SRC Technical Note
1997-005¢

June 2, 1998

The Vesta-2 Softwar e Description Language

Allan Heydon, Jim Horning, Roy Levin, Timothy Mann, and Yuan Yu

Systems Resear ch Center
130 Lytton Avenue
Palo Alto, CA 94301
http://www.research.digital.com/SRC/

Copyright 1997, 1998 Digitd Equipment Corporation. All rights reserved.

Table of Contents

1. Introduction
2. Lexicd Conventions

o 2.1 Meta-notation

o 2.2 Teminds
3. Semantics

o 3.1 Vdue Space

o 3.2 Type Declarations

o 3.3 Evduation Rules
3.3.1 Expr
3.3.2 Literd
3.331d
3.34Lig
3.3.5Binding
3.3.6 Sdlect
3.3.7 Block
3.3.8 St
3.3.9 Assgn

E R EENNEEN

[|

ld42

|

3.3.10 lterate
3.3.11 FuncDef
3.3.12 FuncCdl
3.3.13 Modd
3.3.14 Fles
3.3.15 Imports
3.3.16 Filename Interpretation
o 3.4 Primitives
3.4.1 Functionson Typet bool
3.4.2 Functionson Typet i nt
3.4.3 Functionson Typet text
3.4.4 Functionson Typet i st
3.4.5 Functionson Typet _bi ndi ng
3.4.6 Type Manipulation Functions
3.4.7 Tool Invocation Function

4. Concrete Syntax

o 4.1 Gramma

o 4.2 Ambiguity Resolution

o 4.3 Tokens

o 4.4 Resarved ldentifiers
5. Acknowledgments
6. References

HE N

HEN

|

|

|

|

|

[|

1. Introduction

This note describes the forma syntax and semantics of the Vesta-2 Software Description Language (SDL). We
expect it will be used as areference by Vesta-2 users. Although the description is meant to be complete and
unambiguous, it is by no means alanguage tutoria or user guide,

Veda2 is a oftware configuration management system [1]. Developers use Vesta-2 to build and manage
potentidly large-scde software. In Vesta-2, the ingtructions for building a software artifact are written as an SDL
program. Evauating the program causes the software system to be congtructed; the program's result value
typicaly contains the derived files produced by the evauation.

Vesta-1, the precursor of Vesta-2, saw extensive use a the Digital Systems Research Center [2, 3, 4, 5].
Vesta-2 adopts many of the same concepts as Vesta-1, but Vesta-2 features substantial design changes
(including maor changes to the syntax and semantics of the SDL itself) and a portable implementation. In the rest
of thisnote, referencesto " Vesta' mean ~Vesta-2".

The Vesta SDL isafunctiond language with lexica scoping. Its value space includes Booleans, integers, texts,
lists (3milar to LISP ligts), sequences of name-value pairs caled bindings, closures, and a unique error value.

The language is dynamicdly typed; thet is, types are associated with run-time vaues ingtead of with static names
and expressons. Even without gtatic type checking, the language is strongly typed: an executing Vesta program
cannot breach the language's type system. The expected types of parameters to language primitives are defined,
and those types are checked when the primitives are evaduated. The language includes provisons for specifying
the types of used-defined function arguments and locd variables, but these type declarations are currently
unchecked.

2042

The language contains roughly 60 primitive functions. Thereisasingle _run_t ool primitive for invoking externd
tools like compilers and linkers as function calls. Externd tools can be invoked from Vesta without modification.

Conceptudly, every software artifact built with Vestais congtructed from scraich, thereby guarantesing thet the
resulting artifact is composed of consistent pieces. Vesta uses extensve caching to avoid unnecessary rebuilding.
Vedta records software dependencies automaticaly. The techniques by which the implementation caches function
cals and determines dependencies are described in the complete Vesta-2 paper [1].

2. Lexical Conventions

The language semantics presented in Section 3 introduces each language congtruct by giving its syntax and
semantics. This section defines the meta-notation and terminas assumed by the presented syntax fragments. The
complete language syntax isgiven in Section 4.

2.1 Meta-notation

Nonterminals of the grammar begin with an uppercase letter, are a least two charactersin length, and include at
least one lowercase letter. Except for the four termindslisted in Section 2.2 below, each of which denotes a class
of tokens, the terminals of the grammear are character strings not of this form.

The grammar iswritten in avariant of BNF (Backus-Naur Form). The meta-characters of this notation are:
S R I S S

The meaning of the metacharactersis asfollows

NT ::= Ex NI rewites to Ex

Ex1 | Ex2 Ex1 or Ex2

[Ex] optional EXx

{ Ex} met a- par ent heses for grouping

Ex* zero or nore Ex's

Ex*, zero or nore Ex's separated by commmas, trailing comma optional
Ex*; zero or nore Ex's separated by semicolons, trailing optiona
Ex+ one or nore Ex's

Ex+, one or nmore Ex's separated by conmmas, trailing coma optiona
Ex+; one or nore Ex's separated by sem colons, trailing optiona
'S’ the literal character or character sequence s

When used as terminals, square brackets, curly brackets, and vertical bar gppear in sSingle quotes to avoid
ambiguity with the correponding metacharacters (i.e, "', "1, " {', " }', ").

2.2 Terminals

The following names are used as terminds in the grammar. They denote classes of tokens, and are defined
precisgly in Section 4.3

Delim

A pathname delimiter. Either forward or backward dashes are dlowed within pathnames, but not both.

I nt eger

30 42

An integer, expressed in either decima, octal, or hexadecimal.

Anidentifier. Anidentifier is any sequence of |etters, digits, periods, and underscores that does not
represent an integer. For example, foo and 36.foo are identifiers, but 36 and 0x36 are not.

Text
A text string. Texts are enclosed in double-quotes. They may contain escape sequences and spaces.

