
4

Compiling Pattern Matching by Term
Decomposition

Laurence Puel

Ascánder Suárez

January 1990

Publication Notes

Laurence Puel’s address is: Laboratoire d’Informatique LIENS URA CNRS 1327, Ecole
Normale Sup´erieure, 45 rue d’Ulm, 72230 Paris C´edex 05, FRANCE. This article will also
appear as the “Rapport de Recherche du LIENS 90-7.”

c Digital Equipment Corporation and Ecole Normale Supérieure 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by joint permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe
(Rueil-Malmaison, France) and of the Laboratoire d’Informatique LIENS URA CNRS 1327 (Paris,
France); an acknowledgement of the authors and individual contributors to the work; and all applicable
portions of the copyright notice. All rights reserved.

ii

Abstract

We present a method for compiling pattern matching on lazy languages based on previous work
by Laville and Huet-Lévy. It consists of coding ambiguous linear sets of patterns using “Term
Decomposition,” and producing non ambiguous sets over terms with structural constraints on
variables. The method can also be applied to strict languages giving a match algorithm that
includes only unavoidable tests when such an algorithm exists.

Résumé

Nous présentons une m´ethode de compilationde l’appel par filtrage pour les langages paresseux
dans le prolongement du travail de Laville et Huet-L´evy. Nous transformons des ensembles
ambigus de motifs lin´eairesà l’aide de la “Décomposition des Termes” pour produire des
ensembles non-ambigus de termes dont les variables sont munies de contraintes structurelles.
Cette méthode peut aussi ˆetre appliqu´ee à des langages stricts et donne un algorithme de
filtrage ne nécessitant aucun travail inutile quand un tel filtrage existe.

iii

Keywords

Compilation, Call by Pattern Matching, Term Decomposition, Sequentiality

Acknowledgements

We are grateful to Jean-Jacques L´evy who made numerous suggestions on the presentation of
this work. We would like also to acknowledge helpful comments made by G´erard Huet and
Hassan A¨ıt-Kaci.

iv

Contents

1 Introduction 1
1.1 Constrained Terms : 1
1.2 Pattern Matching : 2
1.3 Compilation : 2

2 Terms and Constraints 5
2.1 Terms : 5
2.2 Constraints : 6
2.3 Constraint Simplification : 8
2.4 Constrained Terms : 9
2.5 Substitution : 10

3 Term Decomposition 14
3.1 Decomposition : 14
3.2 Decomposition Procedure : 15
3.3 Decomposition Normalization : 16

4 Pattern Matching 17
4.1 Sequentiality : 19

5 Examples 22

6 Conclusion 24

References 26

v

Compiling Pattern Matching by Term Decomposition 1

1 Introduction

We are interested in compiling pattern matching in case of partially evaluated terms in order
to do only necessary computations for the match. This is a kind of lazy computation over
partially defined terms. In 1979 G. Huet and J-J. L´evy [5] defined a method for constructing
match trees for non-ambiguous linear term rewriting systems. However, the application of
their results to the problem of compiling pattern matching as in the ML language was not clear
until 1988 when A. Laville [6, 7] showed that it is possible to use their method for ambiguous
term rewriting systems with a given priority on rules. This priority is necessary to decide
which rule has to be used in case of conflict. Laville designed a new match predicate that takes
into account the priority when building the match trees. When this construction is successful,
the leaves of the match tree form aMinimal Extended Set of Patternsequivalent (from the
match point of view) to the original system in the case of finite signatures.

Our method is to code ambiguous ordered term rewriting systems into non-ambiguous
ones over constrained terms. We replace the priority rule between left parts of the rewriting
system by constraints over terms. Therefore the match predicate is that of Huet and L´evy
but over constrained terms. Their results are then extended to these terms. Furthermore, as
a result of the computation of the non-ambiguous set of terms of the system, we also obtain
a characterization of the set of partially evaluated terms for which every matching algorithm
will loop. We call it the strict set of the system. Although some algorithms may loop on other
terms, an optimal algorithm, if it exists, will only loop on the strict set.

1.1 Constrained Terms

A term with variables is a representation of all ground terms obtained by replacing its
variables by terms with no variables. A subset of a given set can be defined either by a
description of its elements or as the complement of another subset. For example, a variablex

represents the set of all the ground terms andF (A; y) a subset ofx. We can partition the set
x into three subsets. First, the set of instances ofF (A; y). Then, the set of terms for which
we can decide that they are not instances ofF (A; y). Finally, the set that contains partially
evaluated terms of the formF (. . .) whose first argument cannot be evaluated (its computation
loops) denotedF (�; y) as well as the non-evaluated term that we denote�. With the set
notation, this partition is written:

fxg = fF (A; y)g [fx jx6 ∈ F (A; y)g [f�; F (�; y)g

Following this idea, we define the concept of constrained terms and give some of their algebraic
properties.

With this formalism an ordered ambiguous set of terms can be transformed into a non-
ambiguous set of constrained terms. For instance, the set of termsF (A; y); F (x; y) is
ambiguous as the termF (A;B) is an instance of both of them. The set of constrained terms
F (A; y); fF (x; y) jx≠Ag; fx jx≠F (. . .)g; f�; F (�; y)g is not ambiguous. Now a given term is
an instance of exactly one of these constrained terms.

Report No. 4 January 1990

2 Laurence Puel and Ascánder Suárez

1.2 Pattern Matching

Call by pattern matching is one of the main features of the ML language [4, 10] and was
inherited from HOPE [2]. It may be viewed as a generalization of the “case” statement of
imperative languages. In ML, one can define one’s own structural types and very easily write
operations over them. We will introduce call by pattern matching by extending the Pascal
definitions of “enumerated types”

In Pascal, it is possible to use the case statement to select among different cases by the value
of an expression of an “enumerated type”:

type T = (C1,...,Cn); case x of

var x:T; C1 : <<exp1>>

... | ...

| Ci : <<expi>>

| otherwise : <<exp>>

The natural extension of this construct is to allow matching not only constant values but
more general data structures as in the following example in the language ML where there are
two cases in the definition of the type of trees:Leaf to represent the leaves of trees and the
constructorTree for the other nodes.

type Tree = case tree of

Leaf of number Leaf(3) ! <<exp1>>

| Tree of number*tree*tree; | Tree(_,Leaf(_),_) ! <<exp2>>

| Tree(_,Tree(_,_,_),_) ! <<exp3>>

| otherwise ! <<exp4>>

val tree: Tree = Tree(3,Leaf(2),Tree(4,Leaf(7),Leaf(9)));

...

In this example the value of the variable “tree” will match the second and the fourth cases
but taking the first one as the priority holder, the expression<<exp2>> will be executed.

1.3 Compilation

If patterns are non-ambiguous, there is a decision procedure due to Huet and L´evy [5] that
determines whether an optimal match exists for a set of patterns and, in the case where such a

January 1990 Digital PRL

Compiling Pattern Matching by Term Decomposition 3

match exists, produces a search tree that allows to compile the match problem. This method
can be illustrated with the following example.

Suppose that we want to match pairs of terms(x,y) of Booleans by the set of patterns
(true,true) , (_,false) and (false,true) . We choose to look first at a column
that only contains constants (in our example the second one), and divide the patterns by the
constants appearing in that column. The result is a transformed program in which there is
always one column in the pattern to look at.

case (x,y) of case y of

(true , true) ! 1 true : (case x of

| (_ , false) ! 2 true ! 1

| (false , true) ! 3 | false ! 3)

| false ! 2

)

There are some sets of patterns, namely non-sequential patterns, for which the method of [5]
fails. The typical example was proposed by Berry [1]:

(A,A,_) , (B,_,A) , (_,B,B)

In this example the patterns are non-ambiguous but there is no column in which we can
make the decision. So if we want to avoid looping in the evaluation of this match, a parallel
mechanism that inspects simultaneously all three columns is necessary.

