Eﬂaﬂnau b

Comparative Evaluation of Fine- and Coarse-Grain Software
Distributed Shared Memory

S. Dwarkadas K. Gharachorloo L. Kontothanassis D. Scales M. L.
Scott R. Stets

Cambridge Research Laboratory

Technical Report Series

CRL 98/6
April 1998

Cambridge Research Laboratory

The Cambridge Research Laboratory was founded in 1987 to advance the state of the art in both
core computing and human-computer interaction, and to use the knowledge so gained to support the
Company’s corporate objectives. We believe this is best accomplished through interconnected pur-
suits in technology creation, advanced systems engineering, and business development. We are ac-
tively investigating scalable computing; mobile computing; vision-based human and scene sensing;
speech interaction; computer-animated synthetic persona; intelligent information appliances; and
the capture, coding, storage, indexing, retrieval, decoding, and rendering of multimedia data. We
recognize and embrace a technology creation model which is characterized by three major phases:

Freedom: The life blood of the Laboratory comes from the observations and imaginations of our
research staff. It is here that challenging research problems are uncovered (through discussions with
customers, through interactions with others in the Corporation, through other professional interac-
tions, through reading, and the like) or that new ideas are born. For any such problem or idea,
this phase culminates in the nucleation of a project team around a well articulated central research
guestion and the outlining of a research plan.

Focus: Once a team is formed, we aggressively pursue the creation of new technology based on
the plan. This may involve direct collaboration with other technical professionals inside and outside
the Corporation. This phase culminates in the demonstrable creation of new technology which may
take any of a number of form- a journal article, a technical talk, a working prototype, a patent
application, or some combination of these. The research team is typically augmented with other
resident professionals—engineering and business development—who work as integral members of
the core team to prepare preliminary plans for how best to leverage this new knowledge, either
through internal transfer of technology or through other means.

Follow-through: We actively pursue taking the best technologies to the marketplace. For those

opportunities which are not immediately transferred internally and where the team has identified a
significant opportunity, the business development and engineering staff will lead early-stage com-
mercial development, often in conjunction with members of the research staff. While the value to

the Corporation of taking these new ideas to the market is clear, it also has a significant positive im-
pact on our future research work by providing the means to understand intimately the problems and
opportunities in the market and to more fully exercise our ideas and concepts in real-world settings.

Throughout this process, communicating our understanding is a critical part of what we do, and
participating in the larger technical community—through the publication of refereed journal articles
and the presentation of our ideas at conferences—is essential. Our technical report series supports
and facilitates broad and early dissemination of our work. We welcome your feedback on its effec-
tiveness.

Robert A. lannucci, Ph.D.
Director

Comparative Evaluation of Fine- and Coarse-Grain Software Distributed Shared
Memory

S. Dwarkadas K. Gharachorlog, L. Kontothanassfs D. Scale$, M. L. Scott, R. Stet$

1 Dept. of Comp. Science 2 DEC WRL 3 DEC CRL
University of Rochester Digital Equipment Corporation Digital Equipment Corporation
Rochester, NY, 14627 Palo Alto, CA, 94301 Cambridge, MA, 02139
sandhya,scott,stets@cs.rochester.edu kourosh,scales@pa.dec.com kthanas @crl.dec.com
April 1998
Abstract

With the advent of commercial symmetric multiprocessors (SMPs) and low-latency, high-bandwidth networks,
clusters of SMPs provide a natural base for software distributed shared memory (S-DSM). Two distinct approaches
can be used: instrumentation-based approaches that provide fine-grain coherence, and VM-based approaches that
restrict the underlying coherence unit to a page, but avoid instrumentation overhead. In this paper, we compare
and evaluate these approaches using two mature S-DSM systems, Shasta and Cashmere, both of which run on a
DEC AlphaServer SMP cluster connected by a very low-latency, high-bandwidth, remote-write, Memory Channel
network.

Our results, obtained on a 16-processor, 4-node cluster, clearly illustrate the tradeoffs between fine-grain and
VM-based S-DSM. A fine-grain system such as Shasta offers an easy migration path for programs developed on a
hardware DSM (H-DSM). It supports H-DSM memory models, and is better able to tolerate fine-grain synchroniza-
tion. In contrast, for the same unmodified programs, Cashmere’s performance is highly sensitive to the presence of
fine-grain synchronization, while providing a performance edge for applications with coarse-grain synchronization.
With program modifications that take coherence granularity into account, the performance gap between the two sys-
tems can be bridged. Remaining performance differences are dependent on program structure: a high degree of false
sharing at a granularity larger than a cache line favors Shasta, while finer-grain false sharing and large amounts of
mostly private data favors Cashmere.

(©Digital Equipment Cor poration, 1998

This work may not be copied or reproduced in whole or in part for any commercial purpose. Per-
mission to copy in whole or in part without payment of fee is granted for nonprofit educational and
research purposes provided that all such whole or partial copies include the following: a notice that
such copying is by permission of the Cambridge Research Laboratory of Digital Equipment Corpo-
ration in Cambridge, Massachusetts; an acknowledgment of the authors and individual contributors
to the work; and all applicable portions of the copyright notice. Copying, reproducing, or repub-
lishing for any other purpose shall require a license with payment of fee to the Cambridge Research
Laboratory. All rights reserved.

CRL Technical reports are available on the CRL's web page at
http://www.crl.research.digital.com.

Digital Equipment Corporation
Cambridge Research Laboratory
One Kendall Square, Building 700
Cambridge, Massachusetts 02139

1 Introduction

Hardware cache-coherent multiprocessors offer good performance and provide a simple shared-memory model of
computing for application programmers. Multicomputers, or collections of networked machines, can potentially pro-
vide more cost-effective performance, but require additional programmer effort to write message-passing programs.
Software distributed shared memory (S-DSM) attempts to ease the burden of programming distributed machines by
presenting the illusion of shared memory on top of distributed hardware using a software run-time layer between the
application and the hardware.

Early S-DSM systems [14, 16] were primarily based on virtual memory. They used pages as the unit of coherence,
and used page faults to trigger copy and invalidation operations. This approach can yield excellent performance for
“well-behaved” programs. Unfortunately, it tends to be very slow for programs with any fine-grain sharing of data
within a single page.

Recent systems [5, 4, 9, 12] employ relaxed consistency models that allow a page to be written by multiple
processes concurrently, and limit the impact of false sharing to the points at which programs synchronize. Page-
based systems may still experience overhead due to synchronization, sharing at a fine granularity, and metadata
maintenance. Furthermore, their use of relaxed consistency models introduces a departure from the standard SMP
shared-memory programming model that can limit portability for certain applications developed on hardware DSM.

Alternatively, some S-DSM systems rely on binary instrumentation of applications to catch access faults at a fine
grain [20, 19]. Such systems provide the highest degree of shared memory transparency since they can efficiently
run programs developed for hardware consistency models. However, the overhead of the added code can sometimes
limit performance.

This paper attempts to identify the fundamental tradeoffs between these two S-DSM approaches; coarse-grain,
VM-based vs. fine-grain, instrumentation-based. Our study compares two relatively mature but very different S-
DSM systems running on identical hardware that are representative of the fine- and coarse-grain approaches: Shasta
and Cashmere. Both systems run on clusters of Alpha SMPs connected by DEC’s Memory Channel (MC) remote-
write network [8].

We compare the performance of Shasta and Cashmere on thirteen applications running on a 16-processor, 4-node
AlphaServer SMP cluster connected by the Memory Channel. Eight of the applications are from the SPLASH-2
application suite and have been tuned for hardware multiprocessors, while five are existing applications that have
been shown in the past to perform well on software (and hardware) shared-memory multiprocessors.

