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Abstract

We describe a formal design for a logical query language ugi@rms as data structures to
interact effectively and efficiently with a relational database. The structura@fms provides

an adequate representation for so-called complex objects. They generalize conventional terms
used in logic programming: they are typed attributed structures, ordered thanks to a subtype
ordering. Unification ofy-terms is an effective means for integrating multiple inheritance and
partial information into a deduction process. We define a compact database representation for
-terms, representing part of the subtyping relation in the database as well. We describe a
retrieval algorithm based on an abstract interpretation of/therm unification process and
prove its formal correctness. This algorithm is efficient in that it incrementally retrieves only
additional facts that are actually needed by a query, and never retrieves the same fact twice.

Résumé

Nous dcrivons la conception formelle d’'un langage de etga’logiques utilisant leg-
termes comme structure de de®s pour interagir effectivement and efficacement avec une
base de doregs relationnelle. La structure d¢stermes fournit une repsentation agtjuate
pour les objets soi-disant complexes. lisngralisent les termes conventionnels udiisn
programmation logique: ce sont des structureség®t attribeés, ordoneés gatea un ordre

de sous-types. L'unification destermes est un moyen effectif d'egrer keritage multiple

et information partielle dans un processus dduttion. Nous efinissons une repsentation
compacte en base de d@as pour leg)-termes, representant aussi une partie de I'ordre sur
les types dans la base de dees. Nous écrivons un algorithme d’extraction de daas bas”

sur l'interp@tation abstraite de I'unification dgstermes et prouvons sa correction formelle.
Cet algorithme est efficace en ce sens qu'il extraie d@erfapnceémentale seuls les faits
suppEmentaires qui soneéssaires une reqafe, et jamais deux fois leenie fait.
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A Database Interface for Complex Objects 1

The difficulty lay in the form and economy of it, so to
dispose such a multitude of materials as not to make
a confused heap of incoherent parts but one consistent
whole.

Ertraim CHameers, Cyclopaedia

1 Introduction

1.1 Motivation and contribution

The combination of logic programming languages and database systems has been a research
theme for the last decade in both logic programming and database cdtiesiufihe interest

from a logic programming perspective came when the need was felt for manipulating large
sets of facts. Usually Prolog was coupled with a relational database. In [9giGdrprovide

an excellent overview of work in this area. In the database community, it was felt that the logic
programming paradigm offers interesting opportunities as a database query language. This
resulted in logical query languages liK® L [14] and NAIL! [13].

So-called complex objects have recently been studied for use in database systems [7, 8]. Much
of what has been proposed in those studies is derived from earlier work extending first-order
terms toy-terms [1]. The latter notion has had a more direct application in programming
language design [4, 2, 6] than in database systems. Still, the functionality and naturalness
of deductive queries ovef-terms is a strong motivation for providing a logic programming
language using-terms with an effective means to access large volumes of data and knowledge
stored in a database (see [5] for a convincing example).

We propose a formal design for an effective coupling of such a language with a relational
database. For the purpose of our presentation and experimentation, we use the specific
language LIFE [2], but this implies no loss of generality. Indeed, although we formulate it
usingi-terms, our design is directly applicable to any logical query language with complex
objects represented as Prolog terms or as data struétlagsg, 8], since all these models turn

out to be special cases ¢tterms. We present the theoretical view of our proposed database
support of that language and discuss the results. Our theoretical design was put into practice
as the basis of an experimental implementation [12].

Although our experiment may be categorized as providing database support to a logic
programming language, it goes beyond previous research in that it considers a language with
types and attributed terms, which can be arbitrarily nested, and provide multiple inheritance.
As will be shown, due to the specific characteristics of LIFE'’s type system, our experiment
has yielded a form of database support that not only allows querying for facts, but also
posing abstract queries, that is, queries that ask for general knowledge as opposed to factual
knowledge.
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2 Marcel Holsheimer, Rolf A. de By, and Hassan Ait-Kaci

1.2 Organization of paper

Before we delve into technicalities, here is a brief introductory overview of the paper. Our
system is organized as sketched in Figure 1 and consists of three subsystems; namely, the

LIFE system .
query relational
inter database
face data

Figure 1. Architecture of the system.

LIFE system, an interface written in LIFE, and an external relational database. The coupled
system is intended to represent the facts of LIFE in the database and to retrieve these facts,
when needed by the LIFE system.

Hence, the functionality of the interface is twofold. Firstly, it provides a compact database
representation for logical facts. As we shall see in Section 2, these facts are ordered by a
subsumption relation induced by a subtype ordering on functors. In Section 3, we propose to
group facts into what we cafjualified segmentsuch that the subtype relationships involving
symbols in these facts are implicitly represented. We also compress segments before storage
in the database.

Secondly, for the retrieval of facts, we useight coupling[15, 16], where facts are loaded
when needed by the LIFE system. In Section 4, we describe an abstraction of the unification
process, where qualified segments in the database are approximated by a set of generalizations,
calledqualifier. If facts from the database are requested, we use the qualifier and the current
goal, a term, to constructandidate a selection condition on the segment, retrieving all facts
that unify with this goal. In Section 5, we show that not all subtype relationships need be
stored in the LIFE-system, since some are implicitly represented in the database. In Section 6,
we optimize the retrieval process, by storing loaded facts in the internal database and retrieving
each fact only once. We conclude with Section 7, with a recapitulation of our work and a brief
overview of the perspectives it offers. No particular background is required to understand
the technical contents of this paper other than elementary discrete algebra, shreds of logic
programming, and basic notions of relational and deductive databases.

2 The facts of LIFE

LIFE (Logic, Inheritance, Functions, Equatioris a logic programming language extending

Prolog terms as described in [2, 4, 6]. The user can specify inclusion relationships between
functor symbols, thus enabling the direct representation and use of taxonomic information.
Thus, functors are called types and no longer differentiated from values. For example, we can
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A Database Interface for Complex Objects 3

state thabpplesis a subtype ofood, so that a factikes(mary, food), stating that mary likes
food, implies that mary likes apples as well.

