SRC Technical Note

1996-002a

September 12, 1996

Minor correction, January 5, 1997

The Module Structureof TLA+

Ledlie Lamport

Systems Resear ch Center
130 Lytton Avenue
Palo Alto, CA 94301
http://Mmww.research.digital.com/SRC/

Copyright 1997 Digital Equipment Corporation. All rights reserved

Back to TLA home page

This note informally describes the syntax and semantics of TLA+ down to, but not including, the level of
expressions. Its main purpose is to introduce and explain the congtructs for including modules that were
introduced in August, 1996.

Table of Contents

Modules, Declarations, and Definitions
Including One Module in Another
Modules Insde Modules

Locd Definitions

Higher-Order Operators
Assumptions and Theorems

1d15

* Expresson Levels
e A Closer Look at |ngtantiation
+ Notes

M odules, Declarations, and Definitions

A TLA+ specification is organized as a collection of modules. A module looks like this_ (Note 1)

----------- MODULE DirectedG aphs ------------

The body conssts of a sequence of statements, where a statement is a declaration, definition,
assumption, or theorem. We will ignore assumptions and theorems for now. Horizontd lineslike

can appear between statements; they are purely decorative.

A declaration statement looks like this;
CONSTANTS Node, Edge

It adds to the module the declarations of Node and Edge as congtant symbols. TLA+ aso dlows
varigble symbols, identified by the keyword "VARI ABLES". (Note 2) A declared symbol isa"free
parameter” of the module.

A definition gatement looks like this.
NonEdge == (Node \ X Node) \ Edge

Assuming that Edge and Node are declared as above, this statements adds to the module the
definition that defines the symbol NonEdge to equd the expression

(Node \ X Node) \ Edge

We will not worry about the meaning of this and other expressions.

We can follow this definition statement with the definition statement
NonTri vi al NonEdge == NonEdge \ {<<n, n>> : n \in Node}

Thisdefinesthe symbol NonTr i vi al NonEdge to be the expression
((Node \ X Node) \ Edge) \ {<<$n, $n>> : $n \in Node}

Observe that to obtain this definition, we replace the defined symbol NonEdge by its definition, and
we replace the bound variable n with anew symbol $n that cannot be declared or defined by the
USer.

2015

In thisway, a definition dways defines a symbol to equa an expresson containing only declared
symbols, bound varigbles that are different from any symbols typed by the user, and the built-in
operators of TLA+ like\ x and\ .

Symbols can aso be defined to equal operators that take arguments. (Note 3) For example,
Nbrs(n, m == <<n, > \in Edge

defines the symbol Nbr s to be an operator that assignsto any expressonsexp_1 and exp_2 the
expresson

<<exp_1l, exp_2>> \in Edge
We will denote this operator
LAMBDA $n, $m: <<$n, $n»> \in \ Edge

We use LAMVBDA only to describe the semantics of modules; it is not an operator of TLA+. (As
before, we replaced the bound variables n and mby "untypableé’ symbols $n and $m) (Note 4)

TLA+ dlows you to define prefix, infix, and postfix operators. For example, writing
n ?? m== <<n, nk> \in Edge
defines the infix operator 22 to be the same as the ordinary operator Nor s. (Note 5)

In adefinition, the expression to the right of the "==" can contain only TLA+ primitives, symbols thet
have dready been defined or declared, and definition parameters (for example, the symbolsn and m
in the definition of Nor s). Circular definitions are not alowed. (Recursve definitions will be
discussed esewhere)

Including One Module in Another

One builds large hierarchica specifications by building a new module "on top of" old modules. One
way to do thisis with the EXTENDS statement at the beginning of the module. The Satement

EXTENDS Foo, Bar

smply adds the declarations and definitions from modules Foo and Bar _(Note 6) to the current
module. (It adds assumptions and theorems, as described below.) This has approximately (Note 7)
the same effect as inserting the body of those modulesin the current module.