We have chosen our experimental environment as representative of the way one might build an inexpensive but
high-end cluster. Four-way SMP nodes provide a sweet-spot in the price/performance spectrum, while Memory
Channel is a very low-latency, high-bandwidth commercial network that connects to the industry-standard PCI in-
terface. Our environment is quite different from that used in a recent study [23] that also examines performance
tradeoffs between fine- and coarse-grain software coherence. This previous study uses custom hardware to provide
fine-grain access checks with no instrumentation overhead, and uses a lower performance network (almost an order
of magnitude performance difference in latency and a factor of two in bandwidth). In addition, their study uses a
cluster of uniprocessors, whereas we use a cluster of SMPs and protocols designed to take advantage of SMP nodes.
Our end results are surprisingly similar to the ones reported by the previous study, with a few exceptions that will be
discussed in detail in Section 4. Latency, bandwidth, and access check overhead differences seem to cancel out in
the two studies, resulting in the similarities.

The first part of our study looks at the performancemhodified applications on the two systems. This allows us
to determine the portability of applications that have been tuned for good performance on H-DSM. When possible,
we present results for two different size input sets in order to determine sensitivity to the size and alignment of data
structures relative to the coherence block size. The second part of the study presents and analyzes the performance
of the same applications once they have been optimized to improve their performance on either Shasta or Cashmere.

Our study clearly illustrates the tradeoffs between fine-grain and VM-based S-DSM on an aggressive hardware
environment. A fine-grain system such as Shasta has more robust (and often better) performance for programs de-
veloped on a hardware DSM (H-DSM). It supports H-DSM memory models, and is better able to tolerate fine-grain
synchronization. Cashmere has a performance edge for applications with coarse-grain data access and synchroniza-

tion. With program modifications that take coherence granularity into account, the performance gap between the
two systems can be bridged. Remaining performance differences are dependent on program structure: a high degree
of false sharing at a granularity larger than a cache line favors Shasta since the smaller coherence block brings in
less useless data; large amounts of mostly private data favors Cashmere, since there is no virtual memory overhead
unless there is active sharing. Fine-grain false sharing also favors Cashmere due to its ability to delay and aggregate
protocol operations.

One surprising result of our study has been the good performance of page-based S-DSM on certain applications
known to have a high degree of page-level write-write false sharing. The clustering inherent with SMP nodes
eliminates the software overhead from false sharing within nodes since coherence within nodes is managed by
hardware. Moreover, for applications with regular (e.g. cyclic) data layout, cross-node data boundaries can end up
aligned, eliminating inter-node false sharing as well.

The remainder of this paper is organized as follows. In Section 2, we describe the implementations of the two
systems that we compare in this paper. In Section 3, we describe the experimental environment as well as the
applications we use in this study. In Section 4, we present and analyze the results from the comparison. In Section 5,
we present related work. Finally, we summarize our conclusions in Section 6.

2 Fineand Coarse-grain Approachesto Software Shared Memory

In this section, we present an overview of the most important features of Shasta and Cashmere. Detailed descriptions
of the systems and the coherence protocols used can be found in other papers [19, 21].

2.1 Shasta

Shasta is a fine-grain S-DSM that relies on inline checks to detect misses to shared data and service them in software.
Shasta divides up the shared address space into ranges of memonplltsdAll data within a block is always

fetched and kept coherent as a unit. Shasta inserts code in the application executable at loads and stores to determine
if the referenced block is in the correct state and, if not, invoke protocol code. A unique aspect of the Shasta system

is that the block size (i.e. coherence granularity) can be different for different application data structures. To simplify

the inline code, Shasta divides up the blocks into fixed-size ranges taksdtypically 64, 128, or 256 bytes) and
maintains state information for each line istate table. Each inline check requires about seven instructions. Since

the static and stack data areas are not shared, Shasta does not insert checks for any loads or stores that are clearly to
these areas. Shasta uses a number of other optimizations to reduce the cost of checking loads and to batch together
checks for neighboring loads and stores. Batching can reduce overhead significantly (from a level of 60-70% to
20-30% overhead for dense matrix codes) by avoiding repeated checks to the same line.

Coherence is maintained using a directory-based invalidation protocol. The protocol supports three types of
requestsread, read-exclusive, andexclusive (or upgrade, if the requesting processor already has the line in shared
state). Ahome processor is associated with each block and maintadir®etory for that block, which contains a list
of the processors caching a copy of the block. The Shasta protocol exploits the release consistency model [13] by
implementing non-blocking stores and allowing reads and writes to blocks in a pending state.

When used for clusters of SMPs, Shasta uses the hardware to maintain coherence within a node. The Shasta
protocol avoids race conditions by obtaining locks on individual blocks during protocol operations. Since it would
greatly increase the instrumentation overhead, synchronization is not used in the inline checking code. Instead,
the protocol sends explicit messages between processors on the same node for protocol operations that can lead to
the race conditions involving the inline checks. Because Shasta supports programs with races on shared memory
locations, processes must stall at releases alttgending operations on the node are complete. If programs were
required to be data-race-free, this extra stall time at release time could be eliminated.

Because of the high cost of handling messages via interrupts, messages from other processors are serviced through
a polling mechanism in both Shasta and Cashmere. Both protocols poll for messages whenever waiting for a reply
and on every loop backedge. Polling is inexpensive (three instructions) on our Memory Channel cluster because the
implementation arranges for a single cachable location that can be tested to determine if a message has arrived.

2.2 Cashmere

Cashmere is a page-based distributed shared memory system that has been designed for clusters of SMPs connected
via a remote-memory-write network such as the Memory Channel. It implements a multiple-writer, release consis-
tent protocol and requires applications to adhere to the data-race-free programming model [1]. Simply stated, shared
memory accesses must be protected by locks, barriers, or flags that are explicitly visible to the run-time system.
These synchronization operations can be constructed from two primitives: an acquire and a release. The former is
used to gain access to shared data, while the latter grants access to shared data. The consistency model implementa-
tion lies in between those of TreadMarks [4] and Munin [5]. Invalidations in Cashmere are sent during a release and
take effect at the time of the next acquire, regardless of whether they are causally related to the acquired lock.

Cashmere uses the broadcast capabilities of the MC network to maintain a replicated directory of sharing infor-
mation for each page. The directory is examined and updated during protocol actions. Initially, shared pages are
mapped only on their associated home nodes. Page faults are used to trigger requests for an up-to-date copy of the
page from the home node. Page faults triggered by write accesses are also used to keep track of data modified by
each node. At the time of a write fault, the page is added to a per-proakgydist (a list of all pages modified by
a processor since the last release). If the home node is not actively writing the page, we re-assign home-ownership
to the current writer and modify the directory to point to the new home node. As an optimization, we also move the
page intoexclusive mode if there are no other sharers, and avoid adding the page to the per-processor dirty list. If
the page is not in exclusive mode and the faulting processor is not on the home twidepaa pristine copy of the
page, is created. Thwin is later used to determine local modifications.

At a release, each page in the dirty list is compared ttwitis, and the differences are flushed to the home node.
After flushing the differences, the releaser semde notices (notifications of a page having been modified) to
the sharers of each dirty page, as indicated by the page’s directory entry. Finally the releaser downgrades write
permissions for the dirty pages and clears the list. At a subsequent acquire, a processor invalidates all pages for
which write notices have been received, and which have not already been updated by another processor on the node.

The protocol exploits hardware coherence to maintain consistency within each node. All processors in the node
share the same physical frame for a shared data page. Hardware coherence then allows protocol transactions from
different processors on the same node to be coalesced, resulting in reduced data communication, as well as reduced
consistency overhead. One of the novelties in the protocol is that it obviates the need for TLB shootdown by using
twins and diffs on both incoming and outgoing page-update operations. The use of diffs on incoming page updates
allows a node to update regions of the page that were modified by a remote node without overwriting changes being
made simultaneously by a local process.

