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Abstract

We introduce an extension of�-calculus, calledlabel-selective�-calculus, in which arguments
of functions are selected by labels. The set of labels includes numeric positions as well as
symbolic keywords. While the latter enjoy free commutation, the former must comply with
relative precedence in order to preserve currying. This extension of�-calculus is conservative
in the sense that when the set of labels is the singletonf1g, it coincides with�-calculus. The
main result of this paper is the proof that the label-selective�-calculus is confluent. In other
words, argument selection and reduction commute.

Résumé

Nous présentons une extension du�-calcul, appel´ee �-calcul label-sélectif, dans laquelle
les arguments des fonctions sont s´electionnés par des ´etiquettes. L’ensemble des ´etiquettes
comprend des positions num´eriques aussi bien que des mot-clefs symboliques. Alors que ces
derniers jouissent d’une commutativit´e libre, les premiers ob´eissent `a une précédence relative
pour préserver la curryfication. Cette extension du�-calcul est conservatrice en ce sens que,
quand l’ensemble des ´etiquettes est r´eduit au singletonf1g, elle coı̈ncide avec le�-calcul. Le
résultat essentiel de ce papier est la preuve de confluence du�-calcul label-s´electif. En d’autres
termes, la s´election d’arguments et la r´eduction commutent.
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Label-Selective �-Calculus 1

We can move from one language to another, but in doing
so we accept new constraints and make new mistakes. We
also adopt a different tone, enjoying theje ne sais quoiof
Sprachgef¨uhl.

ROBERTDARNTON, The Great Cat Massacre

1 Synopsis

Many modern programming languages allow specifying arguments of functions and
procedures by symbolic keywords as well as using the traditional and natural numeric
positions [14, 10, 3]. Symbolic keywords are usually handled as syntactic sugar and “compiled
away” as numeric positions. This is made easy if the language does not support currying (like
Common LISP or ADA). Even if currying is supported and the situation reduced to numeric
positions, it is allowed strictly in a left-to-right order so that the first argument is “consumed”
before the second. In general, if a functionf is defined on two arguments and it is desired
that the second be consumed before the first, one must resort to using an explicit closure of
form �x:�y:f (y; x) and curry that one. However, the cost incurred (the closure construction
and ensuing weight of handling in terms of depth of stack,etc.) is undue since out-of-order
currying simply amounts to commutation of stack offsets.

More precisely, currying is possible thanks to the following natural isomorphism:

A� B! C ' A! (B! C)

for any setA, B andC. However, there is another obvious natural isomorphism that could also
be useful; namely,A� B ' B� A. Hence we should be able to exploit this directly in the
form:

A! (B! C) ' B! (A! C):

One way to do that is to use a style of Cartesian product more of acategory-theoretic, as
opposed toset-theoretic, flavor. By this we mean that if projections�1 and�2 were used
explicitly instead of the implicit1stand2ndof the� notation, then instead ofA�B we would
write �1 ) A � �2 ) B. Thus, allowing this explicit product expression makes Cartesian
product commutative explicitly, as opposed to “up to isomorphism.” Indeed, it becomes
obvious that:1

�1)A� �2)B ' �2)B� �1)A;

and thus that:

�1)A! (�2)B! C) ' �2)B! (�1)A! C):

The advantage of explicit projections is clear: one can account directly for symbolic
keywords since these play precisely the role of projections. The other benefit is the

1Parse the following with ‘)’ binding tighter than ‘�’ or ‘!’.

Research Report No. 31 May 1993



2 Hassan Aı̈t-Kaci and Jacques Garrigue

aforementioned permutativity of currying which allows out-of-order partial application of
function to its arguments. For example, an out-of-order application likef (2) a) can be
readily used when there is a need to consume the second argument before the first, as opposed
to the more complex and costly(�x:�y:f (y; x))(a).

The drawback of explicit projections, however, is also obvious: implicit argument
positions as numeric offset is lost, and the notation is more cumbersome. It is indeed much
easier to writef (x; y) instead off (1) x; 2) y) every time we need to applyf to two
arguments.

So the question is: can we allow freely mixing implicit and explicit argument selectors
safely? In other words, can we allow the notationf (x; y) to be syntactic sugar for explicitly
selectingf (1)x; 2)y)? If we do, the least we should require is that the “all-functions-are-
unary” paradigm of�-calculus be retained. This means that the equationf (x; y) = f (x)(y)
should hold for any such expression. However, the syntactic sugaring gives, on one hand,
f (x; y) = f (1) x; 2) y), and on the other hand,f (x)(y) = f (1) x)(1) y). Therefore
the free syntax should guarantee thatf (1) x; 2) y) = f (1) x)(1) y). In other words,
stack offset permutation must be built into the rule of application at numeric positions. This is
essentially what is performed in the extension of�-calculus that we propose here.

1.1 Relation to other work

There is an immediate relation between our calculus and the notation with offsets
introduced by de Bruijn [5] and used for the compilation of�-calculus in the style of the
SECD machine [9]. In fact, our calculus enforces commutativity of these indices and therefore
extends the use of de Bruijn offsets for that model of implementation to include label-selective
argument passing. In that way, selective currying can be statically compiled into direct stack
access by generating simple arithmetic code involving de Bruijn offsets and selector numbers.
Hence, our work is a simple and natural generalization of de Bruijn’s idea. We have already
adapted the calculus of explicit substitutions [1], and are currently working on a compiling
scheme for label-selective�-calculus based on it.

Another, albeit remote since unexplored, potential connection may be with the recent work
of Ohori in compiling extensible records for functional programming [13]. Indeed, records
are essentially labeled Cartesian products. Since that style of records allows extensions and
out-of-order labels, it is possible to use them in a way similar to ours for passing arguments.
At this time, the potential connection is a simple speculation and begs for deeper study.

An intuitive, but accurate, explanation of label-selective�-calculus can be given as
extracting implicit concurrency from�-calculus. It is well-known that�-calculus is a
sequential calculus and for a clear reason: function application is not commutative. This
inherent sequentiality is exacerbated all the more by the strict syntactic left-associativity of
application adopted by�-calculus. Hence, our idea is to reveal the inherent concurrency lost
in �-calculus; namely, commutation of arguments in applications. The syntax and operational
semantics that we propose are precisely meant to expose, explicate, and exploit this implicit
concurrency. This concurrency is inherent in�-calculus in the sense that it does not interfere
with the confluence of the calculus. This would not be the case with a fully concurrent
extension of�-calculus using parallel composition, a commutative monoid. Thus does our

May 1993 Digital PRL



Label-Selective �-Calculus 3

calculus differ from the known calculi for communication of concurrent processes [4, 12, 11].

In [4], Gérard Boudol proposes
-calculus, an extension of�-calculus based on realizing
that�-reduction iscommunicationbetween a receiving�-abstraction and a sending operand
along one single channel called�. Thus, the argument of a�-redex is implicitly prefixed with
�̄. This idea is taken to its full extent by Robin Milner in [12] where, rather than� alone,
there are (countably) many channelnames. In both Milner’s and Boudol’s calculi, parallel
composition is used to achieve full concurrency and thus, naturally, confluence is lost. By
contrast, label-selective�-calculus isnot a fully concurrent calculus. Indeed, our calculus is
a confluent one. It explicates the fine interaction between functional application as process
communication along channel names that are identified, not as�’s as in [12, 4], but as explicit
positionnames. This is a wholly different insight. In addition, the availability ofnumeric
channels and their laws of relative commutation allows also to speak ofrelativelynumbered
channels, as opposed toabsolutelynamed channels only.

