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Abstract

We study the problem of pattern matching in order-sorted languages whose evaluation strategy
is lazy. We propose an extension of the Puedt®a compilation scheme to function definitions

via order-sorted patterns. Basically, a list of ordered and possibly ambiguous linear patterns
is transformed into a set of disjoint order-sorted constrained terms. This set is in turn
transformed according to some normalization rules in order to build a pattern matching tree
(PMT). Variables of order-sorted constrained terms now have not only structure, but also
subsort constraints. Accordingly, discrimination trees are defined to have edges labeled with
either structure or subsort constraints. Due to this latter kind of edge, we are not always forced
to reduce terms to normal forms during the pattern matching process, taking advantage in this
way of the lazy reduction scheme. For example, suppdsa sort greater tham the variable

X7 is a pattern andf” is a term of sort to be matched. If” reduces to a term whose sort is

a subsort ofy, it is already decidable that the term obtained matcfiegven if it is not in

normal form. We show that the PMT is optimal if a decidable property of sequentiality holds
for the sets generated during the compilation process. Our method turns out to be applicable
for strict languages as well.

Résumé

Nousétudions le proldme du filtrage dans des langages avec sous-sortes et dontdgistrat”
d’evaluation est paresseuse. Nous proposons une extension damasdha Puel et Safez
pour la compilation desafinitions de fonctions bags sur des motifa Sortes partiellement
ordonrées. Enesung, une sguence ordore€ de motifs lieaires potentiellement ambigus est
transfornge en un ensemble de termes contragngortes ordorges qui sont mutuellement
exclusifs. Cet ensemble est ensuite transto@ntiaide de egles de normalisation permettant
de construire un arbre de filtrage. Les variables des termes conaa@oties ordorggs sont

ici soumisesa des contraintes non seulement de structure, mais aussi de sous-sortes. Pour
refléter cela, un arbre de filtrage est elofatesetiquetes par des contraintes de structure
ou de sous-sorte. @cea ce dernier genre d'aiés, il n'est pas toujoursenéssaire desduire

les termes en forme normale pendant le processus de filtrage, et doroéfieiér de cette
mankere de laeduction paresseuse. Par exemple, supposons gai une sorte sugrieurea

7, que la variable soit un motif et que?, un terme de sorte, soita filtrer. Dés quet” est
réduita un terme de sorte iaefieure ouegalea, il est d’'ores et dja décidable que le terme
ainsi obtenu est fileparx?, méme s’il n’est pas en forme normale. Nous montrons que I'arbre
de filtrage est optimal si une propt# décidable deajuentiali€ est rifiée par les ensembles
engendes durant la compilation. Notre ettiode s’aere également applicable aux langages
stricts.
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Pattern Matching in Order-Sorted Languages 1

1 Introduction

Many programming languages use pattern matching in a many-sorted term algebra (such as
those in the ML family [6]) or an order-sorted term algebra (such as those in the OBJ family [5])
for function argument-passing. Function definitions consist of an ordered set of rewrite rules.
These rules are often ambiguous as some left-hand sides (LHS) of the same function definition
may overlap. Thus direct access to the relevant rule based on the LHS's structure is not possible
in general. The n&é operational semantics, amounting to sequential lookup until a calling
term matches a rule’s LHS, obviously leads to poor performance. In addition, since a lazy
evaluation strategy allows the manipulation of infinite objecs (ith no finite constructor
normal forms), it is not clear what pattern matching means for lazy languages. For example,
for a term to match a LHS term, the reduction scheme should be such that the only part of
the term to be evaluated is the one required, in some sense. Recently, Pueberm [$0]
devised a clever compilation scheme to generate statically a PMT in lazy languages. Such a
tree is then used at run-time for fast rule-indexing and takes full advantage of the nature of
the LHS terms in a definition. Their work simplified and generalized seminal ideas by Huet
and Lévy [7] that were in turn sharpened by Laville [9]. The gist of the Puar&zmethod

rests on generalized notions of constructor terms and sequentiality. They called the new terms
constrained terms

Although partially ordered sorts provide a substantially improved expressiveness over many-
sorted languages, in an order-sorted system with a lazy reduction strategy, pattern matching
is more complex than with non-ordered sorts in that it necessitates two kinds of verifications.
The first one, as in the conventional casestisicture matching. The other one is to ascertain

that the argument’s sort issmbsortof the formal parameter’s sort. Moreover, as functions can
have a non-strict semantics, they can yield a result even for some arguments whose evaluation
is non-terminating. Therefore, the arguments need only be evaluated just enough so as to make
either a structure or subsort verification decidable. However, it is not clear how many steps
of reduction must be performed on a given term in order for its sort to become sufficiently
precise.

Consider for example the classical subsort order for the integer numbers: sibereonstant

int

N

zerapos zeraneg 0 :— Z€ero

pred: zeraneg— neg
/\/\ Suc: zerapos— pos

pos zero neg

of sortzerg the symbopredis a constructor of soriegand the symbo$uccis a constructor
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2 Delia Kesner

of sortpos

Let C be the characteristic function of natural numbers defined by the following rewrite rules.
c(xeeroros) = 1

c(xzeraned) = 0

Let the order of appearance of these rules be significant as specified. That is, the second rule
is to be considered only if the first one is not applicable. Thus, this definition is equivalent to:

C(Xzero_pos) =1
c(xe9) =0

Now, suppose a term of soimt with non terminating evaluation given by the following
sequence of reductiontdt — 7P _, {2FOPOS _, (2°1OPOS | wiith a strict evaluation
strategy,C(t™) is not defined becaus#" has no denotation. Nevertheless, with a lazy
reduction schemeﬁ:(t‘m) is defined and equal tb sincet™ can be reduced in finitely many
steps just so far as necessary to ascertain that it is ozeanpos Thus, there is no need
always to reduce terms to normal forms during the pattern matching process and pattern

matching becomes a non-trivial problem deserving careful attention.

We restrict our interest to syntactic pattern matcHingorts are partially ordered. Minimal

sorts are assumed to be pairwise disjoint and non-minimal sorts are assumed to be the union
of their subsorts. Functions can have more than one declaration [4]. We will also restrict our
attention to linear LHS terms.e., without repeated variables. We lose no expressive power,
though we lose some notational convenience.

The order of rules defining a function is significant because LHS terms camibiguous that

is, they can be unifiable. Since we are considering deterministic languages, a list of terms with
priority (a pattern) must be constructed. Thus, in order to avoid a more complicated syntax
and aburden to the programmer, a disambiguating meta-rule will be necessary to construct such
a list. Usually, this is according to the appearance of the rules in the text but any other priority
will suffice [9]. This must naturally be taken into account when constructing the PMT. We
propose here an extension of the Pued®a compilation scheme that accommodates order-
sorted constructor-based function definitions. Our compilation method eliminates ambiguous
patterns by introducing order-sorted constrained terms. Moreover, as order-sorted pattern
matching consists of two kind of verifications, discrimination trees are now quite complex
since some edges are now labeled with sort restrictions.

