11

dliloli[tlall

PARIS RESEARCH LABORATORY 4

Towards a Meaning of LIFE

June 1991 Hassan Ait-Kaci
(Revised, October 1992) Andreas Podelski

11

Towards a Meaning of LIFE

Hassan Ait-Kaci
Andreas Podelski

June 1991 (Revised, October 1992)

Publication Notes

A short form of an earlier version of this report was published as [9]. This report is a revision
of the earlier report done for publication in the Special Issue on Constraint Logic Programming
of theJournal of Logic Programmingedited by Pascal van Hentenryck [10].

The authors can be contacted at the following addresses:

Hassan A-Kaci Andreas Podelski

Digital Equipment Corporation Laboratoire Informatique Téorique et
Paris Research Laboratory Programmation

85, avenue Victor Hugo 2, Place Jussieu

92563 Rueil-Malmaison Cedex 75221 Paris Cedex 05

France France

hak@prl.dec.com anp@litp.ibp.fr

(© Digital Equipment Corporation 1991, 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe, in
Rueil-Malmaison, France; an acknowledgement of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Paris Research Laboratory. All rights reserved.

Abstract

LIFET is an experimental programming language proposing to integrate three orthogonal
programming paradigms proven useful for symbolic computation. From the programmer’s

standpoint, it may be perceived as a language taking after logic programming, functional

programming, and object-oriented programming. From a formal perspective, it may be seen
as an instance (or rather, a composition of three instances) of a Constraint Logic Programming
scheme due to étfifeld and Smolka refining that of Jaffar and Lassez.

We start with an informal overview demonstrating LIFE as a programming language, illustrating

how its primitives offer rather unusual, and perhaps (pleasantly) startling, conveniences. The
second part is a formal account of LIFE’s object unification seen as constraint-solving over

specific domains. We build on work by Smolka and Rounds to develop type-theoretic, logical,

and algebraic renditions of a calculus of order-sorted feature approximations.

Résumé

LIFET estun langage de programmation esipiental qui propose d’iegrer trois paradigmes

de programmation orthogonaux qui se sorgrés utiles pour le calcul symbolique. Du point de
vue du programmeur, il peetre pecu comme un langage tenant des styles de programmation
logique, fonctionnelle et orieatdbjet. D’'une perspective formelle, il peeiré vu comme un
exemple (ou plutot, une composition de trois exemples) demmehde programmation par
logique de contraintesu® Hohfeld et Smolka qui raffine celui de Jaffar et Lassez.

Nous commeaogns par un survol informelashontrant LIFE en tant que langage de program-
mation, illustrant comment ses primitives offrent des faeslipeu courantes et peett€ aussi
(plaisamment) surprenantes. La demrg partie est une description formelle de 'unification
d’'objets de LIFE vue comme unesblution de contraintes dans des domainesifiges.
Nous appuyons sur des travaux de Smolka et de Rounds pwealtoghper des psentations
tenant de la thorie des types, de la logique et de lgltgé, d’'un calcul d’approximations de
sortes ordoneésa traits.

JfLogic, Inheritance, Functions, and Equations.

Keywords

Logic programming, constraint logic programming, functional programming, object-oriented
programming, unification, inheritance, feature logic, order-sorted logic, first-order approxima-
tion.

Acknowledgements

We acknowledge first and foremost Gert Smolka for his enlightening work on feature logic
and for mind-opening discussions. He pointed out tht&¢rms were solved formulae and he

also came up, in conjunction with work by Jocheari2"and Bill Rounds, with the notion of
feature algebras. Bill Rounds has also been a source of great inspiration. In essence, our quest
for the meaning of LIFE has put their ideas and ours together. To these friends, we owe a large
part of our understanding.

We also wish to express our thanks to Kathleen Milsted and Jean-Christophe Patat for precious
help kindly proofreading the penultimate version of the manuscript.

Each of us authors has enjoyed tremendously the excitement of seeking together a meaning
for LIFE and, of course, each shamelessly blames the other for all remaining mistakes...

Contents

1 Introduction 1
2 LIFE, Informally 2
21 -Calculus 3
2.2 Order-sorted logic programming: happy.life 7
2.3 Passive constraints: lefunllife o o oL 8
2.4 Functional programming with logical variables: quick.life 10
2.5 High-school math specifications: prime.life 11

3 Formal LIFE 12
3.1 The Interpretations: OSF-algebras 13
3.2 Thesyntax e 14
3.21 OSF-terms i e e e e e e e 14

3.2.2 OSF-clauses e 18

3.2.3 OSF-graphs e e 22

3.3 OSF-orderings and semantic transparency 24
3.4 Definite clauses over OSF-algebras 29
3.4.1 Definite clauses and queries over OSF-terms 29

3.4.2 Definite clauses over OSF constraints 31

3.4.3 OSF-graphs computed by a LIFE program 32
Conclusion 34

A The Hohfeld-Smolka Scheme 35
Disjunctive OSF Terms 37
References 42

Towards a Meaning of LIFE 1

.. the most succinct and poetic definitioi@reer, c’est
unir’ (“To create is to unify’). Thisis a principle that must
have been at work from the very beginning of life.

Konrap Lorenz, Die Riickseite des Spiegels

1 Introduction

As an acronym, ‘LIFE’ means ogic, Inheritance Functions, andequations. LIFE also
designates an experimental programming language designed after these four precepts for
specifying structures and computations. As for what LIFE means as a programming language,
itis the purpose of this document to initiate the presentation of a complete formal semantics for
LIFE. We shall proceed by characterizing LIFE as a specific instantiation of a Constraint Logic
Programming (CLP) scheme with a particular constraint language. In its most primitive form,
this constraint language constitutes a logic of record structures that we shall call Order-Sorted
Feature logic—or, more concisely, OSF logic.

In this document, we mean to do two things: first, we overview informally the functionality

of LIFE and the conveniences that it offers for programming; then, we develop the elementary
formal foundations of OSF logic. We shall call thiasicOSF logic. Although, in the basic

form that we give here, the OSF formalism does not account for all overviewed aspects of
LIFE (e.g, functional reduction, constrained sort signature), it constitutes the kernel to be
extended when we address those more elaborate issues later elsewhere. Showing how basic
OSF logic fits as an argument constraint language of a CLP scheme is therefore a useful and
necessary exercise. The CLP scheme that we shall use has been proposedeby &td

Smolka [15] and is a generalization of that due to Jaffar and Lassez [16].

We shall define a class of interpretations of approximation structures adequate to represent
basic LIFE objects. We call these OSF interpretations. As for syntax, we shall describe
three variant (first-order) formalisms: (1) a type-theoretic term language; (2) an algebraic
language; and, (3) a logical (clausal) language. All three will admit semantics over OSF
interpretations structures. We shall make rigorously explicit the mutual syntactic and semantic
equivalence of the three representations. This allows us to shed some light on, and reconcile,
three common interpretations of multiple inheritance as, respectively, (1) set inclusion; as
(2) algebraic endomorphism; and, (3) as logical implication.

Our approach centers around the notion ofG8Falgebra. This notion was already used
implicitly in [1, 2] to give asemantics tp-terms. Gert Smolka’s work on Feature Logic[18, 19]
made the formalism emerge more explicitly, especially in the form“caaonicalOSFgraph
algebra,” and was used byoré and Rounds in recent work showing undecilitgbof
semiunification of cyclic structures [14].

!Dérre and Rounds do not consider order-sorted graphs and focus only on features, whereas Smolka considers
both the order-sorted and the unsorted case. However, Smolka does not make explicit the mutual syntactic
and semantic mappings between the algebraic, logical, and type-theoretic views. On the other hand, the logics
considered in [18, 19] are richer than the basic formalism to which we limit ourselves here, allowing explicit

Research Report No. 11 June 1991 (Revised, October 1992)

2 Hassan Ait-Kaci and Andreas Podelski

This document is organized as follows. We first give an informal tour of some of LIFE’s
unusual programming conveniences. We hope by this to illustrate for the reader that some
original functionality is available to a LIFE user. We do this by way of small yet (pleasantly)
startling examples. Following that, in Section 3, wegqaed with the formal account of basic
OSF logic. There, OSF interpretations are introduced together with syntactic forms of terms,
clauses, and graphs taking their meaning in those interpretations. It is then made explicit
how these various forms are related through mutual syntactic and semantic correspondences.
In Section 3.4, we show how to tie basic OSF logic into a CLP scheme. (For the sake of
making this work self-contained, we briefly summarize, in Appendix A, the essence of the
general Constraint Logic Programming scheme that we use explicitly. It is duetiteld”

and Smolka [15].) Finally, we conclude anticipating on the necessary extensions of basic OSF
logic to achieve a full meaning of LIFE.

2 LIFE, Informally

LIFE is a trinity. The function-oriented component of LIFE is directly derived from functional
programming languages with higher-order functions as first-class objects, data constructors,
and algebraic pattern-matching for parameter-passing. The convenience offered by this style of
programming is one in which expressions of any order are first-class objects and computation
is determinate. The relation-oriented component of LIFE is essentially one inspired by the
Prolog language [13, 17]. Unification of first-order patterns used as the argument-passing
operation turns out to be the key of a quite unique and hitherto ungsuarativebehavior

of programs, which can construct missing information as needed to accommodate success.
Finally, the most original part of LIFE is the structure-oriented component which consists of

a calculus of type structures—thlecalculus [1, 2]—and accounts for some of the (multiple)
inheritance convenience typically found in so-called object-oriented languages.

Under these considerations, a hatural coming to LIFE has consisted in first studying pairwise
combinations of each of these three operational tools. Metaphorically, this means realizing
edges of a triangle (see Figure 1) where each vertex is some essential operatigtiahrehd

the appropriate calculus. LOGIN is simply Prolog where first-order constructor terms have
been replaced by-terms, with type definitions [5]. Its operational semantics is the immediate
adaptation of that of Prolog’s SLD resolution. Le Fun [6, 7] is Prolog where unification
may reduce functional expressions into constructor form according to functions defined
by pattern-oriented functional specifications. Finally, FOOL is simply a pattern-oriented
functional language where first-order constructor terms have been replagetebys, with

type definitions. LIFE is the composition of the three with the additional capability of
specifying arbitrary functional and relational constraints on objects being defined. The next
subsection gives a very brief and informal account of the calculus of type inheritance used in
LIFE (¢-calculus). The reader is assumed familiar with functional programming and logic
programming.

negation and quantification. Naturally, all these extensions can as well be considered in our framework.

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 3

Types

Functions Relations

Figure 1: The LIFE molecule

2.1 ¢-Calculus

In this section, we give an informal but informative introduction of the notation, operations,
and terminology of the data structures of LIFE. It is necessary to understand the programming
examples to follow.

Thet-calculus consists of a syntax of structured types callddrms together with subtyping

and type intersection operations. Intuitively, as expounded in [5],«thelculus is a
convenience for representing record-like data structures in logic and functional programming
more adequately than first-order terms do, without loss of the well-appreciated instantiation
ordering and unification operation.

Let us take an example to illustrate. Let us say that one has in mind to express syntactically
a type structure for personwith the property, as expressed for the underlined symbol in
Figure 2, that a certain functional diagram commutes.

The syntax ofiy-terms is one simply tailored to express as a term this kind of approximate
description. Thus, in thé-calculus, the information of Figure 2 is unambiguously encoded
into a formula, perspicuously expressed asikierm:

X : persor{name=> id(first = string,
last= S: string),
spouse= persor{name=> id(last= S),
spouse= X)).

It is important to distinguish among the three kinds of symbols participating/inieam. We

Research Report No. 11 June 1991 (Revised, October 1992)

4 Hassan Ait-Kaci and Andreas Podelski

Figure 2: A commutative functional diagram

assume given a sé& of sorts ortype constructor symbqls setF of features, or attributes
symbols, and a séf of variables(or coreference tags In the-term above, for example, the
symbolspersonid, stringare drawn frons, the symbolsiame first, last, spousdrom F, and
the symbols, Sfrom V. (We capitalize variables, as in Prolog.)

A -term is eithertaggedor untagged A taggedi-term is either a variable iv or an
expression of the forrK : t whereX € V is called the term’soot variableandt is an untagged
¥-term. An untagged-term is eitheatomicor attributed An atomicy-term is a sort symbol
in §. An attributediy-term is an expression of the for$(1€1 =>1t,...,0h=> tn) where the root
variable’s sort symbas € S and is called the)-term’s principal type, thef;’s are mutually
distinct attribute symbols ifF, and thetj’s ares-terms(n > 0).