We are also developing, and will report later [2], our label-selective calculus as a true
calculus of communication and concurrency. We plan to extend the calculus along the
lines of Robin Milner’s�-calculus, adding, for example, process operators, such as parallel
composition and non-deterministic choice, as well as exploring other directions, for example,
by allowing computable channel names. One of the gains expected is that�-calculus will need
not beencodedas in [11], but directly embedded as syntactic identity.

In summary, what we recount in this paper, has not, to our knowledge, been studied as
such.

1.2 Organization of paper

We have organized this paper as follows. In Section 2.1 we introduce our language of
selective�-terms. In Section 2.2 we present reduction systems for these terms. The core of the
paper lies in Section 3 where we give the proof of confluence of selective�-calculus. Section 4
is a reflection on the link between symbolic and numeric labels. Finally, we close the paper
with some conclusion and a brief discussion of further work to follow this idea in Section 6.

2 Selective �-terms

2.1 Syntax

Selective�-terms are formed by variables taken from a setV , and two labeled construc-
tions: abstraction and application. The labeling is done with labels taken from a set ofposition
labelsL. This set is the disjoint union of two sets: the setN = IN � f0g of numeric labels,
and the setS of symbolic labels. Each of the three setsN , S, andL, is totally ordered.
Namely,N is ordered with the natural number ordering, that we shall write<N ; S is ordered
with a linear order that we write<S ; and,L is ordered by the order<L such that<L = <N
onN , <L = <S onS, and8(n; p) 2 N � S; n <L p. In other words, all numeric labels are
less than all symbolic labels.

We will denote variables byx; y, labels inL by p; q, reservingm; n to numbers inN , and
�-expressions by capitals.
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4 Hassan Aı̈t-Kaci and Jacques Garrigue

We can define the syntax of�-terms as:

M ::= x (variables);

j �px:M (abstractions);

j M bp M (applications):

We will say of a term�px:M that it “abstracts x at p in M,”, and of the termM bp N, that it
“applies M to N through p.”

It will often be convenient to break the atomicity of an abstraction or an application.
In the abstraction�px:M, the part�px will be called itsabstractor, andM its body. In the
applicationM bp N, the part bp N will be called theapplicator. By entity, we will mean either
an abstractor or an applicator (in which case we speak of alabeled entity), or simply a variable.

2.1.1 Relative and absolute positions

Before we delve into the technicalities of reduction, let us give some intuition to justify
this syntax.

Symbolic labels are what we referred to as “keywords” in the introduction. A useful
way of thinking of these symbols is to see them aschannel namesused for process
communication [12]. Here, a process is a�-term, wheresendingis performed by applicators
andreceivingby abstractors. If an application is performed (“sends arguments”) through two
different channelspandq, then clearly there cannot be any ambiguity as far as which abstractor
will “receive” them. Hence, these reductions (“communications”) may be done in any order,
with the same end result. However, if that situation arises withp = q, then clearly the order
in which they are performed will matter. In this case, the rules will insure that reduction will
respect the order specified syntactically. In other words, several arguments sent through the
same channel are “buffered” in sequence.2

If numeric labels are always kept explicit, then the above view applies to them as well.
Indeed, recall from the introduction that the free syntax of function application to several
arguments at a time uses their positions as Cartesian projections;e.g., f (a1; . . .; an) may be
seen as the more explicitf(1)a1; . . .; n)an). However, numeric labels do not quite behave
like symbolic labels in that a number is alwaysimplicitly seen as thefirst positionrelatively
to the form on its left. More precisely, currying works by seeing each argument as the first
one relatively to the form on its left. This has the benefit of simplifying the rule of functional
reduction to be alocal rule never needing to consider more than a single argument at a time.
So, clearly, we do want to allow using relative argument positions.

Nevertheless, it is more natural to use absolute positions “packaged” as labeled Cartesian
tuples. For instance, it is easier to write

�
�(1) x; 2) y; 4) z):M

� b(1) a; 4) b) rather
than(�1x:�1y:�2z:M) b1 a b3 b. However, the latter fully curried form is needed to express
reduction with local rules. Fortunately, translation from the notation with absolute labels to a
fully curried one with relative labels is in fact systematic: one need simply subtract from each

2In fact, we are also considering a possible variation of our calculus where this sequential buffering is not
guaranteed. Rather, several arguments received on a given channel are chosen non-deterministically. This
interesting twist yields essentially the functionality of asynchronous process communication, at the expense, of
course, of confluence. That work is the object of our current study and will be reported later [2].
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Label-Selective �-Calculus 5

numeric label the number of numeric-labeled components to its left in the labeled Cartesian
product. Namely, for anyik; j` 2 N such thatik < ik+1; j` < j`+1, (1� k� n; 1� ` � m):

�
�(i1) x1; . . .;

ik) xk; . . .;
in ) xn) :M

� b (j1) N1; . . .;
j`) N`; . . .;

jm ) Nm)

translates into:

�
�i1x1 . . .

�ik�k+1xk . . .
�in�n+1xn :M

� bj1 N1. . .
dj`�`+1 N`. . .

djm�m+1 Nm:

With this, we are justified to limit our syntax to that of relative-labeling lending itself to
simpler local reduction rules, while still keeping the freedom of a flexible surface syntax with
Cartesian tuples using absolute position labeling.

Now, a reasonable question that one may have is whether we could not also treat symbolic
labels as we do numeric labels. That is, we could envisage using a function associating
each symbol to its predecessor in the linear order of symbols, thus doing away with names
altogether.3 This, however, would be possible only if the order onS were not dense. Since,
in practice,L is the free monoid, generated by a subset of the ASCII alphabet, and is densely
ordered by lexicographic ordering, this is ruled out. Hence, symbolic labels always designate
absolutepositions of arguments. In other words, packaging symbolic-labeled arguments in
labeled Cartesian tuples is always safe since they are not concerned with relative positioning.
In fact, the ordering on symbols is only necessary as a trick to avert non-termination so that
rules may perform well-founded label commutation.

2.1.2 Substitutions

Substitution of variables by�-expressions needs the same precautions as in�-calculus
and obeys exactly the same rules. As usual, we use the equal sign(=) to mean syntactic
equality modulo�-conversion, defining�-conversion as for classical�-calculus.

Let FV(M) be the set of free variables inM; that is, variables that are not abstracted
anywhere inM. The expression [N=x]M denotes the term obtained by replacing all the free
occurrences of variablex by N in (an appropriate�-renaming of)M. That is,

3This would amount to “compiling them away” as alluded to in the introduction.
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6 Hassan Aı̈t-Kaci and Jacques Garrigue

[N=x]x = N

[N=x]y = y if y 2V; y 6= x

[N=x](M1 bp M2) = ([N=x]M1) bp ([N=x]M2)

[N=x](�px:M) = �px:M

[N=x](�py:M) = �py:[N=x]M

if y 6= x andy 62FV(N)

[N=x](�py:M) = �pz:[N=x][z=y]M

if y 6= x andy 2FV(N),

andz 62FV(N)[FV(M).

