphsGi�� andGi labelingS wherep sends a roundr� � message
in one and not in the other. Consequently, Lemma 8 saysq is silent in roundr in all
graphs labelingS, but this contradicts the fact thatq does send a roundr message in
one of these graphs.

Now letG be the global communication graph obtained fromH by coloring green
each roundr edge from each processorq � Q, unless the edge is red in one of the local
communication graphsL�� � � � �Lk in which case we color it red inG as well. Notice
that since the processorsq � Q are active through roundr�� inH, changing the color
of a roundr edge from a processorq � Q to either red or green is acceptable, provided
we do not cause more thatf processors to fail in the process. Fortunately, Lemma 7
implies that there are at leastn � rk � n� f processors that do not fail in any of the
graphsG�� � � � �Gk . This means that there is a set ofn� f processors that send to every
processor in roundr of every graphG i, and in particular that the roundr edges from
these processors are green in every local communication graphL i. It follows that for
at leastn� f processors, all roundr edges from these processors are green inG, so at
mostf processors fail inG.

Each processorqi is nonfaulty inG, sinceqi is nonfaulty in eachG�� � � � �Gk, mean-
ing each edge fromqi is green in eachG�� � � � �Gk andL�� � � � �Lk, and therefore inG.
In addition, each processorqi has the local communication graphLi in G. To see this,
notice thatLi consists of a roundr edge frompj to qi for eachj, and the local com-
munication graph forpj at timer � � if this edge is green. This edge is green inLi
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if and only if it is green inG. In addition, if this edge is green inL i, then it is green
in Gi. In this case, Lemma 10 says thatpj has the same local communication graph at
timer� � in each graphG�� � � � �Gk, and therefore inG. Consequently,q i has the local
communication graphLi in G.

7 Processor Assignment

What Lemma 11 at the end of the preceding section tells us is that all we have left to
do is to construct a global processor labeling. In this section, we show how to do this.
We first associate a set of “live” processors with each communication graph labeling a
vertex ofB, and then we choose one processor from each set to label vertices ofB.

7.1 Live processors

Given a graphG, we construct a set ofc � n � rk � k � � uncovered (and hence
nonfaulty) processors. We refer to these processors as thelive processors inG, and we
denote this set bylive�G�. These live sets have one crucial property: ifG andG � are two
graphs labeling adjacent vertices, and ifp is in bothlive�G� andlive�G ��, thenp has the
same rank in both sets. As usual, we define therank of p i in a setR of processors to
be the number of processorspj � R with j � i.

Given a graphG, we now show how to constructlive�G�. This construction has one
goal: if G andG � are graphs labeling adjacent vertices, then the construction should
minimize the number of processors whose rank differs in the setslive�G� andlive�G ��.
The construction oflive�G� begins with the set of all processors, and removes a set
of rk processors, one for each token. This set of removed processors includes the
covered processors, but may include other processors as well. For example, supposep i

andpi�� are covered with one token each inG, but supposep i is uncovered andpi��
is covered by two tokens inG �. For simplicity, let’s assume these are the only tokens
on the graphs. When constructing the setlive�G�, we remove bothp i andpi�� since
they are both covered. When constructing the setlive�G ��, we removepi��, but we
must also remove a second processor corresponding to the second token coveringp i��.
Which processor should we remove? If we choose a low processor likep �, then we have
changed the rank of a low processor likep� from � to �. If we choose a high processor
like pn, then we have change the rank of a high processor likepn�� fromn�� ton��.
On the other hand, if we choose to removep i again, then no processors change rank. In
general, the construction oflive�G� considers each processorp in turn. If p is covered
by mp tokens inG, then the construction removesmp processors by starting withp,
working down the list of remaining processors smaller thanp, and then working up the
list of processors larger thanp if necessary.

