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Abstract

In this article, we consider words ov€®, 1}. Theautodistancef such a word is the lowest
among the Hamming distances between the word and its images by circular permutations other
than identity; the word’severse autodistands the highest among these distances. For each

[ > 2, we study the words of lengftlwhose autodistance and reverse autodistance are close to
[/2 (we call such wordsynchronizing sequendes

We establish, for every > 3, an upper bound on the autodistance of words of lehgirhis
upper bound, called up)( is very close td/2.

We briefly describe the maximal period linear recurring sequences, a previously known family
of words over{0, 1}; such words exist for every length of the forw= 2" — 1 and their
autodistances achieve the upper boundup (

Examples of words whose autodistance and reverse autodistance are both equal or close to
up () are discussed; we describe the method (based on simulated annealing) which was used
to find the examples.

We prove that, for sufficiently largk an arbitrarily high proportion of words of lengttwill
have both their autodistance and reverse autodistance very closd}o up (

Résumé

Nous considfons dans cet article des mots 4@ 1}. Nous appelonsutodistanced’un

tel mot la plus petite des distances de Hamming entre kRriam’et ses images par des
permutations circulaires non identiquesiutodistance inverséu mot &signe la plus grande
de ces distances. Pour tdut 2, nousetudions les mots de longueludont I'autodistance et
l'autodistance inverse sont toutes les deux prochdg 2iéde tels mots seront appsiSuites
synchronisantgs

Pour toutl > 3, nousetablissons une borne srnEure sur l'autodistance des mots de longueur
[. Cette borne swgrieure, nate up (), est tes proche dé/2.

Nous pesentons bevement les suites k@irement ecurrentes de ggiode maximale, une
famille déja étudée de mots suf0, 1}; de tels mots existent pour toute longueur de forme
[ =2" — 1 et leur autodistance atteint la borne Jp (

Nous considfons des exemples de mots dont I'autodistance et I'autodistance inverse sont
toutes les deux proches de dpQ@u égalesa cette valeur; nousedtivons la nethode (une
adaptation du recuit sime) qui a permis de trouver ces exemples.

Nous prouvons que, podrsuffisamment grand, I'autodistance et I'autodistance inverse sont
treés proches de up)(pour une proportion arbitrairemeete\ée des mots de longuelr
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Binary Periodic Synchronizing Sequences 1

1 Introduction

1.1 Subject of the article

Modern radio techniques, including radar and spread-spectrum communications, make use
of finite sequences of bits exhibiting varictmrrelation propertiege.g.[5], [2] chapters 10 and
12, [1]). The correlation properties of a sequence measure how easily it can be distinguished,
after a transmission with errors, from other related sequences (the notiglatell sequences
is application-dependent).

We study here two correlation properties, #ngodistanceand thereverse autodistance
The autodistance measures how well, in the worst case, the receiver will be able to distinguish
between the sequence and a non-identical circular permutation of it (in this case, we consider
that circular permutations of a sequence are related to it). The reverse autodistance measures
the difficulty that the receiver will have, in the worst case, distinguishing between the sequence
and a circular permutation of its one’s complement (here, we consider that circular permutations
of the one’s complement of a sequence are related to the sequence).

In this study, we focus on searching for, and estimating the number of, sequences that
exhibit a high autodistance (ttsynchronizing sequendeand those that exhibit both a high
autodistance and a low reverse autodistancedtile synchronizing sequenes

1.2 Contents

Section 2 of the article introduces the necessary notation and mathematical objects (including
precise definitions of autodistance and reverse autodistance).

In Section 3, we investigate which values the autodistance and reverse autodistance can
attain. We establish, for each lendthan upper bound on the autodistance of sequences of
this length (Section 3.1); we complete this basic result with several remarks about the reverse
autodistance of certain classes of sequences (Sections 3.2-3.3).

In Sections 4-6, we either find, or prove the existence of, sequences whose autodistance and
reverse autodistance approach the previously established bounds.

In Section 4, quoting already known results [4], we introducertfaximal period linear
recurring sequences family of double synchronizing sequences which achieve the bounds
for certain lengthsg.

In Section 5, we describe examples of double synchronizing sequences whose lengths are
between 3 and 405; these examples achieve, or almost achieve, the bounds. We present a
computational method, based simulated annealingvhich we used to find the examples.

In Section 6, we establish a theorem implying that among very long sequences of bits,
almost all have their autodistances and reverse autodistances close to the respective bounds.
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2 Marcin Skubiszewski

2 Definitions and Notation

2.1 Basic notation

inj greatest common divisor (GCD) afj O N
[a..0] interval{z’DZ \ agigb}

[a..b) interval{z’DZ \ a§z’<b}

Noy set of natural numbers 2

{0,1}**  set of words ovef0, 1} of length> 2

{0, 1} for I O N4, set of words ovef0, 1} of lengthl

|S| |E| length of the wordS O {0, 1}**; cardinality of the sef

|S|p |S|; number ofzeros(resp.onegin S O {0, 1}2*

(Fz)enx the family of elementd,, indexed by elements 0 X ; by definition,|(F,),ox| = | X]|
| F| 4 number of elements of the famil§ belonging to the sed; if 7 = (F}.),1x, then

|]-"|A=HmDX | FEDAH

ANB symmetrical difference between set®AB = (AU B) — (AN B)

A forz ORandA C R, the set{ zy | yOA }; the definitions of
A+zandA — ¢ are analogous

S[i] for § 0 {0,1}*" and 0< i < ||, thei-th digit of §

Tp circular permutation by of words from{0, 1}2+:

(Sl = S[E+p) mod|S]]
d(s,T7) forS,T {0, 1}’, the Hamming distance betweSrandT"
d(s,T) = \{ i0[0..7) | S[] # T[4 }\
2.2 Notation of objects defined in the article
d(S) for § O {0, 1}?*, the autodistance o (Definition 1 below)
d (9) for S O {0, 1}?*, the reverse autodistance${Definition 2 below)
up (@) fori ON,1> 3, up{) =2|(l+1)/4] (Definition 7 below)

2.3 Autodistance and synchronizing sequences

Definition 1 (autodistance) For S 0 {0, 1}**, the autodistancef S is the minimum of the
Hamming distances betwe&mand all its images by circular permutations other than identity:

d(s) = pIZI[T.i.T.S‘l) d (S, 7(5))