To make use of a subtyping relation in a logic programming language, the unification operation
must be redefined. The subtyping relation generates a partial order on the set of all terms called
term subsumptianUnification of two terms computes thejreatest lower boun¢iGLB) with

respect to term subsumption. Failure of unification is denoted by a special term: the symbol
L (“bottom™).

For the purpose of our presentation, it will suffice to assume that a LIFE prdgamsists of

the specification of the subtype ordering, and logical rules in the form of Horn-clauses. The
essential point to keep in mind is that the literals making up a program’s clausgstenas

rather than conventional Prolog terms. Hence, as is the case in deductive database languages,
the Horn clauses are separated intogkiensionatlatabase (EDB)+-¢., the facts containing

no variables—and thiatensionaldatabase (IDB)—the rest.

Our idea is to represent the (presumably numerous) facts of a LIFE program’s EDB as flat
relations to store in an external relational database. Then, designing an interface amounts to
defining an intermediate representation allowing to translate from facts of LEzR/(-terms)

to database tuples and back. To be correct, a database retrieval algorithm responding to a LIFE
guery through this interface must be sound.( retrieveno irrelevanttuples) and complete

(i.e., retrieveall relevanttuples). Hence, the interface design and the correctness of retrieval
depend in some essential way on the formalizatiott-dérms. This section is meant to give

all the preliminary formalities that we use, introducing basic and disjuneiiterms, type
signatures, subsumption, and related notions. From this point on, whenever we say “term” we
shall mean (possibly disjunctiveyterm.™

2.1 Terms

A basicterm is built out oftype symbolsndattribute labels Let £ be the set of all attribute
labels, andS the set of all type symbols, including (“top” ) and L (“bottom™).

Definition 1 (Basic term) Abasicternpisanexpression oftheforrﬁl5:> P1,--,In=> pn),
n > 0, where:

e sc S is theroot symbolof p, denoted byoot(p).
e |1...,1n € L are pairwise distincattribute labels
e P1,...,Pnare terms: thesubtermsf p.

If n =0, pisis said to batomic and simply written as. Otherwisep is said to battributed
The attribute-subterm list is unordered. A term with at least one occurrence of the symbol

More precisely, we shall meaptermswithout variablessince only EDB facts will be considered.
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4 Marcel Holsheimer, Rolf A. de By, and Hassan Ait-Kaci

is considered to be equal to the term We call¥ be the set of all basic terms that can be
constructed from type symbols &and labels inC.

Example 2.1 An example of a basic term is:

likes(who= mary,
born = datg(day= 24,
month=- january,
year=> 1965),
what=> apples.

The root symbol isikes it has three subterms with attribute labetso, bornandwhat The
type symbols aréikes mary, date 24, january, 1965 andapples The attribute labels are
who, born, day, month year, andwhat

We shall use a more convenient mathematical characterization of a basic term that is formally
equivalent to their syntactic representation of Definition 1. It sees a term as a mapping from a
set ofoccurrencegi.e., strings of labels in the free monoitf) to S, assigning type symbols

to each of these occurrences.

Definition 2 (Occurrence) Anoccurrences a string formed by concatenating labels, sepa-
rated by ‘.. The root label is denoted by the empty stiéndgrhe set of all occurrence8* is
inductively defined ag* := ¢ | L.L*, where ac = ¢.a = a for any occurrence a.

In what follows, every time we refer to terp) we mean the generic one in Definition 1.

Definition 3 (Occurrence domain) The set of occurrences actually appearing in aterm p is
theoccurrence domaid,: the smallest subset df* for which:

e ccApand

o lj.ac Apiffl;isthe label in p denoting the subterm pnd ac Ap,.

Definition 4 (Type function) To each term p there correspondsype functiomf, : L — S
which assigns a type symbol to each occurrence:

T ifa g Ap
¥p(a) = ¢ root(p) ifa=c¢
(@) ifa=I.a

March 1993 Digital PRL



A Database Interface for Complex Objects 5

Hence, a basic term is formally characterized as apair{Ap, ¥p).

Example 2.2 Referring to the term in Example 2.1, the domaifdswha, born, born.day,
born.month born.year, what. The type function is defined asi(¢) = likes, ¢(who) =
mary, 1»(born) = date ¢ (born.day) = 24, etc. Note that the type function returns the
T-symbol for any occurrence notin the occurrence domain, for exam(pdaywhat) =T.

2.2 A short terminological digression

For the sake of self-containment and to settle some terminology, we indulge in a brief
intermezzalefining a few general basic order-theoretic notions that we shall use in the rest of
this paper. All definitions in this short digression will refer to a partially-ordered seb®st

(S <)

Recall that a chain d3is a totally ordered subset 8f Let us also recall the notion obchain
a dual of the more familiar notion of chain:

Definition 5 (Cochain) A cochainC of S is a subset of S where all distinct elements are
mutually incomparable. Formally, @ Cn < = 1¢.2

The set of all cochains @is denote asodS). The setcod S) is itself partially ordered as
follows.

Definition 6 (Cochain ordering) ¥Cy,C2 € codS), C1 C Cp iff Vxg € Cq, 3% € Co:
X1 < Xo.

Note that the empty sdt is a cochain. In particular, the empty set is thastelement in
codS); thatis,yC C S: § C C.

Note also that singletons of elementsSxire cochains too. In fact, the cochain ordering
coincides with< on singletons; namelyx,x' € S: {x} C {x'} iff x < x'. For this reason,
an elemenk of S may be identified with the singletofx}. Hence, the cochain orderirg
is a “natural” extension of the base orderidgand so we shall use only one symb{e_i)
indifferently on base elements or cochainssavithout risk of confusion.