But the restriction that patterns must be non-ambiguous is a burden to the programmer
especially when the program contains data structures with many different constructors. This
is one of the reasons why most programming languages that feature call by pattern matching
accept ambiguities and impose a priority rule between different patterns. In this paper we do
not discuss assignment of priorities. In ML and other programming languages, for instance,
the order of patterns in the text is used and the programmer has to write the more specific cases
before the more general ones. Another possibility to automatically assign higher priority to
specific cases and still use textual ordering for those that are compatible. Both priority rules
have the same expressive power as any set of patterns can be ordered to work exactly in the
same way with any of them.

When ambiguities are allowed and a priority rule is imposed, the method of [5] does not
apply directly, as shown below:

Report No. 4 January 1990

4 Laurence Puel and Ascánder Suárez

case (x,y) of

(_ , true) ! 1

| (false , _) ! 2

| (_ , _) ! 3

Now take any pair(x,y) , if y=true then the pair(x,y) matches the first case.
Otherwise, ifx=false , it matches the second one. Finally in every other case, it matches the
third one. Remark that it is slightly subtle to find the set of pairs which match this three cases.
The first case corresponds to any pair(x,true) , the second one to(false,false) and
the third one to(true,false) . In this example, where both the first and the second column
only have one constant, the method of [5] does not apply directly. It can be adapted (as in [6])
by imposing priorities to the patterns to make them non-ambiguous.

Our approach in this work is to use the data structure of constrained terms to represent
sets of patterns ordered by priorities such that the disambiguating rule becomes part of the
representation. In the previous example, the set of constrained terms that represents the match
problem is:

(_,true) , (false, ≠true) and (≠false, ≠true)

in which≠C represents any value different fromC and the strict set is:

(_, �) , (�, ≠true)

Notice that an algorithm that evaluates from left to right will also loop on the term(�,true)
while an algorithm that evaluates this pair from right to left will not. With the non-ambiguous
set of terms given above it becomes possible to apply the method of [5] and choose the second
column as the one to look at first (where≠C is considered as a constant).

In [6], a program for the compilation of patterns with priorities was written in CAML [10].
The construction of the new set of non-ambiguous patterns is embedded in the control of the
program. In our work, the transformation from ambiguous to non-ambiguous patterns will
be achieved at the level of source programs. This makes the program transformation explicit
and independent of the pattern matching process. Furthermore, the algorithm presented here
produces very compact representations, especially in the matching of terms with arbitrarily
large signature.

January 1990 Digital PRL

Compiling Pattern Matching by Term Decomposition 5

2 Terms and Constraints

2.1 Terms

Let X be a denumerable set of variables andΣ a set containing function symbols and an
additional symbol�. To each function symbol is associated its arity. For our purpose the
language of termsT (Σ; X) is defined by:

terms : t ::= F (t1; . . .; tn) j x j �

where the function symbolF is a symbol ofΣ of arity n, the variablex is inX andt1; . . .; tn
are terms. The set of terms without variables is the setT (Σ) of ground terms. The set of
partially evaluated termsis the setT (Σ� f�g; X). A linear term is a term in which all the
variables are different.

The setO(t) of occurrences of a termt is recursively defined by:

� ∈ O(t)

i:u ∈ O(F (t1; . . .; tn)) if u∈ O(ti) (1� i � n)

if u∈ O(t) the subtermt=u of t is defined by:

t=� = t

F (t1; . . .; tn)=i:u = ti=u

Definition 1

1. A (ground)substitution�, is a mapping over terms defined by replacing a finite set of
variables by (ground) terms which transforms any termt into �(t). The term�(t) is
called aninstanceof t.

2. The quasi-ordering� over terms is defined byt � t0 if there exists a substitution� such
that�(t) = t0 andt is said to be aprefixof t0. Its extension to substitutions is defined by
� � �0 if and only if there exists a substitution� such that�0 = � � �. Thus� is said to
bemore generalthan�0.

3. Two termst andt0 are comparableif either t � t0 or t0 � t andcompatibleor unifiable
if there exists a substitution�, such that�(t) = �(t0), in which case� is a unifier oft
andt0.

4. Theleast upper boundof two termst andt0, denotedt t t0 is the smallest term that has
both t and t0 as prefixes. The unifier that produces this bound if it exists is called the
most general unifier(m.g.u.). Thegreatest lower boundof two termst and t0, denoted
t u t0 is the greatest prefix oft andt0 (with respect to�).

Report No. 4 January 1990

6 Laurence Puel and Ascánder Suárez

In the following it will be convenient to identify a term with the set of its ground
instances. For example, letΣ = fF;A;B; �g. The termt = F (x; y) represents the set
fF (A;A); F (B;A); F (�; A); F (F (A;A); A); . . .g. Any ground termt represents the setftg.
Two incompatible terms represent disjoint sets of ground terms.

The relation� is the opposite of the set inclusion of the ground instances. A substitution
can be seen as an operation that allows to build terms from the root to the leaves. The special
term� will denote terms that cannot be built as for instance those whose construction does not
terminate; a substitution� such that�(x) = � can be assimilated to a construction that never
ends.

Now we want to represent more precisely sets of terms; for instance the subset of all terms
which are not instances ofF (x; y). Thus we classify all the terms in three parts: those that
are instances ofF (x; y), the term� which represents terms that cannot be built and those that
are instances of anyG(. . .) with G≠F andG≠�. The last part represents terms for which
we do know that they are not instances ofF (x; y) while the second part represents terms for
which we cannot say anything. The subset ofF (x; y) of all terms different fromF (A;B) is
the set of ground termsfF (�(x); �(y)) j�(x)6 ∈ fAg or �(y)6 ∈ fBgg. With the finite signature
Σ = fF;A;B; �g, this set is represented as the union ofF (x;A), F (x; F (y; z)), F (B; x)
andF (F (x; y); z). This representation depends on the number of elements of the signature,
for instance usingΣ0 = fF;A;B; C; �g the representation as union of terms has two extra
components:F (x; C) andF (C; y). With an infinite signature it is not possible to represent
this set as a finite union of instances of terms. Notice that the two termsF (�; y) andF (x; �),
which are instances ofF (x; y), do not belong tofF (�(x); �(y)) j�(x)6 ∈ fAg or �(y)6 ∈ fBgg.
It is more concise to represent those sets by terms with variables with constraints. This can be
illustrated as follows:

1. ft = F (x; y) such thatt≠F (A;A)g = F (x6 ∈ fAg; y)[F (x; y 6 ∈ fBg)

2. F (B;A)[F (B; F (x; y))[F (F (x; y); A)[F (F (x; y); F (z; t)) = F (x6 ∈ fAg; y 6 ∈ fBg)

3. F (F (x; y); A) [F (F (x; y); F (z; t)) = F (x6 ∈ fA;Bg; y 6 ∈ fBg)

We will now formally introduce the notions of constraint and of constrained term in order
to represent such sets of ground terms. Roughly speaking, a constrained term is composed
of a term and a constraint which is a predicate over the variables of the term. This predicate
restricts the possible instances of the variables in subsequent substitutionsas we will see below.

2.2 Constraints

Definition 2 Let t and t0 be two terms. The quasi-orderingv between two terms is defined
by: t v t0 if and only if there exists a termt00 such thatt v0 t

00 � t0 wherev0 is characterized
by the following rules:

Let x and y be two variables,F a symbol inΣ andt a term:

x v0 y

January 1990 Digital PRL

Compiling Pattern Matching by Term Decomposition 7

F (t1; . . .; tn) v0 F (t01; . . .; t0n) if and only if for everyi (1 � i � n) ti v0 t
0

i

t v0 �

Lemma 1 let t be a linear term andt0 a term. t v t0 if and only if there existt00 such that
t � t00 v0 t

0

Proof: LetU = fu∈ O(t)\O(t0) j t0=u = �g andt00 = t0[u t=u ju∈ U]. Clearlyt � t00 v0 t
0.

When the name of variables in a term is not important (that will be the case for linear terms
in the following) we will use the symbolΩ instead of the names of variables.

The greatest lower bound of two terms is equal to the one for the prefix ordering. The least
upper bound can be characterized by the following rules: letl be an term,x a variable andF
andG two different symbols inΣ.

xtl = l

ltx = l

F (. . .)tG(. . .) = �

F (l1; . . .; ln)tF (l01; . . .; l0n) = F (l1tl
0

1; . . .; lntl
0

n)

The relationv is used to define predicates over terms that we call constraints. To each set
L of linear terms is associated a predicate over terms denotedt3L which is true if and only if
l 6vt for everyl in L. These constraints are said to be structural as they are specific to the term
structure only as opposed to arbitrary predicates.

