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Abstract

Esterel is a synchronous concurrent programming language dedicated to reactive systems
(controllers, protocols, man-machine interfaces, etc.). Esterel has an efficient standard

software implementation based on well-defined mathematical semantics. We present a new
hardware implementation of the pure synchronization subset of the language. Each program
generates a specific circuit that responds to any input in one clock cycle. When the source

program satisfies some statically checkable dynamic properties, the circuit is shown to be

semantically equivalent to the source program. The hardware translation has been effectively
implemented on the programmable active memory Perle developed by J. Vuillemin and his

group at Digital Equipment Paris Research Laboratory.

Résumé

Esterel est un langage de programmation synchroneuc@our la programmation des
sysEmes eactifs: contoleurs, protocoles, interfaces homme-machine, etc. Estere¢gmss’
une impEmentation logicielle compte fondfe sur saeshantigue matrhatique. Cet article
présente une nouvelle imgtientation matielle du sous-ensemble d’Esterel restreina’
synchronisation pure. Chaque programme est traduit structurellement en un ciecifitisp’

qui réponda toute engé en un cycle d’horloge. La traduction estntbntée correcte

sous Eserve que le programme satisfasse une condition testable statiquement. La traduction
magrielle d'Esterel & effectivement im@mente, et des ex@imentations orgte conduites

sur la némoire active programmable Perlev@lopge au Laboratoire de Recherche de Digital
Equipmenta Paris (PRL) par Jean Vuillemin et sequipe.
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A Hardware Implementation of Pure Esterel 1

1 Introduction

EsTEREL [3, 4, 5, 10] is a synchronous programming language devoteztdive systems
that is to systems that maintain a continuous interaction with their environment by handling
hardware or software events. Its software implementation is currently used in industry and
education to program software objects such as real-time controllers, communication protocols
[6, 23], man-machine interfaces [14], systems drivers, etc. In this paper, we present a hardware
implementation of the pure synchronization subset of the language that builds a specific
circuit for each program. We prove the correctness of this implementation with respect to the
mathematical semantics of the language under some conditions to be satisfied by the source
program. We describe the experiments made so far and the possible uses of the hardware
implementation.

The Perfect Synchrony Hypothesis

EsTEREL iS an imperative concurrent language with very high-level control and event
manipulation constructs. It is based operfect synchrony hypotheg®, which states that
control transmission, communication, and elementary computation actions take no time, or,
in other words, that the program is conceptually executed on an infinitely fast machine. The
control structures include sequencing, testing, looping, concurrency, and a powerful exception
mechanism which is fully compatible with concurrency, unlike in asynchronous concurrent
programming languages [1]. The primitive communication device between concurrent
statements igistantaneous broadcastirmg signals.

The perfect synchrony hypothesisis shared by the synchronous data-flow lanfusgas
[12, 20] andS1eNAL [17, 19]. It makes programming very modular and flexible, and it makes
it possible to reconcile input-output determinism and concurrency. This is a great benefit
over classical asynchronous languages suclbasam or Apa that are inherently non-
deterministic, a characteristic that makes reactive programming and debugging needlessly
difficult, as explained in [1].

EsTEREL is rigorously defined by well-analyzed mathematical semantics, given in both
denotational and operational styles [5, 18].

Esterel in Software

The standardsTerEL compiler is directly based on one of the mathematical semantics.
It uses sophisticated algorithms to translate a concurrent reactive program into an equiva-
lent efficient sequential automaton that can be implemented in any conventional language.
Concurrency is compiled away during this process. The resulting automaton can be directly
run by actual applications. In addition to the compiler, BerereL environment includes
sophisticated tools such as symbolic or graphical simulators and interfaces to automata-based
program verification systems such&sTo [9].
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2 Gérard Berry

Esterel in Hardware

Since many CAD systems directly support automata-like specificafitstsRrEL programs
can be implemented in hardware by first translating them into automata using the standard
compiler. However, this indirect translation looses most of the source concurrent structure.
This is usually a good idea in software, where run-time concurrency is in fact expensive,
but not in hardware, where concurrency is free and should be used as much as possible.
Furthermore, there is no simple relation between the source program size and the size of the
generated automaton. In the worst case, the automaton size can be exponential in the source
program size, and square factors are not rare. Again, thisis much more acceptable in software
than in hardware.

The direct hardware implementation we present here is conceptually much better; it is based
on on Gonthier’s semantic analysiskdTEREL [18]. Ittransforms each program into a digital
circuit that exactly reflects the source concurrency and communication structure. The circuit
computes the response to any input within exactly one clock cycle, however complex the
program is. The translation is purely structural (compositional) and linear in size. However, it
is at present limited to the pure synchronization subset of the language, which \WPasgall
EsTEREL, and it works only under some restrictive conditions to be satisfied by the source
program.

The translation is completely formalized and proved correct with respect to the mathematical
semantics under the above restrictive conditions. Correctness relies on the fact that perfect
synchrony does not depart very much from digital circuit synchrony: zero-time is simply
replaced by one cycle.

Actual Implementation and Applications

Thetranslation from programs to circuits has been implemented within the eiStmEREL
compiler. We have run very successful experiments usingkthenx?™-basedPERLEOD
programmable coprocessor developed at DEC Paris Research Laboratory by J. Vigtlemin
al. [8, 25].

We are currently investigating two kinds of applications:
¢ Implementing existingEsTEREL programs in hardware to match high performance

constraints. For example, we have directly implemented the kernel of a fast local area
network protocol that was developed in Esterel at INRIA [22].

¢ Programming hardware controllers KsTEREL. The language turns out to be well-
adapted to programming the control part of a circuit, which is known to be difficult and
error-prone with usual techniques. We show a toy example in Appendix A.

The fact that the language can be implemented either in software or in hardware is useful
in two respects: one can use the software programming environment to develop, debug, and
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A Hardware Implementation of Pure Esterel 3

verify the programs; one can experiment various trade-offs between hardware and software
without changing the source code.

Esterel and Lustre

TheLusTrE synchronous language has also been implemented on hardware at DEC PRL,
and the implementations &sTerEL andLusTrE are fully compatiblé. It has to be noted
that both languages differ from most existing hardware description languages by the fact that
they deal only witthehaviorsand not with hardware objects, and also by the care with which
they were mathematically defined and studied. To describe cirtmi$T;RE andESTEREL are
complementaryL.usTrE is well-adapted to data path descripti®@sTEREL is well adapted
to control automata.

Structure of the Paper

Section 2 presents the pulesTEREL language and its intuitive semantics. We give
enough material for the paper to be self-contained, but not to fully understafithR EL
programming style, referring to [4, 5] and to tRsTEREL documentation for these aspects.
The mathematical semanticsBiirRE ESTEREL is given in Section 3. Section 4 presents an
essential part of the theory &fsTEREL, the coding of states by haltsets. This coding is the
root of the hardware translation, whose principle is presented by examples in Section 5. The
translation is then formalized in Section 6 and proved correct in Section 7. We discuss the
actual implementation oBErLEO in Section 8 and conclude. An appendix gives the example
of a simple bus interface and briefly analyzes the adequaBEg¢DirEL to program hardware
controllers.

2 Pure Esterel

We first present signal and events which are the basic objects manipulatBad rry
EsTEREL programs. We then present the kernel language on which the semantics is defined
and the full language that includes kernel-definable user-friendly statements.

2.1 Signals and Events

Purk EsTEREL deals withsignalsS, Sy, ... and witheventsE, E, ... that are sets of
simultaneous signals. A signal that belongs to an event is said podsentin that event,
otherwise it is said to babsent

The execution of a program associates a sequence of output events with any sequence of
input events. The program repeatedly receiveinpat eventE; from its environment and
reacts by building amutput eventE. That E; and E; are synchronous is expressed by the

A byproduct of our work is a translator from puBSTEREL into LUSTRE.
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4 Gérard Berry

fact that any external observer observesraleeventE; U E.. This is in particular true of
any other program placed in parallel.

The production of an output event from an input event is calleghation The flow of time
being entirely defined by the sequence of reactions, we also call a reactinstamt This
gives sense to temporal expressions such as “instantaneously” or “immediately”, which mean
“at the same instant”, or “from then on”, which means “after the current instant included”, or
“in the strict future”, which means “after the current instant excluded”.

We assume that each input event contains a special sigkal, which is therefore present
at all instants. This addition to the original language defined in [5] is now supported by the
EsTEREL implementation. Théick signal is analogous to the constant 1 in circuits or the
constantrue in LusTrE. When programming digital circuits, it will naturally denote clock
ticks.

