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Abstract

The purpose of this paper is to give an exposition of material dealing with constructive logics,
typed�-calculi, and linear logic. The first part of this paper gives an exposition of background
material (with the exception of the Girard-translation of classical logic into intuitionistic logic,
which is new). This second part is devoted to linear logic and proof nets. Particular attention
is given to the algebraic semantics (in Girard’s terminology, phase semantics) of linear logic.
We show how phase spaces arise as an instance of a Galois connection. We also give a direct
proof of the correctness of the Danos-Regnier criterion for proof nets. This proof is based on a
purely graph-theoretic decomposition lemma. As a corollary, we give anO(n2)-time algorithm
for testing whether a proof net is correct. Although the existence of such an algorithm has
been announced by Girard, our algorithm appears to be original.

Résumé

Le but de cet article est de donner une pr´esentation d’´eléments de logique constructive,
de lambda calcul typ´e, et de logique lin´eaire. Dans la premi`ere partie de cet article nous
présentons les bases (`a l’exception de la traduction de Girard de la logique classique en logique
intuitionniste, qui est nouvelle). Dans cette deuxi`eme partie sont trait´es la logique lin´eaire et
les réseaux de preuves. Une attention particuli`ere est faite `a la sémantique alg´ebrique (appel´ee
dans la terminologie de Girard, s´emantique des phases) de la logique lin´eaire. Nous montrons
comment la notion d’espace de phases apparait comme une instance d’une connection de
Galois. Nous donnons aussi une preuve directe de la correction du crit`ere de Danos et Regnier
pour les réseaux de preuves. Cette preuve repose sur un lemme de d´ecomposition de pure
théorie des graphes. Comme corollaire, nous obtenons un algorithme en tempsO(n2) pour
tester si un r´eseaux de preuves est correct. Bien que l’existence d’un tel algorithme ait ´eté
annoncée par Girard, notre algorithme semble ˆetre original.
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Constructive Logics. Part II: Linear Logic and Proof Nets 1

1 Core Linear Logic and Propositional Linear Logic

In Girard’s linear logic [7], the connectiveŝ and _ are split into two versions: the
multiplicativeversion of^ and_, denoted as
 and ℘ , and theadditiveversion of^ and
_, denoted as & and�. The constants> (truth) and? (falsity) are also split into their
multiplicative version1 and?, and their additive version> and0. We confess having some
difficulties remembering Girard’s notation for the connectives and constants, and we propose to
use the following notation which we find reasonably motivated semantically, and thus easier to
memorize. Themultiplicativeversion of̂ and_ is denoted as
 (calledtensor) and] (called
par), and theadditiveversion of^ and_ is denoted as & and�. The constants> (truth) and
? (falsity) have their multiplicative versionI and?, and their additive version1 and0. We
also havelinear implication, denoted as�� (which is a multiplicative), andlinear negation,
denoted as?. For pedagogical reasons, we feel that it is preferable to present the inference
rules of linear logic in terms of two-sided sequentsΓ � ∆, with explicit rules for linear
negation (?). One can then show that negation is an involution satisfying De Morgan-like
properties, and that every proposition is equivalent to another proposition in “negation normal
form”, in which negation only applies to atoms. Thus, it is possibe to describe linear logic in
terms of one-sided sequents� ∆, and this is the approach originally followed by Girard [7].
The presentation using one-sided sequents also has the technical advantage of cutting down in
half the number of cases to be considered in proving properties of the logic, cut elimination
for example. On the other hand, the presentation using two-sided sequents is better suited if
one is interested in the “intuitionistic fragment” of linear logic in which the righthand side∆
of a sequentΓ � ∆ contains at most one proposition.

Definition 1 The axioms and inference rules of the systemLin0 for core linear logic are given
below.

Axioms:
A � A

� I ?�

Γ � ∆; 1 0; Γ � ∆

Cut Rule:
Γ � A;∆ A;Λ � Θ

Γ;Λ � ∆;Θ
(cut)

Multiplicative Rules:

A;B; Γ � ∆
A
B; Γ � ∆

(
: left)
Γ � ∆; A Λ � Θ; B
Γ;Λ � ∆;Θ; A
 B

(
: right)

A; Γ � ∆ B;Λ � Θ
A ] B; Γ;Λ � ∆;Θ

(]: left)
Γ � ∆; A; B
Γ � ∆; A ] B

(]: right)
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2 Jean Gallier

Γ � ∆; A B;Λ � Θ
A �� B; Γ;Λ � ∆;Θ

(��: left)
A; Γ � ∆; B

Γ � ∆; A �� B
(��: right)

Γ � ∆; A
A?; Γ � ∆

(?: left)
A; Γ � ∆

Γ � ∆; A?
(?: right)

Γ � ∆
I ; Γ � ∆

(I : left)
Γ � ∆

Γ � ∆;?
(?: right)

Additive Rules:

A; Γ � ∆
A & B; Γ � ∆

(&: left)
B; Γ � ∆

A & B; Γ � ∆
(&: left)

Γ � ∆; A Γ � ∆; B
Γ � ∆; A & B

(&: right)

A; Γ � ∆ B; Γ � ∆
A�B; Γ � ∆

(�: left)

Γ � ∆; A
Γ � ∆; A�B

(�: right)
Γ � ∆; B

Γ � ∆; A�B
(�: right)

The fragment of linear logic involving the formulae, axioms, and rules, containing only the
multiplicative connectives
, ], ?, I , and?, is calledmultiplicative linear logic.

From the above rules, it is clear (as in classical logic) that linear negation is involutive,
i.e., bothA � A?? andA?? � A are provable, and that both (A �� B) � (A? ] B) and
(A? ] B) � (A �� B) are provable. We also have the following “De Morgan” properties
of linear negation over
; ] on the one hand, and &;� on the other hand, namely that the
following sequents are provable:

(A
 B)? � A? ] B?; A? ] B? � (A 
B)? ;

(A ] B)? � A? 
B?; A? 
 B? � (A ] B)? ;

(A & B)? � A? �B?; A? � B? � (A & B)? ;

(A �B)? � A? & B?; A? & B? � (A �B)? :

It is very easy to show that linear negation exchanges on the one handI and?, and on the
other hand1 and0, formally expressed by the provability of the following sequents:

I? �?; ?� I?;

1? � 0; 0� 1?:
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Constructive Logics. Part II: Linear Logic and Proof Nets 3

It is also useful to note that in writing sequents, the meaning of the comma (,) is overloaded.
In a sequentA1; . . .; Am � B1; . . .; Bn, on the lefthand side, the comma is an “uncommitted”

, but on the righthand side, the commma is an “uncommitted”]. The difference between

and & is illustrated by the fact that the sequents

(A �� B) & (A �� C) �
�
A �� (B & C)

�
and A �� B;A �� C �

�
(A
A) �� (B
C)

�

are provable, but that the sequentA �� B;A �� C �
�
A �� (B 
 C)

�
is not provable. The

additive connectives require resource sharing, but the multiplicative disallow it.

Since contraction and weakening have been eliminated, core linear logic is not very
expressive. In order to regain expressiveness, new formulae involving the exponentials ! (of
course) and ? (why not) are introduced. Then, weakening and contraction are reintroduced,
but in a controlled manner. The inference rules for the exponentials are given in the next
definition. If Γ = A1; . . .; An, then !Γ =!A1; . . .; !An, and ?Γ =?A1; . . .; ?An.

Definition 2 The rules for the exponentials are given below.

A; Γ � ∆
!A; Γ � ∆

(dereliction: left)
Γ � ∆; A
Γ � ∆; ?A

(dereliction: right)

Γ � ∆
!A; Γ � ∆

(weakening: left)
Γ � ∆

Γ � ∆; ?A
(weakening: right)

!Γ; A �?∆
!Γ; ?A �?∆

(?: left)
!Γ � A; ?∆
!Γ � !A; ?∆

(!: right)

!A; !A; Γ � ∆
!A; Γ � ∆

(contraction: left)
Γ � ∆; ?A; ?A

Γ � ∆; ?A
(contraction: right)

The systemLin!;?
0 for propositional linear logicis obtained from the systemLin0 by adding

the inference rules of Definition 2. We can show easily that linear negation exchanges ! and ?,
in the sense that the following sequents are provable:

(!A)? �?A? ?A? � (!A)?;

(?A)? �!A? !A? � (?A)?:

Using (?:left), (!: right), (dereliction: left), and (dereliction: right), it is easy to show that !
and ? are idempotent, in the sense that the following sequents are provable:

!!A � !A !A � !!A;

??A � ?A ?A � ??A:
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4 Jean Gallier

The best way to understand linear negation is to think in terms ofaction and reaction,
or (output, answer) and (input, question). Thus, an action of typeA (answer of typeA)
corresponds to a reaction of typeA? (question of typeA? ). We can adopt the convention
that an occurrence of a formulaA on the lefthand side of a sequentΓ � ∆ corresponds to a
reaction, or input (or question), and an occurrence ofA on the righthand side of a sequent
corresponds to an action, or output (or answer). Intuitiveley, the action !A has the meaning
that an action of typeA is reusable, or can be duplicated as many times as necessary. It also
corresponds to the idea ofstorage. Dually, the action ?A has the meaning that the action of
typeA can beconsumedas many times as necessary. It also corresponds to the idea ofreading
from memory. The intuitive meaning of the rule

!Γ � A; ?∆
!Γ � !A; ?∆

(!: right)

is more easily grasped if we consider its intuitionistic version

!Γ � A

!Γ � !A
(!: right)

where∆ = ∅ . This rule says that since all inputs in !Γ are reusable, andA is an output
consequence of !Γ, then in fact, as many copies as needed of the actionA can be output from
!Γ. Thus, this corresponds tostoringthe actionA in memory. Similarly, the intuitive meaning
of the rule

Γ � ∆; A
Γ � ∆; ?A

(dereliction: right)

is that the action of type ?A is read (retrieved) from memory, the intuitive meaning of

Γ � ∆
Γ � ∆; ?A

(weakening: right)

is that the action of type ?A is erased, and the intuitive meaning of

Γ � ∆; ?A; ?A
Γ � ∆; ?A

(contraction: right)

is that the action of type ?A is duplicated.

It is possible to prove the following sequents, showing a form of distributivity of ! over &
and
, and of ? over� and].

Lemma 1 The following sequents are provable

?(A �B) �?A ] ?B ?A ] ?B � ?(A� B);

!(A & B) � !A 
 !B !A 
 !B � !(A & B):
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Constructive Logics. Part II: Linear Logic and Proof Nets 5

Remark: We can introduce a new connective,linear equivalence, denoted by the symbol
���, and write the obvious inference rules for it. Alternatively, we can take the formula
A ��� B as an abbreviation for (A �� B) & (B �� A). Then, for example, the provability
of the two sequents ?(A � B) �?A ] ?B and ?A ] ?B �?(A � B) can be written as the
provability of the formula ?(A� B) ��� (?A ] ?B).

In view of the fact that linear negation is an involution, it is possible to give a more concise
description of linear logic if we restrict ourselves to right-sided sequents, that is, sequents of
the form� ∆. This is possible because the sequentA1; . . .; Am � B1; . . .; Bn is provable iff
the sequent� A?

