Eﬂaﬂnau b

Wait-Free Implementations in Message-Passing Systems

Soma Chaudhuri Maurice Herlihy Mark R. Tuttle

Cambridge Research Laboratory

Technical Report Series

CRL 98/5
May 1998

Cambridge Research Laboratory

The Cambridge Research Laboratory was founded in 1987 to advance the state of the art in both
core computing and human-computer interaction, and to use the knowledge so gained to support the
Company’s corporate objectives. We believe this is best accomplished through interconnected pur-
suits in technology creation, advanced systems engineering, and business development. We are ac-
tively investigating scalable computing; mobile computing; vision-based human and scene sensing;
speech interaction; computer-animated synthetic persona; intelligent information appliances; and
the capture, coding, storage, indexing, retrieval, decoding, and rendering of multimedia data. We
recognize and embrace a technology creation model which is characterized by three major phases:

Freedom: The life blood of the Laboratory comes from the observations and imaginations of our
research staff. It is here that challenging research problems are uncovered (through discussions with
customers, through interactions with others in the Corporation, through other professional interac-
tions, through reading, and the like) or that new ideas are born. For any such problem or idea,
this phase culminates in the nucleation of a project team around a well articulated central research
guestion and the outlining of a research plan.

Focus. Once a team is formed, we aggressively pursue the creation of new technology based on
the plan. This may involve direct collaboration with other technical professionals inside and outside
the Corporation. This phase culminates in the demonstrable creation of new technology which may
take any of a number of form- a journal article, a technical talk, a working prototype, a patent
application, or some combination of these. The research team is typically augmented with other
resident professionals—engineering and business development—who work as integral members of
the core team to prepare preliminary plans for how best to leverage this new knowledge, either
through internal transfer of technology or through other means.

Follow-through: We actively pursue taking the best technologies to the marketplace. For those

opportunities which are not immediately transferred internally and where the team has identified a
significant opportunity, the business development and engineering staff will lead early-stage com-
mercial development, often in conjunction with members of the research staff. While the value to

the Corporation of taking these new ideas to the market is clear, it also has a significant positive im-
pact on our future research work by providing the means to understand intimately the problems and
opportunities in the market and to more fully exercise our ideas and concepts in real-world settings.

Throughout this process, communicating our understanding is a critical part of what we do, and
participating in the larger technical community—through the publication of refereed journal articles
and the presentation of our ideas at conferences—is essential. Our technical report series supports
and facilitates broad and early dissemination of our work. We welcome your feedback on its effec-
tiveness.

Robert A. lannucci, Ph.D.
Director

Wait-Free Implementations in Message-Passing Systems

Soma Chaudhuri Maurice Herlihy
Department of Computer Science Computer Science Department
lowa State University Brown University
Ames, |IA 50011 Providence, R1 02912
chaudhur@cs.iastate.edu herlihy@cs.brown.edu

Mark R. Tuttle

DEC Cambridge Research Lab
One Kendall Square, Bldg 700
Cambridge, MA 02139
tuttle@crl.dec.com

May 1998

Abstract

We study the round complexity of problems in a synchronous, message-passing
system with crash failures. We show that if processors start in order-equivalent states,
then a logarithmic number of rounds is both necessary and sufficient for them to reach
order-inequivalent states. These upper and lower bounds are significant because they
establish a complexity threshold below which no nontrivial problem can be solved, but
at which certain nontrivial problems do have solutions.

This logarithmic lower bound implies a matching lower bound for a variety of de-
cision tasks and concurrent object implementations. In particular, we examine two
nontrivial problems for which this lower bound is tight: theong renaming task, and
a wait-freeincrement register implementation. For each problem, we present a non-
trivial algorithm that halts irO(log ¢) rounds, where is the number of participating
processors.

©Digital Equipment Corporation, 1998

This work may not be copied or reproduced in whole or in part for any commercial purpose. Per-
mission to copy in whole or in part without payment of fee is granted for nonprofit educational and
research purposes provided that all such whole or partial copies include the following: a notice that
such copying is by permission of the Cambridge Research Laboratory of Digital Equipment Corpo-
ration in Cambridge, Massachusetts; an acknowledgment of the authors and individual contributors
to the work; and all applicable portions of the copyright notice. Copying, reproducing, or repub-

lishing for any other purpose shall require a license with payment of fee to the Cambridge Research
Laboratory. All rights reserved.

CRL Technical reports are available on the CRL's web page at
http://lwww.crl.research.digital.com.

Digital Equipment Corporation
Cambridge Research Laboratory
One Kendall Square, Building 700
Cambridge, Massachusetts 02139 USA

1 Introduction

In a synchronous, message-passing system with crash failures, a computation proceeds
in a sequence ofounds. each processor sends messages to the others, receives all
the messages sent to it, and performs an internal computation. At any point in the
computation, a processor menash: it stops and sends no more messages. This model

is one of the most thoroughly-studied models in the distributed computing literature,
partly because it is so easy to describe, and partly because the behaviors exhibited
by this model are a subset of the behaviors exhibited by almost any other model of
computation, which means that lower bounds in this model usually extend to other
models.

We investigate the time needed to solve nontrivial problems in this model. Loosely
speaking, a nontrivial problem is one in which at least two processors must perform
different actions, which is a kind of “symmetry breaking.” In the well-knogam-
sensus problem [PSL80, LSP82, FLP85], each processor starts with an input value,
and all nonfaulty processors must halt after agreeing on the input value of one of
the processors. Consensus breaks symmetry by requiring one processor to choose
its input value, and the rest to discard theirs. Consensus requires a linear number of
rounds to solve [FL82], but it can be used to solve almost any other nontrivial prob-
lem [Lam78, Lam89, Sch87, Her91b], so solving these nontrivial problems never takes
longer than consensus. We want to know exactly how quickly these nontrivial problems
can be solved.

Solving a nontrivial problem requires causing two processors to perform different
actions. Speaking informally, if processors start in equivalent states and follow the
same deterministic protocol, then as long as they remain in equivalent states, they will
continue to perform the same actions. We can therefore equate the number of rounds
needed to reach inequivalent states with a threshold below which no nontrivial problem
has a solution. Surprisingly, we can show that there do exist nontrivial problems that
become solvable at exactly this threshold.

What does it mean for two processors to be in equivalent states? Each processor
begins execution with a unique identifier (callediid} taken from a totally-ordered
set. We assume that processors can test ids for equality and order: giyesmidg, a
processor can test whethee ¢, p < ¢, andp > ¢. We say that two processor states
are order-equivalent [FL87] if they cannot be distinguished by the order of the ids
appearing within them. More specifically, the two states must have the same structure,
and the order of any two ids appearing in one state must be the same as the order of the
ids appearing in the corresponding positions of the other state. For example, if each
processor’s initial state contains its id and nothing else, then all initial states are trivially
order-equivalent because there are no pairs of ids to compare within an initial state.
A protocol iscomparison-based if the comparison operations are tbely operations
applied to processids. Clearly, comparison-based protocols cannot distinguish between
order-equivalent states.

We restrict our attention to comparison-based protocols. This restriction to proto-
cols that can only compare processor ids for order is reasonable in systems where there
are many more processor ids than there are processors, or in systems where there is a
very large pool of potential participants, of which only an unpredictable subset actually

2 1 INTRODUCTION

participates in the protocol. In such systems, there may be no effective way to enumer-
ate all possible processor ids, and no way to tell whether there exists a processor with
an id between two other ids. Most significant, since there are so many possible ids, it
is not feasible to use processor ids as indices into data structures as is frequently done
in implementations of objects like atomic registers (see [SP89]).

This paper’s first principal contribution is a proof that any comparison-based proto-
col for ¢ processors has an execution in which all processors remain in order-equivalent
states forQ2(logc) rounds. As a result, any problem that requires breaking order-
equivalence also requir€glog ¢) rounds. Although the proof is elementary, this loga-
rithmic lower bound is “universal” for this model in the sense that it is difficult to con-
ceive of a nontrivial problem that can be solved without breaking order-equivalence.
This bound is tight: we give a protocol that forces any two processors into order-
inequivalent states withi@(log c) rounds.

This paper’s second principal contribution is to show that there exist nontrivial
problems that do have solutions with(logc) round complexity. The existence of
these problems implies that the synchronous message-passing model undergoes a kind
of “phase transition” at a logarithmic number of rounds. Below this threshold, it is
impossible to solve any problem that requires different processors to take different
actions. Beyond this threshold, however, solutions do exist to nontrivial problems.

We consider two classes of problems: decision tasks, and concurrent objects. A
decision task is a problem in which each processor begins execution with a private
input value, runs for some number of rounds, and then halts with a private output value
satisfying problem-specific constraints. Consensus is an example of a decision task. By
contrast, aconcurrent object is a long-lived data structure that can be simultaneously
accessed by multiple processors. A concurrent object implementatigiti$ree if
any nonfaulty processor can complete any operation on the object in a finite number
of steps, even if other processors crash at arbitrary points in their protocols. A shared
FIFO queue is an example of a concurrent object.

Srong renaming is a decision task in which processors start with input bits indicat-
ing whether to participate in the protocol, and participating processors must choose
unigue names in the rande...c, wherec is the number of participating proces-
sors. A weaker form of this task has been extensively studied in asynchronous mod-
els [ABNDT87, ABND90, HS93]. Any protocol for strong renaming can be used
to break order-equivalence, so a logarithmic lower bound is immediate. This bound is
tight: we give a nontrivial protocol that solves strong renamin@ {iog c) rounds.

Our lower bound on order-equivalence also translates into a lower bound on a vari-
ety of wait-free concurrent object implementations. For exampl&a@ament register
is a concurrent object consisting of an integer-valued register withcaement oper-
ation that atomically increments the register and returns its previous value. Because
we can use an increment register to break order-equivalenc@(ltec) lower bound
for order-inequivalence translates directly into@flogc) lower bound on any wait-
free implementation of thencrement operation. This bound is also tight: we give a
nontrivial wait-free increment register implementation in which eismthement halts
in O(log c¢) rounds, where is the number of concurrently executing increment opera-
tions.

Our increment register construction is interesting in its own right, since it is based

on our optimal solution to the strong renaming problem. In general, implementing
long-lived objects is inherently more difficult than solving decision tasks. A decision
task is solved once, while operations can be invoked on an object repeatedly. Even
worse, processors solving a decision task start together, while processors invoking op-
erations on an object can arrive at different and unpredictable times. The major techni-
cal difficulty in our register construction is how to guarantee that increment operations
starting at different times do not interfere.

The rest of this paper is organized as follows. In Section 2 we define our model
of computation. In Section 3, we define formally what we mean by order-equivalence
of processors and present the matchusgge lower and upper bounds for the problem.