2.3 Portability Issues

Cashmere makes heavy use of Memory Channel features, including broadcasting and guarantees on global message
ordering in order to minimize the cost of metadata maintenance. For example, during a release operation, the
processor sending write notices does not wait for acknowledgements before releasing the lock. Rather, it relies on
global ordering of messages to guarantee that causally related invalidations are seen by other processors before any
later release operation. Broadcasting is used to propagate directory changes to all nodes. Moving away from Memory
Channel would require changes to the protocol in order to eliminate reliance on broadcasting and total ordering. It

is difficult to estimate the performance impact of such changes since the protocol design assumed these network
capabilities. In contrast, Shasta was designed for a network that simply offers fast user-level message passing and is
therefore more portable to different network architectures.

On the other hand, Shasta is tuned for the Alpha processor and requires detailed knowledge of both the compiler
and the underlying processor architecture for efficient instrumentation. It is once again hard to estimate the perfor-
mance impact of moving the system to a significantly different processor architecture (e.g. the x86) where potentially
a large variety of instructions can access memory. Cashmere has no reliance on the processor architecture as long as
it supports virtual memory and can deliver a trap to the user program on a VM-access violation.

3 Experimental Methodology

Our experimental environment consists of four DEC Alpha Server 4100 multiprocessors connected with a Mem-
ory Channel network. Each AlphaServer is equipped with four 21164 processors running at 400Mhz and with
512Mbytes of shared local memory. The 21164 has 8K split instruction and data first level caches, plus a 96K
three-way set-associative, on-chip second level cache. The board level cache is 4 Mbytes and the cache line size is
64 bytes. Memory Channel latency and bandwidth for point to point connections are approxisngiehe and
70Mbytes/ sec respectively, while the aggregate network bandwidth is clod€@d/bytes/ sec.

Each AlphaServer runs Digital Unix 4.0D with TruCluster v. 1.5 (Memory Channel extensions). The systems
execute in multi-user mode, but with the exception of normal Unix daemons no other processes were active during
the tests. In order to increase cache efficiency, application processes are pinned to processors at startup. We have
used the native C compiler with optimization levels set to -O2 to compile our applications and have added a post-
compilation phase that adds polling code (and other code in the case of Shasta) to the executables. The extra
instrumentation step is based on Digital's ATOM tool, which has been modified to allow insertion of individual
instructions. Execution times for our applications were calculated based on the best of three runs and speedups were
calculated against a sequential executable that was linked without the Cashmere or Shasta libraries and does not
include the post-compilation step.

3.1 Application Characteristics

We present results for thirteen applications. The first eight are taken from the Splash-2 [22] suite and have been
tuned for hardware shared memory multiprocessors. Five Splash-2 applications are not used: four do not perform
well on S-DSM and one (FMM) has not been modified to run under Cashmere (but gets good speedup on Shasta).
The remaining five applications we use are programs that have been tuned and studied in the context of software
DSM systems in the past and have been shown to have good performance for such systems.

Lu: akernelthat finds a factorization for a given matrix. The matrix is divided into square blocks that are distributed
among processors in a round-robin fashion.

ContiguousLu: another kernel that is computationally identical to Lu, but allocates each block contiguously in
memory.

Ocean: an application that studies large-scale ocean movements based on eddy and boundary currents. The appli-
cation partitions the ocean grid into square-like subgrids (tiles) to improve the communication to computation
ratio (based on true sharing and a hardware DSM)

Raytrace: aprogramthatrenders a three-dimensional scene using ray tracing. The image plane is partitioned among
processors in contiguous blocks of pixels, and load balancing is achieved by using distributed task queues with
task stealing.

Volrend: an application that renders a three-dimensional volume using a ray casting technique. The partitioning of
work and the load balancing method are similar to those of Raytrace.

Barnes-Hut: an N-body simulation using the hierarchical Barnes-Hut method. The computation has two distinct
phases. The first phase builds a shared octree data structure based on the relative positions of the bodies. The
second phase computes forces between bodies and updates the relative locations of bodies based on the force
calculation.

Water-nsquared: a fluid flow simulation. The shared array of molecule structures is divided into equal contiguous
chunks, with each chunk assigned to a different processor. The bulk of the interprocessor communication
occurs during a phase that updates intermolecular forces using per-molecule locks, resulting in a migratory
sharing pattern.

Water-spatial: a fluid flow simulation that solves the same problem as Water-nsquared. It imposes a uniform 3-D
grid of cells on the problem domain and uses a linear algorithm that is more efficient for a large number of
molecules. Processors that own a cell need only look at neighboring cells to find molecules that might be
within the cutoff radius of molecules in the owned box. The movement of molecules in and out of cells causes
cell lists to be updated, resulting in additional communication.

SOR: aRed-Black Successive Over-Relaxation program for solving partial differential equations. The red and black
arrays are divided into roughly equal size bands of rows, with each band assigned to a different processor.
Communication occurs across the boundaries between bands.

Gauss. a solver for a system of linear equatioAX = B using Gaussian Elimination and back-substitution. For
load balance, the rows are distributed among processors cyclically.

TSP: a branch-and-bound solution to the traveling salesman problem that uses a work-queue based parallelization
strategy. The algorithm is non-deterministic in the sense that the earlier some processor stumbles upon the
shortest path, the more quickly other parts of the search space can be pruned.

Ilink: awidely used genetic linkage analysis program from the FASTLINK 2.3P package that locates disease genes
on chromosomes [7]. The main shared data is a pool of sparse arrays of genotype probabilities. For load bal-
ance, non-zero elements are assigned to processors in a round-robin fashion. The computation is master-slave,
with one-to-all and all-to-one data communication. Scalability is limited by an inherent serial component and
inherent load imbalance.

Em3d: a program to simulate electromagnetic wave propagation through 3D objects [6]. The major data structure
is an array that contains the set of magnetic and electric nodes. Nodes are distributed among processors in a
blocked fashion.

4 Results

In this section, we provide an in-depth comparison and analysis of the performance of Shasta and Cashmere. Table 1
presents the sequential execution times, data set sizes, and memory usage for each of the applications. The sequential
times were obtained by executing the original version of each application on one processor (i.e. with no Cashmere,
Shasta, or polling overhead). Wherever possible, we use two dataset sizes — one relatively small, the other larger.
Figures 1 and 2 present the speedups on the two systems using their base configurations for the thirteen applications
on 8 and 16 processors, for the smaller and larger data sets, respectively. The applications were run without any
modifications, and the speedups are calculated with respect to the sequential times in Table 1. The base system
configurations used were a uniform block size of 256 bytes for Shasta, and a block size of 8192 bytes (the underlying
page size) for Cashmere.

Table 2 includes detailed execution statistics for the applications running on both protocols. The number of lock
and flag acquires, the number of barrier operations, the number of messages (including data, synchronization, and
protocol) and the amount of the message traffic (including application and protocol) are reported for both protocols.
For Shasta, the number of read and write misses and the number of upgrade operations are also included. Read
and write misses occur when referenced data is invalid, while upgrade operations occur when a block needs to be
upgraded from shared to exclusive state. For Cashmere, the number of read and write page faults and the number of
twins are reported.

Figures 3 and 4 provide a breakdown of the execution time for Shasta and Cashmere for each of the applications
at 16 processors. Execution time is normalized to that of the fastest system on each application and isTkt into
Synchronization, Data Stall, Messaging, andProtocol time. Task time includes the application’s compute time and
the cost of instrumentation in Shasta or the cost of page faults plus polling in Casl$gmereonization time covers
the time spent waiting on locks, flags, or barriddata Sall measures the cumulative time spent handling coherence
misses. Messaging time covers the time spent handling messages when the processor is not already stalled, and
finally the Protocol time represents the remaining overhead introduced by the protocol.