Definition 3 (Constraint) A constraint is recursively defined as either an atomic predicate
t3L or the disjunction of two constraints or the conjunction of two constraints.

Constraint : P ::= term3Set of linear terms

j P _ P

j P ^ P

When (t3L) we say thatL is a constraint overt.

The truth value of compound constraints is obtained by standard interpretation of the
logical connectives. We writej= P if and only if the predicateP is true. By using the
usual equivalences on connectivesor (_) andand (^), a constraint can always be written in
disjunctive normal form (as a disjunction of conjunctions of atomic constraints).

Definition 4 (Substitution over a Constraint) Let � be a substitution,t3L an atomic con-
straint,P1; P2 two constraints. By definition,

�(t3L) = �(t)3L; �(P1 _ P2) = �(P1) _ �(P2) and �(P1 ^ P2) = �(P1) ^ �(P2):

Report No. 4 January 1990

8 Laurence Puel and Ascánder Suárez

A substitution� satisfies a constraintP if and only ifj= �(P).

For instance,6j=(F (A;B)3fF (A;Ω)g) andj= F (A;B)3fF (A; �)g).

Two constraintsP andP 0 are said to be equivalent, denotedP≡P 0, if and only if, the sets of
substitutions satisfyingP andP 0 are the same. A constraintP implies a constraintQ, denoted
P) Q, if and only if every substitution satisfyingP also satisfiesQ.

Remarks: For every termt and for every substitution�, 6j=(�(t)3fΩ; . . .g) andj= (�(t)3fg).
In what followsF andT will denote respectivelyt3fΩg andt3fg. Notice that when6j=P
then for every substitution�, 6j=(�(P)) and thusP≡F . Also if there is a substitution that
satisfiesP (notedj= P), P is not always equivalent toT as there may be some substitutions
that do not satisfyP .

2.3 Constraint Simplification

We can prove by induction on the structure ofl that t3flg _ t3fl0g≡t3fltl0g and that
if l v l0 then t3flg ^ t3fl0g≡t3flg. From those properties we deduce the following
simplification rules that associate to each constraint an equivalent normal form where the term
in each atomic constraint is a variable:

Let t; t1; . . .; tn be terms,t01; . . .; t0n be linear terms,L be a set of linear terms andx a variable.

F (t1; . . .; tn)3fF (t01; . . .; t0n)g [L ≡ (
W

1�i�n ti3ft
0

ig) ^ F (t1; . . .; tn)3L
F ()3fF ()g [L ≡ F

F (t1; . . .; tn)3fG(. . .)g [L ≡ F (t1; . . .; tn)3L
t3fg ≡ T

t3fΩg [L ≡ F

t3fl; �(l)g[L ≡ t3flg [L

t3L^ t3L0 ≡ t3L[L0

^it3flig _ ^j t3fl
0

jg ≡ ^i;jt3flitl
0

jg

These simplification rules define a function, denotedsimpl, which transforms a constraintP
into F , T , or an equivalent constraint over variables. Notice that these rules are different
from those of disequations in [3] because we deal explicitly with the symbol� that represents
non-evaluable terms. For examplex3fAg _ x3fBg6 ≡x3fAg _A3fBg because� does not
satisfy the left part while the right part is equivalent toT .

Therestrictionof a simplified constraintP to a given set of variablesV is simpl(P 0) where
P 0 is the constraint obtained when replacing byT all of the atomic constraints of the form
x3Lx such thatx6 ∈ V . For instance the constraint (x3fF (Ω;Ω)g ^ y3fAg) restricted tofxg
is (x3fF (Ω;Ω)g ^ T)≡x3fF (Ω;Ω)g; the restriction of (x3fF (Ω;Ω)g _ y3fAg) to fxg is
T . Notice that whenj= P we havej= P 0 for any restrictionP 0 of P .

The following lemma shows the relation between the constraints and the prefix ordering.

January 1990 Digital PRL

Compiling Pattern Matching by Term Decomposition 9

Lemma 2

1. Let � be a substitution satisfying a constraintP = t3L. Every substitution� more
general than� satisfiesP .

2. Lett andl be two terms. Ift v l andt6�l thent3flg≡T .

3. Let t be a term and�, � two substitutions. t3f�(t)g) t3f�(t)g if and only if
�(t) v �(t). More generally,

V
i t3f�i(t)g) t3f�(t)g if and only if there exists�i

such that�i(t) v �(t)

4. Let t and l be two terms andL a set of terms. Eithert3flg≡T or there exists a
substitution� such thatt3flg≡t3f�(t)g. More generally for any predicatet3L there
exists a possibly empty set of termsL0 = fl1; . . .; lng such thatt � li andt3L≡t3L0.

Proof: These properties are proved by induction on the structure of terms.

1. Let us suppose thatP = t3L. If Ω∈ L or t = �, the left part of the implication is never
satisfied. The only property to prove is that for every termt≠�, everyl = F (l1; . . .; ln)
and substitution�, 6j=t3flg implies6j=�(t)3flg. The hypothesis impliest = F (t1; . . .; tn)
and for everyi (1 � i � n), 6j=ti3flig. By induction 6j=�(ti)3flig and by definition
6j=�(t)3flg. The proof easily extends to arbitrary constraints but the extension is not
necessary because, as we will see below, any predicate is equivalent to one of the form
t3L.

2. If t v l andt6�l then there exists an occurrenceu of both terms such thatl=u = � and
t=u is not a variable and is different from�. Thus for every substitution� the subterm
�(t)=u is also different from� and is not a variable which impliesl 6v�(t).

3. If t3f�(t)g) t3f�(t)g, � does not satisfyt3f�(t)g because it does not satisfy
t3f�(t)g and thus�(t) v �(t). Conversely, for every substitution� satisfyingt3f�(t)g,
�(t)6v�(t). As �(t) v �(t), �(t)6v�(t) and we conclude that� satisfiest3f�(t)g. The
generalization is made by simple manipulation of logical connectives.

4. We remark thatt3flg≡t3flg _ t3ftg≡t3flttg. As t v ltt, by part (2) either
t3flttg≡T or t � ltt that proves the property. The generalization is made by simple
manipulation of logical connectives.

2.4 Constrained Terms

Definition 5 (Constrained Term) Let t be a term andP a constraint. A constrained term
ftjPg is the set of ground instances oft satisfying the restrictionP 0 of P to the variables oft.

constrained terms : T ::= ftjPg

Report No. 4 January 1990

10 Laurence Puel and Ascánder Suárez

In what follows we will callt thepurepart ofT and substitutions over pure terms will be
calledpure substitutions. The set ofoccurrencesof T is that of its pure part. Thesubtermsof
ftjPg are of the formft0jPg wheret0 is a (pure) subterm oft. Notice that by definition, the
constraint part of a subterm is restricted to the variables occurring in its pure part. When6j=P
the termftjPg represents the empty set of terms that we note∅ . The following properties on
the sets represented by constrained terms are easy to check:

1. WhenP≡Q, the termsftjPg andftjQg are the same.

2. ftjP _ Qg = ftjPg [ftjQg

3. ftjP ^ Qg = ftjPg \ ftjQg

Any constraintP is equivalent to its disjunctive normal form
W

i Pi where eachPi is a
conjunction of atomic constraints over variables and thusftjPg =

S
i ftjPig. This gives a

practical representation of constrained terms which is very close to their implementation.

Example: Let T = fF (x; y)jPg whereP = F (x; y)3fF (A;B)g ^ y3fCg ^ z3fAg. As
the variablez does not appear inT , the restriction ofP is F (x; y)3fF (A;B)g ^ y3fCg and
T = T1 [T2 whereT1 = fF (x; y)jx3fAg ^ y3fCgg andT2 = fF (x; y)jy3fB;Cgg. Notice
that in general the termsTi are not disjoint as in this example where the termF (B;A) belongs
to bothT1 andT2.

