
PARIS RESEARCH LABORATORY

d i g i t a l

June 1989

3

Patrice Bertin
Didier Roncin

Jean Vuillemin

Introduction to
Programmable Active Memories





3

Introduction to
Programmable Active Memories

Patrice Bertin

Didier Roncin

Jean Vuillemin

June 1989



Publication Notes

An earlier version of this report appears, with the same title, inSystolic Array Processors,
edited by J. McCanny, J. McWhirter, and E. Swartzlander Jr. and published by Prentice Hall,
1989.

Patrice Bertin is a member of the Institut National de Recherche en Informatique et Automa-
tique, Rocquencourt, 78150 Le Chesnay, France, on a research contract at Digital Equipment
Corporation, Paris Research Laboratory.

c
 Digital Equipment Corporation 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe, in
Rueil-Malmaison, France; an acknowledgement of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Paris Research Laboratory. All rights reserved.

ii



Abstract

We introduce the concept of PAM,Programmable Active Memoryand present results obtained
with our Perle-0 prototype board, featuring:

� A software silicon foundry for a 50K gate array, with a 50 milliseconds turn-around
time.

� A 3000 one bit processors universal machine with an arbitrary interconnect structure
specified by 400K bits of nano-code.

� A programmable hardware co-processor with an initial library including: a long
multiplier, an image convolver, a data compressor, etc. Each of these hardware designs
speeds up the corresponding software application by at least an order of magnitude.

Résumé

Nous présentons le concept demémoire active programmable(PAM) et décrivons diverses
expériences et mesures faites sur notre prototype Perle-0 qui est :

� Une fonderie logicielle de silicium, pour pr´ediffusés de 50K portes, dont le temps de
rotation est de 50 millisecondes.

� Une machine universelle comportant 3000 processeurs un bit. La structure de connexion
entre les processeurs est arbitraire et sa programmation sp´ecifiée par 400K bits de
nano-code.

� Un co-processeur mat´eriel programmable dont la biblioth`eque initiale comprend : un
multiplicateur 512 bits, un convolueur d’images noir et blanc, un compresseur de
données, etc. Chacune de ces configurations acc´elère l’application logicielle correspon-
dante de plus d’un ordre de grandeur.
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1 Concept

Definition (Programmable Active Memory: PAM)
A PAM is auniformarray of identical cells all connected in the same repetitive fashion. Each
cell, called a PAB forprogrammable active bit, must be general enough so that the following
holds true: Any synchronous digital circuit can be realized (through suitable programming)
on a large enough PAM for a slow enough clock.
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Figure 1: A simple PAM

Figure 1 shows a simple PAM implementation as a regular matrix of Manhattan connected
identical PABs. Each PAB has:

� 4 inputs< n; s; e;w>;

� 4 outputs< N;S;E;W>;

� 1 register (flip-flop) with inputRand outputr, synchronous with the PAM’s global clock
clk;

� 1 combinatorial gateg connected so that:g(n; s; e;w; r) = < N;S;E;W;R>;

� 160= 5� 32control bits which specify the truth table of functiong.

A programfor such a PAM withm active bits is a sequence of160m control bits (bitstream)
representing the truth tables for each PAB. This program can bedownloadedinto the control
part of the PAM. From this instant, and until the program is changed again, our PAM behaves
as the particular finite state machine specified by the bitstream.

Other PAM implementations are possible:
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� theConfigurable Array Logic(CAL) reported in [3] is close to the one above;

� theLogic Cell Array(LCA) is a cMOS component designed by Xilinx Inc. [7]. Except
for minor details, it is similar to the above description with each of our< n; s; e;w> and
< N;S;E;W> variables carrying 4 signals instead of one. The truth table of functiong
is reduced, for obvious practical reasons: only one general 5 input boolean function is
actually specified; the remaining part ofg is used to specify variousswitchboxes, usable
to route the signals.

Our investigation aims at answering the following questions:

� How to build large PAMs?

� How fast can it run?

� Which class of design can we efficiently map onto a PAM?

� How do we implement PAM designs?

2 Implementation

Using a5� 5 array of LCA chips, we have built a40� 80 ' 3K bit PAM named Perle-0
on a25� 25 cm2 printed circuit board. Perle-0 has a VME bus interface, which makes it a
general-purpose configurable hardware co-processor tightly coupled to a host CPU (Figure 3).

The configuration data for Perle-0 (about 400K bits) is downloaded by the host itself in
50 milliseconds. The logic controlling the download process, as well as the host bus
communication protocol areprogrammedinto two extra LCAs, statically configured at power-
up time from a PROM. By merely changing the content of that PROM, we are able to quickly
adapt to different bus protocols, or to add extra features to the bus interface.