Given a pattern matching proble8) the strict set of Sis the set of terms for which every
PMT associated t8will fail to terminate and amptimal PMT is a PMT that will only fail to
terminate on the strict set & We show that optimality of an order-sorted PMT is a decidable
property equivalent to a generalization of the notions of stssuuentiality presented in [7]
and [10]. Sequentiality of a pattern matching probl€ns the possibility of systematically
expanding any term step by step until either it matches a patt&arat is clear that a positive

!See [8] for a discussion of unification and matching in equational theories.
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Pattern Matching in Order-Sorted Languages 3

matching is impossible. Our notion of sequentiality takes not only the structure of terms into
account, but also the sort system. We present a more general treatment of pattern matching
compilation in which the unsorted and many-sorted languages are particular cases.

The paper is organized as follows. Section 2 presents unitary signatures and function
definitions by order-sorted equations. Section 3 defines the syntax and semantics of order-
sorted constrained terms and patterns. Section 4 describes our compilation method. This
consists of three kinds of rules acting on constrained terms. Invariance and completeness of
these rules are given. Finally, in Section 5, the new notion of sequentiality for order-sorted
constrained terms is presented. We show that sequentiality and optimality of pattern-matching
problems are equivalent. A brief description of order-sorted type systems covered by our work
can be found in Section 6.

2 Functions Defined by Order-Sorted Patterns

All the conventional notions regarding substitutions, instantiation, and unification of unsorted
terms are readily extended to order-sorted terms [14].

A signature ¥ = (§,<,F,C,V,D) consists of a set of sort symbass = {o,7,4,.. .},

a partial order< on 8, a set of function symbolg = {F,G,H,.. .}, a set of constructor
symbolC = {f,qg,h,.. }, asetofS-indexed variable¥ = {x7,y”, 7z, ...} with a countably
infinite number of variables for each sort symbogland a set of declaratiori® of the form
g:o1...0n — owhereqe FUC. We willcall o1 . . .o, thedomain of f ande its codomain

The setsS, F, C andV are mutually disjoint. For brevity, we will write € X for any symbol
sinS, F,C,V orD. We used, 7, . . . to denote possibly empty sequences of sorts. The order
< is extended componentwise to sequences of the same len§jthaind is also denoted.

XY-terms are constructed in the usual manner with the additional constraint that the}lbe
sorted. Formally, a variable® € X is a well-sorted”-term of sorty if o < 7, andq(tl . .tn)
is awell-sorted”-term of sort; if and only if there exists a declaration o1 ...0y > 0 € X
such thate < 5 and for all1 <i < n, t; is a well-sortedX-term of sorto;. Where X' is
understood, we will refer simply to terms insteaddterms.

A signatureX’ is calledregular if all terms have a least sort. We may emphasize the fact that
a termt has least sod by writing it ast?. A signatureX’ is calledunitary if it is regular and:

= (8,<) is a boolean lattice with least upper bound operatiprgreatest lower bound
operation, greatest elemerit and least element .

= No function or constructor declaration contains the sort symbol

= (Minimal codomain sort) If f € C, then there exists a declaratibn ¢ — ¢ € X and
o is a minimal sortite., if § < o then§d = L oré§ = o).

= (Disjointdomain sort) If f e Candf : 01...0n o€ Yandf :m...9m o> n € X
are two different declarations éfin X', thenn # morn = m > 1 andé& ands are

2A lattice (S, <) is said to be booleaniffe € S,3! ¢ € S suchthar Mo® = L ande Lo = T.
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4 Delia Kesner

disjoint(.e, Ji,1<i<n o Ny = 1).

In the sequel, we assume all signatures to be unitary. Motivations for considering such
signatures are discussed in Section 6.

Constructor terms are those terms that do not contain function symbols. A term is called
linear if its variables occur at most once agrbund if it contains no variables.

Pattern matching is a prefix ordering,C, induced by instantiation on constructor terms
modulo variable renaming. FormallyC t' iff t' = 6(t), whered is a substitution. We say
thatt’ matchest. Note that when only linear terms are on the left-hand side, xfen t” if

n <o, andf(ty...tn) C f(hy...hy)ifand onlyifforall (1 <i < n)t C h.

Unification is a least upper bound operation for We will note the least upper bound of
two Y-termst andt’ astut’. Two terms are said toverlap, or to beambiguous if they are
unifiable. Regular signatures are finitary unifying and they make order-sorted term unification
well-behaved (see [14] for a discussion). If in addition the signature is unitary, then a unique
unifier is produced.

A function definition is specified by a set aéwrite rules {F(t) = pi}",, whereF ¢ F, the
ti's are (possibly mutually ambiguous) linear constructor termsyétterns of F) and eaclp;
is a term containing no variables nottjn A program P is a set of function definitions.

3 Order-Sorted Constrained Terms

3.1 Syntax

For a signatureZ, we define the syntax and semantics of construEtderms,X'-constraints,
constrained”-terms and¥-patterns. We will drop the prefiX¥’ where it is understood.

Let t be a term,| a linear term,s a sort andZ and F the two logical constants denoting
truth and falsehood, respectively. Th&npF,t: ¢ andt & | areatoms A constraint is
recursively defined as an atom or @sVv C, or asC; A C, where C1,C, are constraints.
Whenf : o1...0n —» ¢ € X andx;...X, are pairwise distinct variables, we may write an
atomt & f(x*...xe") astOf or toOf if the sorts are clear from the context. We will write
tO{f1, ..., fa} for a constraintOfy A ... A tOfy and A € C for an atomA of the constraint
C. The intended interpretation ofsart constraint t : ¢ is that it is decidable that tertrhas
sorte, and the interpretation of structure constraint t < | is that it is decidable thdtis
structurally different from.

If tis a constructor term an@ a constraint, them| C is aconstrained term. If t is linear
(resp. ground), thenl Cis a linear (resp. ground) constrained termpaitern is a non-empty
list of linear constructor termg; . ..pn. A constrained patternis a non-empty list of linear
constrained termBj . . . Pp.

For brevity, we will refer to either a term or a constraint as an object. The $etofariables
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Pattern Matching in Order-Sorted Languages 5

of an object, denoted’(h), is defined as expected except thét & 1) = V(t : 0') =
Substitution, denoted(h), is also defined as expected except #atd 1) = 4(t) < |

O(t:tf) :0(t) Lo

We will also refer to theestriction of a constrainC to a set of variable¥, denotedC|y. For
atomic constraint€, Cly = C if V(C) C V, otherwiseC|y = 7. For constraints formed
from v andA, the restriction distributes through to their arguments.

