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Abstract

The purpose of this paper is to give an exposition of material dealing with constructive logics,
typedA-calculi, and linear logic. The first part of this paper gives an exposition of background
material (with the exception of the Girard-translation of classical logic into intuitionistic logic,
which is new). This second part is devoted to linear logic and proof nets. Particular attention
is given to the algebraic semantics (in Girard’s terminology, phase semantics) of linear logic.
We show how phase spaces arise as an instance of a Galois connection. We also give a direct
proof of the correctness of the Danos-Regnier criterion for proof nets. This proof is based on a
purely graph-theoretic decomposition lemma. As a corollary, we givaf)-time algorithm

for testing whether a proof net is correct. Although the existence of such an algorithm has
been announced by Girard, our algorithm appears to be original.

Résumé

Le but de cet article est de donner unegantation dléments de logigue constructive,
de lambda calcul typ, et de logigue ligaire. Dans la preraré partie de cet article nous
présentons les basesl{éxception de la traduction de Girard de la logigue classique en logique
intuitionniste, qui est nouvelle). Dans cette deume partie sont trat la logique liraire et

les Bseaux de preuves. Une attention partenglieést faitex la €mantique algbrique (appeé
dans la terminologie de Girardemmantique des phases) de la logiquedimé. Nous montrons
comment la notion d’espace de phases apparait comme une instance d’'une connection de
Galois. Nous donnons aussi une preuve directe de la correction eiteaté Danos et Regnier
pour les gseaux de preuves. Cette preuve repose sur un lemmecdengdosition de pure
théorie des graphes. Comme corollaire, nous obtenons un algorithme en@gnfppour
tester si uneSeaux de preuves est correct. Bien que I'existence d’un tel algorithret ait ~
annonee par Girard, notre algorithme sembtec”original.
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Constructive Logics. Part II: Linear Logic and Proof Nets 1

1 Core Linear Logic and Propositional Linear Logic

In Girard’s linear logic [7], the connectives and v are split into two versions: the
multiplicativeversion ofA andv, denoted a® and [0, and theadditive version ofA and
Vv, denoted as & an&d. The constantsT (truth) and L (falsity) are also split into their
multiplicative versionl and 1, and their additive versiom and0. We confess having some
difficulties remembering Girard’s notation for the connectives and constants, and we propose to
use the following notation which we find reasonably motivated semantically, and thus easier to
memorize. Thenultiplicativeversion ofA andv is denoted a® (calledtenso) andf (called
par), and theadditiveversion ofA andV is denoted as & and. The constants (truth) and
L (falsity) have their multiplicative versiohand 1, and their additive versiof and0. We
also havdinear implication denoted as-o (which is a multiplicative), andinear negation
denoted as-. For pedagogical reasons, we feel that it is preferable to present the inference
rules of linear logic in terms of two-sided sequehnts- A, with explicit rules for linear
negation ¢). One can then show that negation is an involution satisfying De Morgan-like
properties, and that every proposition is equivalent to another proposition in “negation normal
form”, in which negation only applies to atoms. Thus, it is possibe to describe linear logic in
terms of one-sided sequemtsA, and this is the approach originally followed by Girard [7].
The presentation using one-sided sequents also has the technical advantage of cutting down in
half the number of cases to be considered in proving properties of the logic, cut elimination
for example. On the other hand, the presentation using two-sided sequents is better suited if
one is interested in the “intuitionistic fragment” of linear logic in which the righthand &ide
of a sequenk + A contains at most one proposition.

Definition 1 The axioms and inference rules of the sysf&ny, for core linear logic are given
below.

Axioms:
Ar A
= | 1w
MN=A1 or+-A
Cut Rule:
N A,A A AN-0O
(cut)
MNA+-AOG
Multiplicative Rules:
A B, T+ A (®: left) Nr-AA A-0O,B (®: right)
A® B,T+A ' MA-0A0O AQ B "9
AT-A B,A+0 : left N—-AA B (1: right)
: _— i
AY{B,T,A+-A0 Fr—-ANAfB g
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2 Jean Gallier
NrN-AA B,A+0O ATw+AB .
(—o: left) ——————  (—o:right)
A — B,T,AvA,0 A A—oB
NrN=AA (L left) ATrA (*- right)
AL T A ' M- A AL N9
"ER et (L: right)
I,Lre=A ' AL N9
Additive Rules:
AT+ A B, A

T (& left) —— = (& left)

A& B,T+ A A& B, T+ A

N-AA TwAB .
(&: right)
A A& B
AlTT-A BT A
(@: left)
A9 B,T+A
VA4 o righy i (@: right)
r-AA®B "9 r-AA®B "9

The fragment of linear logic involving the formulae, axioms, and rules, containing only the
multiplicative connectives), §, -, I, and_L, is calledmultiplicative linear logic

From the above rules, it is clear (as in classical logic) that linear negation is involutive,
i.e, bothA + A+L and A1+ + A are provable, and that bott (—o B) + (A4 § B) and
(At § B) v (A —o B) are provable. We also have the following “De Morgan” properties
of linear negation ove®, {f on the one hand, and,& on the other hand, namely that the
following sequents are provable:

(A® Byt v At § B,
(Af B)* v+ At @ B,
(A& B v At @ B,
(A Byt v At & B,

At B+ (4@ B)*,
At @ Bt v (A B)*,
At @ Bt v (A & B)*,
At & Bt v (A B)*L.

It is very easy to show that linear negation exchanges on the onelhamdll , and on the
other handL andO, formally expressed by the provability of the following sequents:

I+ 1,
1t 0,

May 1991
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Constructive Logics. Part II: Linear Logic and Proof Nets 3

Itis also useful to note that in writing sequents, the meaning of the comma (,) is overloaded.
In asequent,,..., A, + Bi,..., B,, onthe lefthand side, the comma is an “uncommitted”
®, but on the righthand side, the commma is an “uncommitfed’he difference betweeg
and & is illustrated by the fact that the sequents

(A—-oB)&(A—-oC)r(A—o(B&C) and A—-oB,A—-oCr ((ARA) - (BRC))

are provable, but that the sequehto B,A —o C+ (A — (B ® C)) is notprovable. The
additive connectives require resource sharing, but the multiplicative disallow it.

Since contraction and weakening have been eliminated, core linear logic is not very
expressive. In order to regain expressiveness, new formulae involving the exponentials ! (of
course) and ? (why not) are introduced. Then, weakening and contraction are reintroduced,
but in a controlled manner. The inference rules for the exponentials are given in the next
definition. IfI" = Ay, ..., A, then T =14, ...,14,,and ¥ =?4,, ..., ?4,.

Definition 2 The rules for the exponentials are given below.

AT+ A . MN-AA - .
——— (dereliction left) ——— (dereliction right)
1A, T+ A M= A4
reA (weakeningleft) -4 (weakeningright)
1A, T+ A g M= A4 grg
IMA-2A T A, N .
— (2 left) —— (! right)
I, 2A 2\ M 1A, N
TAJTA, T+ A ) e A 24,74 .
————— (contraction left) ————— (contraction right)
AT+ A M= A4

The systenﬁin!o’?for propositional linear logids obtained from the systefiing by adding
the inference rules of Definition 2. We can show easily that linear negation exchanges ! and ?,
in the sense that the following sequents are provable:

(A =24t 24t e (144,
(A 14t 1At e (24t

Using (?left), (: right), (dereliction left), and @ereliction right), it is easy to show that !
and ? are idempotent, in the sense that the following sequents are provable:

HA- 1A 1Av 1A,
7424 Av 7.

Research Report No. 9 May 1991



4 Jean Gallier

The best way to understand linear negation is to think in termactibn and reaction
or (output, answérand {nput, question Thus, an action of typel (answer of typeA)
corresponds to a reaction of type- (question of typedt ). We can adopt the convention
that an occurrence of a formula on the lefthand side of a sequdnt A corresponds to a
reaction, or input (or question), and an occurrencelain the righthand side of a sequent
corresponds to an action, or output (or answer). Intuitiveley, the acidmas the meaning
that an action of typel is reusable or can be duplicated as many times as necessary. It also
corresponds to the idea seforage Dually, the action 2 has the meaning that the action of
type A can beconsumecs many times as necessary. It also corresponds to the idesdiriig
from memory. The intuitive meaning of the rule

T A, 2

———— (" right
M 1A, N (t: right
is more easily grasped if we consider its intuitionistic version

M- A
M—14

(*: right)

whereA = [J. This rule says that since all inputs if bre reusable, and is an output
consequence of ! then in fact, as many copies as needed of the actioan be output from
IT". Thus, this corresponds storingthe action4 in memory. Similarly, the intuitive meaning

of the rule
MN=AA

N (dereliction right)

is that the action of type&is read (retrieved from memory, the intuitive meaning of

M= A

——— (weakeningright
M= A?A ( gright)
is that the action of type&is erased and the intuitive meaning of

M A, 24,74

(contraction right)
M= AA

is that the action of type?is duplicated

It is possible to prove the following sequents, showing a form of distributivity of ! over &
and®, and of ? overp andf.

Lemma 1 The following sequents are provable

A4®B)v-?4 §?B 74 § B+ 240 B),
(A& B)r1A®!B 14®!B+r!(A& B).

May 1991 Digital PRL



Constructive Logics. Part II: Linear Logic and Proof Nets 5

Remark We can introduce a new connectivimear equivalencedenoted by the symbol
o—o, and write the obvious inference rules for it. Alternatively, we can take the formula
A o—o B as an abbreviation forA —o B) & (B —o A). Then, for example, the provability
of the two sequents (@ B) +?4 § ?B and A {§ ?B + A @ B) can be written as the
provability of the formula 4 & B) o—- (?A § ?B).

In view of the fact that linear negation is an involution, it is possible to give a more concise
description of linear logic if we restrict ourselves to right-sided sequents, that is, sequents of
the form A. This is possible because the sequént.. ., A,, v Bi1,..., B, is provable iff
the sequent- A7 ,..., AL, Bi,..., B, is provable. We can go further by taking advantage
of the De Morgan properties noted earlier. Thus, we can write formulae in negation normal
form, where negation is pushed in all the way so that it applies only to atomic formulae. In this
formulation, negation is no longer a connective. We haositive literalsof the form A where
A is atomic, anchegative literalof the form A+ where A is atomic. We construct formulae
using the connectiveg, f, &, @, !, and ?, and we only need the contantand1. We define
A —o B as an abbrevation fot* § B, and the negation of a formula is defined inductively as
follows:

I+ =1,
1t =1,
1+ =0,
ot =1,

A)t = A+, for A apositive litera)
(4) ; p el
(A1)t = 4, for AL anegative litergl
(A® B)' = A" { B,
(A4 Bt = A+ @ B,
(A& B)t = At ¢ B,
(A B)t = At & B,
(A =24t
(24)t =14+,

The inference rules are immediately rewritten for right-sided sequents. The only minor
difference is that (Iright) is now written as

-T,A
-7T,1A

(*: right)

2 Representing Intuitionistic Logic into Linear Logic

Itis possible to represent Intuitionistic Logic into Linear Logic via the following translation.

