
PARIS RESEARCH LABORATORY

d i g i t a l

July 1991

15

Gérard Berry

A Hardware Implementation
of Pure Esterel

15

A Hardware Implementation
of Pure Esterel

Gérard Berry

July 1991

Publication Notes

Author’s address:

Gérard Berry
Ecole des Mines
Sophia-Antipolis
06565 Valbonne, France

e-mail: berry@cma.cma.fr, berry@prl.dec.com

Paper presented at the 1991 International Workshop on Formal Methods in VLSI Design,
Miami, Florida, January 1991.

c
 Digital Equipment Corporation 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe, in
Rueil-Malmaison, France; an acknowledgement of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Paris Research Laboratory. All rights reserved.

ii

Abstract

Esterel is a synchronous concurrent programming language dedicated to reactive systems
(controllers, protocols, man-machine interfaces, etc.). Esterel has an efficient standard
software implementation based on well-defined mathematical semantics. We present a new
hardware implementation of the pure synchronization subset of the language. Each program
generates a specific circuit that responds to any input in one clock cycle. When the source
program satisfies some statically checkable dynamic properties, the circuit is shown to be
semantically equivalent to the source program. The hardware translation has been effectively
implemented on the programmable active memory Perle developed by J. Vuillemin and his
group at Digital Equipment Paris Research Laboratory.

Résumé

Esterel est un langage de programmation synchrone con¸cu pour la programmation des
systèmes réactifs: contrˆoleurs, protocoles, interfaces homme-machine, etc. Esterel poss`ede
une implémentation logicielle compl`ete fondée sur sa s´emantique math´ematique. Cet article
présente une nouvelle impl´ementation mat´erielle du sous-ensemble d’Esterel restreint `a la
synchronisation pure. Chaque programme est traduit structurellement en un circuit sp´ecifique
qui répond à toute entr´ee en un cycle d’horloge. La traduction est d´emontrée correcte
sous réserve que le programme satisfasse une condition testable statiquement. La traduction
matérielle d’Esterel a ´eté effectivement impl´ementée, et des exp´erimentations ont ´eté conduites
sur la mémoire active programmable Perle d´eveloppée au Laboratoire de Recherche de Digital
Equipmentà Paris (PRL) par Jean Vuillemin et son ´equipe.

iii

Keywords

Circuits, logic synthesis, synchronous programming, Esterel.

Acknowledgements

This work was motivated by discussions with Jean Vuillemin and Patrice Bertin from DEC
Paris Research Laboratory. It owes much to the work of Georges Gonthier (INRIA) on the
semantics of Esterel. The actual implementation on Perle0 was done at DEC PRL under
the supervision of Patrice Bertin, who provided unvaluable help. The experiments with
BDD optimizers were conducted by Herv´e Touati (DEC PRL), and by Olivier Coudert and
Jean-Christophe Madre (BULL CRG).

iv

Contents

1 Introduction 1

2 Pure Esterel 3
2.1 Signals and Events : 3
2.2 Modules : 4
2.3 Kernel Statements : 4
2.4 The Intuitive Semantics : 5
2.5 Examples : 7
2.6 Full Esterel : 8

3 The Behavioral Semantics 10
3.1 Form of the Rules : 10
3.2 Inductive Rules : 11
3.3 Correct Programs : 14

4 The Haltset Coding of States 15
4.1 Haltsets : 16
4.2 Recovering derivative from haltsets : : : : : : : : : : : : : : : : : : : 18

5 Principle of the Hardware Implementation 20
5.1 A First Example : 21
5.2 Translating Parallel and Exceptions : : : : : : : : : : : : : : : : : : : 24
5.3 Summary of the Translation : 27
5.4 Optimization : 28
5.5 The Translation is Sometimes Incorrect : : : : : : : : : : : : : : : : : 28

6 The Formal Translation to Hardware 29
6.1 Circuits : 29
6.2 The Translation Environment : 30
6.3 The Translation Rules : 31

7 Correctness of the translation 33

8 Implementation 36
8.1 Actual Implementation on Perle0 : 36
8.2 Simulation and Correctness Proofs : : : : : : : : : : : : : : : : : : : 37

9 Conclusion 37

References 43

v

A Hardware Implementation of Pure Esterel 1

1 Introduction

Esterel [3, 4, 5, 10] is a synchronous programming language devoted toreactive systems,
that is to systems that maintain a continuous interaction with their environment by handling
hardware or software events. Its software implementation is currently used in industry and
education to program software objects such as real-time controllers, communication protocols
[6, 23], man-machine interfaces [14], systems drivers, etc. In this paper, we present a hardware
implementation of the pure synchronization subset of the language that builds a specific
circuit for each program. We prove the correctness of this implementation with respect to the
mathematical semantics of the language under some conditions to be satisfied by the source
program. We describe the experiments made so far and the possible uses of the hardware
implementation.

The Perfect Synchrony Hypothesis

Esterel is an imperative concurrent language with very high-level control and event
manipulation constructs. It is based on aperfect synchrony hypothesis[2], which states that
control transmission, communication, and elementary computation actions take no time, or,
in other words, that the program is conceptually executed on an infinitely fast machine. The
control structures include sequencing, testing, looping, concurrency, and a powerful exception
mechanism which is fully compatible with concurrency, unlike in asynchronous concurrent
programming languages [1]. The primitive communication device between concurrent
statements isinstantaneous broadcastingof signals.

The perfect synchrony hypothesis is shared by the synchronous data-flow languagesLustre

[12, 20] andSignal [17, 19]. It makes programming very modular and flexible, and it makes
it possible to reconcile input-output determinism and concurrency. This is a great benefit
over classical asynchronous languages such asOccam or Ada that are inherently non-
deterministic, a characteristic that makes reactive programming and debugging needlessly
difficult, as explained in [1].

Esterel is rigorously defined by well-analyzed mathematical semantics, given in both
denotational and operational styles [5, 18].

Esterel in Software

The standardEsterel compiler is directly based on one of the mathematical semantics.
It uses sophisticated algorithms to translate a concurrent reactive program into an equiva-
lent efficient sequential automaton that can be implemented in any conventional language.
Concurrency is compiled away during this process. The resulting automaton can be directly
run by actual applications. In addition to the compiler, theEsterel environment includes
sophisticated tools such as symbolic or graphical simulators and interfaces to automata-based
program verification systems such asAuto [9].

Research Report No. 15 July 1991

2 Gérard Berry

Esterel in Hardware

Since many CAD systems directly support automata-like specifications,Esterel programs
can be implemented in hardware by first translating them into automata using the standard
compiler. However, this indirect translation looses most of the source concurrent structure.
This is usually a good idea in software, where run-time concurrency is in fact expensive,
but not in hardware, where concurrency is free and should be used as much as possible.
Furthermore, there is no simple relation between the source program size and the size of the
generated automaton. In the worst case, the automaton size can be exponential in the source
program size, and square factors are not rare. Again, this is much more acceptable in software
than in hardware.

The direct hardware implementation we present here is conceptually much better; it is based
on on Gonthier’s semantic analysis ofEsterel [18]. It transforms each program into a digital
circuit that exactly reflects the source concurrency and communication structure. The circuit
computes the response to any input within exactly one clock cycle, however complex the
program is. The translation is purely structural (compositional) and linear in size. However, it
is at present limited to the pure synchronization subset of the language, which we callPure

Esterel, and it works only under some restrictive conditions to be satisfied by the source
program.

The translation is completely formalized and proved correct with respect to the mathematical
semantics under the above restrictive conditions. Correctness relies on the fact that perfect
synchrony does not depart very much from digital circuit synchrony: zero-time is simply
replaced by one cycle.

Actual Implementation and Applications

The translation from programs to circuits has been implemented within the existingEsterel

compiler. We have run very successful experiments using theXilinx
TM-basedPerle0

programmable coprocessor developed at DEC Paris Research Laboratory by J. Vuilleminet.
al. [8, 25].

We are currently investigating two kinds of applications:

� Implementing existingEsterel programs in hardware to match high performance
constraints. For example, we have directly implemented the kernel of a fast local area
network protocol that was developed in Esterel at INRIA [22].

� Programming hardware controllers inEsterel. The language turns out to be well-
adapted to programming the control part of a circuit, which is known to be difficult and
error-prone with usual techniques. We show a toy example in Appendix A.

The fact that the language can be implemented either in software or in hardware is useful
in two respects: one can use the software programming environment to develop, debug, and

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 3

verify the programs; one can experiment various trade-offs between hardware and software
without changing the source code.

Esterel and Lustre

TheLustre synchronous language has also been implemented on hardware at DEC PRL,
and the implementations ofEsterel andLustre are fully compatible1. It has to be noted
that both languages differ from most existing hardware description languages by the fact that
they deal only withbehaviorsand not with hardware objects, and also by the care with which
they were mathematically defined and studied. To describe circuits,Lustre andEsterel are
complementary:Lustre is well-adapted to data path description,Esterel is well adapted
to control automata.

Structure of the Paper

Section 2 presents the pureEsterel language and its intuitive semantics. We give
enough material for the paper to be self-contained, but not to fully understand theEsterel

programming style, referring to [4, 5] and to theEsterel documentation for these aspects.
The mathematical semantics ofPure Esterel is given in Section 3. Section 4 presents an
essential part of the theory ofEsterel, the coding of states by haltsets. This coding is the
root of the hardware translation, whose principle is presented by examples in Section 5. The
translation is then formalized in Section 6 and proved correct in Section 7. We discuss the
actual implementation onPerle0 in Section 8 and conclude. An appendix gives the example
of a simple bus interface and briefly analyzes the adequacy ofEsterel to program hardware
controllers.

2 Pure Esterel

We first present signal and events which are the basic objects manipulated byPure

Esterel programs. We then present the kernel language on which the semantics is defined
and the full language that includes kernel-definable user-friendly statements.

2.1 Signals and Events

Pure Esterel deals withsignalsS;S1; . . . and witheventsE;E1; . . . that are sets of
simultaneous signals. A signal that belongs to an event is said to bepresentin that event,
otherwise it is said to beabsent.

The execution of a program associates a sequence of output events with any sequence of
input events. The program repeatedly receives aninput eventEi from its environment and
reacts by building anoutput eventE 0

i. ThatEi andE0
i are synchronous is expressed by the

1A byproduct of our work is a translator from pureEsterel into Lustre.

Research Report No. 15 July 1991

4 Gérard Berry

fact that any external observer observes asingleeventEi [E0
i. This is in particular true of

any other program placed in parallel.

The production of an output event from an input event is called areaction. The flow of time
being entirely defined by the sequence of reactions, we also call a reaction aninstant. This
gives sense to temporal expressions such as “instantaneously” or “immediately”, which mean
“at the same instant”, or “from then on”, which means “after the current instant included”, or
“in the strict future”, which means “after the current instant excluded”.