In Section 4, we define the strong renaming problem. We then reduce the problem of
eliminating order-equivalence to the strong renaming problem, thus obtainibggthe
lower bound for strong renaming. We then show that this bound is actually tight with
an efficient strong renaming algorithm. In Section 5 we define concurrent objects and
their implementation. We then reduce the problem of eliminating order-equivalence to
the problem of implementing several concurrent objects, thus obtaining thdsame
lower bound on the complexity of these concurrent objects. Finally we give our opti-
mal wait-free implementation of an increment register, based on the strong renaming
algorithm. We close with a discussion of some open problems in Section 6.

2 Modd

Our model of computation is a synchronous, message-passing model with crash fail-
ures. Itis similar to the models used in a number of other papers [MT88, HM90, HF89].

A system consists af unreliableprocessors p4,...,p, and an externadnviron-
ment e. We usen to denote the total number of processors in the systemcaad
denote the number of these processors that actually participate in a protocol like strong
renaming or access a concurrent object like an increment register. Each processor
has a unique processor id taken from some totally-ordered set of processor ids. Each
processor can send a message to any other processor and to the environment. The
environment can send to any processor a message taken from some set of messages
(including L to denote “no input”). Each processor has accessdimiaal clock that
starts atd and advances in increments bf Computation proceeds in a sequence of
rounds, with roundk lasting from timek — 1 to time k on the global clock. In each
round, each processor receives some message (pos$ifsym the environment, then
it sends messages to other processors (including itself) and the environment, then it
receives the messages sent to it by processors in that round, and then it changes state
and enters the next round. Communication is reliable: a message sent in a round is
guaranteed to be delivered in that round. Processors are not reliable: a processor can
crash or fail at any time by just halting in the middle of a round after sending some
subset of its messages for that round.

A global state is a tuple(sy, . .., sn, s¢) Of local states, one local state for each
processop; and one local state. for the environment. Théocal state for proces-
sorp; includes the time on the global clock, its processor id, the history of messages
it has received from the environment, and the history of messages it has received from

4 2 MODEL

other processors. The local state for the environment may contain similar information,
but it certainly contains the sequence of messages it has sent to processors in the sys-
tem, the pattern of failures exhibited by processors, and any other relevant information
that cannot be deduced from processors’ local states.exdgution e is an infinite
sequenceoygs - - - of global states, wherg; is the global state at time

Processors follow a determinisficotocol that determines what messages to send
to processors and the environment during a round as a function of its local state. A
processor follows its protocol in every round, except that a processorcrady or
fail in the middle of a round. Ip; fails in roundk, then it sends all messages in
roundsj < k as required by the protocol, it sends a proper subset of its messages in
roundk, and it sends no messages in roufids k. A processor is considerdallty in
an execution if it fails in some round of that execution, andfaulty otherwise.

Without loss of generality, we can assume that processors folfali~anformation
protocol in which processors broadcast their entire local state to every processor (in-
cluding itself) in every round, and applyraessage function to their local states to
determine what message to send to the environment in every round. Given the state
of a processor in the full-information protocol, this state contains enough information
for us to compute the processor’s state at the corresponding point of any other proto-
col [FL87, MT88].

Also without loss of generality, since processors broadcast their entire local state in
every round, we can assume that tbeal state of a processor is a LISP S-expression
defined as follows. Let us fix some totally-orderedBelf processor ids, some s&t
of initial states, some seM of messages from the environment (includinhy and
some sefV' of messages from the processors to the environment. The initial state for
a processor with processorjgdstarting in initial states with initial input m from the
environment is writter(p m s). Later states are writtefp m mo m1 ... my),
wherep is the processor idn is the input received from the environment at the start
of the current round, anth ... my is the set of messages received from processors
during the last round (including itself) sorted by processor id. The messagesare
themselves S-expressions representing the states of the sending processors at the start
of the round, including’s local state. Notice that while processors send S-expressions
to each other, they still send messages from a fixed set to the environment: the message
function maps a processor’s local state to a messagé¢ that the processor sends
to the environment in that round. Again, we can assume processor states have such
a special representation since from such a description of a processor’s state we can
reconstruct the value of every variahleppearing in the actual state [FL87, MT88].

All of the protocols in this paper are stated using an Algol-like notation for the sake of
convenience, but their translation into this model is straight-forward.

For any given protocol, an execution of the protocol is completely determined by
the processor ids, the initial states, the inputs received from the environment, and the
pattern of processor failures during the execution. We definenginonment graph
to be an infinite graph that records this information [MT88]. We define an environ-
ment graph to be a grid with vertices in the vertical axis labeled with processor
namespy, . ..p, — denoting physical processors and not their processor ids — and
with a countable number of vertices in the horizontal axis labeled with iy,

The node representing procesgat time: is denoted by the paip, 7). Given any pair

of processorg andg and any round, there is an edge frofp, i — 1) to (g, i) if p suc-
cessfully sends a messageqgtin roundi, and the edge is missing otherwise. Each
node(p, i) is labeled with the input received from the environment by processr
time :. In addition, each nodép, 0) is labeled withp’s processor id and initial state.
Since processors fail by crashing, an environment graph must satisfy the following
property: ifk is the least integer such that an edge is missing ftpnk), then no
edges are missing frofp, j) for all j < k and all edges are missing frop, j) for
all 5 > k. An environment graph must also satisfy the property that every processor
starts with a unique processor id. Given a Seaif processor initial states, a sebf
processor ids, and a s&f of environment messages, we deftfies, I, M) to be the
set of all such environment graphs labeled with initial stateS,iprocessor ids id,
and messages from the environmeniin

We define thdocal state of the environment at timé to be the finite prefix of an
environment graph describing the processor inputs and failures at Gintresughk,
and we require that the local states of the environment in an execution be prefixes of
the same environment graph. We defineeavironment to be a set of environment
graphs. We will typically consider environments of the fofit5, I, M), or simple
restrictions of such environments. For example, in the context of decision problems
like consensus, we might consider an environment in which each processor receives
a message from the environment (the processor’s input bit) at time 0 and at no later
time. Given a protocoP and an environmerl, we defineP(£) to be the set of all
executions ofP in the context of the environment graph<fin

3 Order-equivalence

In this section, we show that a logarithmic number of rounds is a necessary and suffi-
cient amount of time for comparison-based protocols to reach order-inequivalent states.
We begin with the definitions of comparison-based protocols and order-equivalent
states. Both definitions are based on the assumption that the set of processor ids is
a totally-ordered set, meaning that it is possible to test processor ids for relative order,
but that it is not possible to examine the structure of ids in any more detail.

Informally, two states are order-equivalent if they cannot be distinguished by com-
paring the processor ids that appear within them. Remember that a processor state
is represented by an S-expression in our model. A processor’s initial state is written
as(p m s), wherep is a processor idp is a message from the environment, and
is an initial state. Later states are writtenm mgo m1 ... my), wherep is a pro-
cessor idm is a message from the environmenmty . . . m;, is some set of messages
(S-expressions representing local states) received from processors during the last round
and all sorted by processor id. Loosely speaking, two processor stafeds’ are
equivalent if (i) they are structurally equivalent S-expressions, (ii) initial states from
corresponding positions inands’ are identical, (iii) messages from the environment
from corresponding positions iands’ are identical, and (iv) if two idg andq taken
from s satisfyp < ¢, then the two idg’ andq’ taken from corresponding positions<f
satisfyp’ < ¢'. Intuitively, a processor cannot distinguish equivalent states simply by
comparing processor ids: if a processor tries to learn something about its local state by

6 3 ORDER-EQUIVALENCE

sequentially testing pairs of ids appearing within that state for relative order, then this
sequence of tests will yield the same results when applied to any other equivalent state.

Formally, a one-to-one functiof from one totally ordered set to anotheoisler-
preserving if p < g implies¢(p) < ¢(q). Any suchg can be extended to S-expressions
representing processor states by defiri(gm s) = (¢(p) m s) and

¢ppmmo ... my) = (d(p) m d(mo) -.. p(ms)).

Two processor states aceder-equivalent if there exists an order-preserving func-

tion ¢ mapping one to the other, amuder-inequivalent otherwise. A protocol is a
comparison-based protocol if the message function choosing the messagé that a
processor is to send to the environment maps order-equivalent states to the same mes-
sage.

3.1 Lower bound

First let us prove that every comparison-based protocol has an execution in which pro-
cessors remain in order-equivalent states for a logarithmic number of rounds.

Given a protocoP, the larger the environmeéit— the more environment grapfis
contains — the larger the sé&t(£) of executions ofP in this environment, and the
more likely the setP(€) contains a long execution. To make our lower bound as
widely applicable as possible, we now define the smallest environfidat which
we can prove the existence of the long execution. A processagtiig in round r
in an environment graph (or an execution) if it sends at least one message in-round
and a processor iactive if it is active in any round (and, in particular, if it is active
in round 1). Given a sef of processor initial states, a setf processor ids, and a
setM of environment messages, defii¢S, I, M) to be the subset of all environment
graphs ing (S, I, M) satisfying the condition that (i) each active processor starts with
the same initial state froifi and the same environment message fildmand (ii) each
active processor receivas(representing no input) from the environment at every time
after time 0.

In such an environment, the long executions of a comparison-based protocol are the
ones in which the processors fail according sargdwich failure patternin every round.

This failure pattern is defined as follows. Suppose processors witlg4ids., g

have not failed at the start of a round, and suppose 3v + 1 for some integew.

(The sandwich failure pattern can always fail the one or two processors with lowest
ids at the beginning of the round and pretend they don't exist.) The sandwich fail-
ure pattern causes theprocessorgs, ..., g, with the lowest ids and the proces-
SOISqay+42, - - -, qsy+1 With the highest ids to fail in the following way: each proces-
SOrgu+j € {Qu+1,---,q20+1} receives messages only from processggrs. ., gay+;.
Notice that each such procesger ; see<2v + 1 active processors, and sees its rank in
this set of active processors@as 1. Notice also that the active processors after a round
of the sandwich failure pattern is always a consecutive subsequence of processors from
the middle of the sequence of active processors at the beginning of the round. Using
this failure pattern, we can prove our lower bound:

3.2 Order-equivalence elimination algorithm 7

Proposition 1: Let P be a comparison-based protocol, andddbe an environment
containing an environment of the fortA(S, I, M). For everyc < n, there is an
execution inP (&) with ¢ active processors in which the nonfaulty processors remain
order-equivalent fof2(log, c¢) rounds.

Proof: Let G be an environment graph & (S, I, M) C & with the sandwich fail-
ure pattern and witke active processors with idg,...,q.. Each active processor
starts with the same initial statee S and the same environment input € M, and
receivesL from the environment at all times after time 0. Notice that the sandwich fail-
ure pattern fails roughlg/3 of the active processors, leaving roughl8 remaining
active in the next round. A simple analysis shows thdt & log, ¢, then the num-
ber3v + 1 of processors remaining at the end of rodnsl at least four. We claim that
if £ < logs c, then after? rounds of the sandwich failure pattern the statesnds;
of processorg; andg; are related by an order-preserving functipp_; defined as
follows. For all integersl, the functiongy(g;) = gi+q4 is defined forl <7 < c—d
whend > 0 and for—-d + 1 < ¢ < c¢whend < 0. We claim thatp;_;(s;) = s;. We
proceed by induction oA

The result is immediate fdr= 0 since eacly;’s initial state is(¢g; m s), and

¢j—i(gi m s) = (#j-i(q:) m s) = (g; m s).