Even in the case of an infinite alphabet, term representation with constraints can be finite
which is not the case with the classical representation.

2.5 Substitution

Definition 6 Let � be a substitution andQ a constraint. The constrained substitution
� = (�;Q) is the mapping over constrained terms defined by�(ftjPg) = f�(t)j�(P) ^Qg.
Whenj= �(P) ^Q, � is admissible forftjPg.

Notice that when6j=Q the substitution� = (�;Q) maps every term to the term∅ .

We compose two constrained substitutions�1 = (�1; Q1) and�2 = (�2; Q2) as usual and
check easily that�2 � �1 = (�2 � �1; simpl(Q2^ �2(Q1))).

The definition of quasi-ordering (�) is extended to constrained terms using constrained
substitutions instead of pure substitutions. The least upper bound (t) is defined with respect
to �. The notion of unifier of two termsT andT 0 is also extended but the unifier has to be
admissible for both terms to avoid the empty term as the only common instance ofT andT 0.
The equality(=) of two termsT andT 0 is defined by:T1 = T2 if and only if T1 � T2 and
T2 � T1. We give now a characterization of these concepts in order to compute separately the
pure part and the constraint.

Lemma 3 LetT1 = ft1jP1g andT2 = ft2jP2g be two constrained terms.

January 1990 Digital PRL

Compiling Pattern Matching by Term Decomposition 11

1. T1 � T2 if and only if there exists a substitution� such that�(t1) = t2 andP2) �(P1).

2. � = (�;Q) unifiesT1 andT2 if and only if� is admissible forT1 andT2, �(t1) = �(t2)
and�(P1) ^ Q≡�(P2) ^Q. As usual, we say that two termsT1 andT2 are unifiable or
compatible, denotedT1 " T2, if and only if there exists a unifier for them.

3. T1 t T2 = ft1 t t2j�(P1 ^ P2)g where� is the most general unifier oft1 and t2. t is
not defined whent1 and t2 are not unifiable or when6j=�(P1 ^ P2). The substitution
� = (�; �(P1 ^ P2)) is a principal unifier forT1 andT2.

4. LetT = ftjt3flgg andM = fmjT g be two constrained terms (in fact the last one is a
pure term).T �M if and only ift � m andm"=l.

Proof:

1. T1 � T2 if and only if there exists� = (�;Q) such that�(t1) = t2 andP2≡�(P1)^Q. This
impliesP2) �(P1). Conversely, if there exists� such that�(t1) = t2 andP2≡�(P1), as
P2≡�(P1) ^ P2, � = (�; P2) satisfies�(T1) = T2.

2. This is a simple consequence of the definition of equality.

3. Obviouslyft1 t t2j�(P1 ^ P2)g is an upper bound ofT1 andT2. Now, letT = ftjPg
be an upper bound ofT1 andT2. By definition of the least upper bound of pure terms,
there exists a substitution� such that�(t1 t t2) = t; asT is an upper bound ofT1 and
T2, there exist�1 and�2 such that�1(t1) = �2(t2) = t, P) �1(P1) andP) �2(P2).
Consequently�(�(t1)) = �1(t1) and �(�(t2)) = �2(t2). These equalities hold on the
variables oft1 and oft2 that, when applied to the constraints, give�1(P1) = �(�(P1))
and�2(P2) = �(�(P2)). In conclusionP) �(�(P1 ^ P2)).

4. Let� be the substitution such that�(t) = m. AsM is a pure term, for every substitution
�, l 6v� � �(t) = �(m). Thus l 6��(m) and, by definition, for every substitution�,
�(l)≠�(m); that means,l andm are incompatible. This result is easily generalized to a
set of constraints,T = ftjt3fl1; . . .; lngg. In that case,T � M if and only if t � m

and, for everyi (1 � i � n), m"=li.

Example: The most general unifier� of the terms:

T = fG(x; y; z)j(x3fH(u)g; y3fCg; z3fH(H(B)g)g

T 0 = fG(P (A); y0; H(z0))j(y03fBg; z03fCg)g

is defined by:

�(x) = P (A)
�(y) = y0 � = (�; (y03fB;Cg; z03fH(B); Cg))
�(z) = H(z0)

Report No. 4 January 1990

12 Laurence Puel and Ascánder Suárez

In general, the greatest lower bound of two terms does not exist. For instance, the common
prefixes offAjT g andfBjT g (with A≠B) are of the formfxjx3Lg, but for each prefix there
is a constantC not belonging toL and different fromA andB such thatfxjx3L[fCgg is
a prefix of both terms less general thanfxjx3Lg. We give now a sufficient condition for the
existence of the greatest lower bound:

Lemma 4 LetT1 = ft1jP1gandT2 = ft2jP2gbe two compatible constrained terms. Let�i(t1u
t2) = ti and�0i the substitutions defined by�0i(x

0) = x if �i(x) = x0 and�0i(x
0) = x0 otherwise.

The greatest lower bound ofT1 andT2 exists and is the termT = ft1 u t2j�01(P1) _ �02(P2)g.

Proof: Remember thatft1 u t2j�01(P1) _ �02(P2)g = ft1 u t2jQ1 _ Q2g where eachQi is the
restriction of�0i(Pi) to the variables oft1u t2 and thus�i(Qi) = Qi. As eachPi impliesQi, T is
a prefix of eachTi. LetT 0 be a prefix of bothT1 andT2 greater thanT . ThusT 0 = ft1 u t2jP 0g

such thatP 0) Q1_Q2 andPi) �i(P 0). Consequently, (Qi =) �0i(Pi)) �0i ��i(P
0) (= P 0),

and thusP 0≡Q1 _ Q2.

Example: The termsT1 = fF (x; y)jx3fAg; y3fBgg andT2 = fF (B; y)jy3fA;Cgg are
compatible andT1 u T2 = fF (x; y)jx3fAg; y3f�gg. Incompatible terms may also have a
greatest lower bound, for instancefAjT g u fxjx3fAgg = fxjx3f�gg.

Definition 7 (Restriction by a Substitution) Let T = ftjPg be a constrained term and� a
pure substitution. The restriction ofT by� is the constrained term:

T j� = ftjsimpl(P ^ t3f�(t)g)g

Notice that restriction is defined only for a pure substitution because there is no constrained
term in a constraint.

Example: For the termT = fF (x; y)jx3fH(A)gg and the substitution� defined by
�(x) = H(z), �(y) = A, we obtain:

�(T) = fF (H(z); A)jz3fAgg and

T j� = fF (x; y)jF (x; y)3fF (H(Ω); A)g ^ x3fH(A)gg

≡ fF (x; y)jx3fH(z); H(A)gg [fF (x; y)j(x3fH(A)g; y3fAg)g

Notice that in general the terms ofT j� may have common instances like the termF (A;B) in
this example.

To each substitution � we also associate the set�̇ of substitutions corresponding to
non-evaluated parts of�.

Definition 8 Let� be a substitution.̇� is the set of substitutionṡ� defined bẏ�(x) is �(x) in
which some non-variable subtrees different from� have been replaced by�.

January 1990 Digital PRL

Compiling Pattern Matching by Term Decomposition 13

A substitution� is considered as the semantics of an operation that defines more precisely a
partial termT and the terms ˙�(T) represent those instances that failed to be evaluated. This is
why we call the setf�̇(T) j �̇∈ �̇g, thestrict part ofT with respect to�. The set�(T)[T j� is
thecalculablepart ofT with respect to�.

Lemma 5 Let � be a pure substitution,Id the identity substitution andT = ftjPg a
constrained term.T jId = ∅ and�(T) \ T j� = ∅ . The set of instances ofT is the union of
instances of�(T), T j� and�̇(T).

Proof: By definition if �(t) is an element of�(T) then�(t) � �(t) and thus6j=�(t)3f�(t)g.
As a consequence, the two sets are disjoints andT jId is empty. The last property is proved by
cases on the definition ofv.

The proposition below will be useful in the definition of the decomposition of a term.

Proposition 1 For every termT and substitution�, T is the greatest lower bound of�(T),
T j� and all the�̇(T).

