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Abstract

We introduce an extension afcalculus, calledabel-selectiver-calculus in which arguments

of functions are selected by labels. The set of labels includes numeric positions as well as
symbolic keywords. While the latter enjoy free commutation, the former must comply with
relative precedence in order to preserve currying. This extensidrtalculus is conservative

in the sense that when the set of labels is the singleidnit coincides withA-calculus. The

main result of this paper is the proof that the label-seleckhoalculus is confluent. In other
words, argument selection and reduction commute.

Résumé

Nous pEsentons une extension ducalcul, appete A-calcul label-€lectif dans laquelle

les arguments des fonctions soetestionrEs par destiquettes. L'ensemble degiquettes
comprend des positions nemdues aussi bien que des mot-clefs symboliques. Alors que ces
derniers jouissent d’'une commutatilibre, les premiers @issent’ une peadence relative
pour peserver la curryfication. Cette extensionXhgalcul est conservatrice en ce sens que,
quand I'ensemble degtiquettes esteduit au singletof 1}, elle cancide avec le\-calcul. Le
résultat essentiel de ce papier est la preuve de confluencealeul label-glectif. En d’autres
termes, laslection d’arguments et l@duction commutent.
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Label-Selective A-Calculus 1

We can move from one language to another, but in doing
so we acceptnew constraints and make new mistakes. We
also adopt a different tone, enjoying tleene sais quodf
Sprachgatihl.

RosertDarnTON, The Great Cat Massacre

1 Synopsis

Many modern programming languages allow specifying arguments of functions and
procedures by symbolic keywords as well as using the traditional and natural numeric
positions [14, 10, 3]. Symbolic keywords are usually handled as syntactic sugar and “compiled
away” as numeric positions. This is made easy if the language does not support currying (like
Common LISP or ADA). Even if currying is supported and the situation reduced to numeric
positions, it is allowed strictly in a left-to-right order so that the first argument is “consumed”
before the second. In general, if a functibis defined on two arguments and it is desired
that the second be consumed before the first, one must resort to using an explicit closure of
form Ax.Ay.f(y, x) and curry that one. However, the cost incurred (the closure construction
and ensuing weight of handling in terms of depth of statk) is undue since out-of-order
currying simply amounts to commutation of stack offsets.

More precisely, currying is possible thanks to the following natural isomorphism:
AxB—-C ~ A— (B— C)

for any setA, BandC. However, there is another obvious natural isomorphism that could also
be useful; namelyA x B ~ B x A. Hence we should be able to exploit this directly in the
form:

A—>(B—>C) ~ B—>(A—>C).

One way to do that is to use a style of Cartesian product morecaftegory-theoreticas
opposed taset-theoreticflavor. By this we mean that if projectioms and =, were used
explicitly instead of the impliciistand2nd of the x notation, then instead & x B we would

write 73 = A X w2 = B. Thus, allowing this explicit product expression makes Cartesian
product commutative explicitly, as opposed to “up to isomorphism.” Indeed, it becomes
obvious thatt

T1=>AXm=>B ~ m=>BXx1=>A,
and thus that:
Tm=>A— (7r2:>B—> C) ~ m=>B— (7!'1:>A—> C).

The advantage of explicit projections is clear: one can account directly for symbolic
keywords since these play precisely the role of projections. The other benefit is the

'Parse the following with=’ binding tighter than x’ or * —".
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2 Hassan Ait-Kaci and Jacques Garrigue

aforementioned permutativity of currying which allows out-of-order partial application of
function to its arguments. For example, an out-of-order applicationfﬁIZe:> a) can be

readily used when there is a need to consume the second argument before the first, as opposed
to the more complex and costfyx.Ay.f(y, x))(a).

The drawback of explicit projections, however, is also obvious: implicit argument
positions as numeric offset is lost, and the notation is more cumbersome. It is indeed much
easier to writef(x,y) instead off (1= x,2 = y) every time we need to applf to two
arguments.

So the question is: can we allow freely mixing implicit and explicit argument selectors
safely? In other words, can we allow the notatf(én, y) to be syntactic sugar for explicitly
selectingf(1:>x, 2:>y)? If we do, the least we should require is that the “all-functions-are-
unary” paradigm of\-calculus be retained. This means that the equdfigyy) = f(x)(y)
should hold for any such expression. However, the syntactic sugaring gives, on one hand,
f(x,y) = f(1=x,2=y), and on the other hand(x)(y) = f(1=x)(1=y). Therefore
the free syntax should guarantee thet = x,2=y) = f(1=>x)(1=y). In other words,
stack offset permutation must be built into the rule of application at numeric positions. This is
essentially what is performed in the extensiorkafalculus that we propose here.

1.1 Relation to other work

There is an immediate relation between our calculus and the notation with offsets
introduced by de Bruijn [5] and used for the compilation)etalculus in the style of the
SECD machine [9]. In fact, our calculus enforces commutativity of these indices and therefore
extends the use of de Bruijn offsets for that model of implementation to include label-selective
argument passing. In that way, selective currying can be statically compiled into direct stack
access by generating simple arithmetic code involving de Bruijn offsets and selector numbers.
Hence, our work is a simple and natural generalization of de Bruijn’s idea. We have already
adapted the calculus of explicit substitutions [1], and are currently working on a compiling
scheme for label-selectivecalculus based on it.

Another, albeit remote since unexplored, potential connection may be with the recent work
of Ohori in compiling extensible records for functional programming [13]. Indeed, records
are essentially labeled Cartesian products. Since that style of records allows extensions and
out-of-order labels, it is possible to use them in a way similar to ours for passing arguments.
At this time, the potential connection is a simple speculation and begs for deeper study.

An intuitive, but accurate, explanation of label-selectiXecalculus can be given as
extracting implicit concurrency fromi-calculus. It is well-known that\-calculus is a
sequential calculus and for a clear reason: function application is not commutative. This
inherent sequentiality is exerbated all the more by the strict syntactic left-associativity of
application adopted b¥-calculus. Hence, our idea is to reveal the inherent concurrency lost
in A-calculus; namely, commutation of arguments in applications. The syntax and operational
semantics that we propose are precisely meant to expose, explicate, and exploit this implicit
concurrency. This concurrency is inherenf\italculus in the sense that it does not interfere
with the confluence of the calculus. This would not be the case with a fully concurrent
extension ofA-calculus using parallel composition, a commutative monoid. Thus does our

May 1993 Digital PRL



Label-Selective A-Calculus 3

calculus differ from the known calculi for communication of concurrent processes [4, 12, 11].

In [4], Gérard Boudol proposeg-calculus, an extension afcalculus based on realizing
that #-reduction iscommunicatiorbetween a receiving-abstraction and a sending operand
along one single channel callad Thus, the argument of@&redex is implicitly prefixed with
A. This idea is taken to its full extent by Robin Milner in [12] where, rather thaadone,
there are (countably) many chanmames In both Milner’s and Boudol's calculi, parallel
composition is used to achieve full concurrency and thus, naturally, confluence is lost. By
contrast, label-selectivi®-calculus isnot a fully concurrent calculus. Indeed, our calculus is
a confluent one. It explicates the fine interaction between functional application as process
communication along channel names that are identified, nosass in [12, 4], but as explicit
positionnames. This is a wholly different insight. In addition, the availabilitynafneric
channels and their laws of relative commutation allows also to spestatively numbered
channels, as opposedabsolutelynamed channels only.