2.2 Reduction systems

We introduce three distinct groups of reduction rules:�-reduction and two reordering
systems. What we shall eventually call label-selective�-calculus is the system freely
combining�-reduction and reordering.

2.2.1 �-Reduction

Intuitively, �-reduction for labeled terms can be performed as soon as an abstraction at
positionp is applied through the same positionp to a term.

(�) (�px:M) bp N ! [N=x]M

2.2.2 Reordering rules

Clearly, some reordering of abstractors and applicators must be performed in order to
make�-reduction possible. There are two sets or reordering rules to consider: those dealing
with at least one symbolic label and those dealing only with numeric labels. The difference,
as explained above, lies in the fact that symbolic labels, being always explicit, can commute
freely with others, symbolic or numeric, as long as they are distinct. On the other hand,
numeric labels need to be kept in relative coherence so that they are implicitly always the first
argument of the form on their left.

Symbolic labels

There are three rules to consider for swapping two adjacent labeled entitiesp andq when
at least one amongp or q is a symbolic label. Rule(1) commutes order of abstractors;
Rule(2) commutes order of applicators; and Rule(3)moves an applicator into the body of an
abstraction when the expression looks “almost” like a�-redex, were it not forp 6= q.

(1) �px:�qy:M ! �qy:�px:M (if p > q)

(2) M bp N bq P! M bq P bp N (if p > q)

(3) (�px:M) bq N ! �px:(M bq N) (if p 6= q)

Rule(3) must be performed modulo appropriate�-renaming in order to avoid capture.

May 1993 Digital PRL



Label-Selective �-Calculus 7

Numeric labels

When two adjacent labeled entities are both numeric, the three above cases must be
considered as well. Similar commutations can also take place, except that swapping must
preserve relative coherence of implicit positions. This is simply done by decrementing the
greater of the two positions.

Let mandn be two positive integers.

(4) �mx:�ny:M ! �ny:�m�1x:M (if m> n)

(5) M bm N bn P! M bn P dm�1 N (if m> n)

(6) (�mx:M) bn N ! �m�1x:(M bn N) (if m> n)

(7) (�mx:M) bn N ! �mx:(M dn�1 N) (if m< n)

Rules (6) and (7) must be performed modulo appropriate�-renaming in order to avoid
capture. Of course, there is direct correspondence between the sets of rules for symbolic and
numeric labels. Rules(1) and(2) are directly translated into(4) and(5), with the appropriate
changes in labels. Rule(3) must be split into(6) and(7) in order to distinguish cases where
m< n andm> n.

2.2.3 Examples of reductions

Symbolic labels

We suppose thatp < q < r < s,

(�px:�qy:�rz:M) br N bs P bp Q

!3 (�px:((�qy:�rz:M) br N)) bs P bp Q

!2 (�px:((�qy:�rz:M) br N)) bp Q bs P

!� (�qy:�rz:[Q=x]M) br [Q=x]N bs P

!3 (�qy:((�rz:[Q=x]M) br [Q=x]N)) bs P

!� (�qy:[Q=x][N=z]M) bs P

!3 �qy:([Q=x][N=z]M) bs P

Numeric labels

(�2x:�1y:�2z:M) b4 N b5 P b2 Q

!4 (�1y:�1x:�2z:M) b4 N b5 P b2 Q

!7 (�1y:((�1x:�2z:M) b3 N)) b5 P b2 Q

!5 (�1y:((�1x:�2z:M) b3 N)) b2 Q b4 P

!7 (�1y:�1x:((�2z:M) b2 N)) b2 Q b4 P

!� (�1y:�1x:[N=z]M) b2 Q b4 P

!7 (�1y:((�1x:[N=z]M) b1 Q)) b4 P

!� (�1y:[Q=x][N=z]M) b4 P

!7 �1y:([Q=x][N=z]M b3 P)

Research Report No. 31 May 1993



8 Hassan Aı̈t-Kaci and Jacques Garrigue

3 Proof of confluence

3.1 Pseudo-reduction

3.1.1 Rules

Pseudo-reduction rules are intended to make reordering systems confluent in the absence
of �-reduction. They promote the formation of new reordering redexes by commutation
over �-redexes. The idea is that, without�-reduction,�-redexes just sit there, presenting
“obstacles” to the formation of reordering redexes. Hence, we need pseudo-reduction rules to
simulate the promotion of reordering redexes that would appear if the�-reduction had been
performed. We simulate that effect by having a labeled entity “jump” into, or out of, the body
of the abstraction part of a�-redex through its “�-membrane” and seek reordering on the other
side of that membrane. There are two cases:(a) one corresponding to having an applicator
jump “into” the body of the abstraction part of a�-redex, and(b) the other corresponding to
having an abstractor jump “out of” it. Namely, foranylabelsp; q:

(a) (�px:M) bp N bq P! (�px:(M bq P)) bp N

(b) (�px:�qy:M) bp N ! �qy:
�
(�px:M) bp N

�

These two rules must be performed modulo appropriate�-renaming in order to avoid capture.
Note that neither rule actually destroys the occurrence of the�-redex which stays there.

Example 3.1 If we use only reordering rules,(�1x:�2y:x b1 y) b2 a b1 b can be reduced by
Rules(7) and(6) yieldingA = (�1x:�1y:x b1 y b1 a) b1 b. It can also be reduced by Rule(5) to
B = (�1x:�2y:x b1 y) b1 b b1 a. Both termsA andB are normal forms with respect to reordering.
We need pseudo-reduction to recover confluence. Namely, applying Rule(a) to B promotes
the appearance of a redex for Rule(6), which yieldsA.

We will not use pseudo-reduction as a reduction system. Rather, we use it to define an
equivalence relation modulo which confluence will be defined for partial reduction systems
that we are to consider.

3.1.2 Pseudo-reduced form equivalence

Since some critical pairs appear between pseudo-reduction and reordering rules, we
introduce an equivalence relation that combines their effects. We define two pseudo-reduced
form (PRF) equivalences:(I) and (II). PRF equivalence(I) inverts the nesting of two
�-redexes, with the necessary precautions. Namely, ifx 62 FV(N), and with appropriate
renaming:

(I) (�px:((�qy:M) bq N)) bp P

! (�qy:((�px:M) bp P)) bq N

This defines an equivalence by transitive closure, since applying twice this rule at the same
occurrences is the identity. Note that it does not bother requiring thaty 62 FV(P). Indeed, this
condition is always satisfied becauseP is external in the original form, and had it containedy,
it would have been renamed to make the terms distinct.
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Label-Selective �-Calculus 9

PRF equivalence(II) is a renaming of labeling for any�-redex. Namely,

(II) (�px:M) bp N $ (�qx:M) bq N

This last equivalence will be essential to identify normal forms for reordering that differ only
by the labeling of some�-redexes. Such situations would not occur if only symbolic labels
were considered. However, it can arise for numeric labels that may, or may not, have been
decremented through reordering.

3.2 Combined systems and restricted reductions

Using the rules above, there are in fact several reductions systems that we can consider
depending on various combinations of the groups of rules. The full system that we will aim
for is the free combination of�-reduction and reordering rules (System 2.2.1+ 2.2.2). We
will call it selective�-calculus. However, we will first consider the following partial reduction
systems.