1 ; . . .; A?
m; B1; . . .; Bn is provable. We can go further by taking advantage

of the De Morgan properties noted earlier. Thus, we can write formulae in negation normal
form, where negation is pushed in all the way so that it applies only to atomic formulae. In this
formulation, negation is no longer a connective. We havepositive literalsof the formA where
A is atomic, andnegative literalsof the formA? whereA is atomic. We construct formulae
using the connectives
, ], &, �, !, and ?, and we only need the contants? and1. We define
A �� B as an abbrevation forA? ] B, and the negation of a formula is defined inductively as
follows:

I? =?;

?? = I ;

1? = 0;

0? = 1;

(A)? = A?; for A a positive literal;

(A?)? = A; for A? a negative literal;

(A 
B)? = A? ] B?;

(A ] B)? = A? 
 B?;

(A & B)? = A? � B?;

(A �B)? = A? & B?;

(!A)? = ?A?;

(?A)? = !A?:

The inference rules are immediately rewritten for right-sided sequents. The only minor
difference is that (!:right) is now written as

� ?Γ; A
�?Γ; !A

(!: right)

2 Representing Intuitionistic Logic into Linear Logic

It is possible to represent Intuitionistic Logic into Linear Logic via the following translation.
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6 Jean Gallier

Definition 3 Given a formulaA of propositional logic, its translationAi in linear logic is
defined as follows:

Ai = A whenA is atomic;

(A ^B)i = Ai & Bi;

(A _B)i = !Ai � !Bi;

(A � B)i = !Ai �� Bi;

(¬A)i = !Ai �� 0;

?i = 0:

Given an intuitionistic sequentA1; . . .; Am � B, its translation is defined as the sequent
!Ai

1; . . .; !Ai
m � Bi. This translation preserves intuitionistic provability and is conservative,

as shown in the following lemma.

Lemma 2 Given a sequentΓ � C of intuitionistic logic, ifΓ � C is provable inG�;^;_;?i ,
then its translation!Γi � Ci is provable in linear logicLin!

0. Conversely, if the translation

!Γi � Ci of a sequentΓ � C is provable in linear logicLin!;?
0 , thenΓ � C is provable in

G�;^;_;?i .

Proof. One needs to show that the translated version of the axioms and the inference rules
of G�;^;_;?i are provable inLin!

0, which is indeed the case. The point is that ! is added by
the translation when necessary to allow weakening or contraction on the left, and this allows
the simulation of the rules ofG�;^;_;?i . The provability of the sequent !(A �� B) � !A ��!B
is also needed. For the converse, there is a difficulty with the constant0. If we consider the
fragment not involving0, we need to know that the cut elimination theorem holds forLin!;?

0 ,
which was proved by Girard [7] (see also Lincoln, Mitchell, Scedrov, and Shankar [8]), and
we simply need to observe that a cut-free proof of an intuitionistic sequent over��, &, �,
and !, only involves intuitionistic sequents. Thus, such a proof yields an intuitionistic proof if
we erase ! and replace the additive connectives by the standard connectives�, ^, _. A more
complex argument is needed in order to handle0 (see Schellinx [11]).

Classical logic can also be represented in linear logic.

3 Representing Classical Logic into Linear Logic

Given a classical sequentA1; . . .; Am � B1; . . .; Bn, we will consider that the occurrences
ofB1; . . .; Bn are positive, and that the occurrences ofA1; . . .; Am are negative. Consequently,
the translation makes use of signed formulae of the formpA andnA. GivenΓ = A1; . . .; Am,
thenpΓ = pA1; . . .; pAm, andnΓ = nA1; . . .; nAm.
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Constructive Logics. Part II: Linear Logic and Proof Nets 7

Definition 4 Given a formulaA of propositional logic, its translationspAc andnAc in linear
logic are defined as follows:

pAc = nAc = A whenA is atomic;

(p¬A)c = (nAc)?;

(n¬A)c = (pAc)?;

(pA ^B)c = ?pAc & ?pBc;

(nA ^B)c = nAc & nBc;

(pA _B)c = pAc � pBc;

(nA _B)c = !nAc � !nBc ;

(pA � B)c = (nAc)? � pBc;

(nA � B)c = !(pAc)? � !nBc:

Given a classical sequentΓ � ∆, its translation is defined as the sequent !nΓc �?p∆c, where
nΓc = nAc

1; . . .; nAc
m if Γ = A1; . . .; Am, and similarly forp∆c. This translation preserves

classical provability and is conservative, as shown in the following lemma.

Lemma 3 Given a sequentΓ � ∆ of classical logic, ifΓ � ∆ is provable inG�;^;_;¬c , then
its translation!nΓc �?p∆c is provable in linear logicLin!;?

0 . Conversely, if the translation

!nΓc �?p∆c of a sequentΓ � ∆ is provable in linear logicLin!;?
0 , thenΓ � ∆ is provable in

G�;^;_;¬c .

Proof. One needs to show that the translated version of the axioms and the inference rules
of G�;^;_;¬c are provable inLin!

0, which is indeed the case. The point is that ! and ? are
added by the translation when necessary to allow weakening or contraction, and this allows
the simulation of the rules ofG�;^;_;¬c . We also use the equivalences ?(A�B) ��� (?A ] ?B)
and !(A & B) ��� (!A 
 !B).

For the converse, we need the fact that the cut elimination theorem holds forLin!;?
0 , which

was proved by Girard [7] (see also Lincoln, Mitchell, Scedrov, and Shankar [8]). Then, we
simply observe that a cut-free proof of the translation of a classical sequent only involves
translations of classical sequents. Thus, such a proof yields a classical proof if we erase the
connectives ! and ?, and replace the additive connectives and? by the standard connectives�,
^, _, ¬ (it is also necessary to simulate (�: right) and (&: left) with the rules ofG�;^;_;¬c , but
this is standard).

Remark: The above proof shows that the following translation forpA ^ B, nA _ B, and
nA � B, also works:

(pA ^B)c = ?pAc 
 ?pBc ;

(nA _B)c = !nAc ] !nBc;

(nA � B)c = ?pAc �� !nBc :
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8 Jean Gallier

We now consider one of the possible semantics for linear logic, “phase semantics”.

4 Closure Operations, Galois Connections, Adjunctions

Phase semantics due to Girard [7] is an algebraic semantics for linear logic. Actually,
this semantics turns out to be an instance of a well known concept of lattice theory (Galois
connections). We believe that phase semantics can be understood better if it is presented
explicitly in terms of a Galois connection. Thus, we will begin by reviewing some basic
notions of lattice theory, the notion ofclosure operationand the notion ofGalois connection
(see Birkhoff [3]). The relationship between phase semantics and Galois connections has been
noted by Avron [2].

Definition 5 LetI be a set. A functiony: 2I ! 2I is a closure operation on2I iff the following
properties hold: For allX; Y � I ,

(1)X � Xy;

(2)Xyy � Xy;

(3)X � Y impliesXy � Y y.

From (1) and (2), it is clear thatXyy = Xy. A setX is calledclosediff Xy = X . It is clear
thatX is closed iffX = Y y for someY . The set of closed subsets ofI is denoted asIy.

Observe that the setIy of closed subsets ofI is closed under arbitrary intersections.
Given a family (Aj )j ∈ J of closed sets inIy, since

T
j ∈ JfAjg � Aj for every j ∈ J , by

monotonicity (property (3) in Definition 5), we have (
T

j ∈ JfAjg)y � A
y
j for everyj ∈ J ,

which is equivalent to (
T

j ∈ JfAjg)y � Aj , sinceAy
j = Aj for everyj ∈ J because theAj are

closed subsets. Thus, (
T

j ∈ JfAjg)y �
T
j ∈ JfAjg. The inclusion

T
j ∈ JfAjg � (

T
j ∈ JfAjg)y

follows from condition (1).

Remark: If we drop condition (3) of Definition 5 and add the two conditions:

(0) ∅ y = ∅ , and

(30) (A [B)y = Ay [By,

then we obtain one of the possible definitions of atopology(the Kuratowski closure axioms).
Indeed, we can define the family of open sets of the topology as the complements of the closed
subsets ofI . One can also verify easily that (30) implies (3).

The setIy of closed subsets ofI can be naturally given the structure of a complete lattice.
For the (easy) proof, see Birkhoff [3].
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Constructive Logics. Part II: Linear Logic and Proof Nets 9

Theorem 1 Given a setI and a closure operationy on 2I , if we define the operations
W

andV
on the setIy of closed subsets ofI by

^

j ∈ J

fAjg =
\

j ∈ J

fAjg;
_

j ∈ J

fAjg =
� [

j ∈ J

fAjg
�y
;

thenIy is a complete lattice under inclusion.

If y is a closure operation which is injective on singleton sets (i.e., fxgy 6= fygy whenever
x 6= y), then the mappingx 7! fxgy is a natural embedding ofI into the complete
lattice of closed subsets. IfI is equiped with a binary operation, say�, then we define
XY = fx � y j x ∈ X; y ∈ Y g, and we extend� to the complete latticeIy by defining
X � Y = (XY )y.

A way to define closure operations is via Galois connections.

Definition 6 Let I andJ be two sets andR be a binary relation onI � J . Given any two
subsetsX � I andY � J , we define (with a slight ambiguity of notation) the setsX� � J

andY + � I as follows:

X� = fy ∈ J j ∀ x ∈ X; xRyg;

Y + = fx ∈ I j ∀ y ∈ Y; xRyg:

We have the following lemma showing that�+ is a closure operation on 2I , and that +� is a
closure operation on 2J . The proof can be found in Birkhoff [3].

Lemma 4 Given a binary relationR on I � J , the following properties hold: For all
X;X 0 � I andY; Y 0 � J ,

(1)X � X 0 impliesX 0� � X� andY � Y 0 impliesY 0+ � Y +;

(2)X � X�+, Y � Y +�, X�+� = X�, Y +�+ = Y +;

(3) �+ and+� are closure operations on2I and2J respectively. Furthermore, the mappings
X 7! X� andY 7! Y + define a dual isomorphism1 between the complete lattices of closed
subsets ofI andJ .

The dual isomorphismsX 7! X� andY 7! Y + are calledpolarities, and they are said to
define aGalois connectionbetweenI andJ .

In particular, if� is a partial order onI = J , by takingR = �, theny = �+ is a closure
operation. Note that forX � I , X� is the set of upper bounds ofX , denoted asupper(X),

1A dual isomorphismh between posets is a bijection which is anti-monotonic,i.e., a � b impliesh(b) � h(a).
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10 Jean Gallier

X+ is the set of lower bounds ofX , denoted aslower(X), X�+ = lower(upper(X)), and
fxgy = fxg�+ = fy j y � xg (the principal ideal generated byx). The natural mapping
x 7! fxg�+ is an embedding ofhI;�i into the complete lattice of closed subsets ofI , and this
embedding preserves all existings least upper bounds and greatest lower bounds (in fact,I is
dense in this lattice). It is also called the “Mac Neille completion”, or “completion by cuts”.
Furthermore, if� is an involution onI , that is,x = �� x, andx � y implies� y � � x for
all x; y ∈ I , then we can extend� to Iy by defining

� X = f� y j y ∈ X�g:

It is easily verified that we get an involution.

A particularly interesting case arises whenI = J andR is symmetric. In this case,� = +,
and the closure operation isy = ��. Also, the operation on the setIy = I�� of closed subsets
defined byX 7! X� is an involution with some nice properties. We define1 = ∅ � = I , and
0 = I� = ∅ ��. It is immediately verified that1 is the greatest element ofI��, and that0 is its
least element.

Lemma 5 Given a symmetric relationR on a setI , for any family(Aj)j ∈ J of closed sets in
Iy = I��, we have

(
[

j ∈ J

fAjg)
� =

\

j ∈ J

fA�
jg;

(
\

j ∈ J

fAjg)� = (
[

j ∈ J

fA�
jg)

��;

(
^

j ∈ J

fAjg)
� =

_

j ∈ J

fA�
jg;

(
_

j ∈ J

fAjg)
� =

^

j ∈ J

fA�
jg:

Proof. We have

a ∈ (
[

j ∈ J

fAjg)� iff

∀ b(b ∈ (
[

j ∈ J

fAjg) � aRb); iff

∀ b
�
∃ j ∈ J (b ∈ Aj) � aRb

�
; iff

∀ j ∈ J ∀ b
�
b ∈ Aj � aRb

�
; iff

∀ j ∈ J (a ∈ A�
j ); iff

a ∈
\

j ∈ J

fA�
jg:

Since theAj are closed we haveA��
j = Aj , and the second identity follows from the first by

applying� to both sides, and replacing eachAj byA�
j . Since by definition,

^

j ∈ J

fAjg =
\

j ∈ J

fAjg;
_

j ∈ J

fAjg =
� [

j ∈ J

fAjg
���

;
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the last two identities follow from the first two and the fact thatX��� = X�.

