21

The Genericity Theorem
and the Notion of Parametricity
in the Polymorphic A-calculus

dliloli[tlall

PARIS RESEARCH LABORATORY

December 1992 Giuseppe Longo
Kathleen Milsted
Sergei Soloviev

21

The Genericity Theorem
and the Notion of Parametricity
in the Polymorphic A-calculus

Giuseppe Longo
Kathleen Milsted
Sergei Soloviev

December 1992

Publication Notes

This work will be published in a special issue Bfeoretical Computer Sciencs Lambda
Calculus, in honor of Corradoddim’s 70th birthday. An extended abstract of this work also
appears in the Proceedings of the 8th Annual IEEE Symposiumgic in Computer Science
Montreal, Canada (June 20-23, 1993).

For further information, please contact Giuseppe Longo at LIENS(CNRS)-DMI, Ecole
Normale Supfieure, 45 rue d'Ulm, 75005 Paris, France. E-mlaihgo@dmi.ens.fr

© Digital Equipment Corporation and Ecole Normale Supérieure 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by joint permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe
(Rueil-Malmaison, France) and of the Laboratoire d’'Informatique of the Ecole NormaleriSupe
(Paris, France); an acknowledgement of the authors and individual contributors to the work; and all
applicable portions of the copyright notice. All rights reserved.

Abstract

In the polymorphici-calculus, one may explicitly define functions that take a type as inputand
return a term as output. This work focuses on how such functions depend on their input types.
Indeed, these functions are generally understood to have an essentially constant meaning on
input types. We show how the proof theory of the polymorpticalculus suggests a clear
syntactic description of this phenomenon. Namely, under a reasonable condition, we show that
if two polymorphic functions agree on an input type, then they are, in fact, the same function.
Equivalently, types argenericinputs to polymorphic functions.

Résumé

Dans leA-calcul polymorphe, on peut explicitemengfahir des fonctions qui prennent un
type comme argument et qui renvoient un terme comeseltat. Le but de ce travail est

de mieux comprendre laegpendance de ces fonctions aisAs de leurs arguments types. En
effet, ces fonctions sonegéralement consi&tées commetant essentiellement constantes par
rapport aux arguments types. Nous montrons quesiartb syntaxique di-calcul polymorphe
suggere une description claire de ceguonene : sous une condition raisonnable, si deux
fonctions polymorphes s’accordent sur un seul type, elles sont identiques. Autrement dit, les
types sont des argumengérériquesaux fonctions polymorphes.

Keywords

Type theory; second-order lambda calculus; system F; parametric polymorphism; parametric-
ity; genericity.

Acknowledgements

We are greatly indebted to Pierre-Louis Curien who pointed out a fundamental error in a
preliminary version of this work, as well as the connection to Reynolds’s conditions. Thanks
also to Jean Gallier for many passionate discussions about system F, to Eugenio Moggi
and Roberto Di Cosmo for helpful comments and some early discussions on the Genericity
Theorem, and to Simone Martini and the referees for valuable suggestions about this paper.

Giuseppe Longo’s work was partially supported by a collaboration at Digital PRL. Sergei
Soloviev’'s work was carried out at LIENS under a grant from the French Ministry for Research
and Technology.

Contents

[—

(o2 TN 6 2 R - N O0 B\

8
9

Introduction

System F

System Fc

Roadmap to the Proof of Genericity

Type and Term Generalizers

Weak Genericity of F-equality
Quasi-Genericity of C*-equality
Commutativity of C*-equality with Reduction

The Genericity Theorem

10 Models

References

14

15

17

21

23

26

The Genericity Theorem 1

1 Introduction

The use of types as explicit parameters, or variable types, is at the core of polymorphic
(functional) languages, and was introduced, in Logic, by Girard [Gir71] and, in Computer
Science, by Reynolds [Rey74]. The idea is that one may define formal functions that explicitly
depend on input types. Ik-calculus notation, where capital, Y, ... stand for type variables,

one may construct terms sucha& .M which may be fed a type as input and give a term as
output (in Logic jargonA X .M is a second-order term in impredicative Type Theory).

Originating with remarks by Strachey [Str67], a distinction was introduced on how these
explicitly polymorphic functions should behave. Indeed, in computing, programs may depend
on types. Overloaded functions, for example, may call different code according to the input
type (or to the type of the input): + uses different code according to whether titeoadsl
performed on (the type of) reals or integers, say. This sort of dependency of terms on types,
known asad hocpolymorphism, is an expressive feature of some programming languages, in
particular when handled at run-time, and may suggest interesting and general formal systems
(see [CGL9I2], say).

According to Strachey (and Reynolds) then, “proper” polymorphism, as opposed to the ad
hoc variety, is the property that second-order terms hauaiform dependency on input
types, or that their output terms do not “essentially” depend on input types. Note, though,
that the output terms of, sa}X.M applied to typew andr, i.e., AX.M)e and QA X.M)T,

need not live in the same type. The point then is to understand how core systems, such as
Girard-Reynolds system F [Gir71, Rey74] (also known as second-ardatculus), realize

this uniform dependency property, knowngsametricity and compare terms possibly living

in different types; more generally, to understand the functional behavior of formal functions
such as\X.M.

A semantic criterion for parametricity was proposed by Reynolds [Rey83, MR91] as an
invariance property under relations between type values. In short, if a relation is given on type
parameterg andr, then (the interpretation oy X.M, applied to (the meaning o andr,
should send related elementseofindr to related elements in the types of the outputs. This

is known agelational parametricityand a syntactic treatment of it is given in [ACC93] and

in [PA93].

Another approach to parametricity was proposed by Bainbridge et BE$B0]. Consider

Az : X.N. lIs it the case thakz : X.N depends naturally oX, in the sense of natural
transformations of Category Theory? Indeed, natural transformations are the core means of
expressing uniformity on objects (as interpretation of types) in categories. Unfortunately,
natural transformations act on functors, whereas, in general categories, variable types are not
functors. The counterexample is straightforward: the map f%6rto X — X (the arrow

type) should be at once a covariant and contravariant functor. A partial solution, in the
context of the typed-calculus, may be given by considering categories where maps are only
retractions (as in [Sco72, SP82, Gir86]) or isomorphisms (as in [DL89]). This is fine for
specific purposes, as in those papers, but does not describe the situation in the full generality

Research Report No. 21 December 1992

2 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

of a model theoretic approach. On the other hand, this issue of contra/covariant functors was
partly at the origin of relevant generalizations of the notion of functor in mathematics, for
example [EK66]; see also [Mac71]. In this line of work, Bainbridge et al. propose to interpret
terms as dinatural transformations, yet another elegant categorical notion derived from tensor
algebra and algebraic topology. The rub is that, in general, dinatural transformations do not
compose, while terms do; however, the interpretation works well (i.e., it is compositional)
on relevant models (see [BFSS90, FGSS88, GSS]), in particular on models of relational
parametricity as formalized in [PA93]. On essentially similar lines, Freyd suggested a novel
notion of structor in order to understand, categorically, the notion of uniformity inherent in
second-ordei-terms.

These attempts suggested brand new constructions and relevant mathematics, but seem still
insufficient to fill the essential gap between the parametricity of second-ardaiculus and

the uniformity with respect to objects (and functors) as expressed by natural transformations in
Category Theory. This is probably one of the few mismatches (together with subtyping versus
subobjects) out of many deep connections between types and objects, terms and morphisms,
as summarized, say, in [AL91] and [LS86]. A survey and a classification of the various forms

of parametricity is proposed in [Lon93].

In this paper, we consider a weak extension of system F, suggested by the following simple
result of Girard in [Gir71]: given a type, if one takes a terni, such that, for any type, J,r
reduces to 1 it = 7, and reduces to O & 7 7, then F+J, does not normalize. Since system

F normalizes,J, is not definable in F. The point here is that the polymorphic tégngives
essentially different output terms, which live in the same type, according to the (values of the)
input types. Then, a first point in our understanding of parametricity is that a polymorphic
term that gives outputs in the same type for all input types, must be constant. This is expressed
by the following equational scheme:

(AxiomC) Mr=M7" forTHM:VX.c and X ¢ FV (o)

That is, if the outputs of a polymorphic terd, applied to any type, all live in the same
type, then these outputs are simply equal. Axiom C is not provable in F, but it is compatible
with F, that is, system F may be consistently extended with it. Indeed, a generalization of
Axiom C appears in the system HCMMS91] which extends system F with subtyping; see
rule Eq appl2 In our view, the compatibility of Axiom C with system F is one thing to

be noted in order to understand parametricity. Moreover, all models that yield the dinatural
interpretation of terms in [BFSS90] realize Axiom C, as do PER models in realizability
topoi and Girard’s models over dl-domains and stable maps. From [ACC93] and [Has93],
it also turns out that Axiom C is realized by all models that satisfy Reynolds’s relational
parametricity condition [MR91]. A categorical characterization of models realizing Axiom C
will be outlined in Section 10.

Consider now Fc, the extension of system F with Axiom C. The main result of this paper is the
following theorem:

December 1992 Digital PRL

The Genericity Theorem 3

(Genericity Theorem) Assumélf and N live in the same typ&' X .o
If Mt =p. N7 for some type, then M =p. N

The reader should notice where intended parentheses and existential quantification are located,
and also, that there is no restriction®nThe Genericity Theorem states the rather strong fact
that, in Fc, if two second-order terms coincide on an input type, then they are, in fact, the same
function. Or, equivalently, that each input type acts gg@ericinput, as a variable. It also

says, in a sense, that there are “very few” polymorphic functions. Note that the Genericity
Theorem does not hold in F. Take, for exampie; VX.o with X ¢ FV (), and consider

M = AX.zr and N = AX.zX, both oftypeVX.o. Then, M7 =g N7 butM andN are

not F-equal. Indeed, as pointed out by Furio Honsell and one of the referees, it is easy to show
that Fc is the least equational extension of F which yields the Genericity Theorem.