Proof: Let T = ftjt3fLgg. It is easy to prove thatT is a prefix of�(T), T j� and all the ˙�(T).
Furthermore, if there exists a common prefixT0 of these terms that is not a prefix ofT , T t T0

is also a common prefix. Now letT 0 = ft0jP 0g be a lower bound of�(T), T j� and all the ˙�(T)
such thatT � T 0. By hypothesis on the pure terms,t � t0 � t and thust = t0. The hypothesis
on the constraints are:

t3L^ t3f�(t)g) P 0) t3L

�(t)3L) �(P 0)

�̇(t)3L) �̇(P 0)

The first property impliesP 0≡t3L
V
P 00 and t3f�(t)g) P 00. By lemma 2 eitherP 00≡T

which impliesP 0≡P or P 00≡
V

i t3f�i(t)g. As t3f�(t)g)
V
i t3f�i(t)g, by lemma 2 again,

for each i,�(t) v �i(t). Consequently the following implications are satisfied:

t3L^ t3f�(t)g) t3L ^
^

i

t3f�i(t)g (1)

�(t)3L) �(t)3L
^

i

�(t)3f�i(t)g (2)

�̇(t)3L) �̇(t)3L
^

i

�̇(t)3f�i(t)g (3)

Either�(t) � �i(t) or there existst00 such that�(t) v0 t
00 � �i(t). In the second case, no� is

inserted insidet otherwiset00 could not be a prefix of�i(t), andt00 = �̇(t). In both cases, as a
consequence of lemma 2, (2) and (3) respectively implyt3L) t3f�i(t)g and thusP) P 0

that meansT = T 0.

Report No. 4 January 1990

14 Laurence Puel and Ascánder Suárez

3 Term Decomposition

We want to partition, following an ordered list of linear termsS = (s1; . . .; sn) named
patterns, the set of all terms represented byT into a set of disjoint ones. The decomposition of
T with respect toS consists to split the set associated toT into subsets such that each subset
contains instances of at most one element ofS. For example, letS = fF (A;H(Ω)); F (A;Ω)g
andT = fF (x; y)jT g. The evaluable part ofT is the disjoint union ofT1, T2 andT3 where
T1 = fF (A;H(x))jT g, T2 = fF (A; y)jy3fH(Ω)gg andT3 = fF (x; y)jx3fAgg. Constrained
terms and decomposition were introduced in [8] to deal with recursive path orderings with
unavoidable sets.

3.1 Decomposition

Definition 9 (Decomposition w.r.t. a Pattern) LetT be a constrained term, ands a pattern.
If T ands are unifiable with� as their most general unifier, the decomposition ofT w.r.t. s,
denoted compat(T; s), is equal to�(T).

With this definition, compat(T;Ω) andT represent the same set of terms.

Definition 10 (Decomposition w.r.t. an Ordered Set of Patterns) LetT be a constrained
term andS = fs1; . . .; sng an ordered set of patterns. The decomposition ofT w.r.t. S,
Decomp(T; S), is recursively defined as:

Decomp(∅ ; S) = ∅
Decomp(T; ∅) = ∅
Decomp(T; S) = Decomp(T; fs2; . . .; sng) if T ands1 are incompatible

= fcompat(T; s1)g [Decomp(T j�1; S)
where�1 is the m.g.u. ofT ands1 otherwise.

Notice that Decomp stops when a pattern is already a factor ofT because the restriction of a
term by the identical substitution is the emptyset. The instances ofT that do not belong to
Decomp(T; S [fΩg) are those for which there is no way to decide if they are instances of one
of the elements ofS.

Proposition 2 Let T be a constrained term,u an occurrence ofT and S = fs1; . . .; sng
a set of patterns. ThenT is the greatest lower bound of Decomp(T; fs1; . . .; sn;Ωg) [S

1�i�nf�̇i(T) j �̇i∈ �̇ig

Proof: This property is a consequence of the definition of Decomp and of Proposition 1.
Notice that, in the decomposition of a term,S is used as an ordered list and thusΩ is the last
element of this list. This decomposition is a partition of the evaluable part ofT .

January 1990 Digital PRL

Compiling Pattern Matching by Term Decomposition 15

3.2 Decomposition Procedure

Let T = ftjPg be a constrained term andS = fs1; . . .; sng a set of patterns.

Initialization step
�1 T ; S S

Current step
(�i; �i+1) (�i(�i); �ij�i

) if �i andsi are unifiable with m.g.u.�i
 (∅ ; �i) if not.

Then Decomp(T; S) = f�1; . . .; �ng.

The following lemmas will be used for the pattern matching:

Lemma 6 Let S = fs1; . . .; sng be a set of patterns andf�1; . . .; �ng the decomposition of
a variablex by the setS. For everyi, �i = fsij

V
j<i si3fsjgg and for everyi and j≠i,

�i \ �j = ∅ .

Proof: The first part is proved by induction overi: As �1 = x, �1 = fs1jT g and �2 =
fxjx3fs1gg. Now suppose that�i = fsij

V
j<i si3fsjgg and�i+1 = fxj

V
j�i x3fsjgg. Then

�i+1 = fsi+1j
V
j�i si+13fsjgg and �i+2 = fxj

V
j�i x3fsjg ^ x3fsi+1gg, that finishes the

proof. The second part is a direct consequence of Lemma 5.

Example: When we take the set of patterns:

F (x;B); F (P (y); z); F (t; u); F (H(v); w)

The decomposition of the termT = F (x; y) gives the following set of constrained terms (in
the examples we writex3fFg instead ofx3fF (Ω; . . .;Ω)g):

F (x;B); fF (P (y); z)jz3fBgg ; fF (t; u)ju3fBg ^ t3fPgg

If we decompose the termT = x the result is:

F (x;B); fF (P (y); z)jz3fBgg ; fF (t; u)jt3fPg ^ u3fBgg ; fvjv3fFgg

The strict set ofx with respect to the patterns is:

� ; F (x; �) ; fF (�; y)jy3fBgg

Notice that in this example redundant patterns disappear. As we decompose a variable, the
new set of constrained patterns and the strict set ofx represent the set of all the terms.

The following lemma allows us use the decomposition of a variable to compute the
decomposition of any term. Afterwards, the decomposition of a term is a unification with
these new patterns as was illustrated with the previous example.

Report No. 4 January 1990

16 Laurence Puel and Ascánder Suárez

Lemma 7 Let S = fs1; . . .; sng be a set of patterns,fs01; . . .; s0ng = Decomp(x; S) and
T = ftjPg a constrained term. Then Decomp(T; S) = f�i(s0i) j1 � i � ng where, for every
i, �i is the most general unifier ofs0i andT .

Proof: Let �i be the most general unifier oft and si for every i (1 � i � n). By
definition Decomp(T; S) = ff�i(t)j�i(P) ^ (

V
1�j�i�1 �i(t)3f�j(sj)g)g j1 � i � ng. As

f�i(s0i) j1 � i � ng = ff�i(t)j�i(P) ^ (
V

1�j�i�1 �i(si)3fsjg)g j1 � i � ng, in order to
prove the lemma, it is sufficient to prove the equivalence of the constraints�i(t)3f�j(sj)g and
�i(si)3fsjg for every integersi,j such thatj < i. �i(t)3f�j(sj)g≡�i(si)3fsjg if and only if
for all substitution�, �j(sj) 6v � � �i(t) if and only if sj 6v � � �i(si). The if part is clear. Let
us suppose that there exists� such that�j (sj) 6v � � �i(t) andsj v � � �i(si) = � � �i(t).
As sj and t are unifiable with the m.g.u.�j , if sj � � � �i(t) there exists a substitution�j
such that�j � �j(sj) = � � �i(t). Thus�j(sj) v � � �i(t) that is a contradiction. Otherwise, let
U = fu∈ O(sj) j sj=u≠� and� � �i(t)=u = �g. Notice thatU \ O(t) = ∅ becauset andsj are
unifiable. Thussj � � � �i(t)[u sj=u ju∈ U] which is an instance oft. Then, we conclude
as in the previous case.