If R is irreflexive, that is,∀ x ∈ I¬ (xRx), thenX ^X� = ∅ andX _ X� = I . Indeed,
a ∈ X \ X� impliesaRa, which shows thatX ^X� = ∅ . The other equality follows by
duality. If R is symmetric and we also have a binary operation� on I , we can extend� to I��

by definingX � Y = (XY )��. We also definek byX k Y = (X�
� Y �)� = (X�Y �)�. We can

immediately verify thatX � Y = (X� k Y �)�. We have the following useful properties.

Lemma 6 Given a symmetric relationR on a setI and a binary operation� on I , then for
any family(Aj )j ∈ J of closed sets inIy = I�� and anyB ∈ Iy, we have

_

j ∈ J

f(Aj � B)g =
�
(
[

j ∈ J

fAjg)B
���

;
� _

j ∈ J

fAjg
�
� B =

�
(
[

j ∈ J

fAjg)
��B
���

;

^

j ∈ J

f(Aj k B)g =
�
(
[

j ∈ J

fA�
jg)B

�
��
;

� ^

j ∈ J

fAjg
�
k B =

�
(
[

j ∈ J

fA�
jg)

��B�
��
:

Proof. Using the fact thatX k Y = (X�Y �)� and that
V

j ∈ JfAjg =
T
j ∈ JfAjg, we have

a ∈
^

j ∈ J

f(Aj k B)g iff

a ∈
\

j ∈ J

f(Aj k B)g; iff

a ∈
\

j ∈ J

f(A�
jB

�)�g; iff

∀ j ∈ J
�
a ∈ (A�

jB
�)�
�
; iff

∀ j ∈ J ∀ b(b ∈ A�
jB

� � aRb); iff

∀ b
�
∃ j ∈ J(b ∈ A�

jB
�) � aRb

�
; iff

∀ b
�
b ∈ (

[

j ∈ J

fA�
jg)B

� � aRb
�
; iff

a ∈
�
(
[

j ∈ J

fA�
jg)B

�
��
:

On the other hand,

a ∈
� ^

j ∈ J

fAjg
�
k B iff

a ∈
�
(
\

j ∈ J

fAjg)
�B�

��
; iff

a ∈
�
(
[

j ∈ J

fA�
jg)

��B�
��
:

Using the fact thatX � Y = (X� k Y �)� and that (
V

j ∈ JfAjg)� =
W
j ∈ JfA

�
jg by Lemma 5, the

first equality follows from the third, and the second one follows by unwinding the definitions
X � Y = (XY )�� and

W
j ∈ JfAjg = (

S
j ∈ JfAjg)��.
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12 Jean Gallier

In general, we only have the inclusions

_

j ∈ J

f(Aj � B)g �
� _

j ∈ J

fAjg
�
� B;

� ^

j ∈ J

fAjg
�
k B �

^

j ∈ J

f(Aj k B)g:

Equality holds whenR has additional properties. For example, this is the case whenpRq � r

holds iff p � qRr holds. For this, we need the following lemma which will also be useful later.

Lemma 7 If the relationR is symmetric andpRq � r holds iffp � qRr holds, then

p ∈ (X � Y �)� iff ∀ q(q ∈ X � p � q ∈ Y ):

Proof. By the definitions,p ∈ (X � Y �)� iff p ∈ (XY �)� iff ∀ u(u ∈ XY � � pRu), iff

∀ u
�
∃ q∃ r(q ∈ X ^ r ∈ Y � ^ u = q � r) � pRu

�
;

iff
∀ u
�
∃ q∃ r

�
q ∈ X ^ ∀ t(t ∈ Y � rRt) ^ u = q � r

�
� pRu

�
;

iff
∀ u∀ q∀ r

��
q ∈ X ^ ∀ t(t ∈ Y � rRt) ^ u = q � r)

�
� pRu

�
;

iff
∀ q∀ r

��
q ∈ X ^ ∀ t(t ∈ Y � rRt)

�
� pRq � r

�
:

Now assume that there is someq such thatq ∈ X but p � q ∉ Y . Letting t = p � q in the
above formula, (t ∈ Y � rRt) is trivially false, and thus, we have

∀ r(pRq � r):

However, by the hypothesis,pRq � r holds iff p � qRr holds, and so∀ r(p � qRr) holds, that
is, p � q ∈ I� = 0. But we know that0 is the smallest element ofI��, and so0 � Y , which
implies thatp � q ∈ Y , contradicting the assumptionp � q ∉ Y . Thus, we have shown that
if p ∈ (X � Y �)� then∀ q(q ∈ X � pRq ∈ Y ). The converse it easier to show. For everyq

andr, if we assume that

(q ∈ X � p � q ∈ Y ) and
�
q ∈ X ^ ∀ t(t ∈ Y � rRt)

�
;

then by lettingt = p � q, we getrRp � q, which is equivalent topRq � r, by symmetry ofR
and the fact thatpRq � r holds iff p � qRr holds.

Note that (X � Y �)� can be taken as the semantic definition ofX �� Y , since in
linear logic,X �� Y is equivalent toX? ] Y . Thus, the fact thatp ∈ (X � Y �)� iff
∀ q(q ∈ X � p � q ∈ Y ) should not be a total surprise to those who know about Kripke
semantics.
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Lemma 8 If the relationR is symmetric,� has an identity1, andpRq � r holds iffp � qRr

holds, then for any family(Aj)j ∈ J of closed sets inIy = I�� and anyB ∈ Iy, we have

B k
� ^

j ∈ J

fAjg
�

=
^

j ∈ J

f(B k Aj )g; B �
� _

j ∈ J

fAjg
�

=
_

j ∈ J

f(B � Aj)g;

B k 1 = 1; B � 0 = 0:

Proof. By Lemma 7,p ∈ (XY �)� iff ∀ q(q ∈ X � p � q ∈ Y ). SinceX k Y = (X�Y �)�,

p ∈ B k
� ^

j ∈ J

fAjg
�

iff

p ∈ B k
� \

j ∈ J

fAjg
�
; iff

∀ q
�
q ∈ B� � p � q ∈

� \

j ∈ J

fAjg
��
; iff

∀ q
�
q ∈ B� � ∀ j ∈ J(p � q ∈ Aj)

�
; iff

∀ j ∈ J ∀ q
�
q ∈ B� � p � q ∈ Aj

�
; iff

∀ j ∈ J
�
p ∈ (B�A�

j )
�
�
; iff

∀ j ∈ J
�
p ∈ (B k Aj)

�
; iff

p ∈
\

j ∈ J

f(B k Aj)g; iff

p ∈
^

j ∈ J

f(B k Aj)g:

The special case whereJ = ∅ is handled easily, and yieldsB k 1 = 1 andB � 0 = 0. The
other equality follows from duality.

One should note that an argument symmetric to the one used in Lemma 7 shows that
p ∈ (X�Y )� iff ∀ q(q ∈ Y � q � p ∈ X). Therefore, under the hypotheses of Lemma 8, we
also obtain the following identities,withoutappealing to the commutativity of�:

� ^

j ∈ J

fAjg
�
k B =

^

j ∈ J

f(Aj k B)g;
� _

j ∈ J

fAjg
�
� B =

_

j ∈ J

f(Aj � B)g:

Another important concept is that of anadjunction. The concept of adjunction is central in
category theory (see MacLane [9]), but for our purposes, we only need to define it for partially
ordered sets.

Definition 7 Given two partially ordered setshA;�i and hB;�i, for any two monotonic
functionsf :A! B andg:B! A, f is a left adjoint tog (andg is a right adjoint tof ) iff for
all x ∈ A, y ∈ B,

f (x) � y iff x � g(y):
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14 Jean Gallier

First, observe that if a functionf has a right adjointg, then it must be unique, even iff and
g are not monotonic.

Lemma 9 If f has a right adjointg, theng is unique, even iff and g are not monotonic.
Furthermore,g(y) is the greatest element of the setfx ∈ A j f (x) � yg, andf (x) is the least
element of the setfy ∈ B j x � g(y)g.

Proof. Sincef (x) � y iff x � g(y), for x = g(y), we getf (g(y)) � y iff g(y) � g(y). Since
� is reflexive,g(y) � g(y) always holds, and thusf (g(y)) � y for all y ∈ B. Now, assume
thatg1 andg2 are two right adjoints off . Sinceg2 is a right adjoint off , f (x) � y iff x � g2(y).
In particular, forx = g1(y), f (g1(y)) � y iff g1(y) � g2(y). But sinceg1 is also a right adjoint
of f , we know thatf (g1(y)) � y for all y ∈ B, and thusg1(y) � g2(y) for all y ∈ B. The
argument being symmetric, we also haveg2(y) � g1(y) for all y ∈ B, and by antisymmetry
of �, we haveg1(y) = g2(y) for all y ∈ B. Consider the setfx ∈ A j f (x) � yg. Since
f (g(y)) � y for all y ∈ B, we haveg(y) ∈ fx ∈ A j f (x) � yg. If f (x) � y, sinceg is a right
adjoint off , thenx � g(y), and thusg(y) is an upper bound for the setfx ∈ A j f (x) � yg.
Sinceg(y) also belongs to this set, it is its greatest element. The case off (x) is treated in a
similar fashion.

Other properties of adjoints are given in the next lemma.

Lemma 10 (i) Two monotonic functionsf :A! B andg:B ! A are adjoints ifff (g(y)) � y

andx � g(f (x)) for all y ∈ B, x ∈ A. (ii) Whenf andg are adjoints, thenf = fgf , g = gfg,
andf andg restrict to bijections betweenfa ∈ A j a = g(f (a))g andfb ∈ B j b = f (g(b))g.

Proof. (i) We have already shown in Lemma 9 that iff andg are adjoints, thenf (g(y)) � y

for all y ∈ B andx � g(f (x)) for all x ∈ A. Conversely, if we assume thatf (x) � y, by
monotonicity ofg, we haveg(f (x)) � g(y), and sincex � g(f (x)) holds, we getx � g(y).
If we assume thatx � g(y), then by monotonicity off , we havef (x) � f (g(y)), and since
f (g(y)) � y holds, we getf (x) � y. Thus,f andg are adjoints. (ii) Sincex � g(f (x)) holds,
by monotonicity off , we havef (x) � f (g(f (x))). Sincef (g(y)) � y holds for ally, then
f (g(f (x))) � f (x). By antisymmetry, we getf (x) = f (g(f (x))) for all x ∈ A. The proof of
the other identity is similar, and the last part of (ii) follows easily.

Another crucial property of left adjoints is that they preserve all existing lubs ofA.

Lemma 11 If two monotonic functionsf :A ! B and g:B ! A are adjoints, thenf
preserves all lubs existing inA, andg preserves all glbs existing inB.

Proof. Assume thatS � A and that
W
S exists. By monotonicity off , we have

f (x) � f (
W
S) for all x ∈ S, and thus

W
ff (x) j x ∈ Sg � f (

W
S). On the other hand, if

f (x) � b for all x ∈ S, sincef andg are adjoints, we havex � g(b) for all x ∈ S, and thusW
S � g(b). Using once again the fact thatf andg are adjoints, we havef (

W
S) � b, which

shows thatf (
W
S) =

W
ff (x) j x ∈ Sg. The argument forg is symmetric.
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Constructive Logics. Part II: Linear Logic and Proof Nets 15

Lemma 11 gives a necessary condition for the existence of adjoints. By Lemma 9, the value
of g(y) is the greatest element of the setfx ∈ A j f (x) � yg. Thus, if all lubs exist inA andf
preserves all lubs, it seems likely that its right adjointg exists. This fundamental fact is indeed
true. In the case of (nondegenerate) categories, this fundamental theorem due to Peter Freyd
is known as the “Adjoint Functor Theorem”. The proof of the general theorem involves a
technical condition know as the “solution set condition”, but fortunately, in the case of posets,
this condition is always satisfied (see MacLane [9]).