It will be convenient to refer, for a given element®fto specific subsets of its upper bounds
or lower bounds. The following definitions introduce a few that we will use. In what follows,
x andx’ denote elements of such a Set

Definition 7 (Ancestors) The set of ancestors of x is the aat(x) of elements greater than,
or equal to x:

2Wherelx = {{x, x}|x € X} is the identity relation oiX.
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6 Marcel Holsheimer, Rolf A. de By, and Hassan Ait-Kaci

anc(x) = {¥ € S| x< x'}.

Definition 8 (Descendants) The set of descendants of x is thedee( x) of elements smaller
than, or equal to x:

dedx) = {X € S| X < x}

GivenS C S let[S] (resp.,|S|) denote the set of all its maximal (resp., minimal) eleménts.
We defineparentsand children as well asmaximal common lower boundsd minimal
common upper boundm terms of ancestors and descendants as follows.

Definition 9 (Parents and children) Theparentsof x are its immediate upper bounds; i.e.,
the minimal ancestors, excluding x itself:

par(x) = |anc(x) \ {x}
Dually, thechildrenof x are its immediate lower bounds; i.e.,
chi(x) = [des(x) \ {x}]

Definition 10 (Maximal common lower bounds) The set ofmaximal common lower bounds
of x and X is denoted as K X/, and defined as:

XNX = [des(x) n des(x’)] :

Definition 11 (Minimal common upper bounds) Dually, the set ominimal common upper
boundsof s and &is denoted xJ X', and defined as:

XUX = [anc(x) n anc(x’)J :

Note that all the sets introduced by the four previous definitions are cochains.

Finally, given two functions andf’ from from a setA to a posetS, <), we say thaf < f’
wheneveiva € A: f(a) < f'(a).

This concludes our terminological digression. We now return to our topical considerations.

3To be well-defined, this requires th@not contain infinitely ascending (resp., descending) chain. So we shall
implicitly assume this. In fact, all the posets on which we will use these operations will be finite.
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A Database Interface for Complex Objects 7

2.3 Type signature

The set of type symbolS comes with a subtype ordering The setS and the ordering form
atype signaturea posett’ = (S, <). We may assume the type signature to be fixed.

Definition 12 (Type signature) Atype signatureX is a posetS, <), where:

¢ S isthe set of type symbols, containitog symbolT andbottom symbolL .

e < C 8 x Sisa partial order—thesubtyping—onS such thatv'se § : L <s< T.

Example 2.3 In all examples in this paper, we shall use a type signature consisting of a
setS = {T, L, studentemp mary, likes food, apples sweetscookies chocolaté¢ and
subtyping relation the least ordering such thpples< food, sweets< food, cookies<
sweetsand chocolate< sweets expressing that apples and sweets are food, and cookies
and chocolate are sweets; and such thaty < studentandmary < emp expressing that
mary is both a student and an employee. This type signature will be referredtarsd is
depicted in Figure 2.

T
]
student emp likes food
mary apples sweets
cookies chocolate
€

Figure 2. The type signaturé’.

2.4 Term subsumption

The partial ordek on type symbols extends to the set of all terms as follows:

Definition 13 (Basic term subsumption) Thebasic term subsumptiarlation < on the set
of all basic terma? is defined as gl p' iff p = L or ¢p < .

Research Report No. 27 March 1993



8 Marcel Holsheimer, Rolf A. de By, and Hassan Ait-Kaci

Example 2.4 The term:
p1 = like who= mary,what=- appleg

is subsumed by the term:
p2 = likewho = mary, what=> food)

sinceapples< food Termp; is also subsumed by the term:
ps = like who= mary)

since the type symbol i3 for any occurrence that is not in the occurrence domiain;
¥p,(What) = apples< ¢p,(what) = T. Thus any basic term is subsumed byand
subsumes..

Note sinceS is a subset oF, < coincides with< onit. Therefored can be seen as a “natural”
extension of the subtype orderirgand therefore we shall again use only one syn(tzo)
indifferently on type symbols or basic terms without risk of confusion.

As expected, we now extend terms to cochains of terms.
Definition 14 (Disjunctive terms) A disjunctive terms a cochain of basic terms.

Term subsumption is naturally extended to disjunctive terms as the cochain ordering of basic
term subsumption. Hence, by “term” we now shall mean basic or possibly disjunctive term.

As usual, a singleton disjunctive terfp} is identified with the basic terrp. In particular,
the singleton sef T} is identified with the basic termr. This is natural since they are both
greatest elements for term subsumption. Similafly} is identified with the basic term.
Again, this is natural since they are both least elements. However, the emfitis s¢$o the
least element ofod ¥ ), and hence we can identify all three: = {1} = 0.

The following is a particular case of a more general result in [1].

Theorem 1 The posetcod¥), <) is a lattice?

“Recall that a Itice L is a poset where a unique greatest lower bound and a unique least upper bound both exist
in L for any finite non-empty subset bf

March 1993 Digital PRL



A Database Interface for Complex Objects 9

Proof: Greatest lower bounds are constructed as follows. For basic {eandp’, the (possibly
disjunctive) termp A p’ is the set of maximal elements of the set of all basic tarms(A,, %,) such
that:

o Ay=A U Ay,
o Yac Ay :9u(a) € ¥p(a) Nyy(a).
For (possibly singleton) disjunctive term@s C', itis given byCA C' = [{pAp' |pe C,p € C'}].

Dually, least upper bounds (LUB) are constructed as follows. For basic feamdp’, the (possibly
disjunctive) ternp v p' is the set of minimal elements of the set of all basic temms({A, 1) such
that:

o Ay=ApN Ay,
o Yac Ay :yu(a) € ¥p(a) Uy (a).
For (possibly singleton) disjunctive terfisC', itis givenbyCv C' = |{pvp |p€ C,p' € C'}].
It is easy to verify that these operations are lattice operations with respect to term subsumpjiion.

Note that if the type signaturB is a lattice, then so i, and moreover, it is then a sublattice
of cod ¥).

