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Abstract

We prove tight bounds on the time needed to sé&hset agreement. In this prob-
lem, each processor starts with an arbitrary input value taken from a fixed set, and halts
after choosing an output value. In every execution, at rhadsstinct output values may
be chosen, and every processor’s output value must be some processor’s input value.
We analyze this problem in a synchronous, message-passing model where processors
fail by crashing. We prove a lower bound pf /k| + 1 rounds of communication for
solutions tok-set agreement that tolerafdailures, and we exhibit a protocol proving
the matching upper bound. This result shows that there is an inherent tradeoff between
the running time, the degree of coordination required, and the number of faults toler-
ated, even in idealized models like the synchronous model. The proof of this result
is interesting because it is the first to apply topological techniques to the synchronous
model.
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1 Introduction

Most interesting problems in concurrent and distributed computing require processors
to coordinate their actions in some way. It can also be important for protocols solv-
ing these problems to tolerate processor failures, and to execute quickly. Ideally, one
would like to optimize all three properties—degree of coordination, fault-tolerance,
and efficiency—but in practice, of course, it is usually necessary to make tradeoffs
among them. In this paper, we give a precise characterization of the tradeoffs required
by studying a family of basic coordination problems calteglet agreement.

In k-set agreement [Cha91], each processor starts with an arbitrary input value and
halts after choosing an output value. These output values must satisfy two conditions:
each output value must be some processor’s input value, and the set of output val-
ues chosen must contain at médistinct values. The first condition rules out trivial
solutions in which a single value is hard-wired into the protocol and chosen by all
processors in all executions, and the second condition requires that the processors co-
ordinate their choices to some degree. This problem is interesting because it defines
a family of coordination problems of increasing difficulty. At one extreme, i the
number of processors in the system, tmeset agreement is trivial: each processor
simply chooses its own input value. At the other extretnget agreement requires that
all processors choose the same output value, a problem equivalentdondeasus
problem [LSP82, PSL80, FL82, FLP85, Dol82, Fis83]. Consensus is well-known to
be the “hardest” problem, in the sense that all other decision problems can be reduced
to it. Consensus arises in applications as diverse as on-board aircraft contr@BJwW
database transaction commit [BHG87], and concurrent object design [Her91]. Between
these extremes, as we vary the valué éfomn to 1, we gradually increase the degree
of processor coordination required.

We consider this family of problems irsgnchronous, message-passing model with
crash failures. In this modeln processors communicate by sending messages over a
completely connected network. Computation in this model proceeds in a sequence
of rounds. In each round, processors send messages to other processors, then receive
messages sent to them in the same round, and then perform some local computation
and change state. This means that all processors take steps at the same rate, and that
all messages take the same amount of time to be delivered. Communication is reliable,
but up tof processors can fail by stopping in the middle of the protocol.

The primary contribution of this paper is a lower bound on the amount of time
required to solvek-set agreement, together with a protocol ksset agreement that
proves a matching upper bound. Specifically, we prove that any protocol sdlving
set agreement in this model and toleratifdailures requireq f/k| + 1 rounds of
communication in the worst case—assuming f + k + 1, meaning that there are at
leastk+ 1 nonfaulty processors—and we prove a matching upper bound by exhibiting a
protocol that solvek-set agreement inf /k| + 1 rounds. Since consensus is jiistet
agreement, our lower bound implies the well-known lower bounfl #f1 rounds for
consensus whem > f + 2 [FL82]. More important, the running time= | f/k| + 1
demonstrates that there is a smooth but inescapable tradeoff among the rfuafber
faults tolerated, the degrdeof coordination achieved, and the timethe protocol
must run. For a fixed value df, Figure 1 shows that 2-set agreement can be achieved
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Figure 1: Tradeoff between rounds and degree of coordination.

in half the time needed to achieve consensus. In addition, the lower bound proof itself
is interesting because of the geometric proof technique we use, combining ideas due
to Chaudhuri [Cha91, Cha93], Fischer and Lynch [FL82], Herlihy and Shavit [HS93],
and Dwork, Moses, and Tuttle [DM90, MT88].

In the past few years, researchers have developed powerful new tools based on
classical algebraic topology for analyzing tasks in asynchronous models (e.g., [AR96,
BG93, GK96, HR94, HR95, HS93, HS94, SZ93)).

The principal innovation of these papers is to model computations as simplicial
complexes (rather than graphs) and to derive connections between computations and
the topological properties of their complexes. This paper extends this topological ap-
proach in several new ways: it is the first to derive results in the synchronous model,
it derives lower bounds rather than computability results, and it uses explicit construc-
tions instead of existential arguments.

Although the synchronous model makes some strong (and possibly unrealistic) as-
sumptions, it is well-suited for proving lower bounds. The synchronous model is a
special case of almost every realistic model of a concurrent system we can imagine,
and therefore any lower bound fbrset agreement in this simple model translates into
a lower bound in any more complex model. For example, our lower bound holds for
models that permit messages to be lost, failed processors to restart, or processor speeds
to vary. Moreover, our techniques may be helpful in understanding how to prove (pos-
sibly) stricter lower bounds in more complex models. Naturally, our protocdl-ket
agreement in the synchronous model does not work in more general models, but it is
still useful because it shows that our lower bound is the best possible in the synchronous
model.

This paper is organized as follows. In Section 2, we give an informal overview
of our lower bound proof. In Section 3 we define our model of computation, and in
Section 4 we defing-set agreement. In Sections 5 through 9 we prove our lower
bound, and in Section 10 we give a protocol solviget agreement, proving the
matching upper bound.



2 Overview

We start with an informal overview of the ideas used in the lower bound proof. For
the remainder of this paper, suppaBés a protocol that solvek-set agreement and
tolerates the failure of out of n processors, and suppoBehalts inr < | f/k] + 1
rounds. This means that all nonfaulty processors have chosen an output valuerat time
in every execution ofP. In addition, suppose > f + k + 1, which means that at
leastk + 1 processors never fail. Our goal is to considerdtabal statesthat occur at
timer in executions ofP, and to show that in one of these states thergarel pro-
cessors that have chosenr- 1 distinct values, violating-set agreement. Our strategy
is to consider théocal states of processors that occur at timén executions ofP, and
to investigate the combinations of these local states that occur in global states. This
investigation depends on the construction of a geometric object. In this section, we use
a simplified version of this object to illustrate the general ideas in our proof.

Since consensus is a special cask-eét agreement, it is helpful to review the stan-
dard proof of thef + 1 round lower bound for consensus [FL82, DS83, Mer85, DM90]
to see why new ideas are neededAeset agreement. Suppose that the protdta
a consensus protocol, which means that in all executio@saf nonfaulty processors
have chosen the same output value at timm@&wo global stateg; andg, at timer are
said to besimilar if some nonfaulty processgrhas the same local state in both global
states. The crucial property of similarity is that the decision value of any processor
in one global state completely determines the decision value for any processor in all
similar global states. For example, if all processors deciiteg;, then certainly de-
cideswv in g;. Sincep has the same local stategp andg,, and since’s decision value
is a function of its local state, procesgpalso decide® in g». Since all processors
agree withp in g2, all processors decidein g-, and it follows that the decision value
in g; determines the decision valuegn. A similarity chain is a sequence of global
statesgs, . .., g¢, Such thaty; is similar tog; ;. A simple inductive argument shows
that the decision value iy, determines the decision valuegn The lower bound proof
consists of showing that all timeglobal states oP lie on a single similarity chain. It
follows that all processors choose the same value in all executioRsioflependent
of the input values, violating the definition of consensus.

The problem withk-set agreement is that the decision values in one global state do
not determine the decision values in similar global stateg.hdis the same local state
in g1 andg», thenp must choose the same value in both states, but the values chosen
by the other processors are not determined. Even-f1 processors have the same
local state ing; andgs, the decision value of the last processor is still not determined.
The fundamental insight in this paper is tiiaset agreement requires considering all
“degrees” of similarity at once, focusing on the number and identity of local states
common to two global states. While this seems difficult—if not impossible—to do us-
ing conventional graph theoretic techniques like similarity chains, thergasreetric
generalization of similarity chains that provides a compact way of capturing all degrees
of similarity simultaneously, and it is the basis of our proof.

