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Abstract

We present a method for compiling pattern matching on lazy languages based on previous work
by Laville and Huet-levy. It consists of coding ambiguous linear sets of patterns using “Term
Decomposition,” and producing non ambiguous sets over terms with structural constraints on
variables. The method can also be applied to strict languages giving a match algorithm that
includes only unavoidable tests when such an algorithm exists.

Résumé

Nous peEsentons une athode de compilation de I'appel par filtrage pour les langages paresseux
dans le prolongement du travail de Laville et Huetvl,” Nous transformons des ensembles
ambigus de motifs lieairesa I'aide de la “DEcomposition des Termes” pour produire des
ensembles non-ambigus de termes dont les variables sont munies de contraintes structurelles.
Cette nethode peut ausstfe appligeea des langages stricts et donne un algorithme de
filtrage ne mcessitant aucun travail inutile quand un tel filtrage existe.
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1 Introduction

We are interested in compiling pattern matching in case of partially evaluated terms in order
to do only necessary computations for the match. This is a kind of lazy computation over
partially defined terms. In 1979 G. Huet and J-@vy. 15] defined a method for constructing
match trees for non-ambiguous linear term rewriting systems. However, the application of
their results to the problem of compiling pattern matching as in the ML language was not clear
until 1988 when A. Laville [6, 7] showed that it is possible to use their method for ambiguous
term rewriting systems with a given priority on rules. This priority ecessary to decide
which rule has to be used in case of conflict. Laville designed a new match predicate that takes
into account the priority when building the match trees. When this construction is successful,
the leaves of the match tree formMinimal Extended Set of Pattermgjuivalent (from the
match point of view) to the original system in the case of finite signatures.

Our method is to code ambiguous ordered term rewriting systems into non-ambiguous
ones over constrained terms. We replace the priority rule between left parts of the rewriting
system by constraints over terms. Therefore the match predicate is that of Hueewand L~
but over constrained terms. Their results are then extended to these terms. Furthermore, as
a result of the computation of the non-ambiguous set of terms of the system, we also obtain
a characterization of the set of partially evaluated terms for which every matching algorithm
will loop. We call it the strict set of the system. Although some algorithms may loop on other
terms, an optimal algorithm, if it exists, will only loop on the strict set.

1.1 Constrained Terms

A term with variables is a representation of all ground terms obtained by replacing its
variables by terms with no variables. A subset of a given set can be defined either by a
description of its elements or as the complement of another subset. For example, a eariable
represents the set of all the ground terms &ifd, y) a subset o. We can partition the set
z into three subsets. First, the set of instance8'@1, y). Then, the set of terms for which
we can decide that they are not instance'0fl, y). Finally, the set that contains partially
evaluated terms of the forif(. . .) whose first argument cannot be evaluated (its computation
loops) denotedF'(e,y) as well as the non-evaluated term that we denotéWith the set
notation, this partition is written:

{z} ={F(4,9)}U{z |z OF(A,y)} U{e, F(e,y)}

Following this idea, we define the concept of constrained terms and give some of their algebraic
properties.

With this formalism an ordered ambiguous set of terms can be transformed into a non-
ambiguous set of constrained terms. For instance, the set of tB{hsy), F'(z,y) is
ambiguous as the terifi(A4, B) is an instance of both of them. The set of constrained terms
F(A,y),{F(z,y) | z£A},{z |2#F(...)}, {e, F(s,y)} is not ambiguous. Now a given term is
an instance of exactly one of these constrained terms.
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2 Laurence Puel and Ascander Suarez

1.2 Pattern Matching

Call by pattern matching is one of the main features of the ML language [4, 10] and was
inherited from HOPE [2]. It may be viewed as a generalization of the “case” statement of
imperative languages. In ML, one can define one’s own structural types and very easily write
operations over them. We will introduce call by pattern matching by extending the Pascal
definitions of “enumerated types”

In Pascal, itis possible to use the case statement to select among different cases by the value
of an expression of an “enumerated type”:

type T = (C1,...,Cn); case x of

var x:T; Cl : <<expl>>

| Ci : <<expi>>
| otherwise : <<exp>>
The natural extension of this construct is to allow matching not only constant values but
more general data structures as in the following example in the language ML where there are

two cases in the definition of the type of treésaf to represent the leaves of trees and the
constructoiTree for the other nodes.

type Tree = case tree  of
Leaf of number Leaf(3) — <<expl>>
| Tree of number*tree*tree; | Tree(_,Leaf( ), ) — <<exp2>>
| Tree(_,Tree(_,_, )..) — <<exp3>>

| otherwise — <<exp4>>

val tree: Tree = Tree(3,Leaf(2),Tree(4,Leaf(7),Leaf(9)));

In this example the value of the variable “tree” will match the second and the fourth cases
but taking the first one as the priority holder, the expressiexp2>> will be executed.

1.3 Compilation

If patterns are non-ambiguous, there is a decision procedure due to Huetanfbl that
determines whether an optimal match exists for a set of patterns and, in the case where such a
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match exists, produces a search tree that allows to compile the match problem. This method
can be illustrated with the following example.

Suppose that we want to match pairs of temg) of Booleans by the set of patterns
(true,true) , (_,false) and (false,true) . We choose to look first at a column
that only contains constants (in our example the second one), and divide the patterns by the
constants appearing in that column. The result is a transformed program in which there is
always one column in the pattern to look at.

case (x,y) of casey of
( true , trde ) — 1 true : ( case x of
| ( _ , false ) — 2 — true — 1
| ( false , trugq ) — 3 | false — 3)

| false — 2

There are some sets of patterns, namely non-sequential patterns, for which the method of [5]
fails. The typical example was proposed by Berry [1]:

AAD) , B_A , (BB)

In this example the patterns are non-ambiguous but there is no column in which we can
make the decision. So if we want to avoid looping in the evaluation of this match, a parallel
mechanism that inspects simultaneously all three columns is necessary.

But the restriction that patterns must be non-ambiguous is a burden to the programmer
especially when the program contains data structures with many different constructors. This
is one of the reasons why most programming languages that feature call by pattern matching
accept ambigities and impose a priority rule between different patterns. In this paper we do
not discuss assignment of priorities. In ML and other programming languages, for instance,
the order of patterns in the text is used and the programmer has to write the more specific cases
before the more general ones. Another possibility to automatically assign higher priority to
specific cases and still use textual ordering for those that are compatible. Both priority rules
have the same expressive power as any set of patterns can be ordered to work exactly in the
same way with any of them.

When ambiguities are allowed and a priority rule is imposed, the method of [5] does not
apply directly, as shown below:
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4 Laurence Puel and Ascander Suarez

case (x,y) of

( _ , true ) — 1
| ( false , _ ) — 2
| ( - ) — 3

Now take any pair(x,y) , if y=true then the pair(x,y) matches the first case.
Otherwise, iix=false , it matches the second one. Finally in every other case, it matches the
third one. Remark that it is slightly subtle to find the set of pairs which match this three cases.
The first case corresponds to any daitrue) , the second one t@alse,false) and
the third one tdtrue,false) . In this example, where both the first and the second column
only have one constant, the method of [5] does not apply directly. It can be adapted (as in [6])
by imposing priorities to the patterns to make them non-ambiguous.

