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Abstract

We establish the following correspondences between the ringadic integers,Z from
arithmetics anddigital circuits (finite and infinite, combinational and synchronous) from
electronics (Theorems 1 and 2):

1. A function is computed by eombinationakircuit if and only if it is continuousover
the 2adic integersZ:

vne N,x€2Z,3me N: f(x) = f(x mod2™) (mod2").

2. Afunction is computed by synchronousircuit if and only if it ison-lineover,Z:

vneN,x € ,Z: f(x) =f(xmod2") (mod2").

The proof of this result provides a SDibrmal form for synchronous circuitshich
generalizes the BDD and TDG constructions (Algorithm 1) proposed by [A78], [B86]
and [B87] for processing finite boolean functions. We show that the circuit SDD(f)
synthesized by Algorithm 2 iinite if and only if function f may be realized by some
finite state machine (Proposition 3).

From simple identities in theng of 2adic integers, we derive both classical and new bit-serial
circuits for computing:(+, —, x, 1/(1+2x),+/1+8x). All but the adderg+, —) areinfinite
synchronous circuits (Proposition 4). &ach case, theorrectnessof the circuit directly
follows from the 2adic definition of the corresponding operator.

We demonstrate that o@adic semantics fully general and may be fruitfully applied amy
digital circuit. In particular, we characterize when the multiplexer and register commute with
arbitrary logic; the retiming property, expressed bix € »Z : f(2x) = 2f(x), holds of an
on-line functionf € ,Z — »Z if and only iff(O) = 0 (Proposition 6). We also provide a
simple characterization eéversiblesynchronous circuits (Proposition 7).

We introduce a general procedure (Algorithm 3) which transforms any synchronous circuit into
an equivalent infinite parallel combinational implementation. Conversely, we show that every
continuous function is computable by a synchronous circuit with output enable (Theorem 3).

We use reset signals in order to pipeline finite integer computations through arbitrary 2adic
networks (Theorem 4); in this context, all arithmetic circuits becfinite.






Résumé

Nousétablissons les correspondances suivantes entre I'anneau des entiers 2adisgiede
I'arithmétique, et les circuits digitaux (finis et infinis, combinatoires et synchrones) issus de
I"electronique (ThorEmes 1 et 2).

1. Une fonction est calce€ par un circuit combinatoire si et seulement si elle est continue
en toutx € ,Z entier 2adique :

vne N,x€2Z,3me N: f(x) = f(x mod2™) (mod2").

2. une fonction est calce€ par un circuit synchrone si et seulement si elle est en-ligne :

VneN,x € »Z: f(x) =f(xmod2") (mod2").

La démonstration de ceesultat fournit une forme normale SDD pour les circuits
synchrones, quigr€ralise les constructions BDD et TGD (Algorithme 1) propespar
[A78], [B86] et [B87] pour traiter des fonctions baahnes finies. Nous montrons que
le circuit SDD syntletisé par I’Algorithme 2 est fini si et seulement si il patie galig
par une machina état fini (Proposition 3).

A partir d’identités simples sur les entiers 2adiques, nous trouvons des circuityienas”

la fois classiques et nouveaux, pour calculer; —, x,1/(1+2x),+/1+8x). Mis & part

les additionneur£+, —), tous ces circuits synchrones sont des circuits infinis (Proposition
4). Dans chaque cas, I'exactitude du circugcdule de la dfinition 2adique de I'opfateur
correspondant.

Nous &montrons que notreegiantique 2adique esegrale et peut s’appliquer avec pradit -
tout circuit digital. Plus pgCis$sment, nous caramtisons quand le multiplexeur et le registre
binaire commutent avec une logique arbitraire. La pet@rile "retiming” est exprireé par :
Vx € »Z : f(2x) = 2f(x). Elle vaut pour une fonction en-ligrfec ,Z — ,Z si et seulement
Si f(O) = 0 (Proposition 6). Nous donnons aussi une camgation simple des circuits
synchrones qui sonéversibles (Proposition 7).

Nous pesentons une ethode ghérale qui transforme tout circuit synchrone en wadisation
combinatoire paradle infinie. Inversement, nous montrons que toute fonction continue peut
étre calcute par un circuit synchrone avec validation des sorties (enable).

Nous utilisons des signaux de remaegro (reset synchrone) afin d’encher (pipe-line) des
calculs entiers finis au travers desgaux 2adiques arbitraires. De cett®fg tous les circuits
arithmétiques consielés deviennent finis.
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On Circuits and Numbers 1

1 Introduction

Modern electronic circuits fall in two categoriesjaloganddigital.

The dynamic analysis of analog circuits involves physical parameters, such as currents and
voltages, whose value € R varies continuously witheal time te R. Carver Mead’s book
[M89] provides an excellent introduction to analog circuits.

Digital circuits are characterized by a finite number of physical variables, whose value
v; € B = {0, 1} may be identified with either zero or one, when properly discretized (say 0
when voltage< 1V and 1 when voltage 2V) at integer multiplest(= nAt for n € N) of the

clock periodAt. SettingAt = 1 through a suitable choice of the physical units allows us to
identify digital time te N = {0, 1, 2, - - -} with the set of natural numbers.

The present work is exclusively concerned with digital circuits, which we introduce mathe-
matically as follows:

Definition 1 (Digital Circuit) In a digital circuit C, the value of any variable @ V(C) is a
bit vi € B which may only change at integer time tN:

weV(C),te R,an=[t] €N: % =v, € B.

A direct consequence of Definition 1 is that all delays in a digital circuieaeet integersin
particular,combinationatircuits havezero delay the output response to changes in the inputs

is instantaneous, and time plays no part in their mathematical analysis. syitihronous
circuits, changes in the digital values of variables are equally instantaneous and they precisely
occur at digital time € N.

Of course, any physical implementation of our mathematical digital circuits has (hopefully
very) small delays, but (certainly) not zero delays. As a consequence, the physical behaviour
matches its mathematical idealization only when operated with a clock whose pHrisd
exceeds the maximum physical defafcritical path).

Synchronous circuits operate upitinite binary sequences: in any computation performed

by circuitC, each variable ¢ V(C) takes consecutive binary valuegvi, - - -\, - - - € B as

digital time progresses through the natural numberdN. So, synchronous circuits naturally

map infinite binary sequences, representing the successive input values at each clock tick
t € N, into infinite binary sequences, representing the corresponding output values.

Infinite binary sequences have a rich mathematical structure, namely that @athe
integers ,Z, whose algebraic properties are presented in Section 2 (Propositions 1 and
2). Operations ovesZ contain most' of the usual operations over the ordinary integers
Z=4{--,-2,-1,0,1,2,---} hence the name. In addition, they contain all set operations
over the subsetN of the natural numbers. In short, the 2adic integ&rgorm both aring
(0,+,—,1, x) and aboolean algebrd®, ,U,nN).

but not all, as we loose integer comparison and division by a number which is not a power of 2;
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2 Jean Vuillemin

Each digital circuit defines an operator over the 2adic integers, and the correspondence works
in two dualways:

1. In a combinational circui€ € C(?) (Definition 6), where time takes no part, input
variablesi[0], - - -,i[n],--- € V(C) and output variables[0],---,0[n],--- € V(C)
are groupedin spaceso as to form the 2adic integeis = 3 Ni[n]2" and
O = Y noln2". We show (Theorem 1) that a functidd = C(I) may be so
realized by a combinational circuit if and only if it iscantinuousmapping ovesZ.

2. In a synchronous circuit (Definition 8), thecsessive boolean valueg, - - -, w,--- € B
taken by each variablec V(C) at each clock tick € N are groupedn time, so as to
form the 2adic integeV = 3°, N vi2t. We show (Theorem 2) that a function may be so
realized by a synchronous circuit if and only if it is an-linemapping ovepZ.

Combining these two results provides a simple and effective characterization of which functions
may or may notbe directly implemented by synchronous and combinational circuits, with
many forthcoming concrete examples.

2 The 2adic integers »Z

The p-adic integers were introduced around 1900 by K. Hensel [H13] (for each jprinié)
and they play a central role in arithmetic (see [A75] and [K77]). Such numbers are obtained
by extending indefinitely the ordinary baseepresentation, as computed by the rule:

Bo(n) = (n-p) By(n+p). (2)

We usen + p to represent thguotientandn |- p the remainderin the integer division oh
byp# 0: n=px (n=p)+(n|p)with 0 < (n-p) < p. For example, we compute the
infinite binary p = 2) representation of decimal number 22 by:

B,(22) = 011010 --0---= ,011010).