()

3.2 Semantics

With a lazy reduction scheme, functions can yield a result even when applied to arguments
whose evaluation is non-terminating. A new element is thus necessary to give semantics to
such functions. We will introduce a new symBgélfor each sort in the signature. Formally,
anaugmented signatureX® is a unitary signature’ without variables and without function
symbols{F, G, H, ..} but with a 0-ary constructos” for each sort symbat € X different

from L. ¢ denotes those terms of serthat cannot be reduced to a term having a constructor
symbol at the root (so-calldtead-normal form). Note that all¥’*-terms are ground.

The free order-sorted term algebra on the signallire denoted by7y. An interpretation of
a signatureX’ over itsX'*-term algebr&x. satisfies:

= 075 := {s| sis ax*-term of sortz}

= 1 7=+ jsthe empty set an@7=* the universe offz.

= o < pimpliesg?z* C 5Tz

= If f is a constructor anfl: o1 ...0n — o € X, thenfZ* is a function

oI % ... x o7®* — Tz such thaf 7>+ = f
1 .. X on St...%) =f(s1...5)

Sorts and subsorts sometimes allow us to decide if a term matches a pattern even if its
evaluation is non-terminating. We show how to characterize such nice terms.

We associate to each constructor térthree disjoint sets of'*-terms such that the union of
these three sets is tig. -algebra. The first one, denoted b} f or simply by [t] and called
thedenotation or solution of t, is the set of’*-terms that are instancestofThe second one,
denoted by ], and called theincertain or strict set oft, is the set of all”*-terms for which
we cannot decide if they are instanceg.oThe last, [] =, is the set ofY*-terms that are not
instances of. Formally,

- [l = {8(t)|9is a(V, =*)-assignmerit
= [t]z is defined by recursion as:

[x7 1 ={e"lnMNo # L andn £ o}
[f(te...t0)°1u = {o"n > o} U{f(ar...an) | Ji & € [ti]x andVjq ¢ [t]+}

In both cases we can decide thdtdoes not matclt” when» andeo are disjoint. In
the first case, we can decide also thfaimatches¢ whenn < ¢. Under the opposite
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6 Delia Kesner

conditions, we cannot decide and théhe [x"]y. In the second case, is a minimal

sort (we are dealing with unitary signatures) and so, ew&nyith  comparable with

o (i.e. 7 > o) belongs to the strict set @af Note also that we can decide that a term
with the same constructor symbol does not match if at least one of its arguments does
not match.

= [tlr =75« - [tl7 - [tlu

Example 3.1 Consider the following subsort order:

g )
B P ¢
fioxo— ¢
/\ pinxp—p
q:{xp—p

n 3
b:-»n a:—¢

[f(x,b)]17 = {f(b,b),f(e?,b),f(e7,b),f(a, b) }
[ (>, b)1u = {f(b,%),f(e7,07), (a ."),
[f(x,b)]= = {b,a,f(e",e ),f(a, a),..

Proposition 1 [t]7 and[t]y are disjoint,[x’] = o%=*, and[tiUto] = [t1] N [t2]

To each constraint, we associate a three-valugdth value — true, falseor uncertain—
under a(V(C), Z*)-assignment, denoted [],. The important cases are defined as follows.
The other cases follow standard three-valued logic witleing the minimum of its arguments
andv the maximumfalse< uncertain< true).

- Tye
true o) € [l ;::e :I 28 ii gf zort

_ : . _ n
[tO1]e =< false ifo(t) c[llr [t:ole = andyno = L

uncertain if 6(t) € [u uncertain otherwise

Example 3.2 With the subsort order of Example 3.1:

[X : o] s 45 = Uncertain X< 1 6] x5 = true
[f(b,b) Oals = true [X¥ < f%b, b)] (x5 45 = UNCertain

To each constrained terthC, we associate three disjoint sets Bf-terms. The first one,

May 1991 Digital PRL



Pattern Matching in Order-Sorted Languages 7

denoted by {|C]+ or simply by [t|C] and called thedenotation or solution of t|C, is the
set of ¥'*-terms that are instances bénd satisfyC. The second one, denotet@];; and
called theuncertain or strict set, is the set oE'*-terms for which we cannot decide if they are
instances of or if they satisfyC. The third one, denoted|[C] , is the set of¥*-terms that
are not instances afor do not satisiyC. Formally,

= [tIClz = {6(t) | 6 is a(V(t), £*)-assignment andyy]s = true}
= [t|Clu = {6(t) | 6is a(V(t), &*)-assignment and{lyy]s = uncertair} U [t]
= [tICl7 = Tz« — [t[Clu - [t[C]l7

A constrained term isonsistentif it denotes a nonempty set. @ Vv . . . v C, is the disjunctive
normal form ofC, the denotation offC is the union of the denotations tfC; . . .t| C;.

Example 3.3 Let T = f(x,y") | ¥ : 9 A yOq(a,2?). With the subsort order of
Example 3.1:

[Tl = {f(b,b),f(e", ),
[Tl = {f(+*,b), f(b, ”)
[Tl = {f(a a(a «*)),b,

Proposition 2 The following equivalences will be used where required:
= X1 =[x :nlifo>n
- [0 =[IXTX" Ot
= [t|CiVv Co] =[t[Ca] U[t|Co] and[t|Cy A Co] = [t|Cid N[t[Co]
= [t|F] = {}.[t| 7] = [t] and, if tis a ground constructor term, th§t] = {t}

To each constrained pattdpa. . . P, (and thus in particular to each pattern), we associate three
sets of¥*-terms. Thesolution or denotation of P ... P, denoted by P; ...Py] 7 or simply

by [P ...Pq], is the set of¥*-termst for which there exists &; such that matches?; and

it is decidable that does not matchry, k < i. Theuncertain or strict set of a constrained
patternP; .. .P,, denoted Ps ...Pn]u, is the set of¥*-termst such that there existsR for
which we cannot decide whethematched?; andt is not in the denotation of any preceding
prefixP; ...Py, k < i of the pattern. The last one, denotd®} [ . .Pn] =, is the set oB’*-terms

that, decidably, are not solutionsief .. .P,. Formally:

= [P1...P]r ={t|3i(1<i<n)te [P]randvk (k<i)te[Pds}
= [P1...Plu={t|Ji(1<i<n)te[Plyandvk (k<i)t¢ [P1...Pdr}
= [P1...Pi]ls =Tge —[P1...Palz — [P1...Pnlu

Example 3.4 Consider the constrained pattern:

P,P, =f(x,b) |2 : ¢, 1(y,Z)|Z:8 A £Oa

Research Report No. 10 May 1991



8 Delia Kesner

With the subsort order of Example 3.1:
f(e7,b) € [P2l7 andf(e,b) ¢ [P1]~, sincef(e”,b) € [Pi]y. Hence,f(e?,b) ¢
[P1, P2l

4 Compilation Rules

In this section, we describe our compilation method. This consists of three kinds of rules acting
on constrained terms. Ths@mplification rules transform restrictions on terms into restrictions

on variables.Partitioning transforms an ambiguous order-sorted pattern into an equivalent
set (modulo simplification) of disjoint order-sorted constrained terms. nthmalization

rules transform a set of disjoint order-sorted constrained terms into a set of simpler ones that
facilitates the construction of the pattern discrimination tree.