A simplex is just the natural generalization of a trianglextdimensions: for ex-
ample, &)-dimensional simplex is a vertex,Jadimensional simplex is an edge linking
two vertices, &-dimensional simplex is a solid triangle, and-alimensional simplex
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Figure 2: Global states for zero, one, and two-round protocols.



Bermuda Triangle

Figure 3: Global states for anround protocol (showing the embedded Bermuda Tri-
angle).

is a solid tetrahedron. We can represent a global state far@ocessor protocol as
an (n — 1)-dimensional simplex [Cha93, HS93], where each vertex is labeled with a
processor id and local state. ¢df andg, are global states in which; has the same
local state, then we “glue together” the verticegpfandg, labeled withp,. Figure 2
shows how these global states glue together in a simple protocol in which each of three
processors repeatedly sends its state to the others. Each process begins with a binary
input. The first picture shows the possible global states after zero rounds: since no
communication has occurred, each processor’s state consists only of its input. Itis easy
to check that the simplices corresponding to these global states form an octahedron.
The next picture shows the complex after one round. Each triangle corresponds to a
failure-free execution, each free-standing edge to a single-failure execution, and so on.
The third picture shows the possible global states after three rounds.

The set of global states after arround protocol is quite complicated (Figure 3),
but it contains a well-behaved subset of global states which we cdbetmeuda Trian-
gle B, since all fast protocols vanish somewhere in its interior. The Bermuda Triangle
(Figure 4) is constructed by starting with a lagelimensional simplex, andiangu-
latingit into a collection of smallek-dimensional simplexes. We then label each vertex
with an ordered paifp, s) consisting of a processor identifigrand a local state in
such a way that for each simpl@xin the triangulation there is a global stateon-
sistent with the labeling of the simplex: for each ordered fis) labeling a corner
of T, processop has local state in global statey.

To illustrate the process of labeling vertices, Figure 5 shows a simplified repre-
sentation of a two-dimensional Bermuda Triangle It is the Bermuda Triangle for
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Figure 4: Bermuda Triangle with simplex representing typical global state.
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Figure 5: The Bermuda Triangle for 5 processors and a 1-round protocol for 2-set
agreement.

a protocolP for 5 processors solving-set agreement it round. We have labeled
grid points with local states, but we have omitted processor ids and many intermediate
nodes for clarity. The local states in the figure are represented by expressions such
asbb?aa. Given3 distinct input values, b, ¢, we writebb?aa to denote the local state
of a processap at the end of a round in which the first two processors have input balue
and send messagesptpothe middle processor fails to send a message émd the last
two processors have input valueand send messagesgoln Figure 5, following any
horizontal line from left to right acrosB, the input values are changed frano b.
The input value of each processor is changed—one after another—nby first silencing the
processor, and then reviving the processor with the input valu&milarly, moving
along any vertical line from bottom to top, processors’ input values changebftom

The complete labeling of the Bermuda Triandke shown in Figure 5—which
would include processor ids—has the following property. (ets) be the label of
a grid pointz. If z is a corner ofB, thens specifies that each processor starts with the
same input value, sp must choose this value if it finishes protoddlin local states.
If z is on an edge oB, thens specifies that each processor starts with one of the two
input values labeling the ends of the edgepsnust choose one of these values if it
halts in state. Similarly, if z is in the interior ofB, thens specifies that each processor
starts with one of the three values labeling the corneB,ad0p must choose one of
these three values if it halts in state

Now let us “color” each grid point with output values (Figure 6). Given a grid
pointz labeled with(p, s), let us colorz with the valuev thatp chooses in local state
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Figure 6: Sperner's Lemma.

at the end ofP. This coloring of B has the property that the color of each of the cor-
ners is determined uniquely, the color of each point on an edge between two corners is
forced to be the color of one of the corners, and the color of each interior point can be
the color of any corner. Colorings with this property are caelner colorings, and

have been studied extensively in the field of algebraic topology. At this point, we ex-
ploit a remarkable combinatorial result first proved in 198&rner’s Lemma [Spa66,
p.151] states that any Sperner coloring of any triangulktdionensional simplex must
include at least one simplex whose corners are colored with #&ll1 colors. In our
case, however, this simplex corresponds to a global state in vikhieH processors
choosek + 1 distinct values, which contradicts the definitiorke$et agreement. Thus,

in the case illustrated above, there is no protocoRfeet agreement halting inround.

We note that the basic structure of the Bermuda Triangle and the idea of coloring the
vertices with decision values and applying Sperner’s Lemma have appeared in previous
work by Chaudhuri [Cha91, Cha93]. In that work, she also proved a lower bound
of | f/k| + 1 rounds fork-set agreement, but for a very restricted class of protocols.
In particular, a protocol’s decision function can depend only on vectors giving partial
information about which processors started with which input values, but cannot depend
on any other information in a processor’s local state, such as processor identities or
message histories. The technical challenge in this paper is to construct a labeling of
vertices with processor ids and local states that will allow us to prove a lower bound
for k-set agreement for arbitrary protocols.

Our approach consists of four parts. First, we label points on the eddg@swvith
global states. For example, consider the edge between the corner where all processors
start with input valuex and the corner where all processors start witkiVe construct



a long sequence of global states that begins with a global state in which all processors
start witha, ends with a global state in which all processors start wittnd in between
systematically changes input values frarto b. These changes are made so gradually,
however, that for any two adjacent global states in the sequence, at most one processor
can distinguish them. Second, we label each remaining point using a combination of
the global states on the edges. Third, we assign nonfaulty processors to points in such
a way that the processor labeling a point has the same local state in the global states
labeling all adjacent points. Finally, we project each global state onto the associated
nonfaulty processor’s local state, and label the point with the resulting processor-state
pair.

3 TheModd

We use a synchronous, message-passing model with crash failures. The system con-
sists ofn processorsp, ..., p,. Processors share a global clock that starts ad
advances in increments @¢f Computation proceeds in a sequenceainds, with

roundr lasting from timer — 1 to timer. Computation in a round consists of three
phases: first each procesgosends messages to some of the processors in the sys-
tem, possibly including itself, then it receives the messages sent to it during the round,
and finally it performs some local computation and changes state. We assume that the
communication network is totally connected: every processor is able to send distinct
messages to every other processor in every round. We also assume that communication
is reliable (although processors can fail)pi§ends a messagedan roundr, then the
message is delivered gan roundr.

Processors follow a deterministicotocol that determines what messages a pro-
cessor should send and what output a processor should generate. A protocol has two
components: anessage component that maps a processor’s local state to the list of
messages it should send in the next round, andugsut component that maps a pro-
cessor’s local state to the output value (if any) that it should choose. Processors can be
faulty, however, and any procesgocan simplystop in any roundr. In this case, pro-
cessorp follows its protocol and sends all messages the protocol requires in rounds 1
throughr — 1, sends some subset of the messages it is required to send in-caurd
sends no messages in rounds afteiVe say thap is silent from roundr if p sends
no messages in roundor later. We say that is active through round- if p sends all
messages in roundand earlier.

A full-information protocol is one in which every processor broadcasts its en-
tire local state to every processor, including itself, in every round [PSL80, FL82,
Had83]. One nice property of full-information protocols is that every execution of
a full-information protocolP has a compact representation calledoenmunication
graph [MT88]. The communication grapé for anr-round execution of’ is a two-
dimensional two-colored graph. The vertices formrarx r grid, with processor
namesl throughn labeling the vertical axis and timdésthroughr labeling the hor-
izontal axis. The node representing procegsattime: is labeled with the paifp, ).

Given any pair of processopsaindg and any round, there is an edge betweém i — 1)
and{q,i) whose color determines whethgrsuccessfully sends a messagegtm
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Figure 7: A three-round communication graph.

roundi: the edge is greenjf succeeds, and red otherwise. In addition, each (md®

is labeled withp’s input value. Figure 7 illustrates a three round communication graph.

In this figure, green edges are denoted by solid lines and red edges by dashed lines.
We refer to the edge betweén, i — 1) and(g, ¢) as theround i edge from p to ¢, and

we refer to the nodép, i — 1) as theround ¢ node for p since it represents the point

at whichp sends its round messages. We define what it means for a processor to be
silent or active in terms of communication graphs in the obvious way.