In the above equality, subscriptindicate the representation base 2 as well as the reading
order, from low order bits to high order bits; tﬁ@) denotes an infinite (periodic) sequence of
zeroes. Similarly, we find:

By(-7) = 1001---1.-- = ,100(1),
and By(%) = 110---10--- = ,1(10).

One may correctly infer from these three motivating examples that:

1. The infinite binary representation of a natural number, sucb as 2(0), is ob-
tained by appending infinitely many non-significant zeroes to its ordinary finite binary
representation.
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On Circuits and Numbers 3

2. The infinite binary representation of a negative integer, suetlas 2(1), is obtained
by extending indefinitely the most significant 1 bit from its ordinary two’s complement
finite representation.

3. Rational numbers having avendenominator, such a§, are not members of,Z:
applying Rule (1) to these numbers fails to deliver a meaningful binary representation.

4. Rational numbers having amlddenominator, such as; = 2(100), are characterized
by their ultimately periodicinfinite binary representation. Equivalently, tloeld
rationalsZ /1 + 2N are precisely the members £ which admit &finite notation upon
adopting our parenthesis convention (Proposition 2); they are associated with finite
synchronous circuits having constant inputs, or any equivalent explicit representation of
finite automata.

5. The 2adic integers also contain non-periodic numbers, which the practical designer may
choose to ignore since they are exclusively associated infithite circuits, such as
v/—7 = 1010110100000010 -

While Hensel's construction applies for any primeve need only concern ourselves with the
casep = 2 of the 2adic integergZ for the purpose of studying digital circuits. Thathmetic
properties of,Z are (almost) similar to those of the p-adic integersgas 2. Thelogical
properties obZ are unique, a fact which we emphasize in the following definition.

Definition 2 A 2adic integer Be »Z is the limit of three equivalent infinite sequences
B= lim 2bo---by = lim b(n) = lim b{n},

each composed of (for@a N):

1. bitsly € B, with b= (B+2") |2
2. natural numbers ) € N, with b(n) = B+- 2™ = Yocken b2, forn e N;
3. finite sets of integers{b} C {0, 1,---, n}, with b{n} ={k<n: b,=1}.

Let us make explicit the meaning of the wdnahit in Definition 2, by introducing aistance
over binary sequences.

Definition 3 Thevaluationv,(b) € N of a 2adic integer ke ,Z is:

1. the index of the first non-zero bit in the binary representation of b;
2. the largest power of two which divideérl), foralln € N;

3. the smallest element in the s¢h, foralln € N.
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4 Jean Vuillemin

Thenormof a 2adic integer xc »Z is defined by,|x| = 27¥2(0).,

Thedistancebetween two 2adic integersye »Z is the norm of their differencez|x — y|.

Note thatv>(0) = oo S0 2|x| = 0if and only if x = 0, and0 < |x| < 1for x 7 0. Norm
2|X| satisfies:

(i) 2px+yl < maxzlx, 2lyl};

(i) 2xxyl = 2 x 2lyl;
Property (i), which is characteristic afitra-metric norms (see [K77]) istrongerthan the
classical triangle inequality for real numb@&s |x +y| < |x| + |y

It follows from Definition 3 of the distance between 2adic integers thdiite approximants
2bg - - - b = b(n) = b{n} converge to numbeB ¢ ,Z according to:

Yne N: 2|B— zbo---bn| = 2|B— b(n)| = 2|B— b{n}| < 2-m1

So, each infinite binary sequende= (ag---a,---) with a, € B for n € N is equalto the
unique2adic integeA = 3 N @2" of which it is the base 2 representation, as computed by
Rule (1) forp = 2. Two infinite binary sequences B areequalwhen ;|A — B| = 0, which

is equivalent to each of the following:

A=B&VneN: an=bye VneN: a(n) =b(n) & vne N: a{n} = b{n}.
This justifies to use of the following notations for representing a 2adic integesZ:

B = Lby---by--- = anzﬂz \/b(n) = Ub{n}-

neN neN neN

One may choose either of the proposed representations - bits or integers or sets - in order to
introduce operations over.

Definition 4 Let A=V .Nya(n) = Uyena{n} and B= VN b(n) = U,cn b{n} be two
2adic integers AB € 2Z. We define the operations:

e complement “A=UpeNntik<n: k¢ af{n}},
o Or AV B = U,.n(afn} U b{n}),
e and AN B = Upen(a{n} nb{n}).
e sum A+B =V en(a(n) +b(n)) - 271,
o difference A-B =V n(a(n) - b(n)) |- 2m1,
e product Ax B =V, n(a(n) x b(n)) |- 272,

It follows from elementary set theory and arithmetic that:
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On Circuits and Numbers 5

Proposition 1 (Structure of ,Z)

1. The 2adic integer§Z, -, v, A) form aboolean algebrasomorphic to(2N, ", u, n).

2. The 2adic integer@zz, +, -, ><) form aring which contains the ordinary integersand
the odd rational&Z /1 + 2N as proper sub-rings.

Let us characterize further the set inclusi@gns Z/1+ 2N C ,Z, both arithmetically and in
terms of synchronous circuits (forward Definition 8):

Proposition 2 Assertions (i), (i), (iii) and (iv) are equivalent:

(i) A 2adicinteger B »Z is an ordinary integer B Z.
(i) 3z€ Z,vke N: B=1z (mod2*1).

(iii) The binary representation of B= »bg - - -b|_1(b|) is ultimately constant
3l € N,vk > | : by = byj; here, I+ 1is the (ordinary) binary length of z Z.

(iv) B= 3N b2t is the output of soménite acyclicsynchronous circuit with constant
inputs, eitheil0 = »(0) or -1 = ,(1).

Assertions (v), (vi), (vii) and (viii) are equivalent:

(v) A 2adicinteger B= »Z is an odd rational Be Z/1 + 2N.
(vi) 3ze Z,ne N,vke N: Bx (1+2n) =z (mod2<1).

(vii) The binary representation of 8 obg- - -bi_1(bj - - - bi+p_1) is ultimately periodic
dieN,pe N+1Vk>i: bk:bk+p.

(vii) B = 37N b2t is the output of somfinite synchronous circuit with constant inputs.
As a consequence of this fact, we can systematically label each variable in a synchronous
circuit having constant inputs with odd rationals, starting frore »(0) for the electrical

groundand—-1 = 2(1) for the electricapower supply In the following example, labels are
given both in decimal and in binary,(low order bit first, periodic part in parenthesis).

Example 2.1 The numberg2, -7, 1 and—£ as circuits:

0 1 2 -6 11 22 -1 -2 -4 -7
(0) 1(0) 01(0)  010(1)  1101(0)  01101(0 1) 0(1) 00(1) 100(1)
;2 i X 2X _A _i
3 3 5 5
CUTRS e
1(10) —(1+x)
(01) (0011)
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6 Jean Vuillemin

In our schemas: circles denote inverters and squares denote binary reglsteisynchronous
flip-flop with initial valuezero(Example 2.1). A register with inverters on both sides is easily
recognized as a synchronous flip-flops with initial vatune (Example 4.2).

The circuits presented in the proof (Section 8.1) of the Paragraphs (iii) and (vi) in Proposition
2 are precisely those constructed by the SDD procedure (Algorithm 2) upon constant (arity=0)

inputf() = z€ Z andf() = &= € Z/1+2N. It establishes a direct correspondence between

the ultimately periodic binary representation of an odd rational, such as

272 = ,0101(110),

and its realization by a finite synchronous circuit containing exawtbloop, such as:
22
- %DW%

3 Combinational Circuits

Combinational circuits can all be built from a single atomic gatentéiplexer.

Definition 5 (The Multiplexer ? € B3 — B) mux
The value of output & B is determined from
the three input values, b, a € B by: c
P baﬁam
TAREET Y a ifc=0. a—»

Note the relations: (2, b,a) = (c A b) v (-=c A a) = if cthenb elsea.
Together with 0 and 1, the multiplexer idasisfor boolean algebra, as seen from:

-b =2(b,0,1) avb=2a,ab) aAb=2a,b,a)

Theexclusive or @ b = (aA -b) v (-aA b) is realized with two muxes:

a®b=2a,2(b,0,1),b)

We construct arbitrarily complex boolean functions by wiring together mux gates, subject to
the following caveat:

1. the graph of the circuit is acyclic;
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On Circuits and Numbers 7

2. every path between inputs and outputs is finite.

Condition 1 eliminates from consideration cyclic structures, such as?(u,0, 1) whose
output value isindefinedn the boolean domain. Condition 2 guarantees that the valeaabf
variable may be computed withinfimite combinational delay. In particular, this ensures that
any finite combinational circuit may be operated reliably with a synchronous clock having a
finite periodAt > § greater than the circuit’s largest del&ycritical path).