Lemma 12 (Adjoint Functor Theorem, after Freyd) LethA;�i and hB;�i be two partially
ordered sets, andf :A ! B a monotonic function. If all lubs exist inA andf preserves all
lubs, thenf has a right adjointg:B ! A given byg(y) =

W
fz ∈ A j f (z) � yg.

Proof. We know from Lemma 9 thatg(y) =
W
fz ∈ A j f (z) � yg is the only possible

candidate. It is immediately verified that such ag is monotonic. Sincef preserves existing
lubs, we have

f (g(y)) = f (
_
fz ∈ A j f (z) � yg) =

_
ff (z) ∈ A j f (z) � yg � y:

By the definition ofg(y), we also haveg(f (x)) =
W
fz ∈ A j f (z) � f (x)g � x. Thus,

f (g(y)) � y andx � g(f (x)) for all y ∈ B, x ∈ A, which by Lemma 10 shows thatf andg
are adjoints.

The notion of adjunction yields an interesting generalization of the concept of Galois
connection that we now describe. First, we consider the concept of a closure operation in an
arbitrary partially ordered set.

Definition 8 Let hA;�i be a partially ordered set. A functiony:A! A is a closure operation
onA iff the following properties hold: For allX; Y ∈ A,

(1)X � Xy;

(2)Xyy � Xy;

(3)X � Y impliesXy � Y y.

Note that Definition 5 corresponds to the special case where the posetA is some power set
2I and the partial order is inclusion. Recalling that a binary relationR on I � J induces two
functions�: 2I ! 2J and +: 2J ! 2I satisfying the properties of Lemma 4, we can define a
Galois connection between two posetshA;�i andhB;�i as a pairh�; +i of functions such
that�:A! B and +:B ! A are order-reversing and such thatX � X�+ andY � Y +� for all
X ∈ A andY ∈ B. But then, in view of Lemma 10, this is almost equivalent to saying that
� and + are adjoints. The reason this is not exactly correct is that� and + are order-reversing
rather than being order-preserving, and the inequalityY � Y +� is in the wrong direction. We
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16 Jean Gallier

can fix this problem easily. Given any posethA;�i, we define the dual posethAop;�opi such
thatAop = A andx �op y iff y � x. Then,�:A! Bop and +:Bop ! A are monotonic and
X � X�+ andY � Y +� express that they are adjoints. Thus, we are led to the following
definition (see Birkhoff [3] and MacLane [9]).

Definition 9 Given two posetshA;�i andhB;�i, two monotonic functions�:A! Bop and
+:Bop ! A form a Galois connection betweenA andB iff � is a left adjoint to+, that is, for
all X ∈ A, Y ∈ B,

X� � Y iff X � Y +:

The following generalization of Lemma 4 is immediate.

Lemma 13 Given a Galois connectionh�; +i between two posetsA andB, for all X ∈ A

andY ∈ B, the following properties hold:

(1)X � X�+, Y � Y +�, X�+� = X�, Y +�+ = Y +;

(2) �+ and+� are closure operations onA andB respectively.

We can now apply the above considerations to the definition of the phase semantics. We
begin with core linear logic.

5 Phase Semantics

We first define core Girard structures. These structures consist of a carrier equipped
with two overlapping algebraic structures: a (commutative) monoid structure to interpret the
multiplicatives, and a lattice structure to interpret the additives. Similar structures have been
considred by Avron [2],

Definition 10 A core Girard structure is a quintupleD = hD;�; �; 1;�i, satisfying the
following conditions:

(1) hD;�i is a complete lattice;

(2) � is an involution onD;

(3) hD; �; 1i is a commutative monoid with identity1;

(4) The monoid operation� is monotonic in each of its arguments, i.e., ifa � a0 andb � b0,
thena � b � a0 � b0.
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Constructive Logics. Part II: Linear Logic and Proof Nets 17

(5) Definingk such thata k b =� (� a �� b), we have

a � b � c iff a � � b k c.

We can prove easily that the conditiona � b � c iff a � � b k c, is equivalent to the
conditiona � b iff 1 � � a k b. Indeed, assuming thata � b � c iff a � � b k c holds, using
the fact that 1 is an identity for�, settinga = 1, we obtainb � c iff 1 � � b k c. Conversely,
assuming thata � b iff 1 � � a k b holds, we havea � b � c iff 1 � � (a � b) k c, that is
a � b � c iff 1 � (� a k� b) k c. Sincek is associative, this is equivalent toa � b � c iff
1 �� a k (� b k c). But we also havea �� b k c iff 1 �� a k (� b k c), and thusa � b � c

iff a � � b k c.

Letting 0 =� 1, the conditiona � b � c iff a � � b k c is also equivalent to the condition
a � b iff a �� b � 0. This follows immediately from the fact that� is an involution.

A core Girard prestructureis a core Girard structure whereD is a lattice (not necessarily
complete) having a greatest element denoted as1 and a least element denoted as0, where� is
monotonic in each of its arguments.

In a core Girard structure, it is immediately verified that 0 is an identity fork, and that

� (
^

j ∈ J

fajg) =
_

j ∈ J

f� ajg;

� (
_

j ∈ J

fajg) =
^

j ∈ J

f� ajg:

What is more interesting is the fact that� preserves arbitrary least upper bounds. This
follows from the fact thata 7! a � b is a left adjoint ofa 7!� b k a.

Lemma 14 Given a Girard structureD = hD;�; �; 1;�i, for every family(aj )j ∈ J of elements
ofD, for everyb ∈ D, we have

� _

j ∈ J

fajg
�
� b =

_

j ∈ J

f(aj � b)g; b �
� _

j ∈ J

fajg
�

=
_

j ∈ J

f(b � aj)g;

In particular, corresponding to the caseJ = ∅ , we have0 � b = b � 0 = 0.

Proof. First, we note that1 = � 0 k 0, the greatest element ofD. Since0 is the least
element ofD, for everya ∈ D we have0 � � a k 0. But 0 � � a k 0 iff 0 � a � 0, iff
a � 0 � 0 (since� is commutative), iffa � � 0 k 0. Thus,1 = � 0 k 0. As a consequence,
a � 0 = 0, sincea � 0 � 0 iff a � � 0 k 0 = 1, and0 is the least element ofD. Note that
conditions (2) and (4) imply thata 7! a � b anda 7!� b k a are monotonic (for anyb), and
condition (5) implies that they are adjoint. Thus, by Lemma 11,a 7! a � b preserves least
upper bounds. The other identities follow by commutativity of�.
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18 Jean Gallier

In fact, it is possible to define an intuitionistic version of Girard structures which is
interesting in its own right. Such structures were investigated by Abrusci [1], Ono [10], and
Troelstra [12].

Definition 11 A core intuitionistic Girard structure is a tupleD = hD;�; �; 1; 0;��;�i,
satisfying the following conditions:

(1) hD;�i is a complete lattice with least element0 and greatest element1;

(2) � a = a �� 0, for everya ∈ D (where0 is a distinguished element ofD);

(3) hD; �; 1i is a commutative monoid with identity element1;

(4) if a � a0 andb � b0, thena � b � a0 � b0 anda0 �� b � a �� b0;

(5) a � b � c iff a � b �� c.

A core intuitionistic Girard structure isclassical iff a = �� a for all a ∈ D. It will
be shown below that core Girard structures as defined in Definition 10 and classical core
intuitionistic Girard structures are equivalent. We also have the following properties.

Lemma 15 The following properties hold for core intuitionistic Girard structures.

(i) 1 = 0 �� 0 is the greatest element ofD;

(ii) For every family(aj )j ∈ J of elements ofD, for everyb ∈ D, we have

� _

j ∈ J

fajg
�
� b =

_

j ∈ J

f(aj � b)g; b �
� _

j ∈ J

fajg
�

=
_

j ∈ J

f(b � aj )g;

In particular, corresponding to the caseJ = ∅ , we have0 � b = b � 0 = 0.

(iii) a �� (b �� c) = (a � b) �� c;

(iv) For a classical structure,a �� b = � (a �� b), 0 =� 1, anda _ b = � (� a ^ � b).

Proof. (i) Sincea � b � c iff a � b �� c and0 is the least element ofD, we have for every
a ∈ D, 0 � a �� 0, iff 0 � a � 0, iff a � 0 � 0 (by commutativity of�), iff a � 0 �� 0.
Thus,1 = 0 �� 0. (ii) Note that condition (4) of Definition 11 expresses that�:D �D ! D

and��:Dop �D ! D are monotonic (whereDop is equipped with the order�op such that
x �op y iff y � x), and that (5) says thatx 7! x � y is left adjoint tox 7! y �� x. By Lemma
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11,x 7! x � y preserves least upper bounds. The other identities follow by commutativity of
�. (iii) u � a �� (b �� c) iff u � a � b �� c iff u � a � b � c iff u � (a � b) �� c. (iv)

� (a �� b) = (a �� b) �� 0

= a �� (� b �� 0) (by (iii))

= a �� (�� b) since� x = x �� 0

= a �� b sinceb =�� b:

In particular,� 1 = 1�� 0 = � (1 �� 0) = �� 0 = 0, and thus 0 =� 1. From condition
(4) of Definition 11,x � y implies that� y � � x. Since we also have�� x = x, � is an
involution, anda _ b = � (� a ^ � b) follows.

One can also show as an easy exercise that condition (4) of Definition 11 can be replaced by
the identity

a � (b _ c) = (a � b) _ (a � c):

We observed in the proof of Lemma 15 that�:D � D ! D and��:Dop � D ! D are
monotonic, and that (5) says thatx 7! x � y is left adjoint tox 7! y �� x. It is possible to
develop categorical semantics for linear logic inspired by these observations. We now return
to (classical) core linear logic.

We can interpret formulae of core linear logic as follows. Given any mappingv, called
a valuation, assigning some elementv(P ) ∈ D to every atomic symbolP , we extendv to
formulae inductively as follows:

Definition 12 Given a core Girard (pre)structureD, a valuationv is extended to formulae as
follows:

v(I ) = 1;

v(?) = 0;

v(1) = 1;

v(0) = 0;

v(A?) =� v(A);

v(A
 B) = v(A) � v(B);

v(A ] B) = v(A) k v(B);

v(A & B) = v(A) ^ v(B);

v(A� B) = v(A) _ v(B);

where^ and_ are the lattice operations onD. Note that the fact thatD is complete is not
needed for this definition to make sense, just the existence of a least and a greatest element.

Given a sequentΓ � ∆ whereΓ = A1; . . .; Am and∆ = B1; . . .; Bn, we define

v(Γ � ∆) =� v(A1) k � � � k� v(Am) k v(B1) k � � � k v(Bn):
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The setTD = fa ∈ D j 1 � ag is called atruth subsetof D. Given a sequentΓ � ∆, we say
that v satisfiesΓ � ∆ in D iff v(Γ � ∆) ∈ TD, i.e., 1 � v(Γ � ∆). If Γ = A1; . . .; Am and
∆ = B1; . . .; Bn, then 1� v(Γ � ∆) is equivalent to

v(A1) � . . . � v(Am) � v(B1) k � � � k v(Bn);

or to
v(A1) � . . . � v(Am) �� v(B1) � . . . �� v(Bn) � 0:

In the special casem = 0, the condition 1� v(� ∆) is equivalent to

1� v(B1) k � � � k v(Bn);

and in the special casen = 0, the condition 1� v(Γ �) is equivalent to

v(A1) � . . . � v(Am) � 0:

The condition 1� v(Γ � ∆) is also denoted asD j= (Γ � ∆)[v]. We say thatΓ � ∆ is valid
in D, denoted asD j= Γ � ∆, iff D j= (Γ � ∆)[v] for everyv, and finally we say thatΓ � ∆ is
universally valid, denoted asj= Γ � ∆, iff D j= Γ � ∆ for all D. If we consider sequents of
the special form� A whereA is a formula, we obtain the notion of satisfaction, validity, and
universal vality, for formulae. A universal formula is also called alinear tautology.

The soundness of the interpretation defined above is easily shown.