The other way to use an existing module is with the | NSTANCE statement, which ingtantiates

(subgtitutes for) the modul€e's declared symbols. Suppose that module Di r ect edGr aphs declares
the symbols Node and Edge, and defines the symbols NonEdge and Nor s, as above. Consder the

following module

CONSTANT S

3015

Edge == { <<m n>>\in S\X S: m\inn}

I NSTANCE Direct edG aphs WTH Node <- S, Edge <- Edge

The NSTANCE statement adds to module SG aphs dl definitions obtained from the definitions of

Di rect edG ahs by subdtituting s for the symbol Node and subgtituting the definition of Edge (from
module SGr aphs) for the symbol Edge. Thus, the | NSTANCE statement adds the following
definitionsto module SGr aphs:

* NonEdge isdefined to equd
(S\XS) \ { <<$m $n>> \in S\X S: $m\in $n }
* Nbrs isdefined to equa

LAMBDA $n, $m: <<$n, $me> \in
{ <<$m $n>>\in S\X S: $m\in $n}

Subgtitutions such asEdge <- Edge, inwhich asymbol is subgtituted for itsdlf, are quite common.
We therefore introduce the convention that if no substitution for a declared symbol s of an
ingtantiated module gppearsin the w TH dause, thenthereisan implicits <- s. (Thismeansthat s
must dready be declared or defined in the current module)) Thus, the | NSTANCE statement of
module SGr aphs above can be written

I NSTANCE DirectedG aphs WTH Node <- S

If there are no explicit subgtitutions, the "W TH" is omitted.

A module may need to use more than one ingantiation of the same module. For example, we may
want to use two different indances of the Di r ect edGr aphs module, with different subgtitutions for
the parameters Node and Edge. We can't et the same symbol have two different definitions, so we
must rename the defined symbols. The statement

Foo == I NSTANCE DirectedG aphs WTH Node <- S

isthe same asthe | NSTANCE statement in module SGr aphs above except that it defines the symbols
Foo. NonEdge and Foo. Nor s instead of the symbolsNonEdge and Nbr s._(Note 8)

Sometimes we need to use awhole family of ingantiations of the same module. We do thisas
indicated by the following example:

E(Set) == { <<T1, T2>> \in (SUBSET Set) \X (SUBSET Set)
T1 \subseteq T2 }

DE'S) == I NSTANCE Direct edG aphs
W TH Node <- SUBSET S, Edge <- E(S)

(T1 and T2 are bound varidblesin the firs definition.) For any expresson exp, this defines
DG(exp) . NonEdge t0 equa the expression obtained from the definition of NonEdge inthe

4015

Di r ect edGr aphs module by subdtituting SUBSET S for Node and subdtituting the definition of
E(exp) for Edge. In other words, DG exp) . NonEdge equals

((SUBSET exp) \ X (SUBSET exp))
\ { <<$T1, $T2>> \in (SUBSET exp) \X (SUBSET exp)
$T1 \subseteq $T2 }

We can think of DG(exp) . NonEdge asmeaning DG. NonEdge(exp) , where DG. NonEdge iS
defined to be

LAVBDA $S : ((SUBSET $S) \ X (SUBSET $S)) \
{ <<$T1, $T2>> \in (SUBSET $S) \ X (SUBSET $S)
$T1 \subseteq $T2 }

The | NSTANCE datement above Smilarly definesDG(exp_1) . Nor s(exp_2, exp_3) for any
expressonsexp_1, exp_2, and exp_3. Agan, we can think of DG(exp_1) . Nor s(exp_2, exp_3)
asmeaning DG. Nbr s(exp_1) (exp_2, exp_3), where DG. Nbr s isdefined to be

LAMBDA $S : LAMBDA $n, $m:
<<$n, $mp> \in { <<$T1, $T2>> \in (SUBSET $S) \ X (SUBSET $S)
$T1 \subseteq $T2 }

To summarize:

EXTENDS M
Adds to the current module the declarations and definitions (and assumptions and theorems)
from module M

I NSTANCE MW TH s_1 <- exp_1, ... , s_k <- exp_k

Thes_i mug be the declared symbols of module m (If k=0, we omit the "W TH". Omitting
an explicit ingantiation of adeclared symbol s from thew TH dlause is equivaent to adding
theindantiaions <- s.) This| NSTANCE expresson represents a mapping that assgnsto
each defined symbol ds adefinition ds_def , defined asfollows. Let EXP_i bethe
expression obtained from exp_i by replacing every symbol defined in the current module
with its definition, and replacing bound variables by new symbols. Welet ds_def equd the
expression obtained from the definition of ds in Mby replacing each declared symbol s_i
WIthEXP_i .

o |f thisinstance expression gppears as a tatement by itself, then each defined symbol
ds of Misdefined in the current module to equal ds_def .

o |f thisingtance expresson gppearsinthe datement IMp_1, ..., p_j) ==
| NSTANCE. . ., then | M ds isdefined to equa

LAMBDA $p_1, ... , $p_j : DS def
for each defined symbol ds of M where DS_def isobtained from ds_def by
replacing eech symbol p_i by thenew symbol $p_i . Wewritel M e_1,

e j).dsingdeadof IMds(e_ 1, ... , e_j).Ifj=0,wewritelM ==... and
I M ds ingdeadof IM)==... andI M) .ds.