May 1991 Digital PRL



Binary Periodic Synchronizing Sequences 3

Definition 2 (reverse autodistance)For S 0 {0, 1}**, thereverse autodistana¥ S is the
maximum of the Hamming distances betwgeand all its images by circular permutations:

d (S) = e d (S, 7,(S))

Examples: The null word of any length satisfies 8= d’' (S) = 0. The word€001 and
0011 satisfy

d(©01) =d (001) = 2
d©011) = 2
d'(0011) = 4

Definition 3 (optimal synchronizing sequence)Anoptimal synchronizing sequencB8ength
I O Na+ is awordS O {0, 1} whose autodistance is maximal; in symbdis;] {0, 1} is an
optimal synchronizing sequence if and only if

0(r 0{0,1}) d () < d(S)

Informally, we call any words' 0 {0, 1}* whose autodistance is maximal or nearly maximal
a synchronizing sequena# lengthi.

Definition 4 (double-optimal synchronizing sequence)A double-optimal synchronizing se-
quenceof lengthi [ N, is a word $ O {0, 1}’ whose autodistance is maximal, and whose
reverse autodistance is minimal among all word§@1}’ having the maximal autodistance;
in symbols$ [ {0, 1}" is a double-optimal synchronizing sequence if and only if

0T 04{0,1})d(T) < d(S) 0 (d@) =d(S) Od (T) > d' (3))
Informally, any wordS O {0, 1} whose autodistance is maximal or nearly maximal and

whose reverse autodistance is, among the words having the same autodist&heeiasnal
or nearly minimal, will be called aouble synchronizing sequencglengthi.

Definition 5 (uniform sequence) A uniform sequencis a wordS [ {0, 1}** such that
d(S)=d ()
It follows from Definitions 1 and 2 above that the sequesicél {0, 1}*" is uniform if

and only if the number dY, 7(S5)), wherer is a non-identical circular permutation, does not
depend on the choice of

Examples: The null word of any length is a uniform sequence. A word of any length
containing a uniqué and having all other digits equal @is a uniform sequence.

Research Report No. 6 May 1991



4 Marcin Skubiszewski

Definition 6 (uniform optimal synchronizing sequence)A word from{0, 1}2+ is a uniform
optimal synchronizing sequendkit is a uniform sequence and an optimal synchronizing
sequence.

Informally, any word from{0, 1}** which is both a uniform sequence and a synchronizing
sequence will be calledaniform synchronizing sequence

It follows from the definitions above that a uniform optimal synchronizing sequence is also
a double-optimal synchronizing sequence.

Example: The word001 is a uniform optimal synchronizing sequence. Long optimal
synchronizing sequences are never trivial.

3 Bounds on Synchronizing Sequence Characteristics

Theorem 1 below establishes an upper bound on the autodistances of synchronizing
sequences. Theorems 2 and 3 establish that uniform synchronizing sequences of certain forms
do not exist. Theorem 4 states that all optimal synchronizing sequences in a certain category
are uniform.

3.1 An upper bound on the autodistance

Theorem 1 (an upper bound on the autodistance)or everyl 0O N, > 3, the autodistance
of every wordS 0 {0, 1}’ is less than or equal to the value given in the following table (for
n 0 2Z):

[=|S]| d(S)
4n 2n
dn+1 2n
dn+2 2n
n+3|2n+2

Definition 7 (up ()) For everyl > 3, the upper bound given in the table in Theorem 1 will be
denotedup ().

In order to prove the theorem, let us establish two lemmas.
Lemma 1 (parity of d (S)) The autodistance of every wosld {0, 1}2+ is even.

Proof: By Definition 1, for somep O N we have d§) = d (S, 7,(S)). It is therefore
sufficient to prove that the Hamming distance between a wgofd {0, 1}** and any of its
circular permutations is even.

May 1991 Digital PRL



Binary Periodic Synchronizing Sequences 5

Let T be a circular permutation ¢f. We define, foe:,y 0 {0, 1}, the four sets
Awy={i0[0..18]) | Slil=2OTli]=y }

which trivially have the following properties:

1Sl = [Azo] +[Ax1
ITl, = [Aox|+ A
d(s,T7) = [Aoa| +[A10|
These equations, together with the fact 88t = |T'|,, imply
d(5,T) = 2| Ao
sod,T)iseven. O

Lemma 2 (a weaker version of Theorem 1)For [ > 3, the autodistance of every word
S 0 {0,1}" is less than or equal tfi/2].

Proof: Let S [ {0,1}". We define fori 0 [0..7) andz O {0, 1}:
Nolil = [{ p010..0) | m(SNil == }|
By definition of7,(5),
N,[d] = ‘{ pO[0..]) | S[( +p) modl] = o }‘

and, regardless af

No[i]=1S], 1)
Let us define théotal autodistancef S, calledX, as
-1
K = d(S,7(5)) (2)
p=0

By definition of d 5, T), K satisfies:
K = 2‘{ i0[0..0) | Sl # () }|
= r{ (p,4) O[0..02 | S[i] # 7(S)[i] H
= SH pO0..0) | S[E] # (S)i] H
= OE Ni[i]+ > Noli]

:0[0..17) :0[0..17)
S[i]=0 S[i=1
= ) ISkt Y ISy (by (D)
:0[0..17) :0[0..17)
S[i]=0 S[i=1
K = 2|5|,IS|, (3)

Research Report No. 6 May 1991



6 Marcin Skubiszewski

The autodistance of is, by its definition, the minimum of the familfd (S, 7,(5))) o -
Let us define thaverage autodistanaaf S, called M, as the average of the same family:

L1d (S, 7(S
- 50 (5(5) @

This definition implies thaf4 > d (5).

Equations (2) and (4) and the fact thatSgd4y(S)) = 0, lead to the following expression
of M:

K
M=
u o= 2Ly ) ©

If Iis even, M is maximal for|S|, =|S|; = /2, and we have,
v < 2020/2)

- -1
l 1
< -
M < S*sa_1)
Sincel > 3, ’
M<§+l
Sincedf) < M andd) O Z,
l
< —
d($) <5

and the lemma holds fdreven.