4.1 Simplification Rules

The simplification rules define a reduction relatier>g on constraints that transforms a
structure or sort constraint on terms into an equivalent constraint on variables, that isT either
F, or of the formx & tor x @ o. Figure 1 presents the simplification rules. Most are derived
from [10, 3, 11] and are self-explanatory. The interesting ones are rules 14 and 15.

The complete sortrule allows us to simplify several structural constraints to a single sort
constraint. It states that a term does not match any of the constructors of & sod only if it

is not of sortd. Note that this rule is only applicable when the constructofsark finite. The
negative sortrule states that any tertnwhich is of sorts but not of sorty, is of sorte — 1,
wheres — n = o M 73 We will write ase — {n1,...,m} the sort(...(¢ —m1) —...) — 7.

If x* : n appears in a constrail@, then the variablec is said to berestricted by % in
C, otherwise it is restricted by. We shall say that a constraifitis in simplified form
(irreducible by——g), denotedC |, if and only if it is eitherZ or F or

= If X :pisinCthens > gandny = L

= If ¥ & t7isin Cthentis not a variable ang > 7

= 1f x< {fy,...,fa} € Candfi: g; — § € & (i = 1...n), thenfy, ..., f, are not all the
constructors o041 ...6n}

Example 4.1 The constraink” : 5 A y5<>f(a, a) is in simplified form whilex’ GZ and
Yy O{p, g} are not.

Theorem 1 (Simplification) Let {C be a constrained term.

3Note thatlc — ) < cand(c — )My = L.

May 1991 Digital PRL



Pattern Matching in Order-Sorted Languages 9

Structures Positive Sorts
Lf(tr. . .ta) O f(he...hn)° 10.t7: L —g F
—s Vicicnli O h 1L T —s T
2f(t1tn)<>g(h1hm) —s T 12.t017’]——>5T
3f()Of() —sF ifo<n
4700 — T 13t :g—st? 10Ny
ifnNe=1 if & andn are not comparable

Conjunction and Disjunction
51 Q1AL —t O

Negative Sorts

iflc I 1479 Oyl —st7 00— 1
6.tolvto f(R) —st<Iuf(R)  Complete Sort
7. X: 0 AXOM —g X0 if fi : p— & € X and thefi’s
foenn=_1 are all the constructors ¢} ;

8. X:ogAXig—sXi0oTly

O X:oVXig—sXigleo
if & andn are comparable

Figure 1: Simplification Rules
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10 Delia Kesner

(Invariance) If C—s C' then[t|C] = [t|C]

(Termination) There are no infinite chaing C—s C;, —5 ...

(Completeness) For each constrained tef@where C is not in simplified form,
there exists a Csuch that C—¢ C'

Proof: (Sketch) The invariance claim must be verified for each rule—a tedious task, since there are
S0 many cases, but straightforward. Completeness can be easily shown by considering a constrained
term whose constraint is not in simplified form. To prove the termination claim, we use the lexical
ordering ovel(Cy, Cy, C3, C4), where:

= C1= 2 (1onec Siz€t), wheresizgt) is defined as one would expect,

= C, is the number of structure atoms@h

= Cjis the number of sort atoms {Dand,

= C4 =3 (to)ec Path(o), wherepath(c) is the length of the maximal path frorh to o in the

sort lattice.

Rulesl, 2, 3, 4 decreaseC,; rulesb, 6, 7, 14, 15 decreaseC,; rules8, 9, 10, 11, 12 decreaséCs; and
rule 13 decrease€,. When one rule decreas€g Cy(k < i) does not change. Thus, the complexity
with respect to the lexical ordering is always reduced and the length-ef gderivation is bounded.

1
4.2 Partitioning

The definition of a pattern’s denotation (Section 3.2) suggests splitting a pattern into an
equivalent set of constrained terms, whose set denotations are disjoint, and whose union is the
set denotation of the pattern.

Let T; = t;/C; and T, = t5|C, be two constrained terms. We s&y matchesT;, denoted
T1 C Ty, iff there exists a substitutiohsuch that; C t (i.e. & = 6(t1)) andC, = 6(Cy),
where=> is logical implication. A substitutiod unifies two constrained termig and T if
and only ifé unifiest; andt, and the constrained teréift;) | (Cy A Cy) is consistent. 19
unifiesTy and Ty, thenTiUT, = t1Utp|8(Cy A Cy) is the least upper bound with respectio
and we say thaf; andT, are compatible constrained terms.

Let T = t|C be a constrained term. Thestriction of T under a substitutiofi, denotedT|q,
is defined to b&|C’ whereC A t < 6(t) — C.

Proposition 3 [TiUT,] = [t2|Ci] N [t2|C2] and[8(T)I N[Tle] =0

The recursive functiorR AR T, takes a constrained teffrand a patterp; . . . py as arguments,
and partitionsT according top; ...pn into a set of constrained terms whose denotations
are disjoint* To illustrate, suppose we wish to partitiol |7 according to the pattern
p1...pn- The first set generated {p1|7 } and we go on to recursively partition the decidable
x"-complement ofy, that is,x" |x" Opy, according to the rest of the pattgsp. . .p,. Note
that the order of the pattern is respected.

4In fact, we mean “partitions the set denotatioTdbut we shall say simply “partition$”.
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PART(T,[]) = 0;

PART (T,p2...Pn)
if Tandp,|7 are not unifiable;

{T [H} (p1|T)} U 'P.A'RT(T|9, p2.. -pn):
otherwise; wherd is the mgu ofT andp;|7 .

PART(T,p1...pn) =

Example 4.2 With the subsort order of Example 3.1, tebe a constructor whose domain
sort is(a U 6) x nat, wheres LI § andnatare disjoint sorts. Partitioning |7 according to
the patterrg(x”, 0), g(y?, 2'®), x yields:

{9(x*,0), g(y*, 2|y : ¢, g(y*, 2|20, xT |x"Og(x, 0) A X" Og(ye, 2"}

Proposition 4 If PART (X" |T,p1...pn) = {P1,...,Pn}, then R = {pi| Aici pi < p} and
[PI NP1 =0fori#j.