Program Problem Size Time (sec.) Problem Size Time (sec.)
LU 1024x1024 Block: 16 (8M) 14.21 || 2048x2048 Block: 32 (33M) 74.57
LU-contig | 1024x1024 Block: 16 (8M) 6.74 || 2048x2048 Block: 32 (33M) 44.40
Ocean 514x514 (64M) 7.33 1026x1026 (242M) 37.05
Raytrace balls4 (102M) 44.89 — —
Volrend head (23M) 3.81 — —
Barnes-Hut 32K bodies (39M) 15.30 131K bodies (153M) 74.69
Water-nsq 4K mols. (3M) 94.20 8K mols. (5M) 362.74
Water-sp 4K mols. (3M) 10.94 8K mols (5M) 21.12
Sor 3070x2047 (50M) 21.13 3070x3070 (100M) 28.80
Gauss 1700x1700 (23M) 99.94 2048x2048 (33M) 245.06
TSP 17 cities (1M) 1580.10 — —
llink CLP (15M) 238.05 — —
Em3d 64000 nodes (52M 47.61 192000 nodes (157M 158.43

Table 1: Data set sizes and sequential execution time of applications.

4.1 Detailed Analysisof Base Results

We discuss the performance of the applications in groups based on the data structures that they use. The cate-
gories we will use are: dense-matrix computations, work-queue applications, pointer-based applications, sparse-data
structure applications, and irregular data access applications. Our categorization reflects access patterns that signifi-
cantly affect the relative performance of the two systems. Applications in a particular category tend to exercise and
showcase the same strength or weakness for each of our systems.

4.1.1 Dense-Matrix Computations

These applications—Lu, Contiguous Lu, Ocean, SOR, and Gauss—are commonly parallelized by statically parti-
tioning the work among the available processors. The nature of the applications is such that load imbalances are
rarely an issue and static partitioning works fairly well. Furthermore, the contiguous nature of the data structures
used provides good locality of reference. Traditionally, one of three methods have been used to accomplish the data
and work partitioning—the use ofldock, cyclic, ortiled partitioning strategy.

SOR is an application that uskkocked partitioning—a set of contiguous rows are computed on by the same pro-
cessor. Given the nearest neighbor communication pattern, communication occurs only among adjacent processors
across nodes, resulting in a total of 12 page fetches per iteration for Cashmere and 368 data fetches for Shasta for the
small data set. The overhead of extra messages reduces Shasta’s performance, resulting in Cashmere’s performance
being 1.25 times that of Shasta’s on average.

LU and Contiguous LU (CLU) use a tiled partitioning strategy. Cashmere’s performance is 1.6 and 1.9 times
that of Shasta’s for CLU, and 1.2 and 1.3 times that of Shasta’s for LU, at 8 and 16 processors respectively. The
difference between LU and CLU is the memory allocation scheme. The former allocates the matrix as one object,
while the latter allocates each processor’s tiles as a contiguous chunk. Both applications benefit from Cashmere’s
large communication granularity. Data is propagated more efficiently under Cashmere, as can be seen from the data
stall time, which is roughly half the data stall time under Shasta. (See figures 3 and 4.) Performance under Shasta
also suffers from a high 50% checking overhead in Contiguous LU (as measured on a uniprocessor execution).
On Cashmere, CLU performs much better than LU, primarily due to a two-fold reduction in the data transferred. In
LU’s allocation scheme, atile is comprised of non-contiguous pieces on multiple pages. LU therefore has a mismatch
between read granularity and the size of the coherence unit, and so a large amount of extra data is communicated.
The data layout also should lead to a large amount of false sharing. However, LU’s 2D scatter distribution assigns
tiles such that all false sharing is contained within 4-processor nodes and handled by hardware.

Ocean is also an application that usiéed partitioning. Cashmere’s performance is 10% better than Shasta’s at

Application LU CLU Ocean Raytrace| Volrend
Shasta Lock/Flag Acquires (K) 0(0) 0(0) 1.2 (0.8) 119.9 9.2
Barriers 129 (129) 129 (129) 328 (248) 1 3
Read Misses (K) 50.6 (199.4)| 49.8(199.2)| 28.2(37.9) 68.2 4.8
Write Misses (K) 24.6 (98.3) 0(0) 0(0) 51.3 1.1
Upgrades (K) 0(0) 24.6(98.3)| 26.9(37.3) 0.2 2.0
Data Fetches (K) 75.2(297.7)| 49.8(199.2)| 27.9(37.7) 93.2 5.1
Messages (K) 217.6 (797.0)| 178.8(699.6)| 129.4 (164.7) 428.8 24.4
Message Traffic (Mbytes 26.2 (101.7) 18.5(73.4) 11.3(14.9) 37.6 2.1
Cashmere| Lock/Flag Acquires (K) 0(0) 0(0) 1.2 (0.8) 120.9 9.2
Barriers 129 (129) 129 (129) 328 (248) 1 3
Read Faults (K) 18.5(56.0) 3.7(12.1)| 16.0(14.3) 134.1 1.7
Write Faults (K) 5.6 (25.0) 1.8(6.9) 11.0(10.8) 143.0 7.7
Twins (K) 0(0) 0(0) 0(0) 5.8 5.5
Page Transfers (K) 6.6 (17.6) 2.0(6.2) 10.2 (9.3) 124.2 1.2
Messages (K) 54.2(159.1) 24.1(56.5)| 112.0(76.5) 1659.0 46.8
Message Traffic (Mbytes 54.6(145.1) 16.4(51.2)| 84.3(76.9) 1027.3 104
Application Barnes Water-NSQ Water-SP Sor
Shasta Lock/Flag Acquires (K) 68.7(274.8)| 73.9(144.2) 0.2(0.2) 0(0)
Barriers 9(9) 12 (12) 12 (12) 48 (48)
Read Misses (K) 128.9 (477.0)] 121.2(285.2)| 36.2(52.9) 9.2(13.9)
Write Misses (K) 51.7 (210.0) 8.1(14.4) 0(0) 0(0)
Upgrades (K) 112.1 (419.1) 42.6 (98.5) 15.9 (26.4) 9.2 (13.9)
Data Fetches (K) 180.3(686.7)| 77.7(172.8)| 34.4(52.0) 9.2(13.9)
Messages (K) 985.6 (3564.4)| 556.0 (1201.1)| 165.0 (254.8) 38.4 (57.3)
Message Traffic (Mbytes 77.7 (289.8) 37.7 (82.7) 14.1 (21.5) 3.6 (5.4)
Cashmere| Lock/Flag Acquires (K) 413.3(1836.3) 73.9(144.1) 0.2(0.3) 0(0)
Barriers 9(9) 12 (12) 12 (12) 48 (48)
Read Faults (K) 71.3(253.3) 14.1 (26.6) 6.0 (8.6) 0.3(0.5)
Write Faults (K) 112.0 (462.9)] 50.1(123.6) 3.5(4.8) 4.8 (6.0)
Twins (K) 10.4 (39.1) 5.6 (2.9) 0.3(0.3) 0(0)
Data Fetches (K) 51.0 (184.4) 5.9(11.8) 1.8(1.8) 0.3(0.4)
Messages (K) 1185.6(4910.4) 345.0(845.1) 21.6(28.7) 10.7(13.5)
Message Traffic (Mbytes) 425.0 (1553)| 51.2(102.3) 14.6(24.2) 2.5(4.0)
Application Gauss TSP llink Em3d
Shasta Lock/Flag Acquires (K) 57.5(69.3) 2.5 0 0(0)
Barriers 6 (6) 2 522 200 (200)
Read Misses (K) 488.8 (526.8) 315.7 951.8 | 1286.1(3853.6)
Write Misses (K) 67.5(96.8) 35 17.4 0(0)
Upgrades (K) 3.0(5.0) 25.4 166.8 | 1187.3(3557.1)
Data Fetches (K) 216.0 (307.9) 98.5 447.9 | 1286.1(3853.6)
Messages (K) 581.4 (811.8) 670.9 2384.4 | 5067.3(15168.1)
Message Traffic (Mbytes 73.9(104.8) 46.7 191.0 | 491.4(1471.9)
Cashmere| Lock/Flag Acquires (K) 54.1 (65.2) 2.5 0 0(0)
Barriers 6 (6) 2 512 200 (200)
Read Faults (K) 71.6(78.1) 11.2 85.6 45.0 (129.8)
Write Faults (K) 10.1 (13.1) 8.7 29.5 41.3(116.8)
Twins (K) 0(0) 0 4.1 0 (0)
Page Transfers (K) 18.6 (21.0) 9.7 22.6 42.4 (123.3)
Messages (K) 174.3 (203.8) 103.3 232.1 348.2(967.9)
Message Traffic (Mbytes) 153.3 (173.4) 80.3 186.4 | 348.5(1014.7)