Our approach in this work is to use the data structure of constrained terms to represent
sets of patterns ordered by priorities such that the disambiguating rule becomes part of the
representation. In the previous example, the set of constrained terms that represents the match
problem is:

(_,true) , (false, #rue) and (#Halse, #Arue)

in which#C' represents any value different frathand the strict set is:

(, o), (e, #Arue)

Notice that an algorithm that evaluates from left to right will also loop on the {arjnue)

while an algorithm that evaluates this pair from right to left will not. With the non-ambiguous
set of terms given above it becomes possible to apply the method of [5] and choose the second
column as the one to look at first (whe#@ is considered as a constant).

In [6], a program for the compilation of patterns with priorities was written in CAML [10].
The construction of the new set of non-ambiguous patterns is embedded in the control of the
program. In our work, the transformation from ambiguous to non-ambiguous patterns will
be achieved at the level of source programs. This makes the program transformation explicit
and independent of the pattern matching process. Furthermore, the algorithm presented here
produces very compact representations, especially in the matching of terms with arbitrarily
large signature.
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2 Terms and Constraints

2.1 Terms

Let X be a denumerable set of variables and set containing function symbols and an

additional symbobk. To each function symbol is associated its arity. For our purpose the

language of term%'(Z, X) is defined by:
terms: t = F(t1,...,t,) |z | e

where the function symbdT is a symbol of> of arity n, the variablee is in X andtq, ..., t,
are terms. The set of terms without variables is theT¥&) of ground terms The set of
partially evaluated termss the setl'(X — {e}, X). A linear termis a term in which all the
variables are different.

The setO(t) of occurrences of a terimis recursively defined by:
e O O®)
tu O OWF1,...,t,)ifudOE)(1<i<n)
if u0O(t) the subternt/u of ¢ is defined by:
tle = t

F(tq,.. .,tn)/i.u = ti/u

Definition 1

1. A (ground)substitutions, is a mapping over terms defined by replacing a finite set of

variables by (ground) terms which transforms any terinto o(¢). The terme(t) is
called aninstanceof ¢.

2. The quasi-orderingt over terms is defined ky< ¢’ if there exists a substitutiansuch

thato(t) = t' andt is said to be grefixoft’. Its extension to substitutions is defined by

o =< o' if and only if there exists a substitutignsuch thato’ = 5 o o. Thuse is said to
bemore generathano’.

3. Two termg andt’ are comparablef eithert < ¢’ or ¢’ < t andcompatibleor unifiable
if there exists a substitutiom, such thato(t) = o(t'), in which caser is a unifier oft
andt’.

4. Theleast upper boundf two termg andt’, denoted U ¢ is the smallest term that has

both¢ and¢’ as prefixes. The unifier that produces this bound if it exists is called the

most general unifiefm.g.u.). Thegreatest lower boundf two terms and¢’, denoted
t Mt is the greatest prefix @gfand¢’ (with respect to<).
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6 Laurence Puel and Ascander Suarez

In the following it will be convenient to identify a term with the set of its ground
instances. For example, & = {F, A, B,e}. The termt = F(z,y) represents the set
{F(A, A),F(B,A),F(s,A), F(F(A,A), A),...}. Any ground ternt represents the sét}.
Two incompatible terms represent disjoint sets of ground terms.

The relation< is the opposite of the set inclusion of the ground instances. A substitution
can be seen as an operation that allows to build terms from the root to the leaves. The special
terme will denote terms that cannot be built as for instance those whose construction does not
terminate; a substitutiom such thair(z) = e can be assimilated to a construction that never
ends.

Now we want to represent more precisely sets of terms; for instance the subset of all terms
which are not instances @ (z,y). Thus we classify all the terms in three parts: those that
are instances af(z, y), the terme which represents terms that cannot be built and those that
are instances of an§f(...) with G£ZF and G#e. The last part represents terms for which
we do know that they are not instancesRi{f:, y) while the second part represents terms for
which we cannot say anything. The subsefi{, y) of all terms different fromF'(A, B) is
the set of ground termF' (o (z), o(y)) | o(z) JJ{ A} or o(y) J{B}}. With the finite signature
> = {F, A, B, e}, this set is represented as the unionKf, A), F(z, F(y, 2)), F(B,z)
and F(F(z,y), z). This representation depends on the number of elements of the signature,
for instance using’ = {F, A, B, C, ¢} the representation as union of terms has two extra
components:F(z,C) and F(C,y). With an infinite signature it is not possible to represent
this set as a finite union of instances of terms. Notice that the two tE(ig) and F(z, o),
which are instances df(z, y), do not belong tq F(o(z), o(y)) | o () [I{ A} or o(y) [J{B}}.

It is more concise to represent those sets by terms with variables with constraints. This can be
illustrated as follows:

1. {t = F(=,y) such that2F'(A, A)} = F(z J{A},y) U F(=,y [2{B})
2. F(B,A)UF(B,F(z,y))UF(F(z,y), A)U F(F(z,y), F(2,t)) = F(z J{A},y [{B})
3. F(F(z,y), A)U F(F(=z,y), F(z,t)) = F(z [J{A, B},y [){ B})

We will now formally introduce the notions of constraint and of constrained term in order
to represent such sets of ground terms. Roughly speaking, a constrained term is composed
of a term and a constraint which is a predicate over the variables of the term. This predicate
restricts the possible instances of the variables in subsequent substitutions as we will see below.

2.2 Constraints

Definition 2 Lett andt’ be two terms. The quasi-ordering between two terms is defined
by: ¢ C ¢’ if and only if there exists a ter#f such that Cg t” < ¢’ whereC is characterized
by the following rules:

Let x and y be two variable#; a symbol inx andt a term:

z Lo ¥y
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F(t1,...,t,) Co F(t,...,t.)ifand onlyif for everyi (1 < i < n)t; Co t;
t Lo o

Lemma 1 lett be a linear term and’ a term. ¢ C ¢’ if and only if there exist” such that
t j t” EO tl

Proof: LetU = {«0O@#)NO®W') |t'/u = e} andt” =t'[u « t/u|uOU]. Clearlyt < t" Co t'.

When the name of variables in a term is not important (that will be the case for linear terms
in the following) we will use the symbdD instead of the names of variables.

The greatest lower bound of two terms is equal to the one for the prefix ordering. The least
upper bound can be characterized by the following rules: betan termg a variable and”
andG two different symbols irk.

I
~

2Ll
e = 1
F(.)UG(..) = e
F(ly, ..., L)UF,..., 1) F(uty, ..., Lul)

The relationC is used to define predicates over terms that we call constraints. To each set
L of linear terms is associated a predicate over terms denotédvhich is true if and only if
liZt for everyl in L. These constraints are said to be structural as they are specific to the term
structure only as opposed to arbitrary predicates.