Example 2.5 The GLB of termsp; andp, in Example 2.4 ig;, sincepy < p2. The
GLB of likewho = studen) andlikes(\who => emp) is likewho= mary). Their LUB
is Iikes(who:> T). The GLB of atomic term$ood andstudents 1 ; i.e., we cannot unify
these.

3 Representationin a database
We now discuss the storage of facts in an external relational database.

3.1 Qualified segments

In a relational database, identically formed objects are grouped together in a relation. We must
define a similar grouping on facts that we store in the external database. We must also find a
way to represent subtype information relevant to type symbols in these facts in the database
as well as there is no evident way to express subsumption in relational algebra. Therefore, if
a fact is stored in a database relation, it should imply that particular subtype relationships are
defined for symbols in this fact. Thus we should group facts with similar subtype relationships
for its symbols, for example symbols with the same parents or children or both. However,
there is a trade-off: the more subtype information is implicitly represented, the more database
relations are needed to store all facts.

We choose to group facts with teame set of parenter all symbols at each given occurrence.
Itturns out that this is a natural choice since sharing parents is the mostimmediate commonality,
akin to values being of the same type. These sets are cplidied segments

Research Report No. 27 March 1993



10 Marcel Holsheimer, Rolf A. de By, and Hassan Ait-Kaci

Definition 15 (Qualified segment) A qualified segment Q is a set of non-bottom facts such
that all facts have the same set of parents for the type symbol at each occurrence:

Vi, f' € Q,Vae A : par(¢(a)) = par(¢r(a))

With some easy thinking, one can convince oneself that all fac@ must necessarily be
identically formed. Indeed, the occurrence domain is the same for all facts in a qualified
segment, since parents are the same for symbols at each occurrence. For a qualified segment
Q, the common occurrence domain of all facts is denaigd

For a progranP, we can use multiple qualified segments to store part of the fa®srirthe
database. We store each qualified segment in a separate database relation, and in the interface
we store a description of the contents of each segment, callepigiiéer. A qualifier is a set

of terms, that are generalizations of all facts in the qualified segment:

Definition 16 (Qualifier) To a qualified segment Q correspondgalifier, denotedqua(Q),
which is the LUB of all facts in Q.

Example 3.1 Let us assume the two facts of LIFkes(who = mary,what= sweet$
andlikes(who:> mary, what= appIeQ. Since both facts have the same parents for all type
symbols, we can represent them in a qualified segi@ent {Iikes(who:> mary, what =
sweets, likefwho = mary,what=- appleg}. The qualifier isqua(Q) = likewho =
mary, what= food).

An important remark is that the qualifier of a qualified segment is alwstyie generalizer of

all facts of the segment. This is a consequence of having grouped facts in the same qualified
segment if and only if the type symbols at all their occurrences shared the same parents.
And thus, as we will see in Section 5, a qualifier and the terms in the corresponding segment,
implicitly represent subtype relationships.

3.2 Database relations

A relational database consists of database relations:

Definition 17 (Database relation) A database relatioRy is a set{r1,ro, ..., m}, (m > 0)
of n-ary tuples(n > 1) and is identified by itselation name Rand a set ofttribute names

T ={t1,ty,...,ta}. For a particular tuple r, the value of attribute t is denoted as r

We store a qualified segmeQtin database relatioRr by representing each fact@as a tuple
in Rr. We represent fadtas a tuple by flatteningthe fact;i.e., we define a bijective function

SMore precisely, this is true if the qualified segment is not reduced to only one fact. But then, as we shall see,
there is no relation to store in the database.
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A Database Interface for Complex Objects 11

v—calledattribute functior—that maps occurrences in the occurrence dordgito attribute
names inT. Then, for each occurreneec Ay, we store type symbajs (@) in attributev(a)
in tupler.

This representation is sound, but it can be compressed by recognizing that for particular
occurrences in the occurrence domain, symbols are the same in all facts in the segment. For
example, the symbol at th@ho occurrence in Example 3.1 maryfor all facts inQ. This
(possibly empty) set of occurrences is fhxed symbol set

Definition 18 (Fixed symbol set) For qualified segment Q we define tfieed symbol set
DQ C AQ as:

Do = {ac Aq| ¥f,f' € Q: ¢r(a) = ¢r(a)}

Symbols at occurrences in the fixed occurrencebggaire the same for all facts in qualified
segmen, hence, we do not have to store them in the database. We only store symbols at
occurrences not iBg and use any basic term in the qualifier to represent the missing symbols.
Indeed, for each basic tergin the qualifier, the type symbﬁﬂq(a) for each occurrencain

the fixed symbol seDq is their LUB and thus the same as the symbol at this occurrence for
all facts inQ.

The correspondence between qualified segnmi@eanhd database relatidRr is defined by a
data definition

Definition 19 (Data definition) Given segment Q, the corresponding database relatiois R
defined by alata definitiorgiven by the quadruplggua(Q), R, v, Dg).

Data definitions are stored in the interface, thus enabling the representation of facts in segment
Qas tuplesirRr. With each fact = (As, ¢r) € Q corresponds a unique tuple Ry, defined
by:

Ve T rt= (v i(t))

Conversely, each database tupte Ry represents a fatt= (Aq, ¥r), where the type function
¢ is defined as:

T if a¢ Ag
¢i(a) = { ¥q(a) ifae Dg

rv(a) otherwise
whereq € qua(Q).
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12 Marcel Holsheimer, Rolf A. de By, and Hassan Ait-Kaci

Example 3.2 The qualifier for qualified segme from Example 2.3 is{likes(who =
mary, what=> food)}, and the fixed symbol set Bq = {e,wha}. If we represenQ as a
database relatioRy, we only need to store the symbols at occurrenbat so we need a
relation with a single column, say = {foodnamé.

We define the attribute functionas: v(what) = foodname The representation @ as a
database relation Rr = {(sweet}, (apples}.

Note, for the sake of consistency, that in the already mentioned degenerate case of a qualified
segment reduced to only one fact, all the information goes into the fixed address set and the
qualifier, leaving nothing to be stored in the external database.