Specifically, given a graphG, themultiplicity of p is the numbermp of tokens ap-
pearing on nodes forp in G, and themultiplicity of G is the vectorm � hm p� � � � � �mpni.
Given the multiplicity ofG as input, the algorithm given in Figure 12 computeslive�G�.
In this algorithm, processorpi is denoted by its indexi. We refer to theith iteration
of the main loop as theith step of the construction. This construction has two obvious
properties:
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S 
 f�� � � � � ng
for eachi � �� � � � � n

count
 0
for eachj � i� i� �� � � � � �� i� �� � � � � n

if count =mi then break
if j � S then

S 
 S � fjg
count
 count + 1

live�G� 
 S

Figure 12: The construction oflive�G�.

Lemma 12: If i � live�G� then

1. i is uncovered: mi � �

2. room exists under i:
Pi��

j��mj � i� �

Proof: Supposei � live�G�. For part 1, ifmi � � theni will be removed by stepi if it
has not already removed by an earlier step, contradictingi � live�G�. For part 2, notice
that steps� throughi � � remove a total of

Pi��
j��mj values. If this sum is greater

thani� �, then it is not possible for all of these values to be contained in�� � � � � i� �,
soi will be removed within the firsti� � steps, contradictingi � live�G�.

The assignment of graphs to the corners of a simplex has the property that oncep
becomes covered on one corner ofS, it remains covered on the following corners ofS:

Lemma 13: If p is uncovered in the graphsG i andGj , wherei � j, thenp is uncovered
in each graphGi�Gi��� � � � �Gj .

Proof: If p is covered inG� for some� betweeni andj, thenp is uncovered inG ���

and covered inG� for some� betweeni and j. SinceG��� andG� are on adjacent
vertices of the simplex, the sequences of graphs merged to construct them are of
the formH�� � � � �Hm� � � � �Hk andH�� � � � �H�

m� � � � �Hk, respectively, for somem.
Sincep is uncovered inG��� and covered inG�, it must be thatp is uncovered inHm

and covered inH�
m. Notice, however, thatH� is used in the construction of each

graphG��G���� � � � �Gj . This means thatp is covered in each of these graphs, con-
tradicting the fact thatp is uncovered inGj .

Finally, because token placements in adjacent graphs on a simplex differ in at most
the movement of one token from one processor to an adjacent processor, we can use
the preceding lemma to prove the following:

Lemma 14: If p � live�Gi� andp � live�Gj�, thenp has the same rank inlive�Gi�
andlive�Gj�.
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Proof: Assume without loss of generality thati � j. Sincep � live�G i� andp �
live�Gj�, Lemma 12 implies thatp is uncovered in the graphsG i andGj , and Lemma 13
implies thatp is uncovered in each graphG i�Gi��� � � � �Gj . Since token placements in
adjacent graphs differ in at most the movement of one token from one processor to
an adjacent processor, and sincep is uncovered in all of these graphs, this means that
the number of tokens on processors smaller thanp is the same in all of these graphs.
Specifically, the sum

Pp��
��� m� of multiplicities of processors smaller thanp is the

same inGi�Gi��� � � � �Gj . In particular, Lemma 12 implies that this sum is the same
values � p� � in Gi andGj , sop has the same rankp� s in live�Gi� andlive�Gj�.

7.2 Processor labeling

We now choose one processor from each setlive�G� to label the vertex with graphG.
Given a vertexx � �x�� � � � � xk�, we define

plane�x� �
kX

i��

xi �mod k � ��

.

Lemma 15: If x and y are distinct vertices of the same simplex, thenplane�x� ��
plane�y�.

Proof: Sincex andy are in the same simplex, we can writey � x � f� � � � � � fj
for some distinct unit vectorsf�� � � � � fj and some� � j � k. If x � �x�� � � � � xk�

andy � �y�� � � � � yk�, then the sums
Pk

i�� xi and
Pk

i�� yi differ by exactlyj. Since
� � j � k and since planes are defined as sums modulok � �, we haveplane�x� ��
plane�y�.

We define a global processor labeling� as follows: given a vertexx labeled with a
graphG, we define� to mapx to the processor having rankplane�x� in live�G�.

Lemma 16: The mapping� is a global processor labeling.