Lemma 16 If Γ � ∆ is provable in linear logic, then for every core Girard (pre)structureD
and every valuationv, D j= (Γ � ∆)[v]. As a corollary,Γ � ∆ is valid.

Proof. The verification proceeds by induction on proof trees. It amounts to checking the
soundness of the axioms and of the proof rules. We check only a few cases, as the verification
is straightforward. Consider the rule

Γ � ∆; A Λ � Θ; B
Γ;Λ � ∆;Θ; A
B

(
: right)

Thus, we can assume that 1� v(Γ � ∆; A) and 1� v(Λ � Θ; B). By (5) and Definition 12,
this is equivalent to

v(Γ) � v(∆?) � v(A); and v(Λ) � v(Θ?) � v(B);

wherev(Γ) = v(A1) � . . . � v(Am) if Γ = A1; . . .; Am, andv(∆?) =� v(B1) � . . . �� v(Bn) if
∆ = B1; . . .; Bn. By monotonicity of�, we have

v(Γ) � v(Λ) � v(∆?) � v(Θ?) � v(A) � v(B);

that is
v(Γ;Λ) � v(∆?;Θ?) � v(A
 B);
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which means that
1� v(Γ;Λ � ∆;Θ; A
 B):

Consider the rule
A;B; Γ � ∆
A
B; Γ � ∆

(
: left)

By hypothesis, 1� v(A;B; Γ � ∆). By (5), this is equivalent to

v(A) � v(B) � v(Γ) � v(∆?) � 0;

that is
v(A
B) � v(Γ) � v(∆?) � 0;

which means that
1� v(A
 B; Γ � ∆):

Consider the cut rule
Γ � A;∆ A;Λ � Θ

Γ;Λ � ∆;Θ
(cut)

By assumption, we have 1� v(Γ � A;∆) and 1� v(A;Λ � Θ). By (5) and Definition 12,
this is equivalent to

v(Γ) � v(∆?) � v(A); and v(Λ) � v(Θ?) �� v(A):

By monotonicity of�, we have

v(Γ) � v(Λ) � v(∆?) � v(Θ?) � v(A) �� v(A):

However, froma � a, we havea �� a � 0, and so

v(Γ) � v(Λ) � v(∆?) � v(Θ?) � 0;

that is
v(Γ;Λ) � v(Λ?;Θ?) � 0;

which means that
1 � v(Γ;Λ � ∆;Θ):

The case of the additives follows from the fact that^ corresponds to greatest lower bound and
_ corresponds to least upper bound.

Note that the fact thatD is complete is not used anywhere in the proof. We now turn to
Girard’s phase structures [7], and show their equivalence with core Girard structures.

Definition 13 A phase structureP is a quadruplehP; �; 1;?i, where

(1) hP; �; 1i is a commutative monoid with identity1;

(2) ? is a distinguished subset ofP , the set of antiphases.
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The setP is called the set ofphases.

Definition 14 Given a phase structureP, for any subsetX of P , its dualX? is defined by

X? = fp ∈ P j ∀ q ∈ X; p � q ∈ ?g:

A subsetX of P such thatX = X?? is called a fact. Observe that?= f1g?. We define
I =??= f1g??, 1 = ∅ ? = P , and0 = 1?.

We can now establish the connection with closure operations. Given a phase structureP, if
we define the binary relationR onP such that

xRy iff x � y ∈ ?;

then we have a Galois connection such that

X� = X+ = fp ∈ P j ∀ q ∈ X; p � q ∈ ?g = X?;

and by Lemma 4,X 7! X?? is a closure operation. By Theorem 1, the set of facts,i.e., the
setP y of closed subsets ofP , is a complete lattice. It is immediately verified that1 = P is the
greatest element ofP y, and that0 is its least element. The operation� can be extended toP y

and we can define an involution� onP y by setting

X 
 Y = (XY )??; � X = X?:

It should be noted that in order for? to be an involution, that is, to haveX� = X+ = X?, it
is not actually required that� be commutative. What we need is thatR be symmetric, which
holds iff? satisfies the following property:

x � y ∈ ? iff y � x ∈ ? :

Abrusci [1] calls such a? cyclic. Obviously,? is cyclic when� is commutative. When?
is cyclic but� is not commutative, Abrusci calls the corresponding structure acyclic classical
phase space[1] (as opposed to acommutative classical phase space). We have not found yet
situations where the more general condition of cyclicity of? is preferable to the commutativity
of �. Thus, from now on, we assume� to be commutative. However, noncommutative phase
spaces are interesting since they lead to noncommutative linear logic, investigated by Absrusci
(among others).

When� is commutative, it is immediately verified thathP y;
; Ii is a commutative monoid
with I as its identity. If we defineX ] Y = (X? 
 Y ?)? = (X?Y ?)?, then we also have a
monoid structurehP y; ];?i with ? as its identity. The lattice operations onP y are defined as
in Theorem 1, but it will be convenient to regroup all these definitions:

X 
 Y = (XY )??; X ] Y = (X?Y ?)?;

X ^ Y = X \ Y; X _ Y = (X [ Y )??:

Thus,P y is practically a core Girard structure. For this, we need a lemma.
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Lemma 17 Given a phase structureP, the following properties hold: (1) For any two facts
X; Y � P , we haveX � Y iff X 
 Y ? � ?. (2) the operation
 is monotonic in each
argument (in fact,
 preserves arbitrary least upper bounds).

Proof. In order to prove (1), we first apply Lemma 7 to the relationR defined such that
xRy iff x � y ∈ ?. Therefore, we havep ∈ (X 
 Y ?)? iff ∀ q(q ∈ X � p � q ∈ Y ).

In view of the above equivalence,p ∈ X 
 Y ? iff p ∈ (X 
 Y ?)?? iff

∀ q(q ∈ (X 
 Y ?)? � p � q ∈ ?);

iff
∀ q
�
∀ r(r ∈ X � q � r ∈ Y ) � p � q ∈ ?

�
:

This means thatX 
 Y ? � ? is equivalent to

∀ p
�
∀ q
�
∀ r(r ∈ X � q � r ∈ Y ) � p � q ∈ ?

�
� p ∈ ?

�
: (a)

Now, observe that if? = P , thenX? = P for everyX � P , and then all facts are equal toP .
In this degenerated case, (1) holds trivially. Thus, we can assume that there is somep ∈ P

such thatp ∉ ?. Assume that

∀ q
�
∀ r(r ∈ X � q � r ∈ Y ) � p � q ∈ ?

�

holds. In particular, we can pickq = 1, and assume that

∀ r(r ∈ X � r ∈ Y ) � p ∈ ?

holds. Also assume that there is somer such thatr ∈ X butr ∉ Y . Since (r ∈ X � r ∈ Y )
is false, the implication

∀ r(r ∈ X � r ∈ Y ) � p ∈ ?

holds trivially, and from (a), this implies thatp ∈ ?, contradicting the choice ofp. Thus,
X 
 Y ? �? implies thatX � Y . Conversely, assume thatX � Y holds. For everyp, if

∀ q
�
∀ r(r ∈ X � q � r ∈ Y ) � p � q ∈ ?

�

holds, then this holds forq = 1, and since∀ r(r ∈ X � r ∈ Y ) also holds, we conclude than
p ∈ ?, establishing thatX 
 Y ? � ? holds. This concludes the proof of (1). Property (2)
follows from Lemma 8. In fact, by Lemma 11, the preservation of least upper bounds is also a
consequence of property (1) just proved above.

Putting things together, we have the following lemma showing that every phase structures
gives rise to a core Girard structure.

Lemma 18 Given a phase structureP = hP; �; 1;?i, if we defineX 
 Y = (XY )?? and
I =??, thenD = hP?? ;�;
; I ;? i is a core Girard structure, the lattice operations being
defined byX ^ Y = X \ Y andX _ Y = (X [ Y )??.
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Proof. This follows from Lemma 17 and the fact that?? is a closure operation.

Girard defines validity in a phase structure almost as we did in Definition 12, but in terms
of valuations into the set of facts ofP , andP j= A[v] holds iff 1 ∈ v(A) (see Girard [7]).
Recall thatI = f1g??. Thus, given any factX , if 1 ∈ X thenf1g � X , which implies
f1g?? � X??, that isI � X , sinceX is a fact (X = X??). Conversely, ifI � X , since
I = f1g??, then 1 ∈ X . Thus, for a factX , we have 1∈ X iff I � X . This establishes the
equivalence of Girard’s notion of validity in terms of phase structures and the notion given in
Definition 12.

Interestingly, every core Girard structure arises from a phase structure, as shown in the
following lemma.

Lemma 19 Given a core Girard structureD = hD;�; �; 1;�i, if we define the set? by
? = fx ∈ D j x � 0g, thenP = hD; �; 1;?i is a phase structure such that the core Girard
structureD0 = hD??;�;
; I ;? i defined in Lemma 18 is isomorphic toD.

Proof. Given any subsetX of D, let lower(X) denote the set of lower bounds ofX and
upper(X) denote the set of upper bounds ofX . Also, let� X = f� x j x ∈ Xg. One easily
verifies thatX? = lower(� X), upper(X) =� lower(� X), andX?? = lower(upper(X)).
Thus, sinceD is a complete lattice, every factX?? = lower(upper(X)) of P corresponds
uniquely to the lower ideallower(

W
X), which itself corresponds uniquely to

W
X . This

mapping establishes a bijection betweenD and D0, and it is easily checked that it is an
isomorphism.

In Lemma 16, we have shown that the semantics given by core Girard structures (or
equivalently phase structures) is sound with respect to the proof system. We can also show
that the proof system is complete w.r.t. this semantics.

Lemma 20 If a sequentΓ � ∆ is valid (in phase semantics), then it is provable inLin0.

Proof. First of all, note that it is enough to prove completeness for sequents of the form
� A, i.e. propositions. At least two proofs can be given. The first one, suggested by Avron [2],
consists in two steps. The first step is to prove completeness w.r.t. core Girard prestructures.
For this, define an equivalence relation≡ on propositions as follows:A ≡ B iff both
sequentsA � B andB � A are provable. Then, define an algebraic structure on the setD of
equivalence classes modulo≡ by setting

1 = [1];

0 = [0];

1 = [I ];

0 = [?];

[A] k [B] = [A ] B];

May 1991 Digital PRL



Constructive Logics. Part II: Linear Logic and Proof Nets 25

[A] � [B] = [A
 B];

[A] _ [B] = [A� B];

[A] ^ [B] = [A & B];

� [A] = [A?];

and define [A] � [B] iff A � B is provable. One can then check thatD = hD;�; �; 1;�i is
a core Girard prestructure. Note that 1� [A] iff A is provable. If we pick the valuationv
such thatv(P ) = [P ] for every atomP , thenv(A) = [A], and ifA is valid, then in particular
D j= A[v], that is 1� [A], and thusA is provable. The second step is to show that every
core Girard prestructure can be embedded into a core Girard structure, and this in preserving
existing least upper bounds and greatest lower bounds. This is easily shown by using the Mac
Neille completion and Theorem 1.

The second proof due to Girard consists in producing a particular phase structure and
a particular valuation, such that validity amounts to provability (see Girard [7]). This
construction appears to be another way of constructing the structureD defined in the first
proof, in terms of a phase structure. Note that the setM of finite multisets of formulae
is a commutative monoid under multiset union (Γ � ∆ = Γ;∆), with identity ∅ . If we let
? = fΓ j � Γ is provableg, we can check that the sets of the form

Pr(A) = fΓ j � Γ; A is provableg;

are facts, becausePr(A) = Pr(A?)?. If we define the valuationv such thatv(P ) = Pr(P )
for every atomP , we can check thatv(A) = Pr(A). SinceA is valid, D j= A[v], that is,
∅ ∈ Pr(A), and thusA is provable.

We now extend the above semantics to (full) linear logic. For this, we need to add a unary
operation to interpret the connective ! (of course).