Table 2: Detailed statistics for Shasta and Cashmere on the smaller data set at 16 processors. Statistics for the
expanded data set are listed in parentheses.

o]
o
0
]
c
0

Cashmere

pewz
8 AUl
97
8 'dSL
:Ssne9
8 :d0S
97
8 :dS-1arem
91
8 .OSN-1areMm
91
8 :souleg
91
8 pualopn
97
g :aoenfey
97
8 :Uead)
| 9T
)
91
e 8 N

Figure 1: Speedups for the smaller data set.

o
Q
8 €
8 G pew3
c ®
n O
N
91
g ssneg
91
8 B
91
8 :dS-1arem
B 91

ORI 8 ”OWZ.,_EM\S
9T
8 .Sauleg
9T
8 :ueadQ
N1
M

14

12

10

Figure 2: Speedups for the larger data set (Raytrace, Volrend, TSP, and llink not included).

[} Synchronization
[] Protocol Other

m Task

400

5
300

o o o o
re] =1 ol S
N 39 = —

250

200
150

o o
=] n
-

(9%) awiL uonnaax3 pazijewioN

NSO
HS dsi

NSO
HS saureg

NSO
HS pualjon
NSO
HS oo%enley

NSO

HS ueaso

HS
WSO ‘pew3

HS
WSO AUl

HS
NSO :ssneo
HS

NSO 1Ios
HS

NSO :dS-1srem
HS

NSO :OSN-18reM

HS
WSO NT10
HS
WSO ‘i

Figure 3: Application execution time breakdown on the smaller data set.

[] Protocol Other

B Task
Synchronization

400

150
50

o o o o
n o n]
(2] (2] N N

(%) SWIL UONNJBXT POZIfeWw.oON

(96) BWIL UONNJBXT PaZIfWION

NSO
HS sauleg
NSO
HS uead0
o
HS
NSO ‘pew3
HS
INSD :ssheg
HS
NSO oS
HS

NSO :dS-IaTem
HS
INSD :OSN-1a1em

HS
NSO N0
HS
NSD M

Figure 4: Application execution time breakdown on the larger data set (Raytrace, Volrend, TSP, and Ilink not in-

cluded).

8 processors, and then Shasta’s performance is 2.25 times better than Cashmere’s at 16 processors for the 514x514
dataset. For the larger dataset (1026x1026), Cashmere performs 11% better than Shasta at 8 processors, and Shasta
performs 7% better than Cashmere at 16 processors. Ocean’s access patterns are nearest neighbor (in both the
column and row direction). Hence, while the tiled partitioning reduces true sharing, it increases the amount of
unnecessary data communicated when a large coherence unit is used (84 MBytes for Cashmere versus 11 MBytes
for Shasta). This overhead is offset by Shasta’s instrumentation overhead, as well as the larger number of data fetches
(see Figure 2). While this overhead remains constant per processor, the extra communication generated due to false
sharing in Cashmere increases with the number of processors (incurred on every boundary), and hence performance
is lower at 16 processors.

Gauss uses eyclic distribution of matrix rows among processors. Cashmere’s performance is 1.7 and 1.4 times
that of Shasta’s for the 2048x2048 dataset, and 1.5 and 1.4 times that of Shasta’s for the 1700x1700 dataset, at 8 and
16 processors respectively. Because the matrix is triangularized, fewer elements are modified in each succeeding
row, and Cashmere’s large granularity causes communication of unnecessary data. For the 1700x1700 dataset, there
is also write-write false sharing, since a cyclic distribution of rows is used and each row of the matrix is not a multiple
of the page size. Despite the use of a cyclic distribution, the effects of false sharing are not as large as one might
expect due to the exploitation of SMP hardware within each node (as in LU). In effect, the distribution of work
becomes block-cyclic, resulting in false sharing communication overhead only on the edges of each block. For the
2048x2048 dataset, the effect of false sharing is eliminated, since each row is a multiple of a page size, resulting in
improved relative performance. Despite these effects, the overhead of the larger numbers of messages used in Shasta
in transferring data (see Table 2) is higher than that caused by additional data movement in Cashmere on average.

Overall, we can see that dense matrix computation with block or cyclic distributions are very well suited for page-
based DSM due to the coarse granularity of sharing and the limited amount of synchronization. Tiled distributions
that do not incur false sharing (i.e. CLU) will also favor page-based DSM, while tiled distributions with smaller
tiles that occupy portions of a page will incur false sharing for page-based systems and will favor the finer-grain
approach.

4.1.2 Work-Queue-Based Applications

Applications in this category—Raytrace, Volrend, and TSP—are distinguished by their use of a work queue in order
to partition work among processors. In these applications, such an approach is necessitated by the fact that the
amount of work per data structure is not known a priori.

Raytrace is a program that shows a dramatic difference between the performance of Shasta and Cashmere.
Shasta’s performance is 7 and 12.5 times that of Cashmere (Cashmere shows a slowdown) at 8 and 16 processors, re-
spectively. This result is surprising, since there is little communication in the main computational loop accessing the
image plane as well as the ray data structures. The differences in performance between the two implementations can
be isolated to a single critical section, which is used to access a global counter that is incremented in order to identify
each ray uniquely. The ray identifiers are used only for debugging, and could easily be eliminated (we explore this
option in section 4.2.2 below). Their presence, however, illustrates the sensitivity of Cashmere to synchronization
and data access granularity. Although only a single word is modified within the critical section, an entire page must
be moved back and forth among the processors. The performance of Shasta is insensitive to the synchronization, and
is more in line with the effects one would expect on a hardware platform.

Volrend partitions its image plane into blocks, which are further subdivided into very small tiles. Each tile is a unit
of work and Volrend relies on task stealing through a central queue to provide load balance. Shasta’s performance
is 3.5 times that of Cashmere. The performance difference stems from the application’s frequent task queue syn-
chronization. In Cashmere, the synchronization increases data movement and associated data wait time. Cashmere
transfers a total of 10M of data, while Shasta transfers only about 2M (See Table 2). Also, the synchronization and
data wait time account for 63% of total execution time under Cashmere, as opposed to only 36% under Shasta. The
increased data movement is due to false sharing in the task queue and the image data. The frequent synchronization
causes data modifications to be unnecessarily propagated. The costs of the associated page invalidations and the
resulting page faults and page fetches increases data wait time and, in turn, synchronization time.

TSP is an application with a coarse work granularity. Hence, communication overheads in either system are
largely unimportant. Since this application is non-deterministic, it is difficult to come to any conclusions about the
differences in performance.

Overall, for applications that implement load-balancing with distributed work queues, using coarse-grain DSM
can result in significant performance degradation, especially when the granularity of work is small relative to the
communication time for a coherence unit. Increasing work granularity, resulting in a reduction in work-queue access
(synchronization) frequency, can significantly improve the performance of page-based systems and bring them inline
with that of the finer-grain approach (see Section 4.2.2).