Variables capture coreference in a precise sense. They are coreference tags and may be viewed
as typed variables where the type expressions are untagtgs. Hence, as a condition to
bewell-formed a-term must have all occurrences of each coreference tag consistently refer

to the same structure. For example, the varidbile:

persor{id = naméfirst = string,
last= X : string),
father= persor{id = namélast= X : string)))

refers consistently to the atomjetermstring. To simplify matters and avoid redundancy, we
shall obey a simple convention of specifying the sort of a variable at most once and understand
that other occurrences are equally referring to the same structure, as in:

persor{id = naméfirst = string,

last= X : string),
father= persor{id = namdlast=- X)))

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 5

Infact, since there may be circular references &sipersor{spouse= persor{spouse= X)),
this convention is necessary. Finally, avariable appearing nowhere typemmﬁ(kind = X)

is implicitly typed by a special greatest initial sort symboalways present i§. This symbol
will be left invisible and not written explicitly as ir(age:> integer, name= string), or
written as the symba@as in@age:> integer, name= string). In the sequel, by-term we
shall always mean well-formeg-term and call such a form(gp)-normal form

Generalizing first-order ternfsy-terms are ordered up to variable renaming. Given that the
setS is partially-ordered (with a greatest elemarn) its partial ordering is extended to the set
of attributedy-terms. Informally, ap-termt; is subsumed by g-termt, if (1) the principal
type oft; is a subtype i of the principal type ofy; (2) all attributes ot, are also attributes

of t; with -terms which subsume their homologues;inand, (3) all coreference constraints
binding int, must also be binding ify.

For example, itudent< personandparis < citynamein S then they-term:

studenid = naméfirst = string,
last= X : string),
livesat = Y : addres$city = paris),
father= persor{id = namélast = X),
livesat = Y))

is subsumed by thg-term:

persor{id = namélast= X : string),
livesat = addresgcity = cityname,
father=- persor{id = naméglast= X))).

In fact, if the setS is such thatgreatest lower bound@GLB’s) exist for any pair of type
symbols, then the subsumption ordering $¥fterm is also such that GLB’s exist. (See
Appendix B for the case when GLB’s are not unique.) Such are defined asiifieationof
two ¥-terms. A detailed unification algorithm fer-terms is given in [5].

Consider for example the poset displayed in Figure 3 and the/tteyms:

X : studenfadvisor= faculty(secretary= Y : staff,
assistant= X),
roommate= employegrepresentative=- Y))

and:

2In fact, if a first-order term is writteri(ts, . .., t,), it is nothing other than syntactic sugar for tieterm
f(l=ty,...,n=ty).

Research Report No. 11 June 1991 (Revised, October 1992)

6 Hassan Ait-Kaci and Andreas Podelski

| staff | | faculty |

Figure 3: A lower semi-lattice of sorts

employegadvisor= f1(secretary=> employee,
assistant= U : persor),
roommate= V : studenfrepresentatives V),
helper= w;(spouse= U)).

Their unification (up to tag renaming) yields the term:

W : workstudyadvisor=> f;(secretary= Z : workstudyrepresentatives Z),
assistant=> W),
roommate= Z,
helper= w; (spouse= W)).

Last in this brief introduction to thé-calculus, we explain type definitions. The concept is
analogous to what a global store of constant definitions is in a practical functional programming
language based oxicalculus. The idea is that types in the signature may be specified to have
attributes in addition to being partially-ordered. Inheritance of attributes from all supertypes to
a subtype is done in accordance witiierm subsumption and unification. For example, given

a simple signature for the specification of linear liSts= {list, cons nil} with nil < list and
cons< list, it is yet possible to specify thabnshas an attribut&il = list. We shall specify

this as:

list := {nil; congtail = list)}.
From which the appropriate partial-ordering is inferred.

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 7

As in thislist example, such type definitions may be recursive. Theannificationmodulo

such a type specification proceeds by unfolding type symbols according to theitiolesin

This is done by need as no expansion of symbols need be done in case of (1) failures due to
order-theoretic clashes.g, cons(tail = Iist) unified withnil fails; i.e., gives_L); (2) symbol
subsumption€.g, consunified withlist gives justcong, and (3) absence of attribute.g,
congtail = cong unified with consgives congtail = cong)). Thus, attribute inheritance

may be done “lazily,” saving much unnecessary expansions [11].

In LIFE, a basia)-term denotes a functional application in FOOL's sense if its root symbolis a
defined function. Thus, functional expressiois either a-term or a conjunction of-terms
denoted byt; : t : ... : t,.3 An example of such iappenc(list, L) . list, whereappends the
FOOL function defined as:

list := {[]: [@list]}.
append(], L : list) — L.
append[H|T : list], L : list) — [H|appendT,L)].

This is how functional dependency constraints are expressedrieam in LIFE. For
example, in LIFE thep-termfoo(bar = X : list,baz= Y : list, fuz= appendX, Y) : list)

is one in which the attributtuzis derived as a list-valued function of the attribubes and

baz Unifying suchy-terms proceeds as before modulo suspension of functional expressions
whose arguments are not sufficiently refined to be provably subsumed by patterns of function
definitions.

As for relational constraints on objects in LIFE yatermt may be followed by asuch-

that clause consisting of the logical conjunction of (relational) lite@ds. . ., C,, possibly
containing functional terms. It is written a9 Cg,...,Cy. Unification of such relationally
constrained terms is done modulo proving the conjoined constraints. We will illustrate this
very intriguing feature with two examplegrime.life (Section 2.5) andjuick.life

(Section 2.4). In effect, this allows specifyildpemonic constraint$o be attached to
objects. Such a (renamed) “daemon-constrained” object’s specified relational and (equational)
functional formula is normalized by LIFE, its proof being triggered by unification at the
object’s creation time.

We give next some LIFE examples.

2.2 Order-sorted logic programming: happy.life

The first example illustrates a use of partially-ordered sorts in logic programmingg-Tdérens
involved here are only atomig-terms;i.e., unattributed sort symbols. This example shows
the advantage of summarizing the extent of a relation with predicate’s arguments ranging over
types rather than individuals.

%In fact, we propose to see the notation_ simply as a dyadic operation resulting in the GLB of its arguments
since, for example, the notatiof: t; : t; is shorthand foi : t1, X : t,. Where the variablX is not necessaryi.€.,
not otherwise shared in the context), we may thus simply rite,.

Research Report No. 11 June 1991 (Revised, October 1992)

8 Hassan Ait-Kaci and Andreas Podelski

Peter, Paul and Mary are students, and students are persons.

student := {peter;paul;mary}.
student <| person.

Grades are good grades or bad grades. A and B are good grades, while C, D and F are bad
grades.

grade := {goodgrade;badgrade}.
goodgrade := {a;b}.
badgrade := {c;d;f}.

Goodgrades are good things.

goodgrade <| goodthing.

Every person likes herself. Every person likes every good thing. Peter likes Mary.

likes(X:person,X).
likes(person,goodthing).
likes(peter,mary).

Peter gota C, Paul an F and Mary an A.

got(peter,c).
got(paul,f).
got(mary,a).

A person is happy if s/he got something that s/he likes, or, if s/he likes something that got a
good thing.

happy(X:person) :- got(X,Y),likes(X,Y).
happy(X:person) :- likes(X,Y),got(Y,goodthing).

To the query happy(X:student)? " LIFE answersX = mary (twice—see why?), then
givesX = peter , then fails. (It helps to draw the sort hierarchy order diagram.)

2.3 Passive constraints: lefun.life

The next three examples illustrate the interplay of unification and interpretable functions. The
first two do not make any specific usepfterms. Again, the first-order term notation is used
as implicit syntax forj-terms with numerical features.

Consider first the following:

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 9

p(X, Y) - aX, Y, Z, 2), r(X, Y).

g(X, Y, X+Y, X*Y).
g(X, Y, X+Y, (X*Y)-14).

r(3, 5).
r2, 2).
r(4, 6).

Upon a query p(X,Y)? '’ the predicatep selects a pair of expressions andY whose
evaluations must unify, and then selects values¥@ndY. The first solution selected by
predicateq sets up the residual equation (esiduation or suspensionthatX + Y = X x Y
(more precisely that botK + Y and X x Y should unify withZ), which is not satisfied by the
first pair of values, but is by the second. The second solution sexs#ip = (X x Y) — 14
which is satisfied bX = 4,Y = 6.

The next two examples show the use of higher-order functions sutiajas

map(@, [I) -> [I.
map(F, [H|T]) -> [F(H)Imap(F,T)].

inc_list(N:int, L:list, map(+(N),L)).

To the queryinc _list(3,[1,2,3,4],L)? " LIFE answersL = [4,5,6,7]

In passing, note the built-in consta@as the primeval LIFE object (formally written) which
approximates anything in the universe.

Note that it is possible, since LIFE usgsterms as a universal object structure, to pass
arguments to functions by keywords and obtain the power of partial application (currying) in
all arguments, as opposedXecalculus which requires left-to-right currying [3]. For example

of an (argument-selective) currying, consider the (admittedly pathological) LIFE program:

curry(V) - V = G(2=>1), G = F(X), valid(F), pick(X), p(sq(V)).
sq(X) -> X*X.

twice(F,X) -> F(F(X)).

valid(twice).

p(1).

id(X) -> X.

pick(id).

What does LIFE answer whercurry(V)? ' is the query? The relatiourry is the
property of a variabl®/ when this variable is the result of applying a variable functidto
the number 1 as its second argument. Bumnust also be the value of applying a variable
functionF to an unknown argumedd The predicat@alid bindsF totwice , and therefore
bindsV to twice(X,1) . Then,pick bindsX to the identity function. Thus, the value
of G, twice(X) , becomeswice(id) and V becomes now bound to 1, the value of

Research Report No. 11 June 1991 (Revised, October 1992)

10 Hassan Ait-Kaci and Andreas Podelski

twice(id,1) . Finally, it must be verified that the square\otinifies with a value satisfying
propertyp.

2.4 Functional programming with logical variables: quick.life

This is a small LIFE module specifying (and thus, implementing) C.A.R. Hoare’s “Quick Sort”
algorithm functionally. This version works on lists which are not terminated pvitkinil) but

with uninstantiated variables (or partially instantiated to a non-minimal list sort). Therefore,
LIFE makes difference-listsona fidedata structures in functional programming.

g_sort(L,order => 0O) -> undlist(dgsort(L,order => 0)).
undlist(X\Y) - > X | Y=[).

dgsort([]) -> L\L.
dgsort([H|T],order => O)
-> (L1\L2) : where
((Less,More) : split(H,T,([],[]),order => O),
(L2\[H|L3]) : dgsort(Less,order => O),
(L3\L2) . dgsort(More,order => 0O)).
where -> @.

split(@,[],P) -> P.
split(X,[H|T],(Less,More),order => O) ->
cond(O(H,X),
split(X,T,([H|Less],More),order => O),
split(X,T,(Less,[H|More]),order => 0O)).

The functiondgsort takes a regular list (and parameterized comparison boolean fui@tion
into a difference-list form of its sorted version (using Quick Sort). The funatioafiist

yields a regular form for a difference-list. Finally, notice the definition and use of the
(functional) constanivhere which returns the most permissive approximati@h (It simply
evaluates its argumenta priori unconstrained in number and sorts) and throws them away.
Here, it is applied to three arguments at (implicit) positions (attribute& pair of lists),

2 (a difference-list), an® (a difference-list). Unification takes care of binding the local
variablesLess , More, L1, L2, L3, and exporting those needed for the result,(L2).

The advantage (besides perspicuity and elegance) is performance: remlaeirg with @
inside the definition oflgsort is correct but keeps around three no-longer needed argument
structures at each recursive call.

Here are some specific instantiations:

number_sort(L:list) -> q_sort(L, order => <).

string_sort(L:list) -> g_sort(L, order => $<).

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 11

such that to the query:

L = string_sort(["is","This","sorted","lexicographically"])?
LIFE answers:

L = ["This","is","lexicographically”,"sorted"].

2.5 High-school math specifications: prime.life

This example illustrates sort definitions using other sorts and constraints on their structure. A
prime number is a positive integer whose number of proper factors is exactly one. This can be
expressed in LIFE as:

posint := Lint | 1>0=true.

prime := P:posint | number_of factors(P) = one.
where:

number_of_factors(N:posint)
-> cond(N<=1,

iz
factors_from(N,2)).

factors_from(N:int,P:int)
-> cond(P*P>N,
one,
cond(R:(N/P)=:=floor(R),
many,
factors_from(N,P+1))).

posint_stream -> {1;1+posint_stream}.

list_all_primes :- write(posint_stream:prime), nl, fail.

As for @ the dual built-in constan§ is the final LIFE object (formally written.) and is
approximated by anything in the universe. Operationally, it just causes failure equivalent to
that due to an inconsistent formula. Any object that is not a non-strict functional expression
(such ascond) in which {} occurs will lead to failure (as an object or the inconsistent
clause as a formula). Also, LIFE’s functions may contain infinitely disjunctive objects such as
streams. For instancppsint _stream is such an object (a O-ary function constant) whose
infinitely many disjuncts are the positive integers enumerated from 1. Or, if a limited stream

is preferred:

Research Report No. 11 June 1991 (Revised, October 1992)

12 Hassan Ait-Kaci and Andreas Podelski

posint_stream_up_to(N:int)
-> cond(N<1,

{3
{1;1+posint_stream_up_to(N-1)}).

list_primes_up_to(N:int)
;- write(posint_stream_up_to(N):prime), nl, fail.

This last example concludes our informal overview of some of the most salient features of
LIFE. Next, with a slight change of speed, we shall undertake casting its most basic components
into an adequate formal frame.