3.3 Decomposition Normalization

It is useful to transform constraints into an easily readable shape and we propose now a
normalization algorithm. Its first step is to split these terms into terms with constraints with
only one function symbol. Its second step is to normalize the constraint associated to a variable
appearing at the same occurrence in two trees in the decomposition, in order to get the same
constraint at common occurrences.

Definition 11 A decompositionT = fT1; . . .; Tng is in normal form if and only if:

1. Each constraint occurring in eachTi, has only one symbol.

2. If there existi≠j and an occurrenceu of Ti andTj such that, for everyu0 <prefix u,

Ti and Tj have the same symbol atu0, Ti=u = fxjx3Lxg, Tj=u = fyjy3Lyg then,
Lx = Ly .

Normalization Algorithm Let fT1; . . .; Tng be a set of constrained terms.

let T = ftj(x3fC(t01; . . .; t0n)g [L) ^ Pg. If there existst0i non-variable:

T) ftj(x3fC(Ω; . . .;Ω)g [L) ^ Pg [T [x C(x1; . . .; xn)]

If there existTi andTj satisfying hypothesis 2. above withC(Ω; . . .;Ω)∈ Ly � Lx and
Lx≠∅ :

Ti) Ti[u fxjx3fC(Ω; . . .;Ω)g [Lxg] [Ti[u fC(x1; . . .; xn)jT g]

January 1990 Digital PRL

Compiling Pattern Matching by Term Decomposition 17

The normalization algorithm does not change the strict set ofT , as it only makes substitutions
to constrained variables.

Example: The decomposition of the following set of patternsF (G(A); B), F (y; B), F (C; z),
x gives as result:

F (G(A); B) fF (y; B)jy3fG(A)gg fF (C; z)jz3fBgg fxjx3fF (Ω; B); F (C;Ω)gg

We notice that the constraints overx and y have to be normalized. The first step of
normalization transforms the patternsfF (y; B)jy3fG(A)gg andfxjx3fF (Ω; B); F (C;Ω)gg
into these new patterns:

fF (y; B)jy3fGgg fF (G(t); B)jt3fAgg
fxjx3fFgg fF (y; z)jy3fCg z3fBgg

The second step gives the resulting set:

F (G(A); B) fF (G(t); B)jt3fAgg F (C;B)
fF (y; B)jy3fG;Cgg fF (C; z)jz3fBgg fF (G(t); z)jz3fBgg
fF (y; z)jy3fG;Cg z3fBgg fxjx3fFgg

4 Pattern Matching

In this section we use constrained terms to reason about pattern matching over pure terms.

Definition 12 A set of patternsΠ is complete for a termN if every ground instance ofN is
also an instance of anM ∈Π .

Let Π = fM1; . . .;Mng be a set of patterns. The simplest matching predicate overΠ is
defined bymatchΠ(t) = True if and only if there existsMi∈Π such thatMi � t wheret is a
pure term. This predicate does not take account of any priority overΠ and is not suitable for
pattern matching over partially evaluated terms. A. Laville in [6] defines a matching predicate
over pure terms which takes care of the ordering.

Definition 13 LetΠ = fM1; . . .;Mng be a set of patterns ordered by priority, andt be a pure
term. MatchΠ(t) = True if and only if there existsi(1 � i � n) such thatMi � t and for
everyj < i, t"=Mj .

The priority on patterns is necessary to force the matching with a chosen pattern when several
patterns are compatible.

With the concept of constrained terms, we replace priority by constraints. We transform
the ordered set of patterns into an unordered set of constrained ones using the decomposition

Report No. 4 January 1990

18 Laurence Puel and Ascánder Suárez

algorithm and without loosing generality, we work on the evaluable part of terms with respect
to the set of patterns.
Let Π = fM1; . . .;Mn;Ωg be an ordered set of patterns andxa variable. The decomposition
algorithm computesΠ0 = Decomp(x;Π) which is the set of constrained patternsM 0

i =
fMij

V
j<iMi3fMjgg. Remember thatM 0

i \M
0

j = ∅ for i≠j and that the redundant patterns,
represented by empty constrained terms, are eliminated.

Definition 14 (Pattern Matching) Let Π = fM1; . . .;Mng be a set of disjoint constrained
patterns, andT be a constrained term. RMatchΠ(T) = True if and only if there exists
i (1 � i � n) such thatMi � T .

Notice that the relation� over constrained terms is transitive and the predicate RmatchΠ is
monotonic with the orderingFalse < True.

In the following theorem, we prove that the predicate RMatchΠ0 , which only uses the prefix
ordering, is as powerfull as MatchΠ which uses the prefix ordering and incompatibility tests.

Theorem 1 Let Π = fm1; . . .; mng be an ordered set of patterns andΠ 0 the decomposition
of x byΠ. Π0 is the set of minimal generators of the terms satisfying the predicate RMatchΠ0

and for every pure termt:
MatchΠ (t)≡RMatchΠ0(ftjT g)

Proof: By definition RMatchΠ0(T) = True if and only if there existsM 0∈Π 0 such that
M 0 � T , that meansT is generated byM 0. Conversely each non-emptyM 0∈Π 0 generates
its ground instances. Furthermore, as the elements ofΠ0 are incompatible they are minimal
generators. LetΠ0 = fM 0

1; . . .;M 0

ng. By definition and lemma 3, RMatchΠ0(ftjT g) = True

if and only if there existsM 0

i ∈Π
0 such thatmi � t and for everyj < i, t"=mj . We recognize

there the definition of the predicate MatchΠ over pure terms.

Notice thatΠ0 generates the set of pure terms satisfying MatchΠ and gives a set of minimal
generators more compact than the minimal set of generators described in [6], page 44. For
instance, the decomposition of the patternsF (A;B; z) , F (A;A; z) , F (x; y; C) andF (x; y; z)
is the set:

F (A;B; z); fF (x; y; C)jF (x; y; C)3fF (A;B;Ω); F (A;A;Ω)gg;
F (A;A; z); fF (x; y; z)jF (x; y; z)3fF (A;B;Ω); F (A;A;Ω)gg

Normalization gives the following set:

F (A;B; z); fF (x; y; C)jx3fAgg; fF (x; y; z)jx3fAg; z3fCgg;
F (A;A; z); fF (x; y; C)jy3fA;Bgg; fF (x; y; z)jy3fA;Bg; z3fCgg

There are several algorithms to check the match of a term by a given set of patterns. We
will use Search Treesto represent these algorithms. These trees have as labels, pairs of a

January 1990 Digital PRL

Compiling Pattern Matching by Term Decomposition 19

constrained term and an occurrence of a variable in it. The label of the root is a variable and on
each branch the labels are terms more and more instanced. The sons of a term with labelT; u

have as termT [u T 0] whereT 0 contains at most one function symbol and is a prefix of a
pattern compatible withT . The leaves of the tree are compatible with exactly one pattern (the
occurrence is of no use). The only freedom in the construction is the choice of the occurrence
used to develop the subtrees.

For instance, if the choice of the occurrence is always the leftmost variable that leads to
the pattern having priority, as it is the choice of many compilers for functional languages, the
search tree associated to the patternsF (A;B), F (y; B) andx is:

F
�
�
��

≠F
Z
Z
ZZ

A

�����������
≠A

XXXXXXXXXXX

B

"
"

"
""

≠B
b
b
b
bb

F (A;B) fF (A; z)jz3fBgg

F (A; z)[z]

B

!!!!!!!
≠B

aaaaaaa
fF (y; B)jy3fAgg fF (y; z)jy3fAg z3fBgg

fF (y; z)jy3fAgg[z]

F (y; z)[y] fxjx3fFgg

x[x]

The strict set of the match is�, F (y; �) andF (�; B). This algorithm will not give a result
for the termF (�; A), which does not belong to the strict set of the match.

Definition 15 A pattern matching algorithm is optimal if and only if it fails to produce a result
only on the strict set of the match.

In the following section we give a characterization for the optimality of the pattern matching
algorithm.

4.1 Sequentiality

We say that a pattern matching problem is sequential when it can be computed without
looking ahead on a sequential machine. In this section we describe how to decide if a match
problem is sequential and in such case, how to build the search tree associated to it. This
section adapts the definitions and proofs of [5] to the case of constrained terms.