Definition 15 A Girard structure is a sextupleG = hG;�; �; 1;�; i such that the quintuple
hG;�; �; 1;�i is a core Girard structure, and :G ! G is a unary operator satisfying the
following properties: for allx; y ∈ G,

(1) (1) = 1;

(2) (x) � x;

(3) ( (x)) = (x);

(4) (x) � (y) = (x ^ y).

Definition 12 is extended to the exponentials as follows:

v(!A) = (v(A));

v(?A) =� (� v(A)):
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The following lemma is needed to show soundness of this semantics.

Lemma 21 In every Girard structure, the following properties hold:

(1) (x) � 1;

(2) (x) � y � y;

(3) (x) � (x) = (x);

(4) If x � y then (x) � (y);

(5) If 1� x then (x) = 1;

(6) If (x) � y then (x) � (y);

(7) If x1 � . . . � xn � y then (x1) � . . . � (xn) � (y).

Proof. These properties are easy to prove. Property (1) holds because

(x) = (x) � 1 = (x) � (1) = (x ^ 1)� x ^ 1 � 1:

For (2), since by (1), (x) � 1, by monotonicity of�, we have (x) � y � 1 � y = y. For (3),
(x) � (x) = (x ^ x) = (x). For (4), Ifx � y thenx = x ^ y. Thus, (x) = (x ^ y) =
(x) � (y) � (y), by (2). It is clear that (5) follows from (1) and (4). If(x) � y, by

(4), we have ( (x)) � (y), and since ( (x)) = (x), we have (x) � (y). Since
(x) � x, if x1 � . . . � xn � y then (x1) � . . . � (xn) � y. Since (x) � (y) = (x ^ y),

we have (x1) � . . . � (xn) = (x1 ^ . . .^ xn), and so (x1 ^ . . .^ xn) � y. By (6), we get
(x1 ^ . . .^ xn) � (y), that is (x1) � . . . � (xn) � (y).

Lemma 22 If Γ � ∆ is provable in linear logic, then for every Girard structureG and every
valuationv, G j= (Γ � ∆)[v]. As a corollary,Γ � ∆ is valid.

Proof. Immediate by Lemma 21.

We now give the following construction which shows how a Girard structure arises from a
core Girard structure.

Theorem 2 Let G = hG;�; �; 1;�; i be a Girard structure. The setF defined by
F = fx ∈ G j x = (x)g satisfies the following properties:

(1) F is closed under arbitrary least upper bounds. In particular,0 ∈ F ;

(2) F is closed under�;

May 1991 Digital PRL



Constructive Logics. Part II: Linear Logic and Proof Nets 27

(3) x � x = x for everyx ∈ F ;

(4) The identity element1 is the greatest element ofF .

Furthermore, for everya ∈ G, (a) =
W
fx ∈ F j x � ag.

Conversely, given a core Girard structurehG;�; �; 1;�i and a subsetF of G satisfying
the properties (1)–(4), then if we defineby (a) =

W
fx ∈ F j x � ag, the sextuple

G = hG;�; �; 1;�; i is a Girard structure.

Proof. Let fxjgj ∈ J be any family of elements fromF , i.e., such that (xj) = xj
for all i ∈ J . Sincexj �

W
j ∈ Jfxjg, by monotonicity of (proved in Lemma 21),

(xj ) �
�W

j ∈ Jfxjg
�
, and since (xj) = xj for all i ∈ J , we havexj �

�W
j ∈ Jfxjg

�
,

and thus _

j ∈ J

fxjg �
� _

j ∈ J

fxjg
�
:

Since
�W

j ∈ Jfxjg
�
�
W
j ∈ Jfxjg holds by property (2) of the definition of (Definition 15),

we have � _

j ∈ J

fxjg
�

=
_

j ∈ J

fxjg;

showing thatF is closed under nonempty least upper bounds. Since(x) � x for all x ∈ G,
in particular (0) � 0, which implies that (0) = 0, since0 is the least element ofG.
Therefore,F is closed under arbitrary least upper bounds.

For x; y ∈ F , we havex � y = (x) � (y) = (x ^ y), by property (4) of the definition
of . Thus, (x � y) = ( (x ^ y)) = (x ^ y), by property (3) of the definition of .
Therefore, (x � y) = x � y.

For anyx ∈ F , we havex � x = (x) � (x) = (x^x) = (x) = x. Therefore,x � x = x.

Since (x) � 1 by property 1 of the definition of , for anyx ∈ F , we havex = (x) � 1.
Also, by Lemma 21, (1) = 1. Therefore, 1 is the greatest element ofF .

For everyx ∈ F , by monotonicity of , x � a implies (x) � (a), that isx � (a),
since (x) = x. But we also have ( (a)) = (a), that is, (a) ∈ F , and thusW
fx ∈ F j x � ag = (a) for everya ∈ G. This concludes the proof of the first half of the

theorem.

Conversely, assume thatF has the properties (1)–(4), and definesuch that (a) =
W
fx ∈

F j x � ag. First, note that sinceF is closed under arbitrary least upper bounds,(a) ∈ F

for everya ∈ G, and obviously, (a) = a if a ∈ F .

Clearly, (a) � a for all a ∈ G, property (2) of the definition of .
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Since 1 is the greatest element ofF , we also have (a) � 1 for all a ∈ G, property (1) of
the definition of .

SinceF is closed under arbitrary least upper bounds,(a) =
W
fx ∈ F j x � ag ∈ F , and

thus, ( (a)) =
W
fy ∈ F j y � (a)g = (a), property (3) of the definition of .

Since x � 1 for every x ∈ F , for x; y ∈ F , we havex � y � x � 1 = x and
x � y � 1 � y = y, which implies thatx � y � x^y. Thus,a � b �

W
fx ∈ F j x � a^bg, that

is, a � b � (a ^ b), which implies (a) � (b) � (a ^ b), since (a) � a, and (b) � b.
Also, since� distributes over

W
,

(a) � (b) =
�_

fx ∈ F j x � ag
�
�

�_
fy ∈ F j y � bg

�

=
_
fx � y j x; y ∈ F; x � a; y � bg:

Since (a ^ b) � a ^ b � a, (a ^ b) � a ^ b � b, (a ^ b) ∈ F , andz � z = z for all
z ∈ F , we have (a ^ b) � (a) � (b). Therefore, (a) � (b) = (a ^ b), property (4) of
the definition of . This concludes the proof of the second half of the theorem.

One can show that in every core Girard structureG, the subset

F = fx ∈ G j x � x = x andx � 1g

satisfies the properties of Theorem 2. Thus, we obtain the following lemma, showing that
every core Girard structure can be extended to a Girard structure.

Lemma 23 Every core Girard structureG can be extended to a Girard structure by defining
the operator such that (a) =

W
fx � a ^ 1 j x � x = xg.

Another interesting property of showing that it is the fixed point of some simple operators
is given in the following lemma.

Lemma 24 In every Girard structureG, for everya ∈ G, we have the following identities:

(1) (a) = (a ^ 1) � (a),

and

(2) (a) = (a ^ 1)^ ( (a) � (a)).

Proof. First, we prove (1). (i) Recall from Lemma 21 that(a) � (a) = (a).
(ii) We have (a) = (a) � 1 = (a) � (1) = (a ^ 1). (iii) If x � 1, thenx � y � y, since
x � y � 1 � y = y. Sincea ^ 1 � 1, using (iii), we have (a ^ 1) � (a) � (a). Using
(ii) and the fact that (x) � x for everyx ∈ G, we have (a) = (a ^ 1) � a ^ 1. Using
(i) and the monotonicity of�, we have (a) = (a) � (a) � (a ^ 1) � (a). Therefore,
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(a) = (a^ 1) � (a), as desired. We now prove (2). Since(a) � (a) = (a), we just have
to prove that (a) = (a ^ 1)^ (a). Since (a) � a and (a) � 1, we have (a) � a ^ 1,
and thus (a) = (a ^ 1)^ (a).

Lemma 24 shows that (a) is a fixed point of the operatorx 7! (a ^ 1) � x, for every
a ∈ G (and also of the operatorx 7! (a^ 1)^ (x � x)). SinceG is a complete lattice, and this
operator is monotonic, by Tarski’s fixed point theorem, the set of fixed points of this operator
is a complete lattice. In particular, since� distributes over

W
, the least fixed point of this

operator is given by the expression
_

n�1

O
n

(a ^ 1):

This connection probably deserves further investigations. The interest in the identity(a) =
(a ^ 1)^ ( (a) � (a)) stems from the fact that it implies the properties: (i)(a) � a;
(ii) (a) � 1; and (iii) (a) � (a) = (a) (due to Yves Lafont). In turn, these properties imply
the soundness of the inference rules (dereliction: left), (weakening: left), and (contraction:
left). Thus, we obtain an equivalent proof system for linear logic if we add the axiom
!A ��� (A & I ) & (!A 
 !A) and delete the above rules. By duality, we obtain an equivalent
proof system for linear logic if we add the axiom ?A ��� (A � ?) � (?A ] ?A) and delete the
rules (dereliction: right), (weakening: right), and (contraction: right).

In order to interpret ! and ?, Girard defines an extension of the notion of phase structure
that he calls a topolinear space (see Girard [7]). We give this definition and compare it with
Definition 15.

Definition 16 A topolinear space is a triplehP;?; F i, whereP is a phase structure, andF is
a subset ofP , the set of closed facts, having the following properties:

(1) F is closed under arbitrary& . In particular,1 ∈ F ;

(2) F is closed under (finite)] (par);

(3) x ] x = x for everyx ∈ F ;

(4) The fact? is the least element ofF .

The linear negation of a closed fact is called anopen fact.

Given a topolinear space, given a valuationv, the factv(!A) is defined as the greatest open
fact included inv(A), andv(?A) is defined as the least closed fact containingv(A). In other
words:

v(!A) =
�[

fX? jX ∈ F; X? � v(A)g
�??

; v(?A) =
\
fX ∈ F jX � v(A)g:
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Using the correspondence between core Girard structures and phase structures given by
Lemma 18, it is clear that the subsetF of Theorem 2 is the collection of open facts of
Girard’s topolinear space, and that the definition of v(?A) corresponds exactly to the definition

(a) =
W
fx ∈ F j x � ag (by the definition of the least upper bound of a fact).

As in the case of core Girard structures, not only do we have soundness, but also
completeness.

Lemma 25 If a sequentΓ � ∆ is valid (in Girard structures), then it is provable inLin!;?
0 .

Proof. As in Lemma 20, at least two proofs are possible. The first proof is an extension of
Avron’s proof [2]. It is necessary to extend the operationdefined onD by ([!A]) =![A], to
the completion by cutsDy of the core prestructureD. For everyy ∈ Dy, we define

y(y) =
_
ff (x)gy j x ∈ D; fxgy � yg:

Using the fact that� distributes over arbitrary least upper bounds, we can prove thaty has
the required properties (in particular, thaty(a) � y(b) = y(a ^ b)).

The other proof is due to Girard (see [7]). It is a generalization of the proof that we sketched
in Lemma 20. We consider the phase structure consisting of the commutative monoid of
multisets of formulae, and defineF to be the family of arbitrary intersections of facts of the
formPr(?A). One can then prove that a topolinear space is indeed obtained (this uses the fact
that] distributes over arbitrary intersections). Then, it is easy to prove that ?Pr(A) = Pr(?A),
and completeness follows immediately.

Presently, has the property that (a) � (b) = (a ^ b), and it is also easy to verify that
(a ^ b) � (a) ^ (b), but in general, we do not have(a ^ b) = (a) ^ (b). In the next

section, we propose to modify the proof rules and the semantics so that !A
 !B and !A & !B
are equivalent.

6 A Variation On the Semantics of the Connective !

On the semantic side, we strengthen Definition 15 as follows.

Definition 17 A Girard topostructure is a sextupleG = hG;�; �; 1;�; i such that the
quintuple hG;�; �; 1;�i is a core Girard structure, and :G ! G is a unary operator
satisfying the following properties: for allx; y ∈ G,

(1) (1) = 1;

(2) (x) � x;

(3) ( (x)) = (x);
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(4) (x) � (y) = (x ^ y).