4.1.3 Pointer-Based Applications

This category includes applications, such as Barnes, whose data structures are recursive (i.e. lists and trees) instead
of flat. Such applications often incur significant amounts of false sharing in page-based systems, since node sizes
are usually smaller than the size of a page. The main data structure in Barnes is a tree of nodes, each with a size
of 96 bytes, so there is significant false sharing in Cashmere runs. Furthermore, this application relies on processor
consistency in the parallel tree-building phase. Hence, while this application can run correctly on Shasta (which can
enforce this form of consistency), it had to be modified for Cashmere by inserting an extra flag synchronization in the
parallel tree-building phase. The additional synchronization degrades performance even further for the page-based
system.

The performance presented is for the original program under Shasta, and with the additional flag synchronization
under Cashmere. Shasta’s performance is 2 and 3.5 times that of Cashmere’s at 8 and 16 processors, respectively.
The main reason for this difference is the parallel tree building phase. This phase constitutes 2% of the sequential
execution time but suffers a slowdown by a factor of 24 when run in parallel under Cashmere. Shasta also suffers a
slowdown of a factor of 2 in this particular phase. In the case of Cashmere, this reduction in performance is a result
of excess data communication due to false sharing and sparse writes in the presence of fine-grain synchronization.
Shasta is far less sensitive to the presence of fine-grain synchronization due to its smaller coherence granularity, and
avoids the need for the extra flag synchronization.

Overall, for applications with recursive data structures and frequent synchronization fine-grain DSM perform
significantly better than their coarse-grain counterparts. The small coherence granularity results in significantly
reduced sharing, data traffic, and data and synchronization stall times.

4.1.4 Sparse-Data Applications

An application in this category is ILINK, which computes on sparse arrays of probabilities and uses round-robin
work allocation.

The sparsity of the data structure causes Cashmere to communicate extra data on pages that have been modified
(since whole pages are communicated on a miss). In addition, the round-robin allocation of work increases false
sharing.

Shasta’s performance is affected by three factors—the overhead of instrumentation (which is 59% on a uniproces-
sor), the use of eager invalidations, and the lack of communication aggregation. The instrumentation overhead is due
to the compiler being unable to verify the commonality of certain high-frequency double indirection operations, and
failing to batch them as effectively as it does in other applications. The use of eager invalidations results in a large
number of protocol messages (see Table 2). Since the allocation is round-robin on a per-element basis, a large num-
ber of the processors will read each coherence block, and the resulting access pattern is one-to-all (single-producer,
multiple consumer). The producer subsequently has to invalidate all the copies in the consumers, resulting in the
extra messages. For this application, these effects outweigh the overheads for Cashmere, resulting in Cashmere’s
performance being 1.5 times that of Shasta’s on average.

4.15 Irregular Access Applications

These applications—Water-nsquared, Water-spatial, and Em3d—are distinguished by the fact that the elements that
interact are determined at run-time and/or are dynamic. Hence, the amount of communication incurred cannot be
statically determined.

Water-nsquared is structured so that the amount of data read remains the same. However, the amount of data
written by each processor is data-dependent, though the partitioning of work results in processors modifying con-
tiguous regions of memory. Any false sharing is only at the boundaries of these regions, and is only incurred after
synchronization. There is considerable locality in the synchronization access (at least half the lock acquires access
data last modified within the node). Hence, the cross-node data access in this program is coarse enough that the
overheads of false sharing are small in Cashmere. Cashmere’s performance is 1.2 times that of Shasta’s on average.
Shasta’s performance is affected by the inline checks, as well as the use of small coherence blocks (increasing the
number of messages used).

In Water-spatial, Cashmere also performs 1.2 times better than Shasta on average. Shasta’s performance is once
again affected by the inline checks, as well as the use of small coherence blocks. In this version of the fluid flow
simulation program, although the processors start out working on a contiguous range of memory, the movement of
molecules in and out of cells will result in a reduction in the locality of access. However, this loss in locality is small,
resulting in only a small increase in the amount of data transferred for Cashmere (see Table 2) and a correspondingly
negligible performance effect. The performance difference between the two systems for Water and Water-spatial can
be almost exclusively attributed to the cost of instrumentation, as can be seen by the difference in the busy times in
Figures 3 and 4.

Cashmere’s performance for Em3d is 2 times that of Shasta’s. While the access patterns are similar to those for
SOR (nearest-neighbor sharing), the data structures used are more complex, and the dependencies are determined at
run-time using indirection arrays. The instrumentation overhead in Shasta is therefore significant (40% for the larger
dataset, and 29% for the smaller dataset). Since this application communicates data at a coarse grain among neigh-
boring processors, Shasta sends many more messages to bring the data in, resulting in its reduction in performance
(see Table 2).

Overall, the irregular applications exhibit a fair amount of false sharing but with a low frequency of synchro-
nization. As a result, the lazy protocol employed by the page-based Cashmere system can tolerate the existence of
false sharing well. The irregular nature of accesses tend to obscure access patterns and reduce the ability to coalesce
access checks inserted at compile-time, thereby affecting Shasta’s instrumentation overhead. In addition, the large
number of data transfers in Shasta when using a small coherence block also affect performance.

4.2 Performance | mprovements through Program M odifications

The performance results presented in the previous section were for programs that were taken from either the hardware
or software shared memory domain and run without modifications (except to guarantee adherence to the data-race-
free model in the case of Barnes). In several cases, better performance could be achieved by tailoring the application
to the latencies and granularity of the underlying software system. In this section, we present the performance of
some of the applications that have been tuned for either Shasta or Cashmere. Figure 5 presents the speedups for
these optimized applications, and the execution time breakdown for these applications is shown in Figure 6.

4.2.1 Modificationsfor Shasta

The modifications made to tune some of the applications to Shasta take the form of hints: they are guaranteed not to
alter program correctness, and can therefore be applied safely without a deep understanding of the application. The
three types of changes are the use of variable granularity hints, the addition of padding in data structures, and the use
of compiler options to reduce instrumentation overhead.

Shasta provides a special shared-memory allocator that allows the specification of the block size for the allocated
memory. This memory allocator allows data to be fetched in large units for important data structures that are accessed
in a coarse-grain manner or are mostly-read. Table 3 lists the applications that benefit from using variable granularity,

c
9AHS g m
WSO Oy €
. S 8 =
HS peud £852%
o =00+
ONHS mLL N
INSD/paInonisay
g NSO HS/Papped
HS ol WS
HS :sauleg
INSO/PaINdNIISay INSD/painjoniissy
OA-HS
K] HSIPopped e
NSO HS :pusijon

INSD/painonisay
NSO
HS :2oenfey

INSO/pRIMINISaY
OAHS

NSO

J HS :pusion

o o o (=} o (=}
o n o L0 o L o n
< [} N N -

(94) w1 uonNNo9X3 pazijewloN

ON-HS
HS
NSO ‘pEw3

INSO/pRIMINISaY
NSO
HS :eoenfey

OA-HS
HS
NSO il

] 9A-Hs/oiun dooT
1e)

HS M OAHS

HS

WSO N1D
ON-HS

HS

WSO N1

ON-HS
INSD
HS nm

Figure 5: Speedups for the optimized applications on the large data set at 16 processors.

200
180
160
140
120
100
80
60
40

(95) aWiIL UonNJ8xX3 pazifewIoN

Figure 6: Execution breakdown for the optimized applications on the large data set at 16 processors.

selected data specified
structure(s) block size
(bytes)
EM3D node and data array] 8192
FASTLINK all data 1024
LU matrix array 2048
LU-Contig matrix block 2048
\olrend opacity, normal mapg 1024

Table 3: Variable block sizes used for Shasta.

the data structures on which it was used, and the increased block size. As an example of the benefit of variable
granularity, the performance of EM3D improves by a factor of 1.8 and Contiguous LU by a factor of 1.2 for the large
input set on 16 processors.