Research Report No. 9 May 1991



6 Jean Gallier

Definition 3 Given a formulad of propositional logic, its translatiom® in linear logic is
defined as follows:

A*= A whenA is atomig
(AN B) = A* & B,
(AV B): =14' ¢ | B,
(A D B) =14" — B,
(nA) = 14" — 0,
1*= 0.

Given an intuitionistic sequemy, ..., A, + B, its translation is defined as the sequent
14%,...,1A: + B*. This translation preserves intuitionistic provability and is conservative,
as shown in the following lemma.

Lemma 2 Given a sequerf + C of intuitionistic logic, ifl + C is provable ing?"™"*,

then its translationl™  C* is provable in linear logicCing. Conversely, if the translation

Il + C* of a sequent + C is provable in linear Iogich'ng?, thenl v C is provable in
g,L'D’A’V’J_-

Proof. One needs to show that the translated version of the axioms and the inference rules
of g2+ are provable inCin}, which is indeed the case. The point is that ! is added by
the translation when necessary to allow weakening or contraction on the left, and this allows
the simulation of the rules @;""*. The provability of the sequentA(—o B) + !A —o!B
is also needed. For the converse, there is a difficulty with the cor@tdhive consider the
fragment not involvind), we need to know that the cut elimination theorem holdsdm!o’?,
which was proved by Girard [7] (see also Lincoln, Mitchell, Scedrov, and Shankar [8]), and
we simply need to observe that a cut-free proof of an intuitionistic sequent-eyei, @,
and !, only involves intuitionistic sequents. Thus, such a proof yields an intuitionistic proof if
we erase ! and replace the additive connectives by the standard connegtiveg. A more
complex argument is needed in order to har{see Schellinx [11])O]

Classical logic can also be represented in linear logic.

3 Representing Classical Logic into Linear Logic

Given a classical sequedt, . .., A, v+ B, ..., B,, we will consider that the occurrences
of By, ..., By, are positive, and that the occurrencedlgf. . ., A,, are negative. Consequently,
the translation makes use of signed formulae of the fadvandnA. Givenll = A4,..., A,
thenplr = pAj,...,pA,,, andnl = ndi,...,nA4,,.

May 1991 Digital PRL



Constructive Logics. Part II: Linear Logic and Proof Nets 7

Definition 4 Given a formulad of propositional logic, its translationsA® andn A€ in linear
logic are defined as follows:

pA°=nA°=A whenA is atomig
(p- A)° = (nA°)*,
(n~ A)° = (pA°)*,
(pA A B)° = DA° & ?pB°,
(rA A B) =nA° & nB°,
(pAV B)° =pA° @ pB°,
(mrAV B) =1nA° @ InB°,
(pA D B)® = (nA°)! @ pB°,
(nA D B)® = (pA°)*t & 'nB°.

Given a classical sequent- A, its translation is defined as the sequeritd PpA°, where
nl¢ =nAS,...,nA;, if [ = Ay,..., Ay, and similarly forpA°®. This translation preserves
classical provability and is conservative, as shown in the following lemma.

Lemma 3 Given a sequerift + A of classical logic, iff + A is provable inG2V>™, then
its translation!lnl© +2Ac is provable in linear Iogich'ng?. Conversely, if the translation

Inl© +"7pA° of a sequenf + A is provable in linear Iogich'ng?, thenl" + A is provable in
gcjy/\yvy_'_

Proof. One needs to show that the translated version of the axioms and the inference rules
of G2-»V:™ are provable inCin{, which is indeed the case. The point is that ! and ? are
added by the translation when necessary to allow weakening or contraction, and this allows
the simulation of the rules @f?>"V:™. We also use the equivalenced % B) o—o (?4 { ?B)
and !4 & B) oo (A ® !B).

For the converse, we need the fact that the cut elimination theorem holﬂs':rfg)'i which
was proved by Girard [7] (see also Lincoln, Mitchell, Scedrov, and Shankar [8]). Then, we
simply observe that a cut-free proof of the translation of a classical sequent only involves
translations of classical sequents. Thus, such a proof yields a classical proof if we erase the
connectives ! and ?, and replace the additive connectives$ aydhe standard connectives
A, V, = (itis also necessary to simulat:(right) and (&: left) with the rules oG-V, but
this is standard)a

Remark The above proof shows that the following translationger A B, nA v B, and
nA O B, also works:
(pA A B)® = DA° @ DB,
(rAV B)* =1nA° § InB°,
(nA D B)° = pA° —o InB°.

Research Report No. 9 May 1991



8 Jean Gallier

We now consider one of the possible semantics for linear logic, “phase semantics”.

4 Closure Operations, Galois Connections, Adjunctions

Phase semantics due to Girard [7] is an algebraic semantics for linear logic. Actually,
this semantics turns out to be an instance of a well known concept of lattice theory (Galois
connections). We believe that phase semantics can be understood better if it is presented
explicitly in terms of a Galois connection. Thus, we will begin by reviewing some basic
notions of lattice theory, the notion ofosure operatiorand the notion ofsalois connection
(see Birkhoff [3]). The relationship between phase semantics and Galois connections has been
noted by Avron [2].

Definition 5 LetI be a set. Afunctioft 2I — 27 is a closure operation of! iff the following
properties hold: For allX,Y C I,

()X C X7,
() xT c Xt

(3) X CY impliesXt C YT,

From (1) and (2), it is clear tha¥ T = Xf. A setX is calledclosediff Xt = X. Itis clear
that X is closed iffX = Yt for someY. The set of closed subsetsbfs denoted ag'.

Observe that the seff of closed subsets of is closed under arbitrary intersections.
Given a family (;);os of closed sets idf, since(;5;{4;} C 4; for everyj O J, by

monotonicity (property (3) in Definition 5), we havreUDJ{Aj})T - Aj. for everyj O J,
which is equivalent tof; 5 ;{4;})T C 4;, sinceAj. = A; for everyj U J because thdl; are
closed subsets. Thu§){;{A4; 1 C N;0s{4;}. Theinclusiom;5;{4;} € (N;0s{4;})

follows from condition (1).

Remark If we drop condition (3) of Definition 5 and add the two conditions:

(0)Of =0, and

(3) (AU B)t = At U BT,

then we obtain one of the possible definitions tfology(the Kuratowski closure axioms).
Indeed, we can define the family of open sets of the topology as the complements of the closed

subsets of . One can also verify easily that'{3mplies (3).

The setlt of closed subsets df can be naturally given the structure of a complete lattice.
For the (easy) proof, see Birkhoff [3].

May 1991 Digital PRL



Constructive Logics. Part II: Linear Logic and Proof Nets 9

Theorem 1 Given a sef and a closure operatiohon 2!, if we define the operationg and
A on the seflt of closed subsets dfby

A {4; = N {4;1, V{453 = (U {4,
;0 ;0 ;0 ;0

thenIt is a complete lattice under inclusion.

If Tis a closure operation which is injective on singleton sets {z}! # {y}! whenever
z 7 y), then the mapping: — {z}! is a natural embedding of into the complete
lattice of closed subsets. K is equiped with a binary operation, saythen we define
XY ={zey|z 00X,y OY}, and we extend to the complete latticd’ by defining
XY = (XY)F.

A way to define closure operations is via Galois connections.

Definition 6 Let I and J be two sets and® be a binary relation o/ x J. Given any two
subsetsX C I andY C J, we define (with a slight ambiguity of notation) the s&tsC J
andY* C I as follows:

X*={y 0J |0z OX, zRy},
Y'={z 01|00y OY, zRy}.

We have the following lemma showing that is a closure operation orf 2and that + is a
closure operation on’2 The proof can be found in Birkhoff [3].

Lemma 4 Given a binary relationR on I x J, the following properties hold: For all
X,X'CTIandY,Y' CJ,

(1) X C X' impliesX™ C X*andY C Y'impliesY"" C Y™;
(2)X g X*+, Y g Y+*, X*+* - X*, Y+*+ - Y+,
(3) x+ and+x are closure operations o2' and2’ respectively. Furthermore, the mappings

X — X*andY — Y define a dual isomorphishbetween the complete lattices of closed
subsets of andJ.

The dual isomorphism& — X* andY — Y™ are calledpolarities and they are said to
define aGalois connectiotetween/ andJ.

In particular, if< is a partial order od = J, by takingR = <, thent = %+ is a closure
operation. Note that foX C I, X* is the set of upper bounds &f, denoted asippel(X),

A dual isomorphisnt between posets is a bijection which is anti-monotoigc, e < b impliesh(b) < k(a).

Research Report No. 9 May 1991



10 Jean Gallier

X" is the set of lower bounds oX, denoted asower(X), X** = loweruppe(X)), and
{z}t = {&}** = {y | y < z} (the principal ideal generated ky). The natural mapping

z — {z}*"is an embedding of7, <) into the complete lattice of closed subsetd p&nd this
embedding preserves all existings least upper bounds and greatest lower bounds [iisfact,
dense in this lattice). It is also called the “Mac Neille completion”, or “completion by cuts”.
Furthermore, if~ is an involution on/, thatis,z = ~~ z, andz < y implies~ y < ~ & for
allz,y O 1I,then we can extend to It by defining

~X={~yly O0X"}.

It is easily verified that we get an involution.

A particularly interesting case arises wheEs J and R is symmetric. In this case, = +,
and the closure operationfs= . Also, the operation on the s&t = I** of closed subsets
defined byX — X* is an involution with some nice properties. We define 0* = I, and
0=TI*=0* Itis immediately verified that is the greatest element #f*, and tha is its
least element.

Lemma 5 Given a symmetric relatio® on a setl, for any family(4;); o of closed sets in
It = I**, we have

(U {47 = N {45}

07 07
(N{4;D) = U {45,
07 07

(A {4 = V{451,
07 07

(V {4;) = A\ {45}
07 07

Proof. We have
a O (U{Aj})* iff
i0J
066 O (| {4;}) D aRb), iff
i0J
O06(0F OJ (b O A4;) D aRb), iff
07 OJ0b(b OA; D aRb), iff
Uj OJ(a UA43), iff
a O ﬂ {45}
i0J
Since theA; are closed we havd;" = 4;, and the second identity follows from the first by
applyingx to both sides, and replacing eagh by A;. Since by definition,

A {45} = N {45}, V{4 = (U 4D,

07 07 07 07

May 1991 Digital PRL



Constructive Logics. Part II: Linear Logic and Proof Nets 11

the last two identities follow from the first two and the fact tat* = X*. O

If R is irreflexive, thatis[Jz O I-(zRz), thenX A X* =0 andX v X* = I. Indeed,
a 0 X N X* impliesaRa, which shows thatX A X* = 0. The other equality follows by
duality. If R is symmetric and we also have a binary operasiom I, we can extend to I**
by definingX « Y = (XY)**. We also defingl by X || Y = (X* ¢ Y*)* = (X*Y*)". We can
immediately verify thatX « Y = (X* || Y*)*. We have the following useful properties.