We are also developing, and will report later [2], our label-selective calculus as a true
calculus of communication and concurrency. We plan to extend the calculus along the
lines of Robin Milner’sx-calculus, adding, for example, process operators, such as parallel
composition and non-deterministic choice, as well as exploring other directions, for example,
by allowing computable channel names. One of the gains expected ds¢hatulus will need
not beencodeds in [11], but directly embedded as syntactic identity.

In summary, what we recount in this paper, has not, to our knowledge, been studied as
such.

1.2 Organization of paper

We have organized this paper as follows. In Section 2.1 we introduce our language of
selectiver-terms. In Section 2.2 we present reduction systems for these terms. The core of the
paper lies in Section 3 where we give the proof of confluence of selectadculus. Section 4
is a reflection on the link between symbolic and numeric labels. Finally, we close the paper
with some conclusion and a brief discussion of further work to follow this idea in Section 6.

2 Selective A-terms

2.1 Syntax

SelectiveA-terms are formed by variables taken from al¥eand two labeled construc-
tions: abstraction and application. The labeling is done with labels taken from awtition
labels£. This set is the disjoint union of two sets: the 4ét= IN — {0} of numeric labels
and the setS of symbolic labels Each of the three set¥, S, and L, is totally ordered.
Namely,V is ordered with the natural number ordering, that we shall write S is ordered
with a linear order that we write s; and,£ is ordered by the ordet such that<, = <
onN, < = <sonS,andv¥(n,p) € N x S, n <, p. In other words, all numeric labels are
less than all symbolic labels.

We will denote variables by, y, labels inZ by p, g, reservingm, n to numbers inV, and
A-expressions by capitals.

Research Report No. 31 May 1993



4 Hassan Ait-Kaci and Jacques Garrigue

We can define the syntax atterms as:

M = X (variables)
| Apx.M (abstractions)
| MpM (applications)

We will say of a term\px.M that it “abstracts x at p in M,”, and of the terrM 3 N, that it
“applies M to N through p.”

It will often be convenient to break the atomicity of an abstraction or an application.
In the abstractio\px.M, the partAyx will be called itsabstractor andM its body. In the
applicationM p N, the part 5 N will be called theapplicator. By entity, we will mean either
an abstractor or an applicator (in which case we speakadifeled entity, or simply a variable.

2.1.1 Relative and absolute positions

Before we delve into the technicalities of reduction, let us give some intuition to justify
this syntax.

Symbolic labels are what we referred to as “keywords” in the introduction. A useful
way of thinking of these symbols is to see them @sannel namesised for process
communication [12]. Here, a process id-#erm, wheresendings performed by applicators
andreceivingby abstractors. If an application is performed (“sends arguments”) through two
different channelp andq, then clearly there cannot be any ambiguity as far as which abstractor
will “receive” them. Hence, these reductions (“communications”) may be done in any order,
with the same end result. However, if that situation arises with g, then clearly the order
in which they are performed will matter. In this case, the rules will insure that reduction will
respect the order specified syntactically. In other words, several arguments sent through the
same channel are “buffered” in sequefce.

If numeric labels are always kept explicit, then the above view applies to them as well.
Indeed, recall from the introduction that the free syntax of function application to several
arguments at a time uses their positions as Cartesian projeoﬁcgas‘,(al, .. .,an) may be
seen as the more expli¢fl=>ay, ...,n=an). However, numeric labels do not quite behave
like symbolic labels in that a number is alwaysplicitly seen as thérst positionrelatively
to the form on its left. More precisely, currying works by seeing each argument as the first
one relatively to the form on its left. This has the benefit of simplifying the rule of functional
reduction to be #ocal rule never needing to consider more than a single argument at a time.
So, clearly, we do want to allow using relative argument positions.

Nevertheless, it is more natural to use absolute positions “packaged” as labeled Cartesian
tuples. For instance, it is easier to wri§(1=x,2=y,4=>2).M) ~(1=>a,4= b) rather
than (Alx.Aly.Azz.M) Ta3b. However, the latter fully curried form is needed to express
reduction with local rules. Fortunately, translation from the notation with absolute labels to a
fully curried one with relative labels is in fact systematic: one need simply subtract from each

2In fact, we are also considering a possible variation of our calculus where this sequential buffering is not
guaranteed. Rather, several arguments received on a given channel are chosen non-deterministically. This
interesting twist yields essentially the functionality of asywocious process communication, at the expense, of
course, of confluence. That work is the object of our current study and will be reported later [2].
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Label-Selective A-Calculus 5

numeric label the number of numeric-labeled components to its left in the labeled Cartesian
product. Namely, for anik, j, € N such thaty < ix+1,js < jg+1, (1 <k<nl<{< m):

()\(i]_:} X1y--4y
k= X, - -

in = %).M) ~(j1= Ny,...,

je= Ng, ...,

jm = Nm)

translates into:

()\ilX]_ .
Ay —k+1 X - - -
)\in—n+lxn . M) H Nl. ..
jlfz-l N;. ..
jmfn\wl Np.

With this, we are justified to limit our syntax to that of relative-labeling lending itself to
simpler local reduction rules, while still keeping the freedom of a flexible surface syntax with
Cartesian tuples using absolute position labeling.

Now, a reasonable question that one may have is whether we could not also treat symbolic
labels as we do numeric labels. That is, we could envisage using a function associating
each symbol to its predecessor in the linear order of symbols, thus doing away with names
altogetheﬁ This, however, would be possible only if the order®nvere not dense. Since,
in practice,L is the free monoid, generated by a subset of the ASCII alphabet, and is densely
ordered by lexicographic ordering, this is ruled out. Hence, symbolic labels always designate
absolutepositions of arguments. In other words, packaging symbolic-labeled arguments in
labeled Cartesian tuples is always safe since they are not concerned with relative positioning.
In fact, the ordering on symbols is only necessary as a trick to avert non-termination so that
rules may perform well-founded label commutation.

2.1.2 Substitutions

Substitution of variables bx-expressions needs the same precautions ascaiculus
and obeys exactly the same rules. As usual, we use the equaﬂ:si);m mean syntactic
equality modulax-conversion, defining.-conversion as for classicatcalculus.

Let FV(M) be the set of free variables M; that is, variables that are not abstracted
anywhere inM. The expressionN/x]M denotes the term obtained by replacing all the free
occurrences of variabbeby N in (an appropriate-renaming of)M. That is,

3This would amount to “comiping them away” as alluded to in the imuction.
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6 Hassan Ait-Kaci and Jacques Garrigue

[N/X]x = N
[N/X]y =y ify , y=x
[N/XI(M1 5 M2) = (IN/XIM1) 5 (IN/XIM2)
IN/X](ApxM) = ApxM
IN/XI(Apy-M) = Apy.IN/X]M

if y=x andy FV(N)
IN/XI(Apy:-M) = Apz[N/X[z/y]M

if y=x andy FV(N),
andz FV(N) FV(M).