Comments and white space follow C++ conventions. A comment either begins with // and ends with the first
subsequent newline or begins with /* and ends with */ (the latter form does not nest). Of course, these dimiters
are only recognized outside text literds. White space delimits tokens but is otherwise ignored (except thet the
Space character, the ASCII character represented by the decima number 32, is Sgnificant within text literds).
The grammar prohibits white space other than the Space character within text literals.

The names of the built-in functions begin with an underscore character, and the identifier congsting of the angle
character "." plays aspecid roleinthe Vesta SDL. It is therefore recommended that V esta programs avoid
defining identifiers of these forms.

3. Semantics

The semantics of programs written in the Vesta SDL are described by afunction Eval that maps a syntactic
expression and a context to avalue. That is, Evad(E, C) returns the vaue of the syntactic expresson E in the
context C. In addition to syntactic expressons (denoted by the non-termind Expr in the grammar), the domain of
Eval includes additional syntactic constructs. Some of these additiona congtructs are defined by the concrete
grammar, while others are introduced as "~ intermediate results’ during the eval uation process (the latter are noted
where they are introduced). Each vaue returned by Eval isin the Vesta value space, described in the next
section. The context parameter C to Eva isavaue of typet_binding in the Vesta vaue space.

3.1 Value Space

Vaues are typed. The types and vaues of the language are:

Type nane Val ues of the type

t _bool true, false

t_int i ntegers

t _text arbitrary byte sequences

t_list sequences of zero or nore arbitrary val ues

t _bi ndi ng sequences of zero or nore pairs, in which the first nenber

of each pair is a non-enpty t_text, the second is an
arbitrary value, and the first nenbers of all the pairs
are distinct

t_closure closures, each of which is a triple <e, f, b> where
e is a function body (i.e., a Block as per the granmar),
f isalist of pairs <t_i, e_i> wheret_i is a
t _text value (a fornmal paraneter name) and e_i is either

the distingui shed expression <enptyExpr> or is
an Expr (for a default paraneter val ue)
b is a value of type t_binding (the context)
t_err err

The vduestrue, false emptylist (the list of length zero), emptybinding (the binding of length zero), and err are

40 42

not to be confused with the language literds TRUE, FALSE, <>, [], and ERR that denote those values.

The following supertype is used chiefly for defining the domain of primitive functions (the U(...) notation is type
union):

t _val ue U(t_bool, t_int, t_text, t_Iist,
t_binding, t_closure, t_err)

Thetypet bool contains the Boolean values true and fal se, denoted in the language by the literd's TRUE and
FALSE.

Thetypet int containsintegers over at least the range -2"31 .. 231-1; the exact range isimplementation
dependent.

Thetypet text contains arbitrary sequences of 8-hit bytes. Thistypeis used to represent text literds (quoted
srings) in SDL programs as well as the contents of filesintroduced through the Files nontermind of the grammar.
Consequently, an implementation must reasonably support the representation of large vaues of thistype
(thousands of bytes or more), but is not required to support efficient operations on large text values.

Thetypet_list contains sequences of values. The ements of alist need not be of the same type.

Thetypet_binding contains sequences of pairs<t_i, v_i>, inwhicheach t_i isanon-empty value of typet_text,
each v_i isan arbitrary Vestavadue (i.e, of typet vaue), and thet i aredl digtinct. Note that bindings are
sequences. they are ordered. The domain of abinding isthe set of namest i a itstop levd. Bindings may be
nested.

Bindings play an important role in the Vestalanguage. They are used to represent avariety of interesting objects.
For example, flat bindings that map names to texts can be used to represent command-line switches and
environment variables, bindings that contain nested bindings can be used to represent file systems; and bindings
that map names to closures can be used to represent interfaces. Section 3.4.5 describes the primitive functions
and operators for manipulating bindings, indluding three primitives for combining two bindings.

Thetypet_closure contains closure vaues for the primitive operators and functions (defined in Section 3.4) as
well asfor user-defined functions.

Thetypet _er consds of the angle distinguished vaue err, denoted in the language by the literd ERR which is
used to represent erroneous evauations. Primitive functions return err when applied to vaues outsde their naturd
domain. For most (but not dl) primitives, the vaue err lies outside the natural domain and sois ™ contagious'; that
IS, mogt primitives return err when given err for any input. The evauation rules and the descriptions of primitive
functions document these cases.

In most cases, err represents a definite error and the implementation should generate a suitable diagnostic for
human consumption, in addition to merely propagating the err vaue through subsequent evauation. Whether the
evauation terminates or continues in these cases is | eft to the implementation.

3.2 Type Declar ations

The language includes a rudimentary mechanism for declaring the expected types of vaues computed during

50f 42

evauation. The grammar defines a smdl sub-language of type expressions, which includes the ability to give
names to types and to describe aggregate types (ligts, bindings, functions) with varying degrees of detall. Type
expressons may be attached to function arguments and results and to locd variadles, indicating the type of the
expected value for these identifiers and expressions during evauation.

The Vesta evaduator currently treets type names and type expressons as syntacticaly checked comments; it
performs no other checking. Future implementations may type-check expressions at run-time and report an error
if the value does not match the specified type (according to some as yet unspecified definition of what it means for
avaueto “match" atype specification).

The syntax fragments and semantic descriptions in subsequent sections omit any further reference to type
expressions entirely.

3.3 Evaluation Rules

The evauation of aVesta program corresponds to the abstract evaluation:
Eval (M[]) , Ciinitial)

where M isthe closure corresponding to the contents of an immutable file (a system modd) inthe Vesta
repository and C _initial isaninitid context. M's model should have the syntactic form defined by the nontermind
Model described in Section 3.3.13 below. C_initial defines the names and associated vaues of the built-in
primitive operators and functions described in Section 3.4 below.

The definition of Evd by casesfollows. Unless E ishandled by one of these cases, EVA(E, C) iserr. As
mentioned above, the domain of Eval includes the language generated by the concrete grammar as a proper
subset. Thus, in some of the cases below, the expression E can arise only as an intermediate result of another
case of Evd. These cases are explicitly noted.