We assume that each input event contains a special signaltick , which is therefore present
at all instants. This addition to the original language defined in [5] is now supported by the
Esterel implementation. Thetick signal is analogous to the constant 1 in circuits or the
constanttrue in Lustre. When programming digital circuits, it will naturally denote clock
ticks.

2.2 Modules

The basicPure Esterel programming unit is themodule. A module has aninterface,
which specifies its input signalsI ; I1 ; . . . and its output signals Ø;O1; . . ., and abody, which
is a statement that specifies its behavior2. The body can use any number of local signals for
internal broadcast communication. To achieve modular programming, a module can instantiate
other modules as described later on. Here is a sample module definition:

module M:
input I1 , I2;
output O1;
statement.

2.3 Kernel Statements

The primitive orkernelPure Esterel statements are:

nothing
halt
emit S
stat1; stat2
loop statend
present S then stat1 else stat2 end
do statwatching S
stat1 || stat2
trap T in statend
exit T
signal S in statend

2There are also input-output signals, ignored here for simplicity.

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 5

One can use brackets ‘[’ and ‘] ’ to group statements; by default, ‘; ’ binds tighter than
‘ || ’. Both then andelse parts are optional in apresent statement. If omitted, they are
supposed to benothing .

The statements are imperative and manipulate controls and signals. Most of them are
classical in appearance. Thetrap -exit mechanism is a exception mechanism fully
compatible with parallelism. Traps are lexically scoped.

The local signal declaration “signal S in statend ” declares a lexically scoped signalS
that can be used for internal broadcast communication withinstat.

2.4 The Intuitive Semantics

The intuitive semantics deals with control transmission between statements and with signal
broadcasting. A statement canstart at some instant and remainactiveuntil it releases the
control at some further instant, either by terminating or by exiting a trap. After termination or
exit, a statement becomes inactive. A statement that terminates or exits at the same instant it
starts is said to beinstantaneous. When an active statement does not terminate and exits no
trap at an instant, it is said tohalt at that instant.

The intuitive semantics is defined by structural induction on statements:

� nothing terminates instantaneously.

� halt never terminates nor exits. It always halts.

� An “emit S ” statement broadcasts the signalS and terminates instantaneously.

� When started, a sequence “stat1; stat2” immediately startsstat1 and behaves as it. If
and whenstat1 terminates,stat2 starts immediately and determines the behavior of the
sequence from then on. If and whenstat1 exits a trapT, so does the whole sequence,
stat2 being never started in this case. Notice thatstat2 is also never started ifstat1
always halts. Notice also that “emit S1; emit S2 ” emitsS1 andS2 simultaneously
and terminates instantly.

� A loop acts as an infinite sequence. When started, “loop stat end ” immediately
starts its bodystat. When the body terminates, it is immediately restarted. If the body
exits a trap, so does the whole loop. The body of a loop is not allowed to terminate
instantaneously when started.

� When a “present S then stat1 else stat2 end ” statement starts, it starts immediately
stat1 if S is present in the current instant andstat2 if S is absent. Thepresent statement
then behaves as the corresponding branch.

� The “do statwatching S ” watchdog statement starts immediately its body and behaves
as it until thetime guardS occurs.

Research Report No. 15 July 1991

6 Gérard Berry

– If stat terminates or exits a trap strictly beforeS occurs, then thewatching
statement instantaneously terminates or exits the same trap.

– If, in the strict future of the starting instant,S occurs whilestat is still active, then
the watching statement terminates instantaneously and killsstat, which is not
activated in the corresponding instant.

Notice two boundary problems: the guard becomes active only at thenext instant
following the starting instant; the body isnotactivated when the time guard elapses. As
we shall see below, all other possibilities can be derived by combining kernel statements,
which would not be true with another choice forwatching .

� When started, a parallel statement “stat1 || stat2” immediately startsstat1 andstat2 in
parallel. A parallel terminates instantly if and when bothstat1 andstat2 are terminated;
they can terminate at different instants, the parallel waiting for the last one to terminate.
If, at some instant, one statement exits a trapT or both statements exit the same trapT,
then the parallel exitsT. If both statements exit distinct trapsT1 andT2 at the same
instant, then the parallel only exits theoutermostof these traps, the other one being
discarded.

� The statement “trap T in stat end ” defines a lexically scoped trapT within stat.
When thetrap statement starts, it starts immediately its bodystat and behaves as it
until termination or exit. If the body terminates, so does thetrap statement. If the
body exitsT, then thetrap statement terminates instantaneously. If the body exits an
enclosing trapU, so does thetrap statement (traps propagate).

� An “exit T ” statement instantaneously exits the trapT.

� When started, the statement “signal S in statend ” starts immediately its bodystat
with a fresh signalS, overriding the one that may already exist. The statement behaves
as its body from then on.

A globalcoherence lawrelates signal emission and testing:

A signal is present at an instant if and only if it is received as input by the
environment or emitted by the program itself at that instant.

Remarks:

Notice that an emission is transient, and that there is an asymmetry between present and
absent signals. There is anemit statement to set a signal present, but no statement to set it
absent: by the coherence law, this is just the default.

Notice also that a loop never terminates by itself; the only way to end it is to kill it by
elapsing an enclosing time guard or by explicitly exiting an enclosing trap from within the
loop or from a statement placed in parallel with the loop.

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 7

Finally, notice that exiting one branch of a parallel terminates instantaneously the corre-
spondingtrap and therefore kills the whole parallel. All parallel branches are activated at the
exit instant. For example, in “emit S || exit T ”, the left branch emitsS and terminates, the
right branch exitsT, so that the parallel emitsS and synchronizes both branches by deciding
to exit T. Therefore, being killed by an exit is less severe than being killed by an enclosing
watching time guard, which doesnotactivate its body when elapsed.

2.5 Examples

The only statement that provokes halting ishalt . To take a finite but non-zero amount
of time, a statement must involvehalt statements guarded bywatching statements. The
simplest example is “do halt watching S ” which waits for S and terminates: by itself,
the bodyhalt would halt forever, but the enclosing “watching S ” guard kills it whenS
occurs, and it makes the whole statement terminate. Hence the statement is guaranteed to “last
exactly oneS” from the time it is started (remembering that anS present when the statement
starts is not taken into account). Anticipating on the definition of derived statements, we write
it as “await S ”.

In the above example,S can be any signal, a second as well as a centimeter, a clock tick, or
generally any kind of interrupt. Therefore, each signal is seen as defining its own time unit.
Nesting temporal statements bearing on different time units is the main characteristic of the
Esterel style [5, 4]. Here is a program that emits repeatedly Ø everyI until reception of a
signalSTOP

do
loop

await I; emit Ø
end

watching STOP

Here Ø is not emitted whenSTOPoccurs, even ifI is present, since the inner loop is preempted
by the externalwatching statement at that instant.

In most event manipulation languages, the basic primitive isawait , that waits for an
event tostart a computation in sequence. On the contrary, inEsterel, the main primitive
is watching , that waits for an event tostopor preempta computation. It is a much more
powerful primitive thanawait . In particular, it is easy to deriveawait from watching ,
while the converse is definitely not true.

Remember the boundary problem we mentioned when describing thewatching statement.
To also emit Ø ifI is present whenSTOPoccurs, one uses atrap :

Research Report No. 15 July 1991

8 Gérard Berry

trap T in
loop await I; emit Ø end

||
await STOP; exit T

end

This works since when one branch of a parallel exits a trap that encloses the parallel, the other
branch is activated in the corresponding instant before being killed. It can perform its “last
wills”.

The other boundary problem concerns the starting instant. If one wants the guard to be
active initially, one writes

present S else do statwatching S end

readily abbreviated into the derived statement

do statwatching immediate S

The following toy example illustrates the preemption mechanism involved in concurrent
exits:

trap T1 in
trap T2 in

emit S1; exit T1
||

exit T2; emit S2
end;
emit S3

end

The first parallel branch emitsS1 and exitsT1. The second parallel branch exitsT2 but
does not emitS2 since anexit statement does not terminate. The body of the parallel exits
simultaneouslyT1 and T2; since only the outermost trap matters,T2 is discarded andT1
propagates. HenceS3 is not emitted, and the outermost trap terminates with onlyS1 emitted

2.6 Full Esterel

The full language has many useful derived statements. We briefly describe the most
important ones. The complete list of derived statements and their expansions into kernel
statements are given in [5]

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 9

Temporal Statements

A temporal statement is characterized by the fact that its expansion involvespresent ,
watching , or halt kernel statements. We have already seen the simpleawait statement
and theimmediate guard variant. Here are some other useful constructs:

� Boolean expressions on signals can appear in testsor guards,as in “present S1 and S2 ”
or “do statwatching not S ”.

� One can count occurrences of a signal (or boolean expression) within a time guard, as in
“await 3 S ”. Occurrence counts are not discussed in this paper but are easy to handle.

� One can add a timeout clause to be executed when awatching statement terminates
by elapsing its time guard and not when the body terminates by itself:

do stat1 watching S timeout stat2 end

is just an abbreviation for:

trap T in
do stat1; exit T watching S;
stat2

end

� The statement “do statupto S ” is just “do stat; halt watching S ”. Even if the
body terminates, theupto statement waits for its guard to elapse.

� Deterministic event selection has the form:

await
case S1 do stat1
case S2 do stat2

end

The statement waits simultaneously forS1 and S2. If one of them occurs alone,
the control is instantaneously transferred to the corresponding statement. If both
signals occur at the same time, the control is transferred toS1 only. This guarantees
determinism.

� There are two temporal loops:

loop stateach S
every S do statend

The first loop startsstatat once, and kills and restarts it afresh wheneverS occurs. The
second loop is similar but initially waits forS to startstat.

� The “sustain S ” statement emitsS continuously. It abbreviates

loop emit S each tick

Research Report No. 15 July 1991

10 Gérard Berry

General Traps

There is a general exception handling mechanism that extends basic traps:

trap T1, T2 in
stat

handle T1 do stat1
handle T2 do stat2

end

When a trap is exited, the corresponding handler is started instantaneously. Here the trapsT1
andT2 are concurrent. If they are exited simultaneously, both handlers are run in parallel.

Module Instantiation

Modular programming is achieved by therun statement, which instantiates a module in
place, possibly invoking signal renamings:

run M [signal S/I]

A run statement terminates if and when the copied module body does.

3 The Behavioral Semantics

Several mathematical semantics have been developed forEsterel, includinga denotational
semantics that precisely formalizes the intuitive temporal concepts presented in Section 2.3.
Here we prefer to use thebehavioral semantics[5] that defines execution reaction by reaction,
using Plotkin’s Structural Operational Semantics technique (SOS for short). It is equivalent to
the denotational one, as shown in [18].