(5) (x ^ y) = (x) ^ (y).

From (4) and (5), we have that(x) � (y) = (x)^ (y). Definition 12 is extended to the
exponentials as before:

v(!A) = (v(A));

v(?A) =� (� v(A)):

We add the following rules to the definition of the rules for the exponentials

Definition 18
!A; !B; Γ � ∆

!A & !B; Γ � ∆
(! &: left)

Γ � ∆; ?A; ?B
Γ � ∆; ?A� ?B

(?�: right)

The system obtained by adding the rules of Definition 18 to the rules of the systemLin!;?
0 is

denoted asLin!;?;!& ;?�
0 . Soundness is easily obtained.

Lemma 26 If Γ � ∆ is provable in the system of linear logicLin!;?;!& ;?�
0 , then for every

Girard topostructureG and every valuationv, G j= (Γ � ∆)[v]. As a corollary,Γ � ∆ is valid.

Proof. Immediate by Lemma 21 and the fact that(x) � (y) = (x) ^ (y).

Theorem 2 is extended as follows.

Theorem 3 Let G = hG;�; �; 1;�; i be a Girard topostructure. The setF defined by
F = fx ∈ G j x = (x)g satisfies the following properties:

(1) F is closed under arbitrary least upper bounds. In particular,0 ∈ F ;

(2) F is closed under (finite) greatest lower bounds.

(3) F is closed under�;

(4) x � x = x for everyx ∈ F ;

(5) The identity element1 is the greatest element ofF .
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Furthermore, for everya ∈ G, (a) =
W
fx ∈ F j x � ag.

Conversely, given a core Girard structurehG;�; �; 1;�i and a subsetF of G satisfying
the properties (1)–(5), then if we defineby (a) =

W
fx ∈ F j x � ag, the sextuple

G = hG;�; �; 1;�; i is a Girard topostructure.

Proof. Properties (1), (3)–(5) are verified as in the proof of Theorem 2. Since(a ^ b) =
(a) ^ (b), if a = (a) andb = (b), thena ^ b = (a) ^ (b) = (a ^ b), proving (2).

Conversely, since (x) ∈ F for everyx ∈ G, by (2), (a) ^ (b) ∈ F . Since (x) = x

for x ∈ F , ( (a) ^ (b)) = (a) ^ (b). On the other hand, as in the proof of Theorem 2,
we have (x) � (y) = (x ^ y) and ( (x)) = (x), and so,

( (a) ^ (b)) = ( (a)) � ( (b)) = (a) � (b) = (a ^ b):

Thus, (a ^ b) = (a) ^ (b), property (2) of Definition 17.

We can also extend the completeness lemma (Lemma 25) to topostructures andLlin!;?;!& ;?�
0 .

Lemma 27 If a sequentΓ � ∆ is valid (in Girard topostructures), then it is provable in
Lin!;?;!& ;?�

0 .

Proof. As in the proof of Lemma 25, it is necessary to extend the operationdefined onD
by ([!A]) =![A], to the completion by cutsDy of the core prestructureD.2 For everyy ∈ Dy,
we define

y(y) =
_
ff (x)gy j x ∈ D; fxgy � yg:

Using the fact that� distributes over arbitrary least upper bounds, we can prove thaty has
the required properties, in particular, thaty(a) � y(b) = y(a ^ b). We can also prove that

y(a ^ b) = y(a) ^ y(b), using the fact that (!A & !B) ��� !(A & B) is provable, and that
in the completion by cuts,Xy ^ Y y = Xy \ Y y.

We now turn to proof nets.

7 Proof Nets for Multiplicative Linear Logic

The same linear sequent can have different proofs differring for bureaucratic reasons,
namely, that inferences are applied in a different order. For example, the sequent

� (A
 B) 
 C;A? ] B? ; C?

2Recall that in the completion by cuts, for every subsetX � D, we haveXy = lower(upper(X)), and in
particular, whenX = fxg, we havefxgy = lower(x).
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has the following two proofs

� A;A? � B;B?

(
)
� A 
B;A?; B?

(])
� A
 B;A? ] B? � C;C?

(
)
� (A
 B) 
 C;A? ] B?; C?

and

� A;A? � B;B?

(
)
� A 
B;A?; B? � C;C?

(
)
� (A 
B) 
 C;A?; B?; C?

(])
� (A
 B) 
 C;A? ] B?; C?

Clearly, these two proofs differ in an inessential way, and it should be possible to come
up with a notation akin to natural deduction so that these two proofs are identified. This is
possible for the fragment ofmultiplicative linear logicinvolving only
, ], and?, using the
notion of proof net due to Girard (see Girard [7], and Girard, Lafont, and Taylor [6]). First, we
recall a definition.

Definition 19 A literal is either a propositional letterP or the negationP? of a propositional
letter.

Proofs nets are certain unoriented connected graphs whose nodes are labeled with propo-
sitions. In order to define these graphs, we consider that labeled nodes haveentry and exit
pointsdefined as follows: a literal has a single entry and a single exit, and both a tensor and a
par have two entry points and a single exit point.

Definition 20 A proof net (of multiplicative linear logic) is a finite unoriented connected
node-labeled graph with the following properties:

(1) For every node labeled with aliteral, there is a single arc from the entry point of that
literal to the entry point of a literal with the same name and the opposite sign;

(2) For every node labeled with a tensorA
B or a parA ] B, there are two distinct nodes
labeled withA andB respectively, such that the exit ofA is connected to one of the two
entry points ofA 
 B (resp. A ] B) and the exit ofB is connected to the other entry
point ofA 
B (resp.A ] B), each by a single arc;
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(3) The exit point of every node is connected to at most one other node.

Nodes whose exit points are not connected to any node will be called terminal nodes, or
leaves.

For reasons that will become clear when we discuss the criterion for checking that a proof
net corresponds to a sequential proof, we draw (]: right) inferences using a broken line, and
(
: right) inferences using a solid line. The following is an example of a proof net:

A B

A 
B C

(A 
B) 
 C C?

A? B?

�������
A? ] B?

Another example of a proof net is the following:

D

D? C?

D? 
 C?

C

A B
�����
A ] B

C 
 (A ] B)

A? B?

A? 
B?

As we shall see shortly, there is an algorithm for converting any sequential proof (for
the multiplicative fragment of linear logic considered here) into a proof net. However, the
definition of a proof net is a bit too liberal, due the local nature of the conditions involved,
and some proof nets are unsound, in the sense that they do not correspond to any sequential
proof. For technical reasons, we will need a slightly more liberal notion of a proof net. In
fact, it turns out that this notion corresponds precisely to the notion of a sequential deduction,
a sequential deduction being similar to a sequential proof, except that leaf nodes can also be
labeled with arbitrary sequents� A, whereA is a proposition, rather than only axioms.

Definition 21 A deduction net (of multiplicative linear logic) is a finite unoriented connected
node-labeled graph satisfying properties (1) and (3) of Definition 20, and such that if property
(2) does not hold for some node, then both entry points of such a node are not connected to
any other node.
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Thus, a proof net is a deduction net that also satisfies property (2) of Definition 20. Contrary
to a proof net, a deduction net may have nodes whose entry points are not connected to any
other node. Such a node is called aninitial node, or root. The following lemma is easily
shown.

Lemma 28 Let Π be a deduction net such thatk of its terminal nodes are labeled with some
propositionsA1; . . .; Ak, and letΠ0 be some other deduction net havingk of its entry nodes
labeled withA1; . . .; Ak. The graph obtained by graftingΠ0 onto Π by identifying each
selected terminal node ofΠ labeled withAi with the corresponding entry node ofΠ0 labeled
withAi is a deduction net.

One can define a transformation that produces a deduction net from a sequential deduction,
but not all deduction nets come from a sequential deduction. In order to single out which
deduction nets really correspond to sequential deductions, one needs a global criterion. In his
seminal paper, Girard gave such a criterion for proof nets, the “long trip condition” [7]. Later,
Danos and Regnier proposed a different criterion [5].

We now present the Danos-Regnier criterion for soundness of a deduction net. This
criterion is equivalent to Girard’s original “trip conditions” criterion, but it is somewhat more
manageable. It is convenient to consider that there are two kinds of edges:

(1) Edges connecting the exit ofA andB to the entries of a tensorA
B and edges connecting
the entry of someA to the entry of someA?, considered assolid;

(2) Edges connecting the exit ofA andB to the entries of a parA ] B, considered assoft.

Definition 22 Given a deduction netΠ, a switch graph associated withΠ is any subgraph of
Π obtained by deleting exactly one of the two soft edges associated with every par node inΠ
(and keeping the other soft edge).

The Danos-Regnier criterion for soundness of a deduction net is stated as follows (see Danos
and Regnier [5], and Danos [4]).

Definition 23 A deduction netΠ satisfies the Danos-Regnier criterion, or is sound, iff every
switch graph associated withΠ is a tree.
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For example, the following is a sound proof net, since both switch graphs are trees:

A B

A
B

A? B?

�������
A? ] B?

On the other hand, the following proof net is unsound, because the (only) switch graph has
a cycle.

A B

A
B

A? B?

A? 
B?

We now give an algorithm for transforming a sequential deduction into a deduction net, and
show that the resulting proof net satisfies the Danos-Regnier criterion.

Lemma 29 There is algorithmN which, given a deductionΠ of a multiplicative sequent
� A1; . . .; An, produces a deduction netN (Π) whose terminal nodes are in one-to-one
correspondence with the occurrences of formulaeA1; . . .; An. Furthermore,N (Π) satisfies
the Danos-Regnier criterion.

Proof. The algorithmN is defined by induction on the structure of the deductionΠ.

Case1: Π consists of a single formula� A. ThenN (Π) is the deduction net consisting of
the single nodeA. Obviously,N (Π) satisfies the Danos-Regnier criterion.

� Π consists of an axiom� A;A?. ThenN (Π) is the proof net

A A?

Obviously,N (Π) satisfies the Danos-Regnier criterion.
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Case2: Π is of the form

Π1

� Γ; A; B
(]: right)

� Γ; A ] B

ThenN (Π) is the proof net

N (Π1)
A B
�����
A ] B

obtained by grafting the exit nodesA andB of N (Π1) respectively to the entry nodesA and
B of the elementary proof net corresponding to the (]: right) inference. IfN (Π1) satisfies the
Danos-Regnier criterion, then it is easy to verify thatN (Π) also satisfies the Danos-Regnier
criterion.

Case3: Π is of the form

Π1

� Γ; A
Π2

� ∆; B
(
: right)

� Γ;∆; A
B

ThenN (Π) is the proof net

N (Π1)

A

N (Π2)

B

A 
B

obtained by grafting the exit nodeA of N (Π1) and the exit nodeB of N (Π2) respectively to
the entry nodesA andB of the elementary proof net corresponding to the (
: right) inference.
If N (Π1) andN (Π2) satisfy the Danos-Regnier criterion, then it is easy to verify thatN (Π)
also satisfies the Danos-Regnier criterion.

The transformationN identifies sequential deductions that differ only for inessential reasons,
like the order of inferences. For example, the two sequential proofs

� A;A? � B;B?

(
)
� A 
B;A?; B?

(])
� A
 B;A? ] B? � C;C?

(
)
� (A
 B) 
 C;A? ] B?; C?
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and

� A;A? � B;B?

(
)
� A 
B;A?; B? � C;C?

(
)
� (A 
B) 
 C;A?; B?; C?

(])
� (A
 B) 
 C;A? ] B? ; C?

are mapped to the same proof net:

A B

A 
B C

(A 
B) 
 C C?

A? B?

�������
A? ] B?