ForZ > 0, suppose the hypothesis is true for 1. Consider the8v + 1 processors
that are active in roundl Since the active processors at the beginning of rdlene a
consecutive subsequenceapf. . ., g., suppose they aig, 1, . - ., ¢o. By the induction
hypothesis fo¥ — 1, the states, 14, . .., S, these processors have at the beginning of
the round are related hy;_;(S;) = S;. Notice that at the end of the round, due to the
sandwich failure pattern in that round, the active processorg.arge: 1, - - -, q—», and
that the state of process@f ,; is

(Qa—i-v—l—i L Saqs ... Sa+2v+i)

and the state of processgy, ,+; IS

(qa+v+j L Satj - Sa+2v+j)

Itis easy to see that;_; maps the state @f,++; 10 go+v+;, as desired. |

3.2 Order-equivalence elimination algorithm

Now let us prove that this lower bound is tight. There is a simple algorithm that forces
all processors into order-inequivalent states in a logarithmic number of rounds:

Proposition 2: There exists a protocol that leaves all nonfaulty processors in order-
inequivalent states afté¥(log ¢) rounds, where is the number of active processors in
the execution.

Proof: Here is a comparison-based algorithm that causes nonfaulty processors to choose
distinct sequences of integers after a logarithmic number of rounds. In each round,

8 4 DECISION PROBLEMS

each processor broadcasts its id and the sequence of integers constructed so far. Two
processorgollide in a round if they broadcast identical sequences in that round. In
round 1, a processor with jdbroadcastép, ¢), and hence all processors collide ini-
tially with the empty sequence Let (p, 71 ... ix—1) be the messagebroadcast at
roundk, and leti; be the number of processors with ids less thdhatp hears from
and that collide wittp in roundk. In roundk + 1, p broadcast$p, i, ... ix). Each
processor halts when it does not hear from any colliding processor. As an example,
suppose thap; fails in round 1 by sending a messageptpbut not top,. Thenps
receiveyp;, €) from py, p2, p3, p4 andp, receivesp;, €) from ps, ps, pa, SO bothps
andp, will consider its rank in the processors it hears from in round 1 to be 3, both
will broadcast(p;, 3) in round 2, and both will collide again at the end of round 2.

We claim that the size of maximal sets of colliding processors must shrink by ap-
proximately half with each round, yielding &i(log ¢) running time. Two processors
that broadcast different sequences continue to do so, so the set of processors that col-
lide with p at roundk is a subset of the processors that collided wittt earlier rounds.
Consider a maximal sef of processors that collide in rourid that is, a set of pro-
cessors that do not fail in rourid— 1 and broadcast the same sequeice. . ix—1
in roundk. Let p be the lowest processor in that set, andgléie the highest. Since
processors it do not fail in roundk — 1, processory must hear from each of the
processors it$ in roundk — 1. Since these processors collide wjtin roundk, they
must collide withg in roundk — 1 as well, sog must count at least — 1 colliding
processors with lower ids that broadcast the sequénce ix_» in roundk — 1. It
follows thati;_; > £ — 1 for processol. Sincep andq collide at roundk, they
broadcast the same value fgr_; in roundk, soi,_; > £ — 1 for processop as
well. Therefore, processprmust see at leagt— 1 colliding processors with lower ids
broadcasting the sequenge . .i;_» in roundk — 1, none of which are ir§ (sincep
is the processor with smallest id). Hence at leas2/ — 1 processors broadcast the
sequence .. .i;—o in roundk — 1 and collide withp andg in roundk — 1, implying
that the number of processors colliding witandg has shrunk from at leagf — 1
to £ in one round, which is a reduction by a factorof]

Since the logarithmic bounds are tight, these results show that the logarithmic
bounds are the best possible bounds that can be obtained in this model using the notion
of order-equivalence. In the remainder of this paper, we will show that this logarithmic
lower bound can be used to prove logarithmic lower bounds for decision problems like
strong renaming and concurrent objects like increment registers. Since this logarithmic
bound is tight for order-equivalence, these results show, for example, that if operations
on objects such as stacks or queues require more than a logarithmic number of rounds,
then this additional complexity cannot be an artifact of the comparison model, but must
somehow be inherent in the semantics of the objects themselves.

4 Decision problems

We can use the lower bound on order equivalence to prove lower bounds for decision
problems. For example, consider the problenstadng renaming defined as follows.
Each processor has a unique id taken from a totally-ordered set of ids. At the start

4.1 Lower bound 9

of the protocol, each processor is in a distinguished initial state and receives a single
bit from the environment, either 0 or 1 meaning “don’t participate” or “participate,”
respectively. At the end of the protocol, each participating processor sends an integer
to the environment. A protocol solves the strong renaming problem if each nonfaulty
participating processor sends a distinct integer fiddm . ., ¢} to the environment at

the end of every execution in which at mast- 1 processors fail, where < n is the
number of participating processors.

4.1 Lower bound

The logarithmic lower bound for strong renaming follows quickly from the lower
bound for order-inequivalence:

Proposition 3: Any comparison-based protocol for strong renaming requil{ass 5 ¢)
rounds of communication, wheeds the number of participating processors.

Proof: Let P be a comparison-based protocol for strong renaming. According to the
definition of strong renaming, each processor has a unique id from a totally-ordered
setl, each processor starts in the same initial statend each processor receives a
bit in {0, 1} from the environment. Consequently, the environné&fudr this problem
includes the environmer({s}, I, {1}) consisting of environment graphs in which

all active processors start with the same statend all active processors start with the
same participation bit 1. In this environment, the active processors are precisely the
participating processors.

Since each processor terminates by sending a different integer to the environment,
and since the message function of a comparison-based protocol — the function com-
puting the messages processors send to the environment — must be the same in order-
equivalent states, the processors must end the protocol in order-inequivalent states.
By Proposition 1, for every < n, there must be some execution Bfin P(£) in
which thec active (and hence participating) processors are still order-equivalent af-
ter Q(logs ¢) rounds. Consequently, for evety< n, there must be some execution
of P that require$2(logs ¢) rounds. O

Lower bounds for other decision problems like order-preserving renaming can also
be proven using the same technique.

4.2 Strongrenaming algorithm

The logarithmic lower bound for strong renaming is tight, because there is a simple
algorithm solving strong renaming in a logarithmic number of rounds. The algorithm
is given in Figure 1.

The basic idea is that if a procesgdiears oR? other participating processors, then
it chooses &-bit name for itself one bit at a time, starting with the high-order bit and
working down to the low-order bit. Every roung sends an interval containing the
names it is willing to choose from. On the first round, when the processor has not yet
chosen any of the leading bits in its name, it sends the entire infanadl]. It sets its
high-order bit to 0 if it finds it is in the bottom half of the set of processors it hears from

10 4 DECISION PROBLEMS

definerank(s, S) = |{s' € S : s’ < s}
definebot(S) = {s € S : rank(s, S) < |5]/2}
definetop(S) = S — bot(S)

definebot(S, k) = {s' € S : rank(s', S) < k/2}

broadcasp

P« {p' : p' received
b+ [log|PI]

I« [1,2°%

repeat
broadcastp, I)
I« {I':(p',I") receivedand N I' # 0}
P« {p:(p,I') receivedand N I' # 0}
if I' C I foreveryI’ € T then
if p € bot(P, |1])
thenI <« bot(I)
elsel « top(I)
until |I'| = Lforall I' € {I' : (p', I') received

returna, wherel = [a, a]

Figure 1: Alog c renaming protocal for processop.

interested in names from the interya) 2°], and to 1 if it finds itself in the top half. In

the first case it sends the intenja] 2°~1], and in the second it send*~! + 1, 2°].

In order to make an accurate prediction of the behavior of processors interested in
names in its interval, however, it must wait until every processor interested in names
in I is interestednly in names inl before choosing its bit and splitting its interval in
half; that is, it must wait until its interval is maximal among the intervals intersect-

ing I. Continuing in this way, the processor chooses each bitin its name, and continues
broadcasting its name until all processors have chosen their name.

There are a few useful observations about the intervals processors send during
this algorithm. The first is that if processprsends the interval; during roundk,
thenI, D Iy for all later roundsk’ > k. The second is that each inten®] is
of a very particular form; namely, every interval sent during an executiodA i of
the form[d27 + 1,d27 + 27] for some constand. This is easy to see since the first
interval I, a processor sends (in round 2) is of the fdiy2?], and every succeeding
intervalI}, is eitherI}_; or of the formtop(I;_1) orbot(I;_,) (as defined in Figure 1).
We say that an intervdlis awell-formed interval if it is of the form[d27 + 1, d27 + 27]
for some constard. It is easy to see that any two well-formed intervals are either
distinct, or one is contained in the other. Notice that every well-formed intérial
properly contained in a unique minimal, well-formed intendal> I. Furthermore,
either] = top(I) or I = bot(I), and it is the low-order bit of the constadithat tells

4.2 Strong renaming algorithm 11

us which is the case. We define the opereftthat maps a well-formed intervélto the
unique minimal, well-formed interval properly containind'.

In every round of the algorithm, a procesgocomputes the s¢® of processors
with intervalsI’ intersecting its current intervdl These processors i are the pro-
cessorg is competing with for names ih Whenp sees that its intervdlis a maximal
interval (that s, all interval$’ received by that intersecf are actually contained if),
processop adjusts its sef to eitherbot(I) ortop(I). Our first lemma essentially says
that whenp replaced with bot(I) or top(I), there are enough namesiirio assign a
name from/ to every competing processor. Furthermore, this lemma shows that when
a processor’s interval reduces to a singleton set, then this processor no longer has any
competitors for that name.

Lemma4: Suppose sends interval during roundk > 2. If P is the set of processors
sending an interval’ C I during roundk, then|P| < |I].

Proof: We consider two cases:= bot(1) andI = top(I).

First, supposé = bot(f). Consider the greatest procesg{possiblyp itself) in P.
Processog sent an intervally, C I to p in roundk, so consider the first rourdd< &
in which g sent some interval C I to any processor (and hencego

If £ = 2, thenJ is of the form[1, 2°], where2® is an upper bound on the number
of processorg heard from in round, and hence on the number of active processors
in roundk > 2, and therefore onP|, the number of processors sending intervals
contained inl in roundk. It follows that|P| < 2b = |J| < |T].