3.1 Form of the Rules

The behavioral semantics defines transitions of the formM
O
�!
I
M 0 whereM is a module,

I is an input event,O is the corresponding output event, andM 0 is a new module that will
correctly respond to the next input events. In other words,M 0 is the new state ofM after the
reaction toI . The reactionO1; O2; . . .; On; . . . to an input sequenceI1; I2; . . .; In; . . . is then
defined inductively by chaining elementary reactions:

M
O1
�!
I1

M1
O2
�!
I2

M2 . . .Mn�1
On
�!
In

Mn

On+1
��!
In+1

. . .

A behavioral transitionM
O
�!
I
M 0 is computed using an auxiliary relationstat

E0; k

��!
E

stat0

defined by structural induction on statements. HereE is the current eventin which stat

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 11

evolves,E0 is the event made of the signals emitted bystat, andk is an integertermination
level that codes the way in whichstatterminates or exits and is precisely defined below.

The current eventE is made of all the signals that are present at the given instant; because
of the coherence law,E must contain the setE 0 of emitted signals, which in turns depends on
E. HenceE andE0 will be computed asfixpoints, the fixpoint equation being located in the
local signal rule below.

Let statbe the body ofM andstat0 be the body ofM 0. The relation between both transition
systems is as follows:

M
O
�!
I
M 0 iff stat

O; k

���������!
I[Ø[ftick g

stat0 for somek

(under the minor restriction that no input signal is internally emitted bystat, see [5]).

Termination Levels

The termination levelk is 0 if stat terminates in the current instant, 1 ifstat halts in the
current instant, andk + 2 if stat exits a trapT that isk trap levels above it,i.e. is if the exit
must be propagated throughk � 1 traps before reaching its trap. To handle the exit level, it is
useful to first decorate theexit statements with the corresponding level, as in the following
example:

trap T in
exit T 2

||
trap U in

exit T 3

||
exit U 2

end
end

Here the firstT exit and theUexit are labeled 2 since there is no intermediatetrap statement
to traverse, while the secondT exit is labeled 3 since one must traverse thetrap U statement
to reach thetrap T statement. This way of handling termination is simpler than the one used
in [5], but equivalent to it as shown in [18] (see also [16]).

3.2 Inductive Rules

Thenothing statement terminates instantaneously.

nothing
∅ ; 0
��!
E

nothing

Research Report No. 15 July 1991

12 Gérard Berry

Thehalt statements halts and rewrites into itself.

halt
∅ ; 1
��!
E

halt

An emit statement emits its signal and terminates.

emit S
fSg;0
���!

E
nothing

If the first statement of a sequence terminates, the second statement is started at once; the
emitted signals are merged to form the resulting emitted event,according to perfect synchrony.

stat1
E0

1;0
��!
E

stat01 stat2
E0

2; k2

���!
E

stat02

stat1; stat2
E0

1[E
0

2; k2

�����!
E

stat02

If the first statement of a sequence does not terminate, that is if it halts or exits a trap, the
sequence behaves just as the first statement and the second statement is kept unchanged for
further reactions.

stat1
E0

1; k1

���!
E

stat01 k > 0

stat1; stat2
E0

1; k1

���!
E

stat01; stat2

A loop instantaneously unfolds itself once. Its body is not allowed to terminate instantaneously.

stat
E0; k

��!
E

stat0 k > 0

loop statend
E0; k

��!
E

stat0; loop statend

A present statement instantaneously selects itsthen branch if the signal tested for is
present in the current instant. Otherwise, it instantaneously selects itselse branch.

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 13

S ∈ E stat1
E0

1; k1

���!
E

stat01

present S then stat1 else stat2 end
E0

1; k1

���!
E

stat01

S 6∈ E stat2
E0

2; k2

���!
E

stat02

present S then stat1 else stat2 end
E0

2; k2

���!
E

stat02

A watching statement transfers the control to its body and rewrites itself into apresent
statement in order to set the time guard at next instant if the body has halted.

stat
E0; k

��!
E

stat0

do statwatching S
E0; k

��!
E

present S else do stat0 watching S

A parallel statements starts its branches instantaneously, merges the emitted signals, and
returns themax of the termination codes. We leave it to the reader to see that thismax

operation exactly performs the required synchronization in all termination cases.

stat1
E0

1; k1

���!
E

stat01 stat2
E0

2; k2

���!
E

stat02

stat1 || stat2
E0

1[E
0

2;max(k1;k2)
�����������!

E
stat01 || stat02

A trap terminates if its body terminates or exits the trap, that is returns termination code 2.
If the body halts, so does the trap. If the body exits an enclosingtrap , then the exit is
propagated by subtracting 1 to the exit level.

stat
E0; k

��!
E

stat0 k = 0 ork = 2

trap T in statend
E0; 0
��!
E

nothing

stat
E0; k

��!
E

stat0 (k = 1 andk0 = 1) or (k > 2 andk0 = k � 1)

trap T in statend
E0; k0

���!
E

trap T in stat0 end

Research Report No. 15 July 1991

14 Gérard Berry

An exit statement returns its exit level.

exit T k
∅ ; k
��!
E

halt

Finally, the local signal declaration rules wind up the eventsE andE 0 according to the
coherence law given in Section 2.3. Within the body, they impose that a local signal is present
in E if and only if it is emitted inE0. A local signal is obviously not propagated outside its
declaration.

stat
E0[fSg; k
������!
E[fSg

stat0 S 6∈ E0

signal S in statend
E0; k

��!
E

signal S in stat0 end

stat
E0; k

����!
E�fSg

stat0 S 6∈ E0

signal S in statend
E0; k

��!
E

signal S in stat0 end

Remarks

The resulting statementstat0 is unused and therefore immaterial for any rule returningk > 1;
it is discarded by the exitedtrap . If a rule returnsk = 0, then its resulting term is equivalent
to nothing .

Because of the intrinsic fixpoint character of the local signal rule, our inference system does
not yield a straightforward algorithm to compute a transition. Given any inputI one must
guess the right current eventE and use the rules to check that there is a correct transition.
Other semantics yield finer analysis and efficient algorithms to compute the reaction; see in
particular thecomputational semanticsin [5].

3.3 Correct Programs

Not allEsterel programs make sense. We say that a moduleM is locally correctif there

is only one provable transitionM
O
�!
I
M 0 for any input eventI . We say thatM is correct if it

is locally correct and if all modules obtained by all possible sequences of provable transitions
are locally correct.

Correctness ofEsterel programs is a difficult issue. It is similar to correctness of
digital circuits (absence of races), although much more complex because of the power of

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 15

theEsterel instantaneousloop construct. TheEsterel compiler checks for reasonably
general sufficient correctness conditions, see [5]. Here, we just show two examples of (locally)
incorrect programs.

The following program has no fixpoint, sinceS should not be emitted if present and emitted
if not present. It is analogous toX = ¬X in circuits.

signal S in
present S else emit S end

end

The next program has two fixpoints, one ofS1 or S2 being present in each. It is similar to
X1 = ¬X2; X2 = ¬X1 in circuits.

signal S1, S2 in
present S1 else emit S2 end

||
present S2 else emit S1 end

end

4 The Haltset Coding of States

We now present an essential concept of the theory ofEsterel, the unambiguous coding
of any state by a set of control points in the original program. Technically, control points are
represented byhalt positions in the kernel expansion of the module body (notice that the
expansion of any derived temporal statement generates at most onehalt). SinceEsterel
is concurrent, a state is given by asetof control positions, which we call a haltset. The haltset
coding is important in two respects. First, its existence shows the rationality ofEsterel:
only finitely many statements be generated by the rewritings of a given statement. Second, it
is the direct basis of the hardware implementation, and it is also heavily used in the software
implementation.

The reader might skip this section at first reading and proceed directly with the informal
presentation of the hardware translation in Section 5. However, an understanding of the
material presented here will be necessary to see why the translation is done that way and why
it indeed works.

In the sequel, we consider a fixed correct moduleMof expanded bodystat. For technical
reasons, we assume that the body ofMnever terminates, adding a trailinghalt if necessary.
This condition does not change the observable behaviors; of course, adding a trailinghalt is
done after expansion and not in modules copied byM .

Call aderivativeof statany statementstat0 that can be reached fromstatby some sequence

of reactions
O
�!
I

provable in the behavioral semantics. So far, the derivatives are defined by a

Research Report No. 15 July 1991

16 Gérard Berry

rewriting process and bear no obvious structural relation with the source termstat. We show
that any derivative can be unambiguously coded by ahaltsetH of stat, that is by a set of
occurrences ofhalt statements in the kernel statementstat.

Consider for example the derivatives of “await S1; await S2; halt ”. There are three
halt statements, the two first ones being respectively generated by the first and the second
await . Number them 0; 1; 2. The whole statement itself will be coded by the empty haltset
∅ . The derivative that waits forS1 is

present S1 else
await S1

end;
await S2;
halt

Its haltset will bef0g, the index of thehalt generated by the active “await S1 ” statement.
The derivative that waits forS2 is

present S2 else
await S2

end;
halt

Its haltset will bef1g since the secondawait is active. The final derivative ishalt , coded
by f2g. Non-singleton haltsets will be constructed by the parallel operator, which will return
the union of the haltsets of its branches.

4.1 Haltsets

We number all occurrences ofhalt in statby distinct integers from 0 ton, n > 0. Then a
haltsetH is a subset of [0::n]. that satisfies the followingseparationcondition: If stat1 and
stat2 are the two statements of a sequence or the two branches of apresent test, thenH
cannot contain an occurrence ofhalt in stat1 together with an occurrence ofhalt in stat2.

We decorate the behavioral semantics rules by returning a haltsetH when executing a
numbered term. This haltset will record the places where the term has halted. The rules take

the new formstat
E0; k;H

����!
E

stat0. We always returnH = ∅ whenk 6= 1 andH 6= ∅ when

k = 1. Adding haltsets is easy for all rules except the parallel one. Executedhalt statements
are put into the haltset by the rule ofhalt and propagated by the other rules. Since the
transformation is fairly obvious, we just list a few rules and leave the other ones to the reader.

nothing
∅ ; 0; ∅
���!

E
nothing

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 17

halt i
∅ ; 1; fig
����!

E
halt i

stat1
E0

1; 0; ∅
����!

E
stat01 stat2

E0

2; k2;H2

�����!
E

stat02

stat1; stat2
E0

1[E
0

2; k2; H2

��������!
E

stat02

stat1
E0

1; k1; H1

�����!
E

stat01 k1 > 0

stat1; stat2
E0

1; k1;H1

�����!
E

stat01; stat2

stat
E0; k; ∅
����!