We now wish to show that the Danos-Regnier criterion insures that every proof net that
satisfies the criterion is of the formN (Π) for some sequential deductionΠ. This is proved
by induction on the number of nodes in the deduction net. The proof is quite easy when the
proof net has some terminal node labeled with a par, but the case when all terminal nodes
are labeled with tensors is tricky and requires a detailed analysis of the structure of deduction
nets. The problem is that splitting a proof net by chosing any arbitrary terminal node labeled
with a
 and deleting the two arcs incoming to this node may not yield sound proof nets. For
example, splitting the proof net below at the nodeA? 
 B? doesnot yield proof nets. On
the other hand, splitting either at nodeD? 
 C? or at nodeC 
 (A ] B) yields sound proof
nets.

D

D? C?

D? 
 C?

C

A B
�����
A ] B

C 
 (A ] B)

A? B?

A? 
B?

The key observation is contained in the following lemma.
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Lemma 30 Let Π be a deduction net whose terminal nodes are all labeled with tensors, let
A 
 B be one of these tensors, and letΠ0 be the subgraph obtained fromΠ by deleting this
terminal node and the two edges fromA to A 
 B and fromB to A 
 B. If the criterion
holds forΠ andA andB are connected inΠ0, then there is a setfC1 ] D1; . . .; Ck ] Dkg of
par nodes such that the graphΠ00 obtained fromΠ0 by deleting all edges fromCi to Ci ] Di

and fromDi toCi ] Di, i = 1; . . .; k, consists of three disjoint maximal connected components
which are deduction nets satisfying the criterion. Furthermore, without any loss of generality,
it can be assumed that one componentΠ1 contains bothA and theCi, another componentΠ2

contains bothB and theDi, and the thirdΠ3 contains theCi ] Di, i = 1; . . .; k.

Proof. Let us examine closely what happens when there is a terminal node labeledA
 B

such thatA andB are connected in the subgraphΠ0 defined above.

� If A andB are connected inΠ0, thenΠ0 itself is connected. Otherwise,Π0 would consist of
at least two disjoint maximal connected components, one of which doesnotcontain bothA
andB, in which case,Π would not be connected, a contradiction.

� Π0 contains some par nodeC ] D. Otherwise, the only switch graph ofΠ0 would beΠ0

itself, and similarly forΠ, and bothΠ andΠ0 would be trees. But then,A andB would be
connected inΠ0, and this would imply the existence of a cycle inΠ, a contradiction.

� For every pathp in Π0 from A to B, there is some par nodeC ] D such that the pathp
contains both edges fromC toC ] D and fromD toC ] D. Otherwise, there is inΠ0 a path
p fromA toB which uses at most one of the two incoming edges into each par node. Then,
it is possible to pick a choice of the soft edges inΠ0 (and thus inΠ) involving the edges
used by the pathp, so that this is a path fromA toB in some switch graph ofΠ0. However,
in Π, this path yields a cycle together with the edges fromA toA
B and fromB toA
B.

� From the previous item, there is a setfC1 ] D1; . . .; Ck ] Dkg of par nodes such that every
path inΠ0 from A to B contains both edges fromCi to Ci ] Di and fromDi to Ci ] Di,
for somei, 1 � i � k. The graphΠ00 obtained fromΠ0 by deleting all edges fromCi to
Ci ] Di and fromDi to Ci ] Di, i = 1; . . .; k, consists of three disjoint maximal connected
components. Furthermore, without any loss of generality, it can be assumed that one of the
components contains bothA and theCi, another component contains bothB and theDi,
and the third contains theCi ] Di, i = 1; . . .; k.

Let us first delete the edges fromCi to Ci ] Di in Π0, i = 1; . . .; k. We must obtain two
disjoint maximal connected components. Indeed, since every path inΠ0 from A toB must
contain for somei (1 � i � k) both edges fromCi to Ci ] Di and fromDi to Ci ] Di,
the resulting graph is not connected, and the maximal connected components containingA

andB must be disjoint. On the other hand, if we had at least three disjoint components,Π0

would not be connected. Thus, we have two disjoint connected components,Π1 containing
theCi andA (or symmetricallyB), andΠ000 containing theDi, theCi ] Di, andB (or
symmetricallyA). Let us now delete the edges fromDi toCi ] Di in Π000, i = 1; . . .; k. The
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componentΠ000 must split into two disjoint connected components. Indeed, if the resulting
graph were still connected, then it would be possible to connectA andB in Π0 without
passing through some edge fromDi toCi ] Di for somei (1 � i � k), a contradiction. But
we also cannot have more than two disjoint components arising fromΠ000, since otherwise
Π000 would not be connected. Finally, note thatB and theCi ] Di (1 � i � k) are not in the
same component. Otherwise, by chosing a switch graph ofΠ in which the edge fromCi

to Ci ] Di (1 � i � k) is selected, we would obtain a cycle. Thus, we have three disjoint
maximal components,Π1 containing theCi andA, Π2 containing theDi andB, andΠ3

containing theCi ] Di, i = 1; . . .; k.

� It is easily checked thatΠ1, Π2, andΠ3, are deduction nets satisfying the criterion, and that
Π3 has nodes labeled withC1 ] D1; . . .; Ck ] Dk among its entry points.

We can now prove the correctness of the Danos-Regnier criterion [5] (see also Danos [4]).

Theorem 4 A deduction netΠ can be obtained from some sequential deduction (i.e., is of the
formN (Π0) for some sequential deductionΠ0) iff every switch graph associated withΠ is a
tree.

Proof. The necessity of the criterion has already been checked in Lemma 29. Thus, we turn
to the sufficiency of the criterion. The proof proceeds by induction on the number of nodes
in the deduction net. The case where the deduction net has a single node is clear. Otherwise,
there are two cases:

Case1. Some terminal node is labeled with a par, sayA ] B. Consider the subgraphΠ0

obtained fromΠ by deleting the terminal node in question and the two edges fromA toA ] B

and fromB toA ] B. We claim thatΠ0 is a deduction net satisfying the correctness criterion.
Indeed, if any switch graph obtained fromΠ0 is not a tree, we also obtain a bad switch graph
for Π by putting back the nodeA ] B and connecting it to eitherA orB (but not both).

Case2. Every terminal node is labeled with a tensor.

This case is more delicate, as deleting any terminal nodeA 
 B and the edges fromA
to A 
 B and fromB to A 
 B does not necessarily yield a deduction net satisfying the
correctness criterion. However, we have the following claim:

Claim: There is a least some terminal node labeledA 
 B such that the subgraphΠ0

obtained fromΠ by deleting this terminal node and the two edges fromA toA 
B and from
B toA 
B is composed of two disjoint deduction netsΠ0

1 (havingA as a terminal node) and
Π0

2 (havingB as a terminal node) which both satisfy the criterion.

If there is a terminal node labeled with a tensorA 
 B and the claim fails, sinceΠ is
connected and has at least two nodes, nodes labeledA andB connected to the nodeA 
 B

must exist inΠ, andA andB must be connected inΠ0, since otherwise, there would be at
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least three maximal connected components, contradicting the fact thatΠ is connected. Thus,
we can apply Lemma 30, and there is a setfC1 ] D1; . . .; Ck ] Dkg of par nodes such that
the graphΠ00 obtained fromΠ0 by deleting all edges fromCi to Ci ] Di and fromDi to
Ci ] Di, i = 1; . . .; k, consists of three disjoint maximal connected components which are
deduction nets satisfying the criterion. Furthermore, without any loss of generality, it can be
assumed that one componentΠ1 contains bothA and theCi, another componentΠ2 contains
bothB and theDi, and the thirdΠ3 contains theCi ] Di, i = 1; . . .; k. SinceΠ3 is strictly
smaller thanΠ, we conclude that the claim holds forΠ3 by applying the induction hypothesis.
Thus,Π3 is composed of two disjoint deduction netsΠ0

3 andΠ00
3 and of a tensor nodeA0 
 B0

connected toA0 in Π0
3 and toB0 in Π00

3. Also observe that the graphΠ�Π3 obtained fromΠ1,
Π2 by reconnecting the nodeA 
 B to A in Π1 and toB in Π2, and by reconnecting every
nodeCi ] Di to bothCi in Π1 and toDi in Π2, i = 1; . . .; k, is a deduction net satisfying
the criterion. The nodesC1 ] D1; . . .; Ck ] Dk must be either all inΠ0

3 or all in Π00
3, since

otherwise,Π � Π3 being a deduction net, it would be possible to create a cycle betweenA0

andB0 in some switch graph ofΠ. But then,A0 
 B0 is a terminal node ofΠ satisfying the
condition of the claim.

This concludes the proof of the claim, and thus the proof of the theorem.

If we observe that the cut rule

� Γ; A � ∆; A?

� Γ;∆
(cut)

behaves just like the following special case of the (
: right) rule

� Γ; A � ∆; A?

� Γ;∆; A
A?
(
: right);

we can extend the above treatment of proof nets, including Lemma 29 and Theorem 4, to proof
nets includingcut links, which are links of the form

A A?

CUT
:

Every node labeled with CUT is necessarily a terminal node.

The proof of Theorem 4 yields anO(n2)-time algorithm for testing whether a deduction net
comes from a sequential deduction. This is not a trivial result, since the naive method yields
an exponential-time algorithm. Girard has announced the existence of anO(n2) algorithm,
but as far as we know, no such algorithm has been published. The algorithm presented below
works recursively. If the deduction net only has axiom links, the algorithm succeeds iff the
deduction net consists of a single axiom link betweenA andA? or of a single nodeA (for
some propositionA). If the deduction net has some terminal node labeled with a par node
A ] B, test recursively the subnets obtained by deleting the edges fromA ] B to A and toB.
If the deduction net has terminal nodes only labeled with tensor nodes, try to find a splitting
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tensor node as follows. First, for each terminal nodeA
 B, delete the edges fromA
 B to
A and toB. Then, find the maximally connected components of this graph. If the resulting
graph is connected, the algorithm stops with failure. Otherwise, some terminal node labeled
with a tensorA
 B has been found such thatA andB belong to two disjoint deduction nets
Π1 andΠ2 after the edges fromA 
 B to A and toB have been removed from the original
deduction net (there may be several choices, just consider the terminal nodes in some fixed
order and pick the first one). Then, test recursively the subnetsΠ1 andΠ2.

Since maximally connected components can be found in linear time, the cost of finding a
splitting tensor isO(n). It is then clear that the algorithm runs inO(n2).

Since a proof net is a special deduction net, we also obtain anO(n2)-time algorithm for
testing whether a proof net comes from a sequential proof.

8 Conclusion

We have provided an introduction to linear logic, focusing on its propositional fragment.
In particular, we describe an algebraic semantics for linear logic, phase semantics. Contrary
to Girard’s original presentation [7] in which the notions of closure operation and Galois
connection are implicit, we present phase semantics explicitly as a specific instance of a Galois
connection. We hope that such an approach helps to understand better the motivations for this
semantics, and also the reason why linear logic is sound and complete for this semantics. We
also define proof nets for multiplicative linear logic and give a direct proof of the correctness
of the Danos/Regnier criterion. This proof relies on a purely graph-theoretic decomposition
lemma which appears to be new. As a corollary, we obtain anO(n2)-time algorithm for testing
the correctness of a proof net. The existence of such an algorithm was conjectured before, but
our algorithm appears to be original. In a forthcoming paper, we intend to cover the quantifiers,
proof nets for full linear logic, cut elimination, and the semantics of coherent spaces.
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9 Appendix: Summary of Notation

The logical constants, logical connectives, and semantic symbols of linear logic are listed
below.

I multiplicativetrue
? multiplicativefalse
1 additivetrue
0 additivefalse

 multiplicativeand (tensor)
] multiplicativeor (par)
& addittiveand
� addittiveor
�� linear (multiplicative) implication
��� linear (multiplicative) equivalence
? linear (multiplicative) negation
! of course
? why not
� interpretation of?

� interpretation of

k interpretation of]

interpretation of !

Other symbols are listed below.

[ binary union
\ binary intersectionS

union of a familyT
intersection of a family

^ binary greatest lower bound
_ binary least upper boundV

greatest lower bound of a familyW
least upper bound of a family

∈ set membership
� set inclusion
∅ empty set
7! functional mapping
� partial order
y closure operation
≡ equivalence relation
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