The pseudo-code that defines the various cases of Eva and the primitive functions should be read like C++. That
code assumes the following declaration for the representation of Vestavaues

class val {
publi c:
operator int();
/'l converts Vesta t_int or t_bool to C++ int

val (int);
/'l converts a C++ integer to a Vesta t_int

int operator== (val);

/1 conmpares two Vesta values, returning true (1)
/1 if they have the sane type and are equal, and
/1l false (0) otherw se

}

Note that the oper at or == above isthe one invoked by uses of “=="in the C++ pseudo-code. It isnot to be
confused with the primitive equdity operator defined on various Vedtatypesin Section 3.4.

The pseudo-code a so refers to the following constants:

60 42

static val true; /1 value of literal TRUE

static val false; /'l value of literal FALSE
static val enptylist; /1 value of literal < >
static val enptybinding; // value of literal []
static val err; /1 value of literal ERR

For convenience, the pseudo-code adopts the following notationa conveniences:
« Eva isdefined by cases rather than by one C++ function with an enormous embedded case sdlection.
* Recursve referencesto Evd gopear inlinein the same form that is used to identify the individua cases.

< Primitive functions of the Vesta language, whose names begin with an underscore, are invoked inline from
the pseudo-code as if they were ordinary C++ functions. The primitive operators of the Vesta language
are invoked this way too; for example, when the pseudo-code refers to operator+, it means the Vesta
primitive function, not the C++ operator. Note that some of the Vesta operators are overloaded by type,
but not by arity. For example, operator+ is defined on integers, texts, lists, and bindings, but it dways
takes two arguments.

* Inthe pseudo-code for rulesthat contain the termind Id, the variablei d denotesthe vaue of theld
represented asat_text.

In each of the following sections, we first present the relevant portions of the language syntax. We then present
the evauation rules that apply to those syntactic congtructs. The complete language syntax is given in Section 4.

3.3.1 Expr
Syntax:
Expr = if Expr then Expr else Expr | Exprl
Exprl = Expr2 { => Expr2 }*
Expr 2 = Expr3 { || Expr3 }*
Expr 3 = Expr4 { && Expr4 }*
Expr 4 = Expr5 [{ == =] < | >| <= >= } EXpr5]
Expr5 = Expr6 { AddOp Expr6 }*
AddOp =+ | ++ | -
Expr 6 = Expr7 { Mul Op Expr7 }*
Mul Op = *
Expr7 = [UnaryOp] Expr8
Unar yQOp =- | !
Expr 8 = Primary [TypeQual]
Primary = (Expr) | Literal | 1d | List
I

Binding | Select | Block | FuncCall

The grammar lists the operators in increasing order of precedence. The binary operators at each precedence level
are |eft-associdive.

Evaluation Rules;

/1 conditional expression
Eval (if Expr_1 then Expr_2 else Expr_3 , C =

7o 42

val b = Eval (Expr_1 ,
if (_is_bool(b)
if (b true)
el se return Eval (Expr_3 ,

}

0;

== false) return err;
return Eval (Expr_2 ,
O

0;

Asdefinedin Section 3.4.6, _i s_bool (b) istrueif b isavaue of typet_bool and false otherwise.

/1l conditional inplication

Eval (Expr_1 => Expr_2 , C =
{

val b = Eval (Expr_1 , ©

if (_is_bool(b) == false) return err;

if (b ==1false) return true

b = Eval (Expr_2 , O;

if (_is_bool(b) == false) return err;

return b;
}
/1 conditional OR
Eval (Expr_1 || Expr_2 , C =
{

val b = Eval (Expr_1 , ©

if (_is_bool(b) == false) return err;

if (b ==1true) return true

b = Eval (Expr_2 , O;

if (_is_bool(b) == false) return err;

return b;
}
/1 conditional AND
Eval (Expr_1 && Expr_2 , C =
{

val b = Eval (Expr_1 , O

if (_is_bool(b) == false) return err;

if (b ==false) return false

b = BEval (Expr_2 , O);

if (_is_bool(b) == false) return err;

return b;
}
/'l conparison
Eval (Expr_1 == Expr_2 , C) = operator==(Eval (
Eval (Expr_1 != Expr_2 , C = operator!=(Eval (
Eval (Expr_1 < Expr_2 , C = operator< (Eval (
Eval (Expr_1 > Expr_2 , C = operator> (Eval(
Eval (Expr_1 <= Expr_2 , C) = operator<=(Eval (
Eval (Expr_1 >= Expr_2 , C) = operator>=(Eval (
/1 AddOp and Mul Op
Eval (Expr_1 + Expr_2 , C) = operator+ (Eval(
Eval (Expr_1 ++ Expr_2 , C) = operator++(Eval (
Eval (Expr_1 - Expr_2 , C = operator- (Eval(
Eval (Expr_1 * Expr_2 , C = operator* (Eval(
/1 UnaryQOp

8of 42

Expr_1
Expr_1
Expr_1
Expr_1
Expr_1
Expr_1

Expr_1
Expr_1
Expr_1
Expr_1

0,
0,
0,
0,
0,
0,

0,
0,
0,
9,

Eval (
Eval (
Eval (
Eval (
Eval (
Eval (

Eval (
Eval (
Eval (
Eval (

Expr_2
Expr_2
Expr_2
Expr_2
Expr_2
Expr_2

Expr_2
Expr_2
Expr_2
Expr_2

Eval (! Expr , O
Eval (- Expr , O

operator! (Eval (Expr , Q)
operator-(Eval (Expr , ©))

/'l parenthesization
Eval ((Expr) , © = Eval(Expr , O

There are seven remaining possibilities for a Primary: Literd, 1d, List, Binding, Sdect, Block, and FuncCal.
These are treated separatdly in subsequent sections.

3.3.2Literal
Syntax:
Literal 2= ERR | TRUE | FALSE | Text | Integer

Evaluation Rules;

Eval (ERR , O = err

Eval(TRUE , C = true

Eval (FALSE , C = false

Eval (Text , © = the corresponding t_text value, follow ng the C++

interpretation for the Escape characters.
the corresponding t_int value if it can be
represented by the inplenentation, otherwi se “err'.