E
stat0 k = 0 ork = 2

trap T in statend
E0;0; ∅
����!

E
nothing

stat
E0; k;H

����!
E

stat0 (k = 1 andk0 = 1) or (k > 2 andk0 = k � 1)

trap T in statend
E0; k0;H

�����!
E

trap T in stat0 end

For a parallel, we return the union of the haltsets returned by the branches unless one of
the branches exits a trap, in which case we return an empty haltset. We make an additional
technical modification explained later on: when one branch terminates, we rewrite it into
nothing .

stat1
E0

1; k1;H1

�����!
E

stat01

stat2
E0

2; k2;H2

�����!
E

stat02

H =

(
H1 [H2 if max(k1; k2) � 1
∅ if max(k1; k2) > 1

stat00i =

(
stat0i if ki 6= 0
nothing if ki = 0

stat1 || stat2
E0

1[E
0

2;max(k1;k2); H
�������������!

E
stat001 || stat002

Research Report No. 15 July 1991

18 Gérard Berry

Since a module body is supposed to always halt, its global termination code must be 1. Hence
the rules always returns a well-defined haltsetH for any immediate derivative. This haltset is
easily seen to satisfy the separation condition.

4.2 Recovering derivative from haltsets

We now recover the derivativestat0 from stat andH . We proceed in two steps. First we
define a labeled termstatH obtained by labeling the subterms ofstatby eitherH+ orH�; a
subterm is labeledH+ if and only if it contains at least one occurrence ofhalt whose number
is inH . If we care about the label ofstatH itself, then we write it explicitly, as instatH+. The
labels are of course redundant withH , but they make the definitions and proofs much simpler
to write.

Then we define a termR(statH) by structural induction onstatH . Subterms labeled by�
andhalt statements are left unchanged.

R(statH�) = stat

R(halt iH) = halt i

trap and local signal declaration constructs are handled by trivial structural induction.

R(trap T in statendH) = trap T in R(statH) end

R(signal S in statendH) = signal S in R(statH) end

The only non-trivial cases are:

R(statH+
1 ; statH�

2) = R(statH+
1); stat2

R(statH�
1 ; statH+

2) = R(statH+
2)

R(loop statH+
1 end) =

����� R(statH+
1);

loop stat1 end

R(present S then statH+
1 else statH�

2 end) = R(statH+
1)

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 19

R(present S then statH�
1 else statH+

2 end) = R(statH+
2)

R(do statH+
1 watching S) =

�������
present S else
do R(statH+

1) watching S
end

R(statH+
1 || statH+

2) = R(statH+
1) || R(statH+

2)

R(statH+
1 || statH�

2) = R(statH+
1) || nothing

R(statH�
1 || statH+

2) = nothing || R(statH+
2)

Notice that these definitions make sense only when the separation condition is satisfied. Notice
also why we returnnothing in the semantics rules when a branch terminates: this simplifies
the definition ofR.

Since they exactly reproduce the (new) behavioral rules right-hand side terms, one easily
showsR(statH) = stat0 as expected.

We now give the main result: the coding extends from immediate derivatives to general
ones. This is not completely obvious since theR operator can duplicate halts in theloop
case. The result is as follows:

Theorem 1 Let statbe the body of a correct program. LetH be a haltset instat. Then for
any behavioral rewriting of the form

R(statH)
E0; 1;H 0

�����!
E

stat0

the haltsetH 0 contains only halts occuring instat0 and one hasstat0 =R(statH
0

).

Proof: The proof is by structural induction onstatand by case inspection on the rule applied to the
whole termR(statH) to yield stat0. All cases being similar, we treat the sequence and the loop as
examples. We consider a given current eventE.

Let firststat= stat1; stat2. There are three cases according to the labeling generated byH.

� If stat2 is labeled byH+, thenR(statH) = R(statH2). By correctness and by the hypothesis that

stathalts,R(statH2) has a unique rewritingR(statH2)
E0; 1;H0

�����!

E
stat0, whereH0 is a nonempty

haltset that only contains halts instat2. By induction, one hasstat0 = R(statH
0+

2). SinceH0 is
all in stat2 and nonempty, one hasR(statH

0+
2) = R(statH

0

) by definition ofR() and the result
follows.

� The two other cases can be grouped into one. They correspond to a termstat= R(statH1); stat2,
takingH as given ifstat = R(statH+

1); stat2 andH = ∅ if stat itself has labelH�. By

Research Report No. 15 July 1991

20 Gérard Berry

correctness,stat has a unique behavior, computed by either the first or the second sequence
rule. If the first sequence rule is used, thenstat0 is generated entirely bystat2 and the
results follows as in the first case. If the second sequence rule is used, the termination
code ofR(statH1) is 1 sincestat halts. By induction and by the form of the rule, one has
stat0 = R(statH

0+
1); stat2 = R(statH

0

) for some nonemptyH0 having all its halts instat1. The
result follows.

Assume nowstat = loop stat1 end . There are two subcases. Ifstat is labeled byH�,
then R(statH�) = loop stat1 end . The only applicable rule is the loop rule. It asks for
computingstat1, which must halt sincestat does. By induction and by the loop rule, one has

stat
E0; 1;H0

�����!

E
R(statH

0+
1); stat for someH0. The last term is justR(statH

0

) as expected. Ifstat is

labeled byH+, thenR(statH+) = R(statH+
1); stat. If the first term does not terminate, we proceed

as in the first loop case. Otherwise, the loop must be unfolded once and we are back again in the first
loop case.

Corollary 1 Let statbe a module body. Then any derivativestat0 of statis equal toR(statH)
for some haltsetH , and there are only finitely many derivatives.

Proof: By induction on the length of a rewriting sequencestat
�

�!stat0, sincestat itself is equal to

R(stat∅) and sincestatalways returnsk = 1. The finiteness property is obvious since there are only
finitely many possible haltsets.

5 Principle of the Hardware Implementation

In this section, we show by examples how to translate aPure Esterel program into a
digital circuit that computes the reaction of the program to any input in one clock cycle. The
translation is structural: the circuit logical geometry is the same as that of the original program.
The translation is directly based on the haltset coding theory of Section 4, but we present it in
such a way that it can be understood independently of this coding.

We start with a first example involving onlyhalt andwatching statements. Then we
show how to handle concurrency and exceptions. Finally, we indicate how to efficiently
translate the full language. The formal translation is given in Section 6.

5.1 A First Example

Consider the following program:

module M:
input I, R;

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 21

output Ø;
loop

loop
await I; await I; emit Ø

end
each R .

After an initialization instant in whichI is ignored, the behavior is to emit Ø every twoI ,
restarting this behavior afresh eachR. Expanded into kernel statements, the body becomes:

loop
do

loop
do

halt
watching I;
do

halt
watching I;
emit Ø;

end
watching R

end

The corresponding circuit is drawn in Figure 1. It has two input pins forI andR and one
output pin for Ø. There are four kinds of cells, calledBoot , Watch , Present , andHalt .
Cell output pins are primed.

The Boot andHalt cells each contain one register, assuming to initially contain value
0 and to be clocked by the global circuit’s clock. The other cells are purely combinatorial.
ThePresent cells are used forpresent andwatching source statements, each source
“watching S ” statement being conceptually rewritten into “watch present S ”; This
slight syntactic modification simplifies the cells and makes it easy to implement boolean
expressions.

The circuit contains three sorts of wires: theselectionwires s0–s5 , theactivationwires
a0–a5 , and thecontrol wires c0 –c8 . The unconnectedi and c01 pins of Halt cells
corresponds to other wires unused here and described later on. Whenever two wires go to the
same place, they are implicitly assumed to be combined by anor gate.

The selection and activation wires go in reverse directions and form a tree that is called the
skeletonof the circuit. This tree is determined by the nesting ofhalt , watching , and||
statements in the source program, following the abstract syntax revealed by the source code
indentation. The leftmostHalt andWatch cells correspond to the firstawait , the rightmost
ones to the secondawait .

Research Report No. 15 July 1991

22 Gérard Berry

c3

c1

R

I
R

II

a cs’

s a’ c’

Watch

a cs’

s a’ c’
Watch

Present
c S

Present
c S

s0

s1

s2 s3

s4

a0

a1

a2

a4

a3

c0

c2

c4

c5

c6

c8
c7

O

cs’

s a’ c’
Watch

Present
c S

c’t c’f

c’t c’f

c’t c’f

c is’a is’

HaltHalt
c’1c’1

a

Boot
b

b

c a

1

Figure 1: first example

The selection wires are used to determine which part of the circuit can be active in a given
state: in our example, bothawait statements are in mutual exclusion, and only one of them
can be active at a time. When the firstawait is active, the wiress2 , s1 , ands0 are set to 1.
When the secondawait is active, the wiress4 , s3 , ands0 are set to 1. The sources of the
selection wires are theHalt cell registers. The upper selection wires0 is unconnected here,
but we left it there to emphasize the structural character of the translation.

The activation and control wires bear the flow of control. The activation wires handle
preemption betweenwatching statements. In our example, the outermostwatching
preempts the innermost one: by the semantics ofEsterel, if R is present, the outermost
watching terminates without letting its body execute. The upper activation wirea0 is
always set.

The cells are defined as follows:

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 23

Boot

(
n := 1
b = ¬n

Watch

8><
>:

s0 = s

c0 = s � a

a0 = c

Present

(
c0t = c � S

c0f = c � ¬S

Halt
n
s0 := c + (a � s)

The notation is that ofPalasm: ‘+’ is or, ‘ �’ is and, ‘¬ ’ is not, an equality is valid at all
times, and a register is denoted by ‘ := ’. Registers are supposed to contain initially 0. In the
sequel, we say that a wire ishigh or setif it has value 1 andlow or resetif it has value 0. We
say that a register issetif it gets value 1 andresetif it gets value 0. Signals are assumed to be
present when their wire is set and absent when their wire is reset.

The output signalb of theBoot cell is high at first clock tick and remains then low. For
a Halt cell, the value of the output signals0 is initially low and then that ofc + (a � s)
delayed one clock cycle. Hence a register is set either if an incoming control wire is set or
if the activation wire is set and the register was already set3. The definition ofHalt is only
temporary: further pins will be added in Section 5.2.

A Sample Execution

At boot time, theHalt cell registers contain 0 and the selection wires are all low; the boot
control wireb is high. Because of the cell equations, all other wires are low. Hence the only
effect is to set the leftmostHalt register.