Definition 6 (Combinational circuits C(?)) A combinational circuitC € C(Z,?) is a set
V(C) = T U M of digital variables partitioned into:

e InputsZ = {i[0] - - -i[n] - - -}; they may take arbitrary boolean valuds] € B.
e Multiplexersm = {m[0] - - -m[n] - - -}; each is defined by a mux equation:
yme M,3c,a,be V(C): m=7c,b,a).
The mux-ordering< induced over the variableg(C) by
m=2(c, b, a) implies c< m,b < mand a< m,

must bewell-founded:every descending chaiif} > - -- > v[n] = - - - isfinite.

The circuit's output®) = {o[0] - - -o[n] - - -} C V(C) form a subset of the variables.

Note that Definition 6 allows for infinite as well as finite circuits. From an arbitrary assignment
of boolean values to the inputs, corresponding to the 2adic intege}- N i[n]2", we can
follow the mux-ordering in order to compute the value of each variabfetirso as to obtain

the 2adic intege® = -, . o[n]2" which represents the circuit's output response.

Theorem 1 A function is computable by some combinational circuit €(?) if and only if
the mapping fe »Z — »Z defined by (3°,50i[N]2") = 3,50 0[n]2" is continuousthat is:

VI €2Z,ec R>0,Ipc RVI' €,Z: 5|l - I'| < pimplies|f(1) —f(I')| <e.  (2)

The proof of this result is given in Section 8.2.

Any finite boolean function, such as the full-adder from Example 3.1, is continuous; it is well
known (Algorithm 1) that each may be computed by a finite combinational circuit.

On-line functions (Theorem 2) such as—+, x are continuous. The corresponding infinite

combinational circuit may be directly constructed from Theorem 1. We may also start from
a bit-serial synchronous circuit implementing the on-line function (Theorem 2), and apply
the parallelization procedure of Section 5 (Algorithm 3) in order to obtain an equivalent
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8 Jean Vuillemin

(infinite) combinational implementation. The parallel adder from Example 3.2 is compiled by
Algorithm 3 from the serial adder of Section 5.1, and the parallel multiplier (Example 6.1)
from the serial-parallel multiplier in Section 5.3.

Example 3.3 presents examples of continuous functions, the Peano projections, which are not
on-line: they may be realized by an infinite combinational circuit; they may not be realized by
any synchronous circuit.

The test for zero functiom € ,Z — »Z defined byz(0) = 0 andz(x) = —1for x # 0is not
continuous at 0, therefore, is is not computableaby digital circuit. The related’ defined

by Z(0) = 0andZ(2'(1+2x)) = —2"is continuous (and on-line); so, it is computable by a
combinational circuit € C(?) (and by a synchronous circute C(?,2x)).

Example 3.1 (Full Adder)

The full-adder computes the unique boolean solution to the equdmmb +c=s+2r|
namelys = a@b@candr = (aAb) Vv (bAc) Vv (cAa). The following circuitimplements
the function with aminimalnumber of 5 muxes:

FullAdd(a,b,c) = (s,r) .

where {b = 2b,0,1),
x = ab,b), ° x
t = ?c0,1), . r
r = xac), <
s = xc0) ;

Example 3.2 (Parallel Adder) From here on, a trapezoid with two + signs represents a
full-adder:

o a[O] b[O] a[l b[1] a[2] b£2] a[3] b3]

ﬂ”rjrﬂr

[0] s[1] s[2] s[3]

i

While this circuit contains an infinite carry chain, the longest path of muxes leading from
inputs to each output is finiten + 3 for n > 1, with the full-adder from Example 3.1.

Example 3.3 (Peano Pairing) Define thecartesian producir € 2Z x 2Z — »Z of two
2adic integers bynterleavingthe binary representations of each operand. The inverse first
projectionmg € 2Z — »Z extracts theevenbits, and the seconeh € ,Z — »Z theoddbits.
They are computed by the recursive system:

7(a,b) = al|2+2xn(b,ax?2),
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On Circuits and Numbers 9

m(a) = al2+2xm(ax4),
71'1(3.) = 71'0(3.%2).

We easily verify thatva,b € ,Z : mo(w(a,b)) = a, m1(x(a,b)) = b and that each of
T, T, T € C(?) may be realized by aux-lesscombinational circuit (just wires). Note
thatr establishes a one to one mapphMg- N x N between natural numbers and pairs of
natural numbers; similarly for the odd rationalgl + 2N and the 2adic integes& .

4 Synchronous Circuits

Synchronous circuits are built from two atomic gates, rindtiplexerand theregister, also
known as flip-flop. When operating in a synchronous environment, the multiplexer retains its

zero-delay (mathematical) property: the output vatue B is determined, at all timesc N,
from the input values;, by, a; € B by:

m =2(c, by, &) = if ¢ thenb; elsea;.

We need to change our Definition of the logical complemert—ﬂm:?(b, o, —1) . This

accounts for the difference betweerl = (1), the electrical power supply, afd= ,1(0),
thebootsignal. The register introducesiait time delay

Definition 7 (The Register 2x € ,Z — »Z) reg

The output y of a register is 0 at initial time: § = 0O; for .

t > 1, itis equal to the valug.i; of its input, sampled at ! |:|
the previous clock tickyt € N+ 1, ry = iy_1.

As we represent the input sequence by the 2adic integery, N it2!, the 2adic integer
0=>N o'2! representing the output of the register is equal 92 x i.

Complex synchronous circuits are realized by wiring together a number of muxes and registers.
All registers aresynchronousn that they share the same clock signal. As before, no infinite
combinational path is allowed.

Definition 8 A synchronous circui€ € C(?,2x) is asety = V(C) = T U M U R of digital
variables made of:

e InputsZ = {i[0] - - -i[i — 1]} in finite number i= |Z|; they may take arbitrary 2adic
integer values.

e MuxesM = {m[0] ---m[n] - - -}; each is defined by a mux equation:
yme M,3c,a,be V(C): m=7c,b,a).

The mux-ordering must be well-founded, as in Definition 6.
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10 Jean Vuillemin

e Registersk = {r[0] ---r[n] - - -}; each is defined by eegequation:
VreR,JieV(C): r=2xi.

The output®) = {0g- - -0,_1} C V(C) form afinite subset o= |O| of the variables.

Like combinational circuits, synchronous circuits may be finite or infinite; unlike combinational
circuits, synchronous circuits have only finitely many inputs and outputs.

When the graph of a synchronous circuit contains loops, it is straightforward to verify from
the well-founded mux ordering that each loop through the circuit must traverse at least one
register.

From an arbitrary assignment of boolean values for eachttamé to the inputs, corresponding
to the 2adic integersj] = >N it[j]2t for 0 < j < i = |Z|, we may compute, from

t=0,1,2,---o0n, the values of each mux and reg in cirdi& C(?, 2><), S0 as to obtain the

2adic integer®[j] = >N a[j]2 for 0 < j < 0 = |O| which represent the circuit's output
responses.

Theorem 2 A function is computed by k inputs, one output synchronous cir@'ﬂ?(?, 2><)
if and only if the mapping £ ,ZX — ,Z defined by

fFO 012, -+, ik —112") = > o2
teN teN teN
ison-line that is:
Vte NJI[O],---,I[k—1] € »Z:

f[0] - 2%, - - - [k — 1] |- 2*Y) = £(1[0], - - -, 1[k — 1])  (mod 2'*1).

The direct implication simply expresses that the outputs of a synchronous circuit atdifde
may only depend upon the values of its inputs during thetfikick cycles.

The converse implication is proved in Section 8.3 by construcsyrgchronous decision
diagrams(SDD Algorithm 2) which synthesize synchronous circuits. The SDD generalize
the binary decision diagram@DD Algorithm 1), introduced by [A78], [B86] and [B87] for
representing and manipulating finite boolean circuits. While it is by natunefauite process,
aIgoritthDD(f) generates a finite synchronous circuit (in finite time) if and only if function
f may be defined by finite automaton

Proposition 3 (Finite State Machines) An on-line function f is representable by some finite
state machine if and only if the SDD (Algorithm 2) generatdindie synchronous circuit
SDI(f) € ¢(?,2x).

When applied to a finite purely combinational function (no registers, finitely many muxes and
constants), the SDD procedure (Algorithm 2) generates the same circuit as the BDD procedure
(Algorithm 1).
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The SDD procedure providesyarmal formfor synchronous circuits. The technical restriction
imposed on circuits by this normal form are:

1. the control input of each muxm :’?(c, b, a) must be one of the circuit’s primary inputs
ce T,

2. along with the multiplexer and the register, we take the logical negatian our set of
primitive operators; as usual, it is schematized by a small circle.