Observe finally that, although all models of relational parametricity realize Axiom C, it may
be shown that no such model realizes Genericity as an implication. This is a delicate issue,
hinted at in Section 10 and discussed extensively in [Lon93]. In the following sections, we
recall system F and introduce our syntactic conventions, describe system Fc, and prove the
Genericity Theorem.

2 SystemF

The language of system F consiststgbesandterms A type is either a type variable, a
function type, or a polymorphic type, while a term is either a variable, an abstraction, an
application, a type abstraction, or a type application. Types and terms have the following
syntax:

Types o = X |o—>71 | VX0
Terms M | Az:o.M | MN | A X.M | Mt

We will useo, 7, p, p, v for types andM, N for terms, while for variables, we will us¥,

Y, Z for type variables and, y, z for term variables. Following the usual conventions for
minimizing parentheses, applications associate to the-efssociates to the right, and the
scope ofY and A extends as far to the right as possible. For any type or #yrihe set of

its free (type and term) variables is defined as usual, and widtté(P). Capture-avoiding

type substitution and term substitution is also defined as usual on types and terms, and written
[7/X]P and [M/z] P, respectively.

Assignment of types to terms takes place relative to a setridible declarationswhere each
declaration assigns a unique type to a term variable. We will'ulse a set of declarations,
and we writel', z : o to extendl" with a new declaratiom : o, wherez must not occur in
. The substitution of a type in a set of declarationd X]I', is defined component-wise as
substitution into the type adach declaration if.

Research Report No. 21 December 1992

Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

A type assignmeris a meta-expression of the forin M : o, which asserts that terd/

has, or lives in, type, relative to the declarations In The following rules define valid type
assignments.

Type Assignment Rules

(declaration) MNzokbz:o
(—>-intro) Meo-M: T (—-elim) NrN-M:e—-7 THFN:.o
—- —-
MN-Az:oM:.0— T M- MN:t
o N-M:o . M- M:vX.o
(v-intro) FFAX M VX0 (v-elim) FF M7 [r/X]o

* for X not free in the type of
any free term variable i

Note the restriction on the-intro rule: withoutit, it would be possible to prove inconsistencies
such ase:Y ¢ : Z. This restriction will show up frequently later.

Equality of terms is defined by the following schemes and rules:
Equational Schemes and Rules
(B1) Az:o.M)N = [N/z]M B2) A X.M)r = [t/X]M

(m) Az:o.Mz = M forz ¢ FV (M) () A X MX = M forX ¢ FV(M)

M=N M=N
) M=o € X ar=axw
M]_:Mz N]_:Nz M=N
a a —_—
(ppl') M]_Nl:MzNz (pr) Mr=NTt
_ M]_:Mz M]_:Mz M2:M3
(refl) M =M (sym) M, = 1, (trans) M. = M,

We will use the symbak for syntactic identity. For types; = 7 is the same as = while,
for terms,M = N impliesM = N but not vice-versa.

Reduction of terms is defined as usual by the closure of the following rules:

(B1) (Az:0.M)N —p, [N/z]M (B2) (AX.M)r —p, [7/X|M

(m) Az:o.Mz —, M forz ¢ FV(M) (n2) AX.MX —,, M forX ¢ FV(M)
We will write — g for the union of these reductions.

December 1992 Digital PRL

The Genericity Theorem 5

The following important properties hold for system F.

Unique Typing
A well-typed term lives in a unique type: lif- M : o and ' - M : 7 then o = 7.

Strong Normalization
There are no infinite reduction sequences from well-typed terms.

Church-Rosser
If M —g M1 and M —Fr M, then there exists aMy such that M, —r My and
My — g M.

Equational Church-Rosser
If M, = M, then there exists aify such thatM, —r Mo and My, — g M.

3 System Fc

System Fc is formed by adding the following equational scheme to system F:
(AxiomC) Mr=M7" forT+ M :VX.c and X ¢ FV (o)

That is, if the outputs of polymorphic functiol live in a typeo that does not depend on
M’s input type, then the outputs are equal, regardless of the input type. Or, equivaléiigly,
constant.

Axiom C equates more terms than in system F. We will wiife=r N for F-equations, and
M =p. N for Fc-equations. Clearly, Axiom C is not provable in system F. TakeVX.o
with X ¢ FV (o), and apply Axiom C tec. This gives

TT =fFc TP
These two terms would be equated in system F onty=fp.

Since system Fc adds no new terms, types, typing rules, or reductions, it enjoys the same
non-equationalproperties as system F, such as unique typing of terms, as well as strong
normalization and the Church-Rosser property (relative-top). However, a number of
equationalproperties fail for Fc, in particular, the equational Church-Rosser property: for
example, even thoughr =, zp above, there is no common term to which bethandzp

reduce.

In the proof of the Genericity Theorem, it will generally be more convenient to use a term
with a type substitution structure such ag X] M instead of a polymorphic applicatiavi .
Thus, we may use the following formulation of Axiom C:

(Axiom C*) [r/XIM=[r"/X]M forTHM:o and X ¢ FV(I[')U FV (o)

It is simple to prove that Axiom C and Axiom*Gare equivalent. We give the proof to stress
the extra side-conditiolX ¢ FV (I') on Axiom C* and its relation to the side-condition on

Research Report No. 21 December 1992

6 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

V-introduction. These conditions will appear frequently in the later proofs. We will write
M =, NandM =. N if M andN are equal by only applications of Axiom C and Axior C
respectively.

Remark: Axiom C is equivalent to Axiom C.

Axiom C implies Axiom €

Assumethatl - M : ¢ and X ¢ FV (') U FV (o).

SinceX ¢ FV(I'), thenX is not free in the type of any free term variablelifi

So, byv-intro, ' F AX.M :VX.o. Also,X & FV (o).

Thus, by Axiom C andB,, [t/ XM =g, (AX.M)r =, AX.M)r" =, [7'/X]M.
Axiom C implies Axiom C:

Assumethatl - M :VX.oc and X ¢ FV (o).

Let Z be a fresh variable. Thert, F M Z : ¢ andZ is not free in any of , M, o.

Thus, by Axiom C, Mt = [t/Z(MZ) = [7'/Z(MZ) = M7 1

4 Roadmap to the Proof of Genericity

In this section, we outline the route to the proof of the Genericity Theorem:

Assumélf and N live in the same typ& X .o
If Mt =p, N7 for some type, then M =g, N

The hard part is to prove the following Main Lemma, which is a substitution formulation of
the Theorem:

Assumelf and N live in the same type
If [v/X1M =p. [t/X]N for some type-, then M =g, N

The first remark to be made about the proof is that it is not an induction. The point is that
corresponding subterms of Fc-equal terms do not need to live in the same type. The following
example illustrates why.

Example: Assumez : VY.Y and z : VY1.¥Y2.V; — V5.
Let X andZ be fresh type variables.
Then, Axiom C can be applied to the termZ X (zZ) : X to obtain

21X (27) =Fc 2pX(zp)

Note that subtermsr X andzpX live in different types.

However, this example also provides a hint to the proof of Genericity. Observe that the
Fc-equality 27X (27) =p. zpX(zp) is obtained via the intermediate tera¥ X (zZ) to

December 1992 Digital PRL

The Genericity Theorem 7

which Axiom C* is applied. Furthermoresr X (z7) andzpX (zp) are both instances of this
term, using type substitutions [Z] and [p/Z] respectively. Approximately then, the hint is
this: given two Fc-equal terms, construct a common term that can be instantiated to the two
terms by type substitutions, and to which Axiom €an be applied.

The proof thus begins in Section 5 by developing the notiongdreeralizerfor second-order
terms. This is a novel idea for the polymorpbiecalculus, although it is, of course, related

to generalizers and anti-unifiers of first-order calculi. Given two second-order terms that are
identified by type substitutions, we construct a common term that can be instantiated, by type
substitutions, to the original terms. Similarly, we can construct a common type that can be
instantiated, by type substitutions, to two given types. Furthermore, if the two terms live in
two different types, then the generalizer of the terms lives in the generalizer of the types. Note
that this notion of generalizer usgge substitutions, not term substitutions (as is usual for
first-order terms).

In Section 6, we use generalizers to prove the folloviWepk Genericityheorem:

Assuméelf and N live in the same type
If [+/X]M = [t/ X]N for some type, then M =p. N

The weakness arises because an Flggua used in the premise instead of an Fc-equality.
This theorem is used in the final result, and it marks an important halfway-point in the overall
proof.

The proof proceeds next with a property ot€guality that we calQuasi-Genericity if a term

has a type substitution structure (is of the fomiX]M) and Axiom C' is applied to it, then

that exact type substitution structure is preserved, that is, the result is of the#fpi}y,

and, moreoverM =.. N. The proof of this also uses generalizers and is given in Section 7,
where we also give a counter-example to show that F-equality mlatesatisfy this property.
Using Quasi-Genericity, we are able to prove another weak version of Genericity, this time
with C*-equality in the premise instead of Fc-equality:

Assumelf and N live in the same type
If [7/X]M = [t/X]N forsome type, then M =g, N

Finally, in Section 9, we draw all the pieces together to prove the Main Lemma. This involves
examining the chain of F and*@qualitiesf/ XM =f. [t/ X]N. Unfortunately, F-equality

and C-equality do not commute, but, in Section 8, we show that foryafdn, reduction (but
not, reduction) commutes with*Gequality. Using this fact, the Church-Rosser property for
F-reductions, and Quasi-Genericity af-€quality, we “push” theqf/ X] substitution structure

from [r/X]M through the chain so that each node in the chain has the fofii|[M; for
someM; with M =g. M;. Finally, we use Weak Genericity of F and-€quality to show that

the final node{/X]N in the chain is such tha/ =g, N. This gives the Genericity result.