2.2 Modules

The basicPure EsTEREL programming unit is thenodule A module has ainterface
which specifies its input signals I1 , ... and its output signals @1, . . ., and abody, which
is a statement that specifies its behakioFhe body can use any number of local signals for
internal broadcast communication. To achieve modular programming, a module can instantiate
other modules as described later on. Here is a sample module definition:

module M:
input 11, 12;
output O1;
statement

2.3 Kernel Statements

The primitive orkernelPureE EsTEREL Statements are:

nothing

halt

emit S

stat; stab

loop statend

present S then stat else stab end
do statwatching S

stag || stab
trap Tin statend
exit T

signal Sin  statend

2There are also input-output signals, ignored here for simplicity.

July 1991 Digital PRL



A Hardware Implementation of Pure Esterel 5

One can use bracket§’*and ‘]’ to group statements; by default, " binds tighter than
‘| ’. Boththen andelse parts are optional in present statement. If omitted, they are
supposed to beothing

The statements are imperative and manipulate controls and signals. Most of them are
classical in appearance. Thep -exit mechanism is a exception mechanism fully
compatible with parallelism. Traps are lexically scoped.

The local signal declaratiorsignal Sin  statend” declares a lexically scoped sigral
that can be used for internal broadcast communication watain

2.4 The Intuitive Semantics

The intuitive semantics deals with control transmission between statements and with signal
broadcasting. A statement catart at some instant and remaattive until it releases the
control at some further instant, either by terminating or by exiting a trap. After termination or
exit, a statement becomes inactive. A statement that terminates or exits at the same instant it
starts is said to banstantaneous When an active statement does not terminate and exits no
trap at an instant, it is said twalt at that instant.

The intuitive semantics is defined by structural induction on statements:

e nothing terminates instantaneously.
e halt never terminates nor exits. It always halts.
e An‘“emit S ” statement broadcasts the sig&snd terminates instantaneously.

¢ When started, a sequencgtdt; stab” immediately startstat and behaves as it. If
and whenstat terminatesstab starts immediately and determines the behavior of the
sequence from then on. If and whetat exits a trapT, so does the whole sequence,
stab being never started in this case. Notice thib is also never started stay
always halts. Notice also thagfit S1; emit S2 " emits S1 andS2 simultaneously
and terminates instantly.

e A loop acts as an infinite sequence. When startémhp* stat end” immediately
starts its bodytat When the body terminates, it is immediately restarted. If the body
exits a trap, so does the whole loop. The body of a loop is not allowed to terminate
instantaneously when started.

¢ Whena'present Sthen stat else stabend”statementstarts, it starts immediately
stay if Sis presentin the currentinstant sstdp if Sis absent. Theresent statement
then behaves as the corresponding branch.

e The“do statwatching S "watchdog statement starts immediatelyits body and behaves
as it until thetime guardS occurs.
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6 Gérard Berry

— If statterminates or exits a trap strictly befoSoccurs, then thevatching
statement instantaneously terminates or exits the same trap.

— If, in the strict future of the starting instar®,occurs whilestatis still active, then
thewatching statement terminates instantaneously and kiié¢ which is not
activated in the corresponding instant.

Notice two boundary problems: the guard becomes active only aheRkeinstant
following the starting instant; the body®t activated when the time guard elapses. As
we shall see below, all other possibilities can be derived by combining kernel statements,
which would not be true with another choice featching

¢ When started, a parallel statemestdt, | stat” immediately startstay andstab in
parallel. A parallel terminates instantly if and when bstht andstap are terminated,;
they can terminate at different instants, the parallel waiting for the last one to terminate.
If, at some instant, one statement exits a ffagqr both statements exit the same tilgp
then the parallel exit¥. If both statements exit distinct trad andT2 at the same
instant, then the parallel only exits tloaitermostof these traps, the other one being
discarded.

e The statementtftap T in  statend” defines a lexically scoped trap within stat
When thetrap statement starts, it starts immediately its batigt and behaves as it
until termination or exit. If the body terminates, so doestifap statement. If the
body exitsT, then thetrap statement terminates instantaneously. If the body exits an
enclosing trapJ, so does th&rap statement (traps propagate).

e An“exit T " statementinstantaneously exits the tiiap

¢ When started, the statememsignal Sin  statend” starts immediately its bodgtat
with a fresh signa§, overriding the one that may already exist. The statement behaves
as its body from then on.

A global coherence lawelates signal emission and testing:

A signal is present at an instant if and only if it is received as input by the
environment or emitted by the program itself at that instant

Remarks:

Notice that an emission is transient, and that there is an asymmetry between present and
absent signals. There is @amit statement to set a signal present, but no statement to set it
absent: by the coherence law, this is just the default.

Notice also that a loop never terminates by itself; the only way to end it is to kill it by
elapsing an enclosing time guard or by explicitly exiting an enclosing trap from within the
loop or from a statement placed in parallel with the loop.
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A Hardware Implementation of Pure Esterel 7

Finally, notice that exiting one branch of a parallel terminates instantaneously the corre-
spondingrap and therefore kills the whole parallel. All parallel branches are activated at the
exit instant. For example, iremit S || exit T " the left branch emit$ and terminates, the
right branch exitsl, so that the parallel emiS and synchronizes both branches by deciding
to exit T. Therefore, being killed by an exit is less severe than being killed by an enclosing
watching time guard, which doesot activate its body when elapsed.

2.5 Examples

The only statement that provokes haltinghedt . To take a finite but non-zero amount
of time, a statement must involv&lt statements guarded byatching statements. The
simplest example isdo halt watching S " which waits for S and terminates: by itself,
the bodyhalt would halt forever, but the enclosingvatching S " guard kills it whenS
occurs, and it makes the whole statement terminate. Hence the statement is guaranteed to “last
exactly oneS” from the time it is started (remembering that 8mpresent when the statement
starts is not taken into account). Anticipating on the definition of derived statements, we write
itas “await S .

In the above exampl& can be any signal, a second as well as a centimeter, a clock tick, or
generally any kind of interrupt. Therefore, each signal is seen as defining its own time unit.
Nesting temporal statements bearing on different time units is the main characteristic of the
EsTEREL Style [5, 4]. Here is a program that emits repeatedly @ eVeuytil reception of a
signalSTOP

do
loop
await |; emit (%)
end
watching STOP

Here @ is not emitted wheBTOPoccurs, even if is present, since the inner loop is preempted
by the externalvatching statement at that instant.

In most event manipulation languages, the basic primitivawsit , that waits for an
event tostarta computation in sequence. On the contrarylE#TEREL, the main primitive
is watching , that waits for an event tetopor preempta computation. It is a much more
powerful primitive thanawait . In particular, it is easy to derivawait from watching
while the converse is definitely not true.

Remember the boundary problem we mentioned when describingatbbing  statement.
To also emit @ ifl is present whesTOPoccurs, one usesteap :
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8 Gérard Berry

trap T in
loop await I; emit @ end
|
await STOP; exit T
end

This works since when one branch of a parallel exits a trap that encloses the parallel, the other
branch is activated in the corresponding instant before being killed. It can perform its “last
wills”.

The other boundary problem concerns the starting instant. If one wants the guard to be
active initially, one writes

present Selsedo  statwatching S end

readily abbreviated into the derived statement

do statwatching immediate S

The following toy example illustrates the preemption mechanism involved in concurrent
exits:

trap T1in
trap T2 in
emit S1; exit T1
|
exit T2; emit S2
end;
emit S3
end

The first parallel branch emitS1 and exitsT1. The second parallel branch exif2 but
does not emiB2 since arexit statement does not terminate. The body of the parallel exits
simultaneouslyl'l and T2; since only the outermost trap mattef® is discarded and'1
propagates. Henc®3 is not emitted, and the outermost trap terminates with 8dlgmitted

2.6 Full Esterel

The full language has many useful derived statements. We briefly describe the most
important ones. The complete list of derived statements and their expansions into kernel
statements are given in [5]

July 1991 Digital PRL



A Hardware Implementation of Pure Esterel 9

Temporal Statements

A temporal statement is characterized by the fact that its expansion inyalessnt ,
watching , orhalt kernel statements. We have already seen the siavpdét statement
and themmediate guard variant. Here are some other useful constructs:

e Boolean expressions on signals can appear in tests or guardgyeesiexit S1and S2  ”
or “do statwatching notS ”

¢ One can count occurrences of a signal (or boolean expression) within a time guard, as in
“await 3 S ”. Occurrence counts are not discussed in this paper but are easy to handle.

e One can add a timeout clause to be executed wheatehing statement terminates
by elapsing its time guard and not when the body terminates by itself:

do stat watching S timeout stab end
is just an abbreviation for:

trap T in
do stat; exit T watching S;
stab

end

e The statementdo statupto S ” is just “do stat halt watching S ". Even if the
body terminates, thepto statement waits for its guard to elapse.