Definition 3 (Constraint) A constraint is recursively defined as either an atomic predicate
t$ L oor the disjunction of two constraints or the conjunction of two constraints.

Constraint: P = ternm¥Set of linear terms
| PV P
| P AP

When ¢& L) we say thatl is a constraint over.

The truth value of compound constraints is obtained by standard interpretation of the
logical connectives. We write= P if and only if the predicateP is true. By using the
usual equivalences on connectives(v) andand (A), a constraint can always be written in
disjunctive normal form (as a disjunction of conjunctions of atomic constraints).

Definition 4 (Substitution over a Constraint) Leteo be a substitution> L an atomic con-
straint, P1, P, two constraints. By definition,

oc(tCOL)=c(@)OL, o(PLV P))=0(P1)Vo(P) and o(P1 A P) =0(P1) A o(P).

Report No. 4 January 1990



8 Laurence Puel and Ascander Suarez

A substitutiorr satisfies a constrain® if and only if = o(P).

For instancef(F (A4, B)YO{F(4,Q)}) andE F(A, B)YOC{F(A,)}).

Two constraint® and P’ are said to be equivalent, denotegP’, if and only if, the sets of
substitutions satisfying and P’ are the same. A constraiRtimplies a constrainf), denoted
P = @, if and only if every substitution satisfying also satisfies).

Remarks: For every termt and for every substitution, F(n(t)<>{Q, .. .}) andE ()< {}).

In what followsF and 7 will denote respectively>{Q} and¢>{}. Notice that wherzP
then for every substitution, #(n(P)) and thusP=F. Also if there is a substitution that
satisfiesP (notedF P), P is not always equivalent td as there may be some substitutions
that do not satisfyP.

2.3 Constraint Simplification

We can prove by induction on the structureldahat tO{1} v tO{I'}=t<O{ILl'} and that
if I C U thentO{i} A tO{l'}=tC{i}.  From those properties we deduce the following
simplification rules that associate to each constraint an equivalent normal form where the term
in each atomic constraint is a variable:

Lete,tq,...,t, betermsgy, ..., ¢, be linear termsl be a set of linear terms anda variable.

F(tl7 .. 7tn)<>{F(t€I.7 e 7t;1)} UL (VlS'LSn t’L<>{t'IL}) A F(tl7 .. '7tn)<>L

FOO{FO}UL = F
F(ty,.. ,t,))0{G(.}UL = F(t1,...,t,)OL
to{} = T
tO{Q}uL = F
tO{l,e(D}UL = O{}UL
IOLAOL = tOLU L
NtOA{L} v /\jt<>{l;-} = /\Z-,jt<>{lz-gl;}

These simplification rules define a function, denaifdpl, which transforms a constrait

into 7, 7, or an equivalent constraint over variables. Notice that these rules are different
from those of disequations in [3] because we deal eitjyliwith the symbole that represents
non-evaluable terms. For exampl&{A} v ¢ O{B} £z O{A} v AC{ B} because does not
satisfy the left part while the right part is equivalentfo

Therestrictionof a simplified constrainP to a given set of variableg is simpl(P’) where
P’ is the constraint obtained when replacing Byall of the atomic constraints of the form
zO L, such thak [V, For instance the constraint®{ F(Q, Q)} A yO{ A}) restricted to[z}
is @C{F(Q,Q} N T)=xO{F(Q,Q)}; the restriction of ¢ C{ F(Q, Q)} v yO{A}) to {z} is
7. Notice that wher= P we have= P’ for any restrictionP’ of P.

The following lemma shows the relation between the constraints and the prefix ordering.
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Lemma 2

1. Leto be a substitution satisfying a constraift = tOL. Every substitutiopp more
general tharr satisfiesP.

2. Lett andl be two terms. It C [ andt Al thentO{I}=T.

3. Lett be a term ando, p two substitutions. tO{a(t)} = tO{p()} if and only if
o(t) C p(t). More generallyA; tO{o;(t)} = tO{p(#)} if and only if there exists;
such thato;(t) C p(2)

4. Lett and! be two terms and. a set of terms. EithetO{I}=T or there exists a
substitutiory such that{1}=tC{a(t)}. More generally for any predicate® L there
exists a possibly empty set of terfils= {l1, .. .,[,,} such that < [; andtOL=tO L.

Proof: These properties are proved by induction on the structure of terms.

1. Let us suppose thd& =tO L. If QUL ort = e, the left part of the implication is never
satisfied. The only property to prove is that for every teaw, everyl = F(l4,...,1,)
and substitutioer, O {1} impliesfo(t)O{l}. The hypothesisimpligs= F(t1, ..., t,)
and for everyi (1 < 7 < n), Ft;<O{l;}. By inductionfzo(¢;)O{L;} and by definition
Fo(t)O{l}. The proof easily extends to arbitrary constraints but the extension is not
necessary because, as we will see below, any predicate is equivalent to one of the form
tOL.

2. If t C I andtAl then there exists an occurreng®f both terms such thdfu = e and
t/u is not a variable and is different from Thus for every substitutiom the subterm
7(t)/u is also different frome and is not a variable which implié&x»(t).

3. If tO{o@)} = tO{p()}, p does not satisftC{o(t)} because it does not satisfy
tO{p(t)} and thusr(t) C p(t). Conversely, for every substitutigrsatisfyingtO{ o (¢)},
a@t)Zn(t). Asa(t) C p(t), p(t)Zn(t) and we conclude thaf satisfiess>{p(t)}. The
generalization is made by simple manipulation of logical connectives.

4. We remark thatO{l}=tO{l} v tO{e}=tO{lut}. As t T Iut, by part (2) either
tO{IUt}=T ort < Ut that proves the property. The generalization is made by simple
manipulation of logical connectives.

2.4 Constrained Terms

Definition 5 (Constrained Term) Lett be a term andP a constraint. A constrained term
{t| P} is the set of ground instancestoatisfying the restrictiod®’ of P to the variables of.

constrainedterms: T = {t|P}
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10 Laurence Puel and Ascander Suarez

In what follows we will callt the pure part of T and substitutions over pure terms will be
calledpure substitutionsThe set obccurrence®f T is that of its pure part. Theubtermsof
{t|P} are of the form{¢'| P} wheret' is a (pure) subterm af Notice that by definition, the
constraint part of a subterm is restricted to the variables occurring in its pure part. p¥hen
the term{¢| P} represents the empty set of terms that we notd& he following properties on
the sets represented by constrained terms are easy to check:

1. WhenP=@Q), the termg{¢| P} and{¢|Q} are the same.
2. {t|pv @} ={t|P} U {tlQ}
3. {t|PAQ}={tP}n{t|Q}

Any constraintP is equivalent to its disjunctive normal fori; P; where eachp; is a
conjunction of atomic constraints over variables and ttwi®8} = UJ; {¢|P;}. This gives a
practical representation of constrained terms which is very close to their implementation.