Proof: First, it is clear that� maps each vertexx labeled with a graphGx to a pro-
cessorqx that is uncovered inGx. Second,� maps distinct vertices of a simplex to
distinct processors. To see this, suppose that bothx andy are labeled withp, and
let Gx andGy be the graphs labelingx andy. We know that the rank ofp in live�Gx�
is plane�x� and that the rank ofp in live�Gy� is plane�y�, and we know thatp has the
same rank inlive�Gx� andlive�Gy� by Lemma 14. Consequently,plane�x� � plane�y�,
contradicting Lemma 15.

We label the vertices ofB with processors according to the processor labeling�.

8 Ordered Pair Assignment

Finally, we assign ordered pairs�p�L� of processor ids and local communication graphs
to vertices ofB. Given a vertexx labeled with processorp and graphG, we labelx
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with the ordered pair�p�L� whereL is the local communication graph ofp in G. The
following result is a direct consequence of Lemmas 11 and 16. It says that the local
communication graphs of processors labeling the corners of a vertex are consistent with
a single global communication graph.

Lemma 17: Let q�� � � � � qk andL�� � � � �Lk be the processors and local communication
graphs labeling the vertices of a simplex. There is a global communication graphG
with the property that eachqi is nonfaulty inG and has the local communication
graphLi in G.

9 Sperner’s Lemma

We now state Sperner’s Lemma, and use it to prove a lower bound on the number of
rounds required to solvek-set agreement.

Notice that the corners ofB are points of the formc i � �N� � � � � N� �� � � � � �� with i
indices of valueN for � � i � k. For example,c� � ��� � � � � ��, c� � �N� �� � � � � ��,
andck � �N� � � � � N�. Informally, a Sperner coloring ofB assigns a color to each
vertex so that each corner vertexci is given a distinct colorwi, each vertex on the edge
betweenci andcj is given eitherwi orwj , and so on.

More formally, letS be a simplex and letF be a face ofS. Any triangulation
of S induces a triangulation ofF in the obvious way. LetT be a triangulation ofS.
A Sperner coloring of T assigns a color to each vertex ofT so that each corner ofT
has a distinct color, and so that the vertices contained in a faceF are colored with the
colors on the corners ofF , for each faceF of T . Sperner colorings have a remarkable
property: at least one simplex in the triangulation must be given all possible colors.

Lemma 18 (Sperner’s Lemma): If B is a triangulation of ak-simplex, then for any
Sperner coloring ofB, there exists at least onek-simplex inB whose vertices are all
given distinct colors.

Let P be the protocol whose existence we assumed in the previous section. Define
a coloring	P of B as follows. Given a vertexx labeled with processorp and local
communication graphL, colorx with the valuev thatP requires processorp to choose
when its local communication graph isL. This coloring is clearly well-defined, sinceP
is a protocol in which all processors chose an output value at the end of roundr. We
will now expand the argument sketched in the introduction to show that	 P is a Sperner
coloring.

We first prove a simple claim. Recall thatB is the simplex whose vertices are the
corner verticesc�� � � � � ck, and thatB is a triangulation ofB. LetF be some face ofB
not containing the cornerci, and letF denote the triangulation ofF induced byB. We
prove the following technical statement about vertices inF .

Claim 19: If x � �x�� � � � � xk� is a vertex of a faceF not containingci, then

1. if i � �, thenx� � N ,

2. if � � i � k, thenxi�� � xi, and
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3. if i � k, thenxk � �.

Proof: Each vertexx ofB can be expressed usingbarycentric coordinates with respect
to the corner vertices: that is,x � 
�c�� � � ��
kck, where� � 
j � � for � � j � k

and
Pk

i�� 
i � �. Sincex is a vertex of a faceF not containing the cornerc i, it
follows that
i � �. We consider the three cases.
Case 1: i � �. Each cornerc�� � � � � ck has the valueN in the first position. Since
� � �,
the value in the first position of
�c� � � � �� 
kck is �
� � � � �� 
k�N � N .
Case 2: � � i � k. Each cornerc�� � � � � ci�� has� in positionsi and i � �, and
each cornerci��� � � � � ck hasN in positionsi and i � �. Since
i � �, the linear
combination
�c� � � � � � 
kck will have the same value�
i�� � � � � � 
k�N in
positionsi andi� �. Thus,xi � xi��.
Case 3: i � k. Each cornerc�� � � � � ck�� has� in positionk. Since
k � �, the value
in thekth position of
�c� � � � �� 
kck is �. Thus,xk � �.