If lis odd, M is maximal for|S|, = ({ — 1)/2 and|S|, = (I + 1)/2. We have therefore,
21/2+1/2)1/2-1/2)

M -1
[+1
< -
M < = (6)
Then,
d(s) < [i/2]
and the lemma holds fdrodd. O

Proof of Theorem 1: Lemma 2 implies that, fof > 3, no word can have an autodistance
greater than the value g] listed in the table below:

[=1]S]] d(S)
4n 2n
In+1|2n+1
In+2|2n+1
n+3|2n+2

May 1991 Digital PRL



Binary Periodic Synchronizing Sequences 7

Lemma 1 says that no word can have an autodistance of the farm12 which makes us
deduce the table in Theorem 1 from the one above. O

3.2 Non existence of certain uniform sequences

Lemma 3 (domain ofd’ (S)) Forany wordS O {0, 1} ,7 O Ny, the reverse autodistance of
S is even and satisfies
dE) <d(s)<! (@)

Proof: Substituting d(S) for d (S) in the proof of Lemma 1 gives the evenness 0.
Relation (7) results directly from the definitions of autodistance and reverse autodistance.

Theorem 2 (nontrivial uniform sequences forl — 1 prime) Let! O N+ and let! — 1 be
prime. Then among the words {0, 1}, exactly those verifying one of the conditions

Slg = O ®)
Sl = 1 ©)
8o = 1 (10)
Slg = 1-1 (11)

are uniform sequences.

Proof: The reader may easily verify the fact that each of the tms (8)—(11) implies
that$ is a uniform sequence.

Supposing that — 1 is prime and thas O {0, 1} is a uniform sequence, let us prove that
one of relations (8)—(11) holds. From the definitions of autodistance and reverse autodistance,
we get
O(p O[1..0) d(8) < d(S,7(S) < d'(5)

which implies thatM, the average autodistance ®fdefined as in the proof of Lemma 2,
relation (4), satisfies
d(S) < M < d'(S)

Since d ) = d' (S), we successively get

M = d(S)
M 0O 2N (fromLemma (1))
% O 2N (from (5))
1Slo(@—15]p) O (@—1N
|Slo O (I—1)N or (1—1S|) O (I—1)N (sincel— 1is prime) (12)
Relation (12) implies that one of the conditions (8)—(11) holds. O

Research Report No. 6 May 1991



8 Marcin Skubiszewski

Theorem 3 (uniform optimal synchronizing sequences).et! [0 N,.. If one of the following
holds

i. !=4n wheren ONandy/n ON.
ii. l=4n+1wheren ONand+y/8n+10N.
iii. l=4n+2wheren ON andv/3n+10N.

then no uniform sequencel {0, 1}* will satisfy the equalityl ($) = up ).

Proof: Suppose thas O {0, 1} is a uniform sequence with §f = ' (S) = up (). Then,
reasoning as in the proof of Theorem 2, we can say Miathe average autodistance $f
satisfies

M =d(S)

which, by (5), translates into

2|8]o (0 = 15lo) =t = 1)up @) (13)

If (i) holds, thenl = 4n, and (13) becomes
1S12— 4n|S|,+ 4> —n=0
Solving this second degree equationSiy,, we deduce that (13) is equivalent to
|Slp=2n++/n or |S|g=2n—+/n
which is impossible sincg/n O N.
If (i) holds, then (13) becomes
1S)2— (4n+1)|S|,+4n® = 0

1S, = % (4n+ 1+v8n+ l) or |S|,= % (4n+ 1-+v8n+ l) (14)

Recalling that the square root of a natural number is either natural or irrational, we
deduce that/8n + 1 is irrational. Therefore, the alternative (14) implies tj#y, is
irrational, which is impossible.

If (iii) holds, then (13) becomes

S[5—2(2n+1)|S|o+ (dn+1n = O
|Slp=2n+1++v3n+1 or |S|p=2n+1-+v3n+1 (15)

which is impossible since/3n + 1 [ N. O

May 1991 Digital PRL



Binary Periodic Synchronizing Sequences 9

3.3 Uniformity of certain sequences

Theorem 4 (certain sequences are uniform)or ! = 4n+3,n O N, every word fron{0, 1}’
whose autodistance is equalup (), is a uniform optimal synchronizing sequence.

Theorem 5 below says that sequences satisfying the hypotheses of Theorem 4 exist for
I=2"—-1,n 0Ny In Section 5.2 (Figure 2 and Table 1) examples of sequences are quoted
forl1=3,7,11,15,19,23 31, 35.

Proof of Theorem 4: Let S satisfy the hypotheses of the theorem. Tdg, by Theorem 1
and by the definition of ud), an optimal synchronizing sequence.

Let us prove thaf is a uniform sequence. We usé, as defined by equation (4) in the proof
of Lemma 2. Sincé is odd, we can, as in the proof of Lemma 2, obtain inequality (6). This
inequality and the fact that §f = % imply that M < d(S). SinceM is, by its definition,
greater than or equal to dY, we get

M =d(S)
The average and the minimum of the finite family of integl$S, 7,(5))) -, . ;) are then
equal. All the numbers in the family are therefore equal drfd)d= d (S). O

4 Maximal Period Linear Recurring Sequences

Theorem 5 p () is optimal for I = 2* — 1) For every! of the forml = 2 — 1, n O No,,
there exists a word,, 0 {0, 1} verifying

d(Sn) = d (Sn) =up @) (16)

Since this theorem is a straightforward corollary of known results, we will not quote the
proof in its entirety. Instead, we only describe a way to construct the sequégncdhe
proof that this construction is correct and that the resulfingatisfies relation (16) is a direct
consequence of well-known results from the theory of finite fields€sept], paragraphs 2.11,
6.32, 6.33 and 7.44). The construction itself is discussed in detail by Sarwate and Pursley ([7],
Section 3).

Construction: Let GF, denote the Galois field of order 2€. the field composed of
elements 0 and 1) arf@F,[ X ] denote the ring of polynomials ov&F.