Research Report No. 21 December 1992

8 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

5 Type and Term Generalizers

In this section, we construct a notiongéneralizeffor types and terms. In short, a generalizer

of two types (terms) may be instantiated, using type substitutions, to the two types (terms),
under suitable conditions. Generalizers are used in later sections, where we show that, in the
case of term generalizers, the typing of the generalizer permits Axioto 6e applied to it,
resulting in Fc-equality of the two terms.

As motivation, consider two term&f; and M> such that /X]M1 = [p/Y]M,. Then,
approximately, a generalizer 8f; and M, with respect to a fresh type variablg is a term
My such that, for suitable types, u.:

M,
M>

[11/Z] Mo
[12/Z]1 Mo

In other words, if two terms can be unified as above, then we construct a common “term
schema” which can be instantiated, by type substitutions, to both of them. This is an abstract
notion of a generalizer though, and the generalizers that we construct here require more details,
including an analysis of occurrencesroin p or p in .

Definition: ing
If there arek > 0 occurrences of type in typep, we will write T ing, p.

Definition: Context
Let 7, p, p' be types and leX be a type variable. We say thgltis an X -contextfor 7 in p if

[r/X]p"=p.

If 7 2ng p with & > 0, then, given freshX, there are b different X -contexts forr in p.
We will assume given an enumeration of these contexts, which we will writg as. ., pi*
whereh = 2%, By convention, we takgf to bep. For example, ifr = p, then there are two
X -contexts forr in p: pf =pandps = X

Substitution Convention

Let P1, P, be either two terms, or two types, or two sets of variable declarations.

If [r/X]P1 = [p/Y]P, for some types and p, then we will assume, with no loss of
generality, that, by variable renaming; andY are not free inr andp.

December 1992 Digital PRL

The Genericity Theorem 9

Definition: Generalizer
Let P, P, be either two terms, or two types, or two sets of variable declarations, such that
[7/X]P1 = [p/Y]P, for some types andp.

e Case:Ting pfork > 0.
Let h = 2*. Given fresh type variable&y, ..., Z5, we say thatP; is a Zo, ..., Zx-
generalizerof P; and P, iff X andY are not free inP; and

[X/Zo, p /%1, ..., PR /%]P0 = Py
[7/Z0, Y/Z1, ..., Y/[Zp 1P = P,
wherepsX, ..., p& are theX -contexts forr in p.

e Case:ping 7 for k > 0and the previous case does not apply.
Let h = 2%. Given fresh type variable&y, ..., Z,, we say thatP, is a Zo, ..., Zs-
generalizerof P; and P, iff X andY are not free inPy and

[p/Z0, X[|Z1, ..., X[Zh |Po = P2
[Y/Zo, ¥ [Z1, ..., T} |Zh 1 Po = P
wherer? ,...,7¥ are theY -contexts fop in 7.

Observe that, i = p, then the first case of the definition appliesin; p, giving

[X/Zo, p/Z1, X|Z>] Py
[/20, Y/Z1, Y]Z>2] Py

P,
P,

If andp are unrelated (i.e., they do not occur in each other), then the second case applies, by
ping T

[p/Zo, X/Z1] Po Py

[Y/Zo, 7/Z1] Py P,

Indeed, no matter howandp are related, only one case of the definition applies: for example,
one cannot have bothing p andp ing 7, nor bothp ing 7 andr ing p.

Lemma 5.1 (Type Generalization)

Let o1, 02 be two types such thdt-/ X]o1 = [p/Y]o» for some types andp. Assume thak
is given either by iny, p fork > 0, or p ing 7 for & > 0 and not the previous case. Uet 2*.
Given fresh type variableBy, . . ., Z, there exists a typeg that is aZy, . . ., Z,-generalizer
of 1 andey.

Proof: Let o = [t/ X]o1 = [p/Y]o> and perform the following markings:
¢ Mark in & those occurrences efthat derive fromp; by a [r/ X] substitution.
¢ Mark in ¢ those occurrences pfthat derive fromo, by a [p/ Y] substitution.
Consider first the case wheren; p for k > 0.
Observe that some of the markeslmay appear in a marked
Construct therrg from o by the following procedure:

Research Report No. 21 December 1992

10 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

1. Replace by7, all markedrs that do not occur in a marked
2. Consider now a marked possibly containing markezk.
Let p¥ be the corresponding -context inp for the markedrs. (If there are no marked
7s, this will bepX = p). Replace the markegby Z;.
In the alternative case,in; T for & > 0 and not the previous case, observe that some of
the markedes may appear in a marked Then, apply the dual construction procedure,
where the roles o andr in steps 1 and 2 are interchanged, afid theY -contexts forp
in 7, are used instead gof‘, the X -contexts forr in p.]

In the following lemma, we show that, once fresh variablgs. .., Z; are fixed, then the
generalizer of two types is unique. This lemma makes explicit use of the substitution
convention, i.e., thak,Y ¢ FV (r) U FV (p), without which it would fail.

Lemma 5.2 (Unigueness of Type Generalizer)

Let 01,02 be two types such thafr/X]e1 = [p/Y]o, for some types and p. Assume
that k is given either byr ing p for k > O, or p ing 7 for & > 0 and not the previous case.
Let h = 2%. Given fresh type variableZy, . . ., Zy, the Zy, . . ., Zp-generalizer o, ando is
unique.

Proof: Assume first that ing p for k > 0.
Let og ando(be twoZy, ..., Zp-generalizers of1, oo. Then, by definition,

[X/Z():p{(/zl::pf/zh] 0'6 (1)
[7/Z0, Y/Z1,..., Y]/Zp] oy (2)

[X/Zo,p7 |21, ...,p% [Zh]l 00 = o1
[T/Zo, Y/Zl,..., Y/Zh](fo = 02

with X andY” not free inog or o. We will show thatog = o) by induction onoy.
SubcaseAssume thatg = Zy. Then, (1) and (2) become
X = o1 = [X/Z,p¥/ 2, ..., 0% 2k] 0
T = 02 = [T/Zo, Y/Zl, Ceay Y/Zh] 0'6
We now consider the possible choicesdgr Clearly,o, cannot beX sinceX ¢ FV (op).
Nor canoy, be 7 since then, (1) becomes = o1 = 7 but, by the substitution convention,
X ¢ FV(r). Further,of cannot beZ; for some: = 1...h, because then (2) becomes
T = 02 =Y but, by the substitution convention agali,¢ FV (r). The only choice is
0'6 = Zo = 0Q.
SubcaseAssume thatg = Z; for somes =1...h. Then, (1) and (2) become
pX = o1 = [X/Zo,pf /2, ..., p%[2ZK] o
Y = 02 [T/Zo, Y/Zl, Ceay Y/Zh] 0'6
First, o|, cannot b&” sinceY ¢ FV (o). Furthermoreg(cannot bao;-" since, forz = 1,
(2) becomed” = o, = pf¥ = p but, by the substitution conventiolf, ¢ FV (), and, for
i=2...h, X € FV(p¥) butX ¢ FV (ob). Also,) cannot beZ, since then, (2) becomes
Y = o, = 7 but, by the substitution convention again.¢ FV (7). Similarly, ¢{, cannot be
Z; for somej = 1...h andj 7 i since then, (1) becomeg’ = o1 = p¥ butpX 7 p for
i 7 j. The only choice i = Z; = oo.

December 1992 Digital PRL

The Genericity Theorem 11

SubcaseAssumethatg = Z # Z; fori =0...h. Then, (1) and (2) become
Z = o1 = [X/Zo,p¥)21,...,p% | 210] o}
Z = oo = [T/Zo, Y/Zl, Ceay Y/Zh] 0'6
SinceX andY are not free g, thenZ 7 X andZ # Y and, moreoverg|, cannot beZ;
foranyi = 0...h. The only choice isry = Z = oy.

SubcaseAssume thatg = ¢ — u. Then, (1) and (2) become
[X/Zo,p7 /21, ..., 05 |Zn) (6 = 1) = o1 = [X/Zo,pT/%1,...,0%/%n] 0}
[T/Zo, Y/Zl, Ceay Y/Zh] (0’ — ,u) = 02 = [T/Zo, Y/Zl, ey Y/Zh] 0'6
Remark that, cannot beZ; for anyi = 0.. . since, then, a- type would be on the left
of (1) and (2) but a type variable would be on the righiti (1) andY” in (2)). So,s{ must
be of the forme’ — p’/, with o, o’ andy, ' satisfying equations similar to (1) and (2). By
induction,o = ¢’ andp = p'. Hencegp =o' — p' =0 — p = oo.

SubcaseAssume thatg = VZ.0. Then, (1) and (2) become
[X/Zo, 5|21, ..., % |20 (VZ.0") = o1 = [X[Zo,pf/21,...,p% |Zn] of
[T/Zo, Y/Zl, Ceay Y/Zh] (VZ.O") = 0 = [T/Zo, Y/Zl, Ceay Y/Zh] 0'6
As with the previous casey, cannot beZ; for anyz = 0...h. So,s{ must be of the form
VZ.o'. By induction,s = ¢'. Hencepo =VZ.0' =VZ.0 = 0p.