5015

The keyword | NSTANCE can be followed by acommarseparated list of ingtantiations, asin

I NSTANCE Nat ural s, Sequences

If amodule Mhas no declared symbols, then EXTENDS Mand | NSTANCE Mare equivaent.
EXTENDS should be used only for bresking up what is logically a single specification into smaller
pieces. If Mis agenerd-purpose module, | NSTANCE Mshould be used.

Modules Inside Modules

One can put one module inside another, asin

I nner(x,y) == | NSTANCE | Mod

Module Mod islike any module, except that it can use the declared symbol z and any other
symbols declared or defined before it in module cut er . Module Mod may be used only indde
module cut er . (Note 9)

Submodules such as | Mod are often used in the following way. Suppose we want to define
Spec == \exists x, y : InnerSpec
wherel nner Spec is0me complicated formulainvolving x andy. The obviousway to do thisis

CONSTANT x, y

| nner Spec == ...
Spec == \exists x, y : InnerSpec

However, the definition of Spec isillegd becauseit violaes the following syntactic rule of TLA+:
* A symbol that is dready declared or defined cannot be used as a bound varigble.

(The purpose of thisruleisto prevent confusion between bound variables and defined or declared
symbols.) We could write

I nner Spec(x, y) == ...
Spec == \exists x, y : InnerSpec(x,Yy)

However, | nner Spec may be defined in terms of a sequence of other defined symbals, each of
which isdefined interms of x and y. We would haveto makex andy explicit parameters of dl
those definitions. Instead, using the module structure in the example above, we can put the definition

60 15

of InnerSpec in submodule | Mod and define
Spec == \exists x, y : lnner(x, y).!lnnerSpec
L ocal Definitions

It often happens that a module A extends modules B and C, both of which extend module D. For
example, D might declare symbols and make some definitions that are used by both B and C.
Module A then obtains two copies of the definitions and declarations of D--one obtained by
extending B and the other obtained by extending c. TLA+ dlows the same symbol to be declared
or defined two or more times, if the declarations or definitions are the same. (Note 10)

Adding more and more definitions with each level of module incluson will eventudly lead to
unintended name clashes. We don't want to know what modules are included by Nat ur al s (the
module that defines the natural numbers and operators like +), so we need away to avoid name
clashes with symbols defined by those modules. TLA+ provides loca definitions as away of
avoiding such name clashes. Preceding a definition with the keyword LocAL makes that definition
local to the current module. For example, writing

LOCAL Tenp(x) == X + vy

defines Tenp in the current module. But the definition of Tenp is not obtained by a module that
includes the current module--whether with EXTENDS or | NSTANCE. Smilarly, writing

LOCAL | NSTANCE MW TH . . .
or
LOCAL Tenp(x) == INSTANCE MW TH . ..

makes dl the definitionsincluded from mloca to the current module.

Declarations cannot be made local. Symbols are defined in terms of declared symbols, and it
wouldn't make sense to make a symbol locd if it gppeared in anonloca definition. (Remember that
the satement df == exp definesdf to be the expression obtained from exp by replacing defined
symbols with their definitions, so the definition of df has no defined symbols)) Hence, one cannot
precede a declaration or an EXTENDS statement with "LocaL". (Remember that ExTENDS Madds
Ms declared symbols to those of the current module. If Mdeclares no symbols, one can write

| NSTANCE Minstead of EXTENDS M)

When writing a generd-purpose module, definitions included from other modules should be made
local. For example, a genera-purpose G- aphs module should include the Nat ur al s module by

LOCAL | NSTANCE Nat ural s

That way, amodule that includes Gr aphs can define + to mean something other than addition of
natura numbers.

Higher-Order Operators

7d15

Operators can take operators as arguments. For example
Doubl e(A, F(_,_)) == F(A A

defines Doubl e to be an operator that takes two arguments---the first of which is an expression,
and the second of which is an operator that takes two arguments, both of which are expressions.
For example, Doubl e(3, +) equas3+3, and Doubl e({a}, Nors) equaSNors({a}, {a}).

TLA+ does not alow an operator to take as an argument an operator that takes as an argument an
operator. In other words, there can be at most two levels of parentheses to the | eft of the "==". One
cannot define an operator that isany "higher-order” than Doubl e.