3 Formal LIFE

This section makes up the second part of this paper and sets up formal foundations upon which
to build a full semantics of LIFE. The gist of what follows is the construction of a logical
constraint language for LIFE type structures with the appropriate semantic structures. In the
end of this section, we will use this constraint language to instantiatedh&eli-Smolka CLP
scheme (see Appendix Section A for a summary of the scheme). We hereby give a complete
account essentially of that part of LIFE which makes up LOGIN [5] without type definitions.
Elsewhere, using the same semantic framewaork, we account for type definitions [11] and for
functions as passive constraints [8].

Thus, the point of this section is to elucidate how the core constraint system of LIFE (namely,
1-terms with unification) is an instance of CLP. The main difficulty faced here is the absence
of element-denoting terms singeterms denote sets of values. It is still possible, however, to
compute “answer substitutions,” and we will make explicit their formal meaning. A concrete
representation ofy-terms is given in term of order-sorted featu@s@ graphs. One main
insight is thatOSFgraphs make a canonical interpretation. In addition, they enjoy a nice
“schizophrenic” property:0SFgraphs denoteoth elementsf the domain of interpretation
andsetsof values. Indeed, a@SFgraph may be seen as the generator of a principal filter for
an approximation ordering (namely, of the set of all graphs it approximates). What we also
exhibit is that a most general solution as a variable valuation is immediately extracted from an
OSFgraph. All other solutions are endomorphic refinemeirs {nstantiations) of this most
general one, generating all and only the elements of the set denotation©&thigaph.

Lest the reader, faring through this dense and formal section, feel a sense of loss and fail to see
the forest from the trees, here is a road map of its contents. Section 3.1 introduces the semantic
structures needed to interpret the data structures of LIFE. Then, Section 3.2 describes three
alternative syntactic presentations of these data structures: Section 3.2.1 defines a term syntax,
Section 3.2.2 defines a clausal syntax, and Section 3.2.3 defines a graph syntax. In each case,
a semantics is given in terms of the algebraic structures introduced in Section 3.1. The three
views are important since the term view is the abstract syntax used by the user; the clausal
view is the syntax used in the normalization rules presenting the operational semantics of
constraint-solving; and, the graph view is the canonical representation used for implementation.

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 13

Then, all these syntaxes are formally related thanks to explicit correspondences. Following
that, Section 3.3 shows that each syntax is endowed with a natural ordering. The terms are
ordered by set-inclusion of their denotations; the clauses by implications; and, the graphs by
endomorphic approximation. It is then established in a semantic transparency theorem that
these orderings are semantically preserved by the syntactic correspondences. The last part,
Section 3.4, integrates the previous constructions into a relational language of definite clauses
and ties everything together as an explicit instance of tbbaféld-Smolka CLP scheme.
Section 3.4.1 deals with definite clauses and queries@8eterms; Section 3.4.2 deals with
definite clauses abSFconstraints; and, Section 3.4.3 deals wiid~graphs computed by a

LIFE program.

3.1 The Interpretations: OSF-algebras

The formulae of basic OSF logic atgpe formulaewhich restrict variables to range over
sets of objects of the domain of some interpretation. Roughly, such types will be used as
approximations of elements of the interpretation domains when we may have only partial
information about the element or the domain. In other words, specifying an object to be of
such a type does in no way imply that this object can be singled out in every interpretation.
Furthermore, it will not be necessary to consider a single fixed interpretation domain, reflecting
situations when the domain of discourse can not be specified completely, as is often the case
in knowledge representation. Instead, it can be sufficient to spedifgssof admissible
interpretations. This is done by means afignature We shall consider domains which are
coherently described by classifying symbals.(partially-ordered sorts) and whose elements
may be functionally related with one another through featuresl@bels or attributes). Thus,

our specific signatures will comprise the symbols for sorts and features and regulate their
intended interpretation.

An order-sorted feature signatufer simplyOSFsignature) is a tupléS, <, A, F) such that:

(o]

S is a set okortscontaining the sorts and | ;

< is a decidable partial order @hsuch thatL is the least and" is the greatest element;
(8,<,A) is alower semi-latticesA s’ is called the greatest common subsort of serts
ands');

o Fisthe set ofeature symbols

(o]

(o]

A signature as above has the following interpretation. okder-sorted feature algebréor
simply OSFalgebra) over the signatu(§, <, A, F) is a structure

A= (D4, (") ses, (M) 1er)
such that;

o D4 is a non-empty set, called tlimainof A (or, universe);
o for each sort symbain S, s* is a subset of the domain; in particular* = D and
LA =0;
o the greatest lower boun&(B) operation on the sorts is interpreted as the intersection;

Research Report No. 11 June 1991 (Revised, October 1992)

14 Hassan Ait-Kaci and Andreas Podelski

i.e, (sA)4 =s%n g for two sortssands in S.
o for each featurd in £, ¢4 is a total unary function from the domain into the domain;
ie, (A :DA— DA

Thanks to our interpretation of features as functions on the domain, a natural monoid
homomorphism extends this between the free mofsid ., ¢) and the endofunctions @+

with composition{(D#)(®*) o, Idp4). We shall refer to elements of either of these monoids
as attribute (or feature) compositions.

In the remainder of this paper, we shall implicitly refer to some fixed signdsure, A, F).

The notion of OSFalgebra calls naturally for a corresponding notion of homomorphism
preserving structure appropriately. Namely,

Definition 1 (OSFHomomorphism) An OSFalgebra homomorphism : A +— B between
two OSFalgebrasA and 2 is a functiony : D — D? such that:

o 7(£A(d)) = £8(v(d)) for all d € D#4;
o 'y(SA) C

It comes as a straightforward consequence @®#talgebras together witbSFhomomor-
phisms form a category. We call this categQ8F.

Let D be a non-empty set arfd® € DP),c» anF-indexed family of total endofunctions &f.

To any feature compositian = £1.....L,, n > 0in the free monoidF*, there corresponds a
function composition® = £Ro...0£Din DP (forn = 0,eP = 1p). Then, for any non-empty
subsetS of D, we can construct th&-closureof S the setF*(S) = U, cz- wP(S). Thisis

the smallest set containif@which is closed under feature application. Using this, the familiar
notion of least algebra generated by a set can naturally be giversfealgebras as follows.

Proposition 1 (Least subalgebra generated by a set) Let D be the domain of a@SF
algebraA, then for any non-empty subset S of D, fhelosure of S is the domain g[S, the
leastOSFalgebra subalgebra oft containing S; i.e., BS = F*(S).

Proof: F*(S) is closed under feature application by construction. As for sorts, simply take
A8 = P n F¥(9). Itis straightforward to verify that this forms a subalgebra which is the smallest
containingS.]

3.2 The syntax

3.2.1 OSF-terms

We now introduce the syntactic objects that we intend to use as type formulae to be interpreted
as subsets of the domain of @$Falgebra. Led’ be a countably infinite set of variables.

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 15

Definition 2 (OSFTerm) An order-sorted feature term (0QSFterm) ¢ is an expression of
the form:

1/;:X:S(£l:>’l/)1,...,zn:>’l/1n) (1)

where X is a variable iV, sisasortinS , £4,.. ., £, are features inF, n > 0, andvq, . .., ¥y
are OSKterms.

Note that the equation above includes= 0 as a base case. That is, the simp@SEterms
are of the formX : s. We call the variableX in the aboveOSFterm theroot of ¢ (noted
Roo(d;)), and say thak is “sorted” by the sors and “has attributesty, ..., £,. The set of
variables occurring inj is given byVar(y) = {X} U U;<, Var(t;).

Example 3.1 The following is an example of the syntax of @sF~term.

X : persor{name=> N : T(first = F : string),
name= M : id(last= S: string),
spouse= P : persor{name=> | : id(last= S: T),
spouse= X: T)).

Note that, in general, abSFterm may have redundant attributesy, nameabove), or the
same variable sorted by different somsy, X andSabove).

Intuitively, such anOSFterm as given by Equation 1 is a syntactic expression intended
to denote sets of elements in some appropriate domain of interpretation under all possible
valuations of its variables in this domain. Now, what is expressed [ys#term is that, for

a given fixed valuation of the variables in such a domain, the element assigned to the root
variable must lie within the set denoted by its sort. In addition, the function that denotes
an attribute must take it into the denotation of the corresponding subterm, under the same
valuation. The same scheme then applies recursively for the subterms. Clea$falgebra

forms an adequate structure to capture this precisely as shown next.

Given the interpretatiotd, the denotation[]*** of an OSFterm« of the form given by
equation 1under a valuationx : V — D+ is given inductively by:

[¢14 = {a(X)} n s* n) (&) ([w]*) (2)

1<i<n

where an expression such asl(s), whenf is a function andS is a set, stands for
{x| Iy y=1f(x)}; i.e., denotes the set of all elements whose imagédsdog inS.

Without further context with which variable names may be shared, we shall usually use a
lightened notation foDSFterms whereby any variable occurring without a sort is implicitly
sorted withT and all variables which do not occur more than once are not given explicitly.
This is justified in some manner by o@SFterm semantics is the sense that G®&~term

Research Report No. 11 June 1991 (Revised, October 1992)

16 Hassan Ait-Kaci and Andreas Podelski

recovered from the lightened notation, by introducing a new distinct variable anywhere one is
missing and introducing the sortanywhere a sort is missing, denotes precisely the same set,
irrespective of the name of single occurrence variables.

Example 3.2 Using this light notation, th@SF~term of Example 3.1 becomes:

X : persof{name=> T (first = string),
name=- id(last= S: string),
spouse= persor{name=> id(last= S),
spouse= X)).

Observe that Equation 2 reflects the meaning ofo@#term for only one valuation and
therefore always specifies a singleton or possibly the empty set. Also, note that this definition
does include the base case.(n = 0), owing to the fact that intersection over the empty set

is the universef@{... | 1<i < n} = N0 = DA).

Since we are interested in all possible valuations of the variables in the domainasran
algebra interpretatiod, thedenotationof anOSFtermy = X: s(Zl =>YP1,...,4h > 1/1n) is
defined as theetof domain elements:

[v1*= |J [¥1*~ (3)

aeVal(A)

The syntax ofOSFterm allows some to be in a form where there is apparently ambiguous
or even implicitly inconsistent information. For instance, in tg~term of Example 3.1,

it is unclear what the attributeamecould be. Similarly, ifstring andnumberare two sorts
such thatstring A number= _, it is not clear what thessnattribute is for theOSFterm

X: T(ssn:> string, ssn= numbeb, and whether indeed such a term’s denotation is empty or
not. The following notion is useful to this end.

Definition 3 (¢-term) A normalOSF~terms is of the formy = X: s(Zl =>YP1,..., > ¢n)
where:

o there is at most one occurrence of a variable ¥pisuch that Y is the root variable of a
non-trivial OSFterm (i.e., different than Y T);

o Sis anon-bottom sorti;

o {1,...,4, are pairwise distinct features i&, n > 0,

o 1,...,%nare normalOSFterms.

We call? the set that they constitute.

Example 3.3 One could verify easily that theS~term:

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 17

X : persor{name=> id(first = string,
last= S: string),
spouse= persor{name=> id(last= S),
spouse= X))

is ay-term and always denotes exactly the same set as the one of Example 3.1.

Given an arbitraryOSFterm 1, it is natural to ask whether there existgpaerm ¢’ such

that [¢]* = [¢']# in everyOSFinterpretationd. We shall see in the next subsection that
there is a straightforward normalization procedure that allows either to determine whether an
OSKterm denotes the empty set or produce an equivalelerm form for it.

Before we do that, let us make a few general but important observations @seéuerms.

First, theOSFterms generalize first-order terms in many respects. In particular, if we see a
first-order term as an expression denoting the set of all terms that it subsumes, then we obtain
the special case whef@SFterms are interpreted as subsets of a free term algfébfa V),

which can be seen naturally as a spedi@kalgebra where the sorts form a flat lattice and the
features are (natural number) positions. Recall that the first-order term ndt(ﬁlipn .,tn)

is syntactic sugar for the-term notation‘(l =>t,...,n=> tn).4

Second, observe that since Equation (3) takes the union over all admissible valuations, it
is natural to construe all variables occurring in @8Fterm to be implicitly existentially
guantified at the term’s outset. However, this latter notion is not very precise as it is only
relative toOSFterms taken out of external context. Indeed, it is not quite correct to assume so
in the particular use made of them in definite relational clauses where variables may be shared
among several goals. There, it will be necessary to relativize carefully this quantification to
the global scope of such a clau%exleverthelessassuming no further contexhe OS~term
semantics given above is one in which all variables are implicitly existential. To convince
herself, the reader need only consider the equality: [g]* = s* (which follows since
Uaevaay({a(X)} n s*) = s4). A corollary of this equality, is that it is natural to view
sorts as particular (basi©)SFterms. Indeed, their interpretations as either entities coincide.

Third, another important consequence of this type semantics is that the denotation of an
OSKterm) is the empty set in all interpretationsyf has an occurrence of a variable sorted

by the empty sort..® We shall call anyoSFterm of the formX : L anemptyOSFterm. As
observed above, any empbsFterm denotes exactly the empty set. Dually, it is also clear
that [y] = D in all interpretationsd if and only if all variables iny are sorted byr. If ¢ is

of the formZ : T, we callv atrivial OSFterm

“To render exactly first-order terms, feature positions should be sucr(ﬂ@at . ..,tn)) = t; is defined only
for 1 <i < n. Thatis, feature positions should be partial functions. In our case, they are total sa that then
i(f(tl, . .,tn)) = T. Therefore, the terms that we consider here are “loose” first-order terms.