For everyn [0 N4, there exists irGF,[ X ] at least one primitive polynomial of degree
(see [4], 2.11). Let us choose one such polynomial and c&J];ithe coefficients o, will
be calledpy, - - -, pn (with p,, = 1):

Pn(X)=PO+PlX+“‘+Pan

Research Report No. 6 May 1991



10 Marcin Skubiszewski

P, can be used as the characteristic polynomial to build an infingar feedback sequence
of bits S},. To build S}, we arbitrarily choose its first bits S;[0], ..., S.[n — 1], with the
only restriction that these bits may not be all equal to O (this give$ us 2 different choices
of S}). Then, we define the other bits 8§, by the recurrence formula

0 =poS,[i] + p1SL[i+ 1] +-- - +p,S.[i +n] (forany: O N) (17)

which translates into

Sili+n] =poSL[i]+ p1S,li+ 1]+ - +p,_1S.[i +n — 1] (for anyi O N) (18)

The sequenc#), is periodic and its least periodis 2™ — 1 (see [4], 6.33). We defing, to
be the left factor of5], of lengthl (thereforeS,, represents one period 8f). 5, satisfies (16)
(see [4], 7.44).

Consequences of the theoremTheorem 5 implies that for all valué®f the form 22 — 1,
the upper bound ug)is achieved by some word frof®, 1}’. For these values dfthe upper
bound upl) can therefore not be improved.

The results presented in the remainder of this article imply that, in fact, the upper bound
up () is optimal or nearly optimal foanylengthi.

5 Example Double Synchronizing Sequences

5.1 How the examples have been found

Simulated annealinghe technique used here to find double synchronizing sequences, was
first described by Kirkpatrickt al. [3]. Let us describe briefly both the technique and the way
in which it has been adapted to our problem.

Simulated annealing is an optimization algorithm. It provides approximate solutions to
difficult problems {.e. to problems for which finding the global optimum would involve an
extremely long computing time). More precisely, for a&eton which is defined a function,
calledenergy £ : X — R, simulated annealing will try to find an element] X such that
E(x) be as low as possible.

In our case, the algorithmis run separately for each valbard we havet = {0, 1}’. When
searching for synchronizing sequences, we try to maximizg;dkerefore(z) = —d (z).
When searching for double synchronizing sequences, we try both to maximiyeud to
minimize d (z). In this case, the choice éfis not obvious; after experimentation, the author
choseé(z) = d () — 3d (&), although various other formulas apparently lead to identical
results.

Simulated annealing requires that for everyl X, a set of neighborsV'(z) be defined.
Intuitively, z andy are neighborsig. y 00 N (z)) if they are similar in a way implying that

May 1991 Digital PRL



Binary Periodic Synchronizing Sequences 11

E(z) = E(y). In our case, we consider that two words frd®, 1}’ are neighbors if their
Hamming distance is equal to 0 or 1. For the two energy functions mentionned above, this
implies that ify 0 A/ (), then respectivel{€(z) — £(y)| < 2 or|&(z) — E(y)| < 8.

The simulated annealing algorithm is a loop composed of a high number of similar steps.
In each step, the algorithm tries to update ¢herent solutione O X. To do so, it randomly
chooses a solutiop 0 NM(z). Then, ify is better thane (i.e. £(y) < &(z)), y replacese
and becomes the current solution. Otherwise {f £(y) > £(x)) one of two possibilities is
randomly selected: either, with probabilipy= ¢@-¢@)/¢ 4 replacese and becomes the
current solution or, with probability  p, z remains the current solution agds discarded.

The current solutioe present after the last step is output by the algorithm to be considered
as its result.

The parametef is a positive real number, callédmperatureit decreases slowly during
the computation from a problem-dependent initial value to zero. Note théneny high, the
algorithm reduces to randomly walking through the search sgacegardless of the energy
function (because fdrhigh, alwayg =~ 1); foré ~ 0, the algorithm descends quickly towards
a local minimum of€. For intermediate values @ the algorithm randomly walks through
X, visiting more frequently elemeniswith £(z) low.

5.2 What we can learn from the examples

The curve on Fig. 1 (and its magnified version, Fig. 2) shows, for éaci3 .. 405], the
autodistance and the reverse autodistance of the best double synchronizing sequence found for
the lengthl by simulated annealing. The autodistance can be compared &y a6 shown
on the figures. Table 1 reproduces part of these results.

5.2.1 The autodistance

For 3< 1 < 42, the autodistance of the examples is, with the exceptiohs @7 and = 39,
equal to upd). For the particular cases bE 27 andl = 39, exhaustive searches showed that
there are no synchronizing sequences with autodistance equald;up¢ examples found
for these two values dfare therefore optimal.

We are thus certain that, fér< 42 (as well as fod = 45, 46, 49, 50, 54, see Fig. 2),
the simulated annealing program actually found optimal synchronizing sequences. For these
values, with the exceptions éf= 27 andl = 39, the upper bound of Theorem 1 is exact.
Forl = 27 andl = 39, the maximal autodistance is less thaniypgnd Theorem 1 could be
improved to take this fact into account.

According to Theorem 5, for lengths of the forin+ 2* — 1, some sequences achieve the
upper bound upy. Therefore, foil = 63,127, 255, the simulated annealing program found

'For 1 = 39, the exhaustive search was performed by Mark Shand [8] using a carefully optimized search
program.
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12 Marcin Skubiszewski

2001
150]
100!

5071

Figure 1: Autodistance and reverse autodistance of example sequences as a function of their
lengthsl. The lower line shows the autodistance of the best double synchronizing sequence
found by simulated annealing for each length. The upper, dotted line shows the reverse
autodistance of the same sequences. The middle, perfectly regular line shdyvs up (