In the crash failure model, a processor is silent in all rounds following the round in
which it stops. This means that all communication graphs representing executions in
this model have the property that if a rounedge fronp is red, then all roungl > i +1
edges fronp are red, which means thais silent from round + 1. We assume that all
communication graphs in this paper have this property, and we note thatrenargd
graph with this property corresponds toramound execution oP.

Since a communication gragh describes an execution @f, it also determines
the global state at the end &%, so we sometimes refer  as aglobal communica-
tion graph. In addition, for each processprand timet, there is a subgraph of that
corresponds to the local stateét the end round, and we refer to this subgraph as
alocal communication graph. The local communication graph ferat timet is the
subgraplg (p, t) of G containing all the information visible tp at the end of round.
Namely,G(p, t) is the subgraph induced by the noget) and all earlier nodes reach-
able from(p, t) by a sequence (directed backwards in time) of green edges followed by
at most one red edge. In the remainder of this paper, we use graphs to represent states.
Wherever we used “state” in the informal overview of Section 2, we now substitute the
word “graph.” Furthermore, we defined a full-information protocol to be a protocol in
which processors broadcast their local states in every round, but we now assume that
processors broadcast their local communication graphs instead. In addition, we assume
that all executions of a full-information protocol run for exaatlyounds and produce
output at exactly time'. All local and global communication graphs are graphs at
timer, unless otherwise specified.

The crucial property of a full-information protocol is that every protocol can be
simulated by a full-information protocol, and hence that we can restrict attention to
full-information protocols when proving the lower bound in this paper:

Lemma 1: If there is ann-processor protocol solving-set agreement witlf fail-
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ures inr rounds, then there is amprocessor full-information protocol solvirfgset
agreement wittf failures inr rounds.

4 The k-set Agreement Problem

The k-set agreement problem [Cha91] is defined as follows. We assume that each
processop; has two private registers in its local state, a read-only input register and a
write-only output register. Initiallyp;’s input register contains an arbitrary input value
from a sefV containing at least + 1 valueswy, . . ., vg, and its output register is empty.

A protocol solves the problem if it causes each processor to halt after writing an output
value to its output register in such a way that

1. every processor’s output value is some processor’s input value, and

2. the set of output values chosen has size at iost

5 Bermuda Triangle

In this section, we define the basic geometric constructs used in our proof that every
protocolP solvingk-set agreement and toleratifidailures requires at leasf /k | + 1
rounds of communication, assuming> f + k + 1.

We start with some preliminary definitions.shmplex S is the convex hull ok + 1
affinely-independentpoints zy, ..., z; in Euclidean space. It is &-dimensional
volume, thek-dimensional analogue of a solid triangle or tetrahedron. The points
Zo, ..., Z; are called thevertices of S, andk is thedimension of S. We sometimes
call S a k-simplex when we wish to emphasize its dimension. A simpléxs aface
of S if the vertices ofF' form a subset of the vertices 6f (which means that the di-
mension ofF' is at most the dimension &f). A set of k-simplexesSy,..., Sy is a
triangulation of S if S = S; U --- U S, and the intersection &§; andS; is a face of
each for all pairsi and;. Thevertices of a triangulation are the vertices of thg. Any
triangulation ofS induces triangulations of its faces in the obvious way.

The construction of the Bermuda Triangle is illustrated in Figure 8 A le¢ thek-
simplex ink-dimensional Euclidean space with vertices

(0,...,0),(N,0,...,0),(N,N,0,...,0),...,(N,...,N),

whereN is a huge integer defined later in Section 6.3. Beamuda Triangle B is a
triangulation of3 defined as follows. The vertices & are the grid points contained
in B: these are the points of the form= (z1,...,z:), where thex; are integers
betweerd andN satisfyingz,; > zo > -+« > zy.

Informally, the simplexes of the triangulation are defined as follows: pick any grid
point and walk one step in the positive direction along each dimension (Figure 9).

Ipointszyo, .. .,z are affinely independent if; — zo, ...,z — 2o are linearly independent.
2Notice that the intersection of two arbitrakydimensional simplexe§ and S; will be a volume of
some dimension, but it need not be a face of either simplex.
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Figure 8: Construction of Bermuda Triangle.
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Figure 9: Simplex generation in Kuhn’s triangulation.
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The k + 1 points visited by this walk define the vertices of a simplex, and the trian-
gulation B consists of all simplexes determined by such walks. For example, the 2-
dimensional Bermuda Triangle is illustrated in Figure 5. This triangulation, known as
Kuhn's triangulation, is defined formally as follows [Cha93]. Let,...,e; be the

unit vectors; that ise; is the vector(0,...,1,...,0) with a single 1 in theth coordi-
nate. A simplex is determined by a point and an arbitrary permutatiofy, . . ., fi of

the unit vectors,, ..., ex: the vertices of the simplex are the poigts= y;_, + f;

for all i > 0. When we list the vertices of a simplex, we always write them in the
orderyy, - . ., yx in which they are visited by the walk.

For brevity, we refer to the vertices Bfas thecornersof B. The “edges” of3 are
partitioned to form the edges &. More formally, the triangulatio® induces triangu-
lations of the one-dimensional faces (line segments connecting the vertid@siod
these induced triangulations are called ¢dges of B. The simplexes oB are called
primitive simplexes.

Each vertex oB is labeled with an ordered pdis, £) consisting of a processor id
and a local communication gragh As illustrated in the overview in Section 2, the cru-
cial property of this labeling is that § is a primitive simplex with verticego, . . ., yx,
and if each vertey; is labeled with a paifg;, £;), then there is a global communica-
tion graphG such that each; is nonfaulty inG and has local communication gragh
in G. Constructing this labeling is the subject of the next three sections. We first assign
global communication graplgsto vertices in Section 6, then we assign procesgtos
vertices in Section 7, and then we assign ordered faji8) to vertices in Section 8,
whereL is the local communication graph pfin G.

6 Graph Assignment

In this section, we label each vertexBfwith a global communication graph. Actually,

for expository reasons, we augment the definition of a communication graph and label
vertices of B with these augmented communication graphs instead. Constructing this
labeling involves several steps. We define operations on augmented communication
graphs that make minor changes in the graphs, and we use these operations to construct
long sequences of graphs. Then we label vertices along eddgsvith graphs from

these sequences, and we label interior vertice® ddy performing a merge of the
graphs labeling the edges.

6.1 Augmented Communication Graphs

We extend the definition of a communication graph to make the processor assignment
in Section 7 easier to describe. We augment communication graphs with tokens, and
place tokens on the graph so that if procegséils in rounds, then there is a token

on the nod€p, j — 1) for processop in some earlier roungl < i (Figure 10). In this

sense, every processor failure is “covered” by a token, and the number of processors
failing in the graph is bounded from above by the number of tokens. In the next few
sections, when we construct long sequences of these graphs, tokens will be moved be-
tween adjacent processors within a round, and used to guarantee that processor failures
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Figure 10: Three-round communication graph with one token per round.

in adjacent graphs change in a orderly fashion. For every valdewd define graphs
with exactly/ tokens placed on nodes in each round, but we will be most interested in
the two cases witld equal tol andk.

For each valu¢ > 0, we define arf-graph G to be a communication graph with
tokens placed on the nodes of the graph that satisfies the following conditions for each
roundz, 1 <i <r:

1. The total number of tokens on rounidodes is exactly.
2. If aroundi edge fromp is red, then there is a token on a royng i node forp.
3. Ifaround:i edge fronp is red, therp is silent from round + 1.

We say thap is covered by a round i token if there is a token on the rourichode forp,
we say thafp is covered in round i if p is covered by a roung < ¢ token, and we
say thatp is covered in a graph ifp is covered in any round. Similarly, we say that a
round: edge fromp is covered ifp is covered in round. The second condition says
every red edge is covered by a token, and this together with the first condition implies
that at mos¥r processors fail in aé-graph. We often refer to afigraph as ayraph
when the value of is clear from context or unimportant. We emphasize that the tokens
are simply an accounting trick, and have no meaning as part of the global or local state
in the underlying communication graph.