2.2 Reduction systems

We introduce three distinct groups of reduction rul@sreduction and two reordering
systems. What we shall eventually call label-selecthvealculus is the system freely
combining@-reduction and reordering.

2.2.1 p-Reduction

Intuitively, 8-reduction for labeled terms can be performed as soon as an abstraction at
positionp is applied through the same positipto a term.

(8) (ApxM) 5N — [N/XM

2.2.2 Reordering rules

Clearly, some reordering of abstractors and applicators must be performed in order to
makeg-reduction possible. There are two sets or reordering rules to consider: those dealing
with at least one symbolic label and those dealing only with numeric labels. The difference,
as explained above, lies in the fact that symbolic labels, being always explicit, can commute
freely with others, symbolic or numeric, as long as they are distinct. On the other hand,
numeric labels need to be kept in relative coherence so that they are implicitly always the first
argument of the form on their left.

Symbolic labels

There are three rules to consider for swapping two adjacent labdigdsmandqg when
at least one among or q is a symbolic label. Rulé1) commutes order of abstractors;
Rule(z) commutes order of applicators; and R(m; moves an applicator into the body of an
abstraction when the expression looks “almost” liké-eedex, were it not fop # q.

(1) ApxAgy-M — Agy.ApxM (if p>q)
(2) MGNGP—->MGP3N (if p> q)
(3) (M) GN— Ax(MaN) (if p# )

RuIe(S) must be performed modulo appropriateéenaming in order to avoid capture.

May 1993 Digital PRL



Label-Selective A-Calculus 7

Numeric labels

When two adjacent labeled ties are both numeric, the three above cases must be
considered as well. Similar commutations can also take place, except that swapping must
preserve relative coherence of implicit positions. This is simply done by decrementing the
greater of the two positions.

Let mandn be two positive integers.

(4) AmXAnY:M — Any.Am_1x.M (if m> n)

(5 MaN&P—-M%aP 73N (if m> n)

(6) (AmxM) 7N — Am_lx.(M aN) (if m>n)

(7) (AnxM) N = Apx(M 771 N)  (if m< n)
Rules (6) and (7) must be performed modulo appropriaterenaming in order to avoid
capture. Of course, there is direct correspondence between the sets of rules for symbolic and
numeric labels. Rulel) and(2) are directly translated infgt) and(5), with the appropriate

changes in labels. Rulg8) must be splitintd6) and(7) in order to distinguish cases where
m< nandm> n.

2.2.3 Examples of reductions
Symbolic labels
We supposethgi< g<r<s,

(ApXAgy-AzM) N3P 5Q
-3 (Apx((Agy-ArzM) N)) 5P $Q
=2 (Apx((Aqy:ArzM) 7N)) QP
=5 (Aqy-Az[Q/XIM) 7 [Q/XIN 5P
-3 (Agy-((Arz[Q/XIM) 7 [Q/XIN)) 3

—g (Ay.IQ/XIN/ZM) 5P
-3 Agy.([Q/X[N/ZM) 5P

Numeric labels

(A2xA1y.22zM) 3N 5P 3Q
=4 (A1y.A1xA2zM) 3N 5P 3Q
-7 (Ay.((AxA2zM)3N)) 5P 3Q
-5 (Ay.((AxA2zM)3N)) 3Q 3P
-7 (AyAx((A2zM)3N)) 3Q 3P
—g (Ay.Ax[N/4M) 3Q 3P
-7  (Ay.((Ax[N/4M) 1Q)) 3P
—s  (My[Q/XIN/ZM) 3P

N—

-7 AY.([Q/XIN/4M 3 P

Research Report No. 31 May 1993



8 Hassan Ait-Kaci and Jacques Garrigue

3 Proof of confluence

3.1 Pseudo-reduction

3.1.1 Rules

Pseudo-reduction rules are intended to make reordering systems confluent in the absence
of B-reduction. They promote the formation of new reordering redexes by commutation
over 3-redexes. The idea is that, witho8treduction,3-redexes just sit there, presenting
“obstacles” to the formation of reordering redexes. Hence, we need pseudo-reduction rules to
simulate the promotion of reordering redexes that would appear #4teeluction had been
performed. We simulate that effect by having a labeled entity “jump” into, or out of, the body
of the abstraction part of &redex through itsX-membrane” and seek reordering on the other
side of that membrane. There are two cas(eé: one corresponding to having an applicator
jump “into” the body of the abstraction part offaredex, andb) the other corresponding to
having an abstractor jump “out of” it. Namely, fanylabelsp, g:

(3) (ApxM) N GP — (Apx(M GP)) 5N
(b)  (ApxAgy:-M) 5N — Agy.(Apx.M) 5 N)

These two rules must be performed modulo approptiatenaming in order to avoid capture.
Note that neither rule actually destroys the occurrence gfttexlex which stays there.

Example 3.1 If we use only reordering ruIe{,\lx.)\zy.x Iy) 5 a7 b can be reduced by
Rules(7) and(6) yieldingA = (A1x.A1y.x Ty 7 a) 7 b. Itcan also be reduced by Ru(8) to
B= (Alx.Azy.x 1 y) 7 b 7 a. BothtermsA andB are normal forms with respect to reordering.
We need pseudo-reduction to recover confluence. Namely, applying(R)Jte B promotes
the appearance of a redex for Rg&), which yieldsA.

We will not use pseudo-reduction as a reduction system. Rather, we use it to define an
equivalence relation modulo which confluence will be defined for partial reduction systems
that we are to consider.

3.1.2 Pseudo-reduced form equivalence

Since some critical pairs appear between pseudo-reduction and reordering rules, we
introduce an equivalence relation that combines their effects. We define two pseudo-reduced
form (PRF) equivalencegl) and (I1). PRF equivalencél) inverts the nesting of two
B-redexes, with the necessary precautions. Namely, dgf FV(N), and with appropriate
renaming:

() (px((AayM) GN)) 5P
— (Aqy-((ApxM) 5P)) 5N
This defines an equivalence by transitive closure, since applying twice this rule at the same
occurrences is the identity. Note that it does not bother requiringt@eﬁV(P). Indeed, this

condition is always satisfiecelbausé® is external in the original form, and had it contained
it would have been renamed to make the terms distinct.
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Label-Selective A-Calculus 9

PRF equivalencéll) is a renaming of labeling for any-redex. Namely,
(1) (ApxM) N« (AgxM) N

This last equivalence will be essential to identify normal forms for reordering that differ only
by the labeling of som@-redexes. Such situations would not occur if only symbolic labels
were considered. However, it can arise for numeric labels that may, or may not, have been
decremented through reordering.