¢ Deterministic event selection has the form:

await
case S1do stay
case S2 do stab
end

The statement waits simultaneously 86 and S2. If one of them occurs alone,

the control is instantaneously transferred to the corresponding statement. If both
signals occur at the same time, the control is transferregtltonly. This guarantees
determinism.

e There are two temporal loops:

loop stateach S
every Sdo statend

The first loop startstatat once, and kills and restarts it afresh whene&veccurs. The
second loop is similar but initially waits f@ to startstat

e The“sustain S " statement emit§ continuously. It abbreviates

loop emit S each tick

Research Report No. 15 July 1991



10 Gérard Berry

General Traps

There is a general exception handling mechanism that extends basic traps:

trap T1, T2 in
stat
handle T1 do stag
handle T2 do stab
end

When a trap is exited, the corresponding handler is started instantaneously. Here tf& traps
andT2 are concurrent. If they are exited simultaneously, both handlers are run in parallel.

Module Instantiation

Modular programming is achieved by then statement, which instantiates a module in
place, possibly invoking signal renamings:

run M [signal S/1]

A run statement terminates if and when the copied module body does.

3 The Behavioral Semantics

Several mathematical semantics have been developBdfamrEL, including a denotational
semantics that precisely formalizes the intuitive temporal concepts presented in Section 2.3.
Here we prefer to use theehavioral semantid$] that defines execution reaction by reaction,
using Plotkin’s Structural Operational Semantics technique (SOS for short). It is equivalent to
the denotational one, as shown in [18].

3.1 Form of the Rules

o)
The behavioral semantics defines transitions of the fofm- M’ where M is a module,

I
I is an input eventQ is the corresponding output event, ahfl is a new module that will
correctly respond to the next input events. In other woidsijs the new state al/ after the
reaction tol. The reactior01, 0>, ...,0,,...t0 an input sequendg, I, ..., I, ... is then
defined inductively by chaining elementary reactions:

01 0, On Op+1
M—M —M,.. M 1—M,—...
n L n Iy

o E'k
A behavioral transitiond — M’ is computed using an auxiliary relati®tat —— stat
I E

defined by structural induction on statements. HBrés the current eventin which stat
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A Hardware Implementation of Pure Esterel 11

evolves,E’ is the event made of the signals emitteddbgt andk is an integetermination
levelthat codes the way in whictatterminates or exits and is precisely defined below.

The current evenE is made of all the signals that are present at the given instant; because
of the coherence lawg must contain the sdf’ of emitted signals, which in turns depends on
E. HenceE and E’ will be computed asixpoints the fixpoint equation being located in the
local signal rule below.

Let statbe the body of\f andstat be the body of\f’. The relation between both transition
systems is as follows:

stat for somek

o)
M — M'iff stat .
I Tugu{tick 3

(under the minor restriction that no input signal is internally emittedtay see [5]).

Termination Levels

The termination levek is O if statterminates in the current instant, 1sfat halts in the
current instant, and + 2 if statexits a trapT that isk trap levels above it.e. is if the exit
must be propagated through- 1 traps before reaching its trap. To handle the exit level, it is
useful to first decorate thexit statements with the corresponding level, as in the following
example:

trap T in
exit T 2
I
trap U in
exit T 3
I
exitU 2
end
end

Here the firsil exit and thel exit are labeled 2 since there is no intermedigp statement

to traverse, while the secoridexit is labeled 3 since one must traversetthp U statement
toreach thérap T statement. This way of handling termination is simpler than the one used
in [5], but equivalent to it as shown in [18] (see also [16]).

3.2 Inductive Rules

Thenothing statement terminates instantaneously.

0,0 .
nothing —— nothing
E
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12 Gérard Berry

Thehalt statements halts and rewrites into itself.

0,1
halt —— halt
E

An emit statement emits its signal and terminates.

: {S},0 .
emit S — nothing

If the first statement of a sequence terminates, the second statement is started at once; the
emitted signals are merged to form the resulting emitted egengrding to perfect synchrony.

E!0 B, k2
stay — staf stab —— stat,
E E

E!UE} ky
stat; stap ——— stat,
E

If the first statement of a sequence does not terminate, that is if it halts or exits a trap, the
sequence behaves just as the first statement and the second statement is kept unchanged for
further reactions.

Eiykl
statf —— stay k>0
E

Eiykl
stat; stab —— stat; stab
E

A loop instantaneously unfolds itself once. Its body is not allowed to terminate instantaneously.

E'k
stat — stat k>0
E

E'k
loop statend —— stat; loop statend
E

A present statement instantaneously selectstiitsn branch if the signal tested for is
present in the current instant. Otherwise, it instantaneously seleetsatsbranch.
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Eiy kl
SOE stay —— stat
E

E’ykl
present S then stat else stab end = stat
E

Eéy kZ
SPE stah —— stat
E

E’ykZ
present S then stat else stab end 2 stat,
E

A watching statement transfers the control to its body and rewrites itself ipi@sent
statement in order to set the time guard at next instant if the body has halted.

E'k
stat —— stat
E

E'k :
do statwatching S —— present Selsedo  stat watching S
E

A parallel statements starts its branches instantaneously, merges the emitted signals, and
returns themaz of the termination codes. We leave it to the reader to see thawihis
operation exactly performs the required synchronization in all termination cases.

Eiy kl Eéy kZ
stay —— staf stab —— stat,
E E

E]’_UEé, maz(ky,k7)
stag || stab stat, || stat,
E

A trap terminates if its body terminates or exits the trap, that is returns termination code 2.
If the body halts, so does the trap. If the body exits an enclosap , then the exit is
propagated by subtracting 1 to the exit level.

E'k
stat T stat k=0ork=2

E',0 .
trap Tin statend —— nothing
E

E',k
stat — stat (k=1landk’'=1)or(k > 2andk’ =k — 1)

lkl

trap Tin statend —— trap Tin stat end
E
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14 Gérard Berry

An exit statement returns its exit level.

0,k
exitT * — halt
E

Finally, the local signal declaration rules wind up the eveBtand E’ according to the
coherence law given in Section 2.3. Within the body, they impose that a local signal is present
in E if and only if it is emitted inE’. A local signal is obviously not propagated outside its
declaration.

E'U{S},k
stat ——— stat S E’
EU{S}

E'k _
signal Sin  statend —— signal Sin  stat end
E

E'k
stat ——— stat S E’
E-{S}

E,7k . .
signal Sin  statend — signal Sin  stat end
E

Remarks

The resulting statemestat is unused and therefore immaterial for any rule returtking 1;
it is discarded by the exitelap . If a rule returng: = 0, then its resulting term is equivalent
to nothing

Because of the intrinsic fixpoint character of the local signal rule, our inference system does
not yield a straightforward algorithm to compute a transition. Given any ifipaie must
guess the right current eveiit and use the rules to check that there is a correct transition.
Other semantics yield finer analysis and efficient algorithms to compute the reaction; see in
particular thecomputational semantigs [5].

3.3 Correct Programs

Not all EsTEREL programs make sense. We say that a modiles locally correctif there
o

is only one provable transitiol — M’ for any input evenf. We say that\/ is correctif it
I

is locally correct and if all modules obtained by all possible sequences of provable transitions
are locally correct.

Correctness ofEsTEREL programs is a difficult issue. It is similar to correctness of
digital circuits (absence of races), although much more complex because of the power of
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the EsTEREL instantaneoukop construct. ThédEsTEREL compiler checks for reasonably
general sufficient correctness conditions, see [5]. Here, we just show two examples of (locally)
incorrect programs.

The following program has no fixpoint, sin€sshould not be emitted if present and emitted
if not present. Itis analogous 6 = = X in circuits.

signal Sin
present S else emit S end
end

The next program has two fixpoints, oneQf or S2 being present in each. It is similar to
X1=-X,, X»=-X;incircuits.

signal S1, S2in

present S1 else emit S2 end
I

present S2 else emit S1 end
end

4 The Haltset Coding of States

We now present an essential concept of the theoflgsaferEL, the unambiguous coding
of any state by a set of control points in the original program. Technically, control points are
represented bhalt positions in the kernel expansion of the module body (notice that the
expansion of any derived temporal statement generates at mokatng. SinceEsSTEREL
is concurrent, a state is given byatof control positions, which we call a haltset. The haltset
coding is important in two respects. First, its existence shows the rationalBgTdREL:
only finitely many statements be generated by the rewritings of a given statement. Second, it
is the direct basis of the hardware implementation, and it is also heavily used in the software
implementation.

The reader might skip this section at first reading and proceed directly with the informal
presentation of the hardware translation in Section 5. However, an understanding of the
material presented here will be necessary to see why the translation is done that way and why
it indeed works.