On next clock tick, assume thatI is present andR is absent. Thens2 , s1 , ands0 are
set by theHalt register. Sincea0 is always set, the control flows down by settingc0 that
triggers the test forR in the upperPresent cell. SinceR is low, the control flows through
thec0f pin and setsc2 , which is connected to thec input pin of theWatch cell. This pin is
directly connected to thea0 output pin, and the control flows thougha1 anda4 (which are
connected with each other and form in fact a single equipotential). Since boths2 anda1
are high, the leftmostWatch cell setsc3 and the leftmostPresent cell setsc4 sinceI is
present. This sets the rightmostHalt register. Sinces4 is low, the rightmostWatch cell is
inactive. Having no incoming control set, the leftmostHalt register is reset. This terminates
the first “await I ” statement.

On next clock tick, ifI is present, the execution is symmetrical: the rightmostHalt is

3The multiplication by s is there to prevent setting the secondHalt register in a term such as
“do halt; halt watching S 00 whena is set.

Research Report No. 15 July 1991

24 Gérard Berry

reset and the leftmost one is set. The wires set ares3 , s4 , a0, c0 , c2 , a1 = a4 , c6 , andc7 .
Sincec7 is also connected to the output Ø, this output is set. If insteadR is present, the wires
set ares3 , s4 , a0 , c0 , c1 , and one is back to the state just after boot. If neitherI nor R are
present, then the wires set ares3 , s4 , a0, c0 , c2 , a1 = a4 , c6 , c8 , anda3, and the state is
simply restored as expected.

Relation with the Haltset Coding

Intuitively, the relation between our circuit and the haltset coding of derivatives is as follows:

� A state of the circuit is a set ofHalt cells set to 1. It is therefore exactly a haltset.

� The selection wires just compute the + and� labels of statements, + being represented
by a 1 in the selection wire.

� Sending the control to the translation of a subtermstat1 by setting an incoming control
wire amounts to executestat1. For example, settingb executes the whole statement,
settingb or c1 execute the firstawait I , and settingc4 executes the secondawait I .

� Sending the control to the translation of a subtermstat1 by setting its incoming activation
wire amounts to executeR(statH1) if stat1 is labeled by + inH , i.e. if the corresponding
selection wire is set.

Hence, in a haltsetH and an inputI , the circuit just mimics the behavioral proof ofR(statH)
in I . This points will be made very precise in Section 7.

Notice that theBoot cell is not really necessary since the initial state can also be recognized
as the only state where allHalt cells have value 0, that is where the wires0 is low. We could
as well connect theb wire to the negation ofs0 . However, it is convenient in practice to add
the auxiliaryBoot cell to reduce the length of wires and the number of logical levels.

5.2 Translating Parallel and Exceptions

The most complex operator is of course the parallel one, since it must synchronize the
termination of its branches and propagate exceptions. Consider the following program
fragment:

trap T in
await S1

||
present S2 then exit T end

end

The corresponding circuit fragment is shown in Figure 2. The leftmostWatch -Present -
Halt cell group is generated by “await S1 ”. The rightmostPresent cell is generated by

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 25

cas’

s a’ c’

Watch

Present
c S

c’t c’f

a is’

Halt

as’

s a’ c0

c’0

c1

c’1

c2

i

i’

c’2
Parallel

Present
c S

c’t c’f

c

c’

c

c’1

s0

s1

s2

a0

a1

a2

c0

c1

c2

c3 c4

c5

c6 c7

c8 c9i0

i1

c10

S1 S2

c

Figure 2: second example

“present S2 ”, (where “else nothing ” was omitted as usual). The branches are simply
put in parallel and synchronized by theParallel cell. The circuit fragment starts when it
receives control by setting thec0 wire.

TheParallel cell has two parts: the fork part, which involves the six leftmost pins, and
the synchronization part, which involves the eight rightmost ones.

The fork part is simple: selection wires are gathered by anor gate and activation and
control are dispatched to branches.

The synchronization part is more subtle. The pinsc0, c1, and c2 record the different
termination modes according to their codes defined in section:c0 means termination,c1 means
halt, andc2 means exitingT. With each termination pinci is associated a continuation pinc0i.
(In fact,c01 is not really a continuation in a usual sense: it is recursively linked to thec1 entry
of the enclosingParallel cell when such a cell exists.)

Research Report No. 15 July 1991

26 Gérard Berry

As explained in Section 3, the synchronization realized by the parallel amounts to compute
the max of the termination codes of its branches and to only activate the corresponding
continuation. It therefore uses a priority queue.

In our example, the left branch can halt, as signaled by setting wirec5 , or terminate, as
signaled by setting wirec3 . The rightmost branch can terminate or exitT as respectively
signaled by setting wiresc7 andc6 . Since exitingT or terminating the parallel lead to the
same continuation, the continuations wiresc8 andc10 will reach the same input pin in any
global circuit in which our fragment is placed.

When the right branch exitsT, the leftmost branch must be killed; technically, itshalt
statements must be removed from the current haltset. This is the role of theinhibition wire
i1 that sends an inhibition signal to thehalt register. In an actual execution context, the
inhibition signal can also come from an enclosing parallel statement itself killed by some trap
exit. It is then received on pini by the wirei0 .

The final equations of theParallel andHalt cells are:

Parallel

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

s0 = s

a0 = a

c0 = c

c02 = c2
p1 = c02
c01 = c1� ¬p1
p0 = c1 +p1
c00 = c0� ¬p0
i0 = i + p1

Halt

(
c01 = c + (a � s)
s0 := (c0 + (a � s)) � ¬ i

wherep0 and p1 are local wires used to compute the parallel continuation and inhibition
values: ifci is the selected continuation,ci is set and all continuationscj are reset forj � i,
andi0 is set ifp2 is.

A Sample Execution

Assume the circuit receives control byc0 and therefore setsc1 .

� AssumeS2 is present. Thenc5 is set by theHalt cell andc6 is set by the right
Present cell. The parallel cell selects the appropriate continuationc10 and inhibits
the halt register by settingi1 .

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 27

� Assume insteadS2 is absent. Thenc5 is set by theHalt cell andc7 is set by the
right Present cell. The selected continuation isc9 ; it signals halting to an eventual
enclosing parallel statement. Since the inhibition wirei1 is low, theHalt cell register
is set. The circuit then remains in the same state in further clock cycles as long as the
activation wirea0 remains high andS1 remains low: the wires set ares2 , s1 , s0 , a1 ,
c2 , c4 , a2 , c5 , andc9 . If a0 remains high andS1 is reset, the wires set ares2 , s1 ,
s0 , a1, c2 , c3 , andc8 . The whole construct terminates and the register is reset since
c1 anda2 are low. The incoming activation wirea0 can also become low beforeS1
occurs, for example because an enclosing watchdog elapses. Then theHalt register is
also reset.

General Parallel Cells

In fact, the size of the priority queue in a parallel cell depends on the number of nested
traps exited from within its source parallel statement. The number of pinsci; c0i for i � 2
corresponds to the number of enclosing traps. With no trap, there is no such pin. The example
explained one level of trap. With two levels of traps, as in

trap U in
trap T in

. . . || . . .
end

end

there would be a pinc2 for T and a pinc3 for U, and so on.

5.3 Summary of the Translation

The translation is done by connecting together cells corresponding to source statements.
The cells are the same for all programs, but the parallel cells have a variable continuation arity
according to the number of enclosing traps.

The logicalskeletonof the translation is given by the tree ofHalt , Watch , andParallel
cells which mimics the tree of sourcehalt , watching , and|| statements. Each edge of
the tree is composed of an upwardselectionwire and a downwardactivationwire. Two sets
of wires reinforce the skeleton:control wires that signal halting and go upwards fromHalt
andParallel cells toParallel cells, and oppositeinhibition wires that force resetting
theHalt registers in case of exceptions.

In addition to the above cells, one finds aBoot cell used to boot the circuit, andPresent
cells generated by sourcepresent and watching statements. These cells are linked
together and to skeleton cells bycontrol wires. EachPresent cell also receives as input a
signalwire. Signal wires come either from input signal pins or from local signal cells, which
are simplyor gates. Control wires transfer the control from cell to cell. They also emit signals
by being connected to output signal pins or to local signalor gates. The wiring of control

Research Report No. 15 July 1991

28 Gérard Berry

wires is determined by a continuation analysis, see Section 6.

5.4 Optimization

The reader may find that our circuits contain lots of wires and of logical levels, even for
simple programs. In fact, this is because they are obtained by a strucural translation process and
there is much room for automatic optimization. Many wires are simply connected with each
other. Many generated logical functions are readily grouped by logic optimizers. Constant
folding can also be used: for instance, the top activation wire is always set; using this fact, one
can statically simplify many gates.

Therefore, our circuits should not be directly implemented; they should instead be given
as input to logic optimizers. We presently use optimizers based on Binary Decision Dags (or
BDD’s), see [11, 15, 24]. They drastically reduces the actual size of circuits. They can also
discover redundancies between registers and suppress some of them [7].

Altogether, we believe that we can obtain final circuits that are as good as carefully hand-
designed ones. Because of the power and efficiency of BDD-based optimization techniques,
we think there is no need to search for a more sophisticated translation process.

5.5 The Translation is Sometimes Incorrect

Our translation does not translate correctly all programs. There are difficulties with local
signals and with loops over parallel statements.

First, we have allocated a single wire for a local signal. But even within a single reaction,
anEsterel signal can have several independent avatars. Consider a statement of the form

loop
signal S in statend

end

When the body terminates, it is restarted at the same instant with afreshsignalS. This is made
obvious by unfolding the body to get

loop
signal S in statend;
signal S in statend

end

which is semantically equal and where there are clearly two distinct signals.

In our circuits, a signal wire has only one state at a time: we cannot implement general local
signals. We must require all local signals to be declared at toplevel in the module body. This
is not a too big restriction in practice.

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 29

The second incorrectness is more subtle. The translation of the statement

loop
await S

end

is correct, but the translation of the equivalent statement

loop
await S

||
nothing

end

is not since it involves an unstable combinatorial loop through the parallel synchronizer: when
S occurs, the parallel terminates and the loop makes it halt at the same time onawait S .
But halting justs inhibits the termination that should provoke it, hence the combinatorial loop.
Unfolding the body would solve the problem; it still builds a combinatorial loop, but this time
a safe one.

TheEsterel software checks for sufficient conditions for translation correctness. We are
presently investigating a more powerful translation that will correctly translate allEsterel

programs. It will be reported in another paper.

6 The Formal Translation to Hardware

We define the translation formally and prove its correctness in absence of bad loops over
parallels. As explained in Section 5, we assume all local signal declarations to be at toplevel
in the module body.

6.1 Circuits

We consider a circuit to be given by a set ofinput wires, a set ofoutput wires, a set oflocal
wires and a set ofwire definitionsthat define output and local wires. There are two kinds of
wire definitions:

� An implicationdefinitionw (exp expresses a partial definition, read as “connectexp

tow”. There can be several implications per wire.