We will first focus on reordering rules alone, and prove a few useful properties. To do
this we have to add some rules to preserve confluence: pseudo-reductions(a) and(b). So the
system we are really interested in is System 2.2.2+ 3.1.1. We will still call it thereordering
system. An order-normal formis a normal form for the reordering system. For this reordering
system we will consider a special class of reductions, calledstandard reorderings, which are
innermost reorderings.

We will also consider a partial reduction system called�-reordering. It is �-reduction on
order-normal forms, where the result of each step is normalized by the reordering system.

The last system, orlabel-parallel system, which makes the link between selective
�-calculus and�-reordering, is the combination of all three reduction systems (Sys-
tem 2.2.1+ 2.2.2+ 3.1.1).

For each of these reduction systems, we shall use the symbol! to indicate a single
reduction step using any of system’s rules, and!r if the rule uses Rule(r). When unconcerned
by termination, we shall accept the (possibly subscripted) step(M ! M) in this relation. As
usual, �! is the reflexive and transitive closure, also possibly subscripted. Given a reduction
strategy%, we will use the symbol.% to denote the subrelation of�! using only%-reduction
steps. For example,.std for standard reorderings,.mcd for minimal complete developments,
etc.

Confluence modulo an equivalence relation is defined as follows ([8]):

Definition 1 A relation! is confluent moduloan equivalence� iff

8x; y; x0; y0 x� y and x �
! x0 and y �

! y0

implies

9x00; y00 x0 �
! x00 and y0 �

! y00 and x00 � y00:

Confluence will always mean at least modulo�-conversion. Furthermore, for several
of our reduction systems, confluence will also be considered modulopseudo-reduced form
equivalence(PRF), that is the composition of the two equivalencesPRF (I) and PRF (II)
of 3.1.2.
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10 Hassan Aı̈t-Kaci and Jacques Garrigue

3.3 Confluence of the reordering system

We can see a�-term as a tree. An abstraction�px:M corresponds to a node labeled with
the abstractor�px and it has one son corresponding to the bodyM. An applicationM bp N
corresponds to a node labeledbp having two sons: a left one corresponding toM and a right
one corresponding toN. A leaf node corresponds to a variable. Given a�-termM, we will be
interested in a particular sequence of entities ofM, called itsspine. Roughly, a term’s spine
is what is left of the tree after clipping all its right branches leaving only stubs of depth one.
More precisely, the spine of a termM is the sequence of its entities, starting at the root, of
therightmostdepth-first traversal of the tree obtained from the term’s tree by replacing all the
right expressions of applications by new variable names, each uniquely identifying the omitted
subterm.

Definition 2 (Spine) The spine of an expression is the sequence of its entities obtained
inductively as follows:

spine(�px:M) = (�px); spine(M)

spine(M bp N) = ( bp zN); spine(M) where zN is new

spine(x) = (x) if x 2 V .

Example 3.2 The entity sequence making up the spine of the�-term:

M = �px:
��
�qy:

�
y br (�su:u)

�� bp (x bt v)
�

is given by:

spine(M) = (�px); ( bp z1); (�qy); ( br z2); (y);

wherez1 andz2 are new variables standing respectively forM’s subtermsx bt v and�su:u.

Note that the spine of a�-term’s subterm isnot necessarily a subsequence of the term’s
own spine. Given a termM, byset of spinesof M, we mean the set of spines of all its subterms
(including itself).

Thesizeof a spine is the number of entities it contains. We shall speak of theindexof
an entity in a spine as its position in the spine, starting from the root. The deeper a subterm
occurs in a term, the higher its index in that term’s spine will be.

Lemma 1 (Stability of entities) The reordering rules(1)–(7) do not produce any labeled
entities nor do they destroy any. Moreover, a labeled entity stays on the same spine after any
reordering rule application.

Proof: A quick look at the rules shows that none moves an entity from a spine in the set of spines
of a term to another one. Moreover, it is even possible to track entities through the transformations,
considering that those entities corresponding to the same label occurrence on the two sides of the rule
are in fact identical up to variable renaming details (by “same label occurrence” we includemandm�1,
n andn�1).

Innermost reordering of a term is performed following the following strategy.
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Label-Selective �-Calculus 11

Definition 3 (Standard reordering) A standard reordering is a reordering which rewrites
entities of lower spine index first.

Definition 4 (Locally dependent entities) An abstractor and an applicator are said to be
locally dependent in a term whenever they constitute a�-redex. They are locally independent
if they do not.

Definition 5 (Dependent entities) An abstractor and an applicator are said to be dependent
in a term if they can becomelocally dependentby a standard reordering. Otherwise they are
independent.

Note that a consequence of Lemma 1 is that two dependent entities are always on the
same spine.

Lemma 2 An abstractor cannot cross (exchange indexes with) an applicator of higher index
in the spine. Or, equivalently, an applicator cannot cross an abstractor of lower index.

We call amasked stepduring reordering an application of(a) replaced by two applications
of System 2.2.2—namely,(2) then(3), or (5) then(7)—or the similar case for(b). Entities
on different spines being independent, a step is masked only relatively to one spine, and
disappears in the next reduction along its spine.

Lemma 3 During a standard reordering locally dependent entities stay locally dependent,
except temporarily duringmasked stepsalong their spine.

Proof: Lemma 2 shows that any rewriting involving a local entity dependence can be done by(a)
or (b), which does not separate the two entities. Whenp > q, (a) can be replaced by application of
another rule but then the next step along that spine necessarily puts them together again, since no left
subexpression of the reduced one is rewritable.

There are cases too where application of(b) is replaced by two applications of 2.2.2, because of standard
reordering constraints, but the same phenomenon takes place:(1) !(3) or (4) !(7).

Theorem 1 (Termination of standard reordering) Standard reordering is Noetherian.

Proof: Since there is no interaction between different spines in this system, it is sufficient to show that
it is Noetherian along one spine.

In fact, we show that, for each spine, standard reordering terminates inO(n2
) operations,n being the

size of the spine. Moreover, when we take a minimal reducible subexpression, only the first step is on
the whole subexpression, next ones being on a smaller one.

Base cases:n = 0; 1. No rule to apply.

Induction steps:

�application of a rule from 2.2.2: if there is no possible reduction in the resulting subexpression,
done: we added only one operation.
If there is a possible reduction, it is in a shorter subexpression: no rule is immediately reversible.
In particular, a situation where(a) or (b) is applicable to the subexpression cannot be obtained
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12 Hassan Aı̈t-Kaci and Jacques Garrigue

from a single reduction on a minimal subexpression. It would mean for(a) that bp and bq
commuted, but thenp 6= q and a standard reordering would have permuted�p and bq first. For
(b), �p and bp should have commuted, which is impossible.
If the reduction in the shorter subexpression is from 2.2.2, then the two first entities are in their
original order (i.e., it was order-normal), with the same order on their labels(for numbers): if it
was an abstraction that went through(4) their labels did not change, and if it was an abstraction,
its label was lower than the two others(5; 6) and each is reduced by 1, or it was higher than the
two (7) and they did not change, or higher than the first(7) and lower or equal to the second but
then they become at worst equal and still no reduction is possible. So, we can go on by induction.
Otherwise, if the reduction in the shorter subexpression uses(a), then we obtain the three first
entities in their original order (i.e., normal here too), and their labels unchanged, except if Rule(6)
has been used, but there is no new reduction possible since we have Lemma 2. So we can go on
by induction on an even shorter subexpression.
And last, if(b) is used, we have certainlyq �p or (1) would apply. If(7) has been used before,
thenm �p, so thatm �q and there is no possible reduction between those two abstraction. If
another rule was applied before, two cases. 1) the first entity is an abstraction, Rule(3) or (6)
was applied, and since it was next to�p its label is still strictly inferior toq. 2) the first entity is
an application, its label was p, and no rule permit this configuration. Here too we can go on by
induction.