Example: Let T' = {F(z,y)| P} where P = F(z,y) {F (A4, B)} A yO{C} A zO{A}. As
the variablez does not appear iff, the restriction ofP is F(z, y)O{F(4, B)} A yO{C} and
T =Ty U TowhereTy = {F(z, y)|eO{A} A yO{C}} andT, = { F (=, y)|yO{ B, C}}. Notice
that in general the terng are not disjoint as in this example where the teéf(B, A) belongs
to bothT; and75.

Even in the case of an infinite alphabet, term representation with constraints can be finite
which is not the case with the classical representation.

2.5 Substitution

Definition 6 Let o be a substitution and) a constraint. The constrained substitution
o = (0, Q) is the mapping over constrained terms definedsti¢| P}) = {o(t)|o(P) A Q}.
WhenE o(P) A Q, 7 is admissible fo{t| P}.

Notice that wher#@ the substitutio = (o, Q) maps every term to the terim.

We compose two constrained substitutieis= (o1, Q1) ando; = (o2, Q>) as usual and
check easily tha#; o a7 = (62 0 01, stmpl(Q2 A 02(Q1))).

The definition of quasi-ordering<() is extended to constrained terms using constrained
substitutions instead of pure substitutions. The least upper bayrid @efined with respect
to <. The notion of unifier of two term¥% and7” is also extended but the unifier has to be
admissible for both terms to avoid the empty term as the only common instaficaraf7”.
The equality (=) of two termsT andT’ is defined by:T; = T if and only if T; < T, and
T> < T1. We give now a characterization of these concepts in order to compute separately the
pure part and the constraint.

Lemma 3 LetTi = {¢;|P1} and T, = {t»| P>} be two constrained terms.
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1.

2.

T1 < Ty if and only if there exists a substitutiensuch thatr(¢1) = t, and P, = o (Py).

@ = (0, Q) unifiesT; andT> if and only ifF is admissible fofly and T, o(t1) = a(t2)
ando(P1) A Q=o(P2) A Q. As usual, we say that two terrfis and 7> are unifiable or
compatible, denotef; T T», if and only if there exists a unifier for them.

. T1 U Ty = {t1 Uty|o(P1L A Pp)} wheres is the most general unifier @f and¢,. U is

not defined whem; andt, are not unifiable or wher¢o(P1 A P»). The substitution
o = (0,0(P1 A Py)) is a principal unifier forT; andT».

LetT = {t|¢t>{l}} and M = {m|T} be two constrained terms (in fact the last one is a
pure term).T < M if and only ift < m andm]l.

Proof:

1.

T1 < Tyifand only if there exist& = (o, @) suchthaw(t1) = t, andP=c(P1)AQ. This
implies P, = o(P;). Conversely, if there existssuch thaw(t1) = t2 and P,=c(Py), as
Po=o(P1) A Pp, o = (0, P,) satisfiess(T4) = T».

. This is a simple consequence of the definition of equality.

. Obviously{¢1 Ll t2|o(P1 A P2)} is an upper bound df, andT%. Now, letT = {t|P}

be an upper bound df; andT». By definition of the least upper bound of pure terms,
there exists a substitutignsuch thatp(¢; LI £2) = ¢; asT is an upper bound df; and
Ty, there exisr; ando, such thatri(t1) = o2(t2) = ¢, P = o1(P1) and P = a2(P2).
Consequenthyp(o(t1)) = o1(t1) and p(e(t2)) = o2(t2). These equalities hold on the
variables oft; and oft, that, when applied to the constraints, giwgP1) = p(o(P1))
ando(P2) = p(a(P2)). In conclusionP = p(a(P1 A Py)).

Leto be the substitution such thaft) = m. As M is a pure term, for every substitution
7, liInoo(t) = n(m). ThusliAn(m) and, by definition, for every substitution
p(D#n(m); that means] andm are incompatible. This result is easily generalized to a
set of constraints]” = {t[tO{l4,...,l,}}. Inthat casel < M if and only ift < m
and, for everyi (1 < 7 < n), mfi;.

Example: The most general unifier of the terms:

T = {G(=z,y,2)|(=C{H(u)}, yO{C}, z2C{H(H(B)})}
T' = {G(P(A),y, H())|y' O{B}, Z/O{ChH}

is defined by:

o(z)
a(y)
o(z2)

P(A)
Y o= (0, (¥'O{B,C}, Z/C{H(B),C}))
H(Z)
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12 Laurence Puel and Ascander Suarez

In general, the greatest lower bound of two terms does not exist. For instance, the common
prefixes of{ A|7} and{B|T} (with A#B) are of the form{z|=< L}, but for each prefix there
is a constanC' not belonging tal and different fromA and B such tha{z|z>L U {C}} is
a prefix of both terms less general thiarjz>L}. We give now a sufficient condition for the
existence of the greatest lower bound:

Lemma 4 LetTi = {t1]|P1} andT;, = {t2| P>} be two compatible constrained terms. kg,
t2) = t; and o} the substitutions defined by(z') = z if 0;(z) = 2’ ando}(z’) = z’ otherwise.
The greatest lower bound @ andT> exists and is the tertfl = {¢1 M t2|o7(P1) V 05(P2)}.

Proof: Remember thafti Mty|oi(P1) V o5(P2)} = {t1 M t2|Q1V @2} where eacl@); is the
restriction ofe.(P;) to the variables of; Mt, and thus;(Q;) = Q;. As eachP; impliesQ;, T is
a prefix of eacl¥;. LetT’ be a prefix of botl’; andT, greater thaf”. ThusT’ = {¢1 M ¢,| P’}
such thatt’ = @1V Q2 andP; = o;(P’). Consequently@; =) o.(P;) = o} oo;(P’') (= P'),
and thusP'=Q1 Vv Q.

Example: The termsT; = {F(z,y)|zC{A},yO{B}} and T, = {F(B,y)|yC{A,C}} are
compatible andl’y N Ty = {F(z,y)|zOC{A},yO{e}}. Incompatible terms may also have a
greatest lower bound, for instanfd |7} M {z|zO{A}} = {z|zO{e}}.

Definition 7 (Restriction by a Substitution) LetT = {¢|P} be a constrained term ang a
pure substitution. The restriction @f by ¢ is the constrained term:

T|, = {tlsimpl(P A tO{o()})}

Notice that restriction is defined only for a pure substitutienduse there is no constrained
term in a constraint.

Example: For the termT = {F(z,y)|cC{H(A)}} and the substitutiorr defined by
o(z) = H(z), o(y) = A, we obtain:

a(T)
Ty

{F(H(2), A)|20{A}} and
{F(z,y)| F(z,y)O{F(H(Q), A)} A eO{H(A)}}
{F(z,9)|2C{H(2), H(A)}} U{F(=z,y)(=>{H(A)}, y>{A})}

Notice that in general the terms Bf, may have common instances like the tefifd, B) in
this example.

To each sulitution & we also associate the set of substitutions corresponding to
non-evaluated parts of.