If £ > 2, theng sentJ C I inround¥, andq sent a larger intervall ¢ T in
round/ — 1, sincef is the first round thag sent an interval contained ih In fact, we
must haveJ = I andJ = I, forif J c I thenJ C I and/is not the first round that
sent an interval contained i a contradiction. LeP be the set of processors sending
an interval intersectinj to g in round/ — 1. Since every processpf € P sending
an intervall’ C I to p in roundk must also send an interval intersectiﬁgo gin
round{—1, each of these processors must be contain®] and hencé® C P. Sinceg
sentl in round/ — 1 andI = bot(1) in rounde, it must be the case thatc bot(P, |I|)
at the end of round — 1. SinceP C P and sinceg is the greatest processor i it
must be the case th& C bot(P, |I|). It follows that|P| < |I]|/2 = ||, as desired.

Now, supposd = top(f). The proof in this case is similar to the proof whega-
bot(I), except thaty is now taken to be thkeast processor irP. U

Our second lemma shows that when a procepss®lects an interval = [a, b],
there are enough participating processors to use up the ngmesa. In particular,
whenp’s interval becomes the singleton $eta], then there are at leagiparticipating
processors, and hengaes a valid name fop to choose. We say that a proceskolids
an intervalla, b] during a round ifa, b] is its interval at the beginning of the round, and
hence the interval it sends during that round (if it sends any interval at all).

Lemmab5: If I = [a,b] is @ maximal interval received by some procegsaluring
roundk, then there are at leagt— 1 processors that either hold an interyal, b']
with b’ < a during roundk or fail to send tq in roundk.

12 4 DECISION PROBLEMS

Proof: We proceed by induction ok

Suppose: = 2. This is the first round that any processor sends any intervdl, so
must be of the fornj1,2°], and it is vacuously true that at leasprocessors fail to
send top in round2. Now supposé > 2, and suppose the induction hypothesis holds
for k' < k.

Supposd = bot(f). Processaop received! in roundk, so consider any processpr
that sentl during roundk, and consider the first round’ < k in which ¢ sentI.

If k' = 2, thenI is of the form[1,2°], and it is vacuously true thaétprocessors fail to
send top, so supposé’ > 2. In this caseg must sendl during roundk’ — 1 andI
during roundk’, and the fact thag splits down at the end of rourid — 1 implies thatl
is a maximal interval received hyduring roundk’ — 1.

Since intervalsl and I have the same lower bound the induction hypothesis
for k' — 1 < k — 1 implies that there are at least— 1 processors that either hold an
interval[a', b'] with ' < a during roundk’ —1 or fail to send tay in roundk’ — 1. Since
each processor that holds an inteffed) b'] in roundk’ —1 must hold an intervgh”, b"]
contained irffa’, b'] in roundk or fail to send tap in roundk, and since each processor
that fails to send tqg in roundk’ — 1 must fail to send t@ in roundk, it follows that
there are at least— 1 processors that either hold an interfedl, "] with 8" < b' < a
in roundk or fail to send tg in roundk.

Supposel = top(I). Letq be the smallest processor ever sendinguring the
execution. The interval is not the interval thag sent in round 2 — the first round in
which any processor sends any interval — because in that pgedt an interval of
the form[1, 2°], which is not of the formop(). Sincel is a maximal interval received
by p in roundk, it follows thatqg must have sent the intervafor the first time in some
roundk’ < k and the intervall = [a,b] in roundk’ — 1. Sinceq changed intervals
between roun&’ — 1 andk’, the intervall must be a maximal interval received pjn
roundk’ — 1. By the induction hypothesis there are at l@ast1 processors that either
hold an intervala’, b'] with b’ < & during rounds’—1 or fail to send tay in roundk’—1,
and all of these processors must either hold an intdn/ab’] with ¥’ < @ < a in
roundk or fail to send top in roundk. Sinceq changed its interval froml = [a, b]
to I = top(I) = [a,b] at the end of round’ — 1, there are at least — a = |I|/2
processorg’ < ¢ sending an interval contained into g inroundk’ — 1. None of these
processorg’ sending an interval id = [a,b] to g in roundk’ — 1 could have been one
of thea — 1 processors that either held an interjedl, b'] with 8" < a in roundk’ — 1
or failed to send tg in roundk’ — 1. All of these processorg sending an interval
in I = [a,b] to ¢ in roundk’ — 1 must either send an interval ot(1) to p in roundk
or fail to send tgp in roundk, sincel = top(I) is a maximal interval received hyin
roundk, and since;’ < ¢ and we choseg to be the smallest processor ever sending
during the execution. It follows that at legét— 1) + (¢ — @) = a — 1 processors hold
an intervalla’, b'] with b < a in roundk or fail to send top in roundk, and we are
done.]

Finally, since the algorithm terminates when every processor’s interval is a single-
ton set, and since the size of the maximal interval sent during a round decreases by a
factor of 2 in every round, it is easy to prove that the algoritArterminates ifogc
rounds.

4.2 Strong renaming algorithm 13

Lemma6: The algorithmA terminates idog ¢ + 2 rounds, where is the number of
participating processors.

Proof: Consider an arbitrary executiondf For each round, let/ ; be the size of the
largest interval sent during rourid

Consider round: = 2. In this round, each processprsends an interval of the
form [1,2°] where2? is the least power of two greater than or equal to the number of
processors that procesgoheard from in round.. It follows that/, = 2 < 2¢, for
someb, wherec is the number of participating processors.

Consider any round > 2 with £;,_; > 1. We claim tha¥;, < £;_,/2. Consider
any processor that holds an interval of sfze; > 1 at the start of roun& — 1, and
hence sends this interval in rouhd- 1. Since no interval sent in rourkd— 1 is larger
thanf_,, this processor must see that its interval is maximal at the end of found
and split its interval in half for the next round. Since this is true for every processor
sending an interval of sizé, ; during roundk — 1, and every processor sending a
smaller interval during round — 1 sends an interval of size at mdst_, /2, it follows
that all processors send an interval of size at rgst /2 in roundk, sofy, < £_1/2.

Sincels < 2c andfy < £,_1/2, we havely, < £5/2%~2 < 2¢/2%=2. It follows
that/;, = 1 within at mostk = log ¢+ 2 rounds, at which time all intervals are of size
and the processors can halt. l

With these results, we are done:

Theorem 7: The algorithmA solves the strong renaming problem, and terminates in
log(c) + 2 rounds, where is the number of participating processors.

Proof: First, by Lemma 6, all processors choose a hame and terminkig(it) + 2
rounds, where is the number of participating processors.

Second, the names chosen by processors are distinct. Suppose two prgeessors
andp’ chose the name at the end of roundk andk’ > k, respectively. Processaps
andp’ must have sent the singleton det [a, a] to all processors in roundsandk’,
and intervals containing in all preceding rounds. Singecould not have terminated
in roundk unless all intervals it received were singletons, both processors must have
sentl = [a, a] in roundk. It follows by Lemma 4 tha2 < |I| = 1, which is impossi-
ble.

Finally, names chosen are in the interffglc], wherec is the number of participat-
ing processors. Consider the procegschoosing the highest nanaechosen by any
processor, and consider the last rodnith which p sends the singleton sét= [a, a]
and terminates, returning All intervalsp receives in roun& must therefore be sin-
gleton sets. This implies thdtis a maximal interval received by in roundk. It
follows by Lemma 5 that at leaat— 1 processors hold intervals’, b'] with ' < a in
roundk or have failed, and hence that there are at legstrticipating processors. This
implies thatc > a and all names are chosen in the inteftat], as required.]

14 5 WAIT-FREE OBJECTS

5 Wait-free objects

We can use the lower bound on order equivalence to prove lower bounds on the com-
plexity of wait-free implementations of concurrent objects. We can also prove that
this bound is tight in the case of a simple object called an increment register. The im-
plementation that we describe is very similar to the strong renaming algorithm in the
previous section. We start with some formal definitions.

An object is a data structure that can be accessed concurrently by all processors.
It has atype, which defines the set of possihlalues the object can assume, and a set
of operationsthat provide the only means to access or modify the object. A processor
invokes an operation by sending awoke message to the object, and the operation
returns with a matchingesponse message from the object. Wistory is a sequence
of invoke/response messagessayjuential history is a history in which every invoke
message is followed immediately by a matching response message, meaning that the
operations are invoked sequentially one after another. In addition to a type, an object
has asequential specification which is a set of all possible sequential histories describ-
ing the sequential behavior of the object. For examplénarement register is just a
register with arincrement operation. The value of the register is a nonnegative integer.
Theincrement operation atomically increments the value of the register and returns the
previous value. The sequential behaviors for an increment register are the sequential
histories ofincrement operations returning integer values in order, suct,as2,

We are interested in concurrent implementations of such objects. To us, given an
object O intended to be used by processordy, ..., P,, an implementation 0O
will be a collection ofn processord, ..., F, calledfront ends [Her91a] that pro-
cess the invocations froif,, . . ., P, and return the responses fr@ Intuitively, the
front endF; is just the procedure that procesdgrcalls to invoke an operation ai.

The front endF; receives the invocations froR; and sends the responses fram

In our model, since we are only concerned with the implementation of objects (and
not their use), we assume that the front efds. .., F,, are really the system proces-
sorspy,...,pn. We assume that the invoking processsis. . ., P, are part of the
external environmerd, and we ignore them completely. With this in mind, we define

a history of a system to be the history obtained by projecting an execution of the
system onto the subsequence of invoke/response messages appearing in the execution.

The specification of an object’s concurrent behavior is defined in terms of its se-
quential specification. An object Ignearizable [HW9O0] if each operation appears to
take effect instantaneously at some point between the operation’s invocation and re-
sponse. Linearizability implies that operations on the object appear to be interleaved at
the granularity of complete operations, and that the order of nonoverlapping operations
is preserved. An implementation is said tovait-free if no front end is blocked by
the failure of other front ends. The precise definition of wait-free linearizable objects
is well-known [HW90], so we will not repeat it here.

We assume that any wait-free, linearizable implementation of an object can be ini-
tialized to any value defined by the type of the object. Specifically, we assume that
for every valuev in the type of an object, there is an initial processor statavith the
following property: if every processor begins in state— with the possible exception
of the processors failing immediately at time 0 — then every execution from this initial

5.1 Lower bounds 15

state is linearizable to a sequential history in which the operations in the history are in-
voked sequentially on a copy of the object initialized to the valu€his assumption is
valid, for example, for all concurrent objects implemented using the technique of state
machine replication [Lam78, Lam89, Sch87], which is the technique most commonly
used in message-passing models like ours.

5.1 Lower bounds

Our lower bound on order-equivalence can be used to prove lower bounds for a number
of concurrent objects. For example, @rdlered set S is an object whose value is some
subset of a totally ordered s&t with aninsert(a) operation that adds € T to S and

a remove operation that removes minimum element S from S and returns. As

the next result shows, we can use tiemove operation from any implementation of

an ordered set to solve the order-equivalence problem, so the logarithmic lower bound
on order-equivalence implies the same lower bound forrén@ve operation of an
ordered set. Many interesting concurrent objects are special cases of an ordered set.
For example, an ordered set&move operation is just a special case of a stagkip, a
queue’ddequeue, and a heap'aiin. Consequently, the next result implies a logarithmic
lower bound for each of these operations as well.