Treat duallyp ing 7 for £ > 0 and not the previous case.]

Lemma 5.3

Let o1, 02, p1, p2 betypes suchthdtr/X1o1 = [p/Y]op and [7/X]p1 = [p/Y]p2. Assume
thatk is given either by ing, p for & > O, or p ing, 7 for £ > 0 and not the previous case. Let
h = 2*. Given fresh type variableZ, . .., Zx, let op and g be theZo, . .., Z,-generalizers
of o1, o andu1, uo, respectively. Then, for arfg different fromzZo, . .., Zn, [ro/Z]oo isthe
Zo, ..., Zp-generalizer of[u1/Z)o1 and [p2/Z]o>.

Proof: by expanding1, o2 andus, u» in terms of their generalizers.

Lemma 5.4 (Generalization of Declarations)

Let "1, be two sets of declarations such tHat/ X, = [p/ Y]l 2. Assume thak is given
either byt ing p for k > 0, or p in, 7 for k > 0 and not the previous case. Lkt= 2*.
Given fresh type variable&, .. ., Z,, there exists a set of declaratiohg that is a unique
Zo, - - -, Zr-generalizer of 1 andr ».

Proof: Sincet/X]I1 =[p/Y]I,, thenl'; andl"; must declare the same term variables.
Thus, we can assume thly = z1:0%, ..., zpi0l and My = 21102, ..., 2,102
with [7/X]e} =[p/Y]e? fori=1...n.

Furthermore, by assumption on/[X], = [p/ Y]l 2, the substitution convention applies
to each £/X]o} =[p/Y]o?.

So, fori = 1...n, construct the uniquéy, . . ., Z,-generalizer? of o} ands?.

Then, o= z1:09,...,2,:02 is the uniqueZo, . . ., Zy-generalizer of ; andr ». 1

n

Research Report No. 21 December 1992

12 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

The next theorem is the main result of this section. It constructs a well-typed generalizer
of two terms living in twodifferenttypes. Uniqueness of type generalizers turns out to be
essential in the proof (see the-elim case). The point to note is not just that we can construct
a generalizer foM; andM», but that we can construct one that is well-typed, and that lives in
the type generalizer of the types bf; and M».

Theorem 5.5 (Term Generalization)

Let T F My : oy and Ty F M> : o be such that [r/X][1 = [p/Y]l2 and
[7/X]1M;1 = [p/Y]M> for some types and p. Assume thak is given either byr ing p
for k > 0, or p ing 7 for & > 0 and not the previous case. Lkt= 2*. Given fresh type
variablesZy, .. ., Zy, there exist a set of declaratiofig, a term My, and a typerg that are
unique Zy, . . ., Zp-generalizers of 1,2, Mj, M>; and o1, 02, respectively, and such that
ro H My : 0.

Proof: Construck o, My, o by induction on the derivation of 1 - M1 : 1.
Observe first that/ X o1 = [p/Y]o, since |/ X M1 = [p/ Y] M, must live in a unique
type. Also, that by assumption on eithet/ X1, = [p/Y]2 or [t/ X M1 = [p/ Y] Mo,
the substitution convention applies givikg Y ¢ FV () U FV (p).
(In the proof, we will write just “generalizer” instead of, . . ., Z,-generalizer”).
Case:Assume thatl; F M7 : o7 by a variable declaration in;.
Then, M1 ==z andz:01 € 1.
From the assumptionrf X1M; = [p/ Y] M,, we obtain M» = «.
Furthermore, becausé; - M5 : o2, thenz: o, € s,
Take now ¢ to be the unique generalizer bf, ', by Lemma 5.4,
andoyg to be the unique generalizer @f, o2 by Type Generalization (Lemma 5.1).
Observe that, by constructiom,: og € g, fromwhich I'o F z : o¢.
Sincez is clearly the only generalizer éff; = z and M, = z, take My = z.
Case:Assume thatl' 1 F M3 : o1 is derived by—-intro.
Then, My = Az:p1. M| and o1 = p1 — p1 with Ty, ziu - M{ < p1.
From [r/X]M1 = [p/Y]M>, we obtain My = Az :pup. M)
with [1/X1pu1 = [p/Y1p2 and F/X]M] = [p/Y]M}.
Furthermore, because; - M : o2, thenoy = pp — po and My, z:pp = M : po.
Consider nowl 1, p1 = M7 @ p1 and Mz, z:pp - M5 2 po.
By induction, there exist unique generalizerd:y of (1,2 : p1), (T2, : p2); M| of
M7, M3; and pg of p1, p2, such thatlg - M| : po.
But, since generalizers of types and sets of declarations are uniquel ghmuist be
Mo, z: o Wherel g andyg are unique generalizers bi, [, andus, po, respectively.
So, infact, Mg, z:po F M{ : po, from which, by—-intro, o - Az : o.M : po — po.
Clearly, Az :po. M and po — po are generalizers ofy, M, and o1, 0.
Moreover,po — po IS unique by the uniqueness of type generalizers, Jandug. M| is
unique because any other generalizeifyf, M, would be of the formiz : ug. M{ giving
further generalizergyg and M{, of uq, w2 and My, M, which is impossible.
Hence, takeMo = Az : po. My and oo = po — po.

December 1992 Digital PRL

The Genericity Theorem 13

Case:Assume thatl 1 F M7 : o7 is derived by—-elim.
Then, M7 = MiNi with 1 + Mi L p1L— 01 and N + Ni L p1-
From [r/X]M1 = [p/Y]M>, we obtain My = MJN;
with [r/X]M] = [p/Y]M} and [r/X]N; = [p/Y]NS.
Furthermore, because; - My : o3, thenT 2 Mj: ps — o2 and Fo = NJ - po.
Consider nowl'; = Nj: pg and o F N3 po.
By induction, there exist unique generalizerSy bf ['1, [y; N of N7, Nj; and
Po of P1, P2, such thatlg - N(') . po-
Consider alsd'y - M] : py — o1 and Ta = M} po — 0.
By induction, there exist unique generalizet®) of M, M; and p’ of
p1 — 01, p2 — o2, suchthatlg F M(') P
But by the uniqueness of type generalizefsnust bepg — o, wherepg andeg are unique
generalizers op1, p» andeq, o, respectively.
Thus, we havé o - M{ : po — oo andlg - N{ : po. So, by—-elim, g - M{N{ : oo.
Since MyNy is clearly a generalizer d/1, M>, with uniqueness proven as in the previous
case, takeMo = M{N{.
Case:Assume thatl' 1 - M1 : o1 is derived by-intro.
Then, My = AZ.M] and o1 = VZ.puq with T1 F M] : g1, andZ not free in the type of
any free term variable i/ (by the side-condition o¥-intro).
From [r/X]M1 = [p/Y]M>, we obtain My = AZ.M} with [t/ X]M] = [p/Y] M.
Furthermore, becausE; - M3 : 02, thenoy, =VZ.up and Mo = M3 @ pp
with Z not free in the type of any free term variable/ify.
Consider nowl 1 - M7 : pg and Mz = Mj @ po.
By induction, there exist unique generalizeisg of I'1, 2; M{ of M, M5; and
1o of M1, 42, such thatl g - M(') T [o-
Observe now thaZ is not free in the type of any free term variableMy, since, by the
definition of generalizer)/| contains exactly the free term variablesidf, 3.
Thus, we can apply-introto g - M : po toobtainTo - AZ. M| : VZ. uo.
Clearly, AZ.M} and VZ.uo are generalizers a¥f1, M» andoy, o2, respectively. Their
uniqueness follows as before. Hence, tag = AZ. M and o¢ = VZ.uo.
Case:Assume thatl; F M7 : o1 is derived byv-elim.
Then, M7 = Mi,ul and o1 = [,u]_/Z]pl with 1 Mi . VZ.p]_.
From [r/X]M1 = [p/Y]M>, we obtain My = Mju,
with [r/X]M] = [p/Y]1M} and [r/X]p1 = [p/Y]p2.
Furthermore, sincd ;- My : o2, thenT 2 = M} :VZ.p, and oo = [p2/Z]po.
Consider nowl'y = M7 :VZ.p1 and T = M5 1V Z.po.
By induction, there exist unique generalizer§y of I'1,[p; M] of MJ, M5, andp’ of
VZ.pl,VZ.pz, such thatlg - M(') : p'.
By unicity of type generalizersp’ = VZ.po, wherepg is the generalizer gi1, p».
Thus, we havel o F M{) : VZ.pg, from which, byv-elim, o = Mjuo : [1o/Z]po
whereyy is the unique generalizer @f , u» by Type Generalization (Lemma 5.1).
Clearly, M{uo is a generalizer all1, M», with uniqueness proven as before.
Furthermore, by Lemma 5.3u¢/Z]po is the unique generalizer e = [u1/Z]p1,
oy = [,uz/Z]pz. Hence, takeMg = M(’),uo and og = [,uo/Z]po. [|

Research Report No. 21 December 1992

14

Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

6

In

Weak Genericity of F-equality

this section, we prove a weak form of Genericity that will be used in the final proof. The

weakness or asymmetry arises becausészised in the premise instead gf= Generalizers
are a key toolin the proof. We first need the following lemma about simultaneous substitutions.

Le

mma 6.1

Given typeo, if [11/X1,...,m/Xnlo = [p1/X1,...,pn/Xn] o and =; # p; for some
1 < 1 < n, thenX; is not free ino.