Lemma 20: If P is a protocol fork-set agreement toleratingf faults and halting
in r � bf�kc rounds, then	P is a Sperner coloring ofB.

Proof: We must show that	P satisfies the two conditions of a Sperner coloring.
For the first condition, consider any corner vertexc i. Remember thatci was origi-

nally labeled with the 1-graphFi describing a failure-free execution in which all pro-
cessors start with inputvi, and that the local communication graphL labelingc i is a
subgraph ofFi. Since thek-set agreement problem requires that any value chosen by a
processor must be an input value of some processor, all processors must chosev i inFi,
and it follows that the vertexci must be colored withvi. This means that each cornerci
is colored with a distinct valuevi.

For the second condition, consider any faceF of B, and let us prove that vertices
in F are colored with the colors on the corners ofF . Equivalently, suppose thatc i is
not a corner ofF , and let us prove that no vertex inF is colored withv i.

Consider the global communication graphG originally labelingx, and the graphs
H�� � � � �Hk used in the merge definingG. The definition of this merge says that the
input value labeling a nodehp� �i in G isvm wherem is the maximumm such thathp� �i
is labeled withvm in Hm, or v� if no suchm exists. Again, we consider three cases.
In each case, we show that no processor inG has the input valuev i.

Supposei � �. Sincex� � N by Claim 19, we know thatH� � F�, where the
input value of every processor isv�. By the definition of the merge operation, it follows
immediately that no processor inG can have input valuev �.

Suppose� � i � k. Again, xi�� � xi by Claim 19. Now,Hi is the result
of applying�i, the firstxi operations of�
vi�, to the graphFi��. Similarly,Hi��

is the result of applying�i��, the firstxi�� operations of�
vi���, to the graphFi.
Sincexi�� � xi, both�i and�i�� are of the same length, and it follows that�i con-
tains an operation of the formchange�p� v i� if and only if �i�� contains an operation
of the formchange�p� vi���. This implies that for any processor, either its input value
is vi�� in Hi andvi in Hi��, or its input value isvi in Hi andvi�� in Hi��. In both
cases,vi is not the input value of this processor.
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Supposei � k. Sincexk � � by Claim 19, we know thatHk � Fk��, where the
input value of every processor isvk��. By the definition ofmerge, it follows immedi-
ately that no processor inG can have input valuevk.

Therefore, we have shown that ifx is a vertex of a faceF of B, andc i is not a
corner vertex ofF , then the communication graphG corresponding tox contains no
processor with input valuevi. Therefore, by the agreement condition, the value chosen
at this vertex cannot bevi, and it follows thatx is assigned a color other thanv i. So,x
must be colored by a colorvj such thatcj is a corner vertex ofF . Sincecj is coloredvj ,
the second condition of Sperner’s Lemma holds. So	P is a Sperner coloring.

Sperner’s Lemma guarantees that some primitive simplex is colored byk � � dis-
tinct values, and this simplex corresponds to a global state in whichk � � processors
choosek � � distinct values, contradicting the definition ofk-set agreement:

Theorem 21: If n � f � k��, then no protocol fork-set agreement can halt in fewer
thanbf�kc� � rounds.