3.2 Combined systems and restricted reductions

Using the rules above, there are in fact several reductions systems that we can consider
depending on various combinations of the groups of rules. The full system that we will aim
for is the free combination gf-reduction and reordering rules (System 2.2.2.2.2). We
will call it selective-calculus However, we will first consider the following partial reduction
systems.

We will first focus on reordering rules alone, and prove a few useful properties. To do
this we have to add some rules to preserve confluence: pseudo-red(atiamsi(b). So the
system we are really interested in is System 2221.1. We will still call it thereordering
system An order-normal formis a normal form for the reordering system. For this reordering
system we will consider a special class of reductions, catladdard reorderingswhich are
innermost reorderings.

We will also consider a partial reduction system caffectordering It is 8-reduction on
order-normal forms, where the result of each step is normalized by the reordering system.

The last system, ofabel-parallel systemwhich makes the link between selective
A-calculus andg-reordering, is the combination of all three reduction systems (Sys-
tem 2.2.1+ 2.2.2+ 3.1.1).

For each of these reduction systems, we shall use the symbiol indicate a single
reduction step using any of system’s rules, andf the rule uses Rulér). When unconcerned
by termination, we shall accept the (possibly subscripted)(sMep» M) in this relation. As
usual, is the reflexive and transitive closure, also possibly subscripted. Given a reduction
strategye, we will use the symbat, to denote the subrelation 6% using onlye-reduction
steps. For examplegq for standard reorderingsmcg for minimal complete developments,
etc.

Confluence modulo an equivalence relation is defined as follows ([8]):
Definition 1 A relation— is confluent modul@n equivalence. iff
vy, X,y x~y and x5 X and y5y
implies
Xy’ X 5 X' and ¥y Sy and X~y
Confluence will always mean at least modualaonversion. Furthermore, for several
of our reduction systems, confluence will also be considered mqukdodo-reduced form

equivalenceglPRF), that is the composition of the two equivalenB&F (1) and PRF (II)
of 3.1.2.
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10 Hassan Ait-Kaci and Jacques Garrigue

3.3 Confluence of the reordering system

We can see a-term as a tree. An abstractidpx.M corresponds to a node labeled with
the abstractoApx and it has one son corresponding to the bdtly An applicationM 5 N
corresponds to a node labelegl having two sons: a left one correspondingtand a right
one corresponding tN. A leaf node corresponds to a variable. GivekrermM, we will be
interested in a particular sequence of entitied/pfcalled itsspine Roughly, a term’s spine
is what is left of the tree after clipping all its right branches leaving only stubs of depth one.
More precisely, the spine of a term is the sequence of its entities, starting at the root, of
therightmostdepth-first traversal of the tree obtained from the term’s tree by replacing all the
right expressions of applications by new variable names, each uniquely identifyingithedom
subterm.

Definition 2 (Spine) The spine of an expression is the sequence of its entities obtained
inductively as follows:

spine(Apx.M) = (Apx), spine(M)
spine(M 5 N) = ( $ zv), spine(M) where g is new
spine(x) = (x) ifx € V.

Example 3.2 The entity sequence making up the spine ofXkHerm:

M = px((Agy.(y 7 (Asuu))) 5 (x TV))
is given by:

spine(M) = (Ax), (1), (Aay), (7 22), (¥),
wherez; andz, are new variables standing respectivelyNs subterms< t v andgu.u.

Note that the spine of A-term’s subterm isiot necessarily a subsequence of the term’s
own spine. Given ateriil, by set of spinesf M, we mean the set of spines of all its subterms
(including itself).

The ssizeof a spine is the number of entities it contains. We shall speak ahthexof
an entity in a spine as its position in the spine, starting from the root. The deeper a subterm
occurs in a term, the higher its index in that term’s spine will be.

Lemma 1 (Stability of entities) The reordering rule§1)—(7) do not produce any labeled
entities nor do they destroy any. Moreover, a labeled entity stays on the same spine after any
reordering rule application.

Proof: A quick look at the rules shows that none moves an entity from a spine in the set of spines
of a term to another one. Moreover, it is even possible to track entities through the transformations,
considering that those entities corresponding to the same label occurrence on the two sides of the rule
are in fact identical up to variable renaming details (by “same label occurrence” we imchr#m 1,

nandn 1). ]

Innermost reordering of a term is performed following the following strategy.
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Label-Selective A-Calculus 11

Definition 3 (Standard reordering) A standard reordering is a reordering which rewrites
entities of lower spine index first.

Definition 4 (Locally dependent entities) An abstractor and an applicator are said to be
locally dependent in a term whenever they ¢itate as-redex. They are locally independent
if they do not.

Definition 5 (Dependent entities) An abstractor and an applicator are said to be dependent
in a term if they can beconlecally dependeniby a standard reordering. Otherwise they are
independent.

Note that a consequence of Lemma 1 is that two dependent entities are always on the
same spine.

Lemma 2 An abstractor cannot cross (exchange indexes with) an applicator of higher index
in the spine. Or, equivalently, an applicator cannot cross an abstractor of lower index.

We call amasked ste@uring reordering an application @ﬁ) replaced by two applications
of System 2.2.2—namely2) then(3), or (5) then(7)—or the similar case fofb). Entities
on different spines being independent, a step is masked only relatively to one spine, and
disappears in the next reduction along its spine.

Lemma 3 During a standard reordering locally dependent entities stay locally dependent,
except temporarily duringhasked stepalong their spine.

Proof: Lemma 2 shows that any rewriting involving a local entity dependence can be ddi by

or (b), which does not separate the two entities. When g, (a) can be replaced by application of
another rule but then the next step along that spine necessarily puts them together again, since no left
subexpression of the reduced one is rewritable.

There are cases too where applicatiotmfis replaced by two applications of 2.2.2, because of standard
reordering constraints, but the same phenomenon takes gligc¢3) or (4) (7). |

Theorem 1 (Termination of standard reordering) Standard reordering is Noetherian.

Proof: Since there is no interaction between different spines in this system, it is sufficient to show that
it is Noetherian along one spine.

In fact, we show that, for each spine, standard reordering termina@@f) operationsn being the
size of the spine. Moreover, when we take a minimal reducible subexpression, only the first step is on
the whole subexpression, next ones being on a smaller one.

Base casesa = 0, 1. No rule to apply.
Induction steps:

application of a rule from 2.2.2: if there is no possible reduction in the resulting subexpression,
done: we added only one operation.

If there is a possible reduction, it is in a shorter subexpression: no rule is immediately reversible.
In particular, a situation wher@) or (b) is applicable to the subexpression cannot be obtained
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12 Hassan Ait-Kaci and Jacques Garrigue

from a single reduction on a minimal subexpression. It would mear(dpthat 5 and 73
commuted, but thep = g and a standard reordering would have permuigdnd 3 first. For

(b), Ap and 5 should have commuted, which is impossible.