Proof: (Sketch) By induction oni, using the fact that if the substitutiénis defined by;(x") = p;
forall1 <i < n,then(...(X"|T)|e, -- Yo, = X" X" Opr A ... AXTOpn. 1

Theorem 2 (Partitioning) Let pr...p, be a pattern such thaPART (X" |T,p1...pn) =
{P1, ...,Pn}, then

= [p1...pl7 C Uicicnl Pl
= Ift € Uici<nlPil7, thendj such that te [pj]7 and te [pd =, fork < j
= [p1...pn]l= =[P1...Pnl=

Proof: (Sketch) The first claim is shown by induction on. The second one is shown by
Proposition 4 and the second item of Proposition 2. To show the last claim, it suffices to prove that

both [p; . ..pa] = and [Py ... .Pn] = are equal td), ;< [Pl = |

Thus, partitioning transforms an ambiguous list of order-sorted terms (a pattern) into an
unambiguous set of order-sorted constrained terms. It changes neither the decidable sets
associated to each pattern nor the strict one. We say{that..,S,} is a complete
decompositionif and only if there exists a patterp; ...p, such that partitioning«™ |7
according to the listdy ...pn X'] yields {Si,...,S}. Whenx' is appended to the list of
patterns, both the success and the failure of the matching are considered. This does not change
the original problem because the discrimination tree covers all the cases that may appear during
the pattern matching process. It turns out that Wf@n. . ., §,} is a complete decomposition

andt € [S] #, there existd <i < nsuchthat € [S]7.
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12 Delia Kesner

4.3 Normalization

In order to simplify the construction of the PMT, we use four normalization rdlatening,

sort, structure, empty) that operate over sets of disjoint constrained terms. Since the
formalization of these rules is quite complex, while the underlying idea is rather intuitive, we
first show three typical examples where such normalizations are to be performed.

The first rule decomposes a complex structural constraint into several simpler ones with only
one constructor in the right hand side of each structure atom. Normakiz|r§ & cons(l, z)
with theflattening rule yieldsx" |x" < cong_, -) andcongy, z)|y < 1.

Now, consider the constrained terxﬁ|xT<>con5(y, z). Recall that, with a lazy evaluation
mechanism the sort of a well-sorted expression can be known before its structure. Xhus, if
is substituted by a term whose sort is incompatible with thabot(y, z), itis not necessary to
reduce the term. On the other handxifis substituted by &ist expression, it is necessary to
continue reduction in order to decide whether it i<aris term. Thus, assuming thist and

int are the only sorts in the system, tart rule transforms” |x" Gcongy, z) intox” X' : int,
x"|x" @ list A X" Ocondy, z).

If a variable has a common occurrence in more than one constrained term and is restricted
by different structural constraints, then te&ucture rule can be applied. For example,
f(a,x) | X" & 1 and f(b,x™) | X" & 2, s transformed intdf (a,2)|7, f(b,1)|7,
fa,Xn) [ XS 1 A XM O 2 andf(b,XM) [ XM O 1A XM O 2. Now, the subterm at
position2 is a variable restricted by the same set of symbols or it is just one of such symbols.

We shall say that|C is in normalized form, if and only if C is in simplified form but is
different from F and whenevex<f(ty .. .1h)° appears inC andf : a1...0q0 — 0 € X,
then x is restricted bys in C andt; ...ty are mutually distinct variables of so#t .. .on
respectively. We shall say that a set of constrained ttm€s, . . ., t,|/Cn} is in normalized
form (irreducible by— ), if and only if everytj|C; is in normalized form and, whenever there
exist two termd; andt; and there exists a positiansuch that for alv <pos u, ti andt; have
the same structure symbol at positiri; /u andt; /u are variables restricted by the same sort
and by nonempty sets ands of structure symbols i€; andC; respectively, thes; = s.

Example 4.3 The constrained tert(x, y?)|y#<Of (v, w?) is in normalized form while
f(x,y7)|x* Gaandh(x, y?)|y?Of (V1, wt) are not.

Figure 2 presents the normalization rules. There, we assume,...c, — o € X and

XJt, ..., X" are pairwise distinct variables. Whéris a substitution(t|C){(#)) denotes the
term 6(t) | 6(C) |s. When normalizing, rules are applied in the order that they appear in
Figure 2. They satisfy the properties of Theorem 1; namely, termination, invariance and
completeness.

Theorem 3 (Normalization) Let S be a set of constrained terms.
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Flattening:  If 3i (1 <i < n) such that; is not a variable of so;, then
SU{t|xf(tr...th)7 AC} —p

SU{t|xOf AC, (t]xOf(tr...th)" AC){(X — f(X1... %)) }
Sort: If xis restricted byy in Candn > o, then
SU{t|xOf ACY —nSU{t| (Xx:n—aAC) s t| (X:a AXOFTAC) |5}
Structure:  If Ju such that;/u = {X7|x* s} andty/u = {y7 |y O}, 17 € s,

butf? ¢ s, andVv,v <pes U, t1 andt have the same constructor

symbol at positiorv, then
SU{ty|Py, to| P2} —n

SU{ty| Py, to| (PaAYOf7) L, (ta| P)(Y «— f(x1...%)) }

Empty: SU{t|F} —, S

Figure 2: Normalization Rules
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14 Delia Kesner

(Invariance) If S—, S, then[§] =[]
(Termination) There are no infinite chainsS+p S — ...
(Completeness) If S is notin normalized fod8, such that § —s U —p) S

Proof: (Sketch) The invariance claim is straightforward. Now, suppS$enot in normalized form.

If there exists a constrained tetitF, the empty rule can be applied. If there|i§ such thakOf 7 is

in C andx is restricted byy with > o, the sort rule can be applied. If there existsf(t; .. .tn)7,
wheref : o1...0q — o € X andt; not a variable of sord;, then the flattening rule can be applied.
Suppose there exist two termsandt; and there exists a positiansuch that/u = {x”|x"<s},
ti/u={y’|y’<$s}, forall v <pos U, tj andtj have the same structure symbol at positipbuts; # s.

If 7 € 5 ors with & > 7, then the sort rule can be applied. Otherwise, the structure rule can be
applied. To prove the termination claim over a §gtCy, . . ., t,|Cn} of constrained terms, note that
rules are applied in order. Flattening decreases the complexity of right-hand sides of structure atoms
of Ci's; sort decreasey._; > (woi-)ec, distancgxOt?, i), wheredistancgxOt?, Cj) is defined

asO if x is restricted bys in Ci, 1 otherwise; structure decreasgs— s| + |s — s, and empty
decreases the number of constrained terms. |

5 Sequentiality and Optimality

Compiling pattern matching consists of transforming a function defined by order-sorted
patterns into a case-expression presented as a discrimination tree. The tree obtained is not
always optimal, that is, it could fail to terminate on some terms that are not in the strict set of
the pattern. Asthe evaluation mechanism is sequential, we must choose an order of verification
running the risk of losing some solutions. In a many-sorted framework, consider Berry’s
example [1] formed by the patterfftrue, true, z), f(falsg y, true), f(x, falsg false). Given

a termf(_, 5 _), we must choose an argument position in order to start the matching. If we
start at position three, the terfrﬁtrue, true, oB°°') will not be matched, even though it belongs

to the denotation of the first pattern. The same happens with the féfaisg oB00! true),

f(oB°°', false false) if we start at the second or third positions, respectively.