� A registerdefinitionw := exp defines a wire to be initially 0 and then the value ofexp

at previous clock cycle. There can be only one register definition per wire.

Given a circuitC and a wirew, the set of implicationsw (expi in C definesw as
w =

W
i expi. Hence the right-hand-sides of implications are connected to anor gate. If

Research Report No. 15 July 1991

30 Gérard Berry

a wirew has no definition, it is considered to have an empty set of implication definitions,
and therefore to be defined byw = 0. To stress the fact that a wire has a single implication
definition in a circuit, we can write this definition using ‘=’ instead of ‘(’.

Given any register state and any input, the semantics of a circuit is classically defined as a
unique fixpoint of the equations, and a circuit is correct if a unique fixpoint always exists in
any (reachable) state. We assume this to be well-known.

6.2 The Translation Environment

The formal translation is done by natural semantics inference rules [21]. The sequents have
the form� ` stat! C, where� is a wire environment,stat is anEsterel statement, andC
is the resulting circuit.

As in natural semantics or inPROLOG, allocation of new wires is implicit and done when
encountering free variables. To make things clear, we shall comment each rule and explicitly
tell which are the newly allocated wires.

The environment� is made of several wires, whose functions have been explained in
Section 5. It contains the following fields

� An incoming control wirec.

� A selection wires.

� An activation wirea.

� An inhibition wire i.

� A vector of continuation wires~c. The wire~c 0 corresponds to termination, the wire~c 1

corresponds to halting, the wire~c k+2 corresponds to exitk + 2, that is to exitingk trap
levels.

� A set of signal wiresS, one for each input, output, or local signalS. For simplicity,
we assume that all local signals have distinct names; then all local signal wires can be
preallocated.

We use the classical dot notation to get environment components: for instance,�:c denotes
the control wire of�. Given an environment�, we shall often need to consider another
environment�0 that differs from� by the value of one field, say by changing�:c into c0. We
then write�0 = �[c c0]. The notation extends naturally when changing several fields.

To translate a module, we allocate a boot control wireb and a registern of equations
b = ¬ n; n := 1 as in Section 5, a dumy selection wires , two dummy wiresc0 andc1 for
the (unused) continuations, a dummy inhibition wirei , and one wireS per signal, declaring

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 31

respectively input and output signals as inputs and outputs to the circuit. We translate the
module body in the environment

�0 = (b; s ; 1; i ; (c0 ; c1); ~S)

6.3 The Translation Rules

The cells of Section 5 were useful for an intuitive explanation, but in rules it is simpler to
produce directly equations.

For anothing statement, we connect the incoming control to the termination continuation
wire.

� ` nothing �! �:~c 0
(�:c

For ahalt statement, we connect the incoming control to the halt continuation wire, to
signal halting to an enclosing parallel statement. We allocate a new selection wires0 defined
as a register with input as explained in Section 5. We connect it to the environment selection
wire �:s.

� ` halt �!

�������
�:~c 1

(�:c + (�:a � �:s)
�:s (s0

s0 := (�:c + (�:a � �:s)) � ¬�:i

For anemit statement, we connect the incoming control to the termination wire and to the
signal wire.

� ` emit S �!

����� �:~c
0
(�:c

�:S (�:c

For a sequence, we allocate a new wirec0 for control transmission. We translate the first
statement withc0 as termination and the second statement withc0 as incoming control.

�[~c 0
 c0] ` stat1 �! C1

�[c c0] ` stat2 �! C2

� ` stat1; stat2 �!

����� C1

C2

For a loop, we allocate a new wirec0 to handle looping and we connect the incoming control
to it. We translate the body withc0 both as incoming control and as outgoing continuation.

Research Report No. 15 July 1991

32 Gérard Berry

�[c c0;~c 0
 c0] ` stat �! C

� ` loop statend �!

����� c
0
(�:c

C

For apresent statement, we allocate two new control wiresc1 andc2; thenc1 is set when
the incoming control is present and the signal is present, whilec2 is set when the incoming
control is present and the signal is absent. We translate the branches withc1 and c2 as
respective incoming controls.

�[c c1] ` stat1 �! C1

�[c c2] ` stat2 �! C2

� ` present S then stat1 else stat2 end �!

���������

c1 = �:c � �:S
c2 = �:c � ¬�:S
C1

C2

For awatching statement, we allocate a new selection wires0 and connect it to�:s, and we
allocate a new activation wirea0. The outgoing activation wirea0 is set if if s0 and�:a are set
and the signal is absent. The outgoing termination wire�:~c 0 is set ifs0 and�:a are set and the
signal is present.

�[s s0; a a0] ` stat �! C

� ` do statwatching S �!

���������

�:s (s0

a0 = �:a � �:s � ¬�:S
�:~c 0

(�:a � �:s � �:S
C

The parallel rule is of course the most complex one. It follows exactly the intuitive explanation
given in Section 5. We allocate a selection wires0 connected to�:s, an inhibition wirei0, a
continuation vector~c0 of the same lengthk as�:~c, and a priority vector~p of lengthk � 1. We
recursively translate the body with the new selection, inhibition, and continuation wires. Then
we establish the priority queue to compute the outgoing continuations and the new inhibition
wire i0.

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 33

k = j�:~cj
�[s s0; i i0;~c ~c0] ` stat1 �! C1

�[s s0; i i0;~c ~c0] ` stat2 �! C2

� ` stat1|| stat2 �!

�����������������������������

�:s (s0

�:~c k�1
(~c0 k�1

~p k�2 = ~c0 k�1

�:~c k�2
(~c0 k�2

� ¬~p k�2

~p k�3 = ~c0 k�2 + ~p k�2

. . .
~p 0 = ~c0 1 + ~p 1

�:~c 0
(~c0 0

� ¬~p 0

i0 =

(
�:i if k � 3
�:i + ~p 1 if k > 3

C1

C2

For a trap , we shift by 1 all wires in�:~c after position 2 and we insert the termination
continuation�:~c 0 at exit position 2. The vector notations are obvious.

�[~c (�:~c 0; �:~c 1; �:~c 0) � �:~c 2::] ` stat �! C

� ` trap T in statend �! C

For anexit , we connect the incoming control to the appropriate continuation.

� ` exit T k
�! �:~c k (�:c

For a local signal declaration, we simply translate the body since the signals have been
pre-allocated.

� ` stat �! C

� ` signal S in statend �! C

7 Correctness of the translation

We first explain roughly the proof idea as if the translation was always correct. Consider
the bodystatof a correct module placed in the initial environment where the local signal wires
have been cut. Then there are two separate wires for each local signal, one for input and one
for output. Consider a signal environmentE and a haltsetH . There exists a unique behavior

Research Report No. 15 July 1991

34 Gérard Berry

stat1
E0; 1;H 0

�����!
E

stat01 with stat01 = R(statH
0

1), and a unique behaviorR(statH1)
E0; 1;H 00

�����!
E

stat001

with stat001 = R(statH
00

1); uniqueness is obvious since there are no local signal declarations in
stat1.

The circuit fragmentC(stat1) obtained by translatingstat1 has two incoming control wiresc
anda. Then settingc realizes the first behavior, while setting the activation wirea realizes the
second behavior. Furthermore, because of loops,c anda can be both set. Then the circuit sums
up both behaviors with no interference between them. The proof goes simply by structural
induction.

Once this is shown, close the local signal wires. Then, for the module bodystat, for any
stateH and real input eventI , there exists a unique local eventL and a unique output eventO
such that

R(statH)
O;1; H 0

�����������!

I[L[O[ftick g

R(statH
0

)

But closing the local signal wires in the circuit has exactly the same coherence effect as in the
semantics: a signal is there if and only if it is emitted. Since the circuit can do nothing but
mimic the behavioral semantics and since there is only one fixpoint in the semantics by the
correctness hypothesis, there is only one fixpoint in the circuit and it is the required one4.

Therefore, one can view the circuit as afolding of all possible behavioral semantics proof
treesof a program and of its residuals in all possible environments. What the electrons do is
to select the right prooftree in one clock cycle given a residual and an input.

The only problem with the above proof argument is that sending control to a parallel by
bothc anda doesnot sum up the behaviors: one of the continuations can be discarded by the
other one. Here, we shall simply prove that the circuit works fine under the assumption that
the problem can never appear dynamically5. This leads to the following condition:

Condition 1 (NSP) A correct program is said to beNSP(Non Schizophrenic for Parallels) if
for any haltsetH and for any eventE, no parallel subtermstat = stat1 || stat2 that contains
a halt inH is evaluated in the behavioral semantics proof of the reaction of the module body
underE both under the formstatand under the formR(statH+).

This is certainly a strange and non-structural condition, but its main advantage is to be
amazingly trivial to check in theEsterel software compiling process. We have put an
appropriate specific option in theEsterel compiler to report its failure.

Theorem 2 For any correct NSPEsterel moduleM , the circuitC(M) has exactly the
same input-output behavior asM .

4We talk here of abstract circuits, or equivalently we assume that concrete circuits do always find the unique
fixpoint when it exists.

5The right solution would be to usetwosynchronizers, one forc and one fora, and to duplicate some of the logic
of the body to signal termination to the appropriate synchronizer; in fact, one must use more than two synchronizer
in the general case to properly handle parallel statement nesting; this will be the subject of a forthcoming paper.

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 35

Proof: The proof goes just as sketched, but we must inductively ensure that no parallel receivesc
anda together.

We first study the circuit reactions when the local signal wires are opened. We consider a given

haltsetH and a given input eventE. LetP be the proof ofR(statH)
E0; 1;H0

�����!

E
R(statH

0

).

Given a subtermstat1 of stat, define the type ofstat1 in P as follows:stat1 is of typenull if it does
not appear inP , of typec if it appears inP only under the formstat1, of typea if it appears inP only
in the formR(statH+), and of typeca if it appears in both forms.

For the circuitC(stat1) generated bystat1, we say that we send the controlnull if we set neitherc nor
a, the controlc if we setc and nota, the controla if we seta and notc while s is set, and the control
ca if we set bothc anda while s is set.

We show the following properties on any subtermstat1 by structural induction:

(a) If stat1 receives the control as indicated by its type inP , then it will itself send the control to
all its subterms as indicated by their type inP .

(b) Under controlnull,C(stat1) sets no continuation, no signal, and no halt.

(c) If stat1 is of typec andstat1
E0

c
; kc;Hc

������!

E
stat01, then, under controlc,C(stat1) emitsE0

c, sets the

sole continuation~c kc , and sets exactly the halts inHc iff its incoming inhibition wirei has
value 0.