Proof: by induction on the structure ef Note that the substitution convention is used to

Th

assume thak, ..., X,, are notfree imry, ..., Tn, p1, - - - Pnu-]

eorem 6.2 (Weak Genericity of F-equality)

Let ' - My, My : 0. If [7/X]1M; =F [t/ X]M, for some type, then M1 =g, M>.

Proof: LetM] and M} be the normal forms a#f1 and M.

Then, I - M], M} : o since normalization preserves typing.

Further, since reduction is type-substitutivend since type substitution preserves normal
forms, then, fromt/ XM =f [t/ X]M>, we obtain{/X|M] = [t/ X] M.

We now apply Term Generalization to

[r/X1M; = [r/X]1M; (3)

We are in the situatiom = p so the first case of the definition of generalizer applies, i.e.
h = 1. Thus, choose fresh type variablasg Z1, Zo.
By Term Generalization (Theorem 5.5), there exist unigyezi, Z»-generalizers: T of
r,r;, Mjof Mj, Mj; andog of 0,0, such thatlo - Mj : oo.
By the definition of generalizer, we have

[X/Zo, T/Zl, X/Zz] ro = [= [T/Zo, X/Zl, X/Zz] ro

[X/Zo, T/Zl, X/Zz] op = O = [T/Zo, X/Zl, X/Zz] (244}
Now, by the substitution convention applied to (X),Z FV ().
So, certainlys # X. We can thus apply Lemma 6.1 to the above two equations to obtain
Zo andZq not free inll g andog.
Hence, we can apply Axiom'GQo M| for Zy, Z1 in the following:

Mi=p M] Mj] is the normal form of\/;
= [X/Zo,7/Z1,X]Z5) M} My is the generalizer off;, M}
=Fec [T/ZQ,X/Zl,X/Zz] M(') by Axiom C*
= M My is the generalizer aif;, M,
= M> My} is the normal form of\/ I

De

YIf M reduces tdd’ then fr/ XM reduces tof/ XM’ (cf. [Bar84, page 55)).

cember 1992 Digital PRL

The Genericity Theorem 15

7 Quasi-Genericity of C*-equality

This section shows that applications of Axiom @reserve the type substitution structure of
terms. That is, if Axiom Cis applied to a term of the formr] X]M, then the result is a term
of the form [r/ XN with M =, N. We call this propertyQuasi-Genericityof C*-equality
(since it resembles genericity), and the proof of this uses generalizers.

We will write M %c* N if M andN are made equal by one application of Axiorh@hly, and

M =, N if Axiom C* is applied zero or more times. Clearly, M éc* N, then the single
application of Axiom C may have been made either to a proper subtertd pbr to the entire
term M. Note, however, that an application of Axiont @ a term cannot always be splitinto
applications to subterms, as the example of Section 4 shows.

Theorem 7.1 (Quasi-Genericity of C*-equality)
If [r/X]M =. N' then there exists a terd such thatM =, N and [r/X]N = N'.

Proof: ConstrucV by induction on the number of‘Gapplications inf/ XM =. N'.
Clearly, if there are 0 applications, i.er,/[X]M = N’, then takeN = M.

We consider here only the case,/ XM éc* N’', as the inductive case is obvious by
transitivity.

Assume thus that|/ X1 M éc* N’. Then, as remarked above, Axioni & applied either
to a proper subterm of/ XM, or to [r/ XM itself.

If Axiom C* is applied to a proper subterm of [X]M, the theorem is proven by
straightforward induction on the structureff.

Consider then the case when Axior I8 applied to f/ XM itself.

We assume, with no loss of generality, that, by variable renanking, FV (N').

Then, by the definition of Axiom G there exists a termd’, typesp, p’, and a type variable
Y, such that

[r/XI1M = [p/YIM' 2. [f'/YIM' = N' (4)

where, forl - M : o, we havd - M’ : ¢/, andY not free inl noro’.

Since Axiom C is actually applied, thel ¢ FV(M') and, thusX ¢ FV (p'), elseX
would be free inN¥’, against the assumption.

We now apply Term Generalization to/[X|M = [p/Y]M'.

Case:Assume that ing p for k > O.
Choose fresh type variablé, . . ., Z, whereh = 2*.
By Term Generalization (Theorem 5.5), there exist unidgle . ., Z,-generalizers:I o of
r,I; Mgof M, M’; and og of o, ¢’, such thatl g - My : oo.
Observe now that, by the definition of generalizer, we have
M= [T/Zo, Y/Zl, Cay Y/Zh] o and o = [T/Zo, Y/Zl, Cay Y/Zh] oo
But since we also havE not free inl or¢’, thenZy, ..., Z, cannot be free iy or og.
Hence, sinc& o - My : 09, we can apply Axiom €to M for the variablesZ, .. ., Z.

Research Report No. 21 December 1992

16 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

Thus, if we take
N = [X/Zo, p'/ 21, .., p'/Z1] Mo

we get the desired result, as
M = [X/Zo, p¥X)Z1, ..., pi/Zl Mo My is the generalizer off, M’

=+ [X/Z0, p'/Z1, ..., p'/Z1n] Mo by Axiom C*
= N
and
[r/X]1N =[1/Zo, p'/Z1, ..., p'/Zn] Mo sinceX ¢ FV (p')
=[p'/Y]l7/Z0, Y/ Z1, ..., Y/Zy] My by rearranging substitutions
=[p//YI M’ Moy is the generalizer oif, M’
=N’ by (4)

Case:Assume thap ing 7 for & > 0 and the previous case does not apply.
Choose fresh type variablé®, . . ., Z, whereh = 2*.
By Term Generalization (Theorem 5.5), there exist unidgle . ., Z,-generalizers:I o of
I, Ir; Mgof M,M'; and o¢ of &, 0’, such thatl'o - My : 0.
Observe now that, by the definition of generalizer,
we havel = [Y/Zo, T/Zl, TZY/Zz, Cay T{/Zh] Mo
and ¢’ = [Y/Zo, T/Zl, TZY/Zz, Cay T{/Zh] 0Q.
But, we also have thaf is not free inl" or ¢/,
S0Zg, Z>, ..., Zy cannot be free i g or og.
Hence, sinc& o - My : 09, we can apply Axiom Cto My for Zg, Zo, . . ., Z.
Letr! = [p'/Y]r¥. Then, if we take

N = [p’/Zo, X/Zl, Té/Zz, Ceay TA/Zh] MO

we get the desired result, as
M= [p/Zo, X]/Z1, X]|Zo, ..., X/Zn] Mo My is the generalizer off, M’
=+ [p'/ 20, X[21, 13/ 20, ..., T4/ Zr] Mo by Axiom C*
= N
and
[r/X1N =1[p'/Z0, T/Z1, T3/ Z2, ..., T,/ Z] Mo sinceX & FV (p')
= [pI/Y] [Y/Zoa T/Zl7 TZY/Z27 EERE TI—}L’/Zh] Mo
by rearranging substitutions
=[p//YI M’ Moy is the generalizer off, M’
=N' by (4)]

The next theorem is another weak form of Genericity, witheQuality in the premise instead
of Fc-equality. Quasi-Genericity is used in the proof.

December 1992 Digital PRL

The Genericity Theorem 17

Theorem 7.2 (Weak-Genericity of C*-equality)
Letl - M1, M>: o. If [T/ X]M; =~ [7/X] M for some type-, thenM; =g, M>.

Proof: Apply Quasi-Genericity of Cequality (Theorem 7.1) tor[X1 M, = [7/X]Mo>.
Thus, there exists a tert such thatM; =g, N and [/ XN = [t/ X M.
Observe that, sinc#f; =r. N, thenN must live ing, the type ofM; and M.
Apply now Weak Genericity of F-equality (Theorem 6.2)td KN = [r/ X] M>.
Then,N =g, M>. Hence, M1 =g, N =p. M>. [|

Note that the property of preserving type substitution structure doekold for F-equality.
Backward 8, reduction causes problems as witnessed by the following counter-example.
Assumez has typevY.Y. TakeM = zX witht = 01 — op andN' = (AZ.2(Z — 03))o1.
Then,

[7/XIM = z(o1— 02) ps— (AZ.z(Z — o3))01 = N’

Now, sincer = o1 — o7 does not occur iV’, then anyN such thatf/X]N = N’ cannot
containX free. Thus,N = [r/X]N = N’, andN has typer. But M has typeX. Hence,
M = N isimpossible since they live in different types.

However, all forward reductions preserve type substitution structure, as does baejgward
reduction. Proofs of these are straightforward.

Fact 7.3
If [r/X]M —F N'then there exists a teriW such thatM — N and[r/X]N = N'.

Fact 7.4
If [r/X]M ,— N'then there exists a tertW such thatM ,~— N and[r/X]N = N'.

8 Commutativity of C*-equality with Reduction

This section describes the commutativity of-€quality with reduction. It turns out that
C*-equality commutes witl#1, 82, andn; reductions bunhot with 7, reduction. To see this
last point, takeM of typeVZ.o with Z ¢ FV (o), andX fresh. Then, becauseX.Mr does
notn-reduce toM, we cannot complete the following diagram:

AXMX = AX.Mr

2

Research Report No. 21 December 1992

18 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

We need the following lemma about the substitutivity dtégjuality.
Lemma 8.1 (Substitutivity of C*-equality)
If M1 =c+ MyandNq =.« Ny then[Nl/:E]Ml L [Nz/m]Mz and[T/X]Ml L [T/X]M2

Proof: An easy induction on the structuredf.]