Eval (Integer, O

3331d
Evaluation Rules:
Eval (Id , C = _lookup(C, id),

Asdefinedin Section 3.4.5, _| ookup(b, nm isthe vaue associated with the non-empty name nm in the
binding b, or err if nmisempty or isnot in b'sdomain.

334 List
Syntax:
Li st i1 = < Expr*, >

The use of <, > as both binary operators and list delimiters makes the grammar ambiguous. Section 4.2 explains
how the ambiguity is resolved.

Syntactic desugarings:
< Expr_1, ..., Expr_n > desugars to < Expr_1 > + < Expr_2, ..., Expr_n >
Here, "+ isthe concatenation operator on lists.

Evaluation Rules;

Eval (<> , O = enptylist

9a 42

Eval (< Expr >, C = _listl(Eval(Expr , Q)

Asdefinedin Section 3.4.4, _1i st 1(val) evauatesto alig containing the Sngle vaue val.

3.3.5 Binding

Syntax:

Bi ndi ng = [' BindEl enr, "1’

Bi ndEl em = Sel f NaneB | NaneBi nd

Sel f NameB =1d

NameBi nd = GenPath = Expr

GenPat h = GenArc { DelimGenArc }* [Delim]
GenArc =Ac| $1d]| $ (Expr) | %Expr %
Arc =1d | Integer | Text

Syntactic desugarings.

The following desugarings gpply to BindElemis within a Binding.

Id desugars to 1d =1d

GenArc Delim= Expr desugars to GenArc = Expr

GenArc Delim GenPath = Expr desugars to GenArc = [GenPath = Expr]
$ Id = Expr desugars to $ (Id) = Expr

% Expr_1 % = Expr_2 desugars to $ (Expr_1) = Expr_2

The SdfNameB syntectic sugar alows names from the current scope to be copied into bindings more succinctly.
For example, the binding value:

[progs = progs, tests = tests, lib =1ib]
can instead be written:
[progs, tests, lib]

The GenPath syntactic sugar dlows bindings conssting of a single path to be written more succinctly. For
example, the binding vaue

[env_ovs
[debug

= [Cx =[switches = [conpile =
= ".g3", optinize = "-O 11111

can instead be written:

[env_ovs/ Cxx/swi tches/conpile =
[debug = "-g3", optimze = "-0"]]

Evaluation Rules:
Fird, the rules for congructing empty and singleton bindings

Eval ([] , O
Eval([Arc = Expr] , O

enpt ybi ndi ng
_bindil(id, Eval(Expr , Q)

100f 42

Hereid isthet_text representation of Arc. The conversior from an Arcto at_text is straightforward. If the Arcis
an |d, the literal characters of the identifier become the text vaue. If the Arc is an Integer, the litera characters
used to represent the integer in the source of the modd become the text vaue. If the Arcisa Text, the result of
Eva(Arc, C) isused. Asdefined in Section 3.4.5, _bi nd1(i d, v) evauatesto asngleton binding that
associates the non-empty t_text id with the vaue v.

The$(Expr) syntax dlows the name introduced into a binding to be computed:

Eval ([$ (Expr_ 1) = Expr. 2] , O =
_bindl(Eval (Expr_1, C), Eval(Expr_2 , Q)

When the fidd nameis computed using the $ syntax, an empty gring isillegd (see_bind1 below), and the
expresson must evauateto at_text.

The following rule handles the case where multiple BindElem's are given.

Eval([BindElem11, ..., BindElemn] , C =
_append(Eval ([BindElem1] , O,
Eval ([BindElem2, ..., BindElemn] , O

Asdefinedin Section 3.4.5, _append(b1, b2) evauatesto the concatenation of the bindings b1 and b2; it
requires thet their domains are digoint.

3.3.6 Select

Syntax:

Sel ect = Primary Sel ector GenArc

Sel ect or =Delim]| !

GenArc =Ac | $1d]| $(Expr) | %Expr %
Arc =1d | Integer | Text

A Sdect expresson denotes a selection from a binding, so the Primary must evauate to a binding vaue.
Syntactic Desugarings:

Primary Selector % Expr % desugars to Primary Selector $ (Expr)

Evaluation Rules:

The Ddlim syntax sdects avaue out of abinding by name.

Eval (Primary DelimArc , C =
_lookup(Eval (Primary , C), id)

Hereidisthet text value of Arc, asdefined in Section 3.3.5above.
Thes$(Expr) syntax alowsthe selected name to be computed:
Eval (Primary Delim$ (Expr) , O =

_lookup(Eval (Primary , C, Eval(Expr , Q)

1o 42

The! syntax testswhether anameisin abinding's domain:

Eval (Primary ! Id, C =
_defined(Eval (Primary , C), id),

Asdefinedin Section 3.4.5, _defined(b, nm evauatesto trueif nmisnon-empty and in b'sdomain, and to
false otherwise.

As above, the $(Expr) Syntax can be used to compute the name:

Eval(Primary ! $ (Expr) , O =
_defined(Eval (Primary , C, Eval(Expr , ©))

In both cases where the GenArc is a computed expression, the Expr must evaluateto at_text.

3.3.7 Block

Syntax:

Bl ock = "{" Stnt*;, Result; "}

St nt = Assign | lterate | FuncDef | TypeDef
Resul t = { value | return } Expr

Syntactic Desugarings:
return Expr desugars to val ue Expr

Thet is, the keywordsr et ur n and val ue are synonyms, provided for stylistic reasons. Ther et ur n/val ue
statement must gppear a the end of a Block; there is no andog of the C/C++ return statement that terminates
execution of the function in which it appears.

Evaluation Rules;

Since the Vesta SDL isfunctional, evauation of a statement does not produce side-effects, but rather produces a
binding. Evauation of a block occurs by augmenting the context with the bindings produced by evaduating the
Smts, then evduating the fina Expr in the augmented context.