�application of Rule(a): we know then that there is no locally independent abstraction inM,
otherwise one of rules(b), (1), (3), (4), (6) or (7) could be applied in a subexpression. It means
that by Lemmas 2 and 3 all subsequent reductions will be in(e bq e2). Induction hypothesis is
applicable.

�application of Rule(b): eitherM starts with a locally independent abstraction, with a label greater
or equal toq, which is greater or equal top (otherwise Rules(1) or (4) would apply), and the next
step is(b) again: its label being greater or equal toq we can go on by recurrence; eitherM starts
with an application, and the full subexpression is order-normal.

In all the case we have shown that we can go on by induction and that the introduction (at its root) of
a new entity in a subexpression causes at mostn operations,n being the size of the subexpression. We
can then conclude that standard reordering terminates in less thann(n�1)

2 steps, which isO(n2
).

Theorem 2 (Confluence of standard reordering) Standard reordering is confluent modulo
PRF equivalence.

Proof: We examine confluence in each spine, and will first show local confluence.

In each spine there can possibly be at most one minimal subexpression to reduce, by definition of the
standard reordering.

By the structure of the patterns used in rules, only the beginning of the subexpression determines the
choice of the rule. Rules in 2.2.2 are determined by the two first entities, and are completely distinct
by the difference application/abstraction and the order of the labels. Rule(a) may apply when a rule
of 2.2.2 is possible too, that is whenp > q. Since we consider the system modulo PRF equivalence,
that means at any time, by second equivalence. In case(2) is applied, the next is necessarily(1), and
the result is the same. In case(5) is applied, the next is(4), and we still obtain the same result modulo
PRF equivalence.

For the same reasons, Rule(b) may be replaced by rules from 2.2.2, with same conclusion.

We do not have to consider the first equivalence in detail: since we are working on a spine, and modulo
second equivalence too, all locally dependent pairs look the same.
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Label-Selective �-Calculus 13

So in each spine the next possible step is determined, or it just may be divided in two steps, which does
not matter for confluence, since no other step can delay the second one. This determinism proves the
local confluence of this system modulo PRF equivalence.

By a theorem in [8], a system Noetherian and locally confluent modulo a relation is confluent modulo
this relation.

Proposition 1 Standard order-normal form and order-normal form are equal modulo PRF
equivalence.

Proof: No reordering rule may apply on a standard order-normal form. A reordering rule may be
impossible in a standard reordering only when another reordering rule is possible.

Theorem 3 The reordering system is confluent modulo PRF equivalence.

Proof: It is sufficient to show the confluence in each spine.

We show that for each rule that might be applied, a standard reordering of the minimal subexpression
containing it would give the same result modulo PRF as taking the result of the rule and applying it a
standard reordering. That is:

P !M ) (9T;T 0
) P .std T;M .std T0;T �T 0:

It is enough, since it shows that for any expression having an order-normal form (and they all have),
applying any reordering rule will not change this order-normal form modulo PRF equivalence, so that
applying different reorderings to an expression will always be reducible to the same order-normal form,
in a finite number of steps, since standard reordering is Noetherian.

PPPPPPPPq ?

S
S
S
S
Sw

�����)
�����)

N

M

P

T00 �T 0 �T

*
*

*

We prove it by induction on the length of the longest standard reordering.

�(a) If the standard order-normal form starts with an application, then(a) (or an equivalent two
steps form as above) is the standard operation. Otherwise(�px:M) bp N would first go in by
successive applications of(b) or its equivalent, and thenbq P would go in. Since(b) does not
modify its context, if bq P is not dependent, then the same Rule(a) would be applied later in the
standard reordering and we would finally obtain the same order-normal form. If it is dependent,
then the order of the two pairs will be inverted, but confluence is preserved by PRF equivalence.

�(b) If the standard order-normal form ofM starts with an application, then(b) or its equivalent
two step operation is the standard operation. Otherwise�qy may first go in, but will eventually be
passed by thep pair using Rule(b) or equivalent. The result is identical modulo PRF(II).
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14 Hassan Aı̈t-Kaci and Jacques Garrigue

�(1) This is the standard rule if the standard order-normal form ofM starts with an abstraction,
or an application greater or equal toq. Otherwise,p does not change andq can only be reduced
(if numeric), so they would switch (exchange indexes) anyway and the order-normal form be the
same.

�(2) If the two are independent, or onlyp dependent then the switch would happen later, but the
result be the same. If onlyq is dependent, then there would be no switch, but the result is still the
same since onlyq may change if numeric. If the two are dependent, then the result is identical
modulo PRF(I).

�(3) This is the standard rule if the standard order-normal form ofM starts with an abstraction,
or an application greater or equal top. Otherwise ifq < p andq is dependent, then in fact they
would not have to switch, but the difference is masked by PRF(I). If it is not dependent, they
would switch later.

�(4) This is the standard rule if the standard order-normal form ofM starts with an abstraction,
or an application greater or equal ton. Otherwise�ny would go in by Rule(4), which does not
change context, then�mx, which would finally cross it with the same difference between labels.

�(5) This is the standard rule if the standard order-normal form ofM starts with an abstraction
greater or equal tom. Else if the two are independent, in a standard reorderingbm N would have
first gone in and thenbn P coming after crossing it in the independent application part. Making
the switch first is not a problem, sincedm�1 N will then move in a context where every label
greater than it has been decremented too, andbn P only stops after the switch.
If only bn P is dependent, then(5) was superfluous since we will finally have the original order.
But the result will be the same. If onlybm N is dependent, the switch is needed, but may have
occurred later as an(a) rule. If the two are dependent, the results are identical up to PRF(I).

�(6) This is the standard rule if the standard order-normal form ofM starts with an abstraction,
or an application greater or equal tom. Else, they would have to switch anyway. Ifbn N is
independent, then the switch would be caused by the same Rule(6), otherwise�mx would first
cross the dependent abstraction, be reduced by(4), and the switch would cause no reduction as
done by(b). So the result is the same up to PRF(II).

�(7) This is the standard rule if the standard order-normal form ofM starts with an abstraction, or
an application greater or equal tom. Else they would have to switch anyway. Whetherbn N is
dependent or not does not matter: the switch will be always caused by Rule(7) sincem< n.

Lemma 4 Locally dependent pairs stay locally dependent in the order-normal form.

Proof: Lemma 3 and confluence modulo PRF equivalence.

The following proposition is not really needed in the rest of the proof, but we give it for
the sake of completeness.

Proposition 2 The reordering system is Noetherian.

Proof: The only cases of superfluous operation relatively to a standard reordering is when an dependent
application crosses another application while going in. This is superfluous since it will stop in a situation
where second equivalence applies, and reordering is not needed (if the second application is dependent),
or twice superfluous if the second application is independent since it will have to cross it again.