Another change that can sometimes improve performance is padding elements of important data structures. For
example, in the Barnes-Hut application, information on each body is stored in a structure which is allocated out of
one large array. Since the body structure is 120 bytes, there is some false sharing between different bodies. Shasta’s
performance benefits significantly (by a factor of 1.9 on the large input set for 16 processors) by padding the body
structure to 128 bytes, so that false sharing is reduced.

A final modification involves using compiler options to reduce instrumentation overhead. Existing compilers
typically unroll inner loops in order to improve instruction scheduling and reduce looping overheads. Batching of
instrumentation is especially effective for unrolled loops, since unrolling increases the number of neighboring loads
and stores in the loop bodies. In one application, LU-Contig, instrumentation overhead is still high despite the
batching, because the inner loop is scheduled so effectively. The instrumentation overhead is reduced significantly
(from 55% to 36% on the large input set) by using a compiler option that increases the unrolling of the inner loop
from the default four iterations to eight iterations.

4.2.2 Modificationsfor Cashmere

The modifications made to tune the applications to Cashmere aim to reduce the frequency of synchronization or
to increase the granularity of sharing. They can be guided by performance profiling tools sRch[4%] and
Carnival [15]. Unlike the changes made for Shasta, they require some real understanding of the application in order
to maintain correctness. We have made changes to three applications that exhibit particularly poor performance
under Cashmere.

Barnes-Hut: In this application the major source of overhead is found in the tree building phase. The application
requires processors to position their bodies into a tree data structure of cells, resulting in a large number of scattered
accesses to shared memory. These accesses generate a large amount of false sharing. In addition, the algorithm
requires processors to synchronize in a very fine-grain manner in order to avoid race conditions. The combination
of a large amount of false sharing and fine-grain synchronization results in an explosion of the time it takes to build
the tree. On 16 processors, building the tree consumes 36 seconds in comparison to 1.5 seconds for the sequential
execution. While tree-building algorithms suitable for page-based DSM [11] exist, we have chosen to use the simple
approach of computing the tree sequentially. This approach cuts our tree-building time to 2.8sec and the overall
execution time to 14.3 seconds. Building the tree sequentially does have the disadvantage of increasing the memory
requirements on the main node.

A second source of overhead comes from a parallel reduction in the main computation loop. The reduction
modifies two shared variables in a critical section based on per processor values for these variable. Critical section
dilation due to page faults impacts performance in a major way. We have modified the code and compute the
reduction sequentially on a single processor. This optimization cuts another 3 seconds out of our execution time,
bringing it down to 11.5 seconds.

Raytrace: Raytrace is in reality a highly parallel application. There is very little sharing and the only necessary
synchronization constructs are per-processor locks on the processor work queues. However, the original version
contains additional locking code that protects a counter used only to assign a debugging field in the ray data struc-
tures. Eliminating the locking code and counter update cuts the running time from 71 seconds to 3.7 seconds on 16
processors and the amount of data transferred from 1GByte down to 17MBytes.

Volrend: The performance degradationin this application comes from false sharing on the task queue data structure
as well as the small granularity of work. We have modified the application to change the granularity of tasks as well
as to eliminate false sharing in the task queue by padding. Our changes result in runtime improving from 2.1 seconds
to 0.46 seconds. The amount of data transferred drops from 22Mbytes to 5.6Mbytes.

Additional optimizations that would improve the performance of these and other applications in our suite on a
page-based system can be implemented [11]. In general, if the size of the coherence block is taken into account in
structuring the application, most applications can perform well on page-based systems. Restructuring applications
tuned for H-DSM does, however, require knowledge of the underlying computation or data structures.

4.3 Summary

We have provided an in-depth comparison and analysis of the performance of two S-DSM systems, Shasta and
Cashmere. The applications were categorized on the basis of the data structures used. We summarize our results
here, using the geometric mean of the relative speedup as our average performance metric.

For regular dense-matrix applications, Cashmere’s average performance was 1.3 times better than Shasta’s. With
variable granularity modifications to the applications to aggregate communication for Shasta, the ratio drops to 1.2.
The page-based approach has lower overhead for this class of applications and can better aggregate the fetch of
actively shared data. For work-queue based applications, Cashmere is very sensitive to the granularity of queue
access and the granularity of updates to shared counters. Shasta’s average performance is 3.7 times better than
Cashmere’s. After the applications have been tuned, Cashmere’s performance is 1.3 times that of Shasta’'s. For
Barnes, a pointer-based application with fine-grain synchronization, Shasta’s performance is 3.5 times better than
Cashmere’s. Comparing the best optimized versions for Shasta and Cashmere, Shasta’s performance is 1.7 times
better than Cashmere’s. This application has a more-or-less random access pattern, and suffers under Cashmere
from excess data communication due to false sharing. For Ilink, an application with sparse data structures and a
fine granularity of read false sharing, Cashmere’s performance is 1.5 times that of Shasta’s, despite the overhead of
transmitting sparsely-populated pages. Using variable granularity, Shasta closes the performance gap by 10%. Shasta
loses performance because of three reasons: high instrumentation overhead, the eager invalidation of coherence
blocks cached by multiple processors, and the lack of communication aggregation. Finally, for applications with
irregular access patterns, Cashmere’s average performance is 1.4 times better than Shasta’s. If the applications are
modified to take advantage of Shasta’s variable granularity, Shasta exploits the same benefits as Cashmere with
regard to aggregation of communication, and the ratio drops to 1.2.

Using the geometric mean for programs in our application suite that were written for H-DSM and not subse-
quently tuned, the fine-grain approach exhibits 1.6 times the performance of the coarse-grain approach. Most of this
difference comes from one application (Raytrace) for which the performance of the two systems differs by a factor
of 13. Using the same metric, for programs that were written or tuned with page-based S-DSM in mind, the coarse-
grain approach exhibits 1.3 times the performance of the fine-grain approach. With program modifications to tune
the applications to the two systems, the coarse-grain approach outperforms the fine-grain approach by 15%. Mod-
ifications used by Shasta do not affect application correctness nor do they require detailed application knowledge,
while modifications employed by Cashmere may require changes in parallelization strategy.

5 Reated Work

There is a large body of literature on software distributed shared memory that has had an impact on the design and
implementation of the Cashmere and Shasta DSM systems. The focus of this paper is to understand the performance

tradeoffs of fine-grain vs. coarse-grain software shared memory rather than to design or study a particular DSM
system in isolation.

Iftode et al [10] have characterized the performance and sources of overhead of a large number of applications
under S-DSM, while Jiangt al [11] have provided insights into the restructuring necessary to achieve good per-
formance under S-DSM for a similar application suite. Our work builds on theirs by providing insight on how a
similar class of programs performs under both fine-grain and coarse-grain S-DSM. We have also used two systems
implemented on a state-of-the art cluster, which allows us to capture details not present in a simulation environment
but limits our flexibility in the kind of experiments we can conduct.

Zhou [23] have also studied the tradeoffs between fine- and coarse-grain S-DSM systems. There are, however,
a number of differences in our studies. We have used protocol implementations for SMP nodes, which provide
different tradeoffs on how programs perform under fine- and coarse-grain coherence, and we have studied systems
running on a commercially available cluster rather than systems assisted by research hardware to perform access
checks. The overheads for access checks and page faults and for triggering protocol actions are much higher in our
environment and could have a significant impact on the end performance of each system. In addition our network
interconnect characteristics are significantly better in terms of latency and available bandwidth.