Lemma 6 Given a symmetric relatio® on a set/ and a binary operatios on I, then for
any family(4;); oy of closed sets iif = I** and anyB 0 IT, we have

VA« B} =((U{ahB)™, (V{4 «B=((U{4,D)"B)™,

j0J j0J j0J j0J
A& 1B} = (U408, (A4 1 B=((U {47 B)"
jOJ j0J jOJ j0J

Proof. Using the fact thak || Y = (X*Y™)* and thatA; o ;{4;} = N;0s{4;}, we have

a O N{(4; 1 B)} iff

j0J

o O ({4 B}, iff
j0J

a O ({(4;B")}, iff
j0J

075 OJ(a O (AjB*)*), iff
Oj OJ0Ob(b U AIB* D aRb), ff
Ob(0y O J( O A;B*) D aRb), iff
Ob(6 O (| J{4;})B* D aRD), iff
j0J
o O((U{4;hBY)"
j0J
On the other hand,
a O(A{4;}) 1 B iff
j0J
a O (N {4} BY), iff
j0J
a O((J{4;D)B)".
j0J

Usingthe factthak « Y = (X || Y*)" and that f\; 1;{4;})" = V;07{4}} by Lemma5, the
first equality follows from the third, and the second one follows by unwinding the definitions
X oY =(XY)™andV;;{4;} = U; 0, {4 O

Research Report No. 9 May 1991



12 Jean Gallier

In general, we only have the inclusions

V{A;e B} (V{4 B, (A{4)1BS A{; B}

07 07 07 07

Equality holds wherR has additional properties. For example, this is the case wRen »
holds iff p « ¢ R» holds. For this, we need the following lemma which will also be useful later.

Lemma 7 If the relationR is symmetric an@Rgq « r holds iffp « ¢ Rr holds, then

pOX«Y™) iff Ogl¢ X Dpeq OY).

Proof. By the definitionsp 0 (X « Y*)*iff p O (XY ™) iff Du(u O XY™ D pRu), iff

Ou((glr(g OX Ar OY* Au=gqer)D pRu),

iff

Du(DqD'(q OXADtt OY DrR)Au=gqer) DpRu),
iff

DquDr((q OXADE OY DrRt)Au=qer)) D pRu),
iff

Dqu((q OXAOHt OY O rRE)) D pRge 7').

Now assume that there is sonpesuch thaty [0 X butp e« ¢ O Y. Lettingt = p o g in the
above formula, 0 Y D rRt) is trivially false, and thus, we have

Or(pRq e 7).

However, by the hypothesigRq « r holds iff p « ¢ Rr holds, and salr(p « ¢Rr) holds, that
is,peq OI*=0. But we know thaO is the smallest element df*, and sd0 C Y, which
implies thatp « ¢ [0 Y, contradicting the assumptigne ¢ [0 Y. Thus, we have shown that
if p 0(X «Y*)*thenlg(¢ O X D pRq OY). The converse it easier to show. For every
andr, if we assume that

(qO0XDpeglY) and (¢ DX ADL DY DrRet)),

then by lettingt = p « ¢, we getrRp « ¢, which is equivalent tp Rq « », by symmetry ofR
and the fact thatRgq « r holds iff p « ¢ Rr holds.[J

Note that { « Y*)* can be taken as the semantic definition Xf —o Y, since in
linear logic, X —o Y is equivalent toX' § Y. Thus, the fact thap O (X « Y*)* iff
Og(¢g O X D pegqg OY) should not be a total surprise to those who know about Kripke
semantics.
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Lemma 8 If the relation R is symmetrice has an identityl, andpRgq « r holds iffp « ¢Rr
holds, then for any familg4,); oy of closed sets id" = I** and anyB O I, we have

Bl (A{4) = A{B 14}, B« (\V{4}) = VB« 4},
i0J i0J i0J i0J
B|1=1, B.0=0.
Proof. By Lemma 7p O (XY*)*iff Og(¢ 0 X Dpegq OY). SinceX || Y = (X*Y™*)*,

p OB (A{4;}) if

0
p OB ({4}, iff

07
Og(q OB > peq0(N{45}), iff

0T
Og(g OB* D> 075 UJ(pegq OAy), Iiff
07 OJOg(g DB* Dpegq OA4;), Iiff
0j OJ(p O(B*4Y)7), iff
Oj OJ(p OB 4;), iff
p OB 4}, iff

0T

p O A{B I 47}

07

The special case whete= [J is handled easily, and yieldB || 1=1andB « 0= 0. The
other equality follows from duality

One should note that an argument symmetric to the one used in Lemma 7 shows that
p OX*Y) iff Ug(¢ UY D ¢qep O X). Therefore, under the hypotheses of Lemma 8, we
also obtain the following identitiesyithoutappealing to the commutativity ef

(NN 11B= AN{4;11B)},  (V{4}) «B=\{4;.B)}

07 07 07 07

Another important concept is that of adjunction The concept of adjunction is central in
category theory (see MacLane [9]), but for our purposes, we only need to define it for partially
ordered sets.

Definition 7 Given two partially ordered set§4, <) and (B, <), for any two monotonic
functionsf: A — B andg: B — A, fis aleft adjoint tog (andg is a right adjoint tof) iff for
alle 0A,y OB,

fl@)<y iff z<g(@).
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14 Jean Gallier

First, observe that if a functiofi has a right adjoing, then it must be unique, evenjffand
g are not monotonic.

Lemma 9 If f has a right adjointg, theng is unique, even if and g are not monotonic.
Furthermoreg(y) is the greatest element of the §et 0 A | f(z) < y}, and f(z) is the least
element of thesdty 0 B | =z < g(y)}.

Proof. Sincef(z) < y iff z < g(y), for z = g(y), we getf(g(y)) < y iff g(y) < g(y). Since
< is reflexive,g(y) < g(y) always holds, and thug(g(y)) < y for ally O B. Now, assume
thatg, andg-, are two right adjoints of . Sinceg is arightadjoint off, f(z) < yiff 2 < g2(y).
In particular, forz = g1(y), f(g1(y)) < yiff g1(y) < g2(y). But sincey, is also a right adjoint
of f, we know thatf(g1(y)) < y for all y O B, and thugji(y) < go(y) forally 00 B. The
argument being symmetric, we also hapé€y) < g1(y) for all y O B, and by antisymmetry
of <, we havegi(y) = g2(y) for all y 00 B. Consider the sefz 0O A | f(z) < y}. Since
flgw)) <yforally O B,wehavgy(y) O{z OA| f(z) < y}. If f(z) <y, sincegisaright
adjoint of f, thenz < g¢(y), and thug(y) is an upper bound for the sét 0 A | f(z) < y}.
Sinceg(y) also belongs to this set, it is its greatest element. The cagéedis treated in a
similar fashion.J

Other properties of adjoints are given in the next lemma.

Lemma 10 (i) Two monotonic functiong: A — B andg: B — A are adjointsifff(g(y)) < y
andz < g(f(z))forally O B,z O A. (i) Whenf andg are adjoints, therf = fgf,g =g fg,
and f andg restrict to bijections betweefu 0 A | a = g(f(e))} and{b O B | b = f(g9(b))}.

Proof. (i) We have already shown in Lemma 9 thafidndg are adjoints, therf(g(y)) < y
forally O B andz < g(f(z)) for all # O A. Conversely, if we assume thffz) < y, by
monotonicity ofg, we haveg(f(z)) < g(y), and sincez < g(f(z)) holds, we getz < g(y).
If we assume that < g(y), then by monotonicity off, we havef(z) < f(g(y)), and since
f(g(y)) < y holds, we geff(z) < y. Thus,f andg are adjoints. (ii) Since < g(f(z)) holds,
by monotonicity of f, we havef(z) < f(g(f(z))). Sincef(g(y)) < y holds for ally, then

flg(f(2)) < f(z). By antisymmetry, we gef(z) = f(g(f(z))) for allz 00 A. The proof of
the other identity is similar, and the last part of (ii) follows easily.

Another crucial property of left adjoints is that they preserve all existing lubk of

Lemma 11 If two monotonic functiong: A — B and g: B — A are adjoints, thenf
preserves all lubs existing iA, andg preserves all glbs existing iR.

Proof. Assume thatS C A and that\y/ S exists. By monotonicity off, we have
f@) < f(yS)forallz OS5, and thusV{f(z) | = O S} < f(V S). On the other hand, if
f(z) <bforallz O, sincef andg are adjoints, we have < ¢g(b) for all z [I S, and thus
V § < g(b). Using once again the fact thatandg are adjoints, we havé(\/ S) < b, which
shows thatf(\V S) = V{f(z) | « O S}. The argument fog is symmetricO
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Constructive Logics. Part II: Linear Logic and Proof Nets 15

Lemma 11 gives a necessary condition for the existence of adjoints. By Lemma 9, the value
of g(y) is the greatest element of the §et 0 A | f(z) < y}. Thus, if all lubs exist i4 and f
preserves all lubs, it seems likely that its right adjgimixists. This fundamental fact is indeed
true. In the case of (hondegenerate) categories, this fundamental theorem due to Peter Freyd
is known as the “Adjoint Functor Theorem”. The proof of the general theorem involves a
technical condition know as the “solution set condition”, but fortunately, in the case of posets,
this condition is always satisfied (see MacLane [9]).

Lemma 12 (Adjoint Functor Theorem, after Freyd) Lé#, <) and (B, <) be two partially
ordered sets, angi: A — B a monotonic function. If all lubs exist iA and f preserves all
lubs, thenf has a right adjointg: B — A given byg(y) = V{z O A | f(2) < y}.

Proof. We know from Lemma 9 thag(y) = V{z O A | f(2) < y} is the only possible
candidate. It is immediately verified that sucly & monotonic. Since preserves existing
lubs, we have

Fa@w)=f(\{z DA|f2) <y} =V{fe) DA|f(z) <y} <y.

By the definition ofg(y), we also havg(f(z)) = V{z O A | f(z) < f(z)} > =. Thus,
flg(w)) < yandz < g(f(z)) forally O B, z O A, which by Lemma 10 shows thgitandg
are adjointsJ

The notion of adjunction yields an interesting generalization of the concept of Galois
connection that we now describe. First, we consider the concept of a closure operation in an
arbitrary partially ordered set.