We define dailure-free £-graph to be ad-graph in which all edges are green, and
all rounds tokens are on processpy in all roundsi.

6.2 Graph operations

We now define four operations on augmented graphs that make only minor changes to
a graph. In particular, the only change an operation makes is to change the color of
a single edge, to change the value of a single processor’s input, or to move a single
token between adjacent processors within the same round. The operations are defined
as follows (see Figure 11):

1. delete(i, p, q): This operation changes the color of the rodretige fromp to ¢
to red, and has no effect if the edge is already red. This makes the delivery of the
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delete(3, p2, p3)

add(@3,p ,
( P, pl)

change(p3, b)

ve(2, s
move( N pz)

Figure 11: Operations on augmented communication graphs.
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round: message from to ¢ unsuccessful. It can only be applied to a gragh if
andgq are silent from round + 1, andp is covered in round.

2. add(s, p, q): This operation changes the color of the rodredige fromp to g to
green, and has no effect if the edge is already green. This makes the delivery of
the round message frorp to ¢ successful. It can only be applied to a graph if
andgq are silent from round+ 1, processop is active through rouné— 1, andp
is covered in round.

3. change(p, v): This operation changes the input value for procegsorv, and
has no effect if the value is already It can only be applied to a graphgfis
silent from roundl, andp is covered in round.

4. move(i, p, q): This operation moves a rourdoken from(p, i — 1) to (g, — 1),
and is defined only for adjacent procesgpemdgq (that is,{p, ¢} = {p;,pj+1}
for somey). It can only be applied to a graphgfis covered by a roundltoken,
and all red edges are covered by other tokens.

It is obvious from the definition of these operations that they preserve the property of
being arn/-graph: ifG is an/-graph and- is a graph operation, ther{G) is anf-graph.

We definedelete, add, andchange operations on communication graphs in exactly the
same way, except that the conditignié covered in round’ is omitted.

6.3 Graph sequences

We now define a sequene¢v] of graph operations that can be applied to any failure-

free graphg to transform it into the failure-free gragjv] in which all processors

have inputv. We want to emphasize that the sequende$differ only in the valuev.

For this reason, we define a parameterized sequejviavith the property that for all

valuesv and all graphg, the sequence[v] transformgj to G[v]. In general, we define

aparameterized sequences|Xy, . . ., X¢| to be a sequence of graph operations with free

variablesx, ..., X, appearing as parameters to the graph operations in the sequence.
Given a graplg, letred(G, p, m) andgreen(G, p, m) be graphs identical t§ ex-

cept that all edges fromin roundsm, . . ., r are red and green, respectively. We define

these graphs only if

1. pis coveredinroundr in G,
2. all faulty processors are silent from roumd(or earlier) inG, and
3. and all tokens are guy in roundsm + 1,...,rin G.
In addition, we define the grageen(G, p, m) only if
4. pis active through roungh — 1in G.

These restrictions guarantee thaj iis ané-graph anded(G, p, m) andgreen(G, p, m)
are defined, thered(G, p, m) andgreen(G, p, m) are bothé-graphs.
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In the case of ordinary communication graphs, a result by Moses and Tuttle [MT88]
implies that there is a “similarity chain” of graphs betwekandred(G, p, m) and be-
tweeng andgreen(g, p, m). In their proof—a refinement of similar proofs by Dwork
and Moses [DM90] and others—the sequence of graphs they construct has the property
that each graph in the chain can be obtained from the preceding graph by applying a
sequence of thadd, delete, andchange graph operations defined above. The same
proof works for augmented communication graphs, provided we imsa opera-
tions between thadd, delete, andchange operations to move tokens between nodes
appropriately. With this modification, we can prove the following. fzetty(G) be the
set of processors that fail .

Lemma2: For every processags, roundm, and setr of processors, there are se-
quencesilence, (p, m) andrevive, (p, m) such that for all graphg:

1. If red(G, p, m) is defined andr = faulty(G), then

silence (p,m)(G) = red(G, p, m).

2. If green(G, p, m) is defined andr = faulty(G), then

revive, (p, m)(G) = green(G, p,m).

Proof: We proceed by reverse induction an Supposen = r. Define

slence,(p,r) = delete(r,p,pi1)-- - delete(r, p, pn)
revive,(p,r) = add(r,p,p1)---add(r,p,pn).

For part 1, letg be any graph and supposal(G, p,r) is defined. For each with
0 < i < n, let G; be the graph identical t§ except that the round edges fronp
topy,...,p; arered. Sinceed(g, p, r) is defined, condition 1 implies thatis covered
in roundr in G. For eachi with 1 < i < n, it follows thatG; ; is really a graph,
and delete(r, p, p;) can be applied t@;_; and transforms it t@;. SinceG = Gg
andg, = red(g,p,r), it follows thatsilence, (p, r) transformsj to red(gG, p,r). For
part 2, letG be any graph and suppogeen(g, p, r) is defined. The proof of this part
is the direct analogue of the proof of part 1. The only difference is that since we are
coloring roundr edges fronp green instead of red, we must verify thats active
through round- — 1 in G, but this follows immediately from condition 4.

Supposen < r and the induction hypothesis holds far+ 1. Definer’ = #U{p}
and define

%t(m—}—]_,pz) = rmve(m+ 1ap1ap2)"'rnove(m+1api—1api)
reset(m+1apz) = rmve(m+]-apiapi—l)"'rmve(m+1ap2ap1)-

Theset function moves the token fropy to p; and thereset function moves the token
back fromp; to p;.
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Defineblock(m, p, p;) to bedelete(m, p, p;) if p; € #’, and otherwise

slence (p;,m +1)  delete(m,p,p;)  reviveygp,y (i, m + 1)
reset(m + 1,p;).

Defineunblock(m, p, p;) to beadd(m, p, p;) if p; € ', and otherwise

silence, (pi,m + 1) add(m, p, p;) reviver uip,1 (pi,m + 1)
re%t(m + ]-apz)
Finally, define
blOCk(map) = blOCk(mapapl) U bIOCk(mapapn)
unblock(m,p) = unblock(m, p,p;) - - unblock(m, p, p,)
and define
slence;(p,m) = silence,(p, m + 1) block(m, p)
revive,(p,m) = silence,(p, m + 1) unblock(m, p) revive, (p, m + 1).

For part 1, letG be any graph, and supposed(G, p,m) is defined andr =
faulty(G). Sincered(G, p,m) is defined, the graphed(G, p, m + 1) is also defined,
and the induction hypothesis fat + 1 states thasilence,(p, m + 1) transformsg
to red(G,p,m + 1). We now show thablock(m, p) transformsred(G, p,m + 1)
to red(g, p, m), and we will be done. For eachwith 0 < ¢ < n, let G; be the
graph identical taj except thap is silent from roundn + 1 and the edges from
tops,...,p; are red inG;. Sincered(G, p, m) is defined, condition 1 implies thatis
covered in roundn in G. For each with 0 < i < n, it follows thatG; really is a graph
and thatr’ = faulty(G;). Sincered(G,p,m + 1) = Gy andg,, = red(G, p,m), itis
enough to show thdtlock(m, p, p;) transformsj;_; to G; for eachi with 1 < i < n.
The proof of this fact depends on whetlpgre ', so we consider two cases.

Consider the easy case wjih € «'. We know thap is covered inrouneh in G;
since it is covered ir§ by condition 1. We know thap is silent from roundm + 1
in G;_1 since it is silent inGy = red(G, p,m + 1). We know thatp; is silent from
roundm + 1 in G;_; sincep; € =’ implies (assuming that; is not justp again) thajp;
fails in G, and hence is silent from round + 1 in G by condition 2. This means
thatblock(m, p, p;) = delete(m, p, p;) can be applied tg;_; to transformg,;_; to G;.