Eval ({ value Expr } , © = Eval(Expr , O

Eval ({ Stm_1; ...; Stm_n; value Expr } , O =
Eval (Expr , operator+(C, Eval({ Stm_1; ...; Stnm_n} , Q))

Notice that this second rule introduces an argument to Evd in the ~extended" language that is not generated by
any non-termind of the grammar.

3.3.8Smt
Evaluation Rules;

Evauating a Stmt or sequence of Stmts produces a binding. Note that the binding resulting from the evauation of

120 42

asequence of Smtsis smply the overlay (operator “+') of the bindings resulting from evauating each Stmt in the
sequence, and does not include the context C.

Eval({ } , © = enptybinding

Eval ({ Stm _1; Stnmt_2 ...; Stmt_n} , O =
{

val b = Eval(Stm_1 , O;

return operator+(b, Eval({ Stm_2; ...; Stnmt_n } , operator+(C, b)))
}

These rules apply to congructsin the " extended" language. There are three possibilities for a Stmt: Assign,
Iterate, and FuncDef. They are covered in the next three sections.

3.3.9 Assign

Sincethe Vesta SDL is functiona, assgnments do not produce side-effects. Instead, they introduce a new name
into the evauation context whose vaue isthat of the given expression.

Syntax:

Assi gn =1d [TypeQual] [Op] = Expr
Op = AddOp | Ml Op

AddOp =+ | ++ |

Mul Op = *

Syntactic Desugarings:

Id Op = Expr desugars to Id = 1d Op Expr
Evaluation Rules:

Eval (Id = Expr , © = _bindl(id, Eval (Expr , Q))
3.3.10 |terate

The language includes expressons for iterating over both lists and bindings. Thereisdso a_map primitive defined
on ligs (Section 3.4.4) and bindings (Section 3.4.5). _map ismore efficient but less generd than the language's
Iterate construct.

Syntax:

Iterate = foreach Control in Expr do IterBody
Contr ol =Id]|] “[" Id=1d "]

I t er Body =Stm | “{' Stnt+; "}’

Thetwo Control forms are used to iterate over lists and bindings, respectively.

Evaluation Rules;

[l iteration with single-statenment body
Eval (foreach Control in Expr do Stnt , C =

130f 42

Eval (foreach Control in Expr do { Stnt } , O

The semantics of aloop are to conceptudly unroll the loop n times, where n isthe length of thelist or binding
being iterated over.

/] iteration over a |ist

Eval (foreach Id in Expr do { Stm _1; ...; Stm_n} , O =
{

val | = Eval (Expr, O);

if (_is_list(l) == false) return err;

t text id =1d; // identifier Id as a t_text

val r = enptybinding;

for (; !'(l == enptylist); | = _tail(l)) {

val rl = operator+(C, r);

rl = operator+(rl, _bindl(id, _head(l)));

r = operator+(r, Eval({ Stm_1; ...; Stm_n} , rl));
}
return r;

}
Asdefinedin Section 3.4.6, _i s_list (1) istrueif | isof typet list, and fal se otherwise.

/1l iteration over a binding

Eval (foreach [1d1 =1d2] in Expr do { Stm_1; ...; Stm_n} , O =
{

val b = Eval (Expr, O);

if (_is_binding(b) == false) return err;

t _ text idl =1d1; // identifier 1dl as a t_text
t _text id2 =1d2; // identifier 1d2 as a t_text
val r = enptybinding;
for (; '(b == enptybinding); b = _tail(b)) {
val rl = operator+(C, r);
rl = operator+(rl, _bindl(idl, _n(_head(b))));
rl = operator+(rl, _bindl(id2, _v(_head(b))));
r = operator+(r, Eval({ Stm_1; ...; Stm_n} , rl));
}

return r;

}
Asdefinedin Section 3.4.6, _i s_bi ndi ng(b) istrueif b isof typet_binding, and fal se otherwise.

Note that the iteration variables (that is, | d, 1 d1, and | d2 above) are not bound in the binding that results from
evaduding thef or each Satement. However, any assgnments made in the loop body are included in the result
binding.

Iteration Statements are typicaly used to walk over or collect parts of alist or binding. For example, hereisa
function for reverang alist:

reverse_list(l: list): list
{
res: list = <>
foreach elt in | do
res = <elt> + res;
return res;

140 42

}
Hereisafunction that counts the number of leaves of abinding:

count _| eaves(b: binding): int
{
res: int = O;
foreach [nm=val] in b do
res += if _is_binding(val) then count_|eaves(val) else 1;
return res;

}
3.3.11 FuncDef

Syntax:

The function definition syntax dlows a suffix of the formal parametersto have associated default vaues.

Func Def = 1d Formal s+ [TypeQual] Bl ock

For mal s = (Formal Args)

Formal Args ::= { Typedl d*, /'l none defaulted
| { Typedld = Expr }*, /1 all defaulted
I

Typedld { , Typedld }* { , Typedld = Expr }+ } // sone defaulted

Note that the syntax alows multiple For mal s to follow the function name. Asthe rules below describe, the use of
multiple Formals produces a sequence of curried functions, dl but the first of which is anonymous.

Evaluation Rules;

Eval(Id Formals_1 ... Formals_n Block , C =
_bindi(id, Eval(e , Cl)),
wher e:
e = LAMBDA Fornmals_1 ... LAMBDA Formal s_n Bl ock

Cl = operator+(C, _bindl(id, Eval(e , Cl1)))

Notice the recursive definition of C1. This permits functions to be sdf-recursive, but not mutudly recursive.
Although this recursive definition looks alittle odd, it can be implemented by the evaluator by introducing acycle
into the context C1. Thisisthe only case where any Vesta vaue can contain a cycle (the language syntax and
operators do not alow cyclic lists or bindings to be congtructed), and the cycleisinvisbleto clients. Thereisno
practica difficulty in constructing the cycle because, as we are about to see, the “evauation" of aLAMVBDA is
purdly syntactic.