30}
20}

10}

10 20 3 4 50

Figure 2: A fragment of the curves from Fig. 1, magnified.
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[=|S[[d@)[d )| S
3 2 2 | 100
4 2 2 | 0100
5 2 2 | 01000
6 2 2 | 000100
7 4 | 4 | 1110100
8 4 6 | 11100010
9 4 6 | 110000010
10 4 6 | 0000010110
11 6 6 | 10001001011
12 6 8 | 111001100101
13 6 6 | 1000000101001
14 6 8 | 11100100010000
15 8 8 | 000100110101111
16 8 | 10 | 1101110000011010
17 8 | 10 | 11001101101010001
18 8 | 10 | 110010110010000101
19 | 10 | 10 | 1001111010100001100
20 | 10 | 12 | 01000011011011000101
21 | 10 | 12 | 011110000100101110110
22 | 10 | 12 | 0100001010001001111011
23 | 12 | 12 | 00000101001100110101111
24 | 12 | 14 | 100011110110110000010101
25 | 12 | 14 | 1011000110000000101110100
26 | 12 | 14 | 10010100111110001000100010
27 | 12 | 14 | 110100010111001100000000010
28 | 14 | 16 | 0111001111110100100110101000
29 | 14 | 16 | 00000101100111111001010011101
30 | 14 | 16 | 111001100101101010111000111111
31 | 16 | 16 | 1111011010011000001110010001010
32 | 16 | 18 | 00010001011001000111011010111100
33 | 16 | 18 | 100100111000111011101000010000101
34 | 16 | 18 | 1010001111011010010011001100000010
35 | 18 | 18 | 00000111000101101100101011110110001
36 | 18 | 20 | 100010011110111100001011010001011000
37 | 18 | 20 | 0011011010111010001100001000110111101
38 | 18 | 20 | 01010001000000011001111000110110100001
39 | 18 | 20 | 010010110101110011100000011101000100010
40 | 20 | 24 | 0001000011101000110100110011010110110111
41 | 20 | 22 | 00011101011111000001001010000100110110001
42 | 20 | 22 | 111111010000001000100110001010010010111000
43 | 20 | 22 | 1110110001010111100100111101001110010111011
44 | 20 | 22 | 11110110100111111100111110101010011001001110
45 | 22 | 26 | 001000110001101000101110001011010011011111101
46 | 22 | 26 | 1011010110111010010001000111110001110010010111
47 | 22 | 26 | 01111010101000101101011000001100010011110011011
48 | 22 | 26 | 011011000110001010101110010010111101000000011000
49 | 24 | 28 | 0100001101011101111110110000011100110110000101010
50 | 24 | 28 | 11000010110111001010011001101110101110000100000110

Table 1: Examples of synchronizing sequences.

Research Report No. 6

May 1991



14 Marcin Skubiszewski

only sub-optimal synchronizing sequences.

Forl = 43 44, 48, by systematically searching through a significant fractio[r(i)pi}l, Mark
Shand [8] found words achieving ul);(the best examples found by simulated annealing for
these values dfare therefore non-optimal.

For all values ofl not mentionned above, we do not know whether the synchronizing
sequences found using simulated annealing are optimal; we do not know, either, whether up (
is the exact upper bound for those values. Unlikelfer 44, the exhaustive search, which
costsO(2) in time, cannot be applied to answer these questions.

5.2.2 The reverse autodistance of optimal synchronizing sequences

Lemma 3 and Theorem 3 imply that the examples found fof3.. 15, 17.. 21, 23, 24, 26,
28.. 33, 35, 37, 42 are double-optimal synchronizing sequences.

As indicated in Section 5.2.1 above, fbr= 27 there are no word$§ O {0,1}" with
d (5) = up (); a computation analogous to the these in the proof of Theorem 3 shows that there
is also no word of this length with &) = d’ (S) = up () — 2. Therefore, the corresponding
example is a double-optimal synchronizing sequence.

Forl = 16,22, 25, exhaustive searches showed that there is no Wdid{0, 1}’ satisfying
d (S) = d' (S) = up (); the corresponding examples are therefore double-optimal synchronizing
sequences.

For I O {34, 36, 38, 40, 41, 45, 46, 49, 50, h4the examples found are optimal
synchronizing sequences, but the author has not been able to establish whether they are
double-optimal.

6 Double Synchronizing Sequences of Length I — +o

6.1 The result

Theorem 6 (double synchronizing sequences forlarge Leta O R, 0 < a < 1. There
exists a function : N, — R, such thalim., ¢ = Oand that for every [0 N, I > 3, there are
at leasta2! distinct wordsS [ {0, 1} satisfying

up () — le(?) < d(S) < d'(S) <up () +1e(l)
6.2 How the proof is organized

The proof of Theorem 6 is long. Let us summarize it here.
Section 6.3 states two capital lemmas from which the theorem directly results.

Section 6.4 defines several notational conventions.
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Section 6.5 contains auxiliary lemmas, whieltall generally known mathematical facts.
Sections 6.6—6.9 contain the proof of the first capital lemma.

In Section 6.6, we choose a functiomhich, as we will prove, satisfies both capital lemmas
(and thus the theorem). We define then theBet {0, 1} of words whose autodistance is
less than upl] — ¢(7){, and we represent it as equal to the union of a family of sets callgsl

Then, in Sections 6.7 and 6.8, we establish intermediate results which will enable us to
estimate the cardinals of the séfg p. Finally, in Section 6.9, we use these results to prove
that|E| < 1—7"‘2’, from what the first capital lemma results.

In Section 6.10, rather than fully describing the proof of the second capital lemma, we
simply indicate in which ways it differs from the proof of the first capital lemma.

6.3 The two capital lemmas

Theorem 6 follows in a straightforward way from the two following lemmas.

Capital Lemma 1 (autodistance for highl) Leta 0O R, 0 < a < 1. There exists a function
e : N2+ — R, such thatlim..e = 0 and for everyl O N, I > 3, there are at most22'

distinct words$ 0 {0, 1} such that
d@) <up@) —Ile()
Capital Lemma 2 (reverse autodistance for highH) Leta O R, 0 < a < 1. There exists a

functione : N2+ — R4 such thatlim.., e = 0 and for everyl 0 N, [ > 3, there are at most
=22l distinct wordsS 0 {0, 1} such that

up () +2e(l) < d' (S)

6.4 Conventions

We make, for the whole proof, the following assumptions about the nunibers, b andu
and about the set® and P:

IONy, 3<1

p02Z, 1<p<li/2

a N, 1<a

bON, 2<b

pOR, O<pu<1/2
D cC[0..]

PCz, P is afinite set
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These assumptions are valid in lemmas and auxiliary definitions which are part of the proof.
They will not be recalled there. For instance, the following

Example Lemma 1 For everyu [0 R suchthaO < p < 1/2andforeveryn 0 Z, p # n.
will be abbreviated to

Example Lemma 2 Foreveryn 0 Z, p # n.