Proposition 8. Given any comparison-based, wait-free, linearizable implementation
of an ordered set, theamove operation require§(log, ¢) rounds of communication,
wherec is the number of concurrent invocations of tleaove operation.

Proof: Consider any such implementation of the ordered set. Consider any ¥alue
of the ordered set containing at leastlistinct values, whera is the number of pro-
cessors in the system, and $gt be the initial processor state with the property that if

all processors start in state, then the object is initialized t§. The environmeng

for an ordered set certainly includes the environmE(Qfs s}, I, {remove}) consist-

ing of environment graphs in which all active processors start with the sames state
and all active processors start with an invocation ofrtémaove operation from the en-
vironment. In such an environment, the invoking processors are precisely the active
processors.

Each processor terminates by removing a distinct value from the set and return-
ing it to the environment by sending a distinct message to the environment. Since the
message function of a comparison-based protocol — the function choosing the mes-
sages from\ that processors send to the environment — must be the same in order-
equivalent states, the processors must end the protocol in order-inequivalent states. By
Proposition 1, for every < n, there must be some execution®fin P(£) in which
thec active (and hence invoking) processors are still order-equivalent (and hence can-
not terminate) aftef)(logs ¢) rounds. O

As another example, consider timerement register defined earlier in this section.
The value of an increment register is just a nonnegative integer. The increment register
provides anncrement operation that atomically increments the value of the register
and returns this new value. Since we can useitioseement operation to solve the
order equivalence problem, we can prove a logarithmic lower bound fonthement
operation:

16 5 WAIT-FREE OBJECTS

Proposition 9: Given any comparison-based, wait-free, linearizable implementation
of an increment register, thacrement operation require€(log 5 ¢) rounds of commu-
nication, where: is the number of concurrent invocations of therement operation.

Proof: Consider any such implementatiéhof an increment register. Lat, be the
initial processor state with the property that if every processor begins insstatleen
the register is initialized to 0. The environmehfor an increment register includes
the environmenfF ({so}, I, {increment}) consisting of environment graphs in which
all active processors start with the same stgtand all active processors start with an
invocation of theincrement operation from the environment. In this environment, the
active processors are the incrementing processors.

Each processor terminates by returning a distinct value to the environment. Since
the message function of a comparison-based protocol must send the same message
to the environment in order-equivalent states, the processors must end the protocol
in order-inequivalent states. By Proposition 1, for every n, there must be some
execution ofP in P(&) in which thec active (and hence incrementing) processors are
still order-equivalent (and hence cannot terminate) &l{@og 5 c) rounds. O

5.2 Increment register algorithm

In this section, we give the last major result of our paper: an optimal wait-free imple-
mentation of an increment register. It closely resembles our optimal strong renaming
algorithm, and proves that the logarithmic lower bound is tight.

A processop can invoke an increment operation multiple times in a single execu-
tion, and each invocation can take multiple rounds to complete. We refer to the set of
increment operations invoked during roubdsgeneration & increments, and we refer
to the processors invoking these incrementgaasration k processors. We refer to the
rounds of a generation gases, and we number the phases of generatistarting
with 0 so that phasé of generatiork occurs during round + £.

Since a process@rcan invoke the increment operation more than once, it identifies
itself during generatiok with an ordered paifp, k) called itsincrement processor id.

We assume each procesganaintains a sefncSet of all the increment processor ids
that it knows about, and continues to maintain this set in the background even when
it is not actually performing an increment operation. Every round, it broadcasts this
set to other processors, and merges the sets it receives from other processors into its
own set. For notational simplicity, however, since the generdtioill always be clear

from context, we will frequently write in place of(p, k). This setIncSet can also be

used to initialize the increment register. For the sake of simplicity, the implementation
we give assumes the register is initialized to 0, but it can be initialized to any value
as follows: in the initial processor stagg in which the increment register has been
initialized to the value, the setIncSet is initialized to contain phantom increment

ids (p, —4), (p, —t + 1), ... (p, —1) for some processor ig to simulatep’s previously
incrementing the registértimes.

Understanding our implementation requires understanding the notiaeeges,
intervals, splitting, andchopping, so let us begin with these concepts.

5.2 Increment register algorithm 17

9
8 I
ub—= (17 I e Bl S
current
6 generation
b —= 5
4 I
3 . \
previous
2 generations I —_—
1
0 L |
p's old p's new
other ranges range range
(a) Initial range. (b) Extending the range.

Figure 2: The range.

Ranges Our implementation has the property that increments in one generation are
effectively isolated from increments in other generations, in the sense that increments
in one generation can choose return values by communicating among themselves, ig-
noring increments in other generations. This isolation is achieved by partitioning the
return values into ranges.

As illustrated in Figure 2, each procesganaintains aange R = [R.lb, R.ub] of
return values. Initially, using the séhcSet of increment processor ids known o
processop sets its lower bounéb to the number of increments invoked by previous
generations, and its upper boumtlto the total number of increments invoked by pre-
vious and current generations. Every phase, procgserchanges ranges with other
processors in its generation, and extends its range by dropping its lower bound to the
smallest lower bound received from any of these processors.

Intuitively, by setting its initial lower bound tb, processop is reserving lower val-
uesv < [b as return values for increments in previous generations recordedSet.
Later, if p hears that another procesgom the same generation set its initial lower
bound tolb' < Ib, thenp knows some of these earlier increments have failedy so
ceases to reserve return values for them and drops its lower boiind to

Our algorithm guarantees that if a nonfaulty processor sets its upper bouhd to
then all processors in all later generations set their initial lower bounéts to ub,
so their lower bounds remain aboué forever. In this sense, the upper bounds of
the nonfaulty processors partition the return values. Nonfaulty processors in different
generations have disjoint ranges, allowing them to ignore each other once their initial
ranges have been chosen.

Intervalsand Splitting Given a rangeR of acceptable return values, howevestill

has to choose one of them to return. To do so, we modify the fundamental idea in the
optimal algorithm for strong renaming described in Section 4. The basic idea is that if
the values irp’'s rangeR areb bits long, therp chooses &-bit value fromR one bit

at a time, starting with the high-order bit and working down to the low-order bit. To

18 5 WAIT-FREE OBJECTS

27k - 1
p's value —= /

(a) Initial interval contains initial range. (b) Interval splits to the half containing p’s value.

D T O T N

Figure 3: The interval.

implement this idea, processpmaintains annterval I = [I.lb, I.ub] of return values
that contains its rang® (see Figure 3). The size of the interval is always a power
of 2. Processop’s initial interval is the smallest interval of the forf, 2% — 1] that
containg’s initial range. During an increment, procespaoepeatedly splits its interval
in half until the interval contains a single value, and this is the valueptheturns. It is
easy to see that all of the intervals generated &e of the fornja2 ¥, a2* + (2% —1)] for
someb — k bit valuea, and such intervals are calleg|-formed intervals. Intuitively,
this interval represents the fact thahas chosem as the high-ordel — & bits of its
return value, but must still choose the low-ordéduits.

The procedure that uses to split its interval in half is important (see Figure 3).
Every round, processgr exchanges intervals with other processors, amgaintains
a setC of all processors sendingan interval intersecting its current intenval The
processors i’ arep’s competitors since they include the processors considering re-
turn values inp’s range. To avoid returning the same value as one of its competitors,
processop attempts to predict what values its competitors will choose. To predict ac-
curately, howevep must wait untill is maximal among the intervals received from its
competitors; this means thak competitors are considering only valuesl/inOncel
is maximalp assigns return values from its range to its competitors, starting at the bot-
tom of its range and assigning values to competitors in order of increasing processor
id. Eventually,p assigns a value to itself. Processop then replaced with its top
half top(I) or its bottom halfbot(I)—whichever half contains—and then replaces
its rangeR with the intersection of? andI. Continuing in this way every round,
processop’s interval eventually contains a single valueat which pointp chooses
but continues exchanging its interval with other processors until all processors in its
generation have chosen a value.

Chopping Itis easy to see that the split operation is what gives rise to the algorithm’s
logarithmic nature: in any given round, a maximal interval is guaranteed to split in
half, so the size of the maximal intervals decreases by a factor of 2 with every round.
Unfortunately, this is logarithmic in the size of the initial interval, which can be as

5.2 Increment register algorithm 19

-

split

chop

Figure 4: Chopping.

large as the total number of increments ever invoked, and we want the algorithm to run
in time logarithmic in the number of concurrently executing increments. Fortunately,
we can speed up the algorithm dramatically by introducing a new operation called a
chop, illustrated in Figure 4. For example,fs rangeR is just the top few values in

its intervalI, then it is clear thap is going to split up repeatedly for many rounds. We
accelerate this splitting by allowingto chop in a single round fronf up to the smallest
well-formed intervall’ containingR. We say thap chopsup in this case, and chopping
down is similar. Since chopping is just an accelerated form of splitting, procgssor
must wait untilI is maximal among the intervals received from its competitors before
chopping. On the other hand, it is important that we do not afidavsplit and chop in

the same round: ip splits down and then immediately chops up to a smaller interval
containing its new range, then it runs the risk of chopping away the bottom of its
interval before learning that it can extend this range by dropping the lower bound, so it
runs the risk of reaching a state in which its interval and range are too small to assign
distinct values from its range to all of its competitors.

Algorithm With this, we have introduced the notions of ranges, intervals, splitting,
and chopping, and we can turn our attention to the increment register implemeftation
itself. The main loop of the algorithm is given in Figure 5, the definitions of splitting
and chopping are given in Figure 6, and the definitions of some initialization steps are
givenin Figure 7.

During the initial phases of generatidn an incrementing processgrstarts by
adding its increment processor {g, k) to IncSet; it exchangedncSet with other
processors and uses the result to choose its initial r&hge described above; it ex-
changesR with other processors, extenéisby dropping its lower bound as described
above, and uses the result to choose its initial interval. In all later phases, prgeessor

20 5 WAIT-FREE OBJECTS

begin /* a generation k increnent by processor p */
initialize(); /* add <p,k> to IncSet */

phase0(); /* bcast IncSet, choose initial range R */
phasel(); /* bcast R extend R and
choose initial interval 1| */
r epeat
broadcast <p,R |, b>
receive <p’,R,1",Ib > fromgeneration k

processors p’

/* collect names and intervals of conpetitors */
C<-{p:<p',R,I",Ib">received and |’ intersects |}
N<- {I":<p’,R,I",Ib > received and |’ intersects I}

/* extend range by dropping the | ower bound */
RIb < Ib< mn{lb : <p",R,I",1b" > received}
R <- E < Rintersect |
/* Eis used only in the proof */

if I is mximal in N then
if Ris contained in either top(l) or bot(I)
then chop()
el se split()

until |I"] =1 for all 1" in N
v <-1.lb [* 1 =1]v,v] */
return(v);

end.