Condition 1 is used by Akers [A78] and Bryant [B86] for establishing the BDD normal form.
The negation is introduced by Billon [B87] who defines TDG (typed decision graphs) and
shows that TDGs keep all the advantages of BDDs, and further reduce the circuit’s size.

The structure of theuniversal syn- X
chronous circuit for computing an ar-
bitrary on-line function

) = 2 filxo, -+, %)2,

teN

-
-

S
=
[

o
=

<

=
o

E i

wheref, € B"1 — Bfort € N, is the

following infinite binary tree structured
circuit, result of SDD(f); the labels T o
inside the squares represent the initial
value (0 or 1) of the corresponding

register.

i

E E )
o o

-

Condition 1 guarantees that all SDD circuits having a small number of primary inputs are
electrically fast Though the method has not yet been thoroughly tested, it gives almost optimal
results when hand-applied to the synthesis of the simple arithmetic fundtiofs, 1 + x and

x+y (Examples 4.2, 4.3, 4.4). The procedure works equally well on 2xiangx (Example

4.2).

Example 4.1 shows that the BDD procedure is not optimal: it synthesizes 7 muxes for the full
adder, instead of 5 in Example 3.1. Similarly, Example 4.5 shows that 3pbés 8 muxes
and 5 registers, compared to 5 muxes and 1 register in Section 5.1.

The arithmetic functions¢,i(x) = % andr(x) = v/1+8x are on-line. Although they
are amenable to the SDD algorithm, we construct in Section 5 simpler bit-serial circuits for

implementing these arithmetic operations.

Functionf (x) = x = 2 is noton-line sincef (2) # f(2--2) (mod2). Indeed, thisanti-flop
is not computable bgnysynchronous circuit. The relaté@x) = 2 x (x <+ 2) = x— (x+-2)
is an on-line function.

While Peano’s cartesian produc C(?,2x ) is synchronous, neither i nor ;. We leave
it as an interesting design exercise (for the reader) to realizea synchronous circuit.
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Example 4.1 (FullAdder)

FullAdd(a, b, c)
where {o
e

=

n X X Ql

Example 4.2 (Register with initial value 1)
The circuit to the right computes o=1+2x i

{I_ - ?(i707_1)7
2 =
o = 2i,0,-1)}

where

(57
b, b, a),
b, a,b),
c,0,e),
-a,

b, 3, a),

—X,
e, %,X)}

The following 7 muxes result from applying the BDD
procedure (Algorithm 1) to the synthesis of the full-adder.

DT O

1+2i

Example 4.3 (Serial increment) The following circuit results from applying the SDD

procedure to the synthesis of the increment functierx.

{SDD(1+x) = A%V, V),

vV =

2x A%, V, =X) }
Note the relatiorv = —22(0*1 wherev,(x)
is the valuation ok (Definition 3).

o

1+x

Example 4.4 (SDD Adder) Apply the SDD procedure to the synthesis of a serial adder
(see Section 5.1) computinxgr y. The 2 states finite automaton and SRB(y) are:

Xty

In our finite state diagrams, circles represent states (numbered inside); the 2:0 label on a
transition arc means that both inputs are one, and the output zero (0:1 means that both inputs
are 0, and the output is 1).
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Example 4.5 (Times 3) The following circuit, to be compared with the simpler realization
in Example 5.1, results from computing SCHR).

X

=
S

T ]
SOMECEPCSE -0
V-0

3X

—
—

e
—

0 »

Example 4.6 (® 5) The reversible circuiy = C(x) = X @ 4ximplements a convolution
code with generatay(x) = 1+ x?; its inverse by Proposition 7 is= C~(y) = y @ 4x.

x y y ,

5 Arithmetic circuits

We now introduce bit-serial synchronous circuits for computing the arithmetic operations
+,—, %, 1+—12X and+/1+8x. From each of these synchronous circuits, we may derive a fully
parallel combinational implementation through a systematic circuit transformation procedure
(Algorithm 3). Theonlyfinite circuits in this section are the serial + andsince:

Proposition 4 Any synchronous circuit for squaring a 2adic integer contains infinitely many
registers.

5.1 Addition
The basic arithmetic invariant of the full-adder&s:b+c = s+2r. c > r
We solve this system by letting= 2r, and define addition by: b s
s= a+bwhere(s, c) = FullAdd(a, b, 2 x c). a—=
5.2 Subtraction

c r
Binary substraction is computed as- b = a+ (—b), with bt
—b = 1+ -b the opposite ofb. So, define substraction by a | thed

d = a— bwhere(d, c) = FullAdd(a, -b, 1+ 2 x c).

From now on, a triangle with a + inside denotes a serial adder, a serial substracterwith a
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5.3 Serial-Parallel Multiplier

In order to construct a synchronous circuit which multiplies inpat,Z by some fixed 2adic
integerC = 37, N c[K]2%, consider the following elementary identity:

Cx x=(c[0]+2(C+2)) x x=(—c[0]) Ax+(C+2) x 2x.

] O
This provides adirect recursive defi- | x * +
nition for the following infinite mul- = Cx
tiplier:

When C is constant, slices correspondingdm] = 0 simplify to a single register, and all
muxes may be eliminated. Whéh= ,c; - - -ci_l(ci . -q+p_1) is a constant odd rational, the
multiplier becomes finite with+ p slices: the input to the last slice is the output from the i-th
slice. WherC = ¢ - - -ce_l(ce) is a constant integer, the multiplier becomes identical to the
classical two’s complement Lyon’s multiplier [Ly81].

Example 5.1 The following circuits compute respectiveB/x x = 211(0) x X and
x/3 = 71(10) x x:

e oot

5.4 Serial-Serial Multiplier

Let X = 2Xp---X---andy = 2yp---V;--- be the operands to be multiplied in order to
compute serially the produpt= x Xy = 2pp---p;--- The invariant of this synchronous
multiplierM € C(?,2x) is:

M(2', %, y) = 2'(x = 2') x (y =+ 2Y).
From the elementary identity in the 2adic ring,
(x=+ 29 x (y+2) = xye + 2¢(y + 2%1) + 2y (x + 251) + 4(x = 21) x (y + 21,
we derive the recurrence relation,
M(2', %, y) = A(2, x,y) + 2M(2"%, x, y),
whereA is the auxiliary function:

27'A(2, % y) = alt] = xey + 24(y + 21) + 2p(x + 2). (3)
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The final product is obtained @s= M(1,x,y) = ¥, alt]2, where:

M(c,%,y) = A(c,x,y) +2M(2 x ¢, X,Y).

2 n 2 n-1 2 1
-5 - S =
y T \
X »ﬁ |
The resulting cellular vy i v i
structure looks like: A A A
a[n] a[l] a[0] p
In order to design cel, rewrite (3) asA(c, X,y) =
c
(xAyAc)+xA(=2(cny))+yA(—2(cAx)) y
X X y
which is equal t®'a[t], provided thatt = 2'. This
equation translates to the finite circuit to the right, | | X—e a
where triangles denosndgates, and half-circlesr %ﬁ
gates.

This design leads to more economical circuits than the Atrubin (see [K81]) or the Chen and
Willoner constructions [CW79].

5.5 0Odd Inverse

An even 2adic integeln = 2b’ € ,Z hasno inverseb™ € »,Z: indeed2b x b~ is even and
2b x b~ # 1forall b~. So0,Z is not a field, but it comes close: we can definedtd inverse
i = 1/(1- 2b) € »Z of any 2adic integeb € ,Z by the formula:

C_ _ k
keN

Rewriting (4) as(1—2b) = 1, we obtairi = 1+2ib

which translates to the synchronous circuit to the b 1/(1-2b)

right. While it looks finite in the picture, this is

yet another infinite circuit since it contains the serial %

multiplier from the previous section.
5.6 Square Root

An odd 2adic integer has a square root if and only if itis congruent to one modulo 8 (Proposition
8). Such a numbef + 8b € ,Z has exactly two square roots{+y/1+8b) -4 = 1
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and (—v/1+8b)|-4 = 3. We compute the formex/1+8b = 1+ 4r so as to verify:
(1+4r)2 = 1+8r+16r2 = 1+8b. Simplifying this last expression tor 2r2 = b, we see that
the square root + 4r = +1/1+ 8b is given byr = b — 2r? which translates to the following
(infinite) synchronous circuit:

b 1+4r

b L P

6 Applications

This section groups various applications of the 2adic theory to practical circuit design problems.