However, these situations are limited to one for each pair of applications, which still gives a maximum
reordering time inO(n2

).
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3.4 Confluence of �-reordering

Definition 6 (�-Reordering) A �-reorderingstep is a�-reduction step immediately followed
by a reduction to order-normal form.

Since reordering is Noetherian and confluent modulo PRF-equivalence, this completely
defines a reduction rule on the quotient of order-normal�-terms modulo PRF-equivalence.
The one-step�-reordering relation is denoted as!�#.

Not to worry about renaming problems during reordering, we will assume that all free
variables and abstraction variables have distinct names.

For Definition 6 to stand we have to prove that PRF-equivalent order-normal expressions
are still equivalent after�-reordering. PRF equivalence(II) is not a problem: either the
modified entity dependence is reduced, and then, the label does not matter, or it is not, and
then it is changed back to what it was. As for, PRF equivalence(I), we can assume that the
reduced dependent pair is always in the least possible index in the spine. If it is not, it does not
matter since this equivalence obviously preserves entity dependencies.

This justifies us in the rest of this section, to consider no longer terms, but their equivalence
classes modulo PRF equivalence.

For any label-selective�-term M, we will note M # its order-normal form. To lighten
notation, but only in this section, we will write a termM when we actually mean# implicitly.
We shall do that everywhere in the section, except of course when we prove properties about
it. That is, everywhere except Lemmas 5, 6 and 8. That means that generallyM = N should
be read asM#= N#, M !�# N asM#!�# N#, andM .mcdN asM# .mcdN#.

From here on, the proof of�-reordering confluence follows the Martin-L¨of-Tait scheme
as in [7]. Bycontractinga�-redex, we mean applying the corresponding step of�-reduction.

Definition 7 (Residuals) Let R, S be�-redexes in an order-normal�-term P. When R is
contracted, let P change to P’. The residuals of S with respect to R are redexes in P’, defined
as follows:

� R, S arenon-overlapping partsof P. Then contracting R leaves S unchanged. This
unchanged S in P0 is called the residual of S.

� R = S. Then contracting R is the same as contracting S. We say S has no residual in P0.

� R is part of S and R 6= S. Then S has form(�px:M) bp N and R is in M or in N.
Contracting R changes M to M0 or N to N0, and S to(�p0x:M0) bp0 N or (�px:M) bp N0;
this is the residual of S.

� S is part ofR andS 6= R. This case will not happen in our proof.

Note that in this definition, the meaning ofnon-overlappingis taken in a large sense: it means
that there is a configuration of entity dependencies such thatRandSare not overlapping. Note
also that in these three casesShas at most one residual.

Lemma 5 (Substitution) Reordering before or after a substitutiondoes not change the result.

[N=x]M = [N=x]M#
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Proof: We shall only consider whether ends of spines (last variable) will be substituted or not. Ineach
spine where it is substituted, we can conclude by confluence of reordering (reordering the outer part of
the spine and then introducing the end is equivalent to reordering directly the whole spine). In spines
where it is not, there is no problem since they are left unmodified.

Lemma 6 (Induction) M !�# M0 ) �px:M !�# �px:M0

M !�# M0 ) M bp N !�# M0 bp N

N !�# N0 ) M bp N !�# M bp N0

Proof:

1. M = �p1x1 . . .�pnxn:M1, with M1 an order-normal form starting with an abstraction andpi �p i+1.
So thatM0

= �p1x1 . . .�pnxn:M0
1, with M0

1 any order-normal expression, andM1 ! �# M0
1. Hence

�px:M = �p1x1 . . .�p0x . . .�pnxn:M1

! �# �p1x1 . . .�p0x . . .�pnxn:M0
1

= �px:M0

2. If bp N is dependent then

M bp N = (�p1x1 . . .�p0x . . .�pnxn:M1) bp N M1 as before; pi �p i+1

= �p1x1 . . .�pnxn:((�p0x:M1) bp0 N) (order normal form)

! �# �p1x1 . . .�pnxn:((�p0x:M0
1) bp0 N)

= (�p1x1 . . .�p0x . . .�pnxn:M0
1) bp N M0

1 order normal

= M0 bp N

If bp N is not dependent then

M bp N = (�p1x1 . . .�pnxn:A(z bq1 N . . . bqm Nm)) bp N

= �p1x1 . . .�p0

n
xn:A(z bq1 N . . . bp0 N bq0

m
Nm)

! �# �p1x1 . . .�p0

n
xn:A0

(Z0 bq1 N0
1 . . . bp0 N . . . bq0

m
N0

m)

= (�p1x1 . . .�pnxn:A0
(Z0 bq1 N0

1 . . . bqm N0
m)) bp N

= M0 bp N

whereA is the entity dependencies,A0 the reduced dependencies, andN is unchanged because all
its variables are free.

3. By independence of spines.

Let R1; . . .;Rn (n � 0) be redexes in a termP. An Ri is calledminimal iff there is a
configuration of entity dependencies in which it properly contains no otherRj . That is, there is
a configuration of entity dependencies where it is the most internal redex and there is no redex
in applications of spine index higher than or equal to its own.

A minimal complete development(MCD) offR1; . . .;Rng in P is a sequence of contractions
onP performed as follows:

� First, contract any minimalRi (say i = 1 for convenience). This leaves at mostn� 1
residualR0

2; . . .;R0
n, of R2; . . .;Rn.
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� Then, contract any minimalR0
j . This leaves at mostn� 2 residuals.

� Repeat the above two steps until no residuals are left.

Note that this process is non-deterministic, and thus there are more than one such sequence of
contractions.

Definition 8 (MCD) Let P be a term as above, and Q a term. We write P.mcd Q iff Q is
obtained from P byminimal complete developmentof the setfR1; . . .;Rng.

Note that ifM .mcdM0 andN .mcdN0, thenM bp N .mcdM0 bp N0. (cf., Lemma 6)

Lemma 7 If M .mcdM0 and N.mcdN0, then

[N=x]M .mcd [N0=x]M0:

Proof: We proceed by induction onM. Let R1; . . .;Rn be the redexes developed in the given MCD of
M.

1. M = x. Then n=0 andM0
= x, so

[N=x]M = N .mcd N0
= [N0=x]M0:

2. x 62FV(M). Thenx 62FV(M 0
), so

[N=x]M = M .mcd M0
= [N0=x]M0:

3. M = �py:M1. Then each�-redex inM is in M1, soM0 has form�py:M0
1 whereM1 .mcdM0

1. Hence

[N=x]M = [N=x](�py:M1) Lemma 5
= �py:[N=x]M1 sincey 62FV(xN)

.mcd �py:[N0=x]M0
1 by induction hypothesis

= [N0=x]M0 sincey 62FV(xN 0
)

4. M = M1 bp M2 and eachRi is in M1 or M2. ThenM0 has formM0
1 bp M0

2 whereMj .mcd M0
j for

j = 1; 2. Hence

[N=x]M = ([N=x]M1) bp ([N=x]M2) Lemma 5
.mcd ([N0=x]M0

1) bp ([N0=x]M0
2) by ind: and note above

= [N0=x]M0:

5. M = (�py:L) bp Q and oneRi , sayR1, is M itself and is contracted last, and the others are inL or
Q. (If it is not contracted last then we haveM = (�qz:K) bq O too, and this one is contracted last).
Hence the MCD has form

M = (�py:L) bp Q .mcd (�py:L0) bp Q0
(L .mcd L0;Q .mcd Q0

)

! �# [Q0=y]L0

= M0:

By induction hypothesis we have MCD’s of [N=x]L and [N=x]Q. Hence
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[N=x]M = (�py:[N=x]L) bp ([N=x]Q) sincey 62FV(xN)

.mcd (�py:[N0=x]L0) bp ([N0=x]Q0
) induction

! �# [([N0=x]Q0
)=y][N0=x]L0

= [N0=x][Q0=y]L0

= [N0=x]M0:

This reduction is an MCD, as required.