Definition 8 Let(A, <) be a partially ordered set. A functidn4 — A is a closure operation
on A iff the following properties hold: ForalX,Y [ A4,

()X < XT;
() xT < Xt

(3) X <Y impliesXt < YT,

Note that Definition 5 corresponds to the special case where the passbme power set
2! and the partial order is inclusion. Recalling that a binary relaiRomn I x J induces two
functionsx: 2 — 27 and +: 2 — 2! satisfying the properties of Lemma 4, we can define a
Galois connection between two poséss <) and (B, <) as a pair(x, +) of functions such
thatx: A — B and +:B — A are order-reversing and such tlat< X** andY < Y ** for all
X 0 AandY 0O B. But then, in view of Lemma 10, this is almost equivalent to saying that
x and + are adjoints. The reason this is not exactly correct issthatl + are order-reversing
rather than being order-preserving, and the inequility Y ** is in the wrong direction. We
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16 Jean Gallier

can fix this problem easily. Given any pogdt <), we define the dual posé#°?, <°?) such

that A°? = A andz <°? y iff y < z. Then,x: A — B°? and +:B°? — A are monotonic and

X < X*" andY < Y™ express that they are adjoints. Thus, we are led to the following
definition (see Birkhoff [3] and MacLane [9]).

Definition 9 Given two poset§4, <) and (B, <), two monotonic functions A — B°? and
+: B°? — A form a Galois connection betweehand B iff x is a left adjoint to+, that is, for
al X 0A,Y OB,

X*>Y iff X<Y*

The following generalization of Lemma 4 is immediate.

Lemma 13 Given a Galois connectiofk, +) between two poset4 and B, for all X O A
andY 0 B, the following properties hold:

(l)X S X*+, Y S Y+*, X*+* — X*, Y+*+ - Y+,

(2) x+ and+x are closure operations oA and B respectively.

We can now apply the above considerations to the definition of the phase semantics. We
begin with core linear logic.

5 Phase Semantics

We first define core Girard structures. These structures consist of a carrier equipped
with two overlapping algebraic structures: a (commutative) monoid structure to interpret the
multiplicatives, and a lattice structure to interpret the additives. Similar structures have been
considred by Avron [2],

Definition 10 A core Girard structure is a quintupl® = (D, <,s, 1,~), satisfying the
following conditions:

(1) (D, <) isa complete lattice;
(2) ~ is an involution onD;
(3) (D,s,1)is a commutative monoid with identity

(4) The monoid operatiosis monotonic in each of its arguments, i.eqiK a’ andb < ¥/,
thena « b < a eb.
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(5) Defining|| suchthat || b =~ (~ a e~ b), we have

aeb<ciffa<~b]|ec

We can prove easily that the conditiane b < c iff a < ~ b || ¢, is equivalent to the
conditiona < biff1 < ~ a || b. Indeed, assuming thate b < ¢ iff a < ~ b || ¢ holds, using
the fact that 1 is an identity far, settinga = 1, we obtairb < ciff 1 < ~ b || ¢. Conversely,
assuming thak < biff 1 < ~ a || b holds, we haver « b < ¢ iff 1 < ~ (a ¢ d) || ¢, thatis
aeb<ciff1 < (~a ||~ )] c. Since|l is associative, this is equivalentdos b < c iff
1<~al[(~b]c). Butwealsohave <~ b | ciffl <~al/(~b] c),andthus e b <c
iff a<~b]ec.

Letting 0 =~ 1, the conditiorz « b < ciff @ < ~ b || ¢ is also equivalent to the condition
a < biff @ e~ b < 0. This follows immediately from the fact thatis an involution.

A core Girard prestructuras a core Girard structure whef2 is a lattice (not rcessarily
complete) having a greatest element denoteblasd a least element denoteddasvheree is
monotonic in each of its arguments.

In a core Girard structure, it is immediately verified that 0 is an identity| fand that

~ (A {ai}) =V {~ a5},

j0g j0J
~(V{a;}) = N {~q;}.
j0J j0g

What is more interesting is the fact thapreserves arbitrary least upper bounds. This
follows from the fact that — a « b is a left adjoint ofa —~ b || a.

Lemma 14 Given a Girard structur® = (D, <, s, 1, ~), for every familya;), oy of elements
of D, for everyb [0 D, we have

(VA{a}) eb=\{@jed)}, be(\/{a;})=V{beap}h

07 07 07 07

In particular, corresponding to the case= U, we haveD e b = b« 0= 0.

Proof. First, we note thal = ~ 0 || O, the greatest element d. SinceO is the least
element ofD, for everya 0 D we haveO < ~ a || 0. ButO< ~ a || Oiff 0 s a < O, iff
a « 0 < 0 (sincee is commutative), iffa < ~ 0| 0. Thus,1 =~ 0| 0. As a consequence,
ae0=0,sincea «0<0iff a <~ 0] 0=1, andO is the least element aD. Note that
conditions (2) and (4) imply that — a « b anda —~ b || a are monotonic (for any), and
condition (5) implies that they are adjoint. Thus, by Lemmad1; a « b preserves least
upper bounds. The other identities follow by commutativity.afi
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18 Jean Gallier

In fact, it is possible to define an intuitionistic version of Girard structures which is
interesting in its own right. Such structures were investigated by Abrusci [1], Ono [10], and
Troelstra [12].

Definition 11 A core intuitionistic Girard structure is a tupl® = (D, <,s,1,0, -, ~),
satisfying the following conditions:

(1) (D, <) is a complete lattice with least eleméhaind greatest elemeiit
(2) ~a=a—o0,foreverya O D (whereOis a distinguished element &f);
(3) (D,e,1)is a commutative monoid with identity elemént

(4) ifa<a' andb < b, thenaeb < a'ebdanda’ b <a —ob

B) aeb<ciffa<b—oec.

A core intuitionistic Girard structure islassicaliff a = ~~ a for all ¢ O D. It will
be shown below that core Girard structures as defined in Definition 10 and classical core
intuitionistic Girard structures are equivalent. We also have the following properties.

Lemma 15 The following properties hold for core intuitionistic Girard structures.
(i) 1=0 —o Ois the greatest element &f;

(if) For every family(a;); 0y of elements oD, for everyb O D, we have

(V{a}) eb=\{@@jed)}, be(\{a;}) =V {(oay)}

i0J i0J i0J i0J
In particular, corresponding to the case= U, we haveD e b = b« 0= 0.
(i) a—o(B-—oc)=(aebd)—ocg

(iv) For aclassical structureg —oc b=~ (@ e~ b),0=~ 1, andaVv b=~ (~a A ~ b).

Proof. (i) Sincea « b < ¢iff a < b —o ¢ andO s the least element dp, we have for every
a 0D,0<a—o00,iff 0ea<O0,iff a e 0< 0 (by commutativity ofe), iff a < 0 —0 0.
Thus,1 =0 —o 0. (ii) Note that condition (4) of Definition 11 expresses thiab x D — D
and —o: D°? x D — D are monotonic (wher®®? is equipped with the ordex°? such that
z < yiff y < ), and that (5) says that— =z « y is left adjoint toz — y —o . By Lemma
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11,z — z « y preserves least upper bounds. The other identities follow by commutativity of
e. (liu<a—o(d-oc)iffuea<b-—ociffueasd<ciff u<(aeb)—oc. (V)

N(a oNb):(a oNb)—OO

=a-—o(~b-00) (by (iii))
=a —o (~~b) since~z =z —o0
=a-—ob sinceb = ~~ b.

In particular,~1=1-00=~ (1 e~ 0) =~~ 0=0, and thus 0 = 1. From condition
(4) of Definition 11,2 < y implies that~ y < ~ 2. Since we also have~ & =z, ~ is an
involution, anda V b = ~ (~ a A ~ b) follows. O

One can also show as an easy exercise that condition (4) of Definition 11 candueecepy
the identity
ae(dbVe)=(aeb)V(aec).
We observed in the proof of Lemma 15 thatD x D — D and —: D°? x D — D are
monotonic, and that (5) says that— z « y is left adjoint toz — y —o z. It is possible to
develop categorical semantics for linear logic inspired by these observations. We now return
to (classical) core linear logic.

We can interpret formulae of core linear logic as follows. Given any mappirglled
a valuation assigning some elemenfP) [ D to every atomic symbaP, we extendv to
formulae inductively as follows:

Definition 12 Given a core Girard (pre)structurD, a valuationv is extended to formulae as
follows:

v(l) =1,
v(L1) =0,
v(1) =1,
v(0) =0,

v(AT) =~ v(A),
v(A® B) =v(A) « v(B),
v(Af§ B) =v(4) || v(B),
v(A & B) =v(4) A v(B),
v(A® B) =v(4) Vv v(B),

whereA andV are the lattice operations of. Note that the fact thaD is complete is not
needed for this definition to make sense, just the existence of a least and a greatest element.

Given a sequert - A wherel’ = Ay, ..., A,, andA = By, ..., B,, we define

oM B8) =~ v(4y) || -~ [l~ v(Am) [[ v(B1) [ - - [| v(Bn).
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The setlp = {a O D | 1 < a} is called atruth subsebf D. Given a sequeri + A, we say
thatv satisfied - Ain D iff v(T'+ A) O Tp,i.e, 1< ov(T+ A). If T = A4,,..., A, and
A= B,..., B, then 1< o(I + A) is equivalent to

v(A1) e ...0v(An) <v(B1) || - || v(Bn),

orto
’l)(A]_) o ...0 ’U(Am) [Iad ’I)(B]_) o ... ’l)(Bn) S 0.

In the special casa: = 0, the condition K v(+ A) is equivalent to
1<v(By) || - [| v(Bn),

and in the special case= 0, the condition X< »(I" +) is equivalent to
v(A1)e...0ev(4,,) <O0.

The condition 1< »(I" + A) is also denoted & F (I + A)[v]. We say thal” + A is valid

in D, denoted a® T + A, iff D F (I + A)[v] for everyv, and finally we say thdt + A is
universally valid denoted a$=T" + A, iff D F T+ A for all D. If we consider sequents of
the special form- A whereA is a formula, we obtain the notion of satisfaction, validity, and
universal vality, for formulae. A universal formula is also calldihaar tautology

The soundness of the interpretation defined above is easily shown.

Lemma 16 If I + A is provable in linear logic, then for every core Girard (pre)structide
and every valuation, D F (I + A)[v]. As a corollary, v A is valid.

Proof. The verification proceeds by induction on proof trees. It amounts to checking the
soundness of the axioms and of the proof rules. We check only a few cases, as the verification
is straightforward. Consider the rule

NrN-AA ANv-0O,B
MNA+-A0,AQ B

(®: right)

Thus, we can assume thaly( + A, A) and 1< v(A + O, B). By (5) and Definition 12,
this is equivalent to

v() e v(AY) < w(4), and wv(A) e v(01) < v(B),

wherev(l) =v(A41) e ...0 v(Ap) if T = A1,..., A, @ndv(At) =~ v(By) o ... e~ v(B,) if
A = B,,..., B,. By monotonicity ofe, we have

v() o v(A) o (A1) o (@) < v(A) « v(B),
that is
o(T,A) e v(AF,0%) < v(A ® B),
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which means that
1<o(,A+AB,AQ B).