In the sequel, we consider a fixed correct modief expanded bodgtat For technical
reasons, we assume that the bodyofever terminates, adding a trailihglt if necessary.
This condition does not change the observable behaviors; of course, adding a hailings
done after expansion and not in modules copiedhy

Call aderivativeof statany statemergtat that can be reached frogtatby some sequence
o
of reactions— provable in the behavioral semantics. So far, the derivatives are defined by a
I
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rewriting process and bear no obvious structural relation with the sourcestatmVe show
that any derivative can be unambiguously coded Whakliset H of stat that is by a set of
occurrences dfalt statements in the kernel statemstatt

Consider for example the derivatives @ftait S1; await S2; halt " There are three
halt statements, the two first ones being respectively generated by the first and the second
await . Number them 01, 2. The whole statement itself will be coded by the empty haltset
(. The derivative that waits fd81 is

present S1 else
await S1

end;

await S2;

halt

Its haltset will be{0}, the index of théhalt generated by the activaait S1 " statement.
The derivative that waits fd82 is

present S2 else
await S2

end;

halt

Its haltset will be{1} since the secondwait is active. The final derivative isalt , coded
by {2}. Non-singleton haltsets will be constructed by the parallel operator, which will return
the union of the haltsets of its branches.

4.1 Haltsets

We number all occurrences bélt in statby distinct integers from O ta, » > 0. Then a
haltsetH is a subset of [On]. that satisfies the followingeparationcondition: If stat and
stap are the two statements of a sequence or the two branchepresant test, thend
cannot contain an occurrenceldlt in stat together with an occurrence bélt in stab.

We decorate the behavioral semantics rules by returning a hd@ltsghen executing a
numbered term. This haltset will record the places where the term has halted. The rules take

E'.k,H
the new formstat ——— stat. We always returr = [0 whenk # 1 andH # O when

E
k = 1. Adding haltsets is easy for all rules except the parallel one. Exehated statements

are put into the haltset by the rule balt and propagated by the other rules. Since the
transformation is fairly obvious, we just list a few rules and leave the other ones to the reader.

) 0,0,0 .
nothing ——— nothing
E
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. 0,1, {i} )
halt ® T halt *

E!,0,0 Eb ko, Hy
stay —— staf stab ——— stat,
E E

EiUEé, ky, Hy
stay; stab ——— stat,
E

EiyklyHl
stay ——— staf k1 >0
E

Eiy klyHl
stat; stab ——— stat; stab
E

E' kO
stat —— stal k=0ork=2
E

. E',0,0 .
trap Tin statend ——— nothing
E

E'k,H
stat — stal (k=21andk’=1)or(k >2andk’' =k —1)

r r

trap Tin statend ——— trap Tin stat end
E

For a parallel, we return the union of the haltsets returned by the branches unless one of
the branches exits a trap, in which case we return an empty haltset. We make an additional
technical modification explained later on: when one branch terminates, we rewrite it into
nothing

Eiy k17 Hl
stay ——— stat
E

Eéy k27H2
stap — stat,
H= H{UH, if mam(kl,kz)gl
1 O if maz(ky, ko) > 1

,_ ) stat if k; Z0
staf’ = { nothing if ;=0

E]’_UEé, maz(ky,ky), H
stag || stab stat' || stat
E
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Since a module body is supposed to always halt, its global termination code must be 1. Hence
the rules always returns a well-defined haltBefor any immediate derivative. This haltset is
easily seen to satisfy the separation condition.

4.2 Recovering derivative from haltsets

We now recover the derivativeat from statand H. We proceed in two steps. First we
define a labeled terstat’ obtained by labeling the subtermssiatby eitherH+ or H—; a
subtermis labeled + if and only if it contains at least one occurrencénaft whose number
isin H. If we care about the label stat itself, then we write it explicitly, as istatf*. The
labels are of course redundant wih but they make the definitions and proofs much simpler
to write.

Then we define a term(stat?) by structural induction ostat?. Subterms labeled by
andhalt statements are left unchanged.

R(stat? )

stat

R(halt ) halt

trap and local signal declaration constructs are handled by trivial structural induction.

Hy trap Tin R(stat’) end

R(trap Tin statend

R(signal Sin statend?) = signalSin  R(stat?) end

The only non-trivial cases are:

R(stat’*; statl ™)

R(stat’—; stat’™)

R(stat’"); stap

R(statl™)

R(stat™);

R(loop stat’* end) loop stat end

R(present Sthen staf’* else sta’ ~ end)

R(stat™)
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R(present Sthen  stat’~ else sta&’* end) R(statl™)
present S else
do R(stat’*) watching S
end

R(do stat’* watching S )

R(statl") || R(stat™)
R(stat’™) || nothing

R(statl*|| statl")
R(stat’™ || stafl )
R(stat’~ || stafl™)

nothing ||  R(stafl")

Notice that these definitions make sense only when the separation condition is satisfied. Notice
also why we returmothing in the semantics rules when a branch terminates: this simplifies
the definition ofR.

Since they exactly reproduce the (new) behavioral rules right-hand side terms, one easily
showsR (stat!) = stat as expected.

We now give the main result: the coding extends from immediate derivatives to general
ones. This is not completely obvious since Reoperator can duplicate halts in theop
case. The resultis as follows:

Theorem 1 Let statbe the body of a correct program. L&t be a haltset irstat Then for
any behavioral rewriting of the form

E',1,H'
R(stafl) —— stat
the haltsetd’ contains only halts occuring istat and one hastat = R(staf!').

Proof: The proof is by structural induction statand by case inspection on the rule applied to the
whole termR (stat?) to yield stat. All cases being similar, we treat the sequence and the loop as
examples. We consider a given current evént

Let firststat= stat; stat. There are three cases according to the labeling generatéd by

e If stap is labeled byH +, thenR (stat”) = R(statf). By correctness and by the hypothesis that
E' 1, H
stathalts,R(stat’) has a unique rewritin® (stat!) ——— staf, whereH' is a nonempty
B
haltset that only contains haltsstat. By induction, one hastat = R(statf'*). SinceH' is
all in stat and nonempty, one ha%(statzH'*) = R(statH') by definition of R() and the result
follows.
e The two other cases can be grouped into one. They correspond tostaémR (stat?); stab,
taking H as given ifstat = R(stat’"); stab and H = O if statitself has labelH—. By
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correctnessstat has a unique behavior, computed by either the first or the second sequence
rule. If the first sequence rule is used, themlat is generated entirely bgtat and the
results follows as in the first case. If the second sequence rule is used, the termination
code of R(stat?) is 1 sincestat halts. By induction and by the form of the rule, one has

stat = R(staf'*); stab = R(statH') for some nonempt#’ having all its halts irstag. The
result follows.

Assume nowstat = loop stat end. There are two subcases. dfatis labeled byH —,
then R(stat?’~) = loop stat end. The only applicable rule is the loop rule. It asks for
computingstat, which must halt sincestat does. By induction and by the loop rule, one has

1 1

E' LH ) L ' .
stat ——— R(stat?’ *); statfor someH’. The last term is jusR(stat? ) as expected. Iftatis
B

labeled byH +, thenR (stat?*) = R(stat?*); stat If the first term does not terminate, we proceed
as in the first loop case. Otherwise, the loop must be unfolded once and we are back again in the first
loop case. ]

Corollary 1 Letstatbe a module body. Then any derivatstat of statis equal toR (staf?)
for some haltseH, and there are only finitely many derivatives.

Proof: By induction on the length of a rewriting sequermatlstat, sincestatitself is equal to

R(stat’) and sincestatalways returng = 1. The finiteness property is obvious since there are only
finitely many possible haltsets. ]

5 Principle of the Hardware Implementation

In this section, we show by examples how to translaifeu&kE EsTEREL program into a
digital circuit that computes the reaction of the program to any input in one clock cycle. The
translation is structural: the circuit logical geometry is the same as that of the original program.
The translation is directly based on the haltset coding theory of Section 4, but we presentitin
such a way that it can be understood independently of this coding.

We start with a first example involving onlyalt andwatching statements. Then we
show how to handle concurrency and exceptions. Finally, we indicate how to efficiently
translate the full language. The formal translation is given in Section 6.

5.1 A First Example

Consider the following program:

module M:
input I, R;
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output @,
loop
loop
await I; await |; emit (%)
end
each R.

After an initialization instant in which is ignored, the behavior is to emit @ every two
restarting this behavior afresh edghExpanded into kernel statements, the body becomes:

loop
do
loop
do
halt
watching I,
do
halt
watching I,
emit O,
end
watching R
end

The corresponding circuit is drawn in Figure 1. It has two input pind fandR and one
output pin for @. There are four kinds of cells, callBdot , Watch, Present , andHalt .
Cell output pins are primed.