Figure 5: The increment registér

exchanges its interval and range with other processors, extends its range if possible,
and splits or chops its interval and range whenever it finds that its interval is maximal
among its competitors. When procesgrinterval contains a single value, it contin-

ues broadcasting its interval and range until all competing intervals contain a single
value, therp chooses its value and halts.

5.2.1 Correctness

Proving the correctness of this algorithm consists of proving two properties.
The first property we must prove is that given two nonoverlapping increments, the
value returned by the first is less than the value returned by the second. This will imply

5.2 Increment register algorithm 21

chop()
begi n
I <- smallest well-formed interval containing R
end.

split()
begi n
rank <- rank of pin C /* 0 is the |lowest rank */
value <- R IDb + rank
if value in top(l) then
l.1b <- RIb<- I.lb+]I]|/2
el se
l.ub <- Rub <- I.ub - |I|/2
fi
end.

Figure 6: Chopping and splitting an interval.

that the implementation is linearizable. In fact, this is very easy to prove using the
observation that the ranges effectively isolate distinct generations, a fact mentioned
earlier in the discussion of ranges:

Lemma 10: Supposep and g are generation andj processors returning values
andw, respectively. If < j, thenv < w.

Proof: Notice thatv is no higher tham’s upper bound. Notice also thatset its upper
bound to|IncSet| — 1 at the end of phas@ of generation, and then broadcast this
set to all processors in phas®f generation. Sincei < j, phasel of generation is
no later than phase of generatiorj. Consequently, all generatignprocessors have
receivedncSet before they set their lower bound at the end of pliesigeneratiory.
This means that no generatigrprocessor will ever lower its lower bound belgis
upper bound. Since is abovey’s lower bound, we have < w. l

For the second property, remember tidais the set of competitors, and notice
that £ (a history variable used only in the proof) is the extended range (the result
of dropping the lower bound of the real rang® that is used by a processor to as-
sign values to its competitors (including itself). The second property we must prove
is that|C| < |E| for every processop in every phase. This invariant says that
can always assign distinct values frdinto its competitors. This will imply that the
algorithm terminates: whenever a processor finds that its interval is maximal, it can
assign itself a value and split or chop to a smaller interval containing this value. This
will also imply that distinct processors choose distinct valueg d@hd g return the
same valua, then at some point they both have the same extended Erugmsist-
ing of the single value and they both have a set of competitérsncludingp andgq,
but|C| =2 % 1=|E|

22 5 WAIT-FREE OBJECTS

initialize()

begin
k <- current round nunber /* choose generation */
p <- <processor id, k> /* choose id */

IncSet <- IncSet union {p} /* set of increnentors */
end.

phaseO()
begin
broadcast <p, | ncSet >
receive <p’,IncSet’> fromall processors p’

IncSet <- union of all IncSet’ received
GenSet <- set of all processors p’ in IncSet with
generation k' < k
R ub <- |IncSet| - 1
RIlb < Ib <- |GenSet|
end.

phasel()
begi n
broadcast <p, R | b>
receive all <p’,R,Ib" >

R1lb <- Ib <- mn gen k I ower bound Ib’ received

I <- smallest well-formed interval containing R
end.

Figure 7: The initialization phases.

Proving thaiC| < | E| requires reasoning about the interactions between the splits
and chops performed by different processors in different phases, and we prove two
claims (Claims 13 and 14 below) about these interactions. Let us fix a gene¢dtion
the rest of this section. We denote the value$ ahd R broadcast by during phase
of an executiore by I. , » andR. ,, ., and we denote the values BfandC' held byp
at the end of phase of executione by E. , . andC. , .. We often omit subscripts
like e andp when they are clear from context.

We say thap splitsto I in phase: if p sendsl in phase—1 andI in phase, wherep
changes from/ to I by splitting. We say thap splits up or splits down depending
on whetherI = top(I) or I = bot(I). We say thap chops into I in phase i if p
sends/ ¢ I in phasei — 1 andJ C I in phasei, wherep changes from/ to J by

chopping. We say that chops up or chops down depending on whethef C top(J)
or J C bot(J). Two simple properties about splitting and chopping are often useful.

5.2 Increment register algorithm 23

Fact 11: If p splits fromI; ; to I;, then the upper bounds &;, E; andI;, where
R; C E; C I;, are equal ipp splits down, and the lower bounds are equal $plits up.

Fact 12: If p chops fromI;_; to I;, then the upper bounds &;_,, E;, R;, I;,_1
andI;, whereE; = R; C E; C I; C I; 4, are equal ifp chops up, and the lower
bounds are equal # chops down.

The first property follows from the fact that the range spans the midpoint of the interval
during a split (so the split truncates the range and interval at the same point). The
second property follows from the fact that the initial range always spans the midpoint
of the initial interval, so a split must occur before a chop (and again the split truncates
the range and interval at the same point).

Reasoning about one procesgrsplitting and chopping usually involves reason-
ing about another processgs behavior in earlier phases. The first claim below argues
that whenever a processpmwith interval I has to find room for its competitols in
its extended rang#, each of these competitors themselves had to find roor@ fior
their extended ranges when they split or chopped into the intérval

Claim 13: If I, ; D I, ; for somej < i, thenCy ; 2 Cp ;.

Proof: Letr be a processor iy, ;. This means that the interva) ;, sent byr to p
in phasei, intersectsl, ;. Sincej < ¢, the intervall, ;, sent byr to ¢ in phasey,
containsI, ;. Now, sincel, ; containsl,;, andI, ; containsl; ;, the fact thatl, ;
intersectdl, ; implies thatl,. ; intersectd, ;. Hencey € Cy ;. It follows thatCyp, ; C
Cq,;j-

The second claim we prove concerns the fact that a processay split to an
interval I in an orderly sequence of splits while another procegsuoay chop intal
in a chaotic interleaving of splits and chops. The claim states that the moment this
happensp’s extended rang®& spans its entire intervdl from that moment on. This
means that if chopping complicates our analysis in one way, it simplifies our analysis
in another since we no longer have to be careful to distinguish between intervals and
ranges.

Claim 14: Supposep splits toI in phasei, and supposg chops intol in phasej.
If i <fZandj < ¢, thenl,, = E,, at the end of phase

Proof: Suppose splits down fromI to I, and letE bep's extended range at the end
of phasei. Sincep split down, we know thaf.ub = E.ub by Fact 11. Since the
upper bounds of,, , and E, , are still equal at the end of phageall we have left
to show is that their lower bounds are equal. First, notice ghatst have chopped
down and not up: this follows from the fact thasplit down from I to I and the fact
thatq chopped fromJ ¢ ItoJ C I. Let R be the range sent together with/

in phasej. According to Fact 12, the fact thatchopped down fromJ to J implies
that R.Ib = J.Ib. Furthermore, the fact thatchopped down from/ gItoJ C I
implies thatJ.lb = I.lb. It follows that R.lb = J.Ib = I1.Ib. On the other hand,
sinceR.lb = 1.1b < I, ,.1b and sincep drops its lower bound every round, it follows
thatl, ,.lb = E, ,.lb by the end of phasé> j.

24 5 WAIT-FREE OBJECTS

Supposep split up from I to I, and letE be p's extended range at the end of
phase. Sincep split up, we know thaf.lb = E.Ib by Fact 11, and we will now show
thatI.ub = E.ub as well. It will follow that] = E at the end of phasg and hence
thatl,, = E,, at the end of phas€é> i. Suppose on the contrary thBtub < I.ub.
This means that the upper bouRg ».ub of p’'s phase 2 range is also less thianb. It
follows thatR, ».lb < I.1b, since otherwisd?, » C I andp would have chosenhas its
initial interval—the smallest well-formed interval containiRg .—and not an interval
as large ad. On the other hand, singgs initial interval I, containsg’s interval J,
and sinceJ b is underI.lb, we know thatl, 5.1b < J.Ib < I.Ib. Thus,R,, 5.lb < I.Ib
andl,».lb < I.lb, so we know that will drop its lower bound below .l at the end
of phase2, and thatg’s lower bound will remain below.lb until g splits up to an
interval with a lower bound at or abovelb. However, sincej.lb < I.Ib, we know
thatg’s lower bound is still belowl.lb at the end of phasg — 1, so it is impossible
for ¢ to have chopped up from an intervalcontaining! in phasej — 1 to an interval/
contained in in phasej, a contradiction.]

These two claims give us the tools we need to prove|iaK |E| is an invariant.
We prove this invariant by defining the condition

Zo: |Cepr|l < |Eep,r| in all executionse for all processorgp and generatiork
phases = 2,...,/,

and then proceeding by induction én> 2 to prove thatZ, holds for all£. Fix
some executioa and processas, and letl, R, E, andC denotel . , ¢, Re p,¢, Eep s,
andCe p¢.

As the basis of our induction, we show that the invariantis true initially. We actually
prove two results. The first concerns the simple case wpisreange contains some
other process’s initial range, and the second concerns the more common casg'svhere
interval (which is bigger than the range) contains some other process’s initial interval.

Claim 15: If R contains some processgs initial rangeR, 1, then|C| < |E|.

Proof: Letr be a processor i@. This means that sent an interval intersecting
to p in phasel, and therefore that sent a message tpin phasel. Since the size
of R, 1 is exactly the number of processors sending o phase0, it follows that
|C| < |Rq1| < |R|. Finally, |R| < |E| sinceR C E. O

Claim 16: If I contains some processgs initial interval I, », then|C| < |E|.

Proof: We will prove that eithei?,,; C R or R,; C R, depending o, ;'s upper
bound, and in either case we will be done by Claim 15.

SupposeR, 1.ub < I.lb. This case can never arise, since the upper boumptsof
range never increases, and sipogever splits or chops to an interval above its upper
bound.

SupposeR,, ;.ub € I. If we also haveR,,.lb € I, thenR,; C I which im-
pliesR,:1 C R and we are done, so suppose tRgt;.Ib < I.1b. In this case, we know
that Ry 2.1b < R, 1.1b < I.1b sincegq lowers its lower bound td?, ,.lb or lower at
the end of phase 1 before choosing its new range and interval for phase 2. This means

5.2 Increment register algorithm 25

thatR,» Z I, but this in turn leads to the contradictidp, Z I sinceR,» C I; 2, SO
this case can never arise.

SupposeR,, ;.ub > I.ub. Since the upper bound pfs initial range is abovd, we
know thatp has split down at least once, and hence Raith = I.ub by Fact 11. Fur-
thermore, since lowered its lower bound t&, ;.Ib or lower at the end of phase 1 be-
fore choosing its new range and interval for phase 2, we knovpthiwer bound will
remainR,;.lb or lower untilp splits up to an interval with a lower bound abadvg ; .[b.
However, sinceR, 1 C Ry 2 C I, » C I, we have

Raub=I.ub> Ryy.ub> Ry1.0b > R.Ib,

SoR,1 CR. O

As for the inductive step itself, if does not contain the initial interval of any
processor, then all g’'s competitors have split or chopped info The next result
concerns the chopping case. It says thaf i p's interval and if any processar
has chopped intd at any time in the past—regardless of whetheandq are now
competitors—then the invariant is preserved. It is a strong statement that chopping
quickly brings distinct intervals and ranges into synch.