Lemma 8 (Proof induction) If there is an MCD

P = (�px:M) bp N �
!�# (�px:M0) bp N0

!�# [N0=x]M0 = Q
�
!�# Q0

then there is an MCD

P = (�px:M) bp N �
!�# (�px:M00) bp N00

!�# [N00=x]M00 = Q0

Proof: Since this is an MCD, new reductions do not apply on redexes created in the substitution, and
Q0 has form [N00=x]M00.

We should then just show that there are MCD’sM .mcd M00 and N .mcd N00, which proves that
(�px:M) bp N .mcd [N00=x]M, by Lemma 7.

Each step of the original MCD after [N0=x]M0 only modifies eitherN0 or M0 at a time. So that we can
write M0 ! �# M1 ! �# . . . ! �# M00, and since it is an MCD,M0 .mcd M00. Similarly N0 .mcd N00. And
all the reductions performed are on the external level, that is permutable with our reduction onp in an
MCD. So thatM .mcd M00 andN .mcd N00.

Lemma 9 If P .mcdA and P.mcdB, then there exists T such that A.mcdT and B.mcdT.

Proof: By induction onP.

1. P = x. ThenA = B = P. ChooseT = P.

2. P = �px:P1. Then all�-redexes inP are inP1, and

A = �px:A1; B = �px:B1;

whereP1 .mcd A1 andP1 .mcd B1. By induction hypothesis there is aT1 such that

A1 .mcd T1; B1 .mcd T1:

ChooseT = �px:T1.

3. P = P1 bp P2 and all the redexes developed in the MCD’s are inP1, P2. Then the induction
hypothesis gives usT1, T2, and we chooseT1 bp T2.

4. P = (�px:M) bp N and just one of the given MCD’s involves contractingP’s residual; say it is
P .mcd A. Then, by Lemma 8, there is an MCD with form
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P = (�px:M) bp N

.mcd (�px:M0
) bp N0

(M .mcd M0; N .mcd N0
)

! �# [N0=x]M0

= A:

And the other MCD has form

P = (�px:M) bp N

.mcd (�px:M00
) bp N00

(M .mcd M00; N .mcd N00
)

= B:

The induction hypothesis applied toM, N gives usM+, N+ such that

M0 .mcd M+; M00 .mcd M+;

N0 .mcd N+; N00 .mcd N+:

ChooseT = [N+=x]M+. Then there is an MCD from A to T, thus, by lemma 7

A = [N0=x]M0 .mcd [N+=x]M+:

And for B,

B = (�px:M00
) bp N00

.mcd (�px:M+
) bp N+

! �# [N+=x]M+

5. P = (�px:M) bp N and both the given MCD’s contractP’s residual. Then (Lemma 8) we can give
these MCD’s form

P = (�px:M) bp N P = (�px:M) bp N

.mcd (�px:M0
) bp N0 .mcd (�px:M00

) bp N00

! �# [N0=x]M0 ! �# [N00=x]M00

= A; = B:

Apply the induction hypothesis toM andN in case 4, and chooseT = [N+=x]M+. Then Lemma 7
gives the result, as above.

Theorem 4 �-reordering is confluent modulo PRF equivalence.

P �
!�# M; P �

!�# N ) (9T) M �
!�# T; N �

!�# T:

Proof: By induction on the length of the reduction fromP to M, it is enough to prove

P ! �#; P
�
! �# N ) (9T) M

�
! �# T; N

�
! �# T:

Since a single�-reordering step is an MCD, it is sufficient to have

P .mcd M; P
�
! �# N ) (9T) M

�
! �# T;N .mcd T:

which is shown by an induction on the number of�-steps fromP to N.
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3.5 Confluence of selective �-calculus

In this section,! (or !�) denotes the union of�-reduction and ordering rules (label-
selective�-calculus), and!! is the union of all rules (label-parallel system). We will now
no longerconsider terms modulo PRF equivalence, except in the�-reordering diamond of
Figure 1.

Definition 9 (Normalized reduction) For each label-parallel reduction M0 !! M1 !!

. . . !! Mn we define itsnormalized reductionN0 !�# N !�# . . .!�# Nn by taking for each
Ni the order-normal form Mi #.

Proposition 3 Normalized reduction is a�-reordering.

Proof: We should verify that we really obtain a�-reordering by this process.

We can first remark that, since we have Lemma 4, all�-redexes inMi are still�-redexes inNi .

If Mi !M i+1 is a reordering step, thenNi = Ni+1. Else,Mi !M i+1 is a�-step, and we should show
Ni ! �# Ni+1. From our remark, we haveNi ! �# N0

i , reducing the same redex. We will in fact construct
two parallel reorderings ofMi andMi+1. First, a standard reordering ofMi , from M0

i = Mi to Mk
i = Ni ,

in which will not appear the masked step described about local entity dependencies, and! c is one
reordering step, or two if there is a masked step in the process. With such a reordering, we have at each
stepMj

i !M
0j
i by a�-step. Then we define a reordering ofMi+1 going through allM0j

i ’s. If Mj
i ! c Mj+1

i
is a single step, then it cannot separate two locally dependent entities. There are four cases to consider:

1. If it is external to the reduced redex, then we can do the same reductionM0j
i ! c M0j+1

i .

2. If it is internal, the�-reduction may only substitute some variables, but the reduction can still be
applied.M0j

i ! c M0j+1
i .

3. If it was an (a) or (b) reordering step over the redex, then it is superfluous after reduction,
M0j

i = M0j+1
i .

4. In the two step case, it is equivalent to an(a) or (b) reordering step, as shown above.M0j
i = M0j+1

i .

Finally we can go fromM0k
i to N0

i by a standard reordering. By confluence it givesN0
i = Ni+1, and the

normalized reduction is correctly constructed.

Theorem 5 (Confluence of label-parallel reduction) The label-parallel system is conflu-
ent. That is,

P �
!! M; P �

!! N ) (9T) M �
!! T; N �

!! T:

Proof: We have

P ! ! M1 ! ! . . .! ! Mm = M;

P ! ! N ! ! . . .! ! Nn = N:

So that we obtain normalized reductions

P0
! �# M0

1 ! �# . . .! �# M0
m;

P0 ! �# N0
1 ! �# . . .! �# N0

n:
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And by confluence of�-reordering,

M0
m = R0 ! �# R1 ! �# . . .! �# Rr = T;

N0
n = S0 ! �# S1 ! �# . . .! �# Ss = T:

Since normalized (�-reordering) reductions are confluent, and all steps used here are in the label-parallel
system, the label-parallel system is confluent modulo PRF equivalence.

We can then reduce all the�-redexes present in the resulting term, and obtain full confluence. All
differences masked by PRF equivalence are contained in the redexes, and since in this last stage we do
not use pseudo-reduction, we do not create new differences.