5See Section 3.4 for precise details.

®As a direct consequence of the universal set-theoretic ideftiffAnB) = f~(A)nf~%(B), for any function
f and set#\, B.

Research Report No. 11 June 1991 (Revised, October 1992)

18 Hassan Ait-Kaci and Andreas Podelski

Fourth, it is important to bear in mind that we treat featurewted functions. There are fine
differences addressing the more general case of partial features and such deserves a different
treatment. We limit ourselves to total features for the sake of simplicilyis is equivalent to

saying that, given a®SFterm,

P = XZS(K]_ = Y,...,h=> ’I/In),
and a variabl& ¢ Var(¢), we have:
[¥14 = [X:s(f1 = ¢, ..o = O, £ = Z: T)] A2

for any feature symbdl ¢ F, anyOSFinterpretationd and valuatiorx € Val(A).

Finally, note that variables occurring in &8Fterm denote essentially an equality among
attribute compositions as made clear by, say:

[X:T(ti=Y: T, 2= Y: T)]4 = {de D*| £(d) = £'(d)}.
This justifies semantically why we sometimes refer to variablepeference tags

3.2.2 OSF-clauses

An alternative syntactic presentation of the information conveyed®iyterms can be given
using logical means as @s~term can be translated into a constraint formula bearing the same
meaning. This is particularly useful for proof-theoretic purposes. A constraint normalization
procedure can be devised in the form of semantics preserving simplification rules. A special
syntactic form calledolved fornrmay be therefore systematically exhibited. This is the key
allowing the effective use of types as constraints formulae in a Constraint Logic Programming
context.

Definition 4 (OSFConstraint) An order-sorted feature constrainO§F~constraint) is an
atomic expression of either of the forms:

o X:S
o X=Y
o Xf=Y

where X and Y are variablesin, sisasortinS, and{ is a feature inF. Anorder-sorted feature
clause OSFclause)p1 & ... & ¢y is a finite, possibly empty conjunction@EF~constraints

¢l:---:¢n (nZ 0)

One may read the three atomic formsagFconstraints as, respectively fies in sorts,” “ X
is equal toY,” and “Y is the feature of X.” The setVar(qS) of (free) variables occurring in an
OSFclauseg is defined in the standard wa@SFclauses will always be considered equal if

"Furthermore, this is what is realized in our implementation prototype [4].

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 19

they are equal modulo the commutativity, associativity and idempotence of conjunction “&.”
Therefore, a clause can also be formalized as the set consisting of its conjuncts.

The definition of the interpretation @iSFclauses is straightforward. JA is anOSFalgebra
anda ¢ VaI(A), thenA, a = ¢, thesatisfactiorof the clausep in the interpretatiopd under
the valuationy, is given by:

(o]

A,al=X:s iff a(X) €st
AjaE=EX=Y iff a(X)=a(Y);

Ao =XL=Y iff £A(a(X)) = a(Y);
Aa=¢& ¢ iff AaEdandA,al= 4.

(o]

(o]

(o]

Note that the empty clause is trivially valid everywhere.

We can associate aDSFtermy = X : s(Zl = P1,...,4h = 1/1n) with a corresponding
OSFclauses(v) as follows:

P(P) =X:S& XL =Y1& ... & Xbn=Yn & ¢(¢1) & ... & ¢(¢n)

whereYs, ..., Y, are the roots of4, . . ., ¥y, respectively. We say that tIQZéSFcIausegb(dz) is
obtained from “dissolving” th©@SFtermq.

Example 3.4 Let ¢ be theOSFterm of Example 3.1. Its dissolved forg(4) is the
following OSFclause:

X:person& X.name =N & N:T & N.first =F & F:string
& X.name =M & M:id & M.last =S & S:string

& X.spouse=P & P :person& P.name =1 & | :id

& | .last =S & S: T

& P.spouse= X & X:T.

Proposition 2 If the OSFcIauseqS(d;) is obtained from dissolving theS~term<), then, for
everyOSFalgebra interpretationd and everyA-valuationea,

(o] 4o — { {a(X)} if A,a E ¢(9),

0 otherwisg

and therefore,

[414 = {a(X) | a € Val(A); A, a = 6()}.

Proof: This is immediate, from the definitions of the interpretation®8~terms andDSFclauses.

Research Report No. 11 June 1991 (Revised, October 1992)

20 Hassan Ait-Kaci and Andreas Podelski

We will now definerooted OSFclauseswhich, when solved, are in one-one correspondence
with OSFterms.

Given anOSFclause¢, we define a binary relation oVar(qS), notedX A Y (read, Y is
reachable fronX in ¢"), and defined inductively as follows. For &l Y € Var(4):

o X KA X;
o X % Yifz % YwhereX.£ = Zis a constraint inp.

A rooted OSFclausegy is anOSFclauseg together with a distinguished variab¥e(called
its root) such that every variabM occurring in¢ is explicitly sorted (possibly a¥ : T),
and reachable frorX. We usegR for the injective () assignment aboted OSFclauses to

OSFktermsy, i.e., ¢R(v) = é(%)roofy)-

Conversely, it is not always possible to assign a (uniqu&fFterm to a (rootedpSFclause
(e.g, X:s& X:9d). However, we see next that such a thing is possible in an important
subclass of roote@SFclauses.

Given anOSFclausep and a variablé& occurring ing, we say that a conjunct i constrains

the variableX if it has an occurrence of a variable which is reachable f#onOne can thus
construct theoSFclauseg(X) which is rooted inX and consists of all the conjuncts f

constrainingk. That is,¢(X) is the maximal subclause gfrooted inX.

Definition 5 (Solved OSF-Constraints) An OSFclauseg is called solvedf for every vari-
able X,¢ contains:

o at most one sort constraint of the form X, with L < s;
o at most one feature constraint of the forn X= Y for each¢; and,
o no equality constraint of the form X Y.

We call® the set of allOSFclauses in solved form, andk the subset o of rooted solved
OSFclauses.

Given anOSFclauseg, it can be normalized by choosing non-deterministically and applying
any applicable rule among the four transformations rules shown in Figure 4 until none applies.
(A rule transforms the numerator into the denominator. The expreg§}otY] stands for the
formula obtained frong after replacing all occurrences ¥ty X. We also refer to any clause

of the formX : | asthefail clause.)

Theorem 1 (OSFClause Normalization) The rules of Figure 4 are solution-preserving,
finite terminating, and confluent (modulo variable renaming). Furthermore, they always result
in a normal form that is either the inconsistent clause o8Fclause in solved form together
with a conjunction of equality constraints.

Proof: Solution preservation is immediate as each rule transforfxS#clause into a semantically
equivalent one.

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 21

¢& X: L
XL

(Inconsistent Sojt

9& X:s&X:¢d

(Sort Intersectioh
d& X:sAS

PEXL=YE&XL=Y

(Feature Decompositign - -
P& XL=Y&E&Y=Y

Variable Eliminati paX=Y if X & V:
(Variable Eliminatior) SXVIE X =Y if X € Var(¢)

Figure 4:0SFClause Normalization Rules

Termination follows from the fact that each of the three first rules strictly decreases the number of
non-equality atoms. The last rule eliminates a variable possibly making new redexes appear. But,
the number of variables in a formula being finite, new redexes cannot be formed indefinitely.

Confluence is clear as consistent normal forms are syntactically identical modulo the least equivalence
on’Y generated by the set of variable equalities.]

Given ¢ in normal form, we will refer to its part in solved form é&mlvec{q&); i.e., ¢ without
its variable equalities.

Example 3.5 The normalization of th@SFclause given in Example 3.4 leads to the solved
OSFclause which is the conjunction of the equality constrélnt M and the following
solvedOSFclause:

X:person& X.name =N & N:id & N.first =F & F:string
& N.last =S & S:string
& X.spouse=P & P:person& P.name =1 & | :id
& l.last = S
& P.spouse= X

Given a rooted solve@SFclausegx, we define th@©SFterm(4x) by:
1/)(¢X) = X: S(Zl = 1/)(¢(Yl))7 .. '7£ﬂ = 1/)(¢(Yﬂ)))7

where ¢ contains the constrairX : s (if there are none of this form given explicitly, we
can assume the implicit existence f. T in ¢, according to our convention of identifying

Research Report No. 11 June 1991 (Revised, October 1992)

22 Hassan Ait-Kaci and Andreas Podelski

OSFkclauses), an&X.f1 = Yi,..., X.£y = Y, are all other constraints i with an occurrence
of the variableX on the left-hand side.

3.2.3 OSF-graphs

We will now introduce the notion afrder-sorted feature grapfOSFgraph) which is closely
related to those of normalS~term and of rooted solvedSFclause. The exact syntactic and
semantic mutual correspondence between these three notions is to be established precisely.

Definition 6 (OSFGraph) The elements g of the domaif Bf the order-sorted feature graph
algebra G are directed labeled graphs, ¢ (N, E, AN, AE, X), whereAy : N — S and
Ae : E — Fare (node and edge, resp.) labelings and X is a distinguished node called the
root, such that:

each node of g is denoted by a variable X, i.eCV;

each node X of g is labeled by a non-bottom sort s,Ag(N) C S — {L};

each (directed) edggX, Y) of g is labeled by a feature, i.Ag(E) C F;

no two edges outgoing from the same node are labeled by the same feature, i.e., if
Ae((X, Y)) = Ae((X,Y")), then Y=Y’ (g is deterministic);

o every node lies on a directed path starting at the root (g is connected).

O O O O

In the interpretatio, the sorts € S denotes the sef of OSFgraphsg whose root is labeled
by a sorts’ such thas' < s; that is,

7 = {g= (N,E, An, A, X) | An(X) < s}

The featurel € F has the following denotation i. Letg = (N, E, A, Ag, X). If there
exists an edgéX, Y) labeled{ for some nodeY of g, thenY is the root ofzg(g), and the
(labeled directed) graph underlyirﬁ@(g) is the maximally connected subgraphgafooted at
the nodeY, g = (N|Y, Ejv, Ans A, Y). If there is no edge outgoing from the rootgfabeled
£ thenzg(g) is thetrivial graph of DY whose only node is the variablg 4 labeledT, where
Z; 4 € V — Nis anew variable uniquely determined by the featiaed the graply; that is, if
L # L org # ¢ thenZ,g # Zp g In summary, ifg = (N, E, Ay, Ag, X), then:

(g (Niv, Ejys Ans Ag, Y) if Ae((X,Y)) = £ for some(X, Y) € E;
g =
({Zl,g}: ®7 {<Zl,g: T>}7 ®7 Zz,g) Wherezl,g € = N: otherwise.

We will present two concise ways of describi@§~graphs. The first one assigns to a normal
OSFtermy a (unique)osFgraphG(y). If ¢ = X : s, thenG(v) = ({X},0,{(X,9},0,X).

If ¢ = X :s(ls = ¢1,...,4n = ¥n), andG(¢i) = (Ni,E, An, Ag, Xi), thenG(y) =
(N, E, An, Ag, X) where:

o N={X}UNzU...UNy;
o E={{XX1),...., X, Xp)} UE1U...UEp;

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 23

S if U=X,
o An(U) = { An(U) iU EN = ({X} U UZIN);
_ Zi ife= <X7Xi>7
0)\E(e) - {)\Ei(e) if ec E.

Conversely, we construct a (unique, norn@§~term 1/;(g) for any OSFgraphg. If Xis the
root ofg € DY, labeled with the so € S, and{y, .. ., £, are the (pairwise distinct) features
in F,n > 0, labeling all the edges outgoing froX) then there exists abSFterm:

¥(g) =X (€1 = ¥(91), -, 4 = ¥(0n))

wheref§ (9) = g1, - ., £9(g) = gn. If, in this recursive construction, the root variaMef
1/;(9’) has already occurred earlier in some predetermined orderifig ¢tien one has to put
Y : T instead of¢(g'). The uniqueness d&(+) follows from the fixed choice of an ordering
over F* for normalOSFterms®

Corollary 1 (Graphical Representation of ¢-Terms) The correspondenceg : DY — ¥
and G: ¥ — DY between normabSFterms ¢-terms) andOSFgraphs are bijections.
Namely,

Goy = 1lpg andypo G = 1g.

Using this one-one correspondence, we can formally characterizehgraph algebra as
follows.

o DY = {G(%) | ¢ is a normaloSFterm};
o f ={G(X:9(...))|s <sh

0 9(G(X: 8ot s))) :{ 28}3 oot) Roo(y) =

o £9(G(¢)) = G(Zy,c(w) : T), otherwise; wher& ¢ Var(y).
Note that, in particulat (G(X : s(£ = X: T))) = G(X:s(¢ = X:T)).
We have defined the following mappings:

’1/1¢Z@R—> '
Ypg:DY —» ¥
G: ¥ — DY
¢ ¥ — PR

somehow “overloading” the notation of mappiwg(= Pyt 1/;(;) to work either on rooted
solvedOSFclauses oOSFgraphs.

It follows that Corollary 1 can be extended and reformulated as:

8Without any loss of genelity, we may assume an ordering dhwhich induces a lexicographical ordering on
F*. We require that, in @aormalOSFterm+ of the form above, the featurds, .. ., £, be ordered, and that the
occurrence of a variablé as root of a non-triviaDSFterm is the least of all occurrences¥in ¢ according to
the ordering orfF*.