With a strict evaluation mechanism, an optimal PMT will be faster but the solutions (that is,
those terms that match or not) will remain the same as that of a non-optimal tree. On the other
hand, in a lazy evaluation framework, some non-optimal trees may fail to terminate due to
unnecessary verifications that try to reduce subterms that do not have a head-normal form.

In our framework, the sort of each term is examined before its structure, because the sort can
be refined after usually only a few reduction steps whereas to examine the structure, more
reduction steps are required to obtain head-normal form. The construction method for PMT'’s
that we present here chooses a direction (intuitively, a position in a term at which to start
reduction) and thus decides whether a subsort or structure verification is required. At each
level of the tree, the structures and sorts are more precise than those of preceding levels.

We propose a notion agfequentiality of the pattern matching predicate that takes not only the
structure of terms into account, but also the sort system. Intuitively, a disjoib$@atterns
is sequential in the sense of [7, 10] if it is possible to decide the matching property without
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doing some look-ahead. That is, for any constrained tEmot matching any pattern &

there exists a position (so-calleédection) where a reduction must be performed in order to
decide the matching property. Furthermore, this position can be determined without looking
at the subterms df which are not computed yet. Our definition of sequentiality requires the
setSof patterns to have also tisert property: intuitively, Shas the sort property if whenever

u is a position of a constrained terinto be evaluated and two different patternssahat are
compatible withT have variables, y? at positionu respectively, thew and p are either
disjoint or comparable sorts. In fact,afandp have a common subsdrdifferent from L, o

andp, the positioru cannot be taken as a direction because unnecessary reductibnsayf

be performed in order to distinguish betweeandp.

For example, consider the three unambiguous patté(tsie,y,z), f(falsgy?,true),
f(x,y?,false), where the subsort order is that of Example 3.1. If the PMT associated
with this problem needs to know whether a term is of éqresp. of sorr) as in the case of
f(false o4, true) (resp. f(true, o7, true)), it will fail to terminate even though the term is in
the denotation of the second (resp. first) pattern.

Optimal PMT’s will only fail to terminate on the strict set of the problem. It turns out that
sequentiality of a pattern matching problem is equivalent to optimality of its tree. Thus,
sequentiality becomes @&cessary and sufficient condition for the construction of an optimal
tree. We shall next give an effective decision procedure for sequentiality on disjoint sets of
patterns.

In reading the following section, familiarity with the work of [7] would be helpful, but the
treatment is self-contained enough to be meaningful on its own.

5.1 Sequentiality

The set ofpositions or occurrencesof a constrained terrjC, denoteo@(t|C), is defined as

the set of positions of, which is recursively defined as usual as finite sequences of positive
integers such that € O(t) andk.u € O(f(ty...tn)) if U € t. We use<posto denote the
lexical ordering between positions. The subternt af positionu, denoted/u, is defined as

t/e = tandf(t;...th)/ku= t/u. We use(t|C)/u to denote the constrained teityu)|D,
whereD is the constraint of all the atoms @ restricting variables of/u. For example,
(f(a(x,a),y?)|x : n AXxOf AyPOg) /1= g(x,a)|x" : p AxOf. If the replacement of

the subterm of at positionu by a termp is a well-sorted term, we defirtfu < p] to be that
term. If T = t|C andP = p|D are two constrained terms atjd < p] is a well-sorted term,

T[u « P]is defined as[u « p]|(C A D|yqucp))). For example, ify(x*, a) is a term of sort

& (f(g(¢,a),b) : g Ax OF )[1 — yE|yEOg] = f(¥%, b) y: <.

We can think of a set of disjoint patter8ss a predicate on constrained terms suchS(*Mt) is

true if and only if4P € S P C M. If truth values are considered to be ordereddigeC true,

Sis a monotonic predicate on constrained terms. Increasing information about the term (in the
sense of2) can only change the value of the predicate to a favorable one.
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A positionu € O(t|C) is said to be alirection of T = t|C in a set of disjoint constrained
patternsS = {t;|Cy, ..., ty|Cy} if and only if

= T/uhas the form¢ |P
= For every constrained terM such thafl = M andS(M) is true,M/u Z T/u

= (Sort property) If Ji,j such that'v, v <pes U, ti andt; have the same constructor symbol
at positionv; t; /u is a variable restricted by in C; andt;/u is a variable restricted by
in Gj, theny; M = L org < mjormy < .

Lemma 1 Let T be aconstrained terrf@. A positionuis adirectionof TinS {S,,..., S}
if and only if T/u has the form%|P and for every constrained pattern &S compatible with
T, we have that u is an occurrence ¢f §/u IZ T/u and the sort property holds.

Proof: Letu be a direction ofl in {S,...,$} andS be a constrained pattern compatible with
ThenT/u has the formx” |P with x” restricted byp in P. Suppose that ¢ O(S). Then, there exists
a positionv such thatu = v.w, w # ¢ andS/vis y?|D. Since§ is compatible withT, there exists
a constrained terrM = m|F such that§ C M, T C M; that is,M/v is an instance o§*|D. Now,
(M/V)[w « Z|P] = M[u « 2?|P] is a well-sorted constrained term that is also an instan&arid
obviously of T. ThereforeM/u C T/u by construction, which contradicts the hypothesis.

Conversely, letM be a constrained term such tHat_ M andS C M and suppos®/u C T/u.
Then,S/uC M/uLC T/u, which contradicts our hypothesis. |

By normalization, a complete decompositi®reduces to another complete decomposigon
and the set of directions of any teffrin Sis the set of directions of in S.

We say that a constrained tefiris compatible with a set of disjoint constrained patter@8§
and only if there exist¥ such thaff C M andS(M) is true. In particular, ifShas only an
element{P}, T is compatible withSif and only if T andP are unifiablej.e., 3M such that
TC MandP C M.

A set of disjoint constrained patterissis sequential in a constrained termT if and only

if, WheneverS(T) is false but it is compatible witls, then there exists a direction @fin

S We say thatS is sequential if and only if it is sequential in all constrained terms in
normalized form. Sequentiality of a predic&és the possibility of systematically expanding

any constrained term step by step until either the predicate is true or it is clear that a positive
answer is impossible.

The sort property enriches the known notions of sequentiality by takingazdount the sort
system. When a variable’s position is restricted by two sorts with honempty and nontrivial
intersection, some solutions are lost, as illustrated by the following example.