We now prove that Gequality commutes witl#;, 3,71 reduction, first for the one-step case,
then for the multi-step case. Note that, in the one-step case, a multi“sexp@lity completes
the commuting diagram.

Lemma 8.2 (One-Step Commutativity)

I~

If M éc* N then there exists a terii’ such that M =, N
1 ll 1\
B1Bom B1Bom B1Bom
M’ M’ = N/

Proof: By case analysis @ff —1—>ﬂlﬂ2m M'andM . N.
Sincef18-m1 is substitutive, we can assume that the reduction is applied direcfly,to
ignoring the cases where it is applied to a subterm or supertefvh of
Case:(Az:p. M) M, —l—>ﬂl [My/z] M.

SubcaseAssume that Axiom €is applied toM;.
Then, M1 2.« N1 and Qz: p. MMy . (A& : . N1)Mo.
Clearly, @z : p.Ny) My — 5, [Mo/2]Ny.
And, by Lemma 8.1, My/z] M1 = [My/z]N1.
Therefore, takeV' = [M/z] N1.

SubcaseAssume that Axiom €is applied toM>.
Then, Mz 2.« Ny and Qz: p. M) My . (A& : . M) No.
Clearly, @z : . M1)Ny — 5, [No/z] M.
And, by Lemma 8.1, My/z] M1 =« [Na/z] M.
Therefore, takeV' = [N,/z] M.

SubcaseAssume that Axiom Cis applied tokz : u. M.
Then, by the definition of Axiom G there exisv, N1, p, p’, Y such that
Az p. My = [p/Y](Az:v.Nq) 1. [P /Y] (Az:v.Ny)
with u =[p/Y]v andM; = [p/ Y] N1,
andln - Az:v.N1:v — o,andY notfreeinl orv — o.
Clearly,Y is also not free in. Henceyu =[p/Y]v = v.
Moreover,Y is not free ino, the type ofN;.
Therefore, Axiom Cis applied toM; = [p/Y] N1, and that subcase applies.

December 1992 Digital PRL

The Genericity Theorem 19

SubcaseAssume that Axiom Cis applied to Az : p. M1) M>.
Then, by the definition of Axiom G there exiswv, N1, No, p, p', Y such that
(e p.MOM, = [p/Y](Ae:v.NONp) 2o [p//Y]((Az:v.N1)N2)
with g = [p/Y]v, M1 = [p/Y]IN1, Mz =[p/Y]No,
andl F (Az:v.N1)N, : o, andY not free inl" or o.
Sincel F (Az:v.N1)N> : o, thenl - [Ny/z]N; : 0.
Axiom C* can thus be applied taV;/z] N;.
Hence, takeV’' = [p'/Y][N,/z] N1, for then
[Mz/m]Ml = [p/Y][Nz/m]Nl sinceM; = [p/Y]Nl and M, = [p/Y]N2
= [p'/Y][N2/2z] N1 by Axiom C
and '/ Y] ((Az:v.N1)N>) —l>ﬂ1 [p'/Y][N2/z] N1, sinceB; is substitutive.

Case:(AX.My) p —p, [u/X] M.
SubcaseAssume that Axiom Cis applied toM;.
Then,M; 2 Niand QX.M)p 2+ (AX.N1)p.
Clearly, AX.N1) pp —Sog, [/ X] N1,
And, by Lemma8.1,4/ X1 M1 = [p/X]N1.
Therefore, takéV’ = [u/ X]N;.
SubcaseAssume that Axiom Cis applied toA X . M.
Then, by the definition of Axiom G there existVy, p, p’, Y such that
AX.My = [p/YI(AX.ND) o0 [0//Y](AX.NY)
with M1 = [p/Y]N1, andl F AX.N; : ¥X.o, andY notfree inl orvX.o.
Clearly,Y is not free ine, the type ofN;.
Axiom C* is therefore applied tdf; = [p/Y]N; and that subcase applies.
SubcaseAssume that Axiom Cis applied to AX . M1)p.
Then, by the definition of Axiom G there existVy, v, p, p’, Y such that
AX.M)p = [p/YI(AX.Now) 2o [/ Y1(AX.N1)v)
with M1 = [p/Y]N1andu = [p/Y]v,
andl F (AX.Ny)v : o, andY not free inl oro.
Sincel' F (AX.Ny)v : o, thenl - [v/X]N; : 0.
Axiom C* can thus be applied to[X] N;.
Hence, takeV' = [p'/Y][v/ X] N4, for then
[w/XIM1= [p/Y]lv/X]IN1 sincep =[p/Y]v andMy = [p/Y]N1
= [p'/Y][v/X]N1 by Axiom C*
and '/ Y] ((AX.Ny)v) —1—>ﬂ2 [p'/Y][v/X]N, sincep; is substitutive.
Case: Az u. Mz —1—>,71 M, with z not free inM;.
SubcaseAssume that Axiom Cis applied toM;.
Then, M, éc* NiandAz:p. Mz éc* Az p.Niz.
Now, sincez is not free ini{; and since Axiom € does not affect term variables,

thenz is also not free iMVy. Thus,Az:p. N1z —1—>,71 Ni.
Therefore, takeV’' = Nj.

Research Report No. 21 December 1992

20 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

SubcaseAssume that Axiom €is applied toM1z.

Then, by the definition of Axiom G there existVy, p, p’, Y such that

Miz = [p/Y](Nz) 2 [p'/Y](N1z)

with My =[p/Y]Nq, andl,z:p - N1z : o, andY not freeinl,z:poro.

Clearly,Y is also not free iy — o, the type ofN;.

Axiom C* is therefore applied tdf; = [p/Y]N; and that subcase applies.
SubcaseAssume that Axiom Cis applied toAz : p. M.

Then, by the definition of Axiom G there exisv, N1, p, p/, Y such that

Az p Mz = [p/Y](Az:v.Niz) éc* [p'/Y](Az:v.Niz)

with g =[p/Y]v andM; = [p/Y] N1,

andl - Az:v.Niz : v — o, andY notfree inl orv — o.

Y is therefore not free im, so,u = [p/Y]v = v.

Also, Y is not free ino, the type ofN1z.

Axiom C* is thus applied tdf1z = [p/Y](N1z), and that subcase applies. 1

Theorem 8.3 (Commutativity)

If M =, N then there exists a terdi’ such that M =. N
B182m ﬂlﬂz’flll lﬁlﬁz’fll
M M’ =, N

Proof: By decomposing the multi-steg-@qualities ang;3,n1-reductions into single steps,
and using One-Step Commutativity (Lemma 8.2) to complete the following diagram:

1

M 1. N, L. - N
1 ll 1
B1Bom B1Bom B1Bom
M . Nzt Ny
1 ll
B1Bom B1B2m

1 1
! = =
Mh 2 .. 2o Ny

1
ﬂlﬂzml B1Bom

December 1992 Digital PRL

The Genericity Theorem 21

9 The Genericity Theorem

Finally, in this section, we prove the Main Lemma that leads to the Genericity Theorem. We
first need the following lemma:

Lemma 9.1 (n2-postponement)
If M — M' then there exists a terdf” such thatM —g g,,, M" —,, M’

Proof: Easy; see [BS93]. 1

Lemma 9.2 (Main)
LetT'- M,N :o.If [7/X]M =p. [t/ X]N for some type, then M =p. N.

Proof: Observe first that the chain of Fc-equalities frethY 1M to [r/ X]N can be written:
[T/X]M =F M{I —c* Mé’ =F M" —c* =F M,’ll_l —c* M,’ll =F [T/X]N

that is, as alternations of F-equalities andegjualities with the initial and final equalities
being F-equalities. These initial or final F-equalities may be just trivial syntactic identities
if, in fact, a C-equality starts or ends the chain.

Case:The chain consists entirely of F-equalities, i.e/X]M =g [t/ X]N. Then, by Weak
Genericity of F-equality (Theorem 6.2), we have the re#ilEg, N.

Case:The chain consists entirely of‘@qualities, i.e.,f/ XM =.+ [t/ X]N. Then, by Weak
Genericity of C-equality (Theorem 7.2 =p. N.

Case:There is at least one (non-trivial)*é@quality and one (non-trivial) F-equality. We
proceed with a series of transformations on the chain, starting with the first three links:

[r/XIM = M{ = M = M}
First, as a consequence of the equational Church-Rosser property for F, transform the
F-equalities into reductions. Then, appfypostponement (Lemma 9.1) to the reduction

sequence fromdf;’. Thus, there exist term&, M3, N{ such that:

[r/X1M My =

M M
F
e N g
7
%

N1

Research Report No. 21 December 1992

22 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

Then, by Commutativity of Gequality with3,8,n1 reduction (Theorem 8.3), there exists
M such that

[r/X1M MY =, MY

\ S,
A

The Church-Rosser property can then be used to complete the diamond béfyeea
M

[/ X1M MY = MY

/ \ /

In this way, the original three links from[X]M to M4 can be replaced by;

\/ “"\/

Repeat this transformation down the rest of the chain by sets of three consecutive links of
the forme =z e =, e =g e continuing withAM; = MY =, M, = M{. Note that

the first link of each set coincides with the last link of the previously modified set. At the
end, the transformed chain will look like:

[r/X1M

WA AT

where each left-pointing arrow, except for the final one, consists of foryareductions.
The final left-pointing arrow, and all the right-pointing ones, consist of forvlgbnin,
reductions.

[r/X]

December 1992 Digital PRL

The Genericity Theorem 23

From here on, we work with the transformed chain. Consider now the start of it;

[r/X1M Ml =. M}
Ny

— By Fact 7.3, there exist¥; such thatV] = [r/X]N,andM ——p Ni.