TheBoot andHalt cells each contain one register, assuming tbailly contain value
0 and to be clocked by the global circuit’s clock. The other cells are purely combinatorial.
ThePresent cells are used fopresent andwatching source statements, each source
“watching S 7 statement being conceptually rewritten intavdtch present S ”; This
slight syntactic modification simplifies the cells and makes it easy to implement boolean
expressions.

The circuit contains three sorts of wires: tbelectionwires sO—s5, the activationwires
a0—-a5, and thecontrol wires cO0—8. The unconnected and ¢’1 pins of Halt cells
corresponds to other wires unused here and described later on. Whenever two wires go to the
same place, they are impilly assumed to be combined by an gate.

The selection and activation wires go in reverse directions and form a tree that is called the
skeletorof the circuit. This tree is determined by the nestindnalt , watching , and||
statements in the source program, following the abstract syntax revealed by the source code
indentation. The leftmosialt andWatch cells correspond to the firatvait , the rightmost
ones to the secoralvait .
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R
| 0
.—>
Present
c't c'f
s’ a
Watch
s a
A
s2 a2 ¢ S s3 a3
Present Present
Boot ct c’f ct c’f
b
c4 c8
b I c7
N g
\ T~
S a c |/ c'l s’ a c i c'1
Halt Halt

Figure 1: first example

The selection wires are used to determine which part of the circuit can be active in a given
state: in our example, botwait statements are in mutual exclusion, and only one of them
can be active at a time. When the fiestait is active, the wires2, s1, andsO are set to 1.
When the secondwait is active, the wires4, s3, andsO are set to 1. The sources of the
selection wires are thidalt cell registers. The upper selection wa@ is unconnected here,
but we left it there to emphasize the structural character of the translation.

The activation and control wires bear the flow of control. The activation wires handle
preemption betweematching statements. In our example, the outermastching
preempts the innermost one: by the semanticEoferEL, if Ris present, the outermost
watching terminates without letting its body execute. The upper activation alrds
always set.

The cells are defined as follows:
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't = S
Present € - ex
df=cx-S§

Halt { s = c+(axs)

The notation is that oParLasM: '+’ is or, ‘%’ is and, =’ is not, an equality is valid at all
times, and a register is denoted by ‘:=’. Registers are supposed to contain initially 0. In the
sequel, we say that a wireliggh or setif it has value 1 andow or resetif it has value 0. We
say that a register ietif it gets value 1 andesetif it gets value 0. Signals are assumed to be
present when their wire is set and absent when their wire is reset.

The output signab of the Boot cell is high at first clock tick and remains then low. For
a Halt cell, the value of the output signal is initially low and then that ok + (a * s)
delayed one clock cycle. Hence a register is set either if an incoming control wire is set or
if the activation wire is set and the register was already. SEhe definition ofHalt is only
temporary: further pins will be added in Section 5.2.

A Sample Execution

At boot time, theHalt cell registers contain 0 and the selection wires are all low; the boot
control wireb is high. Because of the cell equations, all other wires are low. Hence the only
effect is to set the leftmostalt register.

On next clock tick, assume thatis present andR is absent. Theis2, s1, andsO are
set by theHalt register. Since0 is always set, the control flows down by settic@ that
triggers the test foR in the upperPresent cell. SinceRis low, the control flows through
thec’'f pin and set€2, which is connected to theinput pin of theWatch cell. This pin is
directly connected to the’ output pin, and the control flows thougil anda4 (which are
connected with each other and form in fact a single equipotential). SincesBo#imdal
are high, the leftmostvatch cell setsc3 and the leftmosPresent cell setsc4 sincel is
present. This sets the rightmd#lt register. Since4 is low, the rightmostWatch cell is
inactive. Having no incoming control set, the leftmblstit register is reset. This terminates
the first “await | " statement.

On next clock tick, ifl is present, the execution is symmetrical: the rightmdet is

3The multiplication by s is there to prevent setting the secohthlt register in a term such as
“do halt; halt watching S " whene is set.
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reset and the leftmost one is set. The wires sesares4, a0, c0,c2,al =a4,c6, andc?.
Sincec? is also connected to the output &, this output is set. If insRadresent, the wires
set ares3, s4, a0, c0, cl1, and one is back to the state just after boot. If neithaprR are
present, then the wires set @&®, s4, a0, c0, c2,al = a4, c6, c8, anda3, and the state is
simply restored as expected.

Relation with the Haltset Coding

Intuitively, the relation between our circuit and the haltset coding of derivatives is as follows:

e A state of the circuit is a set ¢dalt cells set to 1. It is therefore exactly a haltset.

¢ The selection wires just compute the + andabels of statements, + being represented
by a 1 in the selection wire.

e Sending the control to the translation of a subtetat by setting an incoming control
wire amounts to executgtat. For example, setting executes the whole statement,
settingb orcl execute the firstwait | , and setting4 executes the secomaalait |

e Sending the control to the translation of a subtetat, by setting its incoming activation
wire amounts to execut@(stat?) if stat is labeled by + inH, i.e. if the corresponding
selection wire is set.

Hence, in a haltsell and an inpufl, the circuit just mimics the behavioral proof Bf(stat?)
in I. This points will be made very precise in Section 7.

Notice that théBoot cell is not really necessary since the initial state can also be recognized
as the only state where &alt cells have value 0, that is where the wé@ is low. We could
as well connect thb wire to the negation a0. However, it is convenient in practice to add
the auxiliaryBoot cell to reduce the length of wires and the number of logical levels.

5.2 Translating Parallel and Exceptions

The most complex operator is of course the parallel one, since it must synchronize the
termination of its branches and propagate exceptions. Consider the following program
fragment:

trap Tin
await S1

I
present S2 then exit T end

end

The corresponding circuit fragment is shown in Figure 2. The leftriidetich -Present -
Halt cell group is generated bytvait S1 ". The rightmostPresent cell is generated by
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s0 a0 c0 i0 c8 c¢9 «cl10

11171

i ¢0 c1 c?2
Parallel
s a c I c0 ¢l ¢2

il
o1 al cl ‘
s’ a c ‘4

Watch
s _a’ c’
A S1 S2
c2 f V
c S c S
Present Present
s2 a2 c't c’f c't c’f
c3 c4d c6 c’7
] c5
s a c¢c i c1
Halt

Figure 2: second example

“present S2 ", (where “else nothing " was omitted as usual). The branches are simply
put in parallel and synchronized by tRarallel cell. The circuit fragment starts when it
receives control by $ting thecO wire.

TheParallel  cell has two parts: the fork part, which involves the six leftmost pins, and
the synchronization part, which involves the eight rightmost ones.

The fork part is simple: selection wires are gathered bymangate and activation and
control are dispatched to branches.

The synchronization part is more subtle. The pids c1, andc2 record the different
termination modes according to their codes defined in sectlbmeans terminatiors,l means
halt, andc2 means exitind. With each termination pie is associated a continuation pifa.
(In fact,¢’1 is not really a continuation in a usual sense: itis recursively linked teltleatry
of the enclosindgParallel  cell when such a cell exists.)
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As explained in Section 3, the synchronization realized by the parallel amounts to compute
the max of the termination codes of its branches and to only activate the corresponding
continuation. It therefore uses a priority queue.

In our example, the left branch can halt, as signaled by settingaBireor terminate, as
signaled by setting wire3. The rightmost branch can terminate or €kits respectively
signaled by setting wires7 andc6. Since exitingT or terminating the parallel lead to the
same continuation, the continuations wio&s andc10 will reach the same input pin in any
global circuit in which our fragment is placed.

When the right branch exit§, the leftmost branch must be killed; technically, hilt
statements must be removed from the current haltset. This is the role imhibéion wire
i1 that sends an inhibition signal to tialt register. In an actual execution context, the
inhibition signal can also come from an enclosing parallel statement itself killed by some trap
exit. It is then received on pihby the wireiO .

The final equations of thearallel ~ andHalt cells are:

s’ =s

ad =a

cd =c

2 =¢c2
Parallel pl =2

'l =clx-pl

p0 =cl+pl

c'0 = c0x -p0

i = i+pl

M = o+
Halt {cl c+(axs)

s = (' +(axs))*x1

wherep0 andpl are local wires used to compute the parallel continuation and inhibition
values: ifei is the selected continuatioey, is set and all continuationg are reset fogf < 1,
andqé’ is set ifp2 is.