(d) If stat1 is of typea andR(statH+
1)

E0

a
; ka; Ha

������!

E
stat01, then, under controla, C(stat1) emitsE0

a,

sets the sole continuation~c ka , and sets exactly the halts inHc iff its incoming inhibition wirei
has value 0.

(e) If stat1 is of typeca, then, under controlca,C(stat1) realizes the union of the behaviors of case
(c) and (d).

First notice some general facts. Thes wire is set forstat1 iff statH+
1 . Hence only statements that

contain halts inH will receive botha ands. By construction, any circuitC(stat1) does nothing under
controlnull and sets no halt when its incoming inhibition wirei is set; otherwise, its sets its halts
normally. Also, since all statements merge their emitted signals by or gates, the signal behavior will
always be the expected one.

The statementsnothing , emit S , andexit T are always of typenull or c and they exhibit the
(c) behavior underc. A halt can be of any type, but it always sets~c 1 and its register ifi = 0 as
required under controlc, a, or ca.

Consider a sequencestat1; stat2 of type c. Thenstat1 is itself of typec, and the induction tells
thatC(stat1) behaves just asstat1 underc. If stat1 terminates, thenstat2 is of typec since the first
sequence rule must be applied in the proof (it cannot be of typeca, otherwise the sequence itself
would be of that type). ButC(stat1) sets~c 0 that startsstat2 under controlc by the sequence wiring.
The induction shows (c). Ifstat1 does not terminate, thenstat2 is of typenull andC(stat2) receives
no control and does nothing; hence the sequence behaves just asstat1, which shows (c). Condition
(a) also follows from this case analysis.

The proof of (d) and (a) is similar for a sequence of typea, analyzing separately the casesstatH+
1 and

statH+
2 .

Consider finally a sequence of typeca. First assumestatH+
1 . Thenstat1 itself is of typeca, and the

induction applies to it. Furthermore,stat2 is started underc iff stat1 terminates underc, a, or both.

Research Report No. 15 July 1991

36 Gérard Berry

But giving twice the control tostat2 is just the same as giving it once, since incoming control wires
are gathered by anor gate, and (e) follows. Next assumestatH+

2 . Thenstat1 is of typec, while stat2
is of typea if stat1 does not terminate, making (e) obvious, and of typeca if stat1 terminates; in the
latter case, (e) is established by induction onstat2. The case analysis is finished for the sequence,
and it also shows (a) in all cases.

The other operators are handled in the same way. For a parallel, one is never in case (d) by the NSP
hypothesis, and one remembers that thei wire is set in case of exit to kill the haltsets of the subterms.

Finally, as explained before, the circuit is forced to compute the same fixpoint as the behavioral
semantics when closing the local signal wires. To finish the proof, just notice that the module body
statreceivesc at the first instant from the boot wire anda at the next instants from the selection wire
that is plugged back as the activation wire.

8 Implementation

8.1 Actual Implementation on Perle0

We have experimented our hardware implementation on thePerle0 board developed at
DEC PRL [8]. It consists of a set of 25 synchronousXilinx programmable logic cell arrays
placed on a board and piloted by a SUNTM workstation.

The translation is performed by thestrldg processor (Esterel-to-digital), which is
integrated in the standardEsterel compiler6. The generated logical circuit is printed out
in Perle0 format and translated intoXilinx native format by thePerle0 software (we
could as well produce portable formats such asPalasm). The logical circuit is then given
to optimizers and the optimized result is fed into an automatic placer-router, without any
pre-placing indication. This gives aXilinx circuit specification. Using this environment,
the turnover is on the order of 15 minutes from source program to running circuit for a
medium-size program.

OnPerle0, we provide a symbolic debugging and exact speed measure environment, with
interactive symbolic input and output from within Lisp or C. The speed measure reports at
which maximal clock speed a circuit correctly handles a benchmark. In practice, the speed is
30 to 75 nanoseconds for a small program (30 ns for the circuit presented in the appendix), and
75 to 100 nanoseconds for a medium size program that still fits into a single chip (about 2-4
pages of sourceEsterel code), this on a 3020Xilinx chip.

In debug or speed-measure mode, theEsterel program is implemented on a single chip
and other chips are devoted to bus and debug interfaces. The applications we have handled
so far are man-machine interfaces, real-size local area network controllers [22], and various
circuit controllers including those used in thePerle0 board itself to communicate with the
bus and with the tested program.

6In fact, most of the skeleton and continuation analysis is already done by the standard compiler first pass.

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 37

8.2 Simulation and Correctness Proofs

Esterel and Lustre are themselves able to describe digital hardware. Thestrldg
processor is also able to unparse the circuit inEsterel orLustre. There are two main uses:

� After compiling theEsterel version of the circuit, we can use the fullEsterel
programming environment to perform simulations, analysis, and optimizations.

� Once the circuit behavior automaton is generated byEsterel compiler, we can use
theAuto verification system [9] to automatically check for equivalence between the
source code and the circuit automata. This may seem unnecessary since the translation
has been mathematically proved correct, but software is software and double-checks
are always useful. Furthermore, the translation can work properly even if the sufficient
correctness conditions are not met. IfAuto reports equivalence, the circuit is perfectly
usable even if it works by chance!

Of course, using theEsterel standard compiler for such a circuit unparsing analysis makes
sense only if the circuit has a reasonable number of states, say 50 to 500, which is usually the
case for controllers.

9 Conclusion

AlthoughEsterel was not at all designed as a harware description language, the work
presented here shows it well-suited to very high-level verified hardware generation. The
hardware implementation is directly based of the formal semantics. The electrons circulating
in the wires perform the computation of the proof tree associated with a program and an
input within a single clock cycle. The circuit itself can be viewed as a folding of all possible
semantical proof trees into a graph structure.

The translation we have presented is not general since programs are assumed to obey a
sufficient NSP condition; we are now in the process of releasing a full correct translation of
Esterel into circuits, based on extensions of the same ideas.

We investigate three main kinds of applications: implementing existingEsterel programs
on hardware to improve their performance, usingEsterel to directly program hardware
controllers, and usingEsterel to build reference controllers to which actual hand-tailored
controllers can be automatically proved equivalent. Our present experiments are very
promising and leave place for sophisticated optimization.

To our knowledge, the closest related works are the hardware implementation ofLustre

andSml [13]. TheLustre andEsterel implementations are developed in parallel and are
fully compatible. Compared toSml, Esterel is much more elaborate as a programming
language, having in particular watchdogs, exceptions, and instantaneous broadcast. Our
implementation is direct and does not use a translation to automata, although such a translation

Research Report No. 15 July 1991

38 Gérard Berry

is also available.Lustre, Sml, andEsterel all give access to temporal logic or process
calculi based verifiers. We need more experience to compare the relative qualities of the
languages and of their verification tools.

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 39

Appendix — A Simple Bus Interface Example

As a toy application example, we program an interface module between a bus and a hardware
application. This interface is a slight simplification of the one effectively used in thePerle0

board to run actualEsterel programs hardware translations. Although the program is very
small, we use submodules to illustrate modular programming.

The Interface informal Specification

The interface repeatedly waits for input from the bus, tells the application to store the
corresponding data word, triggers a computation, and tells the application to send back the
output data word to the bus when the computation is terminated and the bus is ready for output.

The interface receives two signals from the bus,BUSWRITE for input andBUSREADfor
output. It acknowledges both input and output by sending backBUSACK.

Data words are received or emitted directly by the application. To control data input, the
interface tells the application to connect its input buffers to the data bus by setting a signal
OPENINPUT. This signal is maintained until the arrival ofBUSWRITE included. After one
clock cycle, the interface sendsBUSACKand starts the computation by sending a signalGO
to the application. When the computation is terminated, the application sends back a signal
FINISHED . The output data is then ready in the application output buffers. The interface tells
the application to connect its output buffers to the bus by sending a signalOPENOUTPUT.
This can be done only when the computation is finished and when the bus has sentBUSREAD.
After waiting a clock cycle for the data to be effectively present on the bus, the interface sends
BUSACK.

In addition, we assume that the bus can send at any time aRESETsignal telling the interface
to reset itself to its initial state.

Research Report No. 15 July 1991

40 Gérard Berry

The Interface Esterel Program

The interface module is written as follows:

module Interface :
input BUS_READ, BUS_WRITE, RESET; % from bus
output BUS_ACK; % to bus
output OPEN_INPUT, OPEN_OUTPUT, GO; % to application
input FINISHED; % from application

loop
loop

run Input;
run ComputeAndOutput

end
each RESET.

Notice that theRESETsignal is completely factored out and effectively resets the interface
independently of its current internal state.

The Input submodule is written as follows:

module Input :
input BUS_WRITE; % from bus
output BUS_ACK; % to bus
output OPEN_INPUT; % to application
trap INPUT in

sustain OPEN_INPUT
||

await BUS_WRITE do exit INPUT end
end;
await tick;
emit BUS_ACK.

Here we use atrap construct to ensure thatOPENINPUT is emitted whenBUSWRITE is
received. One could write as well:

do
sustain OPEN_INPUT

watching BUS_WRITE;
emit OPEN_INPUT;

By the semantics of thewatching construct, the statement “sustain OPEN INPUT” is
not executed whenBUSWRITEoccurs. This is whyOPENINPUT must be explicitly emitted
at that instant.

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 41

TheComputeAndOutput module is written as follows:

module ComputeAndOutput :
input BUS_READ; % from bus
output BUS_ACK; % to bus
output GO, OPEN_OUTPUT; % to application
input FINISHED; % from application
[

await BUS_READ
||

emit GO;
await FINISHED;

];
emit OPEN_OUTPUT;
await tick;
emit BUS_ACK.

Notice how the parallel statement realizes the synchronization: it terminates exactly when the
computation is finished and the bus ready to read.

Once optimized, placed, and routed, the circuit uses up 9 cells on on aXilinx 3020 circuit.
There are 5 registers and 11 logical functions with a total of 35 inputs.