Consider the rule
A B, T+ A

AR B,T+ A
By hypothesis, K v(A4, B, v A). By (5), this is equivalent to

(®: left)

v(A) e v(B) o v(N) o v(AL) < 0,
that is
v(A® B) e v(MN) s v(AY) <O,
which means that
1<v(A® B, + Q).

Consider the cut rule
N A,A A AN-0O

LA A O

By assumption, we have & v(I' + A,A) and 1< v(4,A + ©). By (5) and Definition 12,
this is equivalent to

(cub)

v(M) o v(AT) < w(4), and v(A) e v(O1) < ~ v(A).
By monotonicity ofs, we have
v() e (A) o (A1) o v(O1) < v(A4) o~ v(A).
However, froma < a, we havea «~ a < 0, and so
v() o« v(A) o (A1) o v(@1) < 0,

that is
v(F,/\) L ’l)(/\J', GJ_) < 07

which means that
1<o(M,A A 0O).

The case of the additives follows from the fact thatorresponds to greatest lower bound and
v corresponds to least upper bound.

Note that the fact thaD is complete is not used anywhere in the proof. We now turn to
Girard’s phase structures [7], and show their equivalence with core Girard structures.

Definition 13 A phase structur® is a quadruple P, », 1, 1), where
(1) (P,»,1)is a commutative monoid with identity

(2) L isadistinguished subset &f, the set of antiphases.
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The setP is called the set gbhases

Definition 14 Given a phase structui, for any subseX of P, its dual X+ is defined by
Xt={pOP|OgOX,peq OL}.

A subsetX of P such thatX = X+ is called a fact. Observe that= {1}+. We define
| =1+={1}*+,1=0+=P,and0=1".

We can now establish the connection with closure operations. Given a phase stPudture
we define the binary relatioR on P such that

zRy iff zey OL,
then we have a Galois connection such that
X*=X*"={p0P|0¢g0X,peqg 0L}=X1,

and by Lemma 4X + X+ is a closure operation. By Theorem 1, the set of faats,the
setP’ of closed subsets @?, is a complete lattice. It is immediately verified that P is the
greatest element d?f, and thaO is its least element. The operatiosan be extended tB
and we can define an involutienon Pt by setting

XQY =(XY)H, ~ X=Xt

It should be noted that in order férto be an involution, that is, to hav®* = X* = X1, it
is not actually required thatbe commutative. What we need is tifatbbe symmetric, which
holds iff 1 satisfies the following property:

zey UL iff yex OL.

Abrusci [1] calls such al cyclic. Obviously, L is cyclic whene is commutative. When_

is cyclic bute is not commutative, Abrusci calls the corresponding structuchc classical

phase spacgl] (as opposed to aommutative classical phase spacé/e have not found yet
situations where the more general condition of cyclicity aé preferable to the commutativity

of «. Thus, from now on, we assuméo be commutative. However, noncommutative phase
spaces are interesting since they lead to noncommutative linear logic, investigated by Absrusci
(among others).

Whene is commutative, it is immediately verified théP!, ®, | ) is a commutative monoid
with | as its identity. If we definé&l f ¥ = (X1 @ Y)L = (X1Y 1)L, then we also have a
monoid structurd Pt, §, 1) with 1L as its identity. The lattice operations & are defined as
in Theorem 1, but it will be convenient to regroup all these definitions:

XQY =(XY)H, XYy =(X+tyhHt,
XAY =XnNY, XVY=(XuY)tt

Thus, Pt is practically a core Girard structure. For this, we need a lemma.
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Lemma 17 Given a phase structuri, the following properties hold: (1) For any two facts
X, Y C P,wehaveX CY iff X®Y' C L. (2) the operation® is monotonic in each
argument (in fact® preserves arbitrary least upper bounds).

Proof. In order to prove (1), we first apply Lemma 7 to the relat®mlefined such that
Ry iff z ey OL. Therefore,wehave 0 (X @ Y1)1iff Og(g DX Dpeqg OY).
In view of the above equivalence,0 X @ Y iff p 0 (X @ Y1) iff
Oglg D(X®Y)" Dpeg 01,
iff
Og(Or(r DX Dgqer OY)Dpeg OL1).
This means thak ® Y+ C 1 is equivalent to

Dp(Dq(Dr(r OXDqer0Y)DpegUL)Dp DJ_). (a)

Now, observe that if. = P, thenX+ = P for everyX C P, and then all facts are equal B
In this degenerated case, (1) holds trivially. Thus, we can assume that there ip d0rRe
such thap OL. Assume that

Og(Or(r DX Dger OY)Dpeg 0O1)
holds. In particular, we can piek= 1, and assume that
Or(r OX D> 0OY)Dp 0L

holds. Also assume that there is somsich thatr 0 X butr OY. Since¢ 00X Dr OY)
is false, the implication
Or(r OX D> 0OY)Dp 0L

holds trivially, and from &), this implies thatp 01, contradicting the choice gf. Thus,
X @Y+ C 1 impliesthatX C Y. Conversely, assume th&t C Y holds. For every, if

Og(Or(r DX Dqer OY)Dpeg 0O1)

holds, then this holds faf = 1, and sincélr(» 00 X O r 0 Y) also holds, we conclude than

p 0L, establishing thak @ Y+ C L holds. This concludes the proof of (1). Property (2)
follows from Lemma 8. In fact, by Lemma 11, the preservation of least upper bounds is also a
consequence of property (1) just proved abave.

Putting things together, we have the following lemma showing that every phase structures
gives rise to a core Girard structure.

Lemma 18 Given a phase structur® = (P, s, 1, L), if we defineX @ Y = (XY)1+ and
| =1+, thenD = (P, C,®,1,1) is a core Girard structure, the lattice operations being
definedbyX AY =X NYandX vY = (X UY)*+L.
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Proof. This follows from Lemma 17 and the fact that is a closure operatioi

Girard defines validity in a phase structure almost as we did in Definition 12, but in terms
of valuations into the set of facts dt, andP | A[v] holds iff 1 O v(A) (see Girard [7]).
Recall thatl = {1}*+. Thus, given any fack, if 1 O X then{1} C X, which implies
{1}++ € X+4 thatisl C X, sinceX is a fact (X = X1+). Conversely, ifi C X, since
| = {1}*+, then 10 X. Thus, for a factX, we have 10 X iff | C X. This establishes the
equivalence of Girard’s notion of validity in terms of phase structures and the notion given in
Definition 12.

Interestingly, every core Girard structure arises from a phase structure, as shown in the
following lemma.

Lemma 19 Given a core Girard structurd = (D, < e, 1,~), if we define the set by
1 ={2 OD |z <0}, thenP =(D,s, 1, 1) is a phase structure such that the core Girard
structureD’ = (D14, C, ®,1,1 ) defined in Lemma 18 is isomorphico

Proof. Given any subseX of D, letlowern(X') denote the set of lower bounds &f and
uppelX) denote the set of upper boundsXf Also, let~ X ={~ z | z O X}. One easily
verifies thatX+ = lower(~ X), uppefX) =~ lower(~ X), and X+ = lower(upperX)).
Thus, sinceD is a complete lattice, every facf++ = lower(uppe(X)) of P corresponds
uniquely to the lower idealower(\y X), which itself corresponds uniquely 8¢ X. This
mapping establishes a bijection betwdenand D’, and it is easily checked that it is an
isomorphism

In Lemma 16, we have shown that the semantics given by core Girard structures (or
equivalently phase structures) is sound with respect to the proof system. We can also show
that the proof system is complete w.r.t. this semantics.

Lemma 20 If a sequent + Aisvalid (in phase semantics), then it is provableliin.

Proof. First of all, note that it is enough to prove completeness for sequents of the form
— A,i.e. propositions. Atleast two proofs can be given. The first one, suggested by Avron [2],
consists in two steps. The first step is to prove completeness w.r.t. core Girard prestructures.
For this, define an equivalence relatica on propositions as follows:A = B iff both
sequentsA + B andB + A are provable. Then, define an algebraic structure on thB sét
equivalence classes modu by setting

1=[1],
0=10],
1=11,
0=[L],

[A] || [B]=[A} B],
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[A]l « [B] =[A® B],

[A] v[B]=[A® B,

[A]A[B]=[A & B],
~ [4] =[47],

and define ] < [B] iff A+ B is provable. One can then check tiat (D, <,s,1,~)is

a core Girard prestructure. Note thakl1[A] iff A is provable. If we pick the valuation

such that(P) = [P] for every atomP, thenv(A) = [A], and if A is valid, then in particular

D E A[v], that is 1< [A], and thusA is provable. The second step is to show that every
core Girard prestructure can be embedded into a core Girard structure, and this in preserving
existing least upper bounds and greatest lower bounds. This is easily shown by using the Mac
Neille completion and Theorem 1.

The second proof due to Girard consists in producing a particular phase structure and
a particular valuation, such that validity amounts to provability (see Girard [7]). This
construction appears to be another way of constructing the strubtuaiefined in the first
proof, in terms of a phase structure. Note that theMetf finite multisets of formulae
is a commutative monoid under multiset unidh{ A = I, A), with identity (0. If we let
1 ={r| T isprovabld, we can check that the sets of the form

Pr(A)={| ~T,A isprovabld,

are facts, becausBr(A4) = Pr(4+)L. If we define the valuatiom such thaw(P) = Pr(P)
for every atomP, we can check tha#(A) = Pr(A). SinceA is valid, D E A[v], that is,
00 Pr(A), and thus is provabled

We now extend the above semantics to (full) linear logic. For this, we need to add a unary
operatiori] to interpret the connective bf course.

Definition 15 A Girard structure is a sextuplé = (G, <,, 1, ~, 1) such that the quintuple
(G,<,s,1,~) is a core Girard structure, andl: G — G is a unary operator satisfying the
following properties: foralle,y O G,

L o@=z1

(2) O(e) < =;

() 0@ (=) =0(=);

(4) O(=) « O(y) =0O(z A y).

Definition 12 is extended to the exponentials as follows:

v(!4) =0(v(4)),
v(24) = ~ O(~ v(4)).
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The following lemma is needed to show soundness of this semantics.