A Sample Execution

Assume the circuit receives control b§ and therefore setsl .

e AssumeS2 is present. Ther5 is set by theHalt cell andc6 is set by the right
Present cell. The parallel cell selects the appropriate continuatih and inhibits
the halt register by settirid .
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e Assume instea®? is absent. Ther5 is set by theHalt cell andc7 is set by the
right Present cell. The selected continuation@9 ; it signals halting to an eventual
enclosing parallel statement. Since the inhibition vidreis low, theHalt cell register
is set. The circuit then remains in the same state in further clock cycles as long as the
activation wireaO remains high an®1 remains low: the wires set as? , s1,s0, al,
c2,c4,a2,c5, andc9. If a0 remains high an&1 is reset, the wires set as2, s1,
s0, al, c2, c3, andc8. The whole construct terminates and the register is reset since
cl anda2 are low. The incoming activation wir@) can also become low befofl
occurs, for example because an enclosing watchdog elapses. Thdmittheegister is
also reset.

General Parallel Cells

In fact, the size of the priority queue in a parallel cell depends on the number of nested
traps exited from within its source parallel statement. The number ofcpji§ for i > 2
corresponds to the number of enclosing traps. With no trap, there is no such pin. The example
explained one level of trap. With two levels of traps, as in

trap U in
trap Tin
ol
end
end

there would be a pia2 for T and a pine3 for U, and so on.

5.3 Summary of the Translation

The translation is done by connecting together cells corresponding to source statements.
The cells are the same for all programs, but the parallel cells have a variable continuation arity
according to the number of enclosing traps.

The logicalskeletorof the translation is given by the treelgélt , Watch , andParallel
cells which mimics the tree of sourtalt , watching , and|| statements. Each edge of
the tree is composed of an upwaelectionwire and a downwardctivationwire. Two sets
of wires reinforce the skeletortontrol wires that signal halting and go upwards frétalt
and Parallel cells toParallel cells, and oppositahibition wires that force resetting
theHalt registers in case of exceptions.

In addition to the above cells, one find8aot cell used to boot the circuit, arRresent
cells generated by sourqgeesent andwatching statements. These cells are linked
together and to skeleton cells bgntrol wires. EachPresent cell also receives as input a
signalwire. Signal wires come either from input signal pins or from local signal cells, which
are simplyor gates. Control wires transfer the control from cell to cell. They also emit signals
by being connected to output signal pins or to local sigmalgates. The wiring of control
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wires is determined by a continuation analysis, see Section 6.

5.4 Optimization

The reader may find that our circuits contain lots of wires and of logical levels, even for
simple programs. Infact, thisis because they are obtained by a strucural translation process and
there is much room for automatic optimization. Many wires are simply connected with each
other. Many generated logical functions are readily grouped by logic optimizers. Constant
folding can also be used: for instance, the top activation wire is always set; using this fact, one
can statically simplify many gates.

Therefore, our circuits should not be directly implemented; they should instead be given
as input to logic optimizers. We presently use optimizers based on Binary Decision Dags (or
BDD’s), see [11, 15, 24]. They drastically reduces the actual size of circuits. They can also
discover redundancies between registers and suppress some of them [7].

Altogether, we believe that we can obtain final circuits that are as good as carefully hand-
designed ones. Because of the power and efficiency of BDD-based optimization techniques,
we think there is no need to search for a more sophisticated translation process.

5.5 The Translation is Sometimes Incorrect

Our translation does not translate correctly all programs. There are difficulties with local
signals and with loops over parallel statements.

First, we have allocated a single wire for a local signal. But even within a single reaction,
anEsTEREL signal can have several independent avatars. Consider a statement of the form

loop
signal Sin  statend
end

When the body terminates, it is restarted at the same instant wahtesignalS. This is made
obvious by unfolding the body to get

loop
signal Sin  statend;
signal Sin  statend
end

which is semantically equal and where there are clearly two distinct signals.

In our circuits, a signal wire has only one state at a time: we cannot implement general local
signals. We must require all local signals to be declared at toplevel in the module body. This
is not a too big restriction in practice.
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The second incorrectness is more subtle. The translation of the statement

loop
await S
end

is correct, but the translation of the equivalent statement

loop
await S
Il
nothing
end

is not since it involves an unstable combinatorial loop through the parallel synchronizer: when
S occurs, the parallel terminates and the loop makes it halt at the same timeainS .

But halting justs inhibits the termination that should provoke it, hence the combinatorial loop.
Unfolding the body would solve the problem; it still builds a combinatorial loop, but this time
a safe one.

The EsTEREL software checks for sufficient conditions for translation correctness. We are
presently investigating a more powerful translation that will correctly translaiésalkrEL
programs. It will be reported in another paper.

6 The Formal Translation to Hardware

We define the translation formally and prove its correctness in absence of bad loops over
parallels. As explained in Section 5, we assume all local signal declarations to be at toplevel
in the module body.

6.1 Circuits

We consider a circuit to be given by a setimbut wires a set ofoutput wires a set oflocal
wiresand a set ofvire definitionghat define output and local wires. There are two kinds of
wire definitions:

e Animplicationdefinitionw < exp expresses a partial definition, read as “conmrept
tow”. There can be several implications per wire.

e A registerdefinitionw := ezp defines a wire to be initially 0 and then the valuesp
at previous clock cycle. There can be only one register definition per wire.

Given a circuitC and a wirew, the set of implicationss <« ezp; in C definesw as
w = \/; exp;. Hence the right-hand-sides of implications are connected tr agate. If
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a wire w has no definition, it is considered to have an empty set of implication definitions,
and therefore to be defined by = 0. To stress the fact that a wire has a single implication
definition in a circuit, we can write this definition using ‘=" instead &t".

Given any register state and any input, the semantics of a circuit is classically defined as a
unique fixpoint of the equations, and a circuit is correct if a unique fixpoint always exists in
any (reachable) state. We assume this to be well-known.

6.2 The Translation Environment

The formal translation is done by natural semantics inference rules [21]. The sequents have
the formp F stat— C, wherep is a wire environmenstatis anEsTEREL statement, and
is the resulting circuit.

As in natural semantics or IRROLOG, allocation of new wires is implicit and done when
encountering free variables. To make things clear, we shall comment each rule anidyexplic
tell which are the newly allocated wires.

The environmenf is made of several wires, whose functions have been explained in
Section 5. It contains the following fields

An incoming control wiree.
e A selection wires.

e An activation wirea.

e An inhibition wire 1.

¢ A vector of continuation wireg. The wirec© corresponds to termination, the wiré
corresponds to halting, the wig**2 corresponds to exk + 2, that is to exitinge trap
levels.

¢ A set of signal wiresS, one for each input, output, or local sigrtal For simplicity,
we assume that all local signals have distinct names; then all local signal wires can be
preallocated.

We use the classical dot notation to get environment components: for insgandenotes
the control wire ofp. Given an environmeng, we shall often need to consider another
environmeni’ that differs fromp by the value of one field, say by changipg into ¢’. We
then writep’ = p[c < ¢']. The notation extends naturally when changing several fields.

To translate a module, we allocate a boot control vidrand a registen of equations
b = -n, n := 1 asin Section 5, a dumy selection wigetwo dummy wirescO andcl for
the (unused) continuations, a dummy inhibition wireand one wireS per signal, declaring
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respectively input and output signals as inputs and outputs to the circuit. We translate the
module body in the environment

po = (b,S,l,i 7(CO7C1)7§)

6.3 The Translation Rules

The cells of Section 5 were useful for an intuitive explanation, but in rules it is simpler to
produce directly equations.

For anothing statement, we connect the incoming control to the termination continuation
wire.

p F nothing — p.c% < p.c

For ahalt statement, we connect the incoming control to the halt continuation wire, to
signal halting to an enclosing parallel statement. We allocate a new selectios! watned
as a register with input as explained in Section 5. We connect it to the environment selection
wire p.s.

p.ct < pc+(p.axp.s)
phHhat — | ps < s
s = (p.c+(p.axp.s))*x-p.i

For anemit statement, we connect the incoming control to the termination wire and to the
signal wire.

p.c% < pc

pFHemtS — 0.S < pe

For a sequence, we allocate a new wiréor control transmission. We translate the first
statement witle’ as termination and the second statement vlitis incoming control.

p[c® — ¢l F stay — O
ple < 'l F stab — C>»

C1
C>

p | stag; stab —

For a loop, we allocate a new witgto handle looping and we connect the incoming control
to it. We translate the body witl both as incoming control and as outgoing continuation.
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ple — ¢',é%«— (] F stat — C

¢ < pec

p F loop statend — c

For apresent statement, we allocate two new control witggndc,; thene; is set when
the incoming control is present and the signal is present, while set when the incoming

control is present and the signal is absent. We translate the branchesg;vetid ¢, as
respective incoming controls.

ple < c1] F stay — C1
ple «— ¢2] F stap — C>

c1 = p.cxp.S
p F present Sthen stat else stab end — CC% = pexmpS
1
C>

For awatching statement, we allocate a new selection wirand connect it tg.s, and we
allocate a new activation wir€. The outgoing activation wire’ is set if if s’ andp.a are set

and the signal is absent. The outgoing termination wie€ is set ifs’ andp.a are set and the
signal is present.