Definition 8 Lete be a substitutiond is the set of substitutiorsdefined byr(z) is o () in
which some non-variable subtrees different froeimave been replaced by
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Compiling Pattern Matching by Term Decomposition 13

A substitutions is considered as the semantics of an operation that defines more precisely a
partial termT" and the termg(T') represent those instances that failed to be evaluated. This is
why we call the sef&(T) | ¢00}, thestrict part of T with respect tar. The sew(T) U T, is
the calculablepart of T with respect tar.

Lemma5 Let o be a pure substitution/d the identity substitution and” = {¢|P} a
constrained term.T'|;; = 0 ande(T) N T'|, = 0. The set of instances @f is the union of
instances o&(T), T'|, ande(T).

Proof: By definition if () is an element o&(T) theneo(t) < 5(t) and thusEn()O{e(t)}.
As a consequence, the two sets are disjointsEpgis empty. The last property is proved by
cases on the definition af.

The proposition below will be useful in the definition of the decomposition of a term.

Proposition 1 For every terml’ and substitutiorr, 7' is the greatest lower bound ef(T’),
T|, and all thes(T).

Proof: LetT = {¢|tOC{L}}. Itis easy to prove thdl is a prefix ofe(T), T|, and all thes(T).
Furthermore, if there exists a common prefixof these terms that is not a prefix Bf T' LI Tg
is also a common prefix. Now |&' = {¢'| P’} be a lower bound of (T), T'|, and all thes(T")
such thatl’ < T'. By hypothesis on the pure ternts< ¢ < t and thug = t'. The hypothesis
on the constraints are:

tOLAtO{o(t)} = P =>tOL
oc(t)OL = o(P')
oc®)OL = (P
The first property implieP’=tCL A P andtO{o(t)} = P”. By lemma 2 eitherP”"=T

which impliesP'=P or P"= A\, tO{p;(t)}. AstO{a(t)} = A; tO{pi(t)}, by lemma 2 again,
for each i,o(t) C p;(t). Consequently the following implications are satisfied:

tOLAtO{o(®)} = tOLA N\tO{pi(t)} (1)
o(t)OL = U(t)OL/\U(t)O{Pi(t)} (2)
o(t)OL = &(t)OL/\&(t)O{pi(t)} 3)

Eithero(t) < p;(¢) or there existg” such thair(t) Co t” < p;(t). In the second case, rds
inserted inside otherwiset” could not be a prefix op;(t), andt” = #(t). In both cases, as a
consequence of lemma 2, (2) and (3) respectively il = tO{p;(¢)} and thusP = P’
that meand” =T".
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14 Laurence Puel and Ascander Suarez

3 Term Decomposition

We want to partition, following an ordered list of linear terris= (s, ..., s,) named
patterns the set of all terms represented’Bynto a set of disjoint ones. The decomposition of
T with respect taS consists to split the set associated’tinto subsets such that each subset
contains instances of at most one elemerfi.oFor example, lef = { F(A4, H(Q)), F(4,Q)}
andT = {F(z,y)|7}. The evaluable part df is the disjoint union off3, 7> andTs where
T1={F(A,H@)|T}, T2 ={F(A,y)|yC{H(Q)}} andT3 = { F(z, y)|z>{A}}. Constrained
terms and decomposition were introduced in [8] to deal with recursive path orderings with
unavoidable sets.

3.1 Decomposition

Definition 9 (Decomposition w.r.t. a Pattern) LetT be a constrained term, anch pattern.
If T ands are unifiable withe as their most general unifier, the decompositio"ofv.r.t. s,
denoted compdét’, s), is equal too (T').

With this definition, compafl, Q) andT represent the same set of terms.

Definition 10 (Decomposition w.r.t. an Ordered Set of Patterns) LetT be a constrained
term andS = {s1,...,s,} an ordered set of patterns. The decompositiof'ofv.rt. S,
DecomyT, S), is recursively defined as:

Decomg],S) = O

DecomgT, (1) O

DecomyT’, S) DecomiT, {so, ..., s,}) if T ands; are incompatible
{compa(T’, s1)} U DecomgT|,,, S)

wheres; is the m.g.u. of’ ands; otherwise.

Notice that Decomp stops when a pattern is already a factérlmfcause the restriction of a
term by the identical substitution is the emptyset. The instanc&stbht do not belong to
Decomp(, S U {Q}) are those for which there is no way to decide if they are instances of one
of the elements aof.

Proposition 2 Let T be a constrained termy an occurrence off’ and S = {s1,..., .}
a set of patterns. Theff' is the greatest lower bound of Deco(@p{si,...,sn, Q}) U

Ulgign{di(T) | diDd'i}

Proof: This property is a consequence of the definition of Decomp and of Proposition 1.
Notice that, in the decomposition of a terjs used as an ordered list and thuss the last
element of this list. This decomposition is a partition of the evaluable p&rt of
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Compiling Pattern Matching by Term Decomposition 15

3.2 Decomposition Procedure

LetT = {t| P} be a constrained term aftl= {s1, .. ., s, } a set of patterns.

Initialization step

01 — T, SS9

Current step

(15, 0:41) — (0i(65), 6|5,) if 8; ands; are unifiable with m.g.uo;
— (D R 01) if not.

Then Decomd, S) = {71, ..., Tn}

The following lemmas will be used for the pattern matching:

Lemma 6 Let S = {s1,...,s,} be a set of patterns anfiri, ..., ,} the decomposition of
a variablez by the setS. For everyi, ; = {s;| A;.; 5:>{s;}} and for everyi and j#i,
T NT; = .

Proof: The first part is proved by induction ovér As 6; = z, m = {s1|7} and 6, =
{z|zC{s1}}. Now suppose that; = {s;| A;<; s:O{s;}} andbisa = {z| Aj<; zO{s5}}. Then
Ti+l = {51’+1| /\J'Si 5i+1<>{5j}} and 8;,o = {m| /\J'Si ;c<>{5j} A m<>{51'+1}}, that finishes the
proof. The second part is a direct consequence of Lemma 5.

Example: When we take the set of patterns:
F(z,B), F(P(y),z), F(t,v), F(H(v),w)

The decomposition of the terffi = F(z,y) gives the following set of constrained terms (in
the examples we write&G{ F'} instead ol OC{F(Q, ..., Q)}):

F(z, B), {F(P(y), 2)|20{B}}, {F(t,u)|u>{B} N tO{P}}
If we decompose the terffi = z the result is:
F(z, B), {F(P(y), 2)|20{B}}, {F(t,W)[tO{P} NuC{B}}, {v|[vO{F}}
The strict set of with respect to the patterns is:
o, F(z,0), {F(o,y)ly>{B}}

Notice that in this example redundant patterns disappear. As we decompose a variable, the
new set of constrained patterns and the strict setrepresent the set of all the terms.