The PAM cycle being much faster than that of the host bus, we added 4 Megabits of fast
static RAM to Perle-0, directly connected to the PAM (the bandwidth of that memory is up
to 1.5 Gigabits per second, while the host bus bandwidth is typically around 50 Megabits per
second). Besides a few mandatory buffers for driving the host bus, Perle-0 is thus built out of
two kinds of components: LCA and static RAM (Figure 2).

PAM designs are synchronous logic circuits, each of the registers being updated on each cycle
of a global clock signal. The maximal clock speed for such a design is directly determined
by its critical combinatorial path, which varies from one design to another. It has thus been
necessary to design a clock distribution system whose speed can beprogrammedas part of
the design configuration, for speeds up to 70 MHz (the present maximum clock cycle of LCA
chips).

Last but not least, we take advantage of an extra feature of the LCA component which makes
it possible to dynamicallyread backthe content of each PAB. Together with a “software
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Figure 2: Perle-0

stepping” facility (stop the main clock and trigger clock cycles one at a time from the host)
this provides a powerful debugging tool which can take a snapshot of the internal state of the
design after each clock cycle.

3 PAM programming

The logical description of a PAM design consists of the truth table for each PAB and the
description of their interconnection. In order to derive the final configuration bitstream for
each LCA, we also need to specify the placement of each block within the PAM, as well as the
actual routing of each signal through the available channels and switching boxes.

At the LCA level, both placement and routing may be automatically generated by Xilinx
software. We have found this to be practical only for routing; automatic placement is far too
time-consuming and it generally yields poor results: in this technology, each programmable
interconnection point adds about 2 nanoseconds to the signal propagation delay. Therefore, a
poor relative block placement may considerably affect the final design performance.

In our CAD system, the designer needs to specify the logic equations and net names for
each PAB; optionally he may also control the actual placement of each PAB. This is achieved
through a program in a high-level language (we use Modula-2+ and Lisp) or through schematic
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entries. Netlists are then generated foreach of the 25 LCAs of Perle-0 and we use Xilinx
software to finish the placement, do the actual routing and produce the bitstream for each LCA.
Finally, the 25 bitstreams are merged into a 400K bits long file ready to be downloaded by the
host into the PAM.

The above steps typically take from 15 minutes to a few hours, depending on the complexity of
the design; subsequent minor modifications are generally much faster. The actual downloading
is then performed in 50 ms. Since debugging the designs can be done through stepping and
readback, this effectively brings hardware design times very close to these of software. In
particular, it provides a vehicule for experimenting with hardware algorithms which would
otherwise be too time-consuming and costly to implement.

HOST

BUS

PAM

• Programmed Host Bus
Interface.

• Configuration from Host
in 50 ms.

• Design loop from 2mn to
2hrs.

• Dynamic Read Back for
Active Bits.

Figure 3: Perle-0 setup

4 Design experiments

We describe here some of the designs which have been successfully tested on Perle-0. More
designs are currently in progress.

4.1 Early experiments

Our first designs aim at debugging and testing the performance of Perle-0 itself:

� A software-controlled variable clock generator, used as a basic block in building other
designs.

� A combinatorial link established through all the pins, in order to test the printed
circuit board traces for electrical continuity; it also implements one of the worst-case
combinatorial delay achievable through routing, and runs at 4 MHz.
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� A 3K shift-register through all of the PAM’s active bits. It provides an example of the
fastest possible synchronous design and proves operational at clock speeds up to 50
MHz.

� Designs to read and write Perle-0’s RAM from the host. Their speed is limited by the
VME bus bandwidth, at about 50 Mbits/s.

Such simple designs typically take a few hours to build, compile and debug.

• B/W  25MHz Image Convolution
(B.Chen).

• 8 registers for  1bx512x512
images.

• Host RAM <-> PAM in 12ms.

• 7x7 convolution in 10ms.

• Sequence of 4 erode/dilate at
video rate (25 im/sec).

• Faster than most
commercial products.

• Ziv Lempel Data Compression
(M. Skubiszewski).

•  Match 4K past bytes
against 16 future bytes.

• 2 to 5 compression rate.

• 64 comparisons each 70ns:

- 1000 MIPS?

- 250 MIPS?

PAM

Figure 4: Two PAM designs

4.2 Long multiplication

We have programmed Perle-0 into a fast 512-bit multiplier (see [4]) computing

P = A� B + Swhere:

- A is ambit integer, withm� 512;

- B is an bit integer, withn > 0 arbitrary;

- S is an + mbit integer;

- P is an + m+ 1 bit integer.
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The host writes theA, B and S operands into the PAM, and reads back the resultingP.
The speed-up factor achieved by this hardware co-processor can be greater than 25 for long
operands, compared to carefully hand-coded software. It computes a 1K bit product in 210
microseconds, which makes this PAM design faster thanany known machine for which we
could obtain benchmark measures. It is 4 times faster than a Cyber 170/750.