pls — s',a« d]F stat — C

p.s < s

a = paxps*x-pS
p.c0 <= paxp.sxpS
C

p F do statwatching S —

The parallel rule is of course the most complex one. It follows exactly the intuitive explanation
given in Section 5. We allocate a selection wéfeconnected te.s, an inhibition wirez’, a
continuation vectoe’ of the same length asp.c, and a priority vectop’ of lengthk — 1. We
recursively translate the body with the new selection, inhibition, and continuation wires. Then

we establish the priority queue to compute the outgoing continuations and the new inhibition
wire 7.
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k=|p.c]
pls — s',i— i, 6« F stay — C;
pls — s',i— i, c] b stab — C»

p.s < s
pEl « k-
ﬁk—Z = k-1
p.eF2 < E}k—Z*_'ﬁk—Z
pk3 = gk—z_,_pk—z

p - stag|| stab — 70 = 314.171
p.e0 < c‘io*_|13»0
#_{pi if k<3

] pi+pt ifE>3

C1
C>

For atrap , we shift by 1 all wires inp.c after position 2 and we insert the termination
continuatiorp.Z° at exit position 2. The vector notations are obvious.

ple¢ — (p.c% p.ct, p.c% e p.c%] + stat — C

phHtrapTin statend — C
For anexit , we connect the incoming control to the appropriate continuation.
pFexitT * — pe* < pe

For a local signal declaration, we simply translate the body since the signals have been
pre-allocated.

p F stat — C

p F signal Sin  statend — C

7 Correctness of the translation

We first explain roughly the proof idea as if the translation was always correct. Consider
the bodystatof a correct module placed in thetial environment where the local signal wires
have been cut. Then there are two separate wires for each local signal, one for input and one
for output. Consider a signal environmdiiand a haltseH. There exists a unique behavior
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E' 1,H' . , ) ] E',1,H"
stat ——— staf with sta = R(stat!’), and a unique behavidR (stat’) ———— stat
E E
with stat/ = R(staﬁf"); uniqueness is obvious since there are no local signal declarations in
stat;.

The circuit fragmen€ (stat ) obtained by translatingtat has two incoming control wires
anda. Then setting realizes the first behavior, while setting the activation wirealizes the
second behavior. Furthermore, because of loopsda can be both set. Then the circuit sums
up both behaviors with no interference between them. The proof goes simply by structural
induction.

Once this is shown, close the local signal wires. Then, for the module &tagyfor any
stateH and real input evertt, there exists a unique local eveihand a unique output evett
such that

717 !

R(stat?) R(stat!)

ITuLuou{tick }
But closing the local signal wires in the circuit has exactly the same coherence effect as in the
semantics: a signal is there if and only if it is emitted. Since the circuit can do nothing but
mimic the behavioral semantics and since there is only one fixpoint in the semantics by the
correctness hypothesis, there is only one fixpoint in the circuit and it is the requirkd one

Therefore, one can view the circuit ascéding of all possible behavioral semantics proof
treesof a program and of its residuals in all possible environments. What the electrons do is
to select the right prooftree in one clock cycle given a residual and an input.

The only problem with the above proof argument is that sending control to a parallel by
both ¢ anda doesnot sum up the behaviors: one of the continuations can be discarded by the
other one. Here, we shall simply prove that the circuit works fine under the assumption that
the problem can never appear dynamicalljhis leads to the following condition:

Condition 1 (NSP) A correct program is said to bSP(Non Schizophrenic for Parallels) if

for any haltsetd and for any evenf, no parallel subternstat = stat|| stap that contains

a haltin H is evaluated in the behavioral semantics proof of the reaction of the module body
under E both under the formstatand under the fornR (staff*).

This is certainly a strange and non-structural condition, but its main advantage is to be
amazingly trivial to check in th&sTrerEL software compiling process. We have put an
appropriate specific option in ti&sTEREL compiler to report its failure.

Theorem 2 For any correct NSPEsTEREL moduleM, the circuitC(M) has exactly the
same input-output behavior dg .

“We talk here of abstract circuits, or equivalently we assume that concrete circuits do always find the unique
fixpoint when it exists.

5The right solution would be to us&o synchronizers, one ferand one for, and to duplicate some of the logic
of the body to signal termination to the appropriate synchronizer; in fact, one must use more than two synchronizer
in the general case to properly handle parallel statement nesting; this will be the subject of a forthcoming paper.
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Proof: The proof goes just as sketched, but we must inductively ensure that no paredisiesc
ande together.

We first study the circuit reactions when the local signal wires are opened. We consider a given

E', 1, H ,
haltsetH and a given input everf. Let P be the proof ofR (stat’) ——— R(stat?).
B

Given a subternstat of stat define the type oftat in P as follows: stat is of typenull if it does
not appear irP, of typec if it appears inP only under the fornstat, of typea if it appears inP only
in the formR (stat’*), and of typeca if it appears in both forms.

For the circuitC(stat) generated bgtat;, we say that we send the contralll if we set neithee nor
a, the controk if we setc and nota, the controk if we seta and noftc while s is set, and the control
ca if we set bothe anda while s is set.

We show the following properties on any subtestat by structural induction:

(a) If stay receives the control as indicated by its typefinthen it will itself send the control to
all its subterms as indicated by their typefin

(b) Under controhull, C(stat) sets no continuation, no signal, and no halt.

Bl ko, H. _
(c) If stay is of typec andstay ——— stat, then, under contral, C(stat) emitsE~, sets the
B

sole continuatio' *<, and sets exactly the halts . iff its incoming inhibition wire: has
value 0.

B, ke, Hy _
(d) If stat is of typea andR(stat’*) ——— staf, then, under contrat, C(stat) emits E%,,
B
sets the sole continuati@i¥+, and sets exactly the halts i, iff its incoming inhibition wire:
has value 0.

(e) If stay is of typece, then, under contrala, C(stat) realizes the union of the behaviors of case
(c) and (d).

First notice some general facts. Thavire is set forstay iff stat’*. Hence only statements that
contain halts irH will receive bothz ands. By construction, any circu®'(stat) does nothing under
controlnull and sets no halt when its incoming inhibition wirés set; otherwise, its sets its halts
normally. Also, since all statements merge their emitted signals by or gates, the signal behavior will
always be the expected one.

The statementaothing , emit S , andexit T are always of typaull or ¢ and they exhibit the
(c) behavior undee. A halt can be of any type, but it always seét$ and its register if = 0 as
required under contral, ¢, or ca.

Consider a sequenctat; stab of typeec. Thenstay is itself of typee, and the induction tells
that C(stat) behaves just astat undere. If stat terminates, thestab is of typec since the first
sequence rule must be applied in the proof (it cannot be of ¢gpetherwise the sequence itself
would be of that type). Buf'(stat) setsc’© that startstab under controk by the sequence wiring.
The induction shows (c). Ktat does not terminate, thestat, is of typenull andC(stat) receives
no control and does nothing; hence the sequence behaves giagas/hich shows (c). Condition
(a) also follows from this case analysis.

The proof of (d) and (a) is similar for a sequence of typanalyzing separately the castat’* and
stat?*.

Consider finally a sequence of type. First assumatat?*. Thenstay itself is of typeca, and the
induction applies to it. Furthermorstab is started undee iff stat terminates undet, a, or both.
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But giving twice the control tetat is just the same as giving it once, since incoming control wires
are gathered by aor gate, and (e) follows. Next assurs@t!*. Thenstat is of typec, while stab

is of typeq if stat does not terminate, making (e) obvious, and of tyg& stat terminates; in the
latter case, (e) is established by inductionstalb. The case analysis is finished for the sequence,
and it also shows (a) in all cases.

The other operators are handled in the same way. For a parallel, one is never in case (d) by the NSP
hypothesis, and one remembers thatitivire is set in case of exit to kill the haltsets of the subterms.

Finally, as explained before, the circuit is forced to compute the same fixpoint as the behavioral
semantics when closing the local signal wires. To finish the proof, just notice that the module body
statreceives: at the first instant from the boot wire amadat the next instants from the selection wire
that is plugged back as the activation wire. ]

8 Implementation

8.1 Actual Implementation on Perle0

We have experimented our hardware implementation orPtt¥eLe0 board developed at
DEC PRL [8]. It consists of a set of 25 synchrondm.inx programmable logic cell arrays
placed on a board and piloted by a SUX workstation.