Also note that this rule produces a LAVBDA congtruct in the ™ extended" language that is not generated by any
non-termind of the grammar. The following is the Smple case of LAMBDA, where dl actud parameters must be

given in any gpplication of the closure. The reason for the redtriction on the use of "." asaformd parameter is
treated below in the section on function calls.

Eval (LAMBDA (1d_1, ..., Id_m
LAMBDA Formals_2 ... LAMBDA Formals_n Block , C =
If any of the Id's is the identifier ".", return err; otherw se,
return the t_cl osure val ue
<LAMBDA Formals_2 ... LAMBDA Formals_n Block, f, C>, where:

150 42

f is alist of pairs <id_i, <enptyExpr>> where:
id_i is the t_text representation of Id_i, for i in[1..mM

In the typical case where only one set of Formalsis specified (that is, n = 1), the first dement of the resulting
closurevalueis smply a Block.

Next isthe generd case of LAMBDA, in which “default expressions' are given for a suffix of the forma
parameter list. Functions may be cdled with fewer actuas than formals if each forma corresponding to an
omitted actud includes an expresson specifying the default value to be computed. When the closureis applied, if
an actud parameter ismissing, itsformal's expression is evaluated (in the context of the LAMBDA) and passed
ingdead. The following FuncCdll section defines this precisdly.

Eval (LAMBDA (1d_1, ..., Id_ k, Id_k+1 = Expr_k+1, ... ld_m= Expr_nm
LAMBDA Formals_2 ... LAMBDA Formals_n Block , C =
If any of the Id's is the identifier ".", return err; otherw se,
return the t_closure val ue
<LAMBDA Formals_2 ... LAMBDA Formals_n Block, f, C>, where:
f is alist of pairs <id_i, expr_i> where:
id_i is the t_text representation of Id_i, for i in[1..m

expr_i is <emptyExpr>, for i in [1..K],
expr_i is Expr_i, for i in [k+1l..m

3.3.12 FuncCall

Syntax:

FunccCal | = Primary Actuals
Act ual s o= (Expr*,)

Evaluation Rules;

The function cal mechanism provides specid treatment for the identifier conssting of asingle period, caled the
current environment and pronounced “dot". Dot is typicaly assgned abinding that contains the tools,
switches, and file system required for the rest of the build. The initid environment, C_initial, does not bind dot
(thatis, ~_defined(C_initial, ".") == fal se").

When afunction is caled, the context in which its body executes may bind "." to a vaue established asfollows:

¢ if thefunction is defined with n formas and called with n or fewer actuds, then the value for "." a the point
of cal isbound to theimplicit forma parameter named "." in the cdlleg;

* if thefunction is defined with n formas and caled with n+1 actuds, then the vaue bound to the implicit
forma parameter named "." isthe vdue of the last actud.

Thus, the binding for ".", if any, is passed through the dynamic cal chain until it is dtered ether explicitly by an
Assgn gatement or implicitly by caling afunction with an extra actua parameter. The pseudo-code below makes
thisprecise.

Eval (Primary (Expr_1, ..., Expr_n) , O =
{

val ¢l = Eval(Primary , C);

160 42

if (_is_closure(cl) == false) return err;

/'l cl.e is the function body, cl.f are the formals, cl.b is the context
int m= _length(cl.f); /1l nunber of formals

if (n>m+ 1) return err; /'l too many actuals

val Cl = cl.b; /1 t_binding

val f =cl.f; /1 t_list (of <t, e> pairs)

// augrment Cl to include formals bound to correspondi ng actual s

int i;
for (i =1; i <=m i++) {
val form = _head(f); /]l i-th formal (a <t, e> pair)
val act; /'l val ue of correspondi ng actual
if (i <=n)
act = Eval(Expr_i , O; /1 value for i-th actual
el se {
if (forme == <enptyExpr>)
return err; /1 mssing required actual
act = Eval(forme , cl.b); /1 value for defaulted argunent

}
Cl = operator+(Cl, _bindl(formt, act));
f = tail (f);

}
/1 bind "." in Cl
val dot;
if (n<=m
dot = _lookup(C, "."); /'l inherit value for "." fromC
el se
dot = Eval (Expr_n , O); /'l explicit value for last actual
Cl = operator+(Cl, _bindl(".", dot));
/* Cl is now a suitable environment. |If the closure is a prinmtive

function, then invoke it by a special mechanisminternal to the
evaluator and return the value it conputes. O herw se, perform
the follow ng: */

return Eval (cl.e , Cl);

}
Note: The comparison with <emptyExpr> has not been formalized, but it should be intuitively clear.

3.3.13 Model

Syntax:
Model ::= Files Inports Bl ock

Evaluation Rules;

The nonterminal Modd is treated like the body of afunction definition (i.e,, like a FuncDef, but without the
identifier naming the function and with an empty list of forma parameters). More precisdy:

Eval (Files Inports Block , C =
Eval (LAMBDA () Block , _append(Eval(Files Inports , enptybinding), Q)

17 of 42

Asthisrule indicates, the Files and Imports congtructs are eva uated in an empty context, and they augment the
closure context in which the modd's LAMBDA is evduated. In practice, the context C will dways be the initid
context C_initia when thisruleis applied (cf. Sections 3.3 and 3.3.15).

The Files nontermind introduces vaues corresponding to the contents of ordinary files and directories. The
Imports nontermind introduces closure values corresponding to other Vesta SDL models.

The evduation rules handle Files and Imports clauses by augmenting the context using the _agppend primitive,
thereby ensuring that the namesintroduced by these clauses are dl distinct, just asif the Files and Imports clauses
of the Model were asingle binding congtructor. The Files and Imports clauses are eva uated independently:

Eval (Files Inports , © =
_append(Eval (Files , C, Eval(Inports , Q)

The following two sections give the rules for evauating Files and Imports clauses individudly. It is worth noting
that the evauation context C isignored in those rules.