The multiplier is interfaced with an arbitrary-precision arithmetic package [6] so that any
program based on that software takes advantage of the PAM without modification. For
example, Hans Boehm has run computations for exact real arithmetic [1] with typical speedups
from 3 to 7. We have written code for modular products and used it for RSA cryptography [5].
The PAM computes RSA encryption/decryption at 3900 bits per second for arbitrary 512-bit
keys; this is about 4.5 times faster than our best software version on the same host.

The first operational version of the multiplier was developed in less than a week. Two
subsequent versions, which refined the design on the basis of actual performance measurements,
were each developed in less than 5 man-days.

4.3 Data compression

A hardware accelerator for data compression was implemented in four months by Marcin
Skubiszewski, who had no previous hardware experience. Based on an algorithm described
in [2], it is a massively parallel method (64 byte comparisons each 70 ns), which repetitively
matches the next 16 bytes in the file to be compressed against the last 4k bytes seen (stored in
the local RAM) in order to detect the longest substring previously seen (see [8]). The resulting
design achieves an average compression ratio varying from 2 for English text to 3 for source
code.

4.4 Image processing

J. Bradley Chen has implemented the operations of erosion and dilation (two-dimensional
boolean convolution) on512� 512� 1-bit images, with7� 7-bit masks. The design runs at
25 MHz, computing one bit of the transformed image on each cycle, for a total of 10 ms per
image. Our best software solution for that problem is at least two orders of magnitude slower.
This design was implemented in about 3 months of work, once again with minimal previous
hardware experience.

5 Conclusion

PAM is an exciting new technology, with a lot of growth potential. Based on our first year of
experiments, we derive the following conclusions:

Prototyping. While custom hardware prototyping times are at best measured in months,
prototyping with PAM is achieved in weeks. Design times for PAM must be compared
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with those of software, not of hardware.

Speed. Assuming equal technology, custom hardware designs are faster than their PAM
implementation; yet the speed loss appears to be less than 50% for systolic designs with
short connections.

Size. While custom hardware designs are obviously smaller than their PAM counterpart, the
samePAM can be used to runany numberof hardware designs! We regard the PAM as a
hardware cache: it can be programmed to perform arbitrary tasks, at speeds comparable
to those of custom hardware.

Size vs. Speed.All our designs are such that we can double the bandwidth on a twice bigger
PAM. This provides a strong incentive to build much larger ones.

Architecture. As a general purpose computing device, Perle-0 exhibits some unique features:

� The bitstream is a program for Perle-0 which is thus the ultimate one-instruction
RISC machine (400K wide nano-code!).

� The PAM is a parallel machine with 3000 one-bit processors. The interconnect
structure between these processors can bearbitrary, since it is specified by the
program. Exotic interconnect structures (hypercube and such) are feasible, but
they use up more PAM area and run with slower clocks.

� The host and PAM system is asilicon foundrywith a 50 ms turn-around time. The
host can alsoread backthe content of each active bit in the PAM, providing an
invaluable design independent debugging tool.

� The PAM is a flexible structure which can betailored (logic, memory and
interconnect) to the efficient implementation ofany well designed massively
parallel bit-level algorithm. This should be contrasted with the usual situation
where the algorithm must be chosen so as to adapt to the structure of the
implementation machine.
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and Ascánder Suárez. January 1990.

Research Report 5: The WAM: A (Real) Tutorial. Hassan Aı̈t-Kaci. January 1990.y

Research Report 6: Binary Periodic Synchronizing Sequences. Marcin Skubiszewski. May
1991.

Research Report 7: The Siphon: Managing Distant Replicated Repositories. Francis J.
Prusker and Edward P. Wobber. May 1991.

Research Report 8: Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�-Calculi. Jean Gallier. May 1991.

Research Report 9: Constructive Logics. Part II: Linear Logic and Proof Nets. Jean Gallier.
May 1991.

Research Report 10: Pattern Matching in Order-Sorted Languages. Delia Kesner. May
1991.

yThis report is no longer available from PRL. A revised version has now appeared as a book: “Hassan A¨ıt-Kaci,
Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press, Cambridge, MA (1991).”



Research Report 11: Towards a Meaning of LIFE. Hassan Aı̈t-Kaci and Andreas Podelski.
June 1991 (Revised, October 1992).

Research Report 12: Residuation and Guarded Rules for Constraint Logic Programming.
Gert Smolka. June 1991.

Research Report 13: Functions as Passive Constraints in LIFE. Hassan Aı̈t-Kaci and Andreas
Podelski. June 1991 (Revised, November 1992).

Research Report 14: Automatic Motion Planning for Complex Articulated Bodies. Jérôme
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