If the reduction in the shorter subexpression is from 2.2.2, then the two first entities are in their
original order {.e, it was order-normal), with the same order on their labels(for numbers): if it
was an abstraction that went throu@h their labels did not change, and if it was an abstraction,

its label was lower than the two othdis, 6) and each is reduced by 1, or it was higher than the
two (7) and they did not change, or higher than the fijtand lower or equal to the second but
then they become at worst equal and still no reduction is possible. So, we can go on by induction.
Otherwise, if the reduction in the shorter subexpression (egshen we obtain the three first
entities in their original ordeii.€., normal here too), and their labels unchanged, except if @lile

has been used, but there is no new reduction possible since we have Lemma 2. So we can go on
by induction on an even shorter subexpression.

And last, if (b) is used, we have certainty p or (1) would apply. If(7) has been used before,
thenm p, so thatm g and there is no possible reduction between those two abstraction. If
another rule was applied before, two cases. 1) the first entity is an abstractior(3Ratg(6)

was applied, and since it was nextXgits label is still strictly inferior tog. 2) the first entity is

an application, its label was p, and no rule permit this configuration. Here too we can go on by
induction.

application of Rulg(a): we know then that there is no locally independent abstractio,in
otherwise one of rule®), (1), (3), (4), (6) or (7) could be applied in a subexpression. It means
that by Lemmas 2 and 3 all subsequent reductions will beig ). Induction hypothesis is
applicable.

application of Ruléb): eitherM starts with a locally independent abstraction, with a label greater
or equal tag, which is greater or equal fw(otherwise Rule$l) or (4) would apply), and the next
step is(b) again: its label being greater or equabtave can go on by recurrence; eithdrstarts
with an application, and the full subexpression is order-normal.

In all the case we have shown that we can go on by induction and that the introduction (at its root) of
a new entity in a subexpression causes at magierationsn being the size of the subexpression. We
can then conclude that standard reordering terminates in Iesgiﬂg_éh steps, which i©(n?). |

Theorem 2 (Confluence of standard reordering) Standard reordering is confluent modulo
PRF equivalence.

Proof: We examine confluence in each spine, and will first show local confluence.

In each spine there can possibly be at most one minimal subexpression to reduce, ibgrdefithe
standard reordering.

By the structure of the patterns used in rules, only the beginning of the subexpression determines the
choice of the rule. Rules in 2.2.2 are determined by the two first entities, and are completely distinct
by the difference application/abstraction and the order of the labels. (Ruleay apply when a rule

of 2.2.2 is possible too, that is when> q. Since we consider the system modulo PRF equivalence,
that means at any time, by second equivalence. In {@ss applied, the next is necessar{ly), and

the result is the same. In caf is applied, the next if4), and we still obtain the same result modulo

PRF equivalence.

For the same reasons, R(il® may be replaced by rules from 2.2.2, with same conclusion.

We do not have to consider the first equivalence in detail: since we are working on a spine, and modulo
second equivalence too, all locally dependent pairs look the same.
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Label-Selective A-Calculus 13

So in each spine the next possible step is determined, or it just may be divided in two steps, which does
not matter for confluence, since no other step can delay the second one. This determinism proves the
local confluence of this system modulo PRF equivalence.

By a theorem in [8], a system Noetherian and locally confluent modulo a relation is confluent modulo
this relation. 1

Proposition 1 Standard order-normal form and order-normal form are equal modulo PRF
equivalence.

Proof: No reordering rule may apply on a standard order-normal form. A reordering rule may be
impossible in a standard reordering only when another reordering rule is possible. ]

Theorem 3 The reordering system is confluent modulo PRF equivalence.

Proof: Itis sufficient to show the confluence in each spine.

We show that for each rule that might be applied, a standard reordering of the minimal subexpression
containing it would give the same result modulo PRF as taking the result of the rule and applying it a
standard reordering. That is:

PMH(T,T "YPos T,Mpeg T, T T .

It is enough, since it shows that for any expression having an order-normal form (and they all have),
applying any reordering rule will not change this order-normal form modulo PRF equivalence, so that
applying different reorderings to an expression will always be reducible to the same order-normal form,
in a finite number of steps, since standard reordering is Noetherian.

\
Y

™TT

We prove it by induction on the length of the longest standard reordering.

(a) If the standard order-normal form starts with an application, {@@r(or an equivalent two
steps form as above) is the standard operation. OtherfjseM) 5 N would first go in by
successive applications @) or its equivalent, and therg P would go in. Sincgb) does not
modify its context, if 5 P is not dependent, then the same R{alewould be applied later in the
standard reordering and we would finally obtain the same order-normal form. If it is dependent,
then the order of the two pairs will be inverted, but confluence is preserved by PRF equivalence.

(b) If the standard order-normal form & starts with an application, the() or its equivalent
two step operation is the standard operation. Otherkggenay first go in, but will eventually be
passed by thp pair using Rulgb) or equivalent. The result is identical modulo PRHF.
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14 Hassan Ait-Kaci and Jacques Garrigue

(1) This is the standard rule if the standard order-normal forrvicdtarts with an abstraction,
or an application greater or equaldo Otherwisep does not change argican only be reduced
(if numeric), so they would switch (exchange indexes) anyway and the order-normal form be the
same.

(2) If the two are independent, or onfydependent then the switch would happen later, but the
result be the same. If onlyis dependent, then there would be no switch, but the result is still the
same since onlg may change if numeric. If the two are dependent, then the result is identical
modulo PRH]).

(3) This is the standard rule if the standard order-normal forrvicdtarts with an abstraction,
or an application greater or equalfio Otherwise ifg < p andq is dependent, then in fact they
would not have to switch, but the difference is masked by PRFIf it is not dependent, they
would switch later.

(4) This is the standard rule if the standard order-normal forrvicdtarts with an abstraction,
or an application greater or equalrio Otherwisel,y would go in by Rulg(4), which does not
change context, thekyx, which would finally cross it with the same difference between labels.

(5) This is the standard rule if the standard order-normal forrMadtarts with an abstraction
greater or equal to. Else if the two are independent, in a standard reorderiy would have
first gone in and theny P coming after crossing it in the independent application part. Making
the switch first is not a problem, sincg=; N will then move in a context where every label
greater than it has been decremented too, ailonly stops after the switch.

If only 7 P is dependent, the{b) was superfluous since we will finally have the original order.
But the result will be the same. If only; N is dependent, the switch is needed, but may have
occurred later as afa) rule. If the two are dependent, the results are identical up to(PRF

(6) This is the standard rule if the standard order-normal forrvicdtarts with an abstraction,
or an application greater or equal t@ Else, they would have to switch anyway. N is
independent, then the switch would be caused by the same(Ruletherwised,x would first
cross the dependent abstraction, be reduce@jyand the switch would cause no reduction as
done by(b). So the resultis the same up to PRH.

(7) This is the standard rule if the standard order-normal forti starts with an abstraction, or
an application greater or equalto Else they would have to switch anyway. WhethgN is
dependent or not does not matter: the switch will be always caused by Ruimcem < n.

Lemma 4 Locally dependent pairs stay locally dependent in the order-normal form.