Surprisingly, with a few exceptions, our results are qualitatively similar. The differences in latency, bandwidth,
and access check overheads balanced each other out and had only a limited effect on the observed performance
differences between fine and coarse-grain DSM. One difference between our study and the onedbplZbtams
from the hierarchical structure of our experimental environment (i.e. cluster of SMPs) vs. the flat structure used
in theirs (i.e. cluster of uniprocessors). Certain applications that exhibit a high degree of false sharing in a flat
environment perform significantly better in a hierarchical setting since many coherence transactions are eliminated
by being contained within a single node.

Adveet al [2] performed a study comparing a coarse-grain S-DSM to a region-based S-DSM. The study also an-
alyzed the effectiveness of an instrumentation-based approach called software write detection to determine changes
to data. However, the instrumentation was used only to minimize the amount of data sent during protocol actions;
the coherence granularity for the systems remained at the level of a page and region, respectively.

Amzaet al [3] present a dynamic run-time scheme to aggregate the fetch of multiple pages, and show that it is
possible to obtain the benefits of aggregation without the potential problems of false sharing in the context of a page-
based S-DSM. Their results show that in the presence of fine-grain false sharing, performance actually improves
with the use of a larger coherence block. These results corroborate those for llink in Section 4.

6 Conclusions

In this paper, we have examined the performance tradeoffs between instrumentation-based and VM-based S-DSM in
the context of two state-of-the-art systems: Cashmere and Shasta. In general, we have found that the instrumentation-
based approach to S-DSM offers a higher degree of robustness and significantly better performance in the presence
of fine-grain synchronization, while the VM-based approach offers higher performance when coarse-grain synchro-
nization is used. Fine-grain synchronization and critical section dilation are the most significant sources of over-
head for page-based S-DSM. Standard programming idioms such as work-queues, parallel reductions, and atomic
counters produce extra overhead in terms of data communicated for page-based S-DSM if attention is not paid to
the granularity of computation. Fine-grain, instrumentation-based S-DSM can better deal with these programming
idioms because of its ability to use a smaller coherence block. However, the smaller default block-size and the in-
strumentation overhead can dampen performance in applications with coarse-grained synchronization and read/write
granularity. In addition, applications known to suffer from false sharing on page-based systems with uniprocessor
nodes can sometimes exhibit very good performance on a clustered system, since hardware maintains coherence
within each SMP node.

The complementary strengths of the two approaches suggest the desirability of a hybrid system, possibly with
hardware for fine-grain access checks [18, 19]. Such an approach could use fine-grain access checks to avoid
unnecessary data transfers, and aggregate data communication and access checks for applications with coarse-grain
access.

References

[1]

(2]

3]

[4]

(5]

[6]

[7]

(8]
9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. V. Adve and M. D. Hill. A Unified Formulation of Four Shared-Memory ModdIEEE Transactions on
Parallel and Distributed Systems, 4(6):613-624, June 1993.

S. Adve, A. L. Cox, S. Dwarkadas, R. Rojamony, and W. Zwaenepoel. A Comparison of Entry Consistency
and Lazy Release Consistency Implementation€rateedings of the Second International Symposium on
High Performance Computer Architecture, San Jose, CA, February 1996.

C. Amza, A. L. Cox, K. Rajamani, and W. Zwaenepoel. Tradeoffs Between False Sharing and Aggregation
in Software Distributed Shared Memory. Rroceedings of the Sxth ACM Symposium on Principles and
Practice of Parallel Programming, Las Vegas, NV, June 1997.

C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel. TreadMarks:
Shared Memory Computing on Networks of WorkstationsCémputer, to appear.

J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and Performance of MuRiocdadings
of the Thirteenth ACM Symposium on Operating Systems Principles, pages 152-164, Pacific Grove, CA,
October 1991.

D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick. Parallel
Programming in Split-C. liProceedings Supercomputing’ 93, pages 262—-273, Portland, OR, November 1993.

S. Dwarkadas, R. W. Cottingham, A. K. Cox, P. Keleher, A. A. Scaffer, and W. Zwaenepoel. Parallelization
of General Linkage Analysis Problemiduman Heredity, 44:127-141, July 1994.

R. Gillett. Memory Channel: An Optimized Cluster Interconné&EE Micro, 16(2), February 1996.

L. Iftode, C. Dubnicki, E. W. Felten, and K. Li. Improving Release-Consistent Shared Virtual Memory Using
Automatic Update. IfProceedings of the Second International Symposium on High Performance Computer
Architecture, San Jose, CA, February 1996.

L. Iftode, J. P. Singh, and K. Li. Understanding Application Performance on Shared Virtual Memory. In
Proceedings of the twenty-third International Symposium on Computer Architecture, Philadelphia, PA, May
1996.

D. Jiang, H. Shan, and J. P. Singh. Application Restructuring and Performance Portability on Shared Vir-
tual Memory and Hardware-Coherence MultiprocessorsPrboteedings of the Sxth ACM Symposium on
Principles and Practice of Parallel Programming, Las Vegas, NV, June 1997.

L. I. Kontothanassis and M. L. Scott. Issues in Software Cache CoherenkEeurth Workshop on Scalable
Shared Memory Multiprocessors, Chicago, IL, April 1994. Held in conjunction with ISCA '94.

D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy, M. Horowitz, and M. S. Lam.
The Stanford Dash Multiprocess@&omputer, 25(3):63-79, March 1992,

K. Li, P. Hudak, K. Li, J. F. Naughton, and J. S. Plank. Low-Latency, Concurrent Checkpointing for Parallel
Programs.|EEE Transactions on Parallel and Distributed Systems, 5(8):874—-878, August 1994. Originally
presented at theifth ACM Symposium on Principles of Distributed Computing, August 1986.

W. Meira, Jr., T. J. LeBlanc, and A. Poulos. Waiting Time Analysis and Performance Visualization in Carnival.
In Proceedings of the ACM SGMETRICS Symposium on Parallel and Distributed Tools, Philadelphia, PA,
May 1996.

B. Nitzberg and V. Lo. Distributed Shared Memory: A Survey of Issues and AlgoritGorsputer, 24(8):52—
60, August 1991.

[17]

[18]

[19]

[20]

[21]

[22]

(23]

R. Rajamony and A. L. Cox. Performance Debugging Shared Memory Parallel Programs Using Run-Time
Dependence Analysis. BWCM SGMETRICS97, Seatlle, WA, June 1997.

S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest and Typhoon: User-level Shared-Memerg- In
ceedings of the Twenty-First International Symposium on Computer Architecture, pages 325-336, Chicago,
IL, April 1994.

D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A Low Overhead, Software-Only Approach for
Supporting Fine-Grain Shared Memory.Rroceedings of the Seventh International Conference on Architec-
tural Support for Programming Languages and Operating Systems, Boston, MA, October 1996.

I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R. Larus, and D. A. Wood. Fine-grain Access
Control for Distributed Shared Memaory. Rroceedings of the Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 297-306, San Jose, CA, October 1994.

R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis, S. Parthasarathy, and M. L. Scott. CSM-
2L: Software Coherent Shared Memory on a Clustered Remote-Write NetwolRroteedings of the Sx-
teenth ACM Symposium on Operating Systems Principles, Saint Malo, France, October 1997.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. Methodological Considerations and Charac-
terization of the SPLASH-2 Parallel Application Suite. Rroceedings of the Twenty-Second Inter national
Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June 1995.

Y. Zhou, L. Iftode, J. P. Singh, K. Li, B. R. Toonen, |. Schoinas, M. D. Hill, and D. A. Wood. Relaxed
Consistency and Coherence Granularity in DSM Systems: A Performance EvaluatiRmcdedings of the
Sixth ACM Symposium on Principles and Practice of Parallel Programming, Las Vegas, NV, June 1997.

Eﬂﬂﬂﬂmﬂj_ Comparative Evaluation of Fine- and S. Dwarkadas K. Gharachorloo L. CRL 98/6
Coarse-Grain Software Distributed Kontothanassis D. Scales M. L. April 1998
Shared Memory Scott R. Stets