Research Report No. 11 June 1991 (Revised, October 1992)

24 Hassan Ait-Kaci and Andreas Podelski

Proposition 3 (Syntactic Bijections) There is a one-one correspondence betwesF
graphs, normaloS~terms, and rooted solve@SFclauses as the syntactic mappings:
(6r+ DY) —» ¥, G: ¥ — DY, and¢ : ¥ — &g put the syntactic domaink, DI, and &g in
bijection. That is,

lg =9YgoG and Goyg = 1ps,

1oy = potpy and 0 ¢ = lyg.

Proof: This is clear from the considerations above. The bijection bet\ZeRgraphs and rooted
solvedOSFclauses can be defined vidsSFterms. Therefore, we shall take the freedom of cutting
the intermediate step in allowing notations suchpég) or G(¢4). It is interesting, however, to see
how a solved clausg with the rootX corresponds uniquely to adSFgraphG(¢x) which is rooted

at the nodeX. A constraintX : s “specifies” the labeling of the nodéby the sorfs, and a constraint
X.£ =Y specifies an edgk, Y) labeled by the featurg If, for a variableZ, there is no constraint of
the formZ : s, then the nod& of G(¢) is labeledT. Conversely, every claugdg) together with the
root X of the OSkgraphg is a rooted solved clause, since the readhglof variables corresponds
directly to the graph-theoretical reacfiafp of nodes.]

As for meaning, we shall presently give three independent semantics, one for each syntactical
representation. Each semantics allows an apparently different formalization of a multiple-
inheritance ordering. We show then that they all coincide thanks to semantic transparency of
the syntactic mappings, ¥, andg.

3.3 OSF-orderings and semantic transparency
Endomorphisms on a givebSFalgebrad induce a natural partial ordering.

Definition 7 (Endomorphic Approximation) On eachOSFalgebra . A a preorderC 4 is
defined by saying that, for two elements d and e4ndjapproximates e,

dC4 e iff y(d) = e for some endomorphism: A A.

We remark that albSFgraphs are approximated by the trivdBF—grath(Z : T) consisting
of one nodeZ labeledT; i.e., for all g € DY, G(Z : T) Cg g. Clearly an endomorphism
~v : DY - DY can be extended from(Z : T) = g by settingy(z : T) = g, if £2(g) = g
and¢f(Z: 1) =z : T for some “new” variablé, etc.. ..

The following results aim at characterizing the solutions of a solved (not necessarily connected)
clause in arDSFalgebra. The essential point is to demonstrate that all solutions iD8aRy
algebra of a set ddSFconstraints can be obtained as homomorphic images from one solution
in one particular subalgebra 0fSFgraphs—the canonical graph algebra inducee by

Definition 8 (Canonical Graph Algebra) Let ¢ be anOSFformula in solved-form. The
subalgebrag[D9%] of the OSFgraph algebrag generated by B? = {G(4(X)) | X €
Var(¢)} of all maximally connected subgraphs of the graph formp &f called the canonical
graph algebra induced by.

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 25

It is interesting to observe that, feranOS~formula in solved-form, the s&9? is almostan
OSFalgebra. More precisely, it is closed under feature application up to trivial graphs, in the
sense that for al € F,£9(g) ¢ D9 = £9(g) = G(Zyq : T). In other words, theéF-closure

of D9¢ adds only mutually distinct trivial graphs with root variables outﬂds(gb).

Definition 9 (¢-Admissible Algebra) Given an OSFclause in solved formp, any OSF
algebraA is said to bep-admissible if there exists som#evaluationa such that4, a |= ¢.

It comes as no surprise that the canonical graph algebra induced by any G8lzethusep
is ¢-admissible, and so is arySFalgebra containing it-&, in particular. The following is a
direct consequence of this fact.

Corollary 2 (Canonical Solutions) Every soIvecDSF—cIauseqb(X) is satisfiable in th@®®SF
graph algebrag under anyg-valuatione such thaia(X) = G(¢(X)).

In other words, according to the observation made above, th®%ét contains all the
non-trivial graphs solutions. In fact, the canonical graph algebra inducgddyeakly initial
in OSF(¢), the full subcategory op-admissibleOSFalgebras. This is expressed by the
following proposition.

Theorem 2 (Extracting Solutions) The solutions of a solve®SFclause ¢ in any ¢-
admissibleOSFalgebra A are given byOSFalgebra homomorphisms from the canonical
graph algebra induced by in the sense that for eaah € VaI(A) such that4, a |= ¢ there
exists anOSFalgebra homomorphism: G [D9%] — A such that:

a(X) = 7(G(¢(x)))-

Proof: Let a be a solution of¢ in A; i.e, such that4,o | ¢. We define a homomorphism
v : G[D9?] — A by settingy(G(#(X))) = «(X), and extending from there homomorphically.
This is possible since the two compatibility conditions are satisfied for any graphG(#(X)).
Indeed, if£9 (g) = ¢, then there are two possibilities: (&) = G(Z : T) whereZ ¢ Var(¢), or (2)

g = G(¢(Y)) for some variablé& occurring ing; namely, in a constraint of the for¢ = Y. Then,
£4(a(X)) = a(Y). This means that for aljy € D9¢ of the formg = G(¢(X)), it is the case that
(€9 (g) = £24(7(9)). If G(#(X)) € & (i.e. if G(¢(X)) is labeled by a sod such that' <), then

¢ contains a constraint of the fork: &, and thereforex(X) € . This means that iy € 7 then
7(g) € s* and the second condition is also satisfiedy(i G(Z : T), then this is trivially true). 1

Some known results are easy corollaries of the above proposition. The first one is a result
in [19], here slightly generalized from so-called set-descriptions to clauses.

9An objecto is weaklyinitial (resp., final) in a category if there is at least one ar@wo — o' (resp.,
a: o — o) for any other objead’ in the category. Weakly initial (resp., final) objects are retessarily mutually
isomorphic. If the objead admitsexactly onesuch arrow, it is initial (resp., final). Initial (resp., final) objects are
necessarily mutually isomorphic.

Research Report No. 11 June 1991 (Revised, October 1992)

26 Hassan Ait-Kaci and Andreas Podelski

For a solved clausé, Theorem 2 can be used to infer that the image of a solution in one
OSFalgebra under a®SFhomomorphism (sufficiently defined) is a solution in the other: If
a € Val(A) with A,a |= ¢ anda’ € Val(B) is defined bya/(X) = y(a(X)) for some

v : A — B, then simply lety’ : G — A be the homomorphism existing according to
Theorem 2 i(e,, such thata(X) = v(G(¢(X)))), and thena'(X) = (v o v') (G(#(X))),

and thusB, o’ |= ¢. This fact, a standard property expected from homomorphisms in other
formalisms, holds also for a not necessarily solved clause.

Proposition 4 (Extending Solutions) Let A and B be two OSFinterpretations, and let
~ . A +— B be anOSFhomomorphism between them. Ikgebe anyOSFclause such that
A, a |= ¢ for someA-valuationa. Then, for any3-valuationg obtained a3 = yo a it is
also the case thas, 8 |= ¢.

Proof: A,a = ¢ means that4, o = ¢' for every atomic constraint conjungt of ¢. If ¢’ is of
the formX.£ = Y, thene® (B(X)) = €8 (v(«(X))) = v (¢4 ((X))) = v(«(Y)) = B(Y). If ¢’ is of
the formX : s, this means thag(X) € s*; and then3(X) = v(«(X)) € s®. Therefore, all atomic
constraints inp are also true iB unders, and so isp. |

Theorem 3 (Weak Finality of G) There exists a totally defined homomorphigritom any
OSFalgebraA into theOSFgraph algebrag.

Proof: For eachd € D* we choose some variab)y € Var to denote a node. There is an edge

(X4, Xar) labeledt if £4(d) = d’. Each nodeXq is labeled with the greatest common subsort of all

sorts such thatl € s* (which exists, since we assungeto be finite). We thus obtain a gragh

whose nodes are denoted by variables and labeled by sorts and whose (directed) edges are labeled
by features. We defing(d) to be theOSFgraph which is the maximally connected subgraplg of

rooted inXyg and whose root iXy. Obviously, we obtain a homomorphism. |

In other words, thedSFgraph algebra; is a weakly final object in the catego@SF of
OSFalgebras wittbOSFhomomorphisms. Therefore, we have the interesting situation where,
if in the OSFalgebraA a solutiona € VaI(A) of an OSFclause¢ exists, it is given by a
homomorphism from th&SFgraph algebrg into .4, and a solution od in G can always be
obtained as the image efunder a homomorphism from into G.

Therefore, we may obtain purely semantically as a corollary the following result due to Smolka
which establishes that tl@SFalgebrag is a “canonical model” foOSFclause logic [18]:

Corollary 3 (Canonicity of G) AnOSFclause is satisfiable iff itis satisfiable in tdSFgraph
algebra.

Proof: This is a direct consequence of Theorem 2 and Theorem 3.]

This canonicity result was originally proven proof-theoretically by Smolka [18], and then by
Dorre and Rounds [14], directly, for the case of feature graph algebras without sorts.

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 27

Corollary 4 (Principal Canonical Solutions) TheOSFgraph G ¢(X)) approximates every
other graph g assigned to the variable X by a solution ofo8Fclause¢; i.e., the solution
a € Val(g), a(X) = G(4(X)) is a principal solution of in the OSFalgebrag.

Proof: This is a specialization of Theorem 2 for the casedof G. |

That is, graph solutions are most general. A related fact—the existence of principal solutions
in the feature graph algebra (without sorts)—has already been proven by Smolka (directly; the
generalization in Theorem 2 seems to be new).

The following fact comes from Proposition 3 for the special case of a rooted So8fedause,
since fromg(G(¢)) = #(¢) and from Proposition 2 we know tha#] 4 = {a(X) | 4,a =
¢(G(v))}. It states that the elements of the set denoted bg$fiterm in anyOSFalgebra
can be obtained by “instantiatingihe element in the set denoted by tlis~term in one
particularOSFalgebra (namely, its principal element).

Theorem 4 (Interpretability of Canonical Solutions) If the normal OSFterm ¢ corre-
sponds to th©SFgraph G(1/;) € DY, then its denotation can be characterized by:

[414 = {7(G(¥)) | v : ¢ — Ais anOSFalgebra homomorphisin (4)

The following corollary expresses the intuitive idea that some of the solutions of a clause are
solutions to stronger clauses (which are obtaineddg#&graph algebra endomorphisnts;
also, Corollary 8).

Corollary 5 (Homomorphic Refinability of Solutions) If the normal OSFterm v corre-
sponds to thedSFgraph g= G(¢) = G(¢(%)), then its denotation can be characterized
by:

[414 = {a(X) | A,a = ¢(v(9)); 7: G — ¢ is an endomorphishn (5)

Proof: The mappingy; : G — A given bye/(X) — «(X) is clearly anOSFalgebra homomorphism;
so is the mapping. : G — G given byG(¢#(X)) — '(X). The homomorphismsg of equation (5)
are of the formys o ;. |

Corollary 6 (-Types as Graph Filters) The denotation of a norm&@SF~term in theOSF
graph algebra is the set of alSFgraphs which the correspondir@sF~graph approximates;
i.e.,

[41° = {G e D7 | G(¢) Cg G}.
Proof: This is a simple reformulation of (4) for the case4t= G. |

Research Report No. 11 June 1991 (Revised, October 1992)

28 Hassan Ait-Kaci and Andreas Podelski

In lattice-theoretic terms, this result characterizes the canonical type denotatignrtefra as
the principal approximation filter generated by its graph form.

We readily obtain the following result established in [14] as an immediate consequence of
Theorem 4.

Corollary 7 (Dorre/Rounds) The approximation relation between two elements d drid d
an OSFalgebra.A can be characterized o@SFterms as:

dC 4 d iff forall OSFtermsy, d’ € [4]* whenever ct []*.

Proof: If v(G(¢)) = d for somey : G — A according to (4) assumingj € []*#, andy'(d) = d’
according to the assumptidri_ 4 d’, for some endomorphissi : A — A, thend’ = (’yo’y’)(G('gb)),
and one can apply (4) again.—In the other direction, the condition @Sfiterms says exactly that
from+(d) = d’ a homomorphic extensien: A — A can be defined. |

Besides the approximation ordering O8F~graphs, there are two other natural partial orders
that can be defined ov@SK~terms anddSkclauses. Namely, subsumption and implication,
respectively.

Definition 10 (OSF-Term Subsumption) Let ands’ be twoOSFterms; theng < ' (“
is subsumedby ¥") iff, for all OSFalgebrasA, [¢]4 C [¢']4.

Definition 11 (OSF-Clause Implication) Let ¢ and ¢’ be two OSFclauses; theng > ¢’
(* ¢ implies ¢'") iff, for all A and a such thatA,a |= ¢, there existsa’ such that
VX € Var(¢) n Var(¢'), o/(X) = a(X) and A, o' = ¢'.

Definition 12 (Rooted OSF-Clause Implication) Letgx andgy, be two rooteddSFclauses
with no common variables; thethx = ¢, iff ¢ = ¢'[X/X'].