Now consider the difficult case when & «'. Let’H;_; and#; be graphs identical
to G;_; and gG;, except that a single rouna + 1 token is onp; in H;_; and#;.
Condition 3 guarantees that all round+ 1 tokens are op; in G, and hence i; _;
andg;, soH;_, and#; really are graphs. In additioset(m + 1, p;) transformsg;
toH;—1, andreset(m+ 1, p;) transformsH; to G;. LetZ;_, andZ; be identical tdH ;1
andH; except thap; is silent from roundn +1 in Z; _; andZ;. Processop; is covered
inroundm + 1in ‘H;_, andH;, soZ; ; andZ; really are graphs. In fach; does
not fail in G sincep; ¢ =, sop; is active through rouneh in Z;_; andZ;, soZ; | =
red(H;—1,p;, m+1) andH; = green(Z;, p;, m+1). The inductive hypothesis fen+1
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states thasilence, (p;, m + 1) transformsH; , toZ; ;, andrevive,: g, (pi, m + 1)
transformsZ; to #;. Finally, notice that the only difference betweEn ; andZ; is the
color of the roundn edge fronp to p;. Sincep is covered in rouna: andp andp; are
silent from roundn + 1 in both graphs, we know thdelete(m, p, p;) transformsZ; _,
to Z;. It follows thatblock(m, p, p;) transformgj;_; to G;, and we are done.

For part 2, letG be any graph and suppogeeen(G, p, m) is defined andr =
faulty(G). Sincegreen(G, p, m) is defined, let;’ = green(g, p, m). Now letH andH'
be graphs identical t§ andG' except thap is silent from roundn + 1in H and#'.
Sincegreen(G, p, m) is defined, processeris covered in roungr in G by condition 1
and hence irG’', soH andH' really are graphs. In addition, singeeen(G, p, m) is
defined, processgris active through rouneh — 1 in G by condition 4, so processgr
is active through rouneh in G’ and#'. This means thagreen(H', p,m + 1) is de-
fined, and in fact we hav®l = red(G,p,m + 1) andG' = green(H',p,m + 1). The
induction hypothesis fom + 1 states thasilence, (p, m + 1) transformsj to % and
thatrevive,: (p, m + 1) transformsH’ to G'. To complete the proof, we need only show
thatunblock(m, p) transforms# to H'. The proof of this fact is the direct analogue of
the proof in part 1 thalock(m, p) transformsed(G, p, m + 1) to red(G, p,m). The
only difference is that since we are coloring rouncedges fronp with green instead
of red, we must verify that is active through roungh — 1 in the graph${ ; analogous
to G; in the proof of part 1, but this follows immediately from condition 4. ]

Given a graply, let G;[v] be a graph identical tg, except that processer, has
inputv. Using the preceding result, we can transf@mo G, [v].

Lemma3: For eachi, there is a parameterized sequeagp/] with the property that
for all valuesv and failure-free graphg, the sequence;[v] transformgj to G;[v].

Proof: Define

st(L,p) = move(lpr,ps) - mOve(L, pi_1,p)
re%t(]-apl) = rnove(]-apiapifl)"'rmve(lap2apl)

and define
oi[V] = set(1, p;)silencey (pi, 1)change(p;, V)revivey,,  (pi, 1)reset(1, p;)

where) denotes the empty set. Now consider any valaed any failure-free grapf,
and letG’ = G;[v]. SinceG andg’ are failure-free graphs, all round 1 tokens argen
so let# and#’' be graphs identical t§ andG' except that a single round 1 token is
onp; in H andH’. We know that{ and#' are graphs, and that(1, p;) transformgj

to H andreset(1, p;) transformsH' to G'. Sincep; is covered inH andH/', letZ
andZ' be identical to4 and#' except thap; is silent from round 1. We know thét
andZ' are graphs, and it follows by Lemma 2 ttsilenceg (p;, 1) transformsH to 7
and thatrevivey,y (ps, 1) transformsZ’ to #'. Finally, notice thaZ andZ’ differ only

in the input value fop;. Sincep; is covered and silent from round 1 in both graphs,
the operatiorthange(p;, v) can be applied t& and transforms it t&'. Stringing all of
this together, it follows thad; [v] transformgj to G' = G;[v]. O

By concatenating such operation sequences, we can trangfiotmg [v] by chang-
ing processors’ input values one at a time:
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Lemmad4: Leto[V] = o1[V]:--o,[V]. For every value and failure-free grap§, the
sequence|v] transformgj to G[v].

Now we can define the paramef®rused in defining the shape 8f N is the length
of the sequence|Vv], which is exponential im.

6.4 Graph merge

Speaking informally, we will use each sequentge;] of graph operations to generate
a sequence of graphs, and we will use this sequence of graphs to label vertices along
the edge ofB in theith dimension. Then we will label vertices in the interiorBfy
performing a “merge” of the graphs on the edges in the different dimensions.

Themerge of a sequenc@(, ..., Hy of graphs is a graph defined as follows:

1. an edge is colored red if it is red in any of the grapfs,, ..., H;, and green
otherwise, and

2. an initial nodg(p, 0) is labeled with the value; wherei is the maximum index
such that(p, 0) is labeled withw; in #;, or vo if no suchi exists, and

3. the number of tokens on a no@le 7) is the sum of the number of tokens on the
node in the graph®, ..., H.

The first condition says that a message is missing in the resulting graph if and only
if it is missing in any of the merged graphs. To understand the second condition,
notice that for each processpy there is a integes; with the property thap;’s input
value in changed to; by thes;th operation appearing im[v;]. Now choose a vertex

z = (z1,...,2x) of B, and imagine walking from the origin toby walking along the

first dimension tdz,0, .. ., 0), then along the second dimensior(iq, z2,0, ..., 0),

and so forth. In each dimensianprocessop;’s input is changed fromy;_; to v;
afters; steps in this dimension. Sineg > z, > --- > z3, there is a final dimensian

in which p;’s input is changed t@;, and never changed again. The second condition
above is just a compact way of identifying this final vaiye

Lemmab: Let# bethe merge ofthe graphé,, ..., Hg. If Hy, ..., H; arel-graphs,
then? is ak-graph.

Proof: We consider the three conditions required &fgraph in turn. First, there ake
tokensin each round 6{ since there id token in each round of each graph, . . . , Hx.
Second, every red edge # is covered by a token since every red edgé{irtorre-
sponds to a red edge in one of the graphs and this edge is covered by a tokertin.
Third, if there is a red edge fromin round: in 7, then there is a red fromin rounds:
of one of the graph® ;. In this graphp is silent from round + 1, so the same is true
in H. Thus,H is ak-graph. ]
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6.5 Graph assignments

Now we can define the assignment of graphs to verticds. ¢for each value ;, let F;
be the failure-freé-graph in which all processors have inpyt Letz = (z4,...,zx)
be an arbitrary vertex dB. For each coordinate;, leto; be the prefix ob[v;] consist-
ing of the firstz; operations, and ek ; be thel-graph resulting from the application
of o; to F;_1. This means that it ;, some sepy, . .., p; of adjacent processors have
had their inputs changed from_; to v;. The graphg labelingz is defined to be the
merge ofHq,...,Hr. We know thatG is ak-graph by Lemma 5, and hence that at
mostrk < f processors fail irg;.

Remember that we always write the vertices of a primitive simplex in a canonical
orderyy, ..., yx. In the same way, we always write the graphs labeling the vertices] of
a primitive simplex in the canonical ordés, . . . , Gx, whereg; is the graph labeling;.

6.6 Graphson asimplex

The graphs labeling the vertices of a primitive simplex have some convenient proper-
ties. For this section, fix a primitive simplek and letyq, ..., yx be the vertices of

and letGy, .. ., Gi be the graphs labeling the corresponding verticeS.dur first re-

sult says that any processor that is uncovered at a vertgisafionfaulty at all vertices

of S.

Lemma6: If processoly is not covered in the graph labeling a vertex®ftheng is
nonfaulty in the graph labeling every vertex®f

Proof: Letyo = (as,...,ax) be the first vertex of. For each, leto; andg;7; be the
prefixes ofs[v;] consisting of the firsg; anda; + 1 operations, and I ; and# be the
result of applyingr; ande;7; to F;_;. For each, we know that the grap@; labeling
the vertexy; of S is the merge of graph%j,...,Z; whereZ; is either#; or ;.
Supposey is faulty in G;. Theng must be faulty in some grapfgf in the sequence of
graphsZi, ..., Z: merged to formg;, soq must fail in one of the graph# ; or H.
Sinceo; ando;7; are prefixes ob[v;], it is easy to see from the definition ofv;]
that the fact thay fails in one of the graph®(; and#’; implies thatq is covered in
both graphs. Since one of these graphs is contained in the sequence of graphs merged
to form G, for eacha, it follows thatq is covered in eacl,. This contradicts the fact
thatq is uncovered in a graph labeling a vertex%f [

Our next result shows that we can use the bound on the number of tokens to bound
the number of processors failing at any vertexsof

Lemma7: If F;is the set of processors failing §y andF = U, F;, then|F| < rk <
f.