The value of a TLA+ expresson cannot be an operator; it must beasmple value. (A LAVBDA
expression is one whose value is an operator, but one cannot write LAVBDA expressonsin TLA+.)

One can declare constant symbols to be operators. For example,
CONSTANT Foo(_, _)

declares Foo to be an operator that takes two arguments. Since the value of an expression cannot
be an operator, the declared operator Foo can be ingtantiated only by an operator that has the same
number of arguments---for example, by writing

I NSTANCE ... WTH Foo <- +

One cannot declare variable symbols to be operators.
Assumptions and Theorems

A module can contain assumptions and theorems, of the form ASSUME exp and THEOREM exp,
where exp isan expression. The expresson exp can contain symbols declared or defined anywhere
in the module.

For amplicity, suppose that module Mcontains only the Sngle assumption ASSUME a and the Sngle
theorem THEOREM t . (The generdization is obvious.) Let A and T be the expressions obtained from
a andt by replacing dl defined symbolswith their definitions, o the free varigblesof Aand T are
declared symbols. We make the syntactic requirement that A contain only constant symbols. (Note
11) Module misvalid iff theformulaa => T isvalid. Writing amodule asserts that the moduleis
vaid, so atheorem represents a proof obligation for the writer of the module.

When module Misinduded with an EXTENDS M statement, its assumptions and theorems are added
to those of the current module. When module Misingtantiated with an | NSTANCE Mexpression,
only its definitions are added to the current module, not its assumptions or theorems (or declared
symbols).

Suppose Misvdid, 0 A => Tisavdid formula Suppose that the indantiation

INSTANCE MWTH s 1 <- exp 1, ... , s k <- exp_k

80 15

issyntacticaly correct, meaning that every declared symbol of misindantiated with an expression dl
of whose symbols are defined or declared. Subgtitution preserves validity, so the formula obtained
fromA => T by replacingeach s_i withexp_i isvdid.

One often write modules with assumptions but no theorems. These assumptions serve no logicd
function, since they are not used to prove anything (except perhaps if the module is extended by
another module). However, they serve as useful comments to the reader about the vaues one
expects these symbols to assume. For example, one might add to module Di r ect edGr aphs the
assumption

ASSUME Edge \subseteqg Node \ X Node

which indicates that one expects Edge to be a set of ordered pairs of eements from the set Node.
We expect the assumption to be satisfied when the module is ingtantiated, but we do not make this
aforma requirement. (Note 12)

Expression Levels

TLA extends "ordinary math" (first-order logic plus set theory) with declared variable symbols and
afew nonconstant operators. The nonconstant operators of TLA+ are

~> (| eads-to) " (prine)

-+-> (while) ENABLED

\cdot (action conposition) UNCHANGED

[...]1_ (e.qg., [Al_f) \ EE (tenporal \exists)
<<...>> (e.g., <<A>> f) \ AA (tenporal \forall)
[] <> WF SF

To define the semantics of TLA+, we take the following six to be primitive and we define the rest in
terms of them:

ENABLED \cdot [] e > \ EE

TLA places certain syntactic restrictions on the use of these operators. These redtrictions are
described in terms of levels. Declared symbols and primitive TLA+ operators are assgned one of
four levels, lisgted below in increasing order:

Congtant Level
Contains declared constant symbols and constant-level TLA+ operators.

State Level
Contains declared variable symbols and the ENABLED operator.

Action Leve
Contains the operators' and\ cdot .

Tempord Leve
Containsthe operators[], - +- >, and \ EE.

9d 15

Theleve of an expression is defined to be the leve of its highest-level subexpression, except that
ENABLED A isadateleve expresson even when A isan action-level expresson. Note that in
determining the level of a subexpresson, bound variables are consdered to have constant level
except that bound variables introduced by the tempora quantifiers\ EE and \ AA are State-level
symbols.

TLA places the following syntactic restrictions on expressons.
* Theexpressonexp' isdlowed only if exp isadate-level or contant-level expression.

* A tempord-level expresson iseither
o acongant-levd or tempord-level operator gpplied to constant-leve, state-leve, or
temporal-level expressions.
> an expresson having one of the the following forms
[1[A]_f <><<A>> f WE_f (A) SF_f(A)

where A hasa most action level and f has at most state levd.