Lemma 21 In every Girard structure, the following properties hold:
1) 0@ <L
(2) O() ey <,
(3) O(z) « O(z) =0O(=);
(4) Ifz < ythend(z) <O(y);
(5) If 1 < z thenO(z) = 1;
(6) IfO(z) < y thenti(z) < TI(y);
(7) fzpe...02, <gythend(z1)e...eO(z,) <O().
Proof. These properties are easy to prove. Property (1) holds because

O(z)=0()e1=0O(x) e O1)=O0(x A1) <zA1l< 1L

For (2), since by (11(z) < 1, by monotonicity ok, we haved(z) e y < 1oy = y. For (3),
O(z) e O(z) =O(x A 2) =0O(z). For (4), Ife < ythenz =z Ay. ThusO(z) =0(z Ay) =

O(z) « O(y) < O(y), by (2). Itis clear that (5) follows from (1) and (4). df(z) < y, by

(4), we havea(@(z)) < O(y), and sinced(d(z)) = O(x), we haver1(z) < O(y). Since
O(z) <z, ifzre...0z, <ythend(zy)e...e O(z,) < y. Sinced(z) o« O(y) =L(z A ),

we haved(z1)e ...e O(z,) =O(x1 A ... A2y,), and sad(z1 A ... AN zy,) < y. By (6), we get
O(x1 A ... Azy) <O(y), thatisd(z1) e ... e O(z,) <O(y). O

Lemma 22 If I + Ais provable in linear logic, then for every Girard structu@®and every
valuationv, G E (I' + A)[v]. As a corollary[” + A is valid.

Proof. Immediate by Lemma 211

We now give the following construction which shows how a Girard structure arises from a
core Girard structure.

Theorem 2 Let G = (G, <,s,1,~,00) be a Girard structure. The seF defined by
F={z 0G|z =0O(=)} satisfies the following properties:

(1) F is closed under arbitrary least upper bounds. In particutat] F;

(2) Fis closed undeg;
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(3) z o &z =z for everyz [ F,
(4) The identity elemeritis the greatest element &f.
Furthermore, for every 0 G,0(a) =V{z O F |z < a}.

Conversely, given a core Girard structu(&’, <,s,1,~) and a subsef of G satisfying
the properties (1)—(4), then if we defineby(a) = V{z O F | # < a}, the sextuple
G =(G,<,s,1,~,0) is a Girard structure.

Proof. Let {z;};0s be any family of elements fron#, i.e, such that(z;) = =z;
forall ¢ O J. Sincez; < V;ps{z;}, by monotonicity of0 (proved in Lemma 21),
O(z;) < O(V;0s{z;}), and sincel(z;) = z; for all i O J, we haver; < O(V;ns{z;}),

and thus
V Az} <a(V {z;}).

07 07

Sincer1 (V; o7{z;}) < V;os{z;} holds by property (2) of the definition of (Definition 15),

we have
O(V {z}) = V {z5},
i0J i0J
showing thatF' is closed under nonempty least upper bounds. Sir@g < z forallz 0 G,
in particular1(0) < 0, which implies thatd(0) = O, sinceO is the least element of.
Therefore,F is closed under arbitrary least upper bounds.

Forz,y O F, we havez « y =(z) « O(y) = O(z A y), by property (4) of the definition
of O. Thus,O(z « y) =0O0(x A y)) = O(= A y), by property (3) of the definition aff.
Therefore[d(z e y) =z o y.

Foranyz [0 F,wehaver e« z =[0(z) e« d(z) =O(xAz) =0(z) = . Thereforez e z = .

Sincedd(z) < 1 by property 1 of the definition @fi, for anyz [ F, we haver =0(z) < 1.
Also, by Lemma 21;1(1) = 1. Therefore, 1 is the greatest elemenfof

For everyz O F, by monotonicity ofd, z < a impliesd(z) < O(a), that isz < H(a),
since(z) = . But we also havel(d(a)) = O(a), that is,d(e) O F, and thus
V{z O F |z < a} =0O(a) for everya O G. This concludes the proof of the first half of the
theorem.

Conversely, assume thAthas the properties (1)—(4), and definesuch thati(a) = \V{z O
F |z < a}. First, note that sinc# is closed under arbitrary least upper bourdés) O F
for everya U G, and obviouslyi(a) =aif a O F.

Clearly,00(a) < aforalla O G, property (2) of the definition af].
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Since 1 is the greatest elementffwe also havel(a) < 1 for alle O G, property (1) of
the definition of1.

SinceF is closed under arbitrary least upper boumtigy) = \{z O F |z < a} O F, and
thus,0@O(a)) = V{y O F |y < O(a)} =0O(a), property (3) of the definition afl.

Sincez < 1 for everyz 0O F, for z,y O F, we havez « y < z o« 1 = 2 and
zey < ley=y,whichimpliesthat e y < zAy. Thus,ae b < V{z O F|z < aAb},that
iS,a « b < O(a A b), which implies(a) « () < O(a A b), sinced(a) < a, andd(b) < b.
Also, sinces distributes ovel/,

D@ «0@) = (\{z OF [ <a}) o (\/{y OF|y<b})
:\/{moy|m,y OF, ¢<a,y<b}.

Sinced(aAbd) <aAb<a O@Ad)<anb<bO@Ab) OF,andz «z = z for all
z O F, we havad(a A b) < O(a) « O(b). Thereforeq(a) « T(b) =T (a A b), property (4) of
the definition ofJ. This concludes the proof of the second half of the theorem.

One can show that in every core Girard structdreéhe subset
F={z UOG|zez=zandz <1}

satisfies the properties of Theorem 2. Thus, we obtain the following lemma, showing that
every core Girard structure can be extended to a Girard structure.

Lemma 23 Every core Girard structur& can be extended to a Girard structure by defining
the operator] such thati(a) =V{z < aAl|z ez =z}

Another interesting property of showing thatitis the fixed point of some simple operators
is given in the following lemma.

Lemma 24 In every Girard structurés, for everya [ G, we have the following identities:

1) O(a) =(a A l)ed(a),

and
(2)O(a) = (a A1) A [@O(a) e O(a)).

Proof. First, we prove (1). (i) Recall from Lemma 21 thiafa) « O (a) =O(a).
(i) We haved(a) =O(a) e 1 =(a) e O(1) =0O(a A 1). (iii) If 2 < 1, thenz « y < y, Since
zey<ley=gy. SinceaAl< 1, using (iii), we haved A 1) ¢« ((a) < O(a). Using
(if) and the fact that(z) < z for everyz U G, we haved(a) =0O(e A 1) < a A 1. Using
(i) and the monotonicity o, we havel(a) = O(a) « O(a) < (a A 1) e O(a). Therefore,
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O(a) = (a A1) e O(a), as desired. We now prove (2). Singéa) « (a) =0(a), we just have
to prove thatd(a) = (a A 1) A(a). Sinced(a) < a andd(a) < 1, we haved(a) < a A 1,
and thusi(a) = (a A 1) AO(a). O

Lemma 24 shows thati(a) is a fixed point of the operatar — (a A 1) « &, fOr every
a UG (and also of the operatar— (a A 1) A (z o z)). SinceG is a complete lattice, and this
operator is monotonic, by Tarski's fixed point theorem, the set of fixed points of this operator
is a complete lattice. In particular, sinedlistributes ovel/, the least fixed point of this
operator is given by the expression

\/ ®(a A 1).

n>l n

This connection probably deserves further investigations. The interest in the idei)ty

(a A1) A ([@(a) « O(a)) stems from the fact that it implies the propertiest{{(z) < a;

(i) d(e) < 1;and (iii)d(a) « d(a) = O(a) (due to Yves Lafont). Inturn, these properties imply
the soundness of the inference rulderéliction left), (weakening left), and €ontraction

left). Thus, we obtain an equivalent proof system for linear logic if we add the axiom
IAoo (A& 1)&('A ® ! A) and delete the above rules. By duality, we obtain an equivalent
proof system for linear logic if we add the axiom 8o (A @ L) @ (7?4 || ?4) and delete the
rules @ereliction right), (weakeningright), and €ontraction right).

In order to interpret ! and ?, Girard defines an extension of the notion of phase structure

that he calls a topolinear space (see Girard [7]). We give this definition and compare it with
Definition 15.

Definition 16 A topolinear space is a tripléP, L, F'), whereP is a phase structure, an#l is
a subset o, the set of closed facts, having the following properties:

(1) Fis closed under arbitrarng. In particular,1 [0 F;
(2) F is closed under (finite}) (par);
(3) zff =z =z foreveryz U F;

(4) The factL is the least element &.

The linear negation of a closed fact is calledogen fact
Given a topolinear space, given a valuatigithe factv(! A) is defined as the greatest open

fact included inv(A), andv(?4) is defined as the least closed fact containi(d). In other
words:

v(ld)= ({XH X OF, Xt Co(@)})™, (A= |{X OF|X 2v(4)}.
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Using the correspondence between core Girard structures and phase structures given by
Lemma 18, it is clear that the subsEt of Theorem 2 is the collection of open facts of
Girard’s topolinear space, and that the di&fam of v(?4) corresponds exactly to the definition
O(a) = V{z O F | z < a} (by the definition of the least upper bound of a fact).

As in the case of core Girard structures, not only do we have soundness, but also
completeness.

Lemma 25 If a sequent + Aisvalid (in Girard structures), then it is provable En'ng’?.

Proof. Asin Lemma 20, at least two proofs are possible. The first proof is an extension of
Avron’s proof [2]. It is necessary to extend the operatibdefined orD by I ([! A]) =![ 4], to
the completion by cut®' of the core prestructur@. For everyy [ Df, we define

D'y =\V{oE)} |2 0D, {«}f <y}.
Using the fact thas distributes over arbitrary least upper bounds, we can provethatas

the required properties (in particular, tiat(a) « 00 1(5) = O T(a A b)).

The other proof is due to Girard (see [7]). Itis a generalization of the proof that we sketched
in Lemma 20. We consider the phase structure consisting of the commutative monoid of
multisets of formulae, and defin® to be the family of arbitrary intersections of facts of the
form Pr(?4). One can then prove that a topolinear space is indeed obtained (this uses the fact
that} distributes over arbitrary intersections). Then, it is easy to prove thdi4) = Pr(?4),
and completeness follows immediatety.

Presently has the property that (a) « O(b) =O(a A b), and it is also easy to verify that
O(a A b) < O(a) AO(b), butin general, we do not have(a A b) = (a) A O(d). In the next

section, we propose to modify the proof rules and the semantics sottizat®B and A & ! B
are equivalent.

6 A Variation On the Semantics of the Connective !

On the semantic side, we strengthen Definition 15 as follows.

Definition 17 A Girard topostructure is a sextuplé = (G, <,s,1,~,0) such that the
quintuple (G, <,s,1,~) is a core Girard structure, andl:G — G is a unary operator
satisfying the following properties: for all,y [ G,

O o@®=%

(2) O(e) < =;

() 0@(=)) =0(e);
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(4) O(=) e O(y) =0( A y).
(5) O Ay)=0(=) AO(y).

From (4) and (5), we have that(z) « O(y) = O(z) A O(y). Definition 12 is extended to the
exponentials as before:

v(!4) =0(v(4)),
v(24) = ~ O(~ v(4)).

We add the following rules to the definition of the rules for the exponentials

Definition 18
IA,'B, T+ A
—— (1 & left)
IA&!B,T+ A
M- A,?A4,7B (2: right
Fr—-A2Ad?B g

The system obtained by adding the rules of Definition 18 to the rules of the sﬂsfté;:ﬁis
denoted aﬁ:ing?’!&’?@. Soundness is easily obtained.