6.5 Auxiliary lemmas

Lemma 4 (approximation of (’(})) For everyn,d OO N,

d< (1/2— p)n—1 implies (Z) < neHm

Proof outline: Let us defineg = |(1/2 - p/2)n|. Using the well-known equalit)(’;’) =
nl__ we can then state the following:

IN

1_

o, (r41)
1 g\ #n/2
< (52) (3
1_ M"/Zn
(=) 2

< eWnom

a

Auxiliary Definition 8 (families F;) For < O [0..iMp) andz U [0.. ﬁ) we define the
numbers

F; = (zp +1) modl
which form the families

Fi= (Fiz)05z<ﬁ

The numberd;, and the familiesF; depend on the numbetsand p but, for simplicity,!
andp do not appear as indices in their notation.

Lemma 5 (fundamental property of 7;) For every: [0 [0..1M p), the familyF; contains
exactly once every element of the det= ((I 1 p)Z +4) N [0..1) and contains only elements
of this set.
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Proof outline: We call Im(F;) the image of the familyF;, namely

Irp

|m(f,-)={ F | 0<z <

For everyz,y 0 [0.. —m’p), the equatiorF;, = Fj, is equivalent to
P l
LkOZ —y)— =k—

which, thanks to the Gauss theorem [6], imples y O ﬁz. Since—ﬁ <z -—yY< ﬁ
we getz = y. All the elements of the familyF; are therefore distinct and the family contains
every element of4; at most once.

Since all the elements af; are distinct, the set ;) containsﬁ elements;A; and
Im(F;) have therefore the same number of elements. Since, as the reader may easily verify,
Im(F;) C A4;, we get Im(F;) = A;. The family F; contains then each element 4f at least
once and contains no elements from outsige O

Lemma 6 (parity of the cardinal) If A and B are finite sets|AA B| has the same parity as
|A| +|B|. In other words,
|AAB| =|A|+|B| (mod 2)

The proof is left to the reader.

6.6 The sets E, p

Let a be defined as in Capital Lemma 1. We define then

1 2 22 \ 3
— +—Inlln
Inl 1 1—-a

©(0)

pay+ 20

{ g'(l) if () < 1/2andy'(l) < 1/2

e'(l)
e(l)

1 otherwise

The functiong//, ¢’ ande are then strictly positive, and satisfy

My’ = O
liMiwe’ = 0
liMiwe = 0O

(the easy, computational proofs of these facts are not reproduced here)

To prove Capital Lemma 1, it is now sufficient to establish, for evempe property that
there are at moﬁ‘z—"‘zl distinct wordsS [ {0, 1}* such that d§) < up () — le(0).
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Forl such that’(l) > 1/2 ory/(l) > 1/2, we haves(I) = 1 and the property trivially holds.
We suppose therefore, for the rest of the proof, #hd} < 1/2 and thai'(l) < 1/2, and we
establish the property in this case.

Define
§ = up()—ILe(D) (29)
E = {50{0,1} | d(s)<6 } (20)
The property to be proven can then be expressed by the relation
Bl < 1222 (21)

By Definition 1, equation (20) can be rewritten as
E={50{0,1) | O O[1..1) d(S5,7(5)) < } (22)

From the definition of the Hamming distance, it is easy to show that for gvéry and every
S 0 {0, 1},
d (S, 74(S5)) = d (S, m1—¢(S))

and (22) is equivalent to
E={s0{0,1) | O@O[1.|1/2]) d(5n(5) <6 } (23)
We then define

Ey={ 50{0,1} | d(5,7(5) <5 } (24)
Relation (23) can then be rewritten
11/2]
E= ] E (25)
p=1
Let us define, fois 0 {0, 1}, theset of difference® s ,:
Ds, = {i0[0..0 | 8Ll # (9] } (26)
Dsp = {m[o..l) | S[i] # S[(i+p) modl] } 27)
and, for anyD, let
E,p={ 50{0,1) | Ds,=D } (28)
Then (24) may be rewritten as
Ey= | Epp (29)
|D|<é
From equations (25) and (29), we can deduce
11/2]
[E[< D D Byl (30)
p=1 |D|<é

The rest of this proof consists in bounding the number of terms in this sum and in estimating
|Ep,p| as a function of, p andD.
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6.7 More auxiliary lemmas

Auxiliary Definition 9 (functions ¢[¢] and expressionf(D,,3)) For ¢ O N, let us define
the functionsp, ¢[4] : {0,1} — {0, 1}

ple) = 1-z
pl0](z) = =
pli+1]() = eli]op(z)

Fori O[0..1Mp)andj O [0.. ﬁ],we define
£(D,5,9)= | (Fdocacs|

The expressiorf(D, i, 7) depends orl and p, which, for simplicity, do not appear there as
indices.

Lemma 7 (relation betweenS[é], S[j] and Dsp) Let S O E, p. Then, forO < ¢ <IMnp

. 1
and0 < j < i We have

S[(é +pj) modi] = o[ f(D,1, /)] (S[i])

Proof: First, observe that fat even,p[n] () = z and forn odd,¢[n] (z) =1 — =.

We will prove the lemma by induction gj the verification that the lemma holds fp~= O
is left to the reader.

Let us assume the lemma true fofwith 0 < j < ﬁ) and prove it forj + 1. Under the
lemma’s hypotheses, the fact tt#at] E, p (which impliesD = Dg ) and relation (27) let us
state:

if (¢+pj)modl O D, S[(e +p(G + 1)) modl] =1 — S[(z + pj) modl]
otherwise,  S[(z +p(j + 1)) modl] = S[(z + p7) mod]]

which may be expressed as follows

S[(z +p(5 + 1)) modl] [|D N {(@ +ps) modi}|] (S[(i + pj) modi])
= @lf(D,i,j+1)— f(D,i,5)] (S[(Z + pj) modl])
= @lf(D,i,5+1)— (D, 1, N (el (D3, )] (S[2])

S[(E+p@ +1)) modl] = @[f(D,1,5+1)](S[])

Lemma 8 (someFE, p are empty) If, for some O [0.. 11 p), the numbef((I M p)Z +¢) N D|
is odd, thenE, p = [I.
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Proof: Let: O[0..I1Mp)and let|(({ M p)Z +4) N D)| be odd. By Lemma 5, we get

|]:i|D

((tnp)Z2+4)N[0..0)) N D]
(I p)Z +3)N D|

| F;|p is then odd. Applying Lemma 7, for eveyO E, p we get then

_— : l
S[i] = S[(z +p—l|_|p) modl]
: .1 :
S = e[ 70,6 )| 61D
p
Sl = e[lFlp] (ST
Sl = 1- S[q] (since|F;|, is odd)
which is impossible. Therefor&, O E, p is true for noS andE, p = 0. 0

Lemma 9 (E, p has at most2'™® members) For every S’ 0 {0, 1}, there exists at most
oneS such thatS O E, p and the leftmost factor &f of lengthi 1 p is equal toS’.