4 Retrieval algorithm

For the retrieval of facts from the database, we use a tight coupling, where we load facts from
the database whenever needed by the inference engine. For a particulgrwedbad the
subse[g] from segmen, containing all facts i that unify withg:

Qal ={fcQlfAg# L}

Qualified segmen® is stored in the database, so we do not know its actual contents, hence
we cannot comput&[g] by simply unifying all facts inQ with the goal. So, we need
another technique to compu@g], independent of the contents @ We use ambstract
interpretation[11] of the inference process, where we use qualifiers instead of facts. In this
abstraction, unification of facts iQ with goalg is an operation on the qualifier and the goal,
resulting in a term—called theandidate—which approximates the subset @fof all facts
unifiable withg. We describe the construction of candidates. First, we definertifiable set

U(s), the set of all type symbols that unify with symispl.e., symbols for which the maximal
common subtype witkis non-bottom:

Definition 20 (Unifiable set) For a type symbol s i, we define thenifiable seU(s) as:
U(s)={deS|snsd #{L}}

A candidate is defined such that any fact in the qualified segment subsumed by a basic term in
the candidate, unifies with gogi

Definition 21 (Candidate) Given a goal g, a basic term, theandidateC is the set of all
maximal terms &= (Agq, 9) that can be constructed from a term q in the qualiﬁeua(Q)
that is unifiable with g, as followsia € Aq :
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A Database Interface for Complex Objects 13

= T ifac Dg,oryq(a) < ¢q(a),
€ chi(ypq(a)) NU(yg(a)) otherwise.

(@) {

Example 4.1 Assume the goal; = Iikes(what:> cookie$ and qualified segmer® as
in Example 3.2. By Definition 21, we construct a candidate= T(Who = T,what=
sweety. For goalg, = likewho = studentfwhat = food), we construct candidate
C, = T(who= T,what= T). For goalgs = like§who= peterwhat=- appleg, we
construct candidat€s; = §.

Thus a candidate contains terms, identically formed to the facts in the segment, and consisting
of T-symbols and immediate subtypes of symbols in the qualifeer;symbols that appear in

facts inQ. If candidateC is empty, the symbols in the terms in the qualifier and the goal do
not unify, then the qualified segment does not contain any facts that unify with the goal. We
have to prove that any fattin qualified segmen® that unifies with goad), is subsumed by a

basic terncin candidateC.

Theorem 2 A fact f in qualified segment Q unifies with goal g iff it is subsumed by a basic
term c in candidate C; namely,

fAg#FL & f<c

Proof: By Definition 13 and Theorem 1, we can rewrite the above to a condition on type symbols,
Vaec L":

Pr(a) Neg(a) # {1} & ¥r(a) < ¢c(a)

We first prove that if the maximal common subtype of two symk(s) andyy(a) is non-bottom,
then we can construct a temsuch thatjs(a) is smaller than the corresponding symige(a) in c.

Symbolsys(a) andg(a) unify, so¢(a) is in the unifiable set(vy4(a)). Symboliyg(a) is larger
than+(a), and thus unifies withpg(a) as well: yg(a) € U(yq4(a)). So, by definitiongc(a) is not
the symbolL. Assume that occurrenesds in the fixed occurrence sB. By definitionsc(a) = T
and thus symbays(a) is smaller than the symbadil.(a) in c. Alternatively, if occurrence is not in
the fixed symbol seDq, symbolys(a) in factf is a child ofyq(a). We also know thatjs(a) is in
U(v¥gy(a)), thus we can construct a termwhereyc(a) = 3¢(a). So we can construct a terearger
than any facf that unifies with goat).

We also prove that if fadt in Q doesnot unify with goalg, we cannot construct a teroarger than

f. Factf and termg do not unify, so for at least one occurreregghe maximal common subtype of
Pi(a) andyg(a) is the bottom symbol. We prove that, for this occurrence, we cannot construct a
candidatee with ¢ (a) < v¥c(a).

The symbokpy(a) is a supertype ofs(a). If g andg do not unify, the candidate is empty. Thus, it
does not subsume any fact. dfandg unify thenyq(a) is in U(yg(a)), for all occurrencenin Ag.
Symbolig(a) cannot be a supertype @f(a), otherwiseayq(a) would be a supertype afs(a) as
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14 Marcel Holsheimer, Rolf A. de By, and Hassan Ait-Kaci

well, and their maximal common subtype wouldfda). Moreover, occurrenca cannot be in the
fixed symbol seDq, otherwisey;(a) = 1q(a), contradicting thaipy(a) is not in the unifiable set
U(v¥g(a)). Hence, the symbaj.(a) incis notT.

If we can construct a termlarger tharf, symboli¢(a) would be a child ofq(a) and a member of
the unifiable setl(¢(a)). Since occurrencais not in the fixed occurrence se#,(a) is also a child
of ¥4(a). So the only child ofpq(a), larger thangs(a), is ¥ (a) itself. Howeverys(a) is not in the
unifiable sel(yg4(a)), So we cannot construct a teaywhereyc(a) € chi(yq(a)) N U(yy(a)), that
is larger than fact. ]

Corollary 1 If fact f is subsumed by a basic term c in candidate C, all symbols in ¢ are either
the top symbol, or equal to the corresponding symbol in fact f.

Proof: Follows directly from the above proof, singg(a) is eitherT, or a child of the symbop,(a)
in the qualifier. For these symbols, occurreads not in the fixed occurrence set, thus symidla)
in termf is also a child ofiy4(a). |

The corollary is important, since it states that we can com@igg by a selection with the
candidates, where is the wild card argument and non-top symbols are selection arguments.
With a candidateC for data definitionD = (F,Rr, Vv, Dg), there corresponds a selection
conditionT[C] that is true for all elements of the 98fg] and false for any other element Qf

T[C] = (T[ca]) or ... or (T[cp])

whereC = {cy,...,Cp}. For each terng; we construct a selection condition:

Tc] = (v(ag) = 9c(a1))

and ...
and (Vv(an) = ¢o(an))

whereay, .. ., ay are the occurrences with non-top symbols in teymWe select the tuples
that represent facts iQ[g] with a simple SQL-query:

select tg,...,t,
from R
where T[C]

The retrieved tuples are then translated to facts, as stated in Section 3.2.