The following lemma allows us use the decomposition of a variable to compute the
decomposition of any term. Afterwards, the decomposition of a term is a unification with
these new patterns as was illustrated with the previous example.
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16 Laurence Puel and Ascander Suarez

Lemma7 Let S = {s1,...,s,} be a set of patterns{sy,...,s,} = Decomz, S) and

T = {t|P} a constrained term. Then Deco(fihS) = {7:(s:) |1 < ¢ < n} where, for every
i, o; is the most general unifier ef andT'.

Proof: Let o; be the most general unifier @f and s; for every: (1 < ¢ < n). By
definition Decomi(’, §) = {{o:(t)|0:(P) A (A1<j<io1 0:(O)O{oi(s;) D} 1 < i < m}. As
{oi(s))[1 < i < n} = {{o:®)oi(P) A (A1cj<i-10i(s:)O{s;})} |1 < i < n}, in order to
prove the lemma, it is sufficient to prove the equivalence of the constegin}s {s;(s;)} and
oi(s;)>{s;} for every integers,j such thay < i. o;(t)O{o(s;)}=0i(s:){s;} if and only if
for all substitutiony, o;(s;) Z n o o;(t) if and only if s; IZ 0 0;(s;). The if partis clear. Let
us suppose that there existsuch thatr;(s;) Z o o;(t) ands; C no g;(s;) = 7o o;(t).
As s; andt are unifiable with the m.g.ug;, if s; < 7o o;(t) there exists a substitutiqsy
such thap; o ¢;(s;) = 70 o;(t). Thuse;(s;) C 7o o;(t) that is a contradiction. Otherwise, let
U = {ul0O(s;)|s;j/uze andn o o;(t)/u = e}. Notice thatl/ N O(t) = 0 because ands; are
unifiable. Thuss; < o o;(t)[u < s;/u|uwdU] which is an instance af Then, we conclude
as in the previous case.

3.3 Decomposition Normalization

It is useful to transform constraints into an easily readable shape and we propose now a
normalization algorithm. Its first step is to split these terms into terms with constraints with
only one function symbol. Its second step is to normalize the constraint associated to a variable
appearing at the same occurrence in two trees in the decomposition, in order to get the same
constraint at common occurrences.

Definition 11 A decompositiof’ = {T4, ..., T,} is in normal form if and only if:

1. Each constraint occurring in eacti, has only one symbol.

2. If there exist#j and an occurrence: of T; andT; such that, for every/ <prefix u,
T; and T; have the same symbol at, T;/u = {z|e Ly}, Tj/u = {ylyOL,} then,
L,=1L,.

Normalization Algorithm Let {T4,...,T,} be a set of constrained terms.

letT = {t|(zO{C{),...,t,)} U L) A P}. If there existg; non-variable:

T = {t|@o{CQ,..., QYU L) A P} UT[z « C(zy,...,zn)]

If there existT; andT; satisfying hypothesis 2. above wit\(Q,...,Q)0L, — L, and
L,z

Ty > Tifu — {2[20{C(Q ..., D} U L} UT{u — {Cles, ..., 2a)|T}]
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Compiling Pattern Matching by Term Decomposition 17

The normalization algorithm does not change the strict sS&t af it only makes substitutions
to constrained variables.

Example: The decomposition of the following set of pattei@=(4), B), F(y, B), F(C, z),
z gives as result:

F(G(A), B) {F(y, B)ly>{G(A)}} {F(C,2)|z0{B}} {z]eC{F(Q,B),F(C,Q)}}

We notice that the constraints overand y have to be normalized. The first step of
normalization transforms the pattefB(y, B)|y>{G(A4)}} and{z|zO{F(Q, B), F(C,Q)}}
into these new patterns:

{F(y, B)lyo{G}} {F(G®), B)[tO{A4}}
{z|zO{F}} {F(y, 2)lyC{C} 20{B}}

The second step gives the resulting set:

F(G(A), B) {F(G®), B)tO{A}} F(C,B)
{F(y, B)ly>{G,C}} {F(C,2)|20{B}}  {F(G(®),2)|2>{B}}
{F(y, 2)lyO{G,C} 20{B}} {z[zO{F}}

4 Pattern Matching

In this section we use constrained terms to reason about pattern matching over pure terms.

Definition 12 A set of pattern$l is complete for a terndv if every ground instance a¥ is
also an instance of ad/ Il .

Let M = {M,,..., M,} be a set of patterns. The simplest matching predicate [Qvisr
defined bymatchp(t) = True if and only if there existd/; I such thatM; < t wheret is a
pure term. This predicate does not take account of any priority[dweend is not suitable for
pattern matching over partially evaluated terms. A. Laville in [6] defines a matching predicate
over pure terms which takes care of the ordering.

Definition 13 Letl = {M3,..., M, } be a set of patterns ordered by priority, ahle a pure
term. Matcln (t) = True if and only if there existg(1 < ¢ < n) such thatM; < ¢ and for
everyj < i, tfM;.

The priority on patterns is necessary to force the matching with a chosen pattern when several
patterns are compatible.

With the concept of constrained terms, we replace priority by constraints. We transform
the ordered set of patterns into an unordered set of constrained ones using the decomposition
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18 Laurence Puel and Ascander Suarez

algorithm and without loosing generality, we work on the evaluable part of terms with respect
to the set of patterns.

Letn = {Mq,..., M,,Q} be an ordered set of patterns aralvariable. The decomposition
algorithm computed1’ = Decompg, M) which is the set of constrained patterif =

{M;| Aj<i MiO{M;}}. Remember thaf] N M} = U for i#j and that the redundant patterns,
represented by empty constrained terms, are eliminated.

Definition 14 (Pattern Matching) Let N = {Mj,..., M,} be a set of disjoint constrained
patterns, andI’ be a constrained term. RMatgi{T’) = T'rue if and only if there exists
1 (1 <2< m)suchthatM; < T.

Notice that the relatior over constrained terms is transitive and the predicate Rmistch
monotonic with the ordering'alse < True.

In the following theorem, we prove that the predicate RMatchvhich only uses the prefix
ordering, is as powerfull as Matghwhich uses the prefix ordering and incompatibility tests.

Theorem 1 LetM = {my,...,m,} be an ordered set of patterns afid the decomposition
of z by M. M’ is the set of minimal generators of the terms satisfying the predicate RMatch
and for every pure terr

Matchn (t)=RMatchy ({t|7'})

Proof: By definition RMatchy/(T) = True if and only if there existsM'M ' such that
M' < T, that meand is generated byM’. Conversely each non-empiy’ ' generates
its ground instances. Furthermore, as the elemenit¥ affe incompatible they are minimal
generators. Lefl’ = {Mj,..., M, }. By definition and lemma 3, RMatgh({t|7}) = True

if and only if there existd/ ’ such thatm; < t and for everyj < ¢, tfm;. We recognize
there the definition of the predicate Magglover pure terms.