Lemma 26 If [ + A is provable in the system of linear logiting*“'®®, then for every
Girard topostructures and every valuatior, G F (I + A)[v]. As a corollary[” + Ais valid.

Proof. Immediate by Lemma 21 and the fact thgiz) « O(y) =0 (x) AO(y). O

Theorem 2 is extended as follows.

Theorem 3 Let G = (G, <,s,1,~,0) be a Girard topostructure. The sdt defined by
F={z 0G|z =0O(=)} satisfies the following properties:

(1) F is closed under arbitrary least upper bounds. In particutaf] F;
(2) F is closed under (finite) greatest lower bounds.

(3) Fisclosed undey;

(4) o z =z for everyz [ F,

(5) The identity elemeritis the greatest element &f.
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Furthermore, for every 0 G,0(a) =V{z O F |z < a}.

Conversely, given a core Girard structu(&’, <,s,1,~) and a subsef of G satisfying
the properties (1)—(5), then if we defineby(a) = V{z O F | # < a}, the sextuple
G =(G,<,s,1,~,0) is a Girard topostructure.

Proof. Properties (1), (3)—(5) are verified as in the proof of Theorem 2. $irfeer b) =
O(a) AO(), if a =0O(a) andb =1(b), thena A b =0O(a) AO(b) =O(a A b), proving (2).

Conversely, sincel(z) O F for everyz O G, by (2),0(e) AO(b) O F. Sinced(z) =z
forz O F,00(a) AO(b)) =0O(a) AO(b). On the other hand, as in the proof of Theorem 2,
we havel(z) « O(y) =O(z A y) andO(d(z)) =O(=), and so,

O0@(e) AOG) =0@0(a)) «O@O(®)) =0O(a) e O(b) =O(a A b).
Thus,0d(a A b) =0O(a) A T(b), property (2) of Definition 1703

We can also extend the completeness lemma (Lemma 25) to topostructulélsfm'ﬁﬁl&’?@.

Lemma 27 If a sequent” + A is valid (in Girard topostructures), then it is provable in
Linf?%,

Proof. As in the proof of Lemma 25, it is necessary to extend the operatidefined orD
by O ([! A]) =![ 4], to the completion by cut®t of the core prestructur®@.? For everyy [ Df,
we define

0w =V{o@} |« 0D, {z}! <y}.

Using the fact thas distributes over arbitrary least upper bounds, we can provethatas
the required properties, in particular, tiat(a) « 0 T(6) =0 T(a A b). We can also prove that
0O f(a A b) =00 1(a) A0 T(), using the fact that 4 &! B) o— !(A & B) is provable, and that
in the completion by cutsXt A YT = XtnYt O

We now turn to proof nets.

7 Proof Nets for Multiplicative Linear Logic

The same linear sequent can have different proofs differring for bureaucratic reasons,
namely, that inferences are applied in a different order. For example, the sequent

-(A® By C,At § B+, Cct

2Recall that in the completion by cuts, for every subKetC D, we haveX' = loweruppe(X)), and in
particular, wherX = {z}, we have{z}! = lower(z).
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has the following two proofs

- A, At ~ B,B*
(®)

- AQ B, At Bt
)
- A® B,A+§ B+ —C,Ct

(®)
- (A® B)® C,At { B+,Ct

and

- A AL + B, Bt
(®)
- AQ®B,A+, Bt - C,CH

(®)
- (A® B)® C,AL, B+, Ct )

-(A® B)® C,A+ § B+, C*

Clearly, these two proofs differ in an inessential way, and it should be possible to come
up with a notation akin to natural deduction so that these two proofs are identified. This is
possible for the fragment ahultiplicative linear logicinvolving only ®, §, and~, using the
notion of proof net due to Girard (see Girard [7], and Girard, Lafont, and Taylor [6]). First, we
recall a defirtion.

Definition 19 A literal is either a propositional letteP or the negationP+ of a propositional
letter.

Proofs nets are certain unoriented connected graphs whose nodes are labeled with propo-
sitions. In order to define these graphs, we consider that labeled nodesritawand exit
pointsdefined as follows: a literal has a single entry and a single exit, and both a tensor and a
par have two entry points and a single exit point.

Definition 20 A proof net (of multiplicative linear logic) is a finite unoriented connected
node-labeled graph with the following properties:

(1) For every node labeled with l&eral, there is a single arc from the entry point of that
literal to the entry point of a literal with the same name and the opposite sign;

(2) For every node labeled with a tensdrg B or a par A § B, there are two distinct nodes
labeled withA and B respectively, such that the exit afis connected to one of the two
entry points ofA ® B (resp. A {f B) and the exit ofB is connected to the other entry
pointof A ® B (resp. A § B), each by a single arc;
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(3) The exit point of every node is connected to at most one other node.

Nodes whose exit points are not connected to any node will be called terminal nodes, or
leaves.

For reasons that will become clear when we discuss the criterion for checking that a proof
net corresponds to a sequential proof, we driawi@ht) inferences using a broken line, and
(®: right) inferences using a solid line. The following is an example of a proof net:

A B ‘
AQ®B C At Bt

(A®B)&C c+ ALy B+

Another example of a proof net is the following:

A ___ B
D+ ct C Af B At Bt

D DtecCt C® (Al B) At ® B+

As we shall see shortly, there is an algorithm for converting any sequential proof (for
the multiplicative fragment of linear logic considered here) into a proof net. However, the
definition of a proof net is a bit too liberal, due the local nature of the conditions involved,
and some proof nets are unsound, in the sense that they do not correspond to any sequential
proof. For technical reasons, we will need a slightly more liberal notion of a proof net. In
fact, it turns out that this notion corresponds precisely to the notion of a sequential deduction,

a sequential deduction being similar to a sequential proof, except that leaf nodes can also be
labeled with arbitrary sequents A, whereA is a proposition, rather than only axioms.

Definition 21 A deduction net (of multiplicative linear logic) is a finite unoriented connected
node-labeled graph satisfying properties (1) and (3) of Definition 20, and such that if property
(2) does not hold for some node, then both entry points of such a node are not connected to
any other node.
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Thus, a proof net is a deduction net that also satisfies property (2) of Definition 20. Contrary
to a proof net, a deduction net may have nodes whose entry points are not connected to any
other node. Such a node is callediaitial node, or root. The following lemma is easily
shown.

Lemma 28 Letl1 be a deduction net such thatof its terminal nodes are labeled with some
propositionsAs, .. ., Ag, and letl’ be some other deduction net havik@f its entry nodes
labeled with Ay, ..., Ax. The graph obtained by graftinfl’ onto N by identifying each
selected terminal node 6f labeled withA; with the corresponding entry node [df labeled
with 4; is a deduction net.

One can define a transformation that produces a deduction net from a sequential deduction,
but not all deduction nets come from a sequential deduction. In order to single out which
deduction nets really correspond to sequential deductions, one needs a global criterion. In his
seminal paper, Girard gave such a criterion for proof nets, the “long trip condition” [7]. Later,
Danos and Regnier proposed a different criterion [5].

We now present the Danos-Regnier criterion for soundness of a deduction net. This
criterion is equivalent to Girard’s original “trip conditions” criterion, but it is somewhat more
manageable. It is convenient to consider that there are two kinds of edges:

(1) Edges connecting the exit dfandB to the entries of a tensegfr® B and edges connecting
the entry of somet to the entry of somet*, considered asolid;

(2) Edges connecting the exit dfand B to the entries of a pad § B, considered asoft

Definition 22 Given a deduction néi, a switch graph associated wifh is any subgraph of
I obtained by deleting exactly one of the two soft edges associated with every par hbde in
(and keeping the other soft edge).

The Danos-Regnier criterion for soundness of a deduction net is stated as follows (see Danos
and Regnier [5], and Danos [4]).

Definition 23 A deduction nell satisfies the Danos-Regnier criterion, or is sound, iff every
switch graph associated wiffi is a tree.
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For example, the following is a sound proof net, since both switch graphs are trees:

|
A B AJ_ BJ_

A®B Aty B+

On the other hand, the following proof net is unsound, because the (only) switch graph has
acycle.

A B AJ_ BJ_
A® B Al ® Bt

We now give an algorithm for transforming a sequential deduction into a deduction net, and
show that the resulting proof net satisfies the Danos-Regnier criterion.

Lemma 29 There is algorithmA which, given a deductiofil of a multiplicative sequent
— Aj,...,A,, produces a deduction net (M) whose terminal nodes are in one-to-one
correspondence with the occurrences of formulge. . ., 4,,. Furthermore N (M) satisfies
the Danos-Regnier criterion.

Proof. The algorithmA/ is defined by induction on the structure of the deducfion

Casel: I consists of a single formula A. ThenA/ (M) is the deduction net consisting of
the single noded. Obviously N (M) satisfies the Danos-Regnier criterion.

o [ consists of an axiom A, AL. ThenA/ (M) is the proof net

]

A At
Obviously,N (M) satisfies the Danos-Regnier criterion.
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Case2: I is of the form

ThenN (M) is the proof net

obtained by grafting the exit nodesand B of /(1) respectively to the entry nodesand

B of the elementary proof net corresponding to theight) inference. IfA/(M,) satisfies the
Danos-Regnier criterion, then it is easy to verify thafi1) also satisfies the Danos-Regnier
criterion.

Case3: I is of the form

My P
—1,A —AB

(®: right)
—,AAQ B

ThenN (M) is the proof net

N(y) N ()
A B
AR B

obtained by grafting the exit nod€ of /(1) and the exit nodeé® of A/'(IM,) respectively to
the entry nodeg and B of the elementary proof net corresponding to erfght) inference.
If M(M1) and A/ (M) satisfy the Danos-Regnier criterion, then it is easy to verify M)
also satisfies the Danos-Regnier criteripn.

The transformatiof identifies sequential deductions that differ only for inessential reasons,
like the order of inferences. For example, the two sequential proofs

- A, At ~ B,B*
(®)

- AQ B, At Bt
)
- A® B,A+§ B+ —C,Ct

(®)

-(A® B)®C,A+§ B+, C*
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and

- A, At ~ B,B*

(®)
- AQ®B,A+, Bt - C,CH
(®)

- (A® B)® C,AL, B+, Ct )

-(A® B)®C,A+§ B+, Ct

are mapped to the same proof net:

© |
AQ®B C At Bt

(A®B)&C c+ ALy B+

We now wish to show that the Danos-Regnier criterion insures that every proof net that
satisfies the criterion is of the fort’(M) for some sequential deductidh This is proved
by induction on the number of nodes in the deduction net. The proof is quite easy when the
proof net has some terminal node labeled with a par, but the case when all terminal nodes
are labeled with tensors is tricky and requires a detailed analysis of the structure of deduction
nets. The problem is that splitting a proof net by chosing any arbitrary terminal node labeled
with a® and deleting the two arcs incoming to this node may not yield sound proof nets. For
example, splitting the proof net below at the nodte @ B+ doesnot yield proof nets. On
the other hand, splitting either at node- @ C+ or at nodeC' ® (A { B) yields sound proof
nets.