The translation is performed by th&rldg processor EsTEREL-to-digital), which is
integrated in the standafsTerEL compileP. The generated logical circuit is printed out
in PErLEO format and translated intAiLiNnx native format by théPErRLEO software (we
could as well produce portable formats suchPas.asm). The logical circuit is then given
to optimizers and the optimized result is fed into an automatic placer-router, without any
pre-placing indication. This gives BiLiNx circuit specification. Using this environment,
the turnover is on the order of 15 minutes from source program to running circuit for a
medium-size program.

OnPERLEO, we provide a symbolic debugging and exact speed measure environment, with
interactive symbolic input and output from within Lisp or C. The speed measure reports at
which maximal clock speed a circuit correctly handles a benchmark. In practice, the speed is
30to 75 nanoseconds for a small program (30 ns for the circuit presented in the appendix), and
75 to 100 nanoseconds for a medium size program that still fits into a single chip (about 2-4
pages of sourcBsTEREL code), this on a 302®iLiNx chip.

In debug or speed-measure mode, B¥eEREL program is implemented on a single chip
and other chips are devoted to bus and debug interfaces. The applications we have handled
so far are man-machine interfaces, real-size local area network controllers [22], and various
circuit controllers including those used in tRe&rLEO board itself to communicate with the
bus and with the tested program.

5n fact, most of the skeleton and continuation analysis is already done by the standard compiler first pass.
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8.2 Simulation and Correctness Proofs

EsTerEL and LusTrE are themselves able to describe digital hardware. Strlelg
processor is also able to unparse the circuR$merEL or LusTRE. There are two main uses:

¢ After compiling theEsTEREL version of the circuit, we can use the fHISTEREL
programming environment to perform simulations, analysis, and optimizations.

¢ Once the circuit behavior automaton is generatedbyErEL compiler, we can use
the AuTo verification system [9] to automatically check for equivalence between the
source code and the circuit automata. This may seem unnecessary since the translation
has been mathematically proved correct, but software is software and double-checks
are always useful. Furthermore, the translation can work properly even if the sufficient
correctness conditions are not metAlfTo reports equivalence, the circuit is perfectly
usable even if it works by chance!

Of course, using thEsTEREL standard compiler for such a circuit unparsing analysis makes
sense only if the circuit has a reasonable number of states, say 50 to 500, which is usually the
case for controllers.

9 Conclusion

Although EsTEREL was not at all designed as a harware description language, the work
presented here shows it well-suited to very high-level verified hardware generation. The
hardware implementation is directly based of the formal semantics. The electrons circulating
in the wires perform the computation of the proof tree associated with a program and an
input within a single clock cycle. The circuit itself can be viewed as a folding of all possible
semantical proof trees into a graph structure.

The translation we have presented is not general since programs are assumed to obey a
sufficient NSP condition; we are now in the process of releasing a full correct translation of
EsTEREL into circuits, based on extensions of the same ideas.

We investigate three main kinds of applications: implementing exi#EEEREL programs
on hardware to improve their performance, uslgreresn to directly program hardware
controllers, and usinf.sTEREL to build reference controllers to which actual hand-tailored
controllers can be automatically proved equivalent. Our present experiments are very
promising and leave place for sophisticated optimization.

To our knowledge, the closest related works are the hardware implementalias Dk E
andSwML [13]. TheLusTrE andESTEREL implementations are developed in parallel and are
fully compatible. Compared t8ML, ESTEREL iS much more elaborate as a programming
language, having in particular watchdogs, exceptions, and instantaneous broadcast. Our
implementation is direct and does not use a translation to automata, although such a translation
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is also available LusTrE, SML, and EsTEREL all give access to temporal logic or process
calculi based verifiers. We need more experience to compare the relative qualities of the
languages and of their verification tools.
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Appendix — A Simple Bus Interface Example

As a toy application example, we program an interface module between a bus and a hardware
application. This interface is a slight simplification of the one effectively used iR #r.E0
board to run actudtsTEREL programs hardware translations. Although the program is very
small, we use submodules to illustrate modular programming.

The Interface informal Specification

The interface repeatedly waits for input from the bus, tells the application to store the
corresponding data word, triggers a computation, and tells the application to send back the
output data word to the bus when the computation is terminated and the bus is ready for output.

The interface receives two signals from the BIYSWRITE for input andBUS READfor
output. It acknowledges both input and output by sending B8 ACK

Data words are received or é@ed directly by the application. To control data input, the
interface tells the application to connect its input buffers to the data bus by setting a signal
OPENINPUT. This signal is maintained until the arrival BUSWRITEincluded. After one
clock cycle, the interface sen@$JSACKand starts the computation by sending a sigs@l
to the application. When the computation is terminated, the application sends back a signal
FINISHED . The output data is then ready in the application output buffers. The interface tells
the application to connect its output buffers to the bus by sending a SPBNOUTPUT
This can be done only when the computation is finished and when the bus hBESHREAD
After waiting a clock cycle for the data to be effectively present on the bus, the interface sends
BUSACK

In addition, we assume that the bus can send at any tRESETsignal telling the interface
to reset itself to its initial state.
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The Interface Esterel Program

The interface module is written as follows:

module Interface :
input BUS _READ, BUS WRITE, RESET; % from bus

output BUS_ACK; % to bus
output OPEN_INPUT, OPEN_OUTPUT, GO; % to application
input FINISHED; % from application
loop
loop
run Input;
run ComputeAndOutput
end
each RESET.

Notice that theRESETsignal is completely factored out and effectively resets the interface
independently of its current internal state.

Thelnput submodule is written as follows:

module Input :
input BUS_WRITE; % from bus
output BUS_ ACK; % to bus
output OPEN_INPUT; % to application
trap INPUT in

sustain OPEN_INPUT
Il

await BUS WRITE do exit INPUT end
end;
await tick;
emit BUS_ACK.

Here we use &rap construct to ensure th&PENINPUT is emitted wherBUSWRITEIs
received. One could write as well:

do

sustain OPEN_INPUT
watching BUS WRITE;
emit OPEN_INPUT;

By the semantics of thevatching construct, the statemensustain OPEN _INPUT” is

not executed wheBUSWRITEoccurs. This is whYDPENINPUT must be explicitly emitted
at that instant.
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The ComputeAndOutput module is written as follows:

module ComputeAndOutput :

input BUS_READ; % from bus
output BUS_ACK;, % to bus

output GO, OPEN_OUTPUT; % to application
input FINISHED; % from application

[
|

await BUS_READ

emit GO;

await FINISHED;
I
emit OPEN_OUTPUT;
await tick;
emit BUS_ACK.

Notice how the parallel statement realizes the synchronization: it terminates exactly when the
computation is finished and the bus ready to read.

Once optimized, placed, and routed, the circuit uses up 9 cells oXarigx 3020 circuit.
There are 5 registers and 11 logical functions with a total of 35 inputs.

The Advantages of Esterel

The automaton generated by tReTEREL compiler is pictured in Figure 3. Notice the
diamond generated by the parallel statement that appe&snputeAndOutput . Notice
also the reset arrows that go from any state into state 1. they are all generated by the
single loop ... each RESET" statement. Of course, such a small automaton can be
easily designed by hand. The advantag&sferEL programming really appears for more
complex controllers. The modularity of the language, its built-in concurrency, and the power
of its control structures allows the user to build controllers by assembling individually simple
modules into bigger ones. For example, to perform speed benchmakksram0, we use a
variant of the bus interface that inputs two data words and performs computation and output
twice in a row. To obtain this interface, one just changedrterface module body into

(roughly):

run Input [signal OPEN_INPUT 1 / OPEN_INPUT];

run Input [signal OPEN_INPUT 2 / OPEN_INPUT];

run ComputeAndOutput [signal OPEN_OUTPUT_1 / OPEN_OUTPUT,
GO_1 / GOj;

run ComputeAndOutput [signal OPEN_OUTPUT_ 2 / OPEN_OUTPUT,
GO_2 / GO]

Usually, a relatively simple change to a specification involves a simple and local change to
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RESET?
.OPEN_INPUT!

RESET?
.OPEN_INPUT!

RN GUTRUT!
OPEN_INPUT! BUS READ? "OPEN_( !
BUS WRITE?
OPEN_INPUT! JOPEN_INPUT! BUS READ?
‘ - FINISHED?
h BUS ACK!.GO! ‘OPEN_OUTPUT!
e e2 e3 e4
' RESET?
RESET?
{OPEN_INPUT! “OPEN_INPUT! BUS READ?
“OPEN_OUTPUT!
FINISHED?

RESET?
{OPEN_INPUT!

RESET?
{OPEN_INPUT!

BUS ACK!
.OPEN_INPUT!

Figure 3: The Interface Automaton

anEsTEREL program. This is definitely not true of finite automata, which are highly unstable
with respect to specification changes. We strongly believe that programming controllers in
EsTEREL is one order of magnitude simpler that designing finite state machines by hand.
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