3.3.14 Files

A Files clause introduces names corresponding to files or directoriesin the Vestarepository. Generdly, these files
or directories are named by relative paths, which are interpreted relative to the location of the mode containing
the Files clause. Absolute paths are permitted, though they are expected to be rarely used.

Syntax:

Files = Fil ed ause*

Fi | eCl ause = files Fileltent;
Fileltem = Fil eSpec | FileBinding
Fi | eSpec =[] Arc =] DelinPath
FileBinding ::= Arc = "[' FileSpec*, "]’
Del i nPat h = Delim] Path [Delim]
Pat h = Arc { DelimArc }*

Arc =1d | Integer | Text

Each Fileltem in a Files clause takes one of two forms: a FileSpec or a FileBinding. Each form introduces (binds)
exactly one name. In the former case, the name corresponds to the contents of asinglefile or directory; in the
latter case, the name corresponds to a binding consisting of perhaps many files or directories. In both cases, the
identifier introduced into the Vesta naming context or the identifiers introduced into the binding can be specified
explicitly or derived from an Arcin the Path.

For example, consder thefollowing fi | es dause:

files
scripts = bin;
c files =] utils.c, main.c];

Suppose the directory containing this model aso contains adirectory named bi n and filesnameduti I's. ¢ and
mai n. c. Thenthisfi | es clauseintroducesthetwo namesscri pts andc_fi | es into the context. The former
is bound to a binding whose structure corresponds to the bi n directory. The latter is bound to a binding that

mapsthenamesut i | s. ¢ and mai n. ¢ to the contents of those files, respectively. The file contents are values of

180f 42

typet_text.
Syntactic Desugaring:

When multiple Fleltem'sare given in aFileClause, thef i | es keyword smply distributes over each of the
Fldtem's Tha is

files Filelteml1; ...; Fileltemn;
desugarsto:
files Fileltem 1;
f|Ies Fileltemn;
When theinitid Arc is omitted from aFileSpec, it isinferred from the path. In particular:
files [Delim] { Arc Delim}* Arc [Delim];
desugarsto:
files Arc = [Delim] { Arc Delim}* Arc [Delim];
Evaluation Rules:
Multiple FileClause's are eva uated independently:

Eval (FileC ause_O0 FileClause_1 ... FileCause_n , C =
append(Eval (FileClause 0 , C), Eval(FileClause_ 1 ... FileCause_n , Q)

That leaves only two cases to congder: FileSpec (in which the initid Arc is specified) and FileBinding.

/'l FileSpec
Eval (files Arc = DelinPath , C = _bindl(id, v)

where:
* idisthet_text representation of Arc, asdefinedin Section 3.3.5 above.

* |f DelimPath begins with a Delim, it is interpreted as an absolute path, which must nevertheless resolve to
afileor directory in the Vestarepostory. If DelimPath does not begin with a Delim, it refersto afile or
directory named rdlative to the directory of the enclosng Mode!.

¢ |f theentity named by DelimPathisafile v isat_text vaue formed by taking the file's contents. If
DelimPath names adirectory, v isat_binding vaue constructed from the contents of the the directory,
tregting the files (if any) in the directory as above (i.e, ast_text vaues) and the directories (if any)
recursively (i.e., as bindings). The members of the resulting binding are in an unspecified order. If
DelimPath does not correspond to elther an extant file or directory, v isthevdueerr.

/1 Fil eBinding
Eval (files Arc = [FileSpec_1, ..., FileSpec_n] , O =

190 42

_bindl(id, Eval(files FileSpec_1; ...; FileSpec_n , Q)
Agan, idisthet text representation of Arc.

The FIeBinding form of the Files clause provides a convenient way to cregte a binding containing multiple
FileSpecs. Without this congtruct, it would be necessary to name each file twice, once in the FileSpec and oncein
asubsequent binding congtructor. Making a binding with FleBinding is semantically Smilar to condructing afile
system directory, with the additiond property that there is an enumeration order for the component files.

Notice thet the grammar and eva uation rules given above for FileSpec and FileBinding alow agenerd Arc on
the left-hand side of each equa sgn, not just an 1d. Thiswas done to Smplify the definitions and desugaring rules.
However, it would be usdess to write congtructs like the following, which introduce names that cannot be
referenced in the body of the modd:

files
33;
34 = 34;
"hash-table.c";
"foo bar" = [foo, bar];

Therefore, we introduce an additiond redtriction: the context created by a Files clause must bind only names that
are legd identifiers; that is, names that match the syntax of theld token.

If you need to use files whose names are not legd identifiers, you should ether assign them legd names with the
equa sign syntax or embed them in abinding. Some possibilities

/1l Choose a | egal nane

files
f33 = 33;
f34 = 34;
hash_table.c = "hash-table.c";
foo_bar = [foo, bar];

/'l Enmbed in a binding

files

f =[33 34];

src = ["hash-table.c"];
3.3.15 Imports

The Imports clause enables one Vesta SDL modd to reference and use others; that is, it supports modular
decomposition of Vesta SDL programs.

Syntax:
I mports ::= I mpd ause*
I mpCl ause ::= InpldReq | | npldOpt

There are two mgjor forms of the Imports clause: one where identifiers are required (ImpldReq), and one where
they are optiond (ImpldOpt). Both forms have two sub-formsin which either asingle modd or alist of models
may be imported.

200 42

Firgt, consder the ImpldReq case. Thisform istypically used to import modelsin the same package asthe
importing model. Each ImpltemR in the ImpldReq clause takes one of two forms. an ImpSpecR or an ImpLigR.
Each form binds exactly one name.

I mpl dReq = inmport InpltenR*;

I mpltenR = | npSpecR | InpListR

| mpSpecR = Arc = DelinPath

I mpLi st R = Arc = "[' InmpSpecR*, "]’
Del i mPat h =[] Delim] Path [Delim]
Pat h = Arc { DelimArc }*

Arc =1d | Integer | Text

In the ImpSpecR case, the name is bound to the t_closure vaue that results from evauation of the contents of a
file according to the Modd evauation rules of Section 3.3.13. For example, consider the Import clause:

i mport self = progs.ves;

Thisclause bindsthe name sel f to the closure corresponding to the locd pr ogs. ves modd in the same
directory asthe modd in which it gppears.