Proof: Lemma 3 and confluence modulo PRF equivalence. ]

The following proposition is not really needed in the rest of the proof, but we give it for
the sake of completeness.

Proposition 2 The reordering system is Noetherian.

Proof: The only cases of superfluous operation relatively to a standard reordering is when an dependent
application crosses another application while going in. This is superfluous since it will stop in a situation
where second equivalence applies, and reordering is not needed (if the second application is dependent),
or twice superfluous if the second application is independent since it will have to cross it again.

However, these situations are limited to one for each pair of applications, wiigives a maximum
reordering time irO(n?). 1
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Label-Selective A-Calculus 15

3.4 Confluence of g-reordering

Definition 6 (3-Reordering) A 3-reorderingstep is a3-reduction step immediately followed
by a reduction to order-normal form.

Since reordering is Noetherian and confluent modulo PRF-equivalence, this completely
defines a reduction rule on the quotient of order-norrédrms modulo PRF-equivalence.
The one-ste@-reordering relation is denoted asg; .

Not to worry about renaming problems during reordering, we will assume that all free
variables and abstraction variables have distinct names.

For Definition 6 to stand we have to prove that PRF-equivalent order-normal expressions
are still equivalent afteg-reordering. PRF equivalenc(el) is not a problem: either the
modified entity dependence is reduced, and then, the label does not matter, or it is not, and
then it is changed back to what it was. As for, PRF equivaléheve can assume that the
reduced dependent pair is always in the least possible index in the spine. Ifitis not, it does not
matter since this equivalence obviously preserves entity dependencies.

Thisjustifies usin the rest of this section, to consider no longer terms, but their equivalence
classes modulo PRF equivalence.

For any label-selectiva-term M, we will note M | its order-normal form. To lighten
notation, but only in this section, we will write a tesh when we actually meanimplicitly.

We shall do that everywhere in the section, except of course when we prove properties about
it. That is, everywhere except Lemmas 5, 6 and 8. That means that geférallyJ should
beread adl [=N|, M —g NasM|—g N[, andM >mcgN asM | >medN |-

From here on, the proof @-reordering confluence follows the Martiret-Tait scheme
as in [7]. Bycontractinga 8-redex, we mean applying the corresponding stef-ofduction.

Definition 7 (Residuals) Let R, S be3-redexes in an order-normal-term P. When R is
contracted, let P change to P’. The residuals of S with respect to R are redexes in P’, defined
as follows:

e R, S arenon-overlapping partef P. Then contracting R leaves S unchanged. This
unchanged S in’Rs called the residual of S.
e R = S. Then contracting R is the same as contracting S. We say S has no residual in P

e RispartofSandR # S. Then S has for\p;x.M) 5N and R is in M or in N.
Contracting R changes M toMr N to N, and S to(Ayx.M’) 5 N or (Apx.M) 5 N';
this is the residual of S.

e SispartofRandS # R. This case will not happen in our proof.

Note that in this definition, the meaningmbn-overlappings taken in a large sense: it means
that there is a configuration of entity dependencies suctRtbatdSare not overlapping. Note
also that in these three casglas at most one residual.

Lemma 5 (Substitution) Reordering before or after a substitution does not change the result.

[N/XIM = [N/xIM |
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16 Hassan Ait-Kaci and Jacques Garrigue

Proof: We shall only consider whether ends of spines (last variable) will be substituted or maicHn

spine where it is substituted, we can conclude by confluence of reordering (reordering the outer part of
the spine and then introducing the end is equivalent to reordering directly the whole spine). In spines
where it is not, there is no problem since they are left unmodified. ]

Lemma 6 (Induction) M —g M = ApxM —g Ax.M’
M_>,5l MI:>M’§N—>ﬂl MIﬁN
N —g| N’ :>M’§N—>ﬂlM’§NI

Proof:

1. M= ApX1...Ap%.Mz, with My an order-normal form starting with an abstraction gng i+1.
So thatM’ = Ap, X1 ... Ap,%.M], with M/ any order-normal expression, akd g M]. Hence

ApX-M = Apl)(]_...Ap’X...Aann.Ml
8l )\plxl...)\er...)\ann.Mg_
= ApX-M,

2. If 5 Nisdependent then

MpN = (ApXe .. ApX... Ap%.M1) 5N My as beforgpi p in
= Ap Xt .. ApXn-((Apx.M1) 5 N)  (order normal form
B ApXa - ApXa-(ApxMi) 5 N)
= (ApXe .. ApX. . Ap X M) 5N
= ! ’5 N

M} order normal

If 5 Nis not dependent then

MpN = (ApXr - Ap X A(Z G N... g Nm)) 5N
= Apl)(]_...Aann.A(Za\lN... E)\INarTnNm)
8l )\plxl...)\ann.A’(Z’ n S_ B?N arTnN:n)
= (ApXt . Ap X A(Z G Ni... g NL)) BN
= M’ ? N
whereA is the entity dependencie&’ the reduced dependencies, ahid unchanged because all
its variables are free.
3. By independence of spines.

Let Ry,..., R, (n > 0) be redexes in a ter. An R is calledminimaliff there is a
configuration of entity dependencies in which it properly contains no &hérhat is, there is
a configuration of entity dependencies where it is the most internal redex and there is no redex
in applications of spine index higher than or equal to its own.

A minimal complete developmdMCD) of {Ry, . . ., R} in Pis asequence of contractions
on P performed as follows:

e  First, contract any minimdR, (sayi = 1 for convenience). This leaves at most 1
residualR,, ..., R, of Ry, ..., Rn.
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Label-Selective A-Calculus 17

e Then, contract any minimﬁi‘-’. This leaves at most— 2 residuals.
¢ Repeat the above two steps until no residuals are left.

Note that this process is non-deterministic, and thus there are more than one such sequence of
contractions.

Definition 8 (MCD) Let P be a term as above, and Q a term. We write, By Q iff Q is
obtained from P byninimal complete developmeanf the se{Ry, ..., R.}.

Note that ifM >meg M’ @ndN >N, thenM 5 NepegM’ 5 N (cf., Lemma 6)

Lemma 7 If M pmegM’ and Nemeg N, then

Proof: We proceed byriduction onM. LetRy, ..., R, be the redexes developed in the given MCD of
M.
1. M = x. Then n=0 and/’ = x, so
[N/XIM = NppregN' = [N'/x]M’.
2. X FV(M). Thenx FV(M ), so
IN/XIM = M pmeg M’ = [N'/XIM'.
3. M = Xpy.M1. Then eaclB-redex inM is in My, soM’ has formipy.M] whereM; >mcgMj. Hence

[N/XIM = [N/X](2py.M1) Lemma5
= ApY.[N/XIM1  sincey FV(xN)
bmed  ApY-[N'/XIM] by induction hypothesis
= [N'/x]M’ sincey FV(xN 7)
4. M = M1 5 Mz and eaclR, is in My or M. ThenM’ has formMj 5 M5 whereM; >mcqd MJ—’ for
j =1,2. Hence
[N/XIM = (IN/XIM1) 5 (IN/XIM2)  Lemma5
bmed  ([N'/XIM]) 5 (IN'/XIM5) by ind. and note above
= [N'/X]M’.
5. M = (Apy.L) p Qand oneR;, sayRy, is M itself and is contracted last, and the others are an

Q. (Ifitis not contracted last then we have= (AqzK) 3 Otoo, and this one is contracted last).
Hence the MCD has form

M= ()‘py-l—) ) Q Pmed ()\pY-L’) 0 Q (L Pmed L', QPmed Q’)
a [Q/yL
= M.