Proof: If ¢ € F, theng € F; for somei andgq fails in G;, soq is covered in every graph
labeling every vertex of by Lemma 6. It follows that each processorAns covered

in each graph labeling. Since there are at mosk tokens to cover processors in any
graph, there are at mosk processors i’ ]
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We have assigned graphs $o and now we must assign processorsStoA lo-
cal processor labeling of S is an assignment of distinct processgss. . ., gx to the
verticesyo, . . .,y Of S so thatg; is uncovered irG; for eachy;. A global processor
labeling of B is an assignment of processors to vertice®dahat induces a local pro-
cessor labeling at each primitive simplex. The final important property of the graphs
labeling§ is that if we use a processor labeling to lalSelith processors, thefi is
consistent with a single global communication graph. The proof of this requires a few
preliminary results.

Lemma8: If G;_; andg; differ in p's input value, therp is silent from roundl
in Go,...,Gk. If G;_1 andg; differ in the color of an edge from to p in roundt,
thenp andgq are silent from round + 1 in Go, ..., G.

Proof: Suppose the two graph;_; andG; labeling verticegy; 1 andy; differ in
the input top at timet¢ = 0 or in the color of an edge from to p in roundz.
The vertices differ in exactly one coordinatesoy;—1 = (a1,...,a;,...,ax) and
y; = (a1,...,a; +1,...,ax). For eacly, let o, be the prefix ofo[v,] consisting of
the firsta, operations, and lek? be the result of applying, to F,_;. Furthermore,
in the special case df= j, leto;7; be the prefix ob[v;] consisting of the first; + 1
operations, and Iédjl- be the result of applying;7; to F;_;.

We know thatg; ; is the merge o#?,...,#9,...,H}, and thag; is the merge
of HY,..., H],..., ). If HJ and# ] are equal, theG; , andg; are equal. ThugH?
and?-ljl. must differ in the input te at timet¢ = 0 or in the color of an edge betweegn
andp in roundt, exactly asg; ; andg; differ. Since’H;’ and’H]l- are the result of
applyinge; ande;7; to F;_1, this change at timemust be caused by the operation
It is easy to see from the definition a graph operationtike¢hat (1) if 7; change®’s
input value, them is silent from round in %2 and#}, and (2) ifr; changes the color
of an edge frong to p in roundt, thenp andq are silent from round+1in g? and?-l}.
Consequently, the same is true in the merged grgphs andg;.

Lemma9: If G;_; andg; differin the local communication graph pfat timet, thenp
is silent from round + 1in G, ..., Gk.

Proof: We proceed by induction ol If ¢ = 0, then the two graphs must differ in
the input top at time 0, and Lemma 8 implies that is silent from roundl in the
graphsGg, ..., Gi labeling the simplex. Suppoge> 0 and the inductive hypothesis
holds fort — 1. Processop’s local communication graph at timecan differ in the
two graphs for one of two reasons: eitlpenears from some processpm roundt in
one graph and not in the other, phears from some processpim both graphs bug
has different local communication graphs at titne 1 in the two graphs. In the first
case, Lemma 8 implies thats silent from round + 1 in the graphgjo, . . ., Gx. In the
second case, the induction hypothesistfer1 implies thatg is silent from round in
the graphgo, . .., Gx. In particularg is silent in rounc in G;_; andg;, contradicting
the assumption thathears fromy in roundt in both graphs, so this case can’t happen.
]
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Lemma 10: If p sends a message in roundh any of the graph§,, ..., Gk, thenp
has the same local communication graph at tirael in all of the graph%j,, ..., Gk.

Proof: If p has different local communication graphs at time- 1 in two of the
graphsGy, ..., Gk, then there are two adjacent graghs ; andg; in which p has
different local communication graphs at time- 1. By Lemma 9p is silent in round
in all of the graphgj,, ..., Gk, contradicting the assumption thatsent a round
message in one of them. l

Finally, we can prove the crucial property of primitive simplexes in the Bermuda
Triangle:

Lemma 11: Given alocal processor labeling, Igf, . . ., gx be the processors labeling
the vertices of5, and letZ; be the local communication graph@f in G;. There is a
global communication graph with the property that ead; is nonfaulty inG and has
the local communication grapd; in G.

Proof: Let Q be the set of processors that send a rounmdessage in any of the
graphsgo, - . ., Gr. Notice that this set includes the uncovered procesgrs ., gx,
since Lemma 6 says that these processors are nonfaulty in each of these graphs. For
each processar € @, Lemma 10 says thathas the same local communication graph
attimer — 1 in each graplto, .. ., Gx.

Let # be the global communication graph underlying any one of these graphs.
Notice that each processpe @ is active through rounel— 1 in 7. To see this, notice
that sinceg sends a message in roundn one of the graphs labeling§, it sends all
messages in round- 1 in that graph. On the other handgifails to send a message in
roundr — 1 in #, then the same is true for the corresponding graph labélinthus,
there are adjacent graps_, andg; labelingS wherep sends a round — 1 message
in one and not in the other. Consequently, Lemma 8 gagssilent in roundr in all
graphs labelings, but this contradicts the fact thatdoes send a rountimessage in
one of these graphs.

Now letG be the global communication graph obtained franby coloring green
each round edge from each processpe @, unless the edge is red in one of the local
communication graph8y, . .., L in which case we color it red ig as well. Notice
that since the processars @ are active through round- 1 in H, changing the color
of a roundr edge from a processgre @ to either red or green is acceptable, provided
we do not cause more thgtprocessors to fail in the process. Fortunately, Lemma 7
implies that there are at least— rk > n — f processors that do not fail in any of the
graphgjo, . .., Gx. This means that there is a setof f processors that send to every
processor in round of every graphg;, and in particular that the roundedges from
these processors are green in every local communication graph follows that for
at leastn — f processors, all roundedges from these processors are greeh o at
mostf processors fail irg.

Each processay; is nonfaulty inG, sinceg; is nonfaulty in eacl§q, . . . , G, mean-
ing each edge from; is green in eaclo, ..., G andLy, ..., Lk, and therefore irg.

In addition, each processgy has the local communication gragh in G. To see this,
notice thatZ; consists of a round edge fromp; to ¢; for eachy, and the local com-
munication graph fop; at timer — 1 if this edge is green. This edge is greendp
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if and only if it is green inG. In addition, if this edge is green ii;, then it is green

in G;. In this case, Lemma 10 says thgthas the same local communication graph at
timer — 1in each graplg,, . . ., Gx, and therefore iF. Consequentlyy; has the local
communication grapif; in G. ]

7 Processor Assignment

What Lemma 11 at the end of the preceding section tells us is that all we have left to
do is to construct a global processor labeling. In this section, we show how to do this.
We first associate a set of “live” processors with each communication graph labeling a
vertex of B, and then we choose one processor from each set to label vertiBes of

7.1 Liveprocessors

Given a graplg, we construct a set aof = n — rk > k + 1 uncovered (and hence
nonfaulty) processors. We refer to these processors divéiygrocessors i§, and we
denote this set biyve(G). These live sets have one crucial property #ndG ' are two
graphs labeling adjacent vertices, ang i$ in bothlive(G) andlive(G'), thenp has the
same rank in both sets. As usual, we definertir of p; in a setR of processors to
be the number of processgrs € R with j < 4.

Given a grapl®, we now show how to construbte(G). This construction has one
goal: if G andgG' are graphs labeling adjacent vertices, then the construction should
minimize the number of processors whose rank differs in thelise{¢;) andlive(G').