The following corollary to Theorems 1 and 2 provides an explicit representation of the
functions computed by digital circuits in terms of finite boolean functions. It is stated for
unary k = 1) functions, the generalizatiok (> 1) being straightforward. A combinational
circuit is said to bdiniteif it has finitely many inputs and outputs.

Proposition 5 Function fe »Z — »Z is computable by

¢ afinite combinational circuit if and only if it ibitwise

' eB-B: () x2) =Y f(x)2;

teN teN

e a synchronous circuit if and only if it isn-line

Vte N, e B - B: f(D)x2) =D fi(xo, -+, %)
teN teN

¢ aninfinite combinational circuit if and only if it i€ontinuous

vte N,3Im(t) € N, e B0 5 B (D x2) = 3 fi(xo, -+, Xy ) 2"
teN teN

6.1 Commutation with mux, reg and retiming
The following general commutation properties between mux, reg and arbitrary functions play
an important role in the optimization of electrical delays in digital circuits (see [LS91]). To

simplify notations, we state them for functions having: 2 arguments, the generalization to
arbitraryk > 0 being straightforward.
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Proposition 6 e A continuous function & ,Z? — ,Z commutes with the mux
Va,b,c,d,ec »Z : a,f(b,c),f(d,e)) = f(?a,b,d),?ac,e))
if and only if it is a finite boolean function.
e An on-line function fe ,Z? — ,Z commutes with the register
Va,b € ,Z: 2xf(ab)=f(2xa2xb)
if and only if f(0,0) = 0.

6.2 Parallelization of synchronous circuits

Since anyon-linefunction is alsacontinuousit may be computed by a synchronous circuit as
well as by an infinite combinational circuit. The procedure (Algorithm 3) which translates one
into the other byunfolding time into spacis detailed in Section 8.4. The application of this
procedure to the synthesis of a parallel adder (from the serial adder of Section 5.1) is given
in Example 3.2; the synthesis of a parallel multiplier (from the serial-parallel multiplier in
Section 5.3) is given in Example 6.1. In both cases, the longest path (electrical delay) between
inputs and then-th output is a linear function af;; in both cases, faster and bigger designs
exist for solving the problem within lgarithmicelectrical delay (see [GV82] and [V83]).

Example 6.1 (Parallel Multiplier)

a[3] a[2] a[l] afo]

\ O \ : \ O \ O \
I . . b[0] _ — — -
The circuit to the right, is a M
fragment of the (infinitehigh- ijﬁ LY ijﬁ
school parallel multiplier ob-
tained by unfolding the serial-
parallel multiplier in Section 5.3 | PI2]

through Algorithm 3:

b[1]

S
S
L] /

b[3]

)
§ \<j/\
%
%

6.3 Reversible Synchronous Circuits

Consider one last characterization of synchronaetis4. on-line) functions asorm contrac-
tions we state the definition in the unary (one input/outpat,Z — ,Z) case only:

VX, Y € 2Z : 2l (X) — f(y)] < 2/x—yl. (5)
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Relation (5) is easily seen to be equivalent to each of the previously stated characterizations of
synchronous functions. With this in mind, we make a short incursionciotiing theory

Proposition 7 A synchronous circuit & C(?,2><) computing fe 2Z — ,Z is reversibleif
and only if each of the following equivalent properties hold:

One to One 3C- € C(?,2x),¥x € 2Z : c(c(x) =x;
Norm Preserving VXY € 2Z : ol (x) — F(y)| = 2lx—yI;
Galois Sum 3d e B,D € C(?,2x) : C(x) = x® d @ 2D(x).

Sincey = C(x) has an invers€~ if and only if -y = C(x) has an inverse, we may choose
d = 0in the expressioy = x @ 2G(x). The inversex = C~(y) is given byx = y @ 2D(x),
as illustrated by Examples 4.5 and 4.6, and the schemas below.

X y X y
ED;| ﬁ EDQ &

6.4 Synchronous circuits with output enable

By Theorem 2, we know that there exists no synchronous circuit which computes the output
sequencex + 2 = ,XiXz--- in response to the input = 2XpX1%2--- . In general, no
synchronous circuit is capable of producing strictly less output bits than it consumes inputs.
To get around this problem, experienced designers add a Qgrealv(c) which is used to
enablethe outputs from the synchronous circuit C: it is setmpo= 1 on cycles € N when the
outputs of C are significant; it is setém = 0 on cycles when the outputs of C are irrelevant.

By this convention, we may compute: 2 through the identity circuit with output enable
en = ,0(1) = —2. The same identity circuit with output enabde = ,(10) = —1/3
computes Peano’s first projectima(xoxlxz---xt . ) = XgXo---Xzt---. Indeed, these are
special cases of the following general result:

Theorem 3 Every continuous function &€ ,Z — ,Z is computable by some synchronous
circuit with output enable.

Let us describe how to compose circuits with output enables. Suppose that some synchronous
CircuitA € C(?, 2><) has output enable gh We want to connect the inputs Ao the outputs
7 of some other synchronous circuit with output enabl€.efhe rules are:

1. Replace every registar= 2 x bin A by the enabled register= 2x ’?(eri[, b, a).

2. Set the output enable of the results of Aeto—= enA A ertZ.
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6.5 Synchronous circuits with reset

The arithmetic circuits in Section 5 all have a finite implementation when we interpret each
operation modulo an odd numbket 2p. In particular, we show in [SV93] how to derive from
equation (4) dinite multiplier modulol + 2p, which operates from low order bits to high order
bits. Combined with other techniques presented in [SV93], this modular multiplier is the key
to the record breaking performances of this design.

@

P X

c4

L e S—
4

h

1 + A [
SG+
s2 S
0

pigany

i

Y

il

i

)
%]
a1
v
[7)
N

s4

Consider an arbitrary synchronous network, such as the one drawn above which computes the
fast discrete cosine transform for appropriate coefficights: -,s7,c1,---,c7 € N. How can

we pipe-line a sequence of finite precision integer computations through such a network? By
simply adjoining a (synchronousgsetinput, and replacing each register equation 2 x i

in the network by the register with reset:

r = 2x?reset0,i).

Theorem 4 In order to pipe-line a network € »,Z — ,Z over integer input sequences
igig- - -it- - - € Z whose binary lengths vary in tinvé € N, 3m(n) € N :i; < 2™", we adjoin
the following reset signal to all registers:
rst=1+3Y" 20,
teN
With this reset, network f now computes:

FOY i) = Y- (f (i) - 2™0)2.

teN teN
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Note that all the operators which have so far received an infiniteitiefinsuch as multipli-
cation, becoménite as soon as the numbear= ma>§1€Nm(n) is itself finite; indeed, we can
truncate the whole network at bits since all final results are correct moda@®!. The reset
signals of two circuits get or-ed together, during composition.

7 Conclusions

We expect that the 2adic semantics introduced here for synchronous circuits will have an
impact on current CAD systems, for the following reasons.

7.1 Synchronous Circuits Description

With F. Bourdoncle and G. Berry, we are attempting to map this 2adic theory lat@yaage
called2Z for describing synchronous circuits, as they naturally occur in practical PAM designs
(see [BRV89]), such as the ones reported in [BRV93]. For example, the follRdrsgpurce

code generates the counters from [V91] whose operating speed is, for all practical purposes,
independendf the counter’s length.

SlowCounter[n](incr) = (s[n],ovfl)
where
c[0]=incr;

c[k+1] = c[k] and s[k];
= reg(c[k] xor s[K])

ovil = c[n]
end where;

FastCounter[n](incr) = s[n]
where
k=2; /I this parameter is technology-dependent //
if n<k
then (s,ovfl) = SlowCounter[n](incr);
else (s[0..k-1],en) = SlowCounter[k](incr);
enable en in
(s[k..n-1],cn) = SlowCounter[n-K](-1);
end enable;
ovfl = ¢cn and en;
end if
end where

The schemas resulting from to the execution of2ZBexpressiorrastCountel6] are:
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incr @ @ @ @
- o c]. c]. c], ‘I- CH

7.2 Synchronous Circuits Synthesis

As pointed out earlier, the SDD procedure is an interesting candidate for compiling from finite
state machine descriptions (hopefully produced by higher level systems) into real hardware
(silicon or FPGA). It should be instructive in this respect to compare the resulting SDD
implementation with the direct technique reported by [B92], and others.

7.3 Synchronous Circuits Verification

Finally, we expect some CAD systems to incorporate rules for circuit verification having to do
with thering properties of 2adic algebra, not just the boolean part. The need for such tools
is clear when one consider the problem of proving functionally equivalent, such structurally
different multipliers as the ones from Example 6.1 and Reference [V83]. To prove further that
such parallel multipliers compute the same function as their serial counterparts (Sections 5.3
and 5.4), we seem to need the full 2adic apparatus introduced here; any proof attempt through
independent means has to discover, prove and use the ring laws somewhere along the line.