Definition 16 (Index, Sequential)
LetP be a monotonic predicate on constrained terms (with the truth values domain ordered
asFalse < True).

� An occurrenceu of T is said to be anindex ofP in T if and only if

1. T=u = fΩjT g

Report No. 4 January 1990

20 Laurence Puel and Ascánder Suárez

2. For everyM � T , P(M) = True implies(M=u)6�(T=u) (i.e. (M=u)≠fΩjT g).

� ThenP is sequential at T if and only if wheneverP(T) = False and there exists
M � T such thatP(M) = True, it follows that there exists an index ofP in T .

� Finally P is said to be sequential if and only if it is sequential at every calculable
constrained term.

As the predicate RmatchΠis monotonic, we look for its sequentiality at every term, called
the sequentiality ofΠ. The set DirΠ(T) of the indexes of RmatchΠ in T is the set of directions
from T to Π.

Lemma 8 Let T be a constrained term andΠ a set of disjoint constrained patterns.
u∈ DirΠ(T) if and only ifT=u = fΩjT g and, for allM ∈Π such thatM " T , one hasu∈ O(M)
andM=u≠fΩjT g.

Proof: Let u∈ DirΠ(T) andM ∈Π such thatM " T . Thus,T=u = fΩjT g and there exists
T 0 such thatT � T 0 andM � T 0. Suppose thatu6 ∈ O(M). There exists a proper prefix
u0 of u such thatu = u0w with w≠� andM=u0 = fΩjΩ3LΩg. As M � T 0, the subterm
T 0=u0 satisfies the constraints andT 0=u0[w fΩjT g] also. ThereforeM � T 0[u fΩjT g],
which contradicts the second condition of the definition of a direction and also our hypothesis.
Knowing thatu∈ O(M), obviouslyM=u 6�T=u. Conversely, if there is a termT 0 � T such
that RmatchΠ(T 0) = True, there is a patternM ∈Π compatible withT . ThusM=u≠fΩjT g
that impliesT 0=u6�T=u and the equivalence is clear.

Remark: This lemma gives a simple characterization of directions. By normalization,
a patternM ∈Π is split in several termsM1; . . .;Mn which may be compatible. As a
consequence of the simplification rules,M=u≠fΩjT g if and only if eachMi=u≠fΩjT g and
thus the set of directions DirΠ(T) is the set of directions fromT to the normalization ofΠ.

Lemma 9 Let Π be a set of disjoint constrained patterns,T = ftjPg a term andM ∈Π a
pattern compatible withT . Then:

DirΠ(T) = DirΠ0(T uM) whereΠ 0 = fM ∈Π jT "Mg

Proof: Supposeu∈ DirΠ0(T). ThenT=u = fΩjT g and for everyM ∈Π 0, u∈ O(M) and
M=u≠fΩjT g by Lemma 8. AsM belongs toΠ0,u∈ O(M), thusu∈ O(TuM) and (TuM)=u =
fΩjT g. In conclusionu∈ DirΠ0 (T uM). Conversely, letu∈ DirΠ0(T uM). Then for every
M ∈Π 0, M=u≠fΩjT g and (T u M)=u = fΩjT g. Remember thatfΩjΩ3L_ Ω3L0g is
always different fromfΩjT g because� is an instance offΩjT g but not offΩjΩ3L_Ω3L0g.
ConsequentlyT=u = fΩjT g. Now take anyM ∈Π compatible withT . ThenM ∈Π 0 and
M=u≠fΩjT g. In conclusion,u∈ DirΠ(T).

This property allows to look for directions only in the prefixes of patterns.

January 1990 Digital PRL

Compiling Pattern Matching by Term Decomposition 21

Theorem 2 Let Π be a set of disjoint constrained patterns. IfΠ is finite, one can decide ifΠ
is sequential, one just checks that RmatchΠis sequential at every prefix ofΠ.

Proof: If Π is sequential, then RmatchΠ is sequential at every termT and in particular at every
prefix of some element ofΠ. Conversely,Π is sequential if and only if DirΠ(T)≠∅ for all T
such that RmatchΠ(T) = False. If T is not compatible withΠ, there is no instance ofT which
satisfies the predicate and thus, by definition of the sequentiality, RmatchΠis sequential atT .
Otherwise, there existsM ∈Π compatible withT and DirΠ(T) � DirΠ(T uM) by Lemma 9.
If RmatchΠ(T uM) wereTrue, either there would existM 0∈Π more general thanT uM
that would contradict the fact that RmatchΠ(T) = False. Thus RmatchΠ(T uM) = False

and DirΠ(T uM) ≠∅ whichimpliesDirΠ(T)≠∅ .

Theorem 3 Optimality and sequentiality are equivalent on the pattern matching algorithms.

Proof: Let Π be a complete decomposition.Π is sequential if and only if there exists a
search tree in which each label (T; x) satisfiesx∈ DirΠ(T). The set of terms for which the
algorithm does not terminate is generated by the termsT [x �] where (T; x) is a label of the
search tree. By definition the algorithm is optimal if and only if the set of terms for which the
algorithm does not terminate is generated by the strict set. Thus, we only need to prove that
for every prefixT of Π, x∈ DirΠ(T) if and only if T [x �] belongs to the strict set ofΠ.
An occurrenceu of a variable is a direction fromT to Π if and only if for every patternM
compatible withT , M=u≠fΩjT g which is equivalent toT [x �] is incompatible with each
M in Π. That meansT [x �] belongs to the strict set becauseΠ is a complete decomposition.

The theorems state that in order to verify the sequentiality of a match problem it is sufficient
to verify it on the set of prefixes of the patterns, so the match is sequential if and only if the
search tree of a variable can be built.
We can build now a search tree for a complete decompositionΠ which is optimal both in the
number of test in each path of the tree and in the number of terms for which the algorithm
terminates.

SearchTree(N;Π) =
T whereRoot(T) = N and

if there is no direction fromN to Π,
if N ∈Π , � is the only occurrence ofT .
otherwisethe algorithm fails

otherwise
let u be one direction ofN
and L be the setfF (. . .) j ∃ M ∈ Decomp(N;Π) such thatF (. . .) "Mg.

For each elementli∈ L, i is an occurrence ofT
andT=i = SearchTree(N [u li];Π)

Report No. 4 January 1990

22 Laurence Puel and Ascánder Suárez

We have extended the sequentiality to constrained terms which allows to compute optimal
algorithms for call by pattern matching. If we complete the initial set of patterns byΩ in
order to cover all the cases, we optimize both the success and the failure of the matching. The
sequentiality of the set of patterns can be modified by the inclusion of the new elementΩ, but,
as the search tree covers anyway all the cases, this restriction of the sequentiality has a positive
effect on the result.

In case of non-sequential sets of patterns, it is possible to build a search tree, by ignoring
some of the patterns. Two possibilities appear: to ignore, during the direction search, either
pattern with lower priority or those that prevent the existence of directions.

5 Examples

We wrote a prototype of this method in CAML [10] which is used to generate mechanically
all the examples in the paper. In this prototype we only represent constraints of depth 1, other
constraints are normalized during the application of substitutions. In all the examples we add
the termx at the end of the list of patterns to complete the set.

1. With the set of patternsF (A;B); F (A; z); F (y; B) the decomposition produces the
following constrained terms:

F (A;B) fF (A; z)jz3fBgg fF (y; B)jy3fAgg
fF (y; z)jy3fAg z3fBgg fxjx3fFgg

And the strict set is:

� ; F (x; �) ; F (�; y)

The nodes of search trees are pairs formed by a term and a variable which is a direction
in the term. The arcs are labeled by the possible values the direction can take and leaves
are represented by the matched patterns.