The construction ofive(G) begins with the set of all processors, and removes a set
of rk processors, one for each token. This set of removed processors includes the
covered processors, but may include other processors as well. For example, guppose
andp;,1 are covered with one token eachdnbut suppose; is uncovered ang; 1

is covered by two tokens iG’. For simplicity, let's assume these are the only tokens
on the graphs. When constructing the l$e#(G), we remove botlp; andp;;, since

they are both covered. When constructing thelset{G’), we removep; 4, but we
must also remove a second processor corresponding to the second token goyaring
Which processor should we remove? If we choose a low processerlikben we have
changed the rank of a low processor ljkefrom 2 to 1. If we choose a high processor
like p,,, then we have change the rank of a high processoplikg fromn —3ton —2.

On the other hand, if we choose to remgyeagain, then no processors change rank. In
general, the construction tifre(G) considers each procesgom turn. If p is covered

by m, tokens ingG, then the construction removes,, processors by starting with,
working down the list of remaining processors smaller thgaind then working up the

list of processors larger thanif necessary.

Specifically, given a grap8i, themultiplicity of p is the numbern , of tokens ap-
pearing on nodes farin G, and themultiplicity of G is the vectorm = (m,,, ..., myp, ).
Given the multiplicity ofG as input, the algorithm given in Figure 12 computes(g).

In this algorithm, processar; is denoted by its index We refer to theth iteration
of the main loop as théth step of the construction. This construction has two obvious
properties:
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S+ A{1,...,n}
foreachi=1,...,n
count« 0

foreachj =¢,i—1,...,1,i+1,...,n
if count =m; then break
if j € S then
S+ 5 - {5}
count« count + 1
live(G) « S

Figure 12: The construction tifve(G).

Lemma12: If i € live(G) then

1. iisuncovered: m; = 0

2. roomexists under i: 32\~ m; <i— 1
Proof: Supposé € live(G). For part 1, ifm; > 0 then: will be removed by stepif it
has not already removed by an earlier step, contradi¢téhgve(G). For part 2, notice
that stepsl through: — 1 remove a total on’;ll m; values. If this sum is greater
thani — 1, thenitis not possible for all of these values to be containdd.in. ;s — 1,
so: will be removed within the first — 1 steps, contradicting < live(G). O

The assignment of graphs to the corners of a simplex has the property that once
becomes covered on one corneSeit remains covered on the following cornerssf

Lemma 13: If pis uncoveredin the grapldg andg;, where: < j, thenp is uncovered
in each grapl§;, Gi11,...,G;.

Proof: If p is covered inG, for somef between andj, thenp is uncovered irG,_;
and covered irG, for somef between; andj. SinceG,_; andg, are on adjacent
vertices of the simplex, the sequences of graphs merged to construct them are of
the form#y, ..., Hm,..., Hr andHq, ..., H..,. .., H, respectively, for somen.
Sincep is uncovered irg,_; and covered irgj,, it must be thap is uncovered ir¥ ,,,
and covered ir#{,,. Notice, however, that{’ is used in the construction of each
graph§, G,y1,...,G;. This means thap is covered in each of these graphs, con-
tradicting the fact thap is uncovered irg ;. 0
Finally, because token placements in adjacent graphs on a simplex differ in at most
the movement of one token from one processor to an adjacent processor, we can use
the preceding lemma to prove the following:

Lemmal4: If p € live(G;) andp € live(G;), thenp has the same rank ive(G;)
andlive(G,).
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Proof: Assume without loss of generality that< j. Sincep € live(G;) andp €
live(G;), Lemma 12 implies thaiis uncovered in the graplés andg;, and Lemma 13
implies thatp is uncovered in each gragh, G;+1, . .., G;. Since token placements in
adjacent graphs differ in at most the movement of one token from one processor to
an adjacent processor, and sigcis uncovered in all of these graphs, this means that
the number of tokens on processors smaller fhaénthe same in all of these graphs.
Specifically, the sunﬁj@’;ll my of multiplicities of processors smaller thanis the
same inG;, Gi+1,...,G;. In particular, Lemma 12 implies that this sum is the same
values < p — 1in G; andg;, sop has the same rank— s in live(G;) andlive(G;). [

7.2 Processor labeling

We now choose one processor from eacHisefG) to label the vertex with grapé.
Given a vertext = (zy, ..., zx), we define

k

plane(z) = Zml (mod k + 1)

i=1

Lemmal5: If z andy are distinct vertices of the same simplex, tigtane(z) #
plane(y).

Proof: Sincex andy are in the same simplex, we can wrife= = + f; + --- + f;
for some distinct unit vectorg,, ..., f; and some < j < k. If z = (z1,...,2s)
andy = (y1,...,yx), then the sum& ", z; and>"* | y; differ by exactlyj. Since
1 < j < k and since planes are defined as sums moklufol, we haveplane(z) #
plane(y).

We define a global processor labelin@s follows: given a vertex labeled with a
graphg, we definer to mapz to the processor having rapkane(z) in live(G).

Lemma 16: The mappingr is a global processor labeling.

Proof: First, it is clear thatr maps each vertex labeled with a grapld, to a pro-
cessorg, that is uncovered i§,. Seconds; maps distinct vertices of a simplex to
distinct processors. To see this, suppose that badimd y are labeled withp, and
let G, andg, be the graphs labeling andy. We know that the rank af in live(G ;)

is plane(z) and that the rank gb in live(G,) is plane(y), and we know thap has the
same rank iive(G, ) andlive(G, ) by Lemma 14. Consequentfytane(z) = plane(y),
contradicting Lemma 15. l

We label the vertices aB with processors according to the processor labeting

8 Ordered Pair Assignment

Finally, we assign ordered paifs, £) of processor ids and local communication graphs
to vertices ofB. Given a vertex: labeled with processqr and graphg, we labelz
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with the ordered paifp, £) where, is the local communication graph pfin G. The
following result is a direct consequence of Lemmas 11 and 16. It says that the local
communication graphs of processors labeling the corners of a vertex are consistent with
a single global communication graph.

Lemmal7: Letqo,...,q; andLly,..., L bethe processors and local communication
graphs labeling the vertices of a simplex. There is a global communication graph
with the property that each; is nonfaulty inG and has the local communication
graphZ; in G.

9 Sperner’'sLemma

We now state Sperner's Lemma, and use it to prove a lower bound on the number of
rounds required to solvie-set agreement.

Notice that the corners @& are points of the form; = (N,..., N,0,...,0) with
indices of valueV for 0 < ¢ < k. For example¢o = (0,...,0), ¢; = (N,0,...,0),
andc; = (N,...,N). Informally, a Sperner coloring aB assigns a color to each
vertex so that each corner vertexs given a distinct colotw;, each vertex on the edge
betweerr; andc; is given eithemw; or w;, and so on.

More formally, letS be a simplex and leF' be a face ofS. Any triangulation
of S induces a triangulation aF in the obvious way. LeT" be a triangulation of.

A Sperner coloring of T assigns a color to each vertexBfso that each corner @f
has a distinct color, and so that the vertices contained in aFaaee colored with the
colors on the corners df, for each face” of T'. Sperner colorings have a remarkable
property: at least one simplex in the triangulation must be given all possible colors.

Lemma 18 (Sperner’sLemma): If B is a triangulation of &-simplex, then for any
Sperner coloring oB, there exists at least orkesimplex in B whose vertices are all
given distinct colors.

Let P be the protocol whose existence we assumed in the previous section. Define
a coloringx, of B as follows. Given a vertex labeled with processgs and local
communication graplg, colorz with the valuev that P requires processerto choose
when its local communication graphds This coloring is clearly well-defined, sinde
is a protocol in which all processors chose an output value at the end of rod
will now expand the argument sketched in the introduction to showthas a Sperner
coloring.

We first prove a simple claim. Recall th8tis the simplex whose vertices are the
corner verticesgy, . . . , ¢, and thatB is a triangulation of3. Let F be some face aB
not containing the corner;, and letF’ denote the triangulation ¢f induced byB. We
prove the following technical statement about verticeB'in

Claim 19: If z = (z1,...,zg) is a vertex of a facé” not containing:;, then
1. ifi =0, thenz; = N,

2. if0<i <k, thenz;y; = z;, and
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3. ifi =k, thenz, = 0.