Proof: SupposeP is a protocol fork-set agreement toleratingf faults and halting
in r � bf�kc rounds, and consider the corresponding Bermuda TriangleB. Lemma 20
says that	P is a Sperner coloring ofB, so Sperner’s Lemma 18 says that there is a sim-
plexS whose vertices are colored withk �� distinct valuesv�� � � � � vk. Let q�� � � � � qk
andL�� � � � �Lk be the processors and local communication graphs labeling the corners
of S. By Lemma 17, there exists a communication graphG in which q i is nonfaulty
and has local communication graphL i. This means thatG is a timer global commu-
nication graph ofP in which eachqi must choose the valuevi. In other words,k � �
processors must choosek�� distinct values, contradicting the fact thatP solvesk-set
agreement inr rounds.

10 Protocol

An optimal protocolP for k-set agreement is given in Figure 13. In this protocol,
processors repeatedly broadcast input values and keep track of the least input value
received in a local variablebest. Initially, a processor setsbest to its own input value.
In each of the nextbf�kc � � rounds, the processor broadcasts the value ofbest and
then setsbest to the smallest value received in that round from any processor (including
itself). In the end, it chooses the value ofbest as its output value.

To prove thatP is an optimal protocol, we must prove that, in every execution
of P , processors halt inr � bf�kc� � rounds, every processor’s output value is some
processor’s input value, and the set of output values chosen has size at mostk. The first
two statements follow immediately from the text of the protocol, so we need only prove
the third. For each timet and processorp, let bestp�t be the value ofbest held byp at
time t. For each timet, let Best�t� be the set of valuesbestq��t� � � � � bestq��t where the
processorsq�� � � � � q� are the processors active through timet. Notice thatBest��� is
the set of input values, and thatBest�r� is the set of chosen output values. Our first
observation is that the setBest�t� never increases from one round to the next.

Lemma 22: Best�t� � Best�t� �� for all timest.
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best 
 input value;

for each round� throughbf�kc� � do
broadcastbest;
receive valuesb�� � � � � b� from other processors;
best 
 minfb�� � � � � b�g;

choosebest.

Figure 13: An optimal protocolP for k-set agreement.

Proof: If b � Best�t � ��, thenb � bestp�t�� for some processorp active through
round t � �. Sincebestp�t�� is the minimum of the valuesb�� � � � � b� sent top by
processors during roundt � �, we know thatb � bestq�t for some processorq that is
active through roundt. Consequently,b � Best�t�.

We can use this observation to prove that the only executions in which many output
values are chosen are executions in which many processors fail. We say that a proces-
sorp fails before time t if there is a processorq to whichp sends no message in roundt
(andp may fail to send toq in earlier rounds as well).

Lemma 23: If jBest�t�j � d� �, then at leastdt processors fail before timet.

Proof: We proceed by induction ont. The case oft � � is immediate, so suppose
that t � � and that the induction hypothesis holds fort � �. SincejBest�t�j � d � �
and sinceBest�t� � Best�t � �� by Lemma 22, it follows thatjBest�t � ��j � d � �,
and the induction hypothesis fort�� implies that there is a setS of d�t��� processors
that fail before timet��. It is enough to show that there are an additionald processors
not contained inS that fail before timet.

Let b�� � � � � bd be the values ofBest�t� written in increasing order. Letq be a pro-
cessor withbestq�t set to the largest valuebd at timet, and for each valuebi let qi be a
processor that sentbi in roundt � �. The processorsq�� � � � � qd are distinct since the
valuesb�� � � � � bd are distinct, and these processors do not fail before timet � � since
they send a message in roundt, so they are not contained inS. On the other hand, the
processorsq�� � � � � qd�� sending the small valuesb�� � � � � bd�� in roundt�� clearly did
not send their values to the processorq settingbestq�t to the large valuebd, or q would
have setbestq�t to a smaller value. Consequently, thesed processorsq�� � � � � qd�� fail
in roundt and hence fail before timet.

SinceBest�r� is the set of output values chosen by processors at the end of round
r � bf�kc� �, if k �� output values are chosen, then Lemma 23 says that at leastkr
processors fail, which is impossible sincef � kr. Consequently, the set of output
values chosen has size at mostk, as we are done.

Theorem 24: The protocolP solvesk-set agreement inbf�kc� � rounds.
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