Example 4.2 For the candidat€; of Example 4.1, we construct a selection condition
T[C1] = (W(what) = 4, (what)) = (foodname= sweet$. The query is:
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select foodname
from R
where foodname= sweets’

and returns the tupksweets, which is transformed to the fattkes{who=- mary, what=-
sweets.

5 Reduced type signature

For the construction of candidates, we use type signa&urBart of the subtype relationships
are implicitly represented in the database, that is,efach fact in a qualified segment, the
parents of all symbols at occurrences not in the fixed symb@getre stored in the qualifier.

We do not store these ‘implicit’ subtype relationships in the LIFE system, but add them when
facts are loaded.

The remaining subtype relationships have to be stored in the LIFE system, since we have to
be able to reconstruct the entire type signature. However, part of the subtype relationships
implicitly stored in the database are needed to construct candidates. Thus we should either
retrieve these relationships at run-time from the database, or simply duplicate the necessary
relationships in the LIFE system, or use a combination of both techniques.

We will adopt the second strategy, which is simple, and probably non-optimal: we store
sufficient subtype relationships in the LIFE system to compute candidates for any goal and
qualifier in progranmP. We construct aeduced type signatur®’ = (S’, <y, where§' C §

and<’ C <.

Definition 22 (Reduced type signature) Thereduced type signatutB’ = (S’, <’) is such
thatS’ is the subset af, where we may excludeast sort§parents of bottom) with a single
parent, stored in a database relation, and not in a term in a qualifier. fHueiced subtype
relation<’ is the subset of, induced by the sef’ :

<!=<n8&'xds.

Example 5.1 The reduced type signatu®’ is depicted in Figure 3. The least sorts
with a single parent are the symbdikes, mary, applescookiesand chocolate The
symbols in the database aepplesand sweets The symbols not in a qualifier are
studentemp apples sweetscookiesandchocolate Hence, the only symbol that is a least
sort, in a database relation and not in a qualifieiples

We have to prove that the reduced type signature is complete; that is, all subtype relationships
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T
\ rTTTTTTTTT T
student emp likes food ! food !
| |
| |
mary sweets | apples sweets
qualified segmen® ~

cookies chocolate

L

Figure 3. Reduced type signatuge’.

are represented either in the database or in the reduced type signature. Moreover, we have to
prove that we construct the same candidates with the reduced type signature.

Theorem 3 All subtype relationships are either represented in the LIFE system or implicitly
in the database.

Proof: Assume a subtype relatian< s wheres is not inS’. By definition,s is a symbol in a
database relation, and not a symbol in a qualifier. So there is a syghlok’ at the corresponding
occurrence in the qualifier for this database relatiors sos’ is a relation implied by this segment.
Sincesands’ are in§’, s’ <’ §. So we can reconstrusi< §, sinces < s’ ands’ <’ ¢,

Now assume the relation< s wheres is not in&’. Since only least sorts are not storedsih s
must be the bottom symbol, add< < is implicitly defined by the type signature for agyc S. I

Theorem 4 If we exchangeX for X/, we construct the same candidates for a goal g and a
qualifier qua(Q).

Proof: To construct candidates, we compute the unifiabléJgsk for any symbokin the goal. We
defineU’(s) as the set containing all symbolsdh that unify withs € §’, as defined by the subtype
relation<'. For the correct construction of candidate$(s) should contain all symbols id(s) that
are also inS’, that is:

Vs, s eS8 :del(s) & s eU(y)

Symbols' is in U(s) if the maximal common subtype sfands’ is non-bottom. We prove that for
anys, s in 8’, maximal common subtypeas1 s’ form a subset o8’, and thus tha$' isin U’(s) if §
isinU(s). The sets1 S is either{s} or {s'}, or a set of symbols, smaller than bathnds. These
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symbols are all ir§’, since we excluded only symbols with a single parent, thus symbols that can
never be a maximal common subtype of two other symbols.

Moreover, ifsrs' = {1} (i.e, s ¢ U(9)), thans' is not in the unifiable sdt’(s) as well, since the
subtype relatior<’ in the reduced type signature form a subset of the subtype rekition ]

As can be seen in Example 5.1 and Figure 3, simply duplicating all necessary subtyping
information works fine for qualified segments containing a large number of facts with least
sort symbolsi(e., data typically found in databases), since these symbols are not stored in
the reduced type signature. However, we stress that the above solution is non-optimal, since
the reduced type signatu®’ contains more subtype information than actually needed. We
believe itis possible to further ‘strip-down’ the reduced type signature. We think of a technique
calledsegment guessinghere less subtype information is needed, and the retrieval algorithm
gueries any database relation that might contain unifiable facts, based on available subtype
information.

6 Optimization

To reduce database interaction, we assert loaded facts in the internal LIFE database, instead
of retrieving the same facts over and over again. However, if we assert facts in the internal
database, we should retrieve each fact only once. Thus when querying the database for all
unifiable facts for goad; in segmen®, we should exclude all facts loaded fr@for previous

goalsgl: e 0ieae

As we stated in Section 4, we can describe each s@jgdtwith a selection conditiod[Ci].
Thus we can exclude any subset with the negation of its selection condition. We select the
tuples from the database with an SQL-query:

select tg,...,tq

from R

where T[C] and not (T[C1])
and
and not (T[Ci_1])

The set of all candidates for previous goals formsaastract cachgestoring the results of
previous abstract computationsg., all constructed candidates. This is also known as the
caching of queriesas described by Ceei al.in [10]. However, storing all these candidates is
expensive, and therefore we will shortly mention a few optimizations.