Claim 17: Suppos€Z, ; is true. If any processor has chopped idtdy phasel,
then|C| < |E)|.

Proof: Supposd is p’'s initial interval, or contains any other process’s initial interval.
Then we are done by Claim 16.

Supposep itself chops fromI to I in phasei < £. Sincep chopped its interval
from I to I in phasei, it follows thatC' C Cp,i—1 by Claim 13. Sincep does not
split its interval in phases through?, we know thatE,; ; C E. Consequently,
sincei — 1 < ¢ — 1, it follows fromZ,_; that|C| < |Cp,i—1| < |Ep,i—1| < |E|, as
desired.

Suppose splits from1 to I, and that some other procesgochops fromJ Z1I
toJ C Iin some phasg < £. Sinceg chopped from/ to J, it follows thatC' C Cqi—1
by Claim 13. In addition, since chopped fromJ to J, we know thatty ;1 CJ C I.
Finally, we know thatl = E by Claim 14 sincgf — 1 < £ — 1. It therefore follows
fromZ,_, that|C| < |Cy,j—1| < |Eq,j—1| < |E|, as desired. O

The difficult cases, therefore, are the cases in whpiand all its competitors split
from I toI. The case of splitting down is easy, but the case of splitting up is difficult. In
fact, understanding how to choose and manipulate ranges to make the case of splitting
up go through is the most important way in which the increment register algorithm
differs from the strong renaming algorithm it is based on.

Claim 18: SupposeZ, ; is true. Ifp and all its competitors have split down Idoy
phase, then|C| < |E|.

Proof: Let q be the greatest competitor ¢h. This means thag is the greatest pro-
cessor to send an interval containedirto p in phasel. Consider the phasgin
which ¢ split from I to I, and notice thaC' C C, ;1 by Claim 13. Sincey is the

26 5 WAIT-FREE OBJECTS

greatest processor i@ and sinceg split down from1 to I, processoy found that

all processors i€’ C C, ;1 could choose distinct values from the bottom half of its
extended rang#, ;_;, where the bottom half of its extended range just happens to
beR, ; = IN Ey;_,. ConsequentyC| < |R, ;|. We will now show thaiR, ; C E,

and it will follow that |C| < |E|, as desired. First, notice th&, ; C I, ; = I. Next,
notice thatl.ub = E.ub by Fact 11 since split down, soR, j.ub < I.ub = E.ub.
Finally, notice thatj < £ and thatp lowers its lower bound as much as possible every
phase, s&.lb < R, ;.lb by the end of phasé It follows thatR, ; C E as desired[]

Finally, let us consider the tricky case of splitting up.

Claim 19: Suppos€Z,_; is true. If p and all its competitors have split up foby
phase/, then|C| < |E|.

Proof: Let q be the least competitor i@. This means thaf is the least processor to
send an interval contained ihto p in phasel. Consider the phasés< £ andj < £

in which p andgq split up fromI to I, respectively. Notice that singeandgq split their
intervals at the ends of phasés- 1 andj — 1, Claim 13 implies thaC' C C, ;1
andC C Cg,j—1.

Suppose that < j (the case withy < i is similar, and easier). Let' be the
execution differing frone only in that in each phase > ¢ — 1 of e’ the processors
andq receive messages from exactly the same set of processgusdicaives messages
from in the corresponding phase ef Notice that this does not change the set of
messagesp receives in phase— 1, and hence does not change the fact thaplits up
to I in phase, but it might change the messages and splitting. of

First, consider the lower bounds of the extended rangegpthatlg use when they
decide to split up at the end of phages 1 andj — 1 in e. At the end of phasé— 1,
processop first computes the lower bourdl,. ,, ;_; and then uses this lower bound to
set the lower bound of its extended rarfgg, ;1 to the maximum otb, , ;1 and the
lower bound of!. It then broadcast®. p;—1 to ¢ in phase; < j — 1. Consequently,
at the end of phasg— 1, processoy setslb. 4, ;1 t0 lb. ,;—1 Or lower, and uses this
lower bound to set the lower bound of its extended rafgg ;. to the maximum
of lb.,q,;—1 and the lower bound of. In other words,E, ,; 1.lb > Ecq,j—1.b.

In fact, the construction o’ from e guarantees thal,: 4 ;,_1.lb = E p;_1.lb =
Ecpi1.lb> Ecq;_1.0b.

Next, consider the set of competitors feandq in e. It follows from Claim 13
thatCe q,j—1 C Cep,i—1. Infact, from the construction af’ from e, it follows that
CcC Ce,q,j—l - Ce,p,i—l = Ce’,p,i—l = Ce’,q,i—l-

The conclusion of this little exercise is that at the end of phiasd in e’ proces-
sor ¢’s lower bound is as high and its set of competitors is as large as at the end of
phasej — 1 in e. Sinceq splits up at the end of phage— 1 in e, it will split up at
the end of phasé — 1 in e/, assuming its interval is maximal among the intervals
it receives ine’. It must be maximal, however, becaugesceives precisely the same
intervals in phasé— 1 of e’ asp does, ang splits up. In factp andq assign the same
values to the same processors at the end of phasé of e’. It follows fromZ,
thatp andg can assign distinct values frof, , ;1 and E.r 4 ;1 to all processors
in Cer pi—1 = Ce 4,,—1, and we have already argued that they do so in precisely the

5.2 Increment register algorithm 27

same way. Since is the smallest processor @1 C C.r 4,;—1 andq splits up, this
means that both andq can find values for all processors@hin the top halves of their
extended ranges. Since the top halptsfextended range iE—remember that upper
bounds never change—it follows th&t| < | E|, as desired. O

Putting all of this together, we have our invariant:
Lemma20: |C| < |E|.

Proof: We proceed by induction o> 2 to prove thatZ, is true for all’.

First suppos¢ = 2. Sincel, itself is an initial interval contained it », it
follows by Claim 16 thatCp 2| < |Ep,2|.

Now supposé > 2 andZ,_; is true. If I contains some process’s initial interval,
then we are done by Claim 16. If some processor chopsiintben we are done by
Claim 17. If all processors split frorhto I, then we are done by Claims 18 and 19.

Using this invariant and Lemma 10 we can prove that our implementation is correct:
Theorem 21: T is a linearizable, wait-free implementation of an increment register.

Proof: First, notice that all nonfaulty processors choose a value. This follows from the
fact that, given any phageof any generatiott, all generatiork intervals of maximal
size in phaseé will either split or chop at the end of phaser i + 1, meaning that
the size of the maximal generati@rinterval decreases by a factor of at least two with
every two rounds. Thus, eventually all generatioprocessors will have intervals of
size 1 and choose a value.

Second, notice that two processors always return distinct valugsarifiq are of
distinct generations, then the result follows by Lemma 1G: dhdgq are of the same
generation and both return the same valu¢hen they both have the same extended
rangeE consisting of the single value and they both have the same set of competi-
torsC consisting ofp andg, but|C| = 2 £ 1 = |E|, violating the invarian{C| < |E|.

Third, we need to show that if chooses the valug, then there are at least— 1
other processors gf's generation or earlier, which, if they decide, decide on values
beloww. Consider the highest upper bouticchosen by any processgin p’s gener-
ation. There are at leabt processors gb’s generation or earlier which, if they decide,
decide on values less than or equalto Therefore there are at least— 1 of these
processors which decide on values< v if they decide at all.

Finally, it follows from Lemma 10 that the algorithm is linearizable. |

5.2.2 Timecomplexity

We now show that increment operations halfifiog c) rounds, where is the number

of concurrent operations. Technically speaking, a failed operation is concurrent with
(or overlaps) every following operation, gacan grow artificially large. Fortunately,

we can prove a tighter bound, depending on a set of concurrent operations that is gen-
erally a much smaller sét.Our algorithm has the nice property that the invocation

1This does not mean that our algorithm runs faster thartXfieg c) worst-case lower bound, because
these two sets are equal in that single worst-case execution.

28 5 WAIT-FREE OBJECTS

of an increment operation delays at most one generation. If the invoking processor is
nonfaulty, then the increment delays its own generation. If the invoking processor is
faulty, then it may delay a later generation, but it will delay at most one. In fact, we
can identify exactly which generation an operation delays.

For each generatiaky we define thective set of processors, namely those proces-
sors or invocations that contribute to the generation’s running time. We show that the
largest range chosen by any generafigorocessor is bounded in size by the size of
the active set, and we show that a generation halts in time logarithmic in the size of
the largest range. From this it follows that all generatiancrement operations halt in
timelog ¢, Wwherecy, is the size of the active set for generatian

Active Sets We begin by definingactivey,, the active set of processors for genera-
tion k.

Loosely speaking, the active set for generattononsists of all processors that
the “good” processors learn about for the first time in roéndRemember that all
processors choose their initial range at the end of phase 0, exchange their ranges, and
then choose their initial intervals at the end of phase 1 based on the ranges they receive.
The “good” processors for generatiénare the generatioh processors that survive
these initialization phases and begin broadcasting intervals.

Let gen, be the set of generatidiprocessors. Formally, we defigeod,, to be
the set of generatiok processors that are nonfaulty in phaBemd1 of generatiork
(that is, they do not fail in rounds andk + 1). For any good processer the set
of processors thas has learned about in the firgtrounds is exactly the value of its
setIncSet at the end of round, which we denote bincSet,, ;.. The seknown;, of all
processors the good processors know about at the end of kasrgiven by

known, = | IncSet, s,

pegood,,

and the setctive;, of all processors that the good processors learn about for the first
time in roundk is
active, = known, — knowny_¢

w on

(where “—" denotes set difference).
It is clear that the set of known processors is nondecreasing:

Claim 22: known;_; C known;, for all k.

Proof: If ¢ € known;_,, theng € IncSet, ,_; for somep € good,_,. This means
thatp survived phase of generatiork—1 and successfully broadcast its batSet ,, ;1
to all processors in that phase. Since phiaségeneratiork — 1 is phasé) of gener-
ationk, this means thaincSet, .1 C IncSet, ;. at the end of phase 0 of generatibn
for all good processors € good,, in generatiork. Thus,g € IncSet,, ;1 C knowny,
and it follows thatknown;_; C knowny. |

Using this observation, we can show that theastitve,, has two desirable proper-
ties: every nonfaulty generatidgnprocessor belongs tactive,, and every processor
belongs to at most one sattivey.

5.2 Increment register algorithm 29

Claim 23: good,, C active;, for all k, andactive; N active, = 0 for all j # k.