Example 5.1 With the subsort order of Example 3.1, the following set of disjoint
constrained patterns is not sequential:

{h(p,y",2)ly" i o, h(x,yT,p)xOpAyT 16, h(x,y",q)ly" : ¢}
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If pattern matching starts at the first position (resp. at the third), it will fail to terminate on the
termh(e?,f(a,a),q) (resp. h(p, b, ¢?)) even though it belongs to the denotation of the third
(resp. first) pattern. Now, note that the first and second constrained terms have variables at
position 2 which are restricted by sorts with nonempty and nontrivial intersection. If matching
starts at this position asking whether or not a term is of sdqresp. of sor®), it will fail to
terminate orh(q, o p) (resp. h(p, o7, p)), even though it is in the denotation of the second
(resp. first) pattern.

5.2 Construction of pattern matching trees

A pattern matching tree (PMT) for a constrained terri and a complete decomposition
S={S,..., S} is defined as:

= Tisthe root and each node is a constrained linear pattern in simplified form.

= If uisthe direction oP in SandTy,.. ., Ty are the children oP, then:

= Ti...Tk are pairwise incompatible constrained terms;
= P/uhas the formx’|7, T; andP only differ onuandP/uC T;/u;
= for everyT;, there exists a patte® such thafl; C S.

= If Hy...Hyare the leaves of the tree, thg®, ..., S} — {H1,...,Hmn}

A PMT of a complete decompositidisy, . . ., S } is a pattern matching tree for the constrained
term x"|7 and {S,...,S}. A PMT of {S,...,S} is optimal if and only if it fails to
terminate only for the strictset & .. .S,.

We now describe an algorith@mR €€ that constructs a PMT for a constrained teFrm= t|C
and a complete decompositidisy, . .., Si}. If C is non-consistent, return the empty tree.
Otherwise, ifT is an§, return the single-node tree Otherwise, normalizds,, ..., S}
into {H4,...,Hy} and search a direction of T in {Hy,...,Hn}. If such a direction
cannot be found{Hi,...,Hn} is not sequential inT so fail. Otherwise, proceed with
DIR(T,{H1,...,Hm},u) whereT = t|C; T/u=x?|7; H; = hi|Ci andDZR is defined by:
DIR (T,{H1,...,Hn},u) =
Let Sortsbe the maximal sorts dfn | T C H;, hj/u € V is restricted by; } and
let Formsbe{ fi | T C Hi,hi/u=fi(...) }in
if Sorts= 0
then (a structure step) build a tree rootedrawith children :
TREE(T[U « f(..)] s, {H1,...,Hm}) for eachf in Formsand
TREE(t| (CAX O Forms) |s, {H1,...,Hm}))
else (a sort step) build a tree rootedRavith children:
TREE(t| (CAX :n) s, {H1,...,Hm}) for eachn € Sortsand
TREE(t| (CAX : o — Sortg |s,{H1,...,Hm}))
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18 Delia Kesner

Example 5.2 Let us consider the subsort order of Example 3.1. d-&te the sort U §
andg be the constructor ap whose domain sort i& x nat, with natanda disjoint sorts.
Consider the patterg(x*, y"®), g(x*,0), g(x¢,1). Normalization yields:

g(xa,;}“at)|xa CHAYRSOAYRO T

Figure 3 shows the PMT. The directions are between square brackets.

y' | T [€]

N

yT Iy ¢ [e] y' |yT" :natU o

g(x*y™) | T [1]

gx*, Y™ [ x* 1o g(x*%,y"™) [ x* 1 4 [2]

g(x*,0) | x*: ¢ g(x*, 1) | x*: ¢ gx%, Y™ ) [ X g AYROOAYR O L

Figure 3: Pattern Matching Tree

Theorem 4 A finite complete decomposition in normalized forex §S,, .. ., S} is sequen-
tial in every normalized term if and only if it is sequential in every node of its associated

PMT.

Proof: Since nodes of the PMT are in normalized form the left to right implication is evident.
Conversely, letM be a constrained term in normalized form such t8@fl) is false andM is
compatible withS. Asx" |T is the root of the pattern matching tree blitloes not match any pattern
of S, there exists a nodE = t|C whose children ar@&; . .. Ty, and whose direction iBis u such that
TC Mandforalll<i<m T ZM. We will prove thatu is a direction ofM in S that is (by
Lemma 1) the sort property holds, (¥)/u has the formx?|P and for all§ € Scompatible withM,

(2) uis an occurrence d§ and (3)S/ulZ M/u.
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By definition of discrimination tre& /uis x’ |T and so (1) holds. By construction each level is either
a sort or a structure step and sincis a direction ofT in Sthe sort property holds.

In the sort step cas@;/u...Tyn/u are variablex{* ...x¢m and (1) immediately holds. SindeC M

and nodes at the same levelToére defined to be incompatible Sfis a pattern compatible with,
thenT C § and (2) holds. By construction, for eve8ycompatible withT we have§/uZ T/u. In
particular we hav& /u iZ T/u. Now, if T/u = M/u (3) holds. Otherwise, suppoSguC M/u. As

M is in normalized form and is not a minimal sortM/u does not have any structure atom and then
M/uis of the formx?|T ando > p. SinceS/uC M/u, S/uis ¢ |T and¢; > p. By hypothesis for
all1<j<mT/ulZM/uand therny; # p. AsT C S, there existdj such thafl; C § and then

g = &. Thenp; > p which contradicts the hypothesis.

In the structure step casg/u = fi,..., Tm—1/U = fm_1 and Tp/u = X X O{f1 .. .fn—1}. Since
TCMandforalll<i<mTZM,T/u=M/uorM/u= x|x*<"S. In the first case, we have
uis a direction oM in S. In the second case (1) immediately holds. §dbe a constrained pattern
compatible withM. As in the sort step cas&,C S and (2) holds too. Now, suppoSg'u C M/u.
ThenS/uis a variable and there must be a chiljdof T such thafl; C §. We haveT;/uis also a
variable and thus necessarjly: mand{f;...fn_1} C S By constructionT andT; only differ onu
andT C M. Thereforel; C M which contradicts the hypothesis and thus (3) holds. ]

Theorem 5 A PMT of a complete decomposition S in normalized form is optimal iff S is
sequential.