Proof. LetS U E, p andk O [0..1). Leti be the remainder in the division éfoy [Mp. Since
0<i<Inpandk O((IMNp)Z+i)N[0..]), Lemma 5 implies that for somgl] [0.. ﬁ)
we havek = (¢ + pj) mod{. We can then apply Lemma 7 to get:

STkl = o[£ (D, 1, )] (S[2])
This formula shows that every bit i can be determined as a functionlpp, D and one of

thel N p leftmost bits ofS. Therefore, for any given values hfp and D, the left factor ofS
of lengthi 1 p uniquely determines. O

6.8 The sets Dgp
For anyd (0 N, let us define
Dap = { D | |D|<d0E,p # 0 } (31)

(the setD,, depends o#, but for simplicityl will not appear as an index in its notation)

We can rewrite equation (30) as follows:
11/2]

E|< Y. Y |Epp| (32)

p=1 DODs,
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By Lemma 9, for evenD O D5, | Ep p| < 2™ and equation (32) implies

/2]
|E| < ) [Dsp| 27 (33)

p=1
Let us find two different (and both useful) upper bound$my), .

SinceD;s ,, is only composed of subsets of.[d) containing less thaf elements, we get

Depl < 3 (2) (34)

0<z<é

and we can easily verify that the hypotheses of Lemma 4 holdu(for’ (1)); in this way we
get the first upper bound dd; ,,

|Ds,p| < 1O (35)
Let us compute the second upper boundly. To simplify notation, we define the two
intervalsl andJ:

I
J

[0..a(d-1))
[a(b—1)..ab)

Auxiliary Definition 10 (sets D, , p) For everyd O N, let

1)
Dgap,p

denote the set of set®’ C [0..ab) such that|D’'| < d and, for every: O [0..a),
|D' N (aZ +i)|+|P N (aZ +13)| is even.

Lemma 10 For everyd [ N,
‘D:l,a,b,P‘ < 2¢6-1) (36)

Proof: Since the sef hasa(b — 1) elements, there are at mo&f2Y possible sets of the form
D' n I. To prove the lemma, it will therefore suffice to establish that for fided, b and P,
and under the condition th&’ 0 Dy , , p, the setD’ N I uniquely determine®’.

For everyi, D' N (aZ + 1) is the disjoint union oD’ NI N (aZ +%) andD’' N J N (aZ + 1),
therefore
|D'N(aZ +i)| = |D'NIN(aZ+i)|+|D'NnJN(aZ +3)|

The number
|ID'NIN(aZ+3)|+|D'nJn(aZ+i)|+|Pn(aZ+3)|

is therefore even. The parity 0b’ N J N (aZ + )| is hence determined kY’ N 1.
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On the other hand, we have
JN(@Z+i)={i+al-1)}
Therefore,

|D'NJ N (aZ +i)| even implies D'NJ N (aZ+i)=0
|D'nJ N (aZ+4)| odd implies D'NJ N (aZ +3) = {i+a(d— 1)}

In this way, D’ N I uniquely determine®’ N J N (aZ + ) for every:i. The (easy to verify)
equality

a—1
D'=(D'nDu (] (D'nJn(aZ +3))
=0
implies then tha®D’ N I uniquely determine®’. 0

Lemma 11 For everyd such thad < d < (1/2 — p)ab — b,

Dlyap| < aeso2boe @)

Proof: For every value o&, we will prove the lemma by induction dn

First, we need to verify the lemma fér= 2. This verification, when fully described, is
extremely long. For this reason, we will omit here numerous computational details.

For any fixedd, a and P satisfying lemma’s hypotheses and for 2, we consideD’ as a
variable satisfyingd’ 0 Dy , , p and we estimate the number of values thatan take (this

number is obviously equal 4@{1@,2,13‘).
We define the set§ andV:

U

{01 | |Pn(ez+iD2Z }

v = {01 ] |Pn@z+i 02z }

Itis easy to see that /| > d, thenDy , , » = U and the lemma holds. We suppose therefore
that|V| < d and verify the lemma in this case only.

Let us quote the following, easy to establish, relations:

UUV = [0..4a)

uvnv = 0
UI+V] = a
U+ta C J
V+a C J
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Let: O V. The cardinal oD’ N (aZ + %) is then odd and, sincB’ N (aZ + i) C {i,a +i}, we
get

a+i0D < 0D
i0D' —a <« 0D (38)
From here, we can deduce that

V- D
(V-D)+a (39)

VN (D' - a)
(V+a)nD'

Therefore,V N D’ uniquely determinesi{ + a) N D’. By remarking that/ N D' can take at
most 2V different values, we conclude that U (V +a)) N D’ can only take P! different
values.

From relation (39) we get
(V+a)nD'|+|VnD'|=V|

V andV + a being disjoint, we conclude thaV U (V +a)) N D'| = |V|. Since the sets
V U(V +a)andU U (U + a) are disjoint, we finally get

(U@ +a)ND'|+|(VUV +a)ND| < d
(TU@+a)nD'| < d—|V| (40)

A relation concernin@/ and analogous to (39) can be established:
(U+a)ND'=(UND)+a (41)
and can be used to conclude tan D’ uniquely determinedf + a) N D'.