— By Fact 7.4, there exist®/; such thatM] = [r/X]M;andNy ,— M;.

— By Quasi-Genericity of Gequality (Theorem 7.1), there exigi§, such that
Mé = [T/X]M2 and My =.« M>.

Thus, we have

[r/X1M [r/X]1M; = M{ = Mé = [/ X]M>
N A
N{ = [r/X]N;

withM —pr N; S My = M>. Hence M =g, M>.

Now, iterate this process along the chain fréfj = [7/ X M>.

We thus “push” the type substitutiom [X] along the chain so that, eventually, faf;,

the penultimate term of the chain, there exists a téfpsuch thatM;, = [/ X]M,, and

M =p. M,. Apply then Weak Genericity of F-equality (Theorem 6.2) to the last link
[t/ XM, = M) =f [t/ X]N. This givesM,, =p. N.

SinceM =g, M,, thenM =p. N as required.]

Theorem 9.3 (Genericity)
Letlr W M, N :V¥X.o. If Mt =p. Nt for some type, thenM =g, N.

Proof: Choose a fresh type varialffe
Thenlr'- MZ, NZ :[Z/X]ocand r/Z)(MZ) = Mt =p. N7 = [7/Z)(NZ)
Hence, applying the Main Lemma (Lemma 9.27Z =p. N Z.
Observe thaZ fresh mean not free in the type of any free term variablef\Z or N Z.
So, byV-intro,AZ.M Z andAZ.N Z are well-typed terms (of typéZ.[Z/ X o).
Hence, b\¢2, AZ. M Z =p. AZ.N Z, and, by, M =p. N.]

10 Models

In this section, we outline the validity of Axiom C in some relevant models. Details and
further references about the model theory of system F may be found in [AL91] or [Hyl]. The
reader may also see [LM91] for an introductory presentation of PER models and [GLT89]

Research Report No. 21 December 1992

24 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

or [CGW88] for models based on coherent spaces or dl-domains. These constructions provide
the main concrete paradigms for the general semantics of impredicative Type Theory and, by
this, they allow a more explicit understanding of the semantic problems we will mention at the
very end.

In short, in PER models, types are interpreted as partial equivalence relations (p.e.r.) on an
arbitrary (partial) combinatory algebrd(.), that is, on a model of (partial) Combinatory
Logic. In other words, a type is a quotient of a subseDaihodulo an equivalence relation.

The terms of system F are interpreted as equivalence classes in these quotient sets. Given
d € D, call [d] 4 the equivalence class dfin the p.e.r.A. Now, (D, .) yields a model of the

type freeA-calculus Q, ., [1), see [Bar84]. Set theer (M) for the term of system F with all

types erased (e.cer(Az:7.Mp) = Az.er(M)) and consider {r(M)]¢, i.e., the interpretation

in D, under term environmerg, of the type-free termer(M). A result in [Mit86] (see

also [CL91]) shows that the meaning in the PER model of a term M of system F is given by
the equivalence class of the meaning of its erasure in the p.e.r. that interprets its type. More
formally, if environment’ is obtained frong by forgetting type information,

[T - M:ole=[[er(M)]e]ia

It is then clear that PER models realize Axiom CM#r and M 7’ live in the same type, then
their meanings are identical as(M 1) = er(M7').

As for dl-based models, we recall here only that these may be constructed over the category
of coherent spaces and stable maps, as in [Gir86], or over proper dl-domains as in [CGW88],
which we follow. Types then are dl-domains or, more precisely, in view of possibly free
type variables, they are maps over dl-domains. Indeed, they may be understood as functors
if one considers the subcategoryDof dl-domains and just rigid embeddings as maps, as

in [CGW88]. (The impossibility of viewing types as functors, in general, was discussed in
the introduction, in view of the the (contra-) and (co-)variance ofth&inctor.) In short, let

F : DI¥ - DI¥ be a functor. ThefilF, the product functor meant to interpret impredicative
second-order types, is simply the collection of uniform familigs)(whereX ranges over
dl-domains, such thaty € F(X) andtx = F(f)Ety for any dl-domair” and any morphism

f from X toY. Assume now that X.¢ is such thatX is not free ine. This means that is
interpreted by a constant functéy, with respect taX. ThenF(f)® = F(f) = id always. In
particular, tak&” as the universal domain, i.e., any other may be rigidly embedded in it. Then,
for any uniform family ¢x) and anyX, one hagx =ty in F(X). This is exactly the validity

of Axiom C in these models.

There are several ways to describe the general (categorical) semantics of system F. In order to
give a general meaning to Axiom C, we follow the presentation by internal categories given
in [AL91]. First, though, the nae, set-theoretic approach may guide our intuition. Lgte

the collection of semantic types. A variable type is then a fundiiorf’p — Tp. As usual, a
product indexed oveFp is given by the set

NF={f:Tp— UF |VX € Tp f(X) € F(X)}

December 1992 Digital PRL

The Genericity Theorem 25

Then Axiom C corresponds to
if feNMFanddAVB F(B) = A, thenda € AVB f(B)=a

Or, also,lNMF and A are set-theoretically isomorphic, whéhis constantly equal to A. We
know though that classical Set Theory does not yield models of impredicative Type Theory.
However, models may be found as categories which are internal not to the category of sets
and functions, but to more “constructive” ones, which enjoy the fundamental adjunction (Adj))
below. Following [AL91], lete = (co, c1) be a category internal to a Cartesian Closed Category
(ccc) E with all finite limits. Letc® be the category of internal functors. Thd, ¢) yields a

model of system F it is an internal ccc and the (internal) product fundior ¢®® — ¢ exists

as the right adjoint of the (internal) diagonal funckr. ¢ — ¢, i.e., the functor that to each

A associates the functéf 4, which is constan#t. In other words,

(Ad) O[] * c[,M]

We claim that, among these models, exactly those which realize the following natural
isomorphism
(Const) c¢*[K_,K] = ¢[-]

are models of Axiom C. Indeed, by (Adj), (Const) implies, naturallyinB,
c[B,M(KA)] = ¢°[KB,KA] ¥ ¢[B,A]

This is equivalent, in these models, to the isomorphisfx A) = A, i.e., to the intuitive
set-theoretic meaning of Axiom C. A final remark: both the term model of system F, of course,
and the retraction models (see [AL91]) do not realize Axiom C.

The semantics of the Genericity Theorem raises some interesting issues. Observe that
(GEN) 3Ir Mr=Nt => M=N

is not an equation, but an implication between equations. Thus, a mddef Fc does

not need to realize (GEN), in the sense that M+ = N7 may be true in the model but

M = N is false. For example, PER models and dl-domains do not realize (GEN). Consider
0,K :¥X.X — (X — X). Take then a type which has at most one element, for instance
VX.X orVX.X — X. Then, in both classes of model&;r = Or, but, of courseK # 0.

By generalizing this argument (see [Lon93]), models of relational parametricity also do not
realize (GEN). This lack (so far) of models of (GEN) is in spite of the many models of Fc and
the provability of the implication. Note that an understanding of the semantics is relevant, not
only for model-theoretic reasons, but also for the extensions of system F which are relevant in
practice. That s, actual polymorphic functional languages may be based on core calculi, plus
possibly more equation schemes. Thus, the investigation of which equational theories realize
(GEN), as an important property of polymorphic functions, is a further challenge.

Research Report No. 21 December 1992

26 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

References

[ACC93] M. Abadi, L. Cardelli, and P.-L. Curien. Formal Parametric Polymorphism. In
Proceedings of the 20th Symposium on Principles of Programming Languages
Charleston, South Carolina (January 1993).

[AL91] A. Asperti and G. LongoCategories, Types, and Structures: An Introduction to
Category Theory for the Working Computer ScienhSifT Press (1991).

[BFSS90] E.S. Bainbridge, P.J. Freyd, A. Scedrov, and P.J. Scott. Functorial Polymorphism.
Theoretical Computer Science0:35-64 (January 1990). Corrigendum in 71:431
(April 1990).

[Bar84] H.P.Barendregihe Lambda Calculus: Its Syntax and Semangtsdies in Logic
and the Foundations of Mathematics 103, North-Holland (1984). Revised edition.

[BS93] H.P. Barendregt and R. Statmdiyped Lambda Calculus with Applicatioria
preparation.

[CL91] L. Cardelli and G. Longo. A Semantic Basis for Quekiurnal of Functional
Programming 1:417-458 (April 1991).

[CMMS91] L. Cardelli, S. Martini, J.C. Mitchell, and A. Scedrov. An Extension of System
F with Subtyping. InProceedings of the Conference on Theoretical Aspects of
Computer SoftwareSendai, Japan (September 1991). Lecture Notes in Computer
Science 526, Springer-Verlag. Edited by T. Ito and R. Meyer.

[CGL92] G. Castagna, G. Ghelli, and G. Longo. A Calculus for Overloaded Functions
with Subtyping. InProceedings of the Conference on LISP and Functional
Programming San Francisco, California (July 1992). Extended abstract.

[CGWS88] T. Coquand, C.A. Gunter, and G. Winskel. DI-Domains as a Model of Poly-
morphism. InProceedings of the 3rd Workshop on Mathematical Foundations of
Programming Language Semantibew Orleans, Louisiana (April 1987). Lecture
Notes in Computer Science 298, Springer-Verlag. Edited by M. Main, A. Melton,
M. Mislove, and D. Schmidt.