Instead of storing all previous candidates, we use a single set—tatledip seto represent
that part of the qualified segment that has been loaded:

Definition 23 (Look-up set) For a segment Q, we define thaok-up setL[i] as the set,
formed of the maximal terms in the union of candidates.c, ¢.
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A look-up set is an equivalent, but more compact notation for a set of candidates, since any
term subsumed by another term, is removed. The SQL-query reduces to:

select tg,...,t,
from R
where T[Ci] and not (L[i — 1])

Another optimization consists of posing only queries that might retrieve any tuples, that is, we
exclude queries with a contradicting selection condition. This occurs when the current query is
subsumed by a previous query, as described in [10]. The subsumption of queries is defined by
the subtype relatiod on candidates. That s, all facts for ggahave been loaded if any teren

in candidateC; is subsumed by some tehin the look-up setvyc € Cj,3c e L[i—1]: c < C.

A third optimization is the partial exclusion of previous queries. If we retrieve a set from the
database, we only need to exclude previously retrieved sets that overlap with the current set;

i.e. Qg N Qg # 0.

We further like to mention that, since candidates are wild card selections, testing subsumption
and overlapping reduces to simple comparison operations on the respective type symbols.

7 Conclusion

We have overviewed a formal design for interfacing a logical query language with complex
objects to a relational database. Our system is an improvement on previous systems in that it
provides database storage for objects ordered thanks to a subtype hierarchy, representing part
of this hierarchy in the database as well. The representation of the objects is flexible; arbitrarily
nested objects can be represented in a maximally compressed format, where compressing and
decompressing is handled by the interface. The loading algorithm is quite efficient in that it
loads only objects actually needed by the LIFE system, and never loads the same object twice,
thus improving results in [10]. In addition, our design also improves on previous work by
providing for free the ability, intrinsic tg)-terms, to store and query partial information. For
example, if all facts in LIFE’s EDB stipulate that all students are happy, a query requesting to
list happy things will avoid itemizingn extensall 12,452 tuples of students, giving only the

one tuple corresponding to tirgensionalLIFE fact happ)(studen).

LIFE is an extension of logic programming: first-order logic programs are LIFE programs
with aflattype signaturei,.e., all type symbols—except for and L are incomparable. Hence,
the retrieval algorithm holds for languages using Prolog terms as objects as well.

Part of the system described in this paper has been implemented: the LIFE-WISDOM system
(LIFE With Inheritance Supported Data Object Managemenplements a database interface

for an implementation of LIFE called wildIFE [3], to an ORACLE relational database [12].

The current system implements both database retrieval and updates, but only for single
inheritance and facts consisting of least sorts.

March 1993 Digital PRL



A Database Interface for Complex Objects 19

As for the future, we want to extend this approach to goals with variables. For example,
a goal such asname(x, X) must only unify with facts with identical arguments and should
generate database queries retrieving only tuples with identical values in columns. Then, we
may translate entire LIFE rules to complex join operations on the database. The translation of
recursive LIFE rules to extended relational algebra expressions must also be explored. Another
direction of research consists of weakening the restrictions for the reduced type signature, by
redefining qualified segments and using other search strategies, ssegjrasnt guessing

Also, we may consider iterating our construction, building multiple levels of abstractiens;

the storage of qualifiers themselvedigher-levelqualified segments.

Research Report No. 27 March 1993



20 Marcel Holsheimer, Rolf A. de By, and Hassan Ait-Kaci

References

1. Hassan A-Kaci. An algebraic semantics approach to the effective resolution of type
equationsTheoretical Computer Sciencé5:293—-351 (1986).

2. Hassan A-Kaci. An overview of LIFE. In Joachim Schmidt and Anatoly Stogny, editors,
Next Generation Information System Techno]qaages 42-58, Berlin, Germany (1991).
LNCS 504, Spinger-Verlag.

3. Hassan A-Kaci, Richard Meyer, and Peter Van Roy. WI4FE, a user manual.
PRL Technical Report (forthcoming), Digital Equipment Corporation, Paris Research
Laboratory, Rueil-Malmaison, France (1992).

4. Hassan A-Kaci and Roger Nasr. LOGIN: A logic programming language with built-in
inheritance.Journal of Logic Programming3:185-215 (1986).

5. Hassan A-Kaci, Roger Nasr, and Jungyun Seo. Implementing a knowledge-based library
information system with typed Horn logiclnformation Processing & Management
26(2):249-268 (1990).

6. Hassan A-Kaci and Andreas Podelski. Towards a meaning of LIFE. PRL Research
Report 11, Digital Equipment Corporation, Paris Research Laboratory, Rueil-Malmaison,
France (1991). (Revised, October 1992; to appear idahenal of Logic Programming

7. Frarcpois Bancilhon and Setrag Khoshafian. A calculus for complex objdotstnal of
Computer and System Sciencg®(2):326—340 (April 1989).

8. O. Peter Buneman, Susan D. Davidson, and Aaron Watters. A semantics for complex
objects and approximate answedsurnal of Computer and System Sciend1):170—
218 (August 1991).

9. Stefano Ceri, Georg Gottlob, and Letizia Tandagic Programming and Databases
Springer Verlag, Berlin, Germany (1990).

10. Stefano Ceri, Georg Gottlob, and Gio Wiederhold. Interfacing relational databases and
Prolog efficiently. In Larry Kerschberg, editdProceedings of the 2nd International
Conference on Expert Database Systempmges 141-153, Menlo Park, CA (1987).
Benjamin-Cummings.

11. Patrick Cousot and Radhia Cousot. Abstract interpretation and application to logic
programs.Journal of Logic Pogrammindl3(2-3):103-179 (1992).

12. Marcel Holsheimer. LIFE-WISDOM, a database interface for the LIFE system. Master’s
thesis, Computer Science, University of Twente, Enschede, The Netherlands (September
1992).