These level redtrictions place regtrictions on the arguments of defined operators. For example,
consider the operator S defined by:

S(U, V, x) == U=> Enabled (V\/ x')

Theexpresson S(e_1, e_2, e_3) islegd iff expresson e_2 hasa most action leve, ande_3
has a most date level. The leve of the complete expresson is the maximum of thelevd of e_1 and
date levd. (Note 13)

A congtant-level module is one that has no declared variable symbols and uses only constant-level
operators. Congtant-level modules are used for defining data structures and for describing "ordinary
We make the following rules for ingantiation (by an | NSTANCE expression):

* Except when ingantiating a congtant-level module, a constant symbol can be ingtantiated only
by a congant-level expresson. (Arbitrary instantiations of declared symbols are dlowed
when ingantiating a constant-level module.)

* Variable symbals can be ingantiated only by constant-level or sate-level expressons.

These redtrictions ensure that the ingtantiated modules satisfy the syntectic level redtrictions of TLA.
They are dso needed to ensure that the ingtantiation of avaid module isvalid. For example, the

TLA formulal[][¢' =c] _c isvdid (truefor dl behaviors) if ¢ isadeclared constant symbal.
Subdtituting a varigble for ¢ would produce an invadid formula (one that is false for some behaviors).

A Closer Look at Instantiation

We have sated that ingantiation preserves vdidity. If F is defined in module Mto equd avdid

100 15

formula, and we write
| == INSTANCE MW TH . ..

then1 . Fisavdid formula Ingantiation is subgtitution, and in the presence of quantifiers,
subdtitution preserves vaidity only if it is defined properly. In particular, subgtitution must be defined
S0 capture of free variables by quantifiersis not alowed. For example, consider the vdid formula
\exists u : u /= v.Navesubditution of u for v inthisformulawould yidd the invdid formula
\exists u : u /= u.Vdidity isnot preserved because the free symbol u, which isbeng
ubdtituted for v, is captured by the quantifier \ exi st s.

The problem of capture of free varidbles by explicit quantifiersis avoided in TLA+ by renaming
bound variables. The module

CONSTANT v
F ==\exists u: ul/=yv

definesF to betheformulal exi sts $u : $u /= v. The Satement
I == INSTANCE MWTH v <- u

then defines | . F to bethevdid formulal exi sts $u : $u /= u.

Some nonconstant operators of TLA+ contain implicit quantification--most notably, the operator
ENABLED. Suppose module Mis

VARI ABLE u, v
F == ENABLED ((u'" = u) /\ (v' [=1V))

Then F isavdid formula. Now congder the statement
| == INSTANCE MWTH u <- x, v <- X

A naive subgtitution would make 1 . F the formula
ENABLED ((x' = x) /\ (x' /= X))

which is equivaent to FALSE. The problem isthat, within an ENABLED expression, primed variables
areredly bound, o this naive subgtitution results in variable capture. The meaning of formulaFr is
redly

\exists $uprine, $vprime : ($uprime = u) /\ ($vprine = v)
To ensure that instantiation preserves vdidity, we make the following rule for the ENABLED operator:

* When indantiating amodule, every declared variable symbol that occurs primed in an
ENABLED expresson is renamed to a new variable symbol before substituting for the

o 15

declared symbols.

For example,

VARI ABLE u
(v, A) == ENABLED (A \/ ({u, v}'
H== Gu, u /= u)

11
—~
c
<
—
N
N—r

defines Gto equd

LAVBDA $v, $A : ENABLED ($A \/ ({u, $v}' = {u, $v}))
and definesHto equa

ENABLED (u' /= u) \/ ({u, u}' = {u, u})
Before ingantiating M the definition of Gis changed to to

LAVBDA $v, $A : ENABLED ($A \/ ({$$u, $v}' = {u, $v}))
and the definition of H is changed to

ENABLED ($$u' /= u) \/ ({$$u, $$u}' = {$$u, $3u})

(Thetwo "$"sinthe name $$x are meant to indicate that it is anew bound variable symbol.) Note
that the subdtitution for u* in the definition of G occurs after that definition isused in defining H.

As another example, consder the module

VARI ABLES u, v

A == (u" = u) I\ (v I=V)
B(d) == ENABLED d

C == B(A)

and the instantiation

VARI ABLE x
I == INSTANCE MMWTH u <- X, v <- X

Thisindantiation yields

(x" =x) I\ (x' /I=Xx)
LAVBDA $d : ENABLED $d

l.
l.
l. ENABLED (($u' = x) /\ ($v' = X))

O >
I n

Notethat | . cisnot equivdenttol . B(1. A).Infact, 1. cisvdidwhilel . B(I. A) isequivdent to
FALSE.