8 Proofs

This section regroups the mathematical definitions, lemmas and constructions required to
demonstrate the various claims made in this paper.

8.1 2adic integers
Proof of Proposition 2

(ii) Let | € N be the least integer such that < 2'. After computing bits of z by Rule 1,
we reach the state8,(2) S -z_1B5(z+ 2'). Whenz > 0, we havez =+ 2! = 0, so
By(z+2') = 5(0); whenz < 0, we havez + 2' = —1, s0B,(z + 2') = (1).

(i) Conversely,zo---2-1(2) = Sy %2¢ - 27 is an integee € Z.

(iv) Integerz = »zy-- -zl_l(zl) is computed by the following acyclic synchronous circuit,

withl registersr[l-1] = z_1+2xz,r[I-2] = z_1+2xr[l-1],-- -, r[0] = Zp+2xr[1].
The inputs-z = »(z), 0, —1are constant, and the output[§].

Conversely, it follows from Definitions 5,7 of mux and reg that an acyclic synchronous
circuit with | € N registers produces a constant output after at rhagtcles, upon
constant input.
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(vi) Let B = 5 be an odd rational, witk ¢ Z andn € N+ 1. Define theperiod
p= p2(1+ 2n) of the denominatot + 2n to be the order of 2 in the multiplicative group
Z |- (1 + 2n) of the integers moduld + 2n, namely the smallest natural number such
that:

2?=1 (mod1+2n).
Let the quotient bg = (2P — 1) = (1+ 2n), the corresponding remainder being 0.
Computel = zq-+ (2P — 1) the quotient, and® = zq-|- (2P — 1) = 2po- - - pp_1 the
remainder in the integer division afx g by 2° — 1, so as to write:

z P

B=Tevon ' " -1

The binary representation g% = 2(po- - - Pp-1) is purely periodic. It follows that
the binary representation 8fis ultimately periodicbx = by.p for k > i +p.

(vii) Let numberB = ,bg---bi_1(bi - - -bi+p_1) be ultimately periodic and consider the
integersl = 5bg---bi_1 andP = 5b; - - -bjsp_1. NumberB € Z/1+ 2N is the odd
rational: _

2p
P

B=1-

(viii) The periodic rationalB = 2bg---bi_1(bi - - -bi+p_1) is computed by the following
synchronous circuit, with+ p registers:

rli+p—1] = bisp_1+2xr[i], rli+p—2] = bisp_2+2xr[i+p—3],---,r[0] = bo+2xr[1].

The input0 and—1 are constants, and the output|i6].

Conversely, letr[0],---,r[n — 1] be then registers of a finite synchronous circuit
C € C(?,2x). Define thestateof C at timet by the integerS = ¥ g<en k2.
This number is obviously bounded B < 2"; so, there must exist two instants
0 <ty < t; < 2N where we find the circuit in theamestate:§, = §,. With a constant
input, the output must therefore be perioBie= 2hg - - -bi_1(bi - - - bip_1) With i = to
andp=1t; —tg. =

8.2 Combinational circuits

Definition 9 Thetruth tableof a finite boolean function £ B" — B is the natural number
f = ofg---fan_1 € N defined by:

f= 3 fbo,- - bng)220b,
bo,+-,bn—1€B

The BDD [B86] and TDG [B87] algorithms produce a combinational ciréuitC(?) which
computes a finite boolean function presented by its truth table as follows:
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1. Recursively decompogénto a tree of muxes by Shannon’s formula:
f(XO7 cy Xn-2, Xn—l) :?(Xn—laf(X07 ©y Xn-2, 1)7f(X07 ©y Xn-2, 0))

2. Share all equal sub-expressions generated during this decomposition.
Within our framework, this procedure may be expressed as follows.

Algorithm 1 (BDD) Let f € B" — B be any finite boolean function presented by its truth
tablef € N. The finite combinational circuit BDE) € ¢(?) which computes f has:

1. Inputs{i[Q],---,i[n— 1]}.

2. Output o= m[f].

3. A setM(n,f) of muxes where each muxkhe M(p,k) implements the truth table
k € N over p> Oinputs by:

mk = 2Ai[p],mk= 2P|, mk-|-2P]) ifkiseven
mkl] = -m[-K] if kis odd
These equations are simplified when either of the following applies:
c,b,b) = b,
2c,1,0) = c

Proof of Theorem 1

The proof is decomposed in three lemmas:

1. functionf is continuous if and only if it is uniformly continuous (Lemma 2);

2. functionf is uniformly continuous if and only if each output depends upon finitely many
inputs (Lemma 3);

3. each output of functiohdepends upon finitely many inputs if and only i computable
by some combinational circuit (Lemma ).

The well-founded ordering of the variables in a combinational circuit (Definition 6) implies
that each output only depends upofirdte subset of the inputs.

Lemma 1 A functionfe »Z — »Z over the 2adic integers is computed by a combinational
circuit f € ¢(?) if and only if it can be expressed as a sum

F(0n2Y) = 3 fa(il0] - - -ilm(n)])2", (6)
neN neN

where for all n€ N, number nin) € N is an integer andf € B™™*1 _, B is a boolean
function with nfn) + 1 inputs.
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Proof: Through topological sort, we may assuméo.g. that the mux numbering is
compatible with the mux ordering in Definition @n[i] < m[j] impliesi < j. The first mux
outputm[Q] is determined bym[Q] :’?(co, bo, ao) which depends upon (at most) 3 different
inputscy, bo, ap € Z; similarly, M 1] is computed through (at most) two multiplexers involving
(at most) 5 different inputs iff. In generalm[n — 1] may be drawn as &ee of multiplexers
having depth less tham and at mos8n different leaves i. It follows that outpub[n] may be
expressed, for eaahe N, as a boolean functioo{n] = fn(i[0] - - -ifm(n)]) wherem(n) € N

is the highestinput index which appears in the leaves of the mux tree def[nin@Conversely,
we know from the BDD (Algorithm 1) how to realize boolean functfgfrom Expression (6)
by a finite combinational circuin, for eachn € N; the unionf = Un>oCn € C(?) of all such
circuits realizes any functioingiven by an expression of the form (Ga).

Our next result is a special case of Heine’s theorem, which says that a function is continuous
over a topologically compact set (namely the whole,gj if and only if it is uniformly
continuous (see.g.[A75]).

Lemma 2 A functionfe ,Z — »Z is continuousf and only if it isuniformly continuous

vne N,3me N,Vx,y € 2Z 1 o[x—y| < 27 "implies|f(x) — f(y)| <2=™.  (7)

Lemma 3 A function f€ ,Z — ,Z is uniformly continuousover the 2adic integers if and
only if itis computed by some combinational circuit@(l(?).

Proof: Let us first express uniform continuity in the equivalent form:
vne N,3m(n) € N,Vx € oZ : o|f(x) — f(x|-2™M)| < 27" (8)

Clearly (7) implies (8); conversely|f (x+2My) —f(x)| = o|f (x+2My)—f(x |- 2M)+f (x |- 2M)—

f(x)] < max o|f (x+2Ty) — f((x +2My) |- 2)|, so we have,|f(x) — f(x-|]-2M)|} < 2-"

for anyy € »2Z by (7) and the ultra-metric property (i). Expression (8) says that we
can determine the first bits of f(x) - 2" = ,fg---fa_1 = f(x-]-2™)|-2" from the first

m = m(n) bits of the argumenk € »Z. In particular, the first output bify = f(x) |- 2

is given byfo = fo(Xo, - -, Xm(0)_1), for some boolean functiofy € B™® — B defined

by fo(x0, - -, Xmo)-1) = F(Xockem(o)X%2) -2, In general, functiorf € 2Z — »Z is
uniformly continuous if and only if it can be expressed as a sum of the form (6), in which
boolean functior, € B™" — B is defined for each integere N by fo(Xo, "« *, Xmn)—1) =
(F(Zo<kemn) %2*) +2"71) |- 2. We conclude this proof by invoquing Lemmasi.