Proof: By Theorem 4{S,,...,S} is sequential if and only if there exists a discrimination tree in
which eachnodet|C has a direction in the sdiS,, ..., S,} and the sort property holds. The set of
terms for which the algorithm does not terminate is generated atresi#t|C of the PMT by some
terms of the forn{t|C)[u < ], whereu is the chosen direction ¢fCin {S, ..., S;}. By definition
{S1, ..., S} is optimal if and only if it fails to terminate only for the strict set {,, ..., $,}. We
must verify that the algorithm fails to terminate(fjC)[u — o] if and only if it is in the strict set

of {S,...,S}. The right to left implication is evident. Conversely, by construceach level is
either a sort or a structure step. T, .. ., T, are the children of the nod¢C, two cases are to be
considered:

In the structure level cas®&, = (t|C)[u« f"],i=1...m—1landTn =t | (CAXO{f], ..., {1 }).
By normalizationT/u is a variable restricted by and thens = 5. Thus, (t|C)[u — "] is in the
strict set of eacfT; and then in the strict set of each l&gfsuch thafl; C §. Then(t|C)[u — "] is
in the strict set of Sy, ..., S}

In the sort level casd,/u has the formx” | T and by construction eadh is of the formt | (CAX” : %))
with n; < o. Since the decomposition is complelt¢, ;, 7 = o and by the sort property, .. .7m
are pairwise disjoint sorts. If the algorithm fails to terminatgtiC)[u < e”], there exists at least
onei such thap £ n andp My # L. We have(t|C)[u — °] in the strict set ofT;. Now, for all §
such thafl; C S, we have eithel; /u= §/uor§/u= " or §/u= xX"|xX"O{f", g", .. .} and then
(t|C)[u — e”] is in the strict set 0. Then(t|C)[u «— o] is in the strict set of S, . .., S} |

6 Discussion

Unitary signatures have been defined in Section 2 to be regular and to verify some constraints
over the set of sort symbols and the set of function and constructor declarations. Since
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complements of sorts are often used during the compilation scheme we require the lattice of
sorts to be boolean. On the other hand, regularity is a sufficient condition for signatures to
be finitary unifying. Nevertheless, it is not very clear why we restrict our interest to unitarity
ones. We present two simple transformation rules acting on signatures. A signature obtained
through these rules is constructed to verify the minimal codomain sort and the disjoint domain
sort properties. The transformation preserves the set of well-sorted ground constructor terms
(i.e. the free order-sorted term algebra) and so, we can think of our compilation scheme as one
that not only transforms patterns, but also signatures. We show in what follows how to obtain
this “compiled” version.

First, let us justify the need for constructors to verify the hypothesis of minimal codomain sort
(the third condition of unitarity). Le® = (S, <,F,C,V,D) be a regular signature which
does not satisfy this condition aff, <) be a boolean lattice. Then, there exists a constructor
f € C such thaff : 7 — ¢ € D ande is not a minimal sort. Thelownward signatureX’
obtained fromX' is

(SUPTUT, <U{o > U > nlne I FCV,(D—{f 17— o} U{f 17— A}
where and\® are new sort symbols arfdis the set of maximal sorts dfy | M A = L}.

Note thats is strictly greater than the new symbboivhich is now a minimal sort. Intuitively,

' has the same structure, but constructors are in a “lower level” of the lattice. When the
number of non-minimal codomain constructors is finite, this transformation terminates and the
same set of ground constructor terms can be bui’inThe new partial order set of sorts is
also a boolean lattice.

Now, suppose the minimal codomain sort condition is verified whereas the disjoint domain
sort is not. LetY¥ = (§,<,F,C,V,D) andf a constructor with two different declarations
f:ro1...0n > candf :n1...9m — 1. If n=m= 0, thenf :— ¢ andf :— g5 implies

o = 7, becauser andn are minimal and wheneveX is regular they must be comparable.
Thenn = m > 1 andd, 7j are not disjoint sorts. In this case there exists a term (not necessarily
a ground term) having ande as sorts. Sincé&’ is regular and;, & are minimal we also have

o = 7. Thedisjoint domain signature obtained fron% is ¥’ = (S, <, F,C,V,D'), where

the new set of declarations is defined in this way:

= If ¢ <7,f:& — oisredundant and we can remove'isD — {f : ¢ — o}

= Otherwise,
= L={iel...n|oi—m # L}
- Vi€, Vj€e[l...n],&isc — i if i =], oj otherwise

- D, ={f: ¢ ..., »0olicI,}

= Iy={iell...n|p—oi# L1}

= VieZ,Vj€[l...n],¢jisni — oiif i = |, n otherwise

= D,={f:¢)..8 > a|icT}
=DisD-{f:f—-of:0d>0}Uu{f:fNé&—oc}UD, UD,
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This transformation always terminates and the obtained declarations have incompatible
domains by definition of ~” (set difference). Even now, we can build the same set of ground
constructor symbols.

Comon [2] noticed that an order-sorted signattris a finite bottom-up tree automaton where

the set of final states is the set of sastslt turns out that the set of well-sorted terms of sort

o is the set of trees recognized by a tree automaton at the final state corresponinght
transformations of signatures we have proposed above are simply transformations of their tree
automata. When restricting the set of final states of the new tree autoatorthat of X7,

the same set of well-sorted terms is recognized.

Unsorted and many-sorted signatures are particular cases of unitary ones, and therefore our
work also remains applicable to them. There are two other interesting order-sorted type
systems to be considered. The work at-Kaci and Smolka [13] has shown thigatures
typesand constructor types are dual concepts. In this kind of system every constructor symbol
has exactly one declaration and is a constructor of a minimal sort. In addition, the set of
feature terms is a prelattice, provided the sort symbols are ordered as a lattice. On the other
hand, Smolka [12] proposes a discipline with polymorphic order-sorted types restricted to free
constructors. Specification of the inclusion order between types is defined via special classes
of terminating rewriting systems and no function symbol contains more that one declaration.
He shows that the set of sort terms equipped with the order specified by the rewriting rules is
a well-founded quasi-lattice having as its least element. Reasonable algorithms to compute
the greatest common subsort and least common subsort of two sort terms are given. Our
order-sorted framework also allows us to accommodate pattern matching in languages with
such a type system.

7 Conclusion

The method of treating ambiguous linear order-sorted pattern matching presented in this paper
generalizes previous work on non-ambiguous linear patterns [7], ambiguous linear patterns [9]
and ambiguous linear patterns using constrained terms [10]. We extend several notions
introduced in [10], such as constrained terms, non-reduseildgms, strict sets of patterns,
sequentiality and pattern-matching trees, to the order-sorted case. We define discrimination
trees to have not only edges labeled with structure constraints, but also with subsort restrictions.
This feature allows to decide pattern matching without reducing terms to normal forms, taking
advantage in this way of the lazy evaluation strategy. It turns out that our method constructs
optimal order-sorted PMT's for sequential order-sorted pattern matching problems and can be
used either with a lazy or strict evaluation strategy. As in [10], our method can also be used
for non-sequential problems.

Our general order-sorted framework accommodates lazy pattern matching on all the regular
systems described in Section 6. Compilation of non-linear and higher-order patterns remains
as further research work.
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