A __B
D+ ct C AY B A+ Bt

D DtecCt C® (Al B) At ® B+

The key observation is contained in the following lemma.
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Lemma 30 LetI1 be a deduction net whose terminal nodes are all labeled with tensors, let
A ® B be one of these tensors, and ll&tbe the subgraph obtained frofh by deleting this
terminal node and the two edges frafnto A ® B and fromB to A ® B. If the criterion
holds forl and A and B are connected ifl’, then there is a sefC1 § D1,...,Cx §f Dy} of

par nodes such that the graph’ obtained fronT1’ by deleting all edges fror; to C; § D;

and fromD; to C; § D;,i =1,.. ., k, consists of three disjoint maximal connected components
which are deduction nets satisfying the criterion. Furthermore, without any loss of generality,
it can be assumed that one componidatcontains both4d and theC;, another componerii,
contains bothB and theD;, and the thirdM3 contains the”; | D;,i=1,..., k.

Proof. Let us examine closely what happens when there is a terminal node labglel
such thatd and B are connected in the subgraghdefined above.

e If A andB are connected ifl’, thenl' itself is connected. OtherwisB! would consist of
at least two disjoint maximal connected components, one of whichradiesntain bothA
and B, in which casel1 would not be connected, a contradiction.

e [’ contains some par nodg ff D. Otherwise, the only switch graph 6F would bell’
itself, and similarly for1, and botH1 andl’ would be trees. But themd and B would be
connected i, and this would imply the existence of a cycldina contradiction.

e For every pattp in M’ from A to B, there is some par nodg f D such that the patp
contains both edges fro6ito C § D and fromD to C { D. Otherwise, there is ifl’ a path
p from A to B which uses at most one of the two incoming edges into each par node. Then,
it is possible to pick a choice of the soft edgedih(and thus inf) involving the edges
used by the path, so that this is a path from to B in some switch graph dii’. However,
in I, this path yields a cycle together with the edges fuéno A®B and fromB to AQB.

e From the previous item, there is a €t §f D1, ..., Cy § D} of par nodes such that every
path inl’ from A to B contains both edges frodi; to C; §f D; and fromD; to C; § D;,
for somes, 1 < ¢ < k. The grapH1” obtained from’ by deleting all edges frord; to
C; 4 D; and fromD; toC; § D;,2=1,...,k, consists of three disjoint maximal connected
components. Furthermore, without any loss of generality, it can be assumed that one of the
components contains both and theC';, another component contains baghand theD;,
and the third contains th@&; | D;,2=1,..., k.

Let us first delete the edges frofy to C; § D; in M,z =1,..., k. We must obtain two
disjoint maximal connected components. Indeed, since every pathfiom A to B must
contain for some (1 < z < k) both edges fronC; to C; § D; and fromD; to C; {§ D;,

the resulting graph is not connected, and the maximal connected components comaining
and B must be disjoint. On the other hand, if we had at least three disjoint compoRénts,
would not be connected. Thus, we have two disjoint connected compofigrdsntaining

the C; and A (or symmetricallyB), andM"” containing theD;, the C; § D;, and B (or
symmetrically4). Let us now delete the edges fralqto C; f D; inM",i=1,...,k. The
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componenf1” must split into two disjoint connected components. Indeed, if the resulting
graph were still connected, then it would be possible to conAeahd B in N’ without
passing through some edge frdmto C; § D; for some: (1 < ¢ < k), a contradiction. But

we also cannot have more than two disjoint components arising ft¥msince otherwise

N’ would not be connected. Finally, note titnd theC; § D; (1 < ¢ < k) are not in the
same component. Otherwise, by chosing a switch gragh iof which the edge fron€;

to C; § D; (1 < i< k) is selected, we would obtain a cycle. Thus, we have three disjoint
maximal componentd]; containing theC; and A, I, containing theD; and B, andll3
containingthe”; §f D;,i=1,...,k.

e Itis easily checked thdi,, NM,, andll3, are deduction nets satisfying the criterion, and that
M3 has nodes labeled withh, § D1, ..., Cx | D among its entry points]

We can now prove the correctness of the Danos-Regnier criterion [5] (see also Danos [4]).

Theorem 4 A deduction nell can be obtained from some sequential deduction (i.e., is of the
form M (Mp) for some sequential deductidhy) iff every switch graph associated withis a
tree.

Proof. The necessity of the criterion has already been checked in Lemma 29. Thus, we turn
to the sufficiency of the criterion. The proof proceeds by induction on the number of nodes
in the deduction net. The case where the deduction net has a single node is clear. Otherwise,
there are two cases:

Casel. Some terminal node is labeled with a par, gay B. Consider the subgragh’
obtained fronT1 by deleting the terminal node in question and the two edges #dmA { B
and fromB to A §f B. We claim thafl’ is a deduction net satisfying the correctness criterion.
Indeed, if any switch graph obtained frdm is not a tree, we also obtain a bad switch graph
for I by putting back the nodd {| B and connecting it to eithet or B (but not both).

Case2. Every terminal node is labeled with a tensor.

This case is more delicate, as deleting any terminal néde B and the edges fromt
to A® B and fromB to A @ B does not necessarily yield a deduction net satisfying the
correctness criterion. However, we have the following claim:

Claim: There is a least some terminal node labele® B such that the subgraph’
obtained fronT1 by deleting this terminal node and the two edges ftéito A ® B and from
B to A ® B is composed of two disjoint deduction nét$ (having A as a terminal node) and
M (havingB as a terminal node) which both satisfy the criterion.

If there is a terminal node labeled with a tensbiw B and the claim fails, sincé€l is

connected and has at least two nodes, nodes labebatd B connected to the nodé ® B
must exist inl1, and A and B must be connected iA’, since otherwise, there would be at
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least three maximal connected components, contradicting the fadi satonnected. Thus,

we can apply Lemma 30, and there is af@€t § Di,...,Cx { D} of par nodes such that
the graphr” obtained froml’ by deleting all edges frond’; to C; § D; and from D; to

C; 4 D;,i=1,...,k, consists of three disjoint maximal connected components which are
deduction nets satisfying the criterion. Furthermore, without any loss of generality, it can be
assumed that one componé&ht contains bottd and theC;, another componeffit,; contains
both B and theD;, and the third13 contains the’; §f D;, ¢ = 1,...,k. Sincells is strictly
smaller tharf1, we conclude that the claim holds fldi by applying the induction hypothesis.
Thus,MM3 is composed of two disjoint deduction nét§ andl% and of a tensor nod4’ @ B’
connected ted’ in M5 and toB’ in N4. Also observe that the grafh— M3 obtained fronT1;,

IM> by reconnecting the nodé ® B to A in N1 and toB in I, and by reconnecting every
nodeC; f| D; to bothC; in My and toD; inMMy, ¢ =1,...,k, is a deduction net satisfying
the criterion. The node§: § Ds,...,Ck § Dy must be either all irf15 or all in M%, since
otherwise 1 — N3 being a deduction net, it would be possible to create a cycle between
and B’ in some switch graph dfl. But then,A’ ® B’ is a terminal node of1 satisfying the
condition of the claim.

This concludes the proof of the claim, and thus the proof of the thearem.

If we observe that the cut rule

HIM,A A AL
-1,A

(cub)

behaves just like the following special case of tRe (ight) rule

T A A AL
LA A® AL

(®: right),
we can extend the above treatment of proof nets, including Lemma 29 and Theorem 4, to proof
nets includingeut links which are links of the form

A At
CuT

Every node labeled with CUT is necessarily a terminal node.

The proof of Theorem 4 yields ai(n?)-time algorithm for testing whether a deduction net
comes from a sequential deduction. This is not a trivial result, since the naive method yields
an exponential-time algorithm. Girard has announced the existence @& algorithm,
but as far as we know, no such algorithm has been published. The algorithm presented below
works recursively. If the deduction net only has axiom links, the algorithm succeeds iff the
deduction net consists of a single axiom link betweeand A+ or of a single noded (for
some propositiom). If the deduction net has some terminal node labeled with a par node
A | B, test recursively the subnets obtained by deleting the edgesArprB to A and toB.

If the deduction net has terminal nodes only labeled with tensor nodes, try to find a splitting
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tensor node as follows. First, for each terminal ndde B, delete the edges fromh ® B to

A and toB. Then, find the maximally connected components of this graph. If the resulting
graph is connected, the algorithm stops with failure. Otherwise, some terminal node labeled
with a tensord ® B has been found such thatand B belong to two disjoint deduction nets

M1 and, after the edges from @ B to A and toB have been removed from the original
deduction net (there may be several choices, just consider the terminal nodes in some fixed
order and pick the first one). Then, test recursively the sulbhesndll,.

Since maximally connected components can be found in linear time, the cost of finding a
splitting tensor i< (n). Itis then clear that the algorithm runs@rn?).

Since a proof net is a special deduction net, we also obtaifl(@f)-time algorithm for
testing whether a proof net comes from a sequential proof.

8 Conclusion

We have provided an introduction to linear logic, focusing on its propositional fragment.
In particular, we describe an algebraic semantics for linear logic, phase semantics. Contrary
to Girard’s original presentation [7] in which the notions of closure operation and Galois
connection are implicit, we present phase semantics explicitly as a specific instance of a Galois
connection. We hope that such an approach helps to understand better the motivations for this
semantics, and also the reason why linear logic is sound and complete for this semantics. We
also define proof nets for multiplicative linear logic and give a direct proof of the correctness
of the Danos/Regnier criterion. This proof relies on a purely graph-theoretic decomposition
lemma which appears to be new. As a corollary, we obtaif @?)-time algorithm for testing
the correctness of a proof net. The existence of such an algorithm was conjectured before, but
our algorithm appears to be original. In a forthcoming paper, we intend to cover the quantifiers,
proof nets for full linear logic, cut elimination, and the semantics of coherent spaces.
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9 Appendix: Summary of Notation

The logical constants, logical connectives, and semantic symbols of linear logic are listed
below.

multiplicativetrue
multiplicativefalse

additivetrue

additivefalse

multiplicativeand (tenso)
multiplicativeor (par)
addittiveand

addittiveor

linear (multiplicative) implication
linear (multiplicative) equivalence
linear (multiplicative) negation
of course

why not

interpretation of-

. interpretation of

I interpretation of

O interpretation of !

(o]

NT R? | @ RTQ O~

2

Other symbols are listed below.

binary union

binary intersection

union of a family

intersection of a family
binary greatest lower bound
binary least upper bound
greatest lower bound of a family
least upper bound of a family
set membership

set inclusion

empty set

functional mapping

partial order

closure operation
equivalence relation

AT ONO<><>DCDC
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