Notice thatll’ generates the set of pure terms satisfying Mgtelnd gives a set of minimal
generators more compact than the minimal set of generators described in [6], page 44. For
instance, the decomposition of the pattefi{si, B, z) , F(A, A, z) , F(z,y,C) andF(z, y, 2)
is the set:

F(A7 B7 Z)7 {F(m7 y7 C)|F(m7 y7 C)<>{F(A7 B7 Q)7 F(A7 A7 Q)}}7
F(A7 A7 Z)’ {F(m7 y7 Z)|F(m7 y7 Z)<>{F(A7 B7 Q)7 F(A7 A7 Q)}}

Normalization gives the following set:

F(A,B,z), {F(z,y,C)leC{A4}},  {F(z,y,2)|2C{A}, 20{C}},
F(4,4,2), {F(z,y,0)ly0{4,B}}, {F(2,y,2)ly>{4, B}, 20{C}}

There are several algorithms to check the match of a term by a given set of patterns. We
will use Search Treeso represent these algorithms. These trees have as labels, pairs of a
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Compiling Pattern Matching by Term Decomposition 19

constrained term and an occurrence of a variable in it. The label of the root is a variable and on
each branch the labels are terms more and more instanced. The sons of a term withdabel
have as ternT'[u « T'] whereT’ contains at most one function symbol and is a prefix of a
pattern compatible witli'. The leaves of the tree are compatible with exactly one pattern (the
occurrence is of no use). The only freedom in the construction is the choice of the occurrence
used to develop the subtrees.

For instance, if the choice of the occurrence is always the leftmost variable that leads to
the pattern having priority, as it is the choice of many compilers for functional languages, the
search tree associated to the patter(4d, B), F'(y, B) andz is:

z[z]

E ZF
F(y, z)[y] {z|lzC{F}}
ZA
F(A,7)[z] {F(y,2)lyC{A}}[z]
B ZB B ZB
F(4, B) {F(4,2)|20{B}} {F(y, B)lyo{4}} {F(y,2)lyO{A} 20{B}}

The strict set of the match g F(y, ) and F(e, B). This algorithm will not give a result
for the termF'(e, A), which does not belong to the strict set of the match.

Definition 15 A pattern matching algorithmis optimal if and only if it fails to produce a result
only on the strict set of the match.

In the following section we give a characterization for the optimality of the pattern matching
algorithm.

4.1 Sequentiality

We say that a pattern matching problem is sequential when it can be computed without
looking ahead on a sequential machine. In this section we describe how to decide if a match
problem is sequential and in such case, how to build the search tree associated to it. This
section adapts the definitions and proofs of [5] to the case of constrained terms.

Definition 16 (Index, Sequential)
Let? be a monotonic predicate on constrained terms (with the truth values domain ordered
asFalse < True).

e An occurrence: of T' is said to be arindez of P in T if and only if

1. T/u={Q|T}
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20 Laurence Puel and Ascander Suarez

2. ForeveryM > T, P(M) = True implies(M /u)A(T /u) (i.e. (M/u)2{Q|T}).

e ThenP is sequential at T if and only if whenevefP(T) = False and there exists
M > T such thatP (M) = T'rue, it follows that there exists an index Bfin T'.

e Finally P is said to be sequential if and only if it is sequential at every calculable
constrained term.

As the predicate Rmatglis monotonic, we look for its sequentiality at every term, called
the sequentiality ofl. The set Dig (7)) of the indexes of Rmatgfin T is the set of directions
fromT to.

Lemma 8 Let T be a constrained term anéll a set of disjoint constrained patterns.
uDirn(T) ifand only if7/u = {Q|7 } and, forall M M suchthatM 7T T', one haaJO(M)
and M /uz{Q|T?}.

Proof: Let uODirn(7) and MM such thatM T T. Thus,T/u = {Q|7} and there exists

T’ such thatl' < T' and M < T'. Suppose that [JO(M). There exists a proper prefix

v’ of u such thatu = v'w with w#ze and M/u' = {Q|QOLg}. As M < T, the subterm

T’ /u' satisfies the constraints affid/v'[w «— {Q|7}] also. Thereford! < T'[u — {Q|T}],

which contradicts the second condition of the definition of a direction and also our hypothesis.
Knowing thatuJO(M), obviouslyM /uAT /u. Conversely, if there is a terffi’ > T such

that Rmatch(T"') = True, there is a patterd/ M compatible withT. Thus M /uz{Q|7}

that impliesT” /uAT /v and the equivalence is clear.

Remark: This lemma gives a simple characterization of directions. By normalization,
a patternM [ is split in several termdy,..., M, which may be compatible. As a
consequence of the simplification ruléd,/uz{Q|7} if and only if eachM; /u#{Q|7T} and
thus the set of directions Bj(T) is the set of directions frorfi to the normalization oF1.

Lemma 9 Let I be a set of disjoint constrained patterri,= {¢|P} a term andM @ a
pattern compatible witfl". Then:

Dirn(T) = Dirp(T 11 M) wherell’ ={MM |T T M}

Proof: SupposeuDirn:(T). ThenT/u = {Q|7} and for everyM M ', «OO(M) and

M /uz{Q|T} by Lemma8. AsM belongstdl’, vJO(M), thusuOO(TTM)and (M M)/u =

{Q|7}. In conclusionuODirq:(T' 11 M). Conversely, lexODirq:(7° 1 M). Then for every
Mm ', M/uz{Q|T} and 1N M)/u = {Q|T}. Remember tha{Q|QC LV QOL'} is

always different fror{ Q| 7'} because is an instance of Q|7 } but not of{ Q|QCL v QO L'}

ConsequenthyT'/u = {Q|7}. Now take anyM @ compatible with7. ThenM M ' and

M /uz{Q|T}. In conclusionuODirn(T).

This property allows to look for directions only in the prefixes of patterns.
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Theorem 2 LetI1 be a set of disjoint constrained patternsrlfis finite, one can decide il
is sequential, one just checks that Rmajistsequential at every prefix BF.

Proof: If N is sequential, then Rmatgls sequential at every terfhand in particular at every
prefix of some element dil. Conversely[1 is sequential if and only if Di(7T)£0 for all T
such that Rmatgi(T") = False. If T is not compatible witliil, there is no instance @f which
satisfies the predicate and thus, by definition of the sequentiality, Rpiatsbquential af".
Otherwise, there exist® M compatible with?' and Dir(7") D Dirp (T 1 M) by Lemma 9.
If Rmatchq (T N M) wereTrue, either there would exist/’'M more general thail' N M
that would contradict the fact that Rmagdfi’) = False. Thus Rmatch(T 1 M) = False
and Dir (T 1 M) #0whichimpliesDirn (T)£0.

Theorem 3 Optimality and sequentiality are equivalent on the pattern matching algorithms.

Proof: Let I be a complete decompositiorfl is sequential if and only if there exists a
search tree in which each labél () satisfiesz[IDirn(T'). The set of terms for which the
algorithm does not terminate is generated by the téffes— o] where (', z) is a label of the
search tree. By definition the algorithm is optimal if and only if the set of terms for which the
algorithm does not terminate is generated by the strict set. Thus, we only need to prove that
for every prefixT’ of N, ODirn(T') if and only if T[z < e] belongs to the strict set ¢1.