By induction hypothesis we have MCD’s dfifx]L and N/x]Q. Hence
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INXIM = (Apy.[N/XIL) 5 ([N/X]Q)  sincey FV(xN)
bmed  (ApY-[N'/XIL’) 5 ([N'/X]Q’) induction
a [(IN'/XQ) /N /L’
= [IN/X[Q/yIV
[N'/X]M’.

This reduction is an MCD, as required.

Lemma 8 (Proof induction) If there is an MCD

P= (AQpxM)sN S5 (ApxM) N
—g [N'/M" = Q
=g Q
then there is an MCD

P= (AQpxM)sN Sg (ApxM") 5N
_>,5l [NII/X]MII — QI

Proof: Since this is an MCD, new reductions do not apply on redexes created in the substitution, and
Q' has form N" /x]M".

We should then just show that there are MCIVb»>mcg M” and N >peq N7, which proves that
(ApX-M) 5 N>mea [N /XIM, by Lemma 7.

Each step of the original MCD afteN[/X]M’ only modifies eitheN’ or M’ at a time. So that we can

write M’ g M1 g ... g M”, and since itis an MCDW’ g M. Similarly N’ >meg N7, And
all the reductions performed are on the external level, that is permutable with our reduction an
MCD. SO thatM >mced M” andN >mced N”. I

Lemma 9 If P >megA and Peneg B, then there exists T such thatfeg T and Bomeg T

Proof: By induction onP.

1. P=x ThenA =B = P. Choosel =P.
2. P = Apx.P1. Then all3-redexes irP are inP¢, and
A= ApxA, B = Apx.By,
whereP; >meg Ay andP1 >meg Br- By induction hypothesis there isTa such that
Aq >med Ta, B1 >med Ta.
ChooseTl = Apx.Ty.

3. P = P1 3 P> and all the redexes developed in the MCD's arePin P.. Then the induction
hypothesis gives u$y, T, and we choosg; ; T».

4. P = (Apx.M) 5 N and just one of the given MCD's involves contractiRg residual; say it is
P>mcdA. Then, by Lemma 8, there is an MCD with form
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P =  (AxM)3N
[>mcd (ApX-M,) /r_; N, (M [>mcd M,, N [>mcd N’)
p IN'/XMY
= A
And the other MCD has form
P = (AxM)3N
>mcd (ApX-M”) /r_; N” (M >mced M”, N >mced N”)
= B.
The induction hypothesis applied kb, N gives usM*, N* such that
M’ >med M+, M” bmed M*;
N, >mcd N+, N” >mcd N+.
ChooseTl = [N*/x]M*. Then there is an MCD from A to T, thus, by lemma 7
A = [N,/X]M, >mcd [N+/X]M+.
And for B,
B = (ApxM") 5N
>mced (ApX-M+) /r_; N+
a [NT/X]M*

5. P = (Apx.M) 5 N and both the given MCD'’s contraBts residual. Then (Lemma 8) we can give

these MCD'’s form

P = (ApxM)35N P = (AXM) 3N
>mcd (ApX-M,) /r_; N, >mced (ApX-M”) /r_; N”
8l [NI/X]MI 8l [NII/X]MII
= A, = B.

Apply the induction hypothesis fd andN in case 4, and choode— [N*/x]M*. Then Lemma 7

gives the result, as above.

Theorem 4 g-reordering is confluent modulo PRF equivalence.
Pohg M, PSg N=(3T)M S5 T, N 5g T.

Proof: By induction on the length of the reduction frdto M, it is enough to prove
P s, P aN)(MM 5T, N 4T

Since a singlg-reordering step is an MCD, it is sufficient to have
PomeaM, P " g N)(T)M " g T,Npmea T

which is shown by an induction on the numbeGa$teps fronP to N.
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3.5 Confluence of selective A-calculus

In this section,— (or —,) denotes the union g#-reduction and ordering rules (label-
selectiveA-calculus), and—,, is the union of all rules (label-parallel system). We will now
no longerconsider terms modulo PRF equivalence, except indeordering diamond of
Figure 1.

Definition 9 (Normalized reduction) For each label-parallel reduction M —, M; —,,
. —» Mp we define itsiormalized reductiolNg —g N —g ... —g N, by taking for each
N; the order-normal form I .

Proposition 3 Normalized reduction is A-reordering.

Proof: We should verify that we really obtaingreordering by this process.
We can first remark that, since we have Lemma 4@akdexes irV; are still3-redexes ir\;.

If Mi M . is a reordering step, thed = Ni41. Else,M; M 41 is aB-step, and we should show

Ni g Ni+1. Fromour remark, we havd, g N/, reducing the same redex. We will in fact construct

two parallel reorderings d¥l; andM;.;. First, a standard reordering B, from Mi0 = M; to Mik =N;,

in which will not appear the masked step described about local entity dependencies,; asdne
reordering step, or two if there is a masked step in the process. With such a reordering, we have at each
stepM! M ! by ag-step. Then we define a reordering\f., going through alM’s. If M/ . MI**

is a single step, then it cannot separate two locally dependent entities. There are four cases to consider:
1+l

1. Ifitis external to the reduced redex, then we can do the same redMﬂionC M;

2. Ifitis internal, theB-reduction may only substitute some variables, but the reduction can still be
applied.M! . M1,

3. If it was an(a) or (b) reordering step over the redex, then it is superfluous after reduction,
M = M

i i
1+l

4. Inthe two step case, itis equivalent to(ahor (b) reordering step, as shown abO\D\Gzi’.j =M

Finally we can go fronM!¥ to N/ by a standard reordering. By confluence it gités= Ni.1, and the
normalized reduction is correctly constructed. ]

Theorem 5 (Confluence of label-parallel reduction) The label-parallel system is conflu-
ent. Thatis,

PS5, M, P5,N= (ATMS, T,NS, T.
Proof: We have

P le W ot me :M,
P w N w- - wNy =N.

So that we obtain normalized reductions

PP ML g g My,
PNt goo o Nn

May 1993 Digital PRL



Label-Selective A-Calculus 21

And by confluence of-reordering,

Mhp =R gR g... gR =T,
Ny =% aS @ aS =T

Since normalizedd-reordering) reductions are confluent, and all steps used here are in the label-parallel
system, the label-parallel system is confluent modulo PRF equivalence.