March 1993 Digital PRL



A Database Interface for Complex Objects 21

13. Katherine Motrris, Jeffrey D. Uliman, and Allen Van Gelder. Design overview of the Nail!
system. In Ehud Shapiro, edit®roceedings of the 3rd International Conference on Logic
Programming pages 544-568, Berlin, Germany (1986). LNCS 225, Springer-Verlag.

14. Shamim Naqgvi and Shalom Tsuk Logical Language for Data and Knowledge Bases
Computer Science Press, Rockville, MD (1989).

15. Yannis Vassiliou, James Clifford, and Matthias Jarke. How does an expert system get its
data? InProceedings of the International Conference on Very Large Databasees
70-72 (1983). Extended abstract.

16. Yannis Vassiliou and Matthias Jarke. Databases and expert systems: Opportunities and
architectures for integration. Mew Applications of Databasgsages 185-201, London,
UK (1984). Academic Press.

Research Report No. 27 March 1993






PRL Research Reports

The following documents may be ordered by regular mail from:

Librarian — Research Reports
Digital Equipment Corporation
Paris Research Laboratory

85, avenue Victor Hugo

92563 Rueil-Malmaison Cedex
France.

It is also possible to obtain them by electronic mail. For more information, send a
message whose subject linehislp to doc-server@prl.dec.com or, from
within Digital, to decprl::doc-server

Research Report 1: Incremental Computation of Planar Maps. Michel Gangnet, Jean-
Claude Hervé, Thierry Pudet, and Jean-Manuel Van Thong. May 1989.

Research Report 2: BigNum: A Portable and Efficient Package for Arbitrary-Precision
Arithmetic. Bernard Serpette, Jean Vuillemin, and Jean-Claude Hervé. May 1989.

Research Report  3: Introduction to Programmable Active Memories. Patrice Bertin, Didier
Roncin, and Jean Vuillemin. June 1989.

Research Report 4: Compiling Pattern Matching by Term Decomposition. Laurence Puel
and Ascander Suarez. January 1990.

Research Report 5: The WAM: A (Real) Tutorial. Hassan Ait-Kaci. January 1990.1

Research Report  6: Binary Periodic Synchronizing Sequences. Marcin Skubiszewski. May
1991.

Research Report 7: The Siphon: Managing Distant Replicated Repositories. Francis J.
Prusker and Edward P. Wobber. May 1991.

Research Report 8: Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
A-Calculi. Jean Gallier. May 1991.

Research Report 9: Constructive Logics. Part Il: Linear Logic and Proof Nets. Jean Gallier.
May 1991.

Research Report 10: Pattern Matching in Order-Sorted Languages. Delia Kesner. May
1991.

TThis report is no longer available from PRL. A revised version has now appeared as a book: “Ha$&oi,A”
Warren's Abstract Machine: A Tutorial Reconstruction. MIT Press, Cambridge, MA (1991).”



Research Report 11: Towards a Meaning of LIFE. Hassan Ait-Kaci and Andreas Podelski.
June 1991 (Revised, October 1992).

Research Report 12: Residuation and Guarded Rules for Constraint Logic Programming.
Gert Smolka. June 1991.

Research Report 13: Functions as Passive Constraints in LIFE. Hassan Ait-Kaciand Andreas
Podelski. June 1991 (Revised, November 1992).

Research Report 14: Automatic Motion Planning for Complex Articulated Bodies. Jéréme
Barraquand. June 1991.

Research Report 15: A Hardware Implementation of Pure Esterel. Gérard Berry. July 1991.

Research Report 16: Contribution a la Résolution Numérique des Equations de Laplace et
de la Chaleur. Jean Vuillemin. February 1992.

Research Report 17: Inferring Graphical Constraints with Rockit. Solange Karsenty, James
A. Landay, and Chris Weikart. March 1992.

Research Report 18: Abstract Interpretation by Dynamic Partitioning. Francois Bourdoncle.
March 1992.

Research Report 19: Measuring System Performance with Reprogrammable Hardware.
Mark Shand. August 1992.

Research Report 20: A Feature Constraint System for Logic Programming with Entailment.
Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka. November 1992.

Research Report 21: The Genericity Theorem and the Notion of Parametricity in the Poly-
morphic A-calculus. Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev. December
1992.

Research Report 22: Sémantiques des langages impératifs d’ordre supérieur et interprétation
abstraite. Francgois Bourdoncle. January 1993.

Research Report 23: Dessin a main levée et courbes de Bézier : comparaison des al-
gorithmes de subdivision, modélisation des épaisseurs variables. Thierry Pudet. January
1993.

Research Report 24: Programmable Active Memories: a Performance Assessment. Patrice
Bertin, Didier Roncin, and Jean Vuillemin. March 1993.

Research Report 25: On Circuits and Numbers. Jean Vuillemin. April 1993.

Research Report 26: Numerical Valuation of High Dimensional Multivariate European Secu-
rities. Jérdbme Barraquand. March 1993.

Research Report 27: A Database Interface for Complex Objects. Marcel Holsheimer, Rolf A.
de By, and Hassan Ait-Kaci. March 1993.



Research Report 28: Feature Automata and Sets of Feature Trees. Joachim Niehren and
Andreas Podelski. March 1993.

Research Report 29: Real Time Fitting of Pressure Brushstrokes. Thierry Pudet. March
1993.

Research Report 30: Rollit: An Application Builder. Solange Karsenty and Chris Weikart.
April 1993.

Research Report 31: Label-Selective A-Calculus. Hassan Ait-Kaci and Jacques Garrigue.
May 1993.

Research Report 32: Order-Sorted Feature Theory Unification. Hassan Ait-Kaci, Andreas
Podelski, and Seth Copen Goldstein. May 1993.



dliloli[tlall

PARIS RESEARCH LABORATORY

85, Avenue Victor Hugo
92563 RUEIL MALMAISON CEDEX
FRANCE

LC

19e)-1ly UesseH pue ‘Ag ap 'V J|oY ‘IawIays|oH [92JeN
s109lqO x8|dwo) 10} 92elBIU| BSegeleq V