F

"
"
"
""

≠F
b
b
b
bb

A

�����������
≠A

XXXXXXXXXXX

B

"
"
"

""
≠B

b
b
b
bb

F (A;B) fF (A; z)jz3fBgg

F (A; z)[z]

B

!!!!!!!
≠B

aaaaaaa
fF (y; B)jy3fAgg fF (y; z)jy3fAg z3fBg g

fF (y; z)jy3fAgg [z]

F (y; z)[y] fxjx3fFgg

x[x]

2. For Berry’s example:G(A;A; x) ; G(B; y; A) ; G(z; B; B) the decomposition of
G(z; y; x) produces:

January 1990 Digital PRL

Compiling Pattern Matching by Term Decomposition 23

G(A;A; x) fG(z; y; x)jz3fA;Bg y3fBgg fG(z; y; x)jy3fA;Bg x3fAgg
G(B; y; A) fG(z; y; x)jz3fBg y3fA;Bgg fG(z; y; x)jy3fAg x3fA;Bgg
G(z; B; B) fG(z; y; x)jz3fA;Bg x3fBgg fG(z; y; x)jz3fAg y3fBg x3fAgg

fG(z; y; x)jz3fAg x3fA;Bgg fG(z; y; x)jz3fBg y3fAg x3fBgg

As the original patterns have no common instance, they all belong to the decomposition,
and there is no direction to start the match.

3. In this example extracted from a CAML program, we try to match lists of Booleans (Nil

represents the empty list,x :: y is a list containing the elementx followed by the listy).

(y :: True :: u) ; (False :: Nil) ; Nil

The decomposition of this example is:

(y :: True :: u) Nil f(y :: z)jz3fNil; ::gg
fxjx3fNil; ::gg (False :: Nil) f(y :: t :: u)jt3fTruegg
f(y :: z)jy3fFalseg z3f::gg

the strict set is:
� ; y :: � ; � :: Nil ; y :: � :: u

and the search tree is:

::

!!!!!!!
Nil
�
�
�

≠Nil; ::

aaaaaaa

::

Nil

Q
Q
Q
QQ

≠Nil; ::

`````````````̀

True

"
"
"

""
≠True

b
b
b
bb

(y :: True :: u) f(y :: t :: u)jt3fTruegg

(y :: t :: u)[t]

False

"
"
"
""

≠False

b
b
b
bb

(False :: Nil) f(y :: Nil)jy3fFalsegg

(y :: Nil)[y] f(y :: z)jz3fNil; ::gg

(y :: z)[z] Nil fxjx3fNil; ::gg

x[x]

In the decomposition of this example, some of the patterns have the constraint
x3fNil; ::g. In a typed language, ifNil and :: are the only list constructors of
lists, these patterns represent an empty set. Eliminating them (and assuming that≠True
impliesFalse and that≠False impliesTrue) the decomposition becomes:

(y :: True :: u) ; (False :: Nil) ; Nil ; (y :: False :: u) ; (True :: Nil)

which is the set ofminimal extended patternsas defined in [6]. The search tree now
becomes:

Report No. 4 January 1990



24 Laurence Puel and Ascánder Suárez

::
�
�
�

Nil
@
@
@

::

���������
Nil

PPPPPPPPP

True

�
�

�
��

≠True
Q
Q
Q
QQ

(y :: True :: u) (y :: False :: u)

(y :: t :: u)[t]

False

�
�
�
��

≠False

Q
Q
Q
QQ

(False :: Nil) (True :: Nil)

(y :: Nil)[y]

(y :: z)[z] Nil

x[x]

4. The sequentiality of a problem might depend on the signature of terms, for instance the
decomposition ofF (x; y) by the patternsF (A;A); F (B;B) produces:

F (A;A) fF (x; y)jy3fA;Bgg fF (x; y)jx3fAg y3fBgg
F (B;B) fF (x; y)jx3fBg y3fAgg fF (x; y)jx3fA;Bgg

With the following strict set:

F (A; �) ; F (�; A) ; F (�; �) ; F (B; �) ; F (�; B)

This problem is not sequential because of the patternsfF (x; y)jy3fA;Bgg and
fF (x; y)jx3fA;Bgg. However, if the same match problem where given for a type that
is defined with only two constants like the Booleans, those two patterns would represent
empty sets and thus could be eliminated. In that case, the decomposition ofF (x; y) by
the patternsF (True; True); F (False; False) produces:

F (True; True) ; F (False; False) ; F (True; False) ; F (False; True)

And the problem becomes sequential with the search tree:

True

���������
False

PPPPPPPPP

True

"
"

"
""

False

b
b
b
bb

F (True; True) F (True; False)

F (True; y)[y]

False

"
"
"
""

True

b
b
b
bb

F (False; False) F (False; True)

F (False; y)[y]

F (x; y)[x]

6 Conclusion

Constrained terms are used to extend the sequentiality to ambiguous sets of patterns. The
introduction of an explicit symbol� to represent non-terminating evaluations allows to use
constraints for the partially evaluated terms.

January 1990 Digital PRL



Compiling Pattern Matching by Term Decomposition 25

The actual compilers for pattern matching use different techniques to improve the code
generated for call by pattern matching, like the introduction of heuristics for finding directions,
or the analysis of execution tests to improve most frequent cases. Both heuristics and execution
tests analysis become unnecessary as our algorithm computes directions and produces an
optimal search tree that includes only unavoidable tests.

The elements of the decomposition are exactly the leaves of the optimal search tree which
depends inherently on the match problem. The order of complexity of the substitution and of
the restriction is inO(l). For the decomposition it isO(m � l) and for the search of directions
during the construction of a search tree it isO(m � l) wherem is the number of patterns of the
match andl is their average size.

The technique presented in this paper allows the implementation of optimal compilers for
call by pattern matching in all the languages that support this feature, and encourages language
designers to introduce it into new programming languages.

Report No. 4 January 1990



References

1. G. Berry. S´equentialité de l’évaluation formelle des lambda-expressions. InProc. 3rd
International Colloquium on Programming, Paris, March 1978. Dunod.

2. R. Burstall, D. MacQueen, and D. Sannella. Hope: An experimental applicative language.
In Lisp and Functional programming conference, pages 136–143. ACM, 1980.

3. H. Comon.Unification et disunification. Th´eorie et applications. Thèse, Institut National
Polytechnique de Grenoble, 1988.

4. R. Harper, R. Milner, and M. Tofte. The definition of Standard ML version 2. LFCS
Report Series 88-62, University of Edinburgh, Department of Computer science, The
King’s Buildings, Edinburgh EH9 3JZ, Scotland, 1988.

5. G. Huet and J.-J. L´evy. Call by need computations in non ambiguous linear term rewriting
systems. Rapport IRIA Laboria 359, INRIA, Domaine de Voluceau, Rocquencourt BP105,
78153 Le Chesnay Cedex. FRANCE, 1979.

6. A. Laville. Evaluation paresseuse des filtrages avec priorit´e. Application au Langage ML.
Thèse, Universit´e Paris 7, 1988.

7. A. Laville. Implementation of lazy pattern matching algorithms. In H. Ganzinger, editor,
ESOP’88, pages 298–316. Lecture Notes in Computer Science 300, March 1988.

8. L. Puel.Bons préordres sur les arbres associ´esà des ensembles in´evitables et preuves de
terminaison de syst`emes de r´eécriture. Thèse d’Etat, Universit´e Paris 7, 1987.

9. L. Puel. Embedding with patterns and associated recursive path ordering. In N. Der-
showitz, editor,RTA, pages 371–387. Lecture Notes in Computer Science 355, April
1989.

10. P. Weis et al. The CAML reference manual. Available through INRIA, Domaine de
Voluceau, Rocquencourt BP105, 78153 Le Chesnay Cedex. FRANCE, January 1989.



PRL Research Reports

Report Number 1: Incremental Computation of Planar Maps. Michel Gangnet, Jean-
Claude Hervé, Thierry Pudet, and Jean-Manuel Van Thong. May 1989.

Report Number 2: BigNum: A Portable and Efficient Package for Arbitrary-Precision
Arithmetic. Bernard Serpette, Jean Vuillemin, and Jean-Claude Hervé. April 1991.

Report Number 3: Introduction to Programmable Active Memories. Patrice Bertin,
Didier Roncin, and Jean Vuillemin. June 1989.

Report Number 4: Compiling Pattern Matching by Term Decomposition. Laurence
Puel and Ascánder Suárez. January 1990.

Report Number 5: The WAM: A (Real) Tutorial. Hassan Aı̈t-Kaci. January 1990.