We can then reduce all th@-redexes present in the resulting term, and obtain full confluence. All
differences masked by PRF equivalence are contained in the redexes, and since in this last stage we do
not use pseudo-reduction, we do not create new differences. ]

Theorem 6 (Confluence of label-selective A-calculus) The label-selectivei-calculus is
confluent. That s,

P5M,P5N= 3T)MST,NST.
Proof: By Theorem 5,

M :RO uRl W e er :T,,
N =& w S wor WS =T.

But the absence of pseudo-reduction rules makes itimpossible to follow these paths. Each time we have
a(a) or (b) reduction, we should haveg@reduction in place. So we just have to rewrite them, which
makes superfluous some later steps or couples of steps, that we will just suppress. It may duplicate some
later reduced redexes too. In this case we will have to duplicate these later steps too, but this is finite.

We will finally have two expressions, coming from a PRF equivalenf’ddy 8-reduction only. The
number ofg3-reductions done may differ, but reducing all the redexes which were presdttisn
enough. That is,

M RJ R4L ...R I "gT,
N S S .S L T,

o~
e~

whereR " g R (for some PRF equivalent form &), andS ~ g S (idem). So that finallyM T
andN T. [

Figure 1 shows a schematic diagram of the process.

4 Extended systems

These proofs are valid in fact for a whole range of systems. The most immediate ones
are the two systems in which only numeric or only symbolic labels are acceptediviiju
they represent two different way of introducing some commutativity-galculus. Selective
A-calculus is their sum. Namely, it is obtained as the calculus over the set of labels which is
their disjoint sum:.L = S + N
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Figure 1: Schematic confluence of label-seleciivealculus

4.1 Product system

Since we have a sum, it is natural to think of a product. That is, the calculus over the set
of labels which is the Cartesian product of symbolic and numeric label. Namely, a label in
now a pair symbol-numeral if = S x A. This system corresponds to a calculus of named
channels on which only numeric positions are considered. Per channel name, relative numeric
position arguments can be done in that relative reordering of distinct positions is allowed. In a
sense, it is orthogonal to the sum system, in that it separates names and numbers, although it
provides each with the functioligy of label-selective:-reduction.

B-Reduction for product, as for the sum, requires identically labeled abstractor and
applicator:

(8) (ApmxM) ginN — [N/XIM

As for reordering, we need only slightly alter reordering rules of the sum system as shown in
Figure 2. Clearly, all proofs done above on selecivealculus are still valid for this system:
we take care of numbers only when symbols are identical, and have then the same rules.

4.2 Polynomial systems

If we have sums and products, we should be able to combine thgmolyAomial system
is defined by two mutually exclusive sets of nanSeand7, and taking the set of labels to be
L =38U (T x N). The syntax s:
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=

ApXAgny-M  — AgnY. AprX.M p>q
MpnNgP —MagPpgN p>q
(AerxM) @ N— dpmx.(M @N)  p#q
ApmX-Apny-M = Apny. Apm-1)X-M m>n
MNP —MgmP =y N m>n
(Apm<M) gn N = Agm-1x.(M g N) m>n
(ApmxM) g N —= Apmx.(M 7=y N) m<n

N

o Ol

N N N
N N N N N N N

\l

Figure 2: Reordering rules for polynomial system

M= X | ApXM | AgXM | M s M" | M ga M’

withpin S andqgin 7.

We just take Rule$1)—(3) of selectiver-calculus applied o U (7 x A) and Rules
(4)—(7) of product systems, applied Gh

Selective-calculus is a polynomial system whefds restricted to an unique constructor
¢, abbreviated.

It is only for clarity that proofs where given for selectigecalculus, rather than for any
polynomial system, where they are anyway valid. We should always keep in mind that when
we prove or build something on selecti¥ecalculus it will be nearly always generalizable to
any polynomial system, for which we are just using an abbreviated notation.

5 Towards a transformation calculus

We will just give here a new notation, and explain in what way this notation suggests
another extension of selectivecalculus.

The intuition behind selectiva-calculus is no longer functions but functions over
labeled arguments which behave like communicating processes through named or (relatively)
numbered channels. Application corresponds to process communication. What we called
entities are seen axtions abstractors correspond to receiving and applicators to sending.
But what about composition? Itis easily defined for functionseeg = Af.Ag.Ax.f(gx) inthe
classical calculus. We could of course think of a labeled composition oreafdr label. But
this is rather weak. Particularly when we think of the powerful out-of-order currying power of
our system.

Rather, we will just change notations, and define:

def
M\p’x:e)\px.M

All terms now take the fornx - P, whereP is a sequence of entities, or actions, arige
syntactic juxtaposition. Then we can obtain a more interesting compositioMwith= M- P,
where we do not specify anything about labels, and may have created more than one connection
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at once. Here agaiR is a sequence of actions, and we would like to manipulate them as
such. The potential of this notation is such that it simplifies considerably many proofs. For
instance we could prove easilyoBim’s expansion theorem using it. Since our extension is
conservative, our proof is valid for classicakalculus as well.

Of course, all this starts to be strongly reminiscent of a calculus for process communica-
tion [12], although still a direct and conservative extension of clasaicallculus. We believe
that this is not coincidental. This idea is the object of our current research and we are actively
exploring the deep connections with the various existing communication calculi. But, we shall
say no more on this for now.

6 Conclusion and further work

Label-selectiver-calculus offers the advantage of realizing directly a more complete
isomorphism of Cartesian products and function applications. An immediate consequence
iS a more convenient notation, and a more efficient, indeed concurrent, manner to extract
arguments out of order.

Beyond the bare calculus, we have started studying a typed version of our calculus [6].
There, we propose a simply typed version of this calculus, and show that it extends to second
order and polymorphic typing. For this last one there exists a most generic type, and we give
the algorithm to find it.

A topic for further work along this idea is, of course compilation. As mentioned in the
first section, we plan to extend the stack-based model of executidrcafculus with our
label-selection scheme to realize efficient access to arguments regardlessaf fadxel. We
have already adapted the calculus of explicit substitutions [1], as are currently working on a
compiling scheme for label-selectiwecalculus based on it.

Also, we plan to study the work of Ohori [13] to elucidate the gains that this may have
in the compilation of records. As for semantics, we have initiated work on a typed version of
label-selectivex-calculus and a framework of models for it.

We have formulated and are studying several concurrent calculi extending label-selective
A-calculus towards full concurrency [2], including the provision for computable channel
names. One of the gains expected is thaglculus will need not bencodedas in [11], but
directly embedded as syntactic identity.

Finally, the real goal that has motivated our working out this calculus has been to use
it for a useful generalization of object-oriented style of message passing. Method invocation
based on the type of the first argument of a call can be elegantly explained by seeing a method
definition in a class as a curried form with respect to the object instance of the class. Label-
selective currying can thus reinstate the lost symmetry by distributing one partially-applied
form for each arguments of the class of a method. As a result, message-passing can be used
on any argument of a call, making labels act as channels. Our confluence result guarantees
that the choice of channel does not matter. We plan to pursue this insight and investigate all
its ramifications.
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