[DL89] R. Di Cosmo and G. Longo. Constructively Equivalent Propositions and Isomor-
phisms of Objects (or Terms as Natural TransformationsPrbteedings of the
Workshop on Logic for Computer ScienBerkeley, California (November 1989).
Mathematical Sciences Research Institute Publications 21, Springer-Verlag (1992).
Edited by Y.N. Moschovakis.

[EK66] S. Eilenberg and G.M. Kelly. A Generalization of the Functorial Calculaarnal
of Algebra 3:366-375 (1966).

December 1992 Digital PRL

The Genericity Theorem 27

[FGSS88] P.J. Freyd, J.-Y. Girard, A. Scedrov, and P.J. Scott. Semantic Parametricity in

[Gir71]

[Girg6]

[GLT89]

[GSS]

[Has93]

[Hyl]

[LS86]

[Lon93]

[LMO1]

[MR91]

[Mac71]

[Mit86]

Polymorphic Lambda-Calculus. Proceedings of the 3rd Symposium on Logic in
Computer Sciencédinburgh, Scotland (June 1988).

J.-Y. Girard. Une Extension de I'Interpretation Fonctionelle del&@a I'Analyse
et son Applicatiora’I'Elimination des Coupures dans I'’Analyse et lagbhie des
Types. InProceedings of the 2nd Scandinavian Logic SympadNorth-Holland
(1971). Edited by J.F. Fenstad.

J.-Y. Girard. The System F of Variable Types, Fifteen Years Ldteeoretical
Computer Sciengel5:159-192 (1986).

J.-Y. Girard, Y. Lafont, and P. TayloProofs and TypesCambridge Tracts in
Theoretical Computer Science 7, Cambridge University Press (1989).

J.-Y. Girard, A. Scedrov, and P.J. Scott. Normal Forms and Cut-Free Proofs as
Natural Transformations. IRroceedings of the Workshop on Logic for Computer
ScienceBerkeley, California (November 1989). Mathematical Sciences Research
Institute Publications 21, Springer-Verlag (1992). Edited by Y.N. Moschovakis.

R. Hasegawa. Categorical Data Types in Parametric Polymorphism. To appear in
Mathematical Structures in Computer Science

M. Hyland. A Small Complete Categorn/Annals of Pure and Applied Logic
40:135-165 (1988).

J. Lambek and P.J. Scotintroduction to Higher Order Categorical Logic
Cambridge Studies in Advanced Mathematics 7, Cambridge University Press
(1986).

G. Longo. Parametric and Type-Dependent Polymorphism. To app€&amnata-
menta Informatica

G. Longo and E. Moggi. Constructive Natural Deduction andvitset Interpreta-
tion. Mathematical Structures in Computer Scient@):215-253 (1991).

Q. Ma and J.C. Reynolds. Types, Abstraction, and Parametric Polymorphism: Part
2. InProceedings of the Workshop on Mathematical Foundations of Programming
Language Semantickecture Notes in Computer Science, Springer-Verlag (1991).
Edited by S. Brookes, M. Main, A. Melton, M. Mislove, and D. Schmidt.

S. Mac LaneCategories for the Working Mathematicig®pringer-Verlag (1971).

J.C. Mitchell. A Type Inference Approach to Reduction Properties and Semantics
of Polymorphic Expressions. IRroceedings of the Conference on LISP and
Functional Programming1986).

Research Report No. 21 December 1992

28

Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

[PA93]

[Rey74]

[Rey83]

[Sco72]

[SP82]

[Str67]

G. Plotkin and M. Abadi. A Logic for Parametric PolymorphismProceedings

of the International Conference on Typed Lambda Calculi and Applications
Utrecht, Netherlands (March 1993). Lecture Notes in Computer Science 664,
Springer-Verlag (1993). Edited by M. Bezem and J.F. Groote.

J.C. Reynolds. Towards a Theory of Type Structurréteedings of le Colloque
sur la ProgrammationLecture Notes in Computer Science 19, Springer-Verlag
(1974). Edited by B. Robinet.

J.C. Reynolds. Types, Abstraction and Parametric Polymorpigormation
Processing83:513-523 (1983). North-Holland. Edited by R.E.A. Mason.

D. Scott. Continuous latticefoposes, Algebraic Geometry and Ladi@cture
Notes in Mathematics 274, Springer-Verlag (1972). Edited by F.W. Lawvere.

M. Smyth and G. Plotkin. The Category Theoretic Solution of Recursive Domain
EquationsSIAM Journal of Computindl1:761-783 (1982).

C. StracheyFundamental Concepts in Programming Languadéspublished
lecture notes from the International Summer School in Computer Programming,
Copenhagen, Denmark (August 1967).

December 1992 Digital PRL

PRL Research Reports

The following documents may be ordered by regular mail from:

Librarian — Research Reports
Digital Equipment Corporation
Paris Research Laboratory

85, avenue Victor Hugo

92563 Rueil-Malmaison Cedex
France.

Itis also possible to obtain them by electronic mail. For more information, send a
message whose subject linehiglp to doc-server@prl.dec.com or, from
within Digital, to decprl::doc-server

Research Report 1: Incremental Computation of Planar Maps. Michel Gangnet, Jean-
Claude Hervé, Thierry Pudet, and Jean-Manuel Van Thong. May 1989.

Research Report 2: BigNum: A Portable and Efficient Package for Arbitrary-Precision
Arithmetic. Bernard Serpette, Jean Vuillemin, and Jean-Claude Hervé. May 1989.

Research Report 3: Introduction to Programmable Active Memories. Patrice Bertin, Didier
Roncin, and Jean Vuillemin. June 1989.

Research Report 4: Compiling Pattern Matching by Term Decomposition. Laurence Puel
and Ascander Suarez. January 1990.

Research Report 5: The WAM: A (Real) Tutorial. Hassan Ait-Kaci. January 1990.1

Research Report 6: Binary Periodic Synchronizing Sequences. Marcin Skubiszewski. May
1991.

Research Report 7: The Siphon: Managing Distant Replicated Repositories. Francis J.
Prusker and Edward P. Wobber. May 1991.

Research Report 8: Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
A-Calculi. Jean Gallier. May 1991.

Research Report 9: Constructive Logics. Part Il: Linear Logic and Proof Nets. Jean Gallier.
May 1991.

Research Report 10: Pattern Matching in Order-Sorted Languages. Delia Kesner. May
1991.

TThis report is no longer available from PRL. A revised version has now appeared as a book: “Ha$&oi,A”
Warren's Abstract Machine: A Tutorial Reconstruction. MIT Press, Cambridge, MA (1991).”

Research Report 11: Towards a Meaning of LIFE. Hassan Ait-Kaci and Andreas Podelski.
June 1991 (Revised, October 1992).

Research Report 12: Residuation and Guarded Rules for Constraint Logic Programming.
Gert Smolka. June 1991.

Research Report 13: Functions as Passive Constraints in LIFE. Hassan Ait-Kaciand Andreas
Podelski. June 1991 (Revised, November 1992).

Research Report 14: Automatic Motion Planning for Complex Articulated Bodies. Jéréme
Barraquand. June 1991.

Research Report 15: A Hardware Implementation of Pure Esterel. Gérard Berry. July 1991.

Research Report 16: Contribution a la Résolution Numérique des Equations de Laplace et
de la Chaleur. Jean Vuillemin. February 1992.

Research Report 17: Inferring Graphical Constraints with Rockit. Solange Karsenty, James
A. Landay, and Chris Weikart. March 1992.

Research Report 18: Abstract Interpretation by Dynamic Partitioning. Francois Bourdoncle.
March 1992.

Research Report 19: Measuring System Performance with Reprogrammable Hardware.
Mark Shand. August 1992.

Research Report 20: A Feature Constraint System for Logic Programming with Entailment.
Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka. November 1992.

Research Report 21: The Genericity Theorem and the Notion of Parametricity in the Poly-
morphic A-calculus. Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev. December
1992.

Research Report 22: Sémantiques des langages impératifs d’ordre supérieur et interprétation
abstraite. Francgois Bourdoncle. January 1993.

Research Report 23: Dessin a main levée et courbes de Bézier : comparaison des al-
gorithmes de subdivision, modélisation des épaisseurs variables. Thierry Pudet. January
1993.

Research Report 24: Programmable Active Memories: a Performance Assessment. Patrice
Bertin, Didier Roncin, and Jean Vuillemin. March 1993.

Research Report 25: On Circuits and Numbers. Jean Vuillemin. April 1993.

Research Report 26: Numerical Valuation of High Dimensional Multivariate European Secu-
rities. Jérdbme Barraquand. March 1993.

Research Report 27: A Database Interface for Complex Objects. Marcel Holsheimer, Rolf A.
de By, and Hassan Ait-Kaci. March 1993.

Research Report 28: Feature Automata and Sets of Feature Trees. Joachim Niehren and
Andreas Podelski. March 1993.

Research Report 29: Real Time Fitting of Pressure Brushstrokes. Thierry Pudet. March
1993.

Research Report 30: Rollit: An Application Builder. Solange Karsenty and Chris Weikart.
April 1993.

Research Report 31: Label-Selective A-Calculus. Hassan Ait-Kaci and Jacques Garrigue.
May 1993.

Research Report 32: Order-Sorted Feature Theory Unification. Hassan Ait-Kaci, Andreas
Podelski, and Seth Copen Goldstein. May 1993.

2

The Genericity Theorem and the Notion of Parametricity in the Polymorphic
Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

A-calculus

dliloli[tlall

PARIS RESEARCH LABORATORY

85, Avenue Victor Hugo

92563 RUEIL MALMAISON CEDEX

FRANCE