Theorem 5 (Semantic Transparency of Orderings) If the normalOSFterms, ¢, the
OSFgraphs g ¢’ and the rooted solve@SFclausesgx, ¢% respectively correspond to one
another through the syntactic mappings, then the following are equivalent statements:

o gCg ¢, “g is a graph approximation of §”
o P < “ ' is a subtype of);”
o @Y% > ox; “ ¢ is true of X whenevey' is true of X;”

o [419 C[¥']19. ‘“the setof graphs filtered by is contained in that filtered by’.”

Proof: This follows from Proposition 2, Theorem 4 and Corollar}f6.]

Ostrictly speaking, ouDSForderings are preorders rather than orderings. It really does not matter, in fact.
Recall that a preorder (reflexive, tréthge) ois a “looser” structure than either an order (anti-symmetric preorder) or

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 29

We want to exhibit the following direct consequence of the above considerations.

Corollary 8 (Endomorphic Entailment) If one rooted solveddSFclause¢ is implied by
another¢’ (¢' > ¢), then it is a homomorphic image of (“more instantiated thag”)in the
following way:

¢ = ¢(v(G(¢')))
for someOSFgraph algebra endomorphism

The following two theorems are immediate and tie back our setting to unification as constraint-
solving and principal solution computation.

Theorem 6 (¢)-Term Unification) Let1 and, be twoy-terms. Letp be the normal form

of the OSFclause¢(v1) & ¢(v2) & Roo(y;1) = Roo(42). Then,¢ is the inconsistent
clause iff their GLB with respect tg is L (i.e., iff their denotations in all interpretations have
an empty intersection). I is not the inconsistent clause, then their GLB (modulo variable
renaming)1 A 12 is given by the normabsSFterm« (Solved)).

Theorem 7 (Computing the LUB of two OSFgraphs) Let g and @ be twoOSFgraphs.
Let g be theOSFgraph, if it exists, given by g= G(Solved#(g1) & ¢(gz))). Then, g is
approximated by both;gand @ and is the principaloSFgraph forCg (i.e., approximating
all other ones) with this property.

3.4 Definite clauses over OSF-algebras

In this section, we assume familiarity with theokféld-Smolka CLP scheme. The reader in
need of background will find all essential material necessary for understanding what follows
in Appendix A.

3.4.1 Definite clauses and queries over OSF-terms

A LIFE program of the form considered here consists of a conjunction of definite cl@uses
overy-terms of the form:

C = r(wo) « ri(v1) & ... & rm(¢m). (6)

We denote byR the set of all relation (predicate) symbols occurring in a given program. For
simplicity of notation, we consider all relation symbols R to be monadic.

Given anOSFalgebraA, an interpretation of the program is a structire = (A, (r*),cr)
consisting of 4 and relations™ over D# interpreting every symbot occurring in the

an equivalence (symmetric preorder). It may be tightened into an order by factoring over its underlying equivalence
(=0 = ono™Y),its “symmetric core.” Then, the quotient set owayis partially ordered by. Hence, if we define,

in all three frameworksequivalences the symmetric core=,) of the corresponding preordéo = C, <, =),

then Theorem 5 extends readily to these equivalence relations, and therefore the quotients are in order-bijection.

Research Report No. 11 June 1991 (Revised, October 1992)

30 Hassan Ait-Kaci and Andreas Podelski

program. Such a structuret extending4 models a definite clausgin the program of the
form of Expression (6) if**(d) holds whenever?(d;) and ... and'#*(dm) holds, for
all elementsd, dy, . .., d, of D such that(d, dy,...,dn) € [{¥o,%1,...,¥n)]* (Where the
notation [¢1, .. .,%n)]* is shorthand fol,cvay 4y [#1] 4> X ... x [a] 4=).

The structureM is a model of the program i1 models every definite claugen the program.
The meaning of a program is the class of minimal models extendinQ3$ralgebras over a
givenOSFsignature-!

A query, or resolvent, is a conjunction of atomic formulae of the fo(ﬂp) and oftyping
constraintsof the formX = ¢, wherer is a relational symbol ang is anOSFterm. Such an
expression has for interpretatiod;, a = X = ¢ if and only if a(X) € [¢]4=.

Definition 13 (LIFE Resolution Rule) A resolvent oveOSFtermsR = R & r(%) reduces
in one resolution step choosing the query conjunct(u')) and the (renamed) program
clauseC = r(¢o) « ri(¢1) & ... & rm(¢m) non-deterministically, to the resolvent
R'= R&ri(y1) & ... & rm(¥m) & X = (¥ A 1), where X= Roo(%).

If the GLB of ¢ andyyg is L (“bottom”), thenR' is equivalent to théail ~ constraint. Iterated
application of this rule yields a derivation sequence of the qReryhe answer to the query

R= ri(¢1) & ... & rm(tm)

computed in a (terminating) derivation sequence is eithefiaihe constraint or a conjunction
of typing constraints

Xy =gl & ... & Xn =, & Z1 =V & ... & Zy = o

Here, X; is the root variable of the quel®SFterm;, as well as of the anws@SFterm ¢’
(which is subsumed by;). TheOSFtermsy|” are rooted in new variablés; i.e., Z; ¢ Var(R).
Allthe new variables are implicitly existentially quantified. We say that “the an®©8&iterms
interpreted inA contain the elementd, . . ., d;,” in order to abbreviate the fact that there exist
elementsd/, ..., d such thatd),...,d,, d7,...,d"% € [(&, ..., 00 &1, ..., "]

Theorem 8 (Correctness of LIFE Resolution) The resolution rule for definite clauses over
OSFKterms is sound and complete.

That is, given the queryi(¢1), ..., (%n), the relations(dy),...,r4*(dn) hold in the
minimal modelM of the program extending th@SFalgebraA for elementsdy, ..., dy in
the sets denoted by the quepgFtermsy, . . ., ¥, if and only if there exists a derivation of
the query yielding an answer such that the ansd&rterms interpreted ipd contains these
elementsd,, ..., dn.

Proof: This is an immediate consequence of Proposition 5, Theorem 9, and Proposition 6 in the next
section. |

"Minimality is with respect to set-inclusion on the relatiaré.

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 31

3.4.2 Definite clauses over OSF constraints

Proposition 5 The definite clausé = r(o) « ri(t1) & ... & rm(¢m) overy-terms has
the same meaning as the following definite clause O&#clause constraints:

r(X) « ri(X) & ... & rm(Xm) & ¢(¥1) & ... ¢(¥m) & (o).

The resolvent ovets-terms (1) & ... & rm(¢m) is equivalent to thedSFconstraint
resolvent §(X1) & ... & rm(Xm) & ¢(¢1) & ... (¢m).

Proof: We do not change the meaning®if we replace it by a definite clause over typing constraints;
i.e., of the form:

X & X =91 & ... Xm=¥m — (rl(Xl)& coe & (X)) — r(X)).
Of course, this clause can be written as the definite clause:
FX) —r1(Xe) & ... & rm(Xm) & X1 = Y1 & ... Xn = Ym & X = 9.

Here, X1, ... , Xy, X can be chosen as the root variables of, respectivgly, ... ,¥m, ¢ or,
equivalently, as new variables. In the first ca§es v is, after dissolving th© SFkterm, exactly the
solvedOSFclauseg(#i) which corresponds (uniquely) t&, and the definite clause becomes the
one in the first statement. The second statement follows similarly.]

Theresolutionrule fobSFconstraint resolvents is stated as follows. TheresoRentR & ¢
reduces tR’ = R& R & ¢ & ¢, by choosing the conjunc(x) in R and the (renamed)
program clause(x) — R & ¢’ non-deterministicallyRandR’ are conjunctions of relational
atoms of the fornt(X), and¢ and¢’ areOSFclauses).

Theorem 9 (Soundness and completeness of OSFconstraint resolution) For every in-
terpretation.A and valuation such that a@SFconstrained resolverR® holds, then so does a
resolvent derived from it. IM is a minimal model of the program, and formulas a solution
of Rin M, then there exists a sequence of reductior® @f a solveddSF~clause constraing
exhibitinga as its solution.

Proof: This follows from instantiating the CLP scheme of [18f.(Appendix Section A). The
role of the constraint language in this scheme is take@®8§+clauses as constraints together with
OSFalgebras as interpretations.

The soundness of the resolution rule is clear: Under every interpretdtiord every valuation such
thatR holds, then so doeR’; i.e,, [R]* C [R]*. Itis also not difficult to prove its completeness:
If M is a minimal model of the program, armdc [R]* is a solution of the formul® in M, then
there exists a sequence of reduction®ad a solveddSFclauseg such thatx € [¢] M.]

Now we can look at the connection with the previous section: ¢d’dbe the solved-form
OSFclause constituting an answer of the query:

R= ri(X1) & ... & rm(Xm) & (1) & ... ¢(¢m)-

Research Report No. 11 June 1991 (Revised, October 1992)

32 Hassan Ait-Kaci and Andreas Podelski

If ¢" is the conjunction of albSFconstraints iy’ constraining the (new) variablées, . . ., Zmy
which are not reachable froMy, . .., X, ¢’ can be written as:

¢(X1) & ... & ¢'(Xn) & ¢"(Z1) & ... & ¢"(Zm).

Let us callyy, ..., ¥, andy?,..., ¥ the normalOSFterms which correspond uniquely to
the rooted solvedSFclauses in this conjunction. Then we say thatcorresponddo the
typing constraintX; = ¢} & ... & Xn = ¢, & Z1 = ¢ & ... & Zn = ¢y, Clearly, the
two constraints are equivalent.

Proposition 6 Every answer of a query over'SFterms (obtained by-term resolution) cor-
responds to an answer of @8Fconstrained query (obtained I®SFconstrained resolution),
andvice versa

Proof: This follows from the above and Theorem 5. |

3.4.3 OSF-graphs computed by a LIFE program

Let us call queryoSFgraphs thos@SFgraphsG(41), . . ., G(4n) which correspond uniquely
to theOSFtermsyy, . . ., ¥, in a queryR. Note that a solution oR in the OSFgraph algebra
G consists 00OSFgraphsg; which (1) approximate the que@skgraphsij.e., g Cg G(1/;i),
and (2) satisfy the relation, that is,ri’"‘(gi) holds in the minimal modeM of the program
extending theDSFalgebrag. Every OSFgraph approximated by a solutione(, lying in its
graph filter,cf. Corollary 6) is also a solution.

Theorem 10 (OSFgraph Resolution and Endomorphic Refinement) Every terminating
non-failing derivation sequence of a queR yields a uniqueOSFgraph algebra endo-
morphismyg. The images of the que@Skgraphs (under these endomorphismg are
principal solutions in th@©SFgraph algebra oR. Every solution of the query is approximated
by one of the principal solutions thus obtained.

More precisely, the images are the principal elements for which the query relations hold in
theOSFgraph algebra, and the principal solutions are given by assigning these elements to the
root variables of the quer@SF~terms.

Proof: Let¢' = ¢'(X1) & ... & ¢'(X,) & ¢ be the solved form of th®SFclauses which is a
resolution-normal form of the quefy = ri(¢1) & ... & rp(¥n). All variables ing” are different
from the ones i’ (X1), .. ., '(Xa) (and existentially quantified).

Since¢’ is the solved form of a conjunction @f(¢1), ... , ¢(¢¥n) and otherOSFclauses (added
successively as conjunctions by the resolution procedure), it is clear that the answer cog'straint
implies the query constraifigr = #(%1), ... ,#(¥n). By applying Theorem 5 one infers that
there exists arOSkgraph algebra homomorphistg : G — G mapping the graph representing
(uniquely) the query constraint on the graph representing (uniquely) the answer conggaint,

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 33

7(G(¢R)) = G(¢'). SinceG(¢(¥i)) = G(¥i), this and the homomorphism property imply that
70(G(¥1)) = G, ..., 70(G(¥n)) = Gn. where we set

Gi= G(¢'(X1))s--,Gn= G(¢'(Xn))-

That is, definite clause resolution computes an endomorphic refinegerithe query arguments,
which is the first statement of the proposition.

From Corollary 4 follows that a valuatiom with a(X;) = G(¢'(X;)) is a principal solution off’.
Note that, sincg is a canonicaDSFalgebrag’ is always satisfiable ig (!).]

Corollary 9 The solutions of a query in theSFalgebra A are exactly the images of the
OSFgraphs which represent the quepsFterms, under the homomorphisms v¢ obtained
by composing a homomorphism: G — A with a homomorphismy from a derivation
sequence as in Theorem 10.

Proof: This follows directly from Theorem 5. If4,« = ¢'—and thus, by the soundness of
the resolution procedured, o |= r1(¥1) & ... & rn(¢n),—then there exists a homomorphism
v : G — Asuch that:

a(X1) =v(G1), ..., a(Xy) = v(Gn),
and the converse holds as well; namely, ev@8~homomorphisng — .4 which is defined on all

of:
G]_, sy Gn

defines a solution in this way, and therefore,

{(7(G1), -, Y(Gn)) | 7:G = A} C {(d,...,dn) | rf'(ch), ..., 17 (dn)}

In other words,

(7 070) (G(#1)), .-, (Yo 70) (G(¥n))) |7 : G — A} C rft x ... x 17t

That is, definite clause resolution computes an endomorphic refineygeott the query
arguments.Any further refinement of this graph “instantiation” through a homomorphjsm

into anOSFalgebrad, model of the program, yields elemeuwts ... , d, in the relations (of

A) denoted by the query predicates as directed by the definite clauses defining the predicates
of the program.