8.3 Synchronous circuits

To simplify notations, the SDD procedure is presented in the generic case of a one input
(k = 1), one output on-line function. The generalization to an arbitrary number of inputs
k > 0 is direct; Example 2.1 shows applications of the procedure with zero ikput Q);
Examples 4.1,4.3,4.5 have one inpkitf 1) and Example 4.4 has two inputs€ 2).
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The basic step in the SDD construction is to express each on-line fuffidgiigdhe form
f(x) =2(x, by + 2f((x), by + 2f(0(x))

for some booleanisy, b; € B and on-line function&(©, f(1) € ,Z — »,Z. From the expression

Z ft XO: 7Xt 2t
teN
we see thaby = fo(0), by = fo(l) and, forb € B:
f(b) th X0, - 7Xt7 2
teN

Algorithm 2 (SDD) Letf € ,Z — »Z be any on-line function defined by
Z ft 7Xt 2t
teN

with f, € B* — B for t € N. The synchronous circuit SOB) € C(?,2x ) which computes f
is constructed as follows.:

1. IthasinputXx= 2Xp---X - € 2Z.
2. Its output is defined by &2(x, v{1], v[0]).
3. It has an infinite seV(f) = {V[bo---bp_1] : p € N, by, --,b,_1 € B} of variables,
indexed by all possible finite binary strings. Each variable computes the function
vibo---bp1] = Y fup(X0, -+, %, Do, -+, bp-1)2"
teN

which is defined (in the absence of simplification) by the equation:
Vbo---bp-1] = fp_a(bo, -, bp_1) +2x2x,Vbo - - -bp_11],V{bo - - - bp_10]).

4. For each equality v= V' or v = -V between two different variables Vv, replace the
equation defining\by:
V=v or V=-v

The replaced variable’vis chosen to be the largest of v andin the lexicographic
ordering: \[bo - - - bp_1] < V[l - - -by, ] ifp < p'orobg--bp1 < 2bg---by
5. Simplify each mux sub-expression according to the four rules:
?c,b,b) = b,
Ac,~1,0) = ¢,
Ac,-b,-a) = -?c,b,a),
Ac,2xb,2xa) = 2x?c,b,a).
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Let us apply the SDD construction to the simple synchronous circuit defined by the equations:
r=2x38(xr), f(x) = O(x,r).

Register contains the current state, exclusively determined from the putthe combina-
tional state functiors. The outpuf (x) is given by the combinational functia@. One step
of the SDD construction introduces the functiéf® andf() related tdf by:

f(x) =2Ax, fo(1) + 26N (x), fo(0) + 2fO(x)).
Through elementary 2adic transformations, cirétfit for b € B has the expression:
r=2x8(xr), fO(x) = 0®)(x,r).
The circuit defining (?) has thesamestate functionS asf, and output function:
OO (x,r) = O(=b,8(x,r)).
Each variables = f(bB-1) jn the SDD construction is defined by a circuit of the form
r=2x8(xr), fErt-1)(x) = Ob-B-1)(x r),

for some output functio@®(PePe-1), Termination of the SDD procedure follows in this case,
as there are finitely many such combinational functions.

We now state the argument in a formal way.

Definition 10 Let f € C(?,2x ) be a synchronous circuit, with registers
R(f) = {r[0]7 © '7r[n]7 © }
1. ThestateS(f,x, k) € »Z of f attime ke N on input x€ »Z is the 2adic integer:

S(t,x k)= > nfn2",

rinleR(f)

where g[n] € B is the value of register{n] ¢ R(f) at cycle ke N, in the computation
of f(x), starting from thenitial zero stateS(f, x,0) = 0.

2. To each state;s= S(f,x,k) € »Z, we associate thetate functiorf[s] € ,Z — »Z
defined by
Vx,z € 2Z,k e N f[S(f,x K)1(2) = f(x+22¥) + 2%

3. Anon-line function £ ,Z — »Z isfinite when the set

S(f)= U S(f,xk)

xeoZ keN

of stategeachabldrom the initial zero state s finiteiS(f)| = s € N.
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Note that the state function is independent of the specific i(qo,lk) leading to that state,
sinceS(f, x, k) = S(f, ¥, k') impliesf[S(f, x,k)] = f[S(f, %, K)].

Proof of Proposition 31f SDD(f) € €(?, 2x ) is a finite synchronous circuit, thére ,Z — ,Z
is clearly a finite on-line function. To prove the converse, we must show that,ddx large
enough, each variable

vibo - bp_1] = D fup(Xo, -+, Xt bo, - -+, bp_1) 2" )
teN
in the SDD algorithm is equal to sonwlyg - - - by, ], with bg---bl, | < bg---bp_1. We
may ignore for this proof the use of negation in the SDD construction, since it may only reduce
the size of the generated logic. Through state functions, we rewrite (9) as:

V[bO tee bp—l] = Z fp[st](b07 Tty bp—l)2t7 (10)
teN

wheres, = S(f,x,t) € {0,---,s— 1}, s = |S(f)| andfy[s](b) = (f[s](b) + 2°) |- 2. In
order to prove/by - - - b;),_l] = V[bg - - -bp_1], we see from (10) that it is sufficient to establish:

VS( ES(f) f[st](b():"':bp—l) = f[st]( 67"'7 ;)’—l)' (11)

Equation (11) must certainly be satisfied in a non-trivial manner as sqop-a%, since there
are at moss? pairs of state functionsm

8.4 Arithmetic circuits

Proof of Proposition 4: Any circuit for squaring arbitrary 2adic integers must contain
infinitely many registers. Suppose the contrary, namely some c'ﬁb&itc(?, 2><) with n
registers produces outpxtt for each inputx € ,Z. Circuit C may reach at mos2" different
statesS. There are2™! integers in the sdt= {y € N : y = 2™x, x < 2™}, Take inputs to
circuit C from setl, and consider what happens at titrre 2n + 2:

1. all the outputs produced up to this point are zero, sthiesquaring;

2. there are more elementslirthan possible states, hence there must existdifferent
y # y numbers il which bringC into thesamestateSna(y) = Sne2(Y), on inputsy
andy’. Since all subsequent inputs are zero, all subsequent outputs must necessarily be
equal; saC(y) = C(y') yety? # y'2, a contradiction. s

Proposition 8 A non zero 2adic integer’' ke ,Z is a square if and only if it is of the form
b’ = 22/(1+ 8b) with even valuationa(b') = 2v and odd partl + 8b congruent to 1 modulo
8.

Proof: Any non zero 2adic integére ,Z can be written ab = 2Y(1+ 2b;) with valuation
V= vz(b) € N and odd partL + 2b; + 4B,, whereb; € B andB, € ,Z. The squaré& = b?
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of b has the form:S = 22(1+8(by + by)(1 + 2b,)). Conversely, a number of the form
S= 22"(1 + 8b) has the two square roots2'4/1 + 8b, one of which being constructed by the
circuit in Section 5.6.m

8.5 Applications

Algorithm 3 (Parallelization of a Synchronous circuit)

¢ The inputto this algorithmis a synchronous circuiEQ’,’(?, 2><), whose set of variables
V(C) =TI UR U M consists of:

1. InputsZ = {i[0], - - -,i[i — 1]} fori = |Z].

2. Muxes M = {m[0],---,m[n],---}, each defined by a mux equation
m[n] =?(cn, bn, @) for some g, by, a, € V(C).

3. Registersk = {r[0],---,r[n],-- -}, each defined by a reg equatiom}y = 2 x i,
for somej € V(C).

The outputs of C form a finite subset of the variatffes= {o[0], - - -o[o — 1]} C V(C)
and the mux ordering is well-founded.

e The output from this algorithm is an infinite combinational circuit<CC(?). To each
variable ve V(C), we associate an infinite set of variables i C
V(C) ={Mt]: ve Y(C),t € N}.
1. Theinputs of CareZ’ = {i[j][t] : i[j] € Z,t € N.}
2. The muxes of'Gre M’ = {m[j][t] : m[j] € M, t e N.}, each defined by the mux
equation npnj[t] =2(cn[t], bn[t], aa[t]).
3. To each n] € R correspond the equalities:[m][0] = 0 and ][t + 1] = in[t]
fort € N.

The outputs of Care O’ = {0[j][t] : o[j] € O,t € N.} The mux ordering<’ is
(lexicographically) well-founded sinca[¥] <’ vo[to] implies § < t, or t; = t, and
V1 < Vo

Proof of Theorem 3By Proposition 5, we may expretsis

100 = 3 2400 00),

Since a boolean function withinputs may be considered as a function withl inputs which
ignores the last one, we may assume tht) < m(k+ 1) for allk € N.

Forj € N, definegj(xo-- %) = f(Xo - - - Xmx)) Where indexk = k(j) is determined by the
relationm(k) < j < m(k+1).
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Consider the on-line functiogdefined by:

9(x) = > 2gi(x0---x)

jeN

We know from Theorem 2 that g may be computed by some synchronous &guiBy
construction, functiori is thus computed by circu@@y with output enable:

en= Y 2k,
keN

Research Report No. 25 November 1993



30

Jean Vuillemin

References

[A75] Y. Amice. Les nombres p-adiqueBresses Universitaires de Franckd75.