Theorem 6 (Confluence of label-selective �-calculus) The label-selective�-calculus is
confluent. That is,

P �
! M; P �

! N ) (9T) M �
! T; N �

! T:

Proof: By Theorem 5,

M = R0 ! ! R1 ! ! . . .! ! Rr = T0;

N = S0 ! ! S1 ! ! . . .! ! Ss = T0:

But the absence of pseudo-reduction rules makes it impossible to follow these paths. Each time we have
a (a) or (b) reduction, we should have a�-reduction in place. So we just have to rewrite them, which
makes superfluous some later steps or couples of steps, that we will just suppress. It may duplicate some
later reduced redexes too. In this case we will have to duplicate these later steps too, but this is finite.

We will finally have two expressions, coming from a PRF equivalent ofT0 by �-reduction only. The
number of�-reductions done may differ, but reducing all the redexes which were present inT0 is
enough. That is,

M !R 0
0 !R 0

1 !. . .!R 0
r

�
! � T;

N !S 0
0 !S 0

1 !. . .!S 0
s

�
! � T:

whereRi
�
! � R0

i (for some PRF equivalent form ofRi), andSi
�
! � S0i (idem). So that finally,M

�
!T

andN
�
!T:

Figure 1 shows a schematic diagram of the process.

4 Extended systems

These proofs are valid in fact for a whole range of systems. The most immediate ones
are the two systems in which only numeric or only symbolic labels are accepted. Intuitively
they represent two different way of introducing some commutativity in�-calculus. Selective
�-calculus is their sum. Namely, it is obtained as the calculus over the set of labels which is
their disjoint sum:L = S +N .
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Figure 1: Schematic confluence of label-selective�-calculus

4.1 Product system

Since we have a sum, it is natural to think of a product. That is, the calculus over the set
of labels which is the Cartesian product of symbolic and numeric label. Namely, a label in
now a pair symbol-numeral inL = S �N . This system corresponds to a calculus of named
channels on which only numeric positions are considered. Per channel name, relative numeric
position arguments can be done in that relative reordering of distinct positions is allowed. In a
sense, it is orthogonal to the sum system, in that it separates names and numbers, although it
provides each with the functionality of label-selective�-reduction.

�-Reduction for product, as for the sum, requires identically labeled abstractor and
applicator:

(�) (�pmx:M) bpm N ! [N=x]M

As for reordering, we need only slightly alter reordering rules of the sum system as shown in
Figure 2. Clearly, all proofs done above on selective�-calculus are still valid for this system:
we take care of numbers only when symbols are identical, and have then the same rules.

4.2 Polynomial systems

If we have sums and products, we should be able to combine them. Apolynomial system
is defined by two mutually exclusive sets of namesS andT , and taking the set of labels to be
L = S [

�
T � N

�
. The syntax is:
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(1) �pmx:�qny:M ! �qny:�pmx:M p > q

(2) M bpm N bqn P ! M bqn P bpm N p> q

(3) (�pmx:M) bqn N ! �pmx:(M bqn N) p 6= q

(4) �pmx:�pny:M ! �pny:�p(m�1)x:M m> n

(5) M bpm N bpn P ! M bpn P dp(m�1) N m> n

(6) (�pmx:M) bpn N ! �p(m�1)x:(M bpn N) m> n

(7) (�pmx:M) bpn N ! �pmx:(M dp(n�1) N) m< n

Figure 2: Reordering rules for polynomial system

M::= x j �px:M j �qnx:M j M bp M0 j M bqn M0

with p in S andq in T .

We just take Rules(1)–(3) of selective�-calculus applied onS [
�
T � N

�
and Rules

(4)–(7) of product systems, applied onT .

Selective�-calculus is a polynomial system whereT is restricted to an unique constructor
�, abbreviated.

It is only for clarity that proofs where given for selective�-calculus, rather than for any
polynomial system, where they are anyway valid. We should always keep in mind that when
we prove or build something on selective�-calculus it will be nearly always generalizable to
any polynomial system, for which we are just using an abbreviated notation.

5 Towards a transformation calculus

We will just give here a new notation, and explain in what way this notation suggests
another extension of selective�-calculus.

The intuition behind selective�-calculus is no longer functions but functions over
labeled arguments which behave like communicating processes through named or (relatively)
numbered channels. Application corresponds to process communication. What we called
entities are seen asactions: abstractors correspond to receiving and applicators to sending.
But what about composition? It is easily defined for functions asf �g = �f :�g:�x:f (gx) in the
classical calculus. We could of course think of a labeled composition one foreach label. But
this is rather weak. Particularly when we think of the powerful out-of-order currying power of
our system.

Rather, we will just change notations, and define:

M _
p x

def
= �px:M

All terms now take the formx �P, whereP is a sequence of entities, or actions, and� the
syntactic juxtaposition. Then we can obtain a more interesting compositionwithM�P= M �P,
where we do not specify anything about labels, and may have created more than one connection
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at once. Here againP is a sequence of actions, and we would like to manipulate them as
such. The potential of this notation is such that it simplifies considerably many proofs. For
instance we could prove easily B¨ohm’s expansion theorem using it. Since our extension is
conservative, our proof is valid for classical�-calculus as well.

Of course, all this starts to be strongly reminiscent of a calculus for process communica-
tion [12], although still a direct and conservative extension of classical�-calculus. We believe
that this is not coincidental. This idea is the object of our current research and we are actively
exploring the deep connections with the various existing communication calculi. But, we shall
say no more on this for now.

6 Conclusion and further work

Label-selective�-calculus offers the advantage of realizing directly a more complete
isomorphism of Cartesian products and function applications. An immediate consequence
is a more convenient notation, and a more efficient, indeed concurrent, manner to extract
arguments out of order.

Beyond the bare calculus, we have started studying a typed version of our calculus [6].
There, we propose a simply typed version of this calculus, and show that it extends to second
order and polymorphic typing. For this last one there exists a most generic type, and we give
the algorithm to find it.

A topic for further work along this idea is, of course compilation. As mentioned in the
first section, we plan to extend the stack-based model of execution of�-calculus with our
label-selection scheme to realize efficient access to arguments regardless of position label. We
have already adapted the calculus of explicit substitutions [1], as are currently working on a
compiling scheme for label-selective�-calculus based on it.

Also, we plan to study the work of Ohori [13] to elucidate the gains that this may have
in the compilation of records. As for semantics, we have initiated work on a typed version of
label-selective�-calculus and a framework of models for it.

We have formulated and are studying several concurrent calculi extending label-selective
�-calculus towards full concurrency [2], including the provision for computable channel
names. One of the gains expected is that�-calculus will need not beencodedas in [11], but
directly embedded as syntactic identity.

Finally, the real goal that has motivated our working out this calculus has been to use
it for a useful generalization of object-oriented style of message passing. Method invocation
based on the type of the first argument of a call can be elegantly explained by seeing a method
definition in a class as a curried form with respect to the object instance of the class. Label-
selective currying can thus reinstate the lost symmetry by distributing one partially-applied
form for each arguments of the class of a method. As a result, message-passing can be used
on any argument of a call, making labels act as channels. Our confluence result guarantees
that the choice of channel does not matter. We plan to pursue this insight and investigate all
its ramifications.
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Barraquand. June 1991.

Research Report 15: A Hardware Implementation of Pure Esterel. Gérard Berry. July 1991.
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