In particular, if the homomorphismy o 49 from the subalgebra generated by the query
OSFgraphs into th@©SFalgebrad can be defined, then the query has a solutiad.in

This leads to an essential difference between query languages over first-order terms (such as
PROLOG) and LIFE, a query language o@sFterms: In the first case, an answer of a query
states the existence of solutions in the initial algebra and, thwdl models of the program.

In the second case, however, an answer of a query ©8&iterms states the existence of
solutions in the (weaklyfinal algebrag of OSFgraphs only.

Research Report No. 11 June 1991 (Revised, October 1992)

34 Hassan Ait-Kaci and Andreas Podelski

4 Conclusion

There are many benefits to seeing LIFE’s constraints algebraically, especially if the view is in
complete and natural coincidence with logical and implementational views. One nice outcome
of this approach is our understanding that sorted and labeled graph-structures used in our
implementation of LIFE’s approximation structures form a particularly usef#-algebra

which happens to be a canonical interpretation (in the sense of Herbrand) for the satisfiability
of OSFclauses. This is important as there is no obvious initiality result, our setting having
no values but only approximations. Indeed, approximation chaisalgebras can very

well be infinitely strictly ascending (getting better and betferand this is the case of our
version presented herealtapproximation chains are non Noetherian! We do not care, as only
“interesting” approximations, in a sense to be made rigorously precise, are of any use in LIFE.

With this generalizing insight, we can give a crisp interpretation of Life’s approximation
structures as principal filters @SFinterpretations for the information-theoretic approximation
ordering(g) derived from the existence adbEF)endomorphisms. Thereby, they may inherit
a wealth of lattice-theoretic results such as that of being closed jﬂide(u), or equivalently,
set-intersectioin) in the type interpretatio(#) with the inclusion orderingC), conjunction

(&) in the logical interpretatio() with the implication ordering >), and graph-unification
(/\) in the canonical (graph) interpretation with the (graph) approximation ordering.

The work we have reported is a step towards a complete semantics of LIFE as suggested
by this article’s title. A full constraint language for LIFE has not been given here. We
have merely laid the formal foundations for computing with partial knowledge in the form

of approximations expressed as relational, functional, or type constraints, and explored their
syntactic and semantic properties as type-theoretic, logical, and algebraic formulations. We
have made explicit that these are in mutual correspondence in the clearest possible way and
thence reconciled many common and apparently different formal views of multiple inheritance.
A full meaning of LIFE is being dutifully completed by us authors in terms of the foundations
cast here and to be reported soon. That includes functional beings, daemons, and many other
unusual LIFE forms [8, 12, 11]. Finally, we must mention that quite a de€amplementation

of a LIFE interpreter for experimentation has been realized by Richard Meyer, and further
completed and extended by Peter Van Roy. It is calléidl_LIFE [4], and is in the process

of being released as public domain software by Digital’s Paris Research Laboratory. We hope
to share it soon with the programming community at large so that LIFE may benefit from the
popular wisdom of real life users, and hopefully contribute a few effective conveniences to
computer programming, then perhaps evolve RéalLIFE.

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 35

Appendix
A The Hohfeld-Smolka Scheme

Recently, Hhfeld and Smolka [15] proposed a refinement of the Jaffar-Lassez’s scheme [16].
It is more general than the original Jaffar-Lassez scheme in that it abstracts from the syntax
of constraint formulae and relaxes some technical demands on the constraint language—in
particular, the somewhat baffling “solution-compactness” requirement.

The Hohfeld-Smolka constraint logic programming scheme requires & set relational
symboldor, predicate symbols) andcanstraint languagé&. It needs very few assumptions
about the languagg, which must only be characterized by:

o V, a countably infinite set ofariables(denoted as capitalized v, . . .);

o &, a set oformulae(denoteds, ¢, . ..) calledconstraints

o a functionVar: & — V, which assigns to every constragthe setVar(¢) of variables
constrained byy;

o a class of “admissibleihterpretations4 over some domaib#;

o the setval(.A) of (A-)valuationsi.e,, total functionsg : V - D4

Thus, £ is not restricted to any specific syntaxpriori. Furthermore, nothing is presumed
about any specific method for proving whether a constraint holds in a given interprefation
under a given valuatioa. Instead, we simply assume given, for each admissible interpretation
A, a function [_]4 : & — 2(Va(4) which assigns to a constraipte & the set p]* of
valuations which we call theolutionsof ¢ under.A.

Generally, and in our specific case, the constrained variables of a congtvé@ihtorrespond
toits free variables, angdlis a solution ot under the interpretatiod if and only if ¢ holds true
in A once its free variables are given valuesAs usual, we shall denote this ad,’a |= ¢.”

Then, giveriR, the set of relational symbols (denoteds, . ..), andL as above, the language
R (L) of relational clausextends the constraint languagas follows. The syntax dR (L)
is defined by:

o the same countably infinite sgtof variables
o the setR($) of formulaep from R(L) which includes:
o all £L-constraintsi.e., all formulaeg in &;
o all relational atoms(Xy, . . ., Xn), whereXy, . .., X, € ¥V, mutually distinct;
and is closed under the logical connectives & (conjunction)-an@mplication);i.e.,
o p1& p2 € R(2) if p1,p2 € R(%);
o p1— p2 € R(@) if p1,p2 € R(@);
o thefunctionvar : R(sﬁ) — V extending the one o# in order to assign to every formula
p the setar(p) of thevariables constrained by:
o Var(r(Xy, ..., %)) = {Xg, .., %};
o Var(p1 & p2) = Var(p1) U Var(p2);
o Var(ps — p2) = Var(p1) U Var(pz);

Research Report No. 11 June 1991 (Revised, October 1992)

36 Hassan Ait-Kaci and Andreas Podelski

o the class of “admissibleihterpretations4 over some domai®“ such that4 extends
an admissible interpretatiodg of £, over the domaid“ = Do by adding relations
rAC DA x ...x DAfor eachr € R;

o the same sefal(A) of valuationsa : V - D4.

Again, for each interpretatiad admissible foR (£), the function [_]4 : R(&) r» 2(val4)
assigns to a formula € R(®) the set p]* of valuations which we call theolutionsof
p underA. It is defined to extend the interpretation of constraint formula¢ ia R(&)
inductively as follows:

o [r(Xe,.., Xn)1#4 = {a| (a(X1), ..., a(Xn)) € rt};
o [p1& p2l* = [p1]* N [p2]*;
o [p1 — p2d™ = (Val(A) — [p2]*) U [p2]*.

Note that anC-interpretationAg corresponds to alR(E)-interpretationA, namely where
r4o = { for everyr € R.

As in Prolog, we shall limit ourselves ttefinite relational clauseis R(£) that we shall write
in the form:

r(X) —ri(X) & ... & rm(Xm) & ¢,

(0 < m), making its constituents more conspicuous and also to be closer to ‘standard’ Logic
Programming notation, where:

o r(X),ri(X1), ..., rm(Xm) are relational atoms iR (£); and,
o ¢ isa conjunction of constraint formulae ih

Given a se€ of definiteR (£)-clauses, aodelof C is anR (£)-interpretation such that every
valuationa : V - D™ is a solution of every formula in C, i.e., [p]™ = Val(M). ltis a
fact established in [15] that ami+interpretation4 can be extended torainimal modelM of
C. Here, minimality means that the added relational structure extemdlisgninimal in the
sense that i’ is another model of, thenr™ C r™M' (C DA x ... x DA) forallr € R.

Also established in [15], is a fixed-point construction. The minimal maddebdf C extending
the L-interpretation.A can be constructed as the limit = |J;»o.Ai of a sequence of

R(L)-interpretations4; as follows. For alf € R we set:

ro = ¢;
rdn = La(x),...,a()) | a € [pl4 ; r(X, ..., %) « p€C};
M = UiZOriA'

A resolventis a formula of the formp [¢, wherep is a possibly empty conjunction of
relational atoms(xl, . .,Xn) (its relational parf) and ¢ is a possibly empty conjunction of
L-constraints (itg€onstraint parj. The symbol | isin fact just the symbol & in disguise. It is
simply used to emphasize which part is which. (As usual, an empty conjunction is assimilated
to true, the formula which takes all arbitrary valuations as solution.)

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 37

Finally, the Hihfeld-Smolka scheme defines constraimesblutionas a reduction rule on
resolvents which gives a sound and complete interpretqrrémramsconsisting of a sef of
definiteR (£)-clauses. The reduction ofresolvent Rof the form:

0B & ... &r(Xg, ., %) & ...Bc | ¢
by the (renamed) program clause:
o r(Xe,.., Xn) = A1 & ... & An& ¢’
is the new resolver®®? of the form:
0Bl & ... & A& ... & An& ...B | $& 4.

The soundness of this rule is clear: under every interpretatiand every valuation such that
R holds, then so doeR, i.e., [R]* C [R]#. Itis also not difficult to prove its completeness:
if M is a minimal model o, anda € [R]™ is a solution of the formul&® in M, then
there exists a sequence of reductions of @{&)-formula) R to an£-constraintp such that

a € [¢]M.

B Disjunctive OSF Terms

A technicality arises ifS is not a lower semi-lattice. For example, given the (non-lattice) set
of sorts:

lemployee | student]

[(ohn] [may]

the GLB of studentand employeds not uniquely defined, in that it could jehn or mary

That is, the set of their common lower bounds does not adng@greatest element. However,
the set of theimaximalcommon lower bounds offers the most general choice of candidates.
Clearly, thedisjunctivetype {john; mary} is an adequate interpretation. In this way, the
OSKterm syntax may be enriched with disjunction denoting type union.

Informally adisjunctiveOSFterm is a set oOSFterms, written{ts; . .. ;t,} where the;’s are
OSFterms. The subsumption ordering is extended to disjunctive (se@sS#fjerms such that

D; < Dy iff Yty € Dy, dt; € D, such thatt; < t,. This informally justifies the convention
that a singletor{t} is the same ag and that the empty set is identified with Unification

of two disjunctiveOSFterms consists in the enumeration of the set of all maxipg#terms
obtained from unification of all elements of one with all elements of the other. For example,
limiting ourselves to disjunctions of atomiSFterms in the context of signature in Figure 3,
the unification of{employegstuden} with {faculty, staff} is {faculty, staff}. It is the set of

Research Report No. 11 June 1991 (Revised, October 1992)

38 Hassan Ait-Kaci and Andreas Podelski

maximal elements of the s¢faculty, staff; L ; workstudy of pairwise GLB’s. In practice, it
is convenient and more effective to allow nesting disjunctions in the structwsmferms.

Formally, the syntax of a disjunctiv@SFterm is:

X {ty; ...t}

whereX € V, thetj’'s are (possibly disjunctive)SFterms, anch > 0. Again, whereX is not
shared in the context, it may be omitted and not written explicitly.

Example B.1 In order to describe a person whose friend may be an astronaut with same
first name, or a businessman with same last name, or a charlatan with first and last names
inverted, we may write such expressions as:

persor{id = naméfirst = X : string,
last = Y : string),
friend = {astronaufid = naméfirst= X))
; businessmafid = namdlast = Y))
; charlatan(id = naméfirst = Y,
last = X))}).

Note that variables may even be chained or circular within disjunctions as in:

persor{partner = P : { crook; F},
friend = F: {artist; P})

which may be used to describe a person whose partner is a crook or whoever his/her friend
is, and whose friend is an artist or whoever his/her partner is. These are no longer graphs
but hypergraphs.

The denotation of a disjunctiv@SFterm in anOSFinterpretation4 with variable valuation
a € Val(A) is simply given by:

[X: {ta;. . ta}] = {a(X)} n UI14 (7)
i=1
and again, as before:
4= U [(8)
aeVal(A)

Observe that with this definition, our syntactic convention dealing with the degenerate cases
that, forn = 0, identifies{} with L, and forn = 1, identifies{t} with t, is now formally
justified on semantic grounds.

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 39

Also, note that in Equation (7), treamevaluation is used in all parts of the union. As a result,

for a givena, [t]“+ still denotes either the empty set or a singleton, eveis & non-degenerate
disjunctive term. This may appear strange as one would expect that variables in disjuncts
that are not shared with the global context be independently valuated. They are, in fact, but
thanks to Equation (8), not Equation (7). Taking, for example; {X : int; X : string},
whereint* = Z is the set of all integers anstring® = S is the set of all finite strings

of ASCII characters, withx and 8 such thata(X) = 1 and 8(X) = “hello” , then

[]4* = {1} U = {1} and []*# = 0 U {“hello” } = {“hello” }. However, as
expected, we do have]j* =Z U S.