The Advantages of Esterel

The automaton generated by theEsterel compiler is pictured in Figure 3. Notice the
diamond generated by the parallel statement that appears inComputeAndOutput . Notice
also the reset arrows that go from any state into state 1: they are all generated by the
single “loop . . . each RESET” statement. Of course, such a small automaton can be
easily designed by hand. The advantage ofEsterel programming really appears for more
complex controllers. The modularity of the language, its built-in concurrency, and the power
of its control structures allows the user to build controllers by assembling individually simple
modules into bigger ones. For example, to perform speed benchmarks onPerle0, we use a
variant of the bus interface that inputs two data words and performs computation and output
twice in a row. To obtain this interface, one just changes theInterface module body into
(roughly):

run Input [signal OPEN_INPUT_1 / OPEN_INPUT];
run Input [signal OPEN_INPUT_2 / OPEN_INPUT];
run ComputeAndOutput [signal OPEN_OUTPUT_1 / OPEN_OUTPUT,

GO_1 / GO];
run ComputeAndOutput [signal OPEN_OUTPUT_2 / OPEN_OUTPUT,

GO_2 / GO]

Usually, a relatively simple change to a specification involves a simple and local change to

Research Report No. 15 July 1991

42 Gérard Berry

e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0

e1e1e1e1e1e1e1e1e1e1e1e1e1e1e1e1e1 e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2 e3e3e3e3e3e3e3e3e3e3e3e3e3e3e3e3e3 e4e4e4e4e4e4e4e4e4e4e4e4e4e4e4e4e4

e5e5e5e5e5e5e5e5e5e5e5e5e5e5e5e5e5

e6e6e6e6e6e6e6e6e6e6e6e6e6e6e6e6e6

OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!

OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!OPEN_INPUT!

RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?
.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!

BUS_WRITE?BUS_WRITE?BUS_WRITE?BUS_WRITE?BUS_WRITE?BUS_WRITE?BUS_WRITE?BUS_WRITE?BUS_WRITE?BUS_WRITE?BUS_WRITE?BUS_WRITE?BUS_WRITE?BUS_WRITE?BUS_WRITE?BUS_WRITE?BUS_WRITE?
.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!

BUS_ACK!.GO!BUS_ACK!.GO!BUS_ACK!.GO!BUS_ACK!.GO!BUS_ACK!.GO!BUS_ACK!.GO!BUS_ACK!.GO!BUS_ACK!.GO!BUS_ACK!.GO!BUS_ACK!.GO!BUS_ACK!.GO!BUS_ACK!.GO!BUS_ACK!.GO!BUS_ACK!.GO!BUS_ACK!.GO!BUS_ACK!.GO!BUS_ACK!.GO!

RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?
.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!

RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?
.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!

FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?

BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?

BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?
.FINISHED?.FINISHED?.FINISHED?.FINISHED?.FINISHED?.FINISHED?.FINISHED?.FINISHED?.FINISHED?.FINISHED?.FINISHED?.FINISHED?.FINISHED?.FINISHED?.FINISHED?.FINISHED?.FINISHED?
.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!

BUS_ACK!BUS_ACK!BUS_ACK!BUS_ACK!BUS_ACK!BUS_ACK!BUS_ACK!BUS_ACK!BUS_ACK!BUS_ACK!BUS_ACK!BUS_ACK!BUS_ACK!BUS_ACK!BUS_ACK!BUS_ACK!BUS_ACK!
.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!

RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?
.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!

RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?
.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!

BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?BUS_READ?
.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!

RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?RESET?
.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!.OPEN_INPUT!

FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?FINISHED?
.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!.OPEN_OUTPUT!

Figure 3: The Interface Automaton

anEsterel program. This is definitely not true of finite automata, which are highly unstable
with respect to specification changes. We strongly believe that programming controllers in
Esterel is one order of magnitude simpler that designing finite state machines by hand.

July 1991 Digital PRL

A Hardware Implementation of Pure Esterel 43

References

1. G. Berry. Real-time programming: General purpose or special-purpose languages. In
IFIP World Computer Congress(1989).

2. G. Berry and A. Benveniste. The synchronous approach to reactive and real-time
systems.Another Look at Real Time Programming, Proceedings of the IEEE, Special
Issue(September 1991).

3. G. Berry and L. Cosserat. The synchronous programming languages Esterel and its
mathematical semantics. In S. Brookes and G. Winskel, editors,Seminar on Concurrency,
pages 389–448. Springer-Verlag Lecture Notes in Computer Science 197 (1984).

4. G. Berry, P. Couronn´e, and G. Gonthier. Synchronous programming of reactive systems:
an introduction to Esterel. In K. Fuchi and M. Nivat, editors,Programming of Future
Generation Computers, pages 35–55. Elsevier Science Publisher B.V. (North Holland)
(1988). INRIA Report 647.

5. G. Berry and G. Gonthier. The Esterel synchronous programming language: Design,
semantics, implementation. Research Report 842, INRIA (1988). To appear in Science of
Computer Programming.

6. G. Berry and G. Gonthier. Incremental development of an HDLC protocol in Esterel. In
Proc. 9th International Symposium on Protocol Specification, Testing, and Verification.
North-Holland (1989).

7. C. Berthet, O. Coudert, and J.-C. Madre. New ideas on symbolic manipulations of
finite state machines. InProc. of International Conference on Computer Design (ICCD),
Cambridge, USA(1990).

8. P. Bertin, D. Roncin, and J. Vuillemin. Introduction to programmable active memories. In
J. McCanny, J.McWhirter, and E. Swartzlander, editors,Systolic Array Processors, pages
301–309. Prentice-Hall (1989). Also Digital PRL Research Report number 3.

9. G. Boudol, V. Roy, R. de Simone, and D. Vergamini. Process calculi, from theory to
practice: Verification tools. InAutomatic Verification Methods for Finite State Systems,
LNCS 407, pages 1–10. Springer-Verlag (1990).

10. F. Boussinot and R. de Simone. The Esterel language.Another Look at Real Time
Programming, Proceedings of the IEEE, Special Issue(September 1991).

11. R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli. Multilevel Logic
Synthesis.Proceedings of the IEEE, 78(2):264–300 (February 1990).

Research Report No. 15 July 1991

44 Gérard Berry

12. P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice. Lustre: A declarative language for
programming synchronous systems. InProc. 14th. Annual ACM Symposium on Principles
of Programming Languages(1987).

13. E. M. Clarke, D.E. Long, and K. L. McMillan. A language for compositional specifi-
cation and verification of finite state hardware controllers.Another Look at Real Time
Programming, Proceedings of the IEEE, Special Issue(September 1991).

14. D. Clément and J. Incerpi. Programming the behavior of graphical objects using Esterel.
In TAPSOFT ’89, Springer-Verlag LNCS 352(1989).

15. O. Coudert and J.-C. Madre. A unified framework for the formal verification of sequential
circuits. InProc. of International Conference on Computer Aided Design (ICCAD), Santa
Clara, USA(1990).

16. G. Cousineau. An algebraic definition for control structures.Theoretical Computer
Science, 12:175–192 (1980).

17. T. Gauthier, P. Le Guernic, and L. Besnard. Signal, a declarative language for synchronous
programming of real-time systems. InProc. 3rd. Conf. on Functional Programming
Languages and Computer Architecture, Springer-Verlag LNCS 274(1987).

18. G. Gonthier. S´emantique et mod`eles d’exécution des langages r´eactifs synchrones;
applicationà Esterel. Th`ese d’informatique, Universit´e d’Orsay (1988).

19. P. Le Guernic, M. Le Borgne, T. Gauthier, and C. Le Maire. Programming real time
applications with Signal.Another Look at Real Time Programming, Proceedings of the
IEEE, Special Issue(September 1991).

20. N. Halbwachs, P. Caspi, and D. Pilaud. The synchronous dataflow programming language
Lustre.Another Look at Real Time Programming, Proceedings of the IEEE, Special Issue
(September 1991).

21. G. Kahn. Natural semantics. In K. Fuchi and M. Nivat, editors,Programming of Future
Generation Computers, pages 237–258. Elsevier Science Publisher B.V. (North Holland)
(1988).

22. M. C. Mejia Olvera. Contribution `a la conception d’un r´eseau local temps r´eel pour la
robotique. Th`ese de docteur-ing´enieur, Universit´e de Rennes (1989).

23. G. Murakami and Ravi Sethi. Terminal call processing in Esterel. Research Report 150,
AT&T Bell Laboratories (1990).

24. H. Savoj, H. Touati, and R. K. Brayton. The Use of Image Computation Techniques
in Extracting Local Don’t Cares and Network Optimization. InProceedings of IEEE
International Conference on Computer-Aided Design(November 1991).

25. M. Shand, P. Bertin, and J. Vuillemin. Hardware speedups in long integer multiplication.
In Proc. 2nd Annual ACM Symposium on Parallel Algorithms and Architectures, Island
of Crete, Greece, pages 138–145 (1990).

July 1991 Digital PRL

PRL Research Reports

The following documents may be ordered by regular mail from:

Librarian – Research Reports
Digital Equipment Corporation
Paris Research Laboratory
85, avenue Victor Hugo
92563 Rueil-Malmaison Cedex
France.

It is also possible to obtain them by electronic mail. For more information, send a
message whose subject line ishelp to doc-server@prl.dec.com or, from
within Digital, to decprl::doc-server .

Research Report 1: Incremental Computation of Planar Maps. Michel Gangnet, Jean-
Claude Hervé, Thierry Pudet, and Jean-Manuel Van Thong. May 1989.

Research Report 2: BigNum: A Portable and Efficient Package for Arbitrary-Precision
Arithmetic. Bernard Serpette, Jean Vuillemin, and Jean-Claude Hervé. May 1989.

Research Report 3: Introduction to Programmable Active Memories. Patrice Bertin, Didier
Roncin, and Jean Vuillemin. June 1989.

Research Report 4: Compiling Pattern Matching by Term Decomposition. Laurence Puel
and Ascánder Suárez. January 1990.

Research Report 5: The WAM: A (Real) Tutorial. Hassan Aı̈t-Kaci. January 1990.

Research Report 6: Binary Periodic Synchronizing Sequences. Marcin Skubiszewski. May
1991.

Research Report 7: The Siphon: Managing Distant Replicated Repositories. Francis J.
Prusker and Edward P. Wobber. May 1991.

Research Report 8: Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�-Calculi. Jean Gallier. May 1991.

Research Report 9: Constructive Logics. Part II:Linear Logic and Proof Nets. Jean Gallier.
May 1991.

Research Report 10: Pattern Matching in Order-Sorted Languages. Delia Kesner. May
1991.

Research Report 11: Towards a Meaning of LIFE. Hassan Aı̈t-Kaci and Andreas Podelski.
June 1991.

Research Report 12: Residuation and Guarded Rules for Constraint Logic Programming.
Gert Smolka. June 1991.

Research Report 13: Functions as Passive Constraints in LIFE. Hassan Aı̈t-Kaci and Andreas
Podelski. June 1991.

Research Report 14: Automatic Motion Planning for Complex Articulated Bodies. Jérôme
Barraquand. June 1991.

Research Report 15: A Hardware Implementation of Pure Esterel. Gérard Berry. July 1991.

15
A

H
ardw

are
Im

plem
entation

ofP
ure

E
sterel

G
érard

B
erry

d i g i t a l

PARIS RESEARCH LABORATORY
85, Avenue Victor Hugo
92563 RUEIL MALMAISON CEDEX
FRANCE