[A78] S. B. Akers. Binary decision diagramdEEE Trans. Computers27:509-516,
1978.

[BRV89] P. Bertin, D.Roncin and J. Vuillemin. Introduction to Programmable Active
Memories.Systolic Array ProcessorPrentice-Hall, 300-309, 1989. Also available
as PRL Research Report, ®igital Equipment Corp., Paris Research Laboratory,
85, Av. Victor Hugo, 92563 Rueil-Malmaison Cedex, France, 1989.

[BRV93] P. Bertin, D.Roncin and J. Vuillemin. Programmable Active Memories: a Per-
formance Assessmentlo appear in Symposium on Integrated Systethsof
Washington, 1993. Also available BRL Research Report 2Bigital Equipment
Corp., Paris Research Laboratory, 85, Av. Victor Hugo. 92563 Rueil-Malmaison
Cedex, France, 1993.

[B92] G. Berry. A Hardware Implementation of Pure Esterdtademy Proceedings in
Engineering Sciences, Indian Academy of Scien8adhana, 17:1:95-130, 1992.
Also available a®RL Research Report 1Bigital Equipment Corp., Paris Research
Laboratory, 85, Av. Victor Hugo. 92563 Rueil-Malmaison Cedex, France, (1989).

[B86] R. E. Bryant. Graph-based Algorithms for Boolean Function ManipulalieBE
Trans. Computers35:8:677—691, 1986.

[B87] J. P. Billon. Perfect Normal Forms for Discrete Functi@JLL Research Repart
87019, 1987.

[CWT79] LN. Chen, R. Willoner. An O(n) parallel multiplier with bit-sequential input and
output. IEEE Trans. Computer£8:10, Oct. 1979.

[GV82] L. Guibas, J. Vuillemin. On fast binary addition in n-MOS technologi®ceed-
ings of IEEE ConferengdNew York ICCC 82, 147-151.

[H13] K. Hensel. Zahlentheorigs6shen, Berlin-Leiptzigl913.

[K77] N. Koblitz. p-adic Numbers, p-adic Analysis and Zeta Functidgysinger-Verlag
1977.

[K81] D.E. Knuth. Seminumerical AlgorithmsThe Art of Computer Programming
Addison Wesley, 2, 1981.

[LS91] C. Leiserson, J. Saxe. Retiming synchronous circuiigorithmica 6:1:5-35,

1991.

November 1993 Digital PRL



On Circuits and Numbers 31

[L76] R. F. Lyon. Two’s complement pipeline multiplierfeEE Trans. Comni24:418—
425, 1976.

[M89] C. Mead. Analog VLSI and Neural System&ddison-Wesleyi989.

[SV93] M. Shand, J. Vuillemin. Fast Implementations of RSA Cryptogradilyth IEEE
Symposium on Computer Arithmetl®©93.

[V83] J. Vuillemin. A very fast multiplication algorithm for VLSI implementation.
INTEGRATION, the VLSI Journdl:1, Mars 1983.

[VI1] J. Vuillemin. Constant Time Arbitrary Length Synchronous Binary Countidsth
IEEE Symposium on Computer Arithme801-309, 1991.

Research Report No. 25 November 1993






PRL Research Reports

The following documents may be ordered by regular mail from:

Librarian — Research Reports
Digital Equipment Corporation
Paris Research Laboratory

85, avenue Victor Hugo

92563 Rueil-Malmaison Cedex
France.

Itis also possible to obtain them by electronic mail. For more information, send a
message whose subject linehiglp to doc-server@prl.dec.com or, from
within Digital, to decprl::doc-server

Research Report 1: Incremental Computation of Planar Maps. Michel Gangnet, Jean-
Claude Hervé, Thierry Pudet, and Jean-Manuel Van Thong. May 1989.

Research Report 2: BigNum: A Portable and Efficient Package for Arbitrary-Precision
Arithmetic. Bernard Serpette, Jean Vuillemin, and Jean-Claude Hervé. May 1989.

Research Report  3: Introduction to Programmable Active Memories. Patrice Bertin, Didier
Roncin, and Jean Vuillemin. June 1989.

Research Report  4: Compiling Pattern Matching by Term Decomposition. Laurence Puel
and Ascander Suarez. January 1990.

Research Report 5: The WAM: A (Real) Tutorial. Hassan Ait-Kaci. January 1990.1

Research Report  6: Binary Periodic Synchronizing Sequences. Marcin Skubiszewski. May
1991.

Research Report 7: The Siphon: Managing Distant Replicated Repositories. Francis J.
Prusker and Edward P. Wobber. May 1991.

Research Report 8: Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
A-Calculi. Jean Gallier. May 1991.

Research Report 9: Constructive Logics. Part Il: Linear Logic and Proof Nets. Jean Gallier.
May 1991.

Research Report 10: Pattern Matching in Order-Sorted Languages. Delia Kesner. May
1991.

TThis report is no longer available from PRL. A revised version has now appeared as a book: “Ha$&oi,A”
Warren's Abstract Machine: A Tutorial Reconstruction. MIT Press, Cambridge, MA (1991).”



Research Report 11: Towards a Meaning of LIFE. Hassan Ait-Kaci and Andreas Podelski.
June 1991 (Revised, October 1992).

Research Report 12: Residuation and Guarded Rules for Constraint Logic Programming.
Gert Smolka. June 1991.

Research Report 13: Functions as Passive Constraints in LIFE. Hassan Ait-Kaciand Andreas
Podelski. June 1991 (Revised, November 1992).

Research Report 14: Automatic Motion Planning for Complex Articulated Bodies. Jéréme
Barraquand. June 1991.

Research Report 15: A Hardware Implementation of Pure Esterel. Gérard Berry. July 1991.

Research Report 16: Contribution a la Résolution Numérique des Equations de Laplace et
de la Chaleur. Jean Vuillemin. February 1992.

Research Report 17: Inferring Graphical Constraints with Rockit. Solange Karsenty, James
A. Landay, and Chris Weikart. March 1992.

Research Report 18: Abstract Interpretation by Dynamic Partitioning. Francois Bourdoncle.
March 1992.

Research Report 19: Measuring System Performance with Reprogrammable Hardware.
Mark Shand. August 1992.

Research Report 20: A Feature Constraint System for Logic Programming with Entailment.
Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka. November 1992.

Research Report 21: The Genericity Theorem and the Notion of Parametricity in the Poly-
morphic A-calculus. Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev. December
1992.

Research Report 22: Sémantiques des langages impératifs d’ordre supérieur et interprétation
abstraite. Francgois Bourdoncle. January 1993.

Research Report 23: Dessin a main levée et courbes de Bézier : comparaison des al-
gorithmes de subdivision, modélisation des épaisseurs variables. Thierry Pudet. January
1993.

Research Report 24: Programmable Active Memories: a Performance Assessment. Patrice
Bertin, Didier Roncin, and Jean Vuillemin. March 1993.

Research Report 25: On Circuits and Numbers. Jean Vuillemin. November 1993.

Research Report 26: Numerical Valuation of High Dimensional Multivariate European Secu-
rities. Jérdbme Barraquand. March 1993.

Research Report 27: A Database Interface for Complex Objects. Marcel Holsheimer, Rolf A.
de By, and Hassan Ait-Kaci. March 1993.



Research Report 28: Feature Automata and Sets of Feature Trees. Joachim Niehren and
Andreas Podelski. March 1993.

Research Report 29: Real Time Fitting of Pressure Brushstrokes. Thierry Pudet. March
1993.

Research Report 30: Rollit: An Application Builder. Solange Karsenty and Chris Weikart.
April 1993.

Research Report 31: Label-Selective A-Calculus. Hassan Ait-Kaci and Jacques Garrigue.
May 1993.

Research Report 32: Order-Sorted Feature Theory Unification. Hassan Ait-Kaci, Andreas
Podelski, and Seth Copen Goldstein. May 1993.

Research Report 33: Path Planning through Variational Dynamic Programming. Jéréme
Barraquand and Pierre Ferbach. September 1993.

Research Report 34: A penalty function method for constrained motion planning. Pierre
Ferbach and Jéréme Barraquand. September 1993.

Research Report 35: The Typed Polymorphic Label-Selective A-Calculus. Jacques Garrigue
and Hassan Ait-Kaci. October 1993.



dliloli[tlall

PARIS RESEARCH LABORATORY

85, Avenue Victor Hugo
92563 RUEIL MALMAISON CEDEX
FRANCE

UIW3||INA uear 9 Z

SJagquinN pue sINdID uQ