An occurrencex of a variable is a direction frorf” to I if and only if for every patterm/
compatible with’, M /u#{Q|7} which is equivalent t@’[z « e] is incompatible with each

M inTl. Thatmean&[z < e] belongsto the strict set becausés a complete decomposition.

The theorems state that in order to verify the sequentiality of a match problem it is sufficient
to verify it on the set of prefixes of the patterns, so the match is sequential if and only if the
search tree of a variable can be built.

We can build now a search tree for a complete decompoditiatich is optimal both in the
number of test in each path of the tree and in the number of terms for which the algorithm
terminates.

SearchTred{,N) =
T whereRoot(T) = N and

if there is no direction fronv to I,
if NI , e is the only occurrence df.
otherwisethe algorithm fails

otherwise

let u be one direction ofV

and L be the se{ F(...)| OM ODecompV, M) such thatF'(...) T M}.
For each elemerdid]L, 7 is an occurrence df
andT' /i = SearchTree([u « [;],11)
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We have extended the sequentiality to constrained terms which allows to compute optimal
algorithms for call by pattern matching. If we complete the initial set of patternQ Iy
order to cover all the cases, we optimize both the success and the failure of the matching. The
sequentiality of the set of patterns can be modified by the inclusion of the new el igut,
as the search tree covers anyway all the cases, this restriction of the sequentiality has a positive
effect on the result.

In case of non-sequential sets of patterns, it is possible to build a search tree, by ignoring
some of the patterns. Two possibilities appear: to ignore, during the direction search, either
pattern with lower priority or those that prevent the existence of directions.

5 Examples

We wrote a prototype of this method in CAML [10] which is used to generate mechanically
all the examples in the paper. In this prototype we only represent constraints of depth 1, other
constraints are normalized during the application of substitutions. In all the examples we add
the termz at the end of the list of patterns to complete the set.

1. With the set of patterng'(A, B), F(A4,z), F(y, B) the decomposition produces the
following constrained terms:

F(A, B) {F(4,2)[z0{B}} {F(y, B)lyO{A}}
{F(y, 2)lyO{A} 20{B}} {z[zO{F}}

And the strict set is:
o b F(m7.)7 F(.7y)

The nodes of search trees are pairs formed by a term and a variable which is a direction
in the term. The arcs are labeled by the possible values the direction can take and leaves
are represented by the matched patterns.

z[z]

E ZF
F(y, z)ly] {z|lzC{F}}
A A
F(A,7)[z] {F(y,2)ly0{A}} [2]
B ZB B ZB
F(4, B) {F(4,2)|z0{B}} {F(y, B)lyo{4}} {F(y,2)lyO{A} 20{B} }

2. For Berry's example:G(4, A,z) , G(B,y,4) , G(z, B, B) the decomposition of
G(z,y,z) produces:
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G(4,A,z) {G(z,9,2)20{4, B} yO{B}} {G(z,y,2)[yOC{4, B} zO{A}}

G(B,y,A4) {G(z,y,2)|z0{B} yO{4, B}} {G(z,y,2)|lyC{A}=O{4, B}}

G(z,B,B) {G(z,y,z)|z0C{A, B} 2C{B}} {G(z,y,2)|zC{A} yO{B} «C{A}}
{G(z,y,2)|z0{A} 2O{4, B}} {G(z,y,2)[20{B} yO{A4} O{B}}

As the original patterns have no common instance, they all belong to the decomposition,
and there is no direction to start the match.

3. Inthis example extracted from a CAML program, we try to match lists of Booleé#s (
represents the empty ligt,:: y is a list containing the elememntfollowed by the listy).

(y :: True > u), (False :: Nil), Nil

The decomposition of this example is:

(y :: True :: u) Nil {(y 2 2)|zO{Nil,::}}
{z|zO{Nil,::}} (False :: Nil) {(y 2t u)[tO{True}}
{(y 2 2)|[yO{False} zO{::}}

the strict set is:
o, yle, 0 Nil yilelu

and the search tree is:

i Nil ZNil, .
(y i1 2)[2] il {z|zO{Nil,::}}

N,
(y = NiD)[y] {( 1 2)[2O{ Vi, 1} }

False ZFalse
(y = True u)  {(y:t:w)tO{True}} (False:: Nil) {(y :: Nil)|yO{False}}

In the decomposition of this example, some of the patterns have the constraint
¢O{Nil,::}. In a typed language, iVil and :: are the only list constructors of
lists, these patterns represent an empty set. Eliminating them (and assumi£lgrileat
implies Flalse and thattFalse impliesTrue) the decomposition becomes:

(y :: True w), (False :: Nil), Nil, (y :: False :: u), (True :: Nil)

which is the set ominimal extended patterress defined in [6]. The search tree now
becomes:
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z[z]

i Nil
(y :: 2)[2] il

(g =t T w)d] (y = Nil)ly]

True Zlrue Fals ZFalse
(y :: True :: w) (y :: False :: u) (False :: Nil) (True :: Nil)

4. The sequentiality of a problem might depend on the signature of terms, for instance the

decomposition oF'(z, y) by the patterng'(A, A), F(B, B) produces:

F(A,4) {F(e,y)lyO{4, B}} {F(z,y)|20{A} yO{B}}
F(B,B) {F(z,y)|lz2>{B}yO{A}} {F(e,y)l=C{4, B}}

With the following strict set:
F(A,e), F(eo,A), F(e,0), F(B,e), F(e, B)

This problem is not sequential because of the pattdiFige,y)y>{A, B}} and
{F(z,y)|zC{A, B}}. However, if the same match problem where given for a type that
is defined with only two constants like the Booleans, those two patterns would represent
empty sets and thus could be eliminated. In that case, the decomposifiga,af) by
the pattern' (T'rue, True), F(False, False) produces:

F(True,True), F(False, False) , F(True, False) , F(False, True)

And the problem becomes sequential with the search tree:

F(z,y)[=]
True False
F(True, y)[y] F(False,y)[y]
True alse Fals rue
F(True, True) F(True, False) F(False,False) F(False, True)

6 Conclusion

Constrained terms are used to extend the sequentiality to ambiguous sets of patterns. The
introduction of an explicit symbod to represent non-terminating evaluations allows to use
constraints for the partially evaluated terms.
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The actual compilers for pattern matching use different techniques to improve the code
generated for call by pattern matching, like the introduction of heuristics for finding directions,
or the analysis of execution tests to improve most frequent cases. Both heuristics and execution
tests analysis become unnecessary as our algorithm computes directions and produces an
optimal search tree that includes only unavoidable tests.

The elements of the decomposition are exactly the leaves of the optimal search tree which
depends inherently on the match problem. The order of complexity of the substitution and of
the restriction is irO(l). For the decomposition it i©®(m  I) and for the search of directions
during the construction of a search tree i€ién * [) wherem is the number of patterns of the
match and is their average size.

The technique presented in this paper allows the implementation of optimal compilers for
call by pattern matching in all the languages that support this feature, and encourages language
designers to introduce it into new programming languages.
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