Proof: Each vertex: of B can be expressed usibgrycentric coordinateswith respect
to the corner vertices: that i8,= agco +- - - +agcy, where) < a; < 1for0 < j <k

and Zf:o a; = 1. Sincez is a vertex of a facé’ not containing the cornet;, it

follows thata; = 0. We consider the three cases.

Casel:i = 0. Eachcorneey,. . ., c; hasthe valuév in the first position. Sinceg = 0,
the value in the first position afoco + - - - + agcr iS (o + - -+ + ax)N = N.

Case 2. 0 < i < k. Each corneky,...,c;—1 has0 in positionsi and: + 1, and
each cornee;y1,...,c; hasN in positionsi andi + 1. Sincea; = 0, the linear
combinationagcy + - -+ + agcg will have the same valuéa; 1 + --- + ax)N in

positionsi andi + 1. Thus,z; = x;41.

Case 3. 1 = k. Each corneey, ..., cy_1 has0 in positionk. Sincea;, = 0, the value
in the kth position ofagcy + - - - + ager, is0. Thus,z, = 0. O

Lemma20: If P is a protocol fork-set agreement tolerating faults and halting
inr < | f/k| rounds, therx » is a Sperner coloring aB.

Proof: We must show that , satisfies the two conditions of a Sperner coloring.

For the first condition, consider any corner vertgx Remember that; was origi-
nally labeled with the 1-grapl; describing a failure-free execution in which all pro-
cessors start with input;, and that the local communication gragHabelingc; is a
subgraph ofF;. Since thek-set agreement problem requires that any value chosen by a
processor must be an input value of some processor, all processors must cinagg
and it follows that the vertex; must be colored with;. This means that each corngr
is colored with a distinct value;.

For the second condition, consider any fd¢ef B, and let us prove that vertices
in F' are colored with the colors on the cornerskaf Equivalently, suppose that; is
not a corner of’, and let us prove that no vertex iis colored withwv ;.

Consider the global communication gra@toriginally labelingz, and the graphs
Hi,-..,H used in the merge defining. The definition of this merge says that the
input value labeling a nodg, 0) in G isv,,, wherem is the maximumn such thatp, 0)
is labeled withv,, in H,,, or vg if N0 suchm exists. Again, we consider three cases.
In each case, we show that no process@f s the input value;.

Suppose = 0. Sincex; = N by Claim 19, we know thak; = F;, where the
input value of every processoris. By the definition of the merge operation, it follows
immediately that no processoréhcan have input value,.

Supposel < i < k. Again,z;;; = z; by Claim 19. Now,H; is the result
of applyingo;, the firstz; operations ofr[v;], to the graphF;_,. Similarly, #;:1
is the result of applyin@;11, the firstz; ., operations obr[v;;1], to the graphF;.
Sincex; 1 = z;, botho; ando; 1 are of the same length, and it follows thatcon-
tains an operation of the forehange(p, v;) if and only if o1 contains an operation
of the formchange(p, vi+1). This implies that for any processor, either its input value
iSsv;_1 in #; andv; in H;41, Orits input value i; in H; andv;;1 in ;1. In both
casesy; is not the input value of this processor.
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Suppose = k. Sincezx; = 0 by Claim 19, we know tha# = F;_1, where the
input value of every processor#g_;. By the definition ofmerge, it follows immedi-
ately that no processor i can have input valuey,.

Therefore, we have shown thatifis a vertex of a facé’ of B, andc; is not a
corner vertex off’, then the communication graghcorresponding ta contains no
processor with input value;. Therefore, by the agreement condition, the value chosen
at this vertex cannot be;, and it follows that is assigned a color other thap. So,z
must be colored by a coler; such that; is a corner vertex of'. Sincec; is coloredv;;,
the second condition of Sperner’'s Lemma holdsxSds a Sperner coloring. U

Sperner’'s Lemma guarantees that some primitive simplex is colorédiby dis-
tinct values, and this simplex corresponds to a global state in whigH processors
choosek + 1 distinct values, contradicting the definition/efset agreement:

Theorem 21: If n > f + k + 1, then no protocol fok-set agreement can halt in fewer
than| f/k] + 1 rounds.

Proof: SupposeP is a protocol fork-set agreement toleratinf faults and halting

inr < | f/k] rounds, and consider the corresponding Bermuda TriaBgleemma 20

says thaj» is a Sperner coloring a8, so Sperner’'s Lemma 18 says that there is a sim-
plex S whose vertices are colored with+- 1 distinct valuesg, . .., vg. Letqo, ..., gk
andLo, ..., L be the processors and local communication graphs labeling the corners
of S. By Lemma 17, there exists a communication grgpim which ¢; is nonfaulty

and has local communication gragh. This means thaf is a timer global commu-
nication graph ofP in which eachy; must choose the valug. In other wordsk + 1
processors must chooger 1 distinct values, contradicting the fact thatsolvesk-set
agreement im rounds. ]

10 Protocol

An optimal protocolP for k-set agreement is given in Figure 13. In this protocol,
processors repeatedly broadcast input values and keep track of the least input value
received in a local variableest. Initially, a processor setgest to its own input value.

In each of the nextf/k| + 1 rounds, the processor broadcasts the valugesifand

then setbest to the smallest value received in that round from any processor (including
itself). In the end, it chooses the valueleft as its output value.

To prove thatP is an optimal protocol, we must prove that, in every execution
of P, processors haltin= | f/k| + 1 rounds, every processor’s output value is some
processor’s input value, and the set of output values chosen has size &t Mlosffirst
two statements follow immediately from the text of the protocol, so we need only prove
the third. For each timeand processap, let best, ; be the value obest held byp at
timet. For each time, let Best(¢) be the set of valuelsest,, ., .. ., best,,  where the
processorgs, .. ., g, are the processors active through titneNotice thatBest(0) is
the set of input values, and thBest(r) is the set of chosen output values. Our first
observation is that the sBest(t) never increases from one round to the next.

Lemma22: Best(t) D Best(t + 1) for all timest.
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best + input_value;
for each round through| f/k| + 1 do

broadcasbest;
receive valuesy, ..., b, from other processors;
best + min {b1,...,b.};

choosebest.

Figure 13: An optimal protocaP for k-set agreement.

Proof: If b € Best(t + 1), thenb = best,, :1; for some processagr active through

roundt + 1. Sincebest, ;; is the minimum of the values, ..., b, sent top by
processors during rourtch- 1, we know thath = best, ;. for some processar that is
active through round Consequentlyj € Best(t). O

We can use this observation to prove that the only executions in which many output
values are chosen are executions in which many processors fail. We say that a proces-
sorp fails beforetime ¢ if there is a processarto whichp sends no message in round
(andp may fail to send ta in earlier rounds as well).

Lemma 23: If |Best(t)| = d + 1, then at leasdt processors fail before time

Proof: We proceed by induction ofi The case of = 0 is immediate, so suppose
thatt > 0 and that the induction hypothesis holds for 1. Since|Best(t)| = d + 1
and sinceBest(t) C Best(t — 1) by Lemma 22, it follows thafBest(t — 1)| > d + 1,
and the induction hypothesis for 1 implies that there is a sétof d(¢t — 1) processors
that fail before time — 1. It is enough to show that there are an additiahptocessors
not contained ir§ that fail before time.

Let by, ..., bq be the values oBest(¢) written in increasing order. Letbe a pro-
cessor withbest, ; set to the largest valug at timet, and for each valug; let g; be a
processor that seit in roundt — 1. The processorgy, .. ., gq are distinct since the
valueshby, . . ., bg are distinct, and these processors do not fail before timé since
they send a message in roungo they are not contained §1 On the other hand, the
processorsgy, ..., gq—1 sending the small valués, . . ., bg_; in roundt —1 clearly did
not send their values to the procesgaettingbest, ; to the large valué,, or ¢ would
have sebest, ; to a smaller value. Consequently, thelsgrocessorsgy, . . ., gq—1 falil
in roundt and hence fail before time ]

SinceBest(r) is the set of output values chosen by processors at the end of round
r = |f/k]| + 1,if k + 1 output values are chosen, then Lemma 23 says that atdeast
processors fail, which is impossible sinfe< kr. Consequently, the set of output
values chosen has size at mbsas we are done.

Theorem 24: The protocolP solvesk-set agreement ihf/k| + 1 rounds.
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