Example B.2 The disjunctive term:

P : {charlatan
; persor{id = naméfirst = X : “John”,
last = Y: { “Doe” ; X}),
friend= {P; persor{id = naméfirst = Y,

last = X))})}

describes either a charlatan, or a person named either “John Doe” or “John John” whose
friend is himself, or a person with his first and last names inverted. It doespecify that

that person’s friend is either a charlatan or himself or a person... since it is semantically
equivalent to the term:

{charlatan
;P : persor{id = namdfirst = X: “John”,
last = Y: { “Doe” ; X}),
friend = {P; persor{id = naméfirst = Y,

last = X))}).}

Similarly, OSFclauses are extended to be possibly disjunctive as well. Henc@Sgnlause
is now, either of the following forms:

X:s

X=Y
XL=Y
1 & 92
o $1V 92

whereg1, ¢, areOSFclauses.

O O O O

The interpretation of atomic and conjuncti@SFconstraints is as before; and as for disjunc-
tions, we have simply:

AaE=ove iff AlaEdordal=d.

Research Report No. 11 June 1991 (Revised, October 1992)

40 Hassan Ait-Kaci and Andreas Podelski

oV X:L
(Bottom Eliminatio T
(Distributivity) ¢& (41 ¢2)
(¢ & ¢1) V(¢ & ¢2)

Figure 5: Disjunctive Clause Normalization Rules

Converting fromOSFterms toOSFclauses is done by extending the dissolution mappitam
be:

(X {ty;...;ta}) = (X =Roo(t1) & ¢(t1)) V...V (X = Roo(tn) & ¢(tn)).

Example B.3 Let us reconsider the second term of Example B.1 again. Namely, writing
explicitly all omitted (since unshared) variables:

t = X:persor{partner = P: {C: crook; F},
friend = F: {A:artist;P})

its dissolved form is:

¢(t) = X :person& X.partner=P & ((P=C& C :crook) VP = F)
& X.friend =F& ((F=A&A :artist) v F = P).

Finally, theOSFclause normalization rules are also extended with two additional ones shown
in Figure 5 (making the similar associativity and commutativity conventiong thiat we did

for &), and we leave it as an exercise to the reader to show that these two rules together with
the four rules shown in Figure 4 enjoy a straightforward extension of Theorem 1. Namely,

Theorem 11 (Disjunctive OSFClause Normalization) The sixOSFclause normalization
rules of Figures 4 and 5 are solution-preserving, finite terminating, and confluent (modulo
variable renaming). Furthermore, they always result in a normal form that is either the
inconsistent clause or a disjunction of conjunctd@rclauses in solved form with associated
conjunctions of equality constraints.

Note that the normalization rules of Figure 5 contribute essentially to putting the dissolved form
in disjunctive normal form. In particular, they do not eliminate disjuncts that are subsumed
by other disjuncts in the same disjunction. In the following example, the second and third

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 41

disjuncts are subsumed by the fourth and are therefore non-principal solutions. Only the first
and fourth disjuncts are principal solutions.

Example B.4 Normalizing the dissolved form of Example B.3, we obtain a disjunction of
four conjunctions:

((X :person & X.partner=P & P : crook& P=C
& X.friend =F&F :artist & F = A)

\Y (X s person & X.partner=P & P :artist& P=A
& X.friend =P& P=F)

\Y (X :person & X.partner=P & P : crook& P=C
& X.friend =P& P=F)

v (X : person& X.partner= P
& X.friend =P&P=F)).

Research Report No. 11 June 1991 (Revised, October 1992)

42

Hassan Ait-Kaci and Andreas Podelski

References

1.

10.

11.

Hassan A-Kaci. A Lattice-Theoretic Approach to Computation Based on a Calculus
of Partially-Ordered Types PhD thesis, University of Pennsylvania, Philadelphia, PA
(1984).

Hassan A-Kaci. An algebraic semantics approach to the effective resolution of type
equationsTheoretical Computer Sciencé5:293-351 (1986).

Hassan A-Kaci and Jacques Garrigue. Label-selectiwealculus. PRL Research
Report 31, Digital Equipment Corporation, Paris Research Laboratory, Rueil-Malmaison
(1993). (A short version is to appear in tiroceedings of the 13th International
Conference on Foundations of Software Technology and Theoretical Computer Science
Bombay, India, December 1993.).

. Hassan A-Kaci, Richard Meyer, and Peter Van Roy. WIFE, a user manual.

PRL Technical Report (forthcoming), Digital Equipment Corporation, Paris Research
Laboratory, Rueil-Malmaison, France (1993).

. Hassan #-Kaci and Roger Nasr. LOGIN: A logic programming language with built-in

inheritance.Journal of Logic Programming3:185-215 (1986).

Hassan A-Kaci and Roger Nasr. Integrating logic and functional programmicigp
and Symbolic Computatio@:51-89 (1989).

Hassan A-Kaci, Roger Nasr, and Patrick Lincoln. Le Fun: Logic, equations, and
Functions. IrProceedings of the Symposium on Logic Programming (San Franciscp, CA)
pages 17-23, Washington, DC (1987). IEEE, Computer Society Press.

Hassan A-Kaci and Andreas Podelski. Functions as passive constraints in LIFE. PRL
Research Report 13, Digital Equipment Corporation, Paris Research Laboratory, Rueil-
Malmaison, France (June 1991). (Revised, November 1992).

Hassan &-Kaci and Andreas Podelski. Towards ameaning oflife. In Jan Mahskiahd
Martin Wirsing, editorsProceedings of the 3rd International Symposium on Programming
Language Implementation and Logic Programming (Passau, Germpagks 255-274.
Springer-Verlag, LNCS 528 (August 1991).

Hassan A“Kaci and Andreas Podelski. Towards a meaning of LIB&Rurnal of Logic
Programming 16(3-4):195-234 (July-August 1993).

Hassan A“Kaci, Andreas Podelski, and Seth Copen Goldstein. Order-sorted feature
theory unification. PRL Research Report 32, Digital Equipment Corporation, Paris
Research Laboratory, Rueil-Malmaison, France (1993). (To appear Rrdkceedings of

the International Symposium on Logic Programmifi¢ancouver, BC, Canada, October
1993), edited by Dale Miller, and published by MIT Press, Cambridge, MA.).

June 1991 (Revised, October 1992) Digital PRL

Towards a Meaning of LIFE 43

12.

13.

14,

15.

16.

17.

18.

19.

Hassan A-Kaci, Andreas Podelski, and Gert Smolka. A feature-based constraint system
forlogic programming with entailment. PProceedings of the 5th International Conference

on Fifth Generation Computer Systenmages 1012-1022, Tokyo, Japan (June 1992).
ICOT.

William F. Clocksin and Christopher S. Melligarogramming in Prolog Springer-Verlag,
Berlin, Germany, 2nd edition (1984).

Jochen brire and William C. Rounds. On subsumption and semiunification in feature
algebras. InProceedings of the 5th Annual IEEE Symposium on Logic in Computer
Science (Philadelphia, PApages 301-310, Washington, DC (1990). IEEE, Computer
Society Press.

Markus Hbhfeld and Gert Smolka. Definite relations over constraint languages. LILOG
Report 53, IWBS, IBM Deutschland, Stuttgart, Germany (October 1988).

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programmiRgpdeedings of the
14th ACM Symposium on Principles of Programming Langualesiich, W. Germany
(January 1987).

Richard O’KeefeThe Craft of Prolog MIT Press, Cambridge, MA (1990).

Gert Smolka. A feature logic with subsorts. LILOG Report 33, IWBS, IBM Deutschland,
Stuttgart, Germany (May 1988).

Gert Smolka. Feature constraint logic for unification grammamurnal of Logic
Programming 12:51-87 (1992).

Research Report No. 11 June 1991 (Revised, October 1992)

PRL Research Reports

The following documents may be ordered by regular mail from:

Librarian — Research Reports
Digital Equipment Corporation
Paris Research Laboratory

85, avenue Victor Hugo

92563 Rueil-Malmaison Cedex
France.

It is also possible to obtain them by electronic mail. For more information, send a
message whose subject linehislp to doc-server@prl.dec.com or, from
within Digital, to decprl::doc-server

Research Report 1: Incremental Computation of Planar Maps. Michel Gangnet, Jean-
Claude Hervé, Thierry Pudet, and Jean-Manuel Van Thong. May 1989.

Research Report 2: BigNum: A Portable and Efficient Package for Arbitrary-Precision
Arithmetic. Bernard Serpette, Jean Vuillemin, and Jean-Claude Hervé. May 1989.

Research Report 3: Introduction to Programmable Active Memories. Patrice Bertin, Didier
Roncin, and Jean Vuillemin. June 1989.

Research Report 4: Compiling Pattern Matching by Term Decomposition. Laurence Puel
and Ascander Suarez. January 1990.

Research Report 5: The WAM: A (Real) Tutorial. Hassan Ait-Kaci. January 1990.1

Research Report 6: Binary Periodic Synchronizing Sequences. Marcin Skubiszewski. May
1991.

Research Report 7: The Siphon: Managing Distant Replicated Repositories. Francis J.
Prusker and Edward P. Wobber. May 1991.

Research Report 8: Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
A-Calculi. Jean Gallier. May 1991.

Research Report 9: Constructive Logics. Part Il: Linear Logic and Proof Nets. Jean Gallier.
May 1991.

Research Report 10: Pattern Matching in Order-Sorted Languages. Delia Kesner. May
1991.

TThis report is no longer available from PRL. A revised version has now appeared as a book: “Ha$&oi,A”
Warren's Abstract Machine: A Tutorial Reconstruction. MIT Press, Cambridge, MA (1991).”

Research Report 11: Towards a Meaning of LIFE. Hassan Ait-Kaci and Andreas Podelski.
June 1991 (Revised, October 1992).

Research Report 12: Residuation and Guarded Rules for Constraint Logic Programming.
Gert Smolka. June 1991.

Research Report 13: Functions as Passive Constraints in LIFE. Hassan Ait-Kaciand Andreas
Podelski. June 1991 (Revised, November 1992).

Research Report 14: Automatic Motion Planning for Complex Articulated Bodies. Jéréme
Barraquand. June 1991.

Research Report 15: A Hardware Implementation of Pure Esterel. Gérard Berry. July 1991.

Research Report 16: Contribution a la Résolution Numérique des Equations de Laplace et
de la Chaleur. Jean Vuillemin. February 1992.

Research Report 17: Inferring Graphical Constraints with Rockit. Solange Karsenty, James
A. Landay, and Chris Weikart. March 1992.

Research Report 18: Abstract Interpretation by Dynamic Partitioning. Frangois Bourdoncle.
March 1992.

Research Report 19: Measuring System Performance with Reprogrammable Hardware.
Mark Shand. August 1992.

Research Report 20: A Feature Constraint System for Logic Programming with Entailment.
Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka. November 1992.

Research Report 21: The Genericity Theorem and the Notion of Parametricity in the Poly-
morphic A-calculus. Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev. December
1992.

Research Report 22: Sémantiques des langages impératifs d’ordre supérieur et interprétation
abstraite. Frangois Bourdoncle. January 1993.

Research Report 23: Dessin a main levée et courbes de Bézier : comparaison des al-
gorithmes de subdivision, modélisation des épaisseurs variables. Thierry Pudet. January
1993.

Research Report 24: Programmable Active Memories: a Performance Assessment. Patrice
Bertin, Didier Roncin, and Jean Vuillemin. March 1993.

Research Report 25: On Circuits and Numbers. Jean Vuillemin. November 1993.

Research Report 26: Numerical Valuation of High Dimensional Multivariate European Secu-
rities. Jérdbme Barraquand. March 1993.

Research Report 27: A Database Interface for Complex Objects. Marcel Holsheimer, Rolf A.
de By, and Hassan Ait-Kaci. March 1993.

Research Report 28: Feature Automata and Sets of Feature Trees. Joachim Niehren and
Andreas Podelski. March 1993.

Research Report 29: Real Time Fitting of Pressure Brushstrokes. Thierry Pudet. March
1993.

Research Report 30: Rollit: An Application Builder. Solange Karsenty and Chris Weikart.
April 1993.

Research Report 31: Label-Selective A-Calculus. Hassan Ait-Kaci and Jacques Garrigue.
May 1993.

Research Report 32: Order-Sorted Feature Theory Unification. Hassan Ait-Kaci, Andreas
Podelski, and Seth Copen Goldstein. May 1993.

Research Report 33: Path Planning through Variational Dynamic Programming. Jéréme
Barraquand and Pierre Ferbach. September 1993.

Research Report 34: A Penalty Function Method for Constrained Motion Planning. Pierre
Ferbach and Jérome Barraquand. September 1993.

Research Report 35: The Typed Polymorphic Label-Selective A-Calculus. Jacques Garrigue
and Hassan Ait-Kaci. October 1993.

Research Report 36: 1983—-1993: The Wonder Years of Sequential Prolog Implementation.
Peter Van Roy. December 1993.

Research Report 37: Pricing of American Path-Dependent Contingent Claims. Jéréme
Barraquand and Thierry Pudet. January 1994.

Research Report 38: Numerical Valuation of High Dimensional Multivariate American Secu-
rities. Jérdbme Barraquand and Didier Martineau. April 1994.

dliloli[tlall

PARIS RESEARCH LABORATORY

85, Avenue Victor Hugo
92563 RUEIL MALMAISON CEDEX
FRANCE

LT

I)S|9p0d Sealpuy pue 1oey-11y uesseH
3417 Jo Buluea|y e spiemo |