Proof: First, notice that ifp € good,, thenp is a generatiot processor that survives
phase0 of generatiork and addw to its own setncSet, ;. Notice also that a gener-
ationk processor cannot appear in any B&iSet, ; for any generatiory processoy,
wherej < k. It follows thatp € good,, impliesp € known;, — knowny,_; = activey,.
Next, the remainder of the claim follows immediately from the fact kmatvn ; C
known;,_; forall 7 < k — 1, which follows from Claim 22. |

Maximal Range For each generatiok, we can bound the size of the ranges sent
by good processors withctivey,. Since we are trying to bound the execution time of
generationk increments, we need only consider the ranges of the good processors,
since all other processors fail by the end of phase 1.

Consider the largest range a good procepsian send. Every procesgochooses
upper and lower bounds, andl, at the end of phas& and then never raises its lower
bound without splitting or chopping up to a smaller interval and range. At any given
time, a processay’s lower bound is the minimum of the lower bounidschosen by
some subset of the generatibrprocessors. In the worst case, a good procegsor
largest rangeR,, ; is contained inmax_range,, = [Ibg, ub], where

ub, = max{u,:p € good,}
Iby = min{l,:pe€gen,}
In other words,
Claim 24: R, ; C max_range, for every good processgre good,, and every phase

The next result shows that the sizenix_range,, is bounded by the size attive,
and hence so is the size of any range used by any good processor in gerieration

Claim 25: |max_range;| < |activey|.

Proof: We prove thatknowny| > ub, + 1 and thagknown,_;| < Iby, and it follows
that

|max_range,,| = uby, — Iby, + 1
< |knowng| — [knowny_; | = |known, — known_;| = |activey|

sinceknown,,_; C knowny by Claim 22.

To prove|known;| > uby + 1, consider the good procesgerc good,, with the
maximum upper bound, = ub; at the end of phase 0. Procesgochoseu, to
be|IncSet, ;| — 1 andIncSet,, , C knowny, so|known| > u, + 1.

To provelknown,_1| < Ibg, consider the processpre gen,, with the minimum
lower bound, = Ib; at the end of phase 0. Since all good procesgogsgood;, ;
survive phases 0 and 1 of generation- 1, they all send their set$icSet, 1 to p
during roundk (that is, during phase 1 of generatién— 1), sop has heard of all
processors inown;_, before it sets its lower bourlg at the end of round (that is,
during phase 0 of generatidf). Consequentlyknown;_1| < Iby.]

30 5 WAIT-FREE OBJECTS

Running Time Analysis For each generatiok, we can bound the size of intervals
sent by good processors wittiex_range;,. Consider any telescoping chain

ILLODILbD>---D1

of intervals sent during phase 2, whdrgstrictly containsl;,;, and suppose the se-
quence is of maximal length. Sinde is maximal, we know that it will split in half
immediately at the end of phase 2, leavihg D ... D I; as a maximal chain. We
now prove that the size df is roughly the size ofmax_range,. Since the size of the
maximal interval reduces by half in each round, the running time is clearly logarithmic
in the size of the largest interval, and it will follow that the running time is roughly
logarithmic in|max_range,,| < |activey|.

Claim 26: Given any sequence of intervals D I D --- D I; sent in phase 2 of
generatiork, we havdI>| < 2|max_range;,|.

Proof: Since the intervald; in the chain are sent in phase 2, they are sent by good
processors igood,, (processors surviving phases 0 and 1), and their rafeare
contained irmax_range,, by Claim 24. The upper and lower bounRs.ub and R;.lb

of R, are clearly in the top half and bottom half bf, respectively. Sincé, is strictly
contained inf;, we know thatl is either in the top or bottom half df;. We consider
the two cases separately.

Supposd is in the top half ofl;. Then since the lower bourid, .lb of R; at the
end of phase 1 is in the bottom half 6f, the lower boundR,.lb of R, will drop to
the bottom ofI, at the end of phase 2. Since the upper boBndub of R, is in the
top half of I, the rangeR, will span the bottom half of s by the end of phase 2. This
means thall;| < 2|Rz| < 2|max_range,|.

Supposd is in the bottom half off;. This means that at the end of phdse¢he
lower boundR,.Ib of R, is in the bottom half of ;. Atthe end of phase 2, therefore, the
lower boundR;.lb of R; will be in the bottom half off,. Since the upper bour@; .ub
of R; is in the top half off;, it follows thatR; will span the top half off5:

12| < 2[Ry < 2|maxrangey|.

Combining these results, we are done:

Theorem 27: Every generatiok increment operation completes wittlr{log |active|)
rounds.

Proof: By Claim 26, after phase 2 starts, for every telescoping chain of intervals, the
set of active processors is guaranteed to be at least half of the size of the second interval
in the chain, so as soon as the first interval splits and chops (which will happen imme-
diately since it is immediately maximal), the chain will disappear in time logarithmic

in the number of active processors.]

31

6 Conclusion

This paper represents an additional step toward understanding the round complexity
of problems in synchronous message-passing systems. We observed that as long as
processors remain in order-equivalent states, they cannot solve any problem that re-
quires processors to take distinct actions. We then showed that any comparison-based
protocol has an execution in which order-equivalence is preserveldderrounds

with ¢ participating processors, and that this bound is tight. This lower bound on order-
inequivalence yields the best-known lower bounds for a variety of concurrent objects,
including increment registers, ordered sets, and related data types, as well as for deci-
sion tasks such as strong renaming.

We have also seen that this logarithmic bound separates protocols that can and
cannot solve nontrivial problems: we have seen examples of two nontrivial problems,
the strong renaming task and increment register objects, that have solutions with com-
plexity lying at exactly this boundary. These implementations are substantially more
efficient than arD(n) general-purpose algorithm using consensus, especially since the
degree of concurrenayitself is typically much less than, the total number of pro-
cessors.

A second interesting aspect of our construction is that our optimal increment reg-
ister implementation is based on our optimal solution to strong renaming, although
these two problems might seem quite different at first glance. Concurrent object imple-
mentations are usually more difficult than solutions to decision tasks. Unlike decision
tasks, where processors start simultaneously, compute for a while, and halt with their
outputs, concurrent objects have unbounded lifetimes during which they must handle
an arbitrary number of operations, these operations can be invoked at any time, and the
order in which operations are invoked is often important.

We can now draw a more complete picture of the complexity hierarchy for this
model. We have shown here that a logarithmic number of rounds is the minimal nec-
essary to solve nontrivial problems. It is known that a linear number of rounds is the
most needed to solve such problems (by reduction to consensus). In between, it is
known that thek-set agreement task [CHLT93] requires/k| + 1 rounds, well above
the logarithmic lower bound for strong renaming, but less thamthel bound for
consensus. Little is known about other sublinear problems in this model.

Finally, we observe our lower bound on order-equivalence in the synchronous
model translates into a similar bound in the semi-synchronous model as well. In this
model, processors take steps at a rate bounded from above and below by constants, and
message delivery times vary betwdsmdd. Our lower bound for order-inequivalence
translates into an immediaf®(d log ¢) lower bound in the semi-synchronous model.

It would be interesting to see if that bound could be improved.

Acknowledgments

Early versions of these results were originally published in [HT90] and [CT94]. We
thank three anonymous referees for their helpful and numerous comments on earlier

32 REFERENCES

drafts of this paper. The first author was supported in part by NSF grant CCR-93-
08103.

References

[ABND T87] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, Daphne Koller, David Pe-
leg, and Rudiger Reischuk. Achievable cases in an asynchronous envi-
ronment. InProceedings of the 28th IEEE Symposium on Foundations
of Computer Science, pages 337-346, October 1987.

[ABND T90] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rudiger
Reischuk. Renaming in an asynchronous environméairnal of the
ACM, July 1990.

[CHLT93] Soma Chaudhuri, Maurice Herlihy, Nancy Lynch, and Mark R. Tuttle. A
tight lower bound fotk-set agreement. IRroceedings of the 34th IEEE
Symposium on Foundations of Computer Science, pages 206—-215. IEEE,
November 1993.

[CT94] Soma Chaudhuri and Mark R. Tuttle. Fast increment registers. In Ger-
ard Tel and Paul Viényi, editors,Proceedings of the 8th International
Workshop on Distributed Algorithms, volume 857 ofLecture Notes in
Computer Science, pages 74—-88. Springer-Verlag, Berlin, October 1994.

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the
time to assure interactive consistendyformation Processing Letters,
14(4):183-186, June 1982.

[FL87] G.N. Frederickson and N.A. Lynch. Electing a leader in a synchronous
ring. Journal of the ACM, 34(1):98-115, January 1987.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossi-
bility of distributed consensus with one faulty processiournal of the
ACM, 32(2):374-382, 1985.

[Her91a] Maurice Herlihy. Randomized wait-free concurrent object®riaeed-
ings of the 10th Annual ACM Symposium on Principles of Distributed
Computing, pages 11-22. ACM, August 1991.

[Her91b] Maurice P. Herlihy. Wait-free synchronizatioACM Transactions on
Programming Languages and Systems, 13(1):124—149, January 1991.

[HF89] Joesph Y. Halpern and Ronald Fagin. Modelling knowledge and action
in distributed systemdDistributed Computing, 3(4):159-179, 1989.

[HM90] Joseph Y. Halpern and Yoram Moses. Knowledge and common knowl-
edge in a distributed environmerdournal of the ACM, 37(3):549-587,
July 1990.

REFERENCES 33

[HS93]

[HT90]

[HW90]

[Lam78]

[Lam89]

[LSP82]

IMT88]

[PSL80]

[Sch87]

[SP89]

Maurice P. Herlihy and Nir Shavit. The asynchronous computability
theorem for t-resilient tasks. FProceedings of the 25th ACM Symposium
on Theory of Computing, pages 111-120. ACM, May 1993.

Maurice P. Herlihy and Mark R. Tuttle. Wait-free computation in
message-passing systems: Preliminary reporerdaeedings of the Sth
Annual ACM Symposium on Principles of Distributed Computing, pages
347-362. ACM, August 1990.

Maurice P. Herilhy and Jeannette M. Wing. Linearizability: A correct-
ness condition for concurrent object&CM Transactions on Program-
ming Languages and Systems, 12(3):463—-492, July 1990.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system.Communications of the ACM, 21(7):558-564, July 1978.

Leslie Lamport. The part-time parliament. Technical Report 49, DEC
Systems Research Center, September 1989.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problemACM Transactions on Programming Languages and
Systems, 4(3):382-401, July 1982,

Yoram Moses and Mark R. Tuttle. Programming simultaneous actions
using common knowledgelgorithmica, 3(1):121-169, 1988.

Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agree-
ment in the presence of faultsJournal of the ACM, 27(2):228-234,
1980.

Fred B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. Technical report, Cornell University,
Computer Science Department, November 1987.

E. Styer and G.L. Peterson. Tight bounds for shared memory symetric
mutual exclusion problems. Proceedings of the 8th Annual ACM Sym-
posiumon Principles of Distributed Computing, pages 177-192, August
1989.

34

REFERENCES

Eﬂmﬂﬂmﬂj_ Wait-Free Implementations in Soma Chaudhuri Maurice Herlihy CRL 98/5
Message-Passing Systems Mark R. Tuttle May 1998