12015

The other TLA+ primitives thet have implicit quantification are\ cdot (action composition) and

- +-> (while). Therulefor\ cdot issSmilar to that for ENABLED, wherein the expresson e_1

\ cdot e_2, primed varidblesin e_1 and unprimed variadblesin e_2 are bound. Therulefor - +- > is
that, before ingtantiating amodule, each instance of P - +- > Qisreplaced by an equivaent formula
containing explicit quantification. The precise formula can be found dsewhere.

Note 1
One can aso write

BEG N MODULE Direct edG aphs
body
END

The precise ASCII syntax of module ddimiters and decorative horizonta lines has not been
determined yet.

Note 2
The"s" a the end of "VARI ABLES" and "CONSTANTS" is optiond. The keyword
"PARAVETER(S) " means the same as "CONSTANTS". If you are using TLA+ for ordinary
mathemeatics, with no actions or tempord formulas, then al the parameters are condants.

Note 3

Operators that take arguments are different from functions. Functions, and their definitions,
will be discussed e sawhere.

Note 4
The precise rule for turning a definition statement into a definition is. First replace dl defined
symbolsto the right of the == by their definitions; "beta-reduce" LAVBDA expressions when
possible--for example, reduce

(LAMBDA $a : <<$a, $a>> \in S)(Y+2)

to<<y+z, Y+z>> \in S--andfindly, replace dl bound symbols, including the parameters
of the definition (the symbols n and min the definition of Nor s) by "untypable’ symbols thet
do not aready appear in the expression.

Note 5
TLA+ provides large, fixed sets of infix and postfix operator symbols; they will be described
elsewhere.

Note 6
The trandation from module names to modules is outside the scope of this document.
Presumably, atool will have rules for finding named modules. We suggest that amodule
named N gopear in afilenamed N. t | a. The directory in which thisfileisto be found will be
system dependent.

Note 7

130 15

If module Foo makeslocd definitions that clash with definitionsin the current module, ther
the body of Foo cannot be inserted into the current module. Thisisthe only reason EXTEND
Foo isnot equivaent to inserting the body of Foo in the current module.

Note 8
If module Di r ect edG aphs had defined an infix operator 22, then this Statement defines
Foo. ?? to bean infix operator. The expresson a Foo. ?? b looks strange, but the
aternatives seem worse. In practice, one does not define infix operators in modules that one
wants to use with this kind of renaming.

Note 9
Submodules provide a scoping mechanism for module names, which in principle could be
used to define the mapping between module names and modules. For example, the modules
written by user Jones of company XY Z could be submodules of a module named Jones,
which is a submodule of amodule named XYz. However, in practice, such name scoping will
be provided by directory structures and file search paths.

Note 10
Two declarations of asymbal s are the same if they both declare s to be a constant or both
declare it to be avaridble. Two definitions are the same if they have parse treesthat differ
only in the names of bound variables.

Note 11
In generd, we should define vdidity of Mtomean A | = T, which meansthat the vdidity of A
impliesthe vdidity of T. If Aisacongant formula, then A | = T isequivaent to the vdidity of
A => T. For writing specifications, this specia caseisal we need, and redricting oursaves
to it dlows us to avoid introducing the semantic operator | =.

Note 12
It is tempting to include an instantiated modul€'s assumptions as theorems, so they become
proof obligations of the current module. However, it may be impossible to discharge those
proof obligationsin the current module. For example, suppose we were specifying agraph
agorithm and we wrote

VARI ABLES N, E
| NSTANTI ATE Direct edGraphs W TH Node <- N, Edge <- E

where N and E represent variables of the dgorithm. The ingtantiated assumption of the

Di rect edGr aphs moduleisE \ subseteq N \ X N. Itisimpossbleto prove thisformula
becauseit isnot vdid; N and E areflexible variables, so they can assume any values. What
we do expect to be able to proveis

(*) Spec => [](E \subseteq N \X N)

where spec isthe TLA formulathet specifies the dgorithm. Formaly, there is nothing specia
about Spec; it isjust one of many defined symbols. So, there is no reason to take (*) asthe
proof obligation associated with the ingtantiation. Moreover, Spec might not even be defined
in the current module, but in some other module that extends the current one.

14015

Note 13
For amplicity, we dways condder Enabl ed A to have Sate leve, even in those specid
casss when we could determine that it is a constant formula

This page was generated automatically by mtex software.

15015