Relation (41), together with the fact théitandU + a are disjoint, leads to the conclusion
that

Unp| = |WranD
= %|(UU(U+a))ﬂD'|
d—1|V
vnp| < & (by (40))

SinceU N D' is a set containing less thad € |V|)/2 elements chosen among the- |V|
elements ol, it can take at most
3 a— V]|
k

0<k<(d—|V1)/2

different values; the same is true concernitig( (U + a)) N D’ (since this set is determined
in a unique way by N D’).
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From the fact that
D'=(Uu@+a)nD)u ((VU(V +a)n D

we finally deduce thab’ can take no more than

3 (a —k|V|) SV

0<k<(d—|V1)/2

different values; then

Phoar] < o (16" Whyay) 2 42)

We can verify the following relations (remember thét < d)

d—|V| 1 a )

il A Y (e —vp-1
0 < S < (Gou )@=
0 < 4 < }

b v 2

which, together with (42), enable us to use Lemma 4 and obtain

3
3 a
12—t (a~ V) 5o—|V| 5|V
‘D:z,a,Z,P‘ < age (e-IV)? | |2“ V12Vl

from that we deduce that (37) holds and we thus end the verificatidn=&.

Now, we suppose thdt> 3 and that the lemma holds fét =5 — 1. Supposing that, d,
p and P satisfy the lemma’s hypotheses, let us establish relation (37)DL&t Dy , , p. We
can splitD’ into the union of two disjoint subsef3; and@:

D, = D'nI
Q = D'nJ

By definition of Dy, , , p, for everyi [0 [0 ... @) we have
|D' N (aZ + )| +|P N (aZ +1)| O2N
this can be rewritten as
| D10 (aZ +3)|+|Q N(aZ +3)|+|P N (aZ +3)| 02N

and, by Lemma 6,
|D1N (aZ +3)| +|(PAQ) N (aZ +32)| O 2N (43)

The facts thaD, C I and thaiD,|+|@Q| = |D’|, together with relation (43), enable us to state

D1 0Dy 1g)ap-1,P20Q
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We have therefore established that evBfyll Dy , , p is the union of som€ C J and some
Dl D D:l—|Q|,a,b—l,PAQ' Then,

Dyapr C U { D1uQ ‘ D10Dy_1g),ap-1,P20 }
QcJ

‘D:l,a,b,P‘ < QE:J‘D;_'QL“’I’_LPAQ‘ (44)
C

Let us split the sum (44) into two ternis andY :

‘D:l,a,b,P‘ < X+Y
X = > |Pijgres-seacl
QCJ
QI<(t/2-mwa—1
Y = > ‘Dfl—lm,a,b—l,mcz‘
QCJ

lQ1>(1/2-p)a—1

The sumX is indexed by subsets df having less than (2 — p)a — 1 elements. Lemma 4
implies then that the number of terms in the sum is less than or equal to

a
> (%)
0<i<(1/2—p)a—1
< a e~Haa
From Lemma 10, we deduce that each ternXiis less than or equal td"222; therefore,
X < ae—uBa Zab—a (45)

The sunt’, being indexed by subsets &f contains at most2terms. Each term is of the form

‘Dé_|Q|,G,b—l,PAQ
where
After straightforward verifications, the induction hypothesis (Lemma 11 applied fod)
may be applied to give
‘D;_|Q|,a,b—l,PAQ‘ S ae—MBa 2a(b—l)+(b_1)_a

Therefore,

Y <a e—u3a pabt(b—1)-a (46)
and

3 3
ae M@ Zab—a +ge B 2ab+(b—l)—a

IN

1)
‘Dd,a,b,P‘

3
‘D:labP‘ < ge#aebtboa
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O
The definition ofDs, together with Lemma 8, imply tha®s, C D Irp, 7 0 if we set
’ ’ |—|p7
p = p'(l), Lemma 11 implies
Dl < e/ 0700 i =i (47

which is our second upper bound D .

6.9 Conclusion

Let us use the two bounds (35) and (47) to estimate the sum described in (33). For
[Mp < &, we have (by (35))

Inl’

le™ w' ()31 ol+rp

IN

|D6,p|2mp
Dsp| 2P < 1 # O Qi (48)

Forimp > 1, we use (47), which implies,

D5y | 2P < (e~ OTP) Py
D5, 2P < e W Omr 2 (49)

For every term in the sum (33), either (48) or (49) holds. Therefore,

1{/2]
1Bl < ZmaX(le—“’(”B’z“ﬁ , lze—u'(z)%zz)
p=1
Bl < max(Pe#®1 2, 2ot W 2) (50)

From (50), using the definition @f , we get (after a tedious computation) relation (21).0

6.10 The proof of Capital Lemma 2

Let us describe the modifications that the proof of Capital Lemma 1 (Sections 6.6—6.9)
should undergo in order to become a proof of Capital Lemma 2. Note that the funcisza
in both proofs is the same.

By analogy with the objects and E (see (19) and (20)), we define

up () +le(?)
{so{ou}|d(©)>6} (51)

)
E

The property to be proven (corresponding with (21)) can then be expressed by the relation
(analogous to (21))
1-a

5 2 (52)

s
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By analogy with (34), we get
11/2]

B[ <> 3 150l (53)

p=1 |D|>§
By analogy withDg,, (see (31)), we define for any/J N,
Dap = { D |[D|>1-d0E,p # D } (54)

Then, in the same way as relation (34) is obtained, we get

Pl < ¥ ()

I-6<z<l

> (s)

0<z<é

IN

which, in turn, leads us to the first upper boundRy), (analogous to (35)):

Dip| < leWO2 (55)

In order to obtain the second upper bound®y, (analogous to (47)), we use Lemma 8 and
get, forall: J[0..1M p),

D0ODs, = |((NpZ+i)nD|0O2Z
DODs, = |(ANp)Z+i)n([0..0) = D)|+|(((Np)Z+i)n[0..0)) 02Z (56)

The definition ofDs ,, (formula (54)) implies that
DODs,=>[0..)-D|<§ (57)
From (56) and (57), and from Auxiliary Definition 10, we get

D—Mc{ Dc0..1) ‘ [0.)-D O D;,mpﬁ,[o__l) }
Finally, by observing that the function transformidy (for D C [0..1)) into [0..]) — D is
bijective, we obtain

D

‘D&p‘<

1)
6,ll_lp,ﬁ,[0 )

and using Lemma 11, we get the second upper bour@sgn(analogous to (47)):
[De| < 100 ot 1w 8)

The two bounds (55) and (58) enable us to derive (52) in the same way as (21) is obtained in
Section 6.9. O
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