In the ImpList case, the name is bound to abinding of such vaues. For example:

i mport sub =
[progs = src/progs.ves, tests = src/tests.ves];

This clause binds the name sub to abinding containing the names pr ogs andt est s; these names within the
binding are bound to the closures corresponding to the models named pr ogs. ves andt est s. ves inthe
package's sr ¢ subdirectory. For example, thepr ogs. ves modd would be invoked by the expresson
“sub/ progs()".

Because the Imports clause often mentions severd files with names that share a common prefix, a syntactic form
is provided to dlow the prefix to be written once. Thisisthe ImpldOpt form. It is used to import models from
other packages. The semantics are defined so that many identifiers are optiona; when omitted, they default to the
name of the package from which the model is being imported. Asin the ImpldReq case, ImpldOpt has formsfor
importing both single modds and ligts of multiple modes.

I mpl dOpt = from DelinPath inport |npltenOt;
I mpl tenD = I mpSpecO | InpListO

| mpSpecO =[Arc =] Path [Delim]

I mpLi st O = Arc = "['" InmpSpecO, "]°

Here are some examples of ImpldOpt imports:

from/vestal/src.dec.comvesta inport
cache/ 12/ bui | d. ves;
libs = [srpc/2/build.ves, basics/5/build.ves];

This example binds the name cache to the closure corresponding to version 12 of that packagesbui | d. ves
model, and it bindsthe name| i bs to abinding containing the namessr pc and basi ¢s, bound to versons 2 and
5 of those package'sbui | d. ves models. (As the evauation rules below describe, the three occurrences of
“/'bui | d. ves" inthisexample could actudly have been omitted.)

2o 42

Syntactic Desugaring:

When multiple ImpltemR's are given in almpldReg, thei npor t keyword distributes over each of the
ImpltemR's That is:

i mport | npSpec_1,; | npSpec_n;

desugarsto:

i nport | npSpec_1;

i nport | npSpec_n;

Smilaly, thef r omclause digtributes over the individua imports of an ImpldOpt. In particular:

fromDelinmPath inport InmpltenO 1; I mpltenO_n;

desugarsto:

fromDelinPath inport InpltenD_1;

fromDelinPath inmport InpltenO n;

Theuseof f r ommakesit optiond to supply a name for the closure vaue being introduced; if the name is omitted,
it is derived from the Peth following thei npor t keyword asfollows:

from Del i mPat h i nport
[Arc.1 =] [Delim] Arc_2 { DelimArc }* [Delim]
desugarsto:

i mport Arc =
DelinmPath DelimArc_2 { DelimArc }* [Delim]

where ArcisArc_1 if itispresent and isArc_2 otherwise.

Smilaly:

fromDelinmPath inport Arc

=1
[Arcl_1 =]

[Delim] Arc2_1 { DelimArc }* [Delim],
.[.A’rcl_n:] [Delim] Arc2 n { DelimArc }* [Delim]]
desugarsto:

import Arc = [
Arc_1 = DelinmPath DelimArc2_1 {DelimArc }* [Delim],
Arc_n = DelinPath DelimArc2 n {DelimArc }* [Delim]]

where Arc i isArcl i if itispresent and isArc2_i otherwise.

2042

Evaluation Rules;

Multiple ImpClause's are evauated independently:

Eval (InmpClause_O0 InmpClause_1 ... InpClause_n, C =
append(Eval (I npClause 0 , C), Eval(InpClause_1 ... InpClause_n , C))

Thisleaves two fundamenta forms of the Imports clause, whose semantics are defined asfollows:

/1l 1 nmpSpecR
Eval (inport Arc = DelinmPath , C =
_bindl(id, Eval(nmodel , C.initial))

where:
* idisthet_text representation of Arc, asdefined in Section 3.3.5 above.

* Let f bethe sequence of Delims and Arcs that condtitute the DelimPeth.

1. If f does not begin with aDdim, prepend “"Del i m Pat ho Del i m' to f, where PathO namesthe
directory containing the Modd in which this Imports clause gppears.

2. Lookup the path f in the Vestarepository. (See Filename Interpretation below.) If f namesa
directory, append aDdim (if f doesn't dready end in one) and the string "bui | d. ves", then lookup
the augmented path f in the repository again. If f does not name adirectory and itsfind dement
doesnotendin” ves", gopend the string " ves" to thefind dement of f, and look it up in the

repository again.

* model isthe Vesta SDL Modd represented by the contents of the file in the Vesta repository named by
the sequencef. If no such expression can be produced (e.g., the file doesn't exist, or can't be parsed as an
expression), model isthe expresson ERR.

/1 1mpListR
Eval (inmport Arc = [InmpSpecR 1, ..., ImpSpecRn] , O =
_bindl(id, Eval(inport InmpSpecR 1; ...; InpSpecR n , Q)

Agan, idisthet text representation of Arc.

Aswith the Files dause, and for the same reason, we add one redtriction to the rules just given: the context
cregted by an Imports clause must bind only namesthat are legd identifiers; that is, names that match the syntax
of the Id token.

3.3.16 Filename I nter pretation

The evduation rulesfor the Files and Imports clauses do not specify how the sequence of Arcs and Ddims
making up a DdimPeth is converted into afilename in the underlying file sysem. While thisis somewhat
system-dependent, it is nevertheless intended to beintuitive. In particular,

* Multiple adjacent Delims are replaced by a single one. (The grammar above doesn't permit adjacent
Delims, but they can be produced by the desugaring rules.)

B0 42

« TheVestaSDL syntax dlowsthe arbitrary intermingling of /" and ™\ " as arc separators. However, the
implementation actudly requirestha Vesta programs use one or the other uniformly. When creating a
filename from a sequence of Arcs and Ddims, the implementation inserts the gppropriate arc separator
required by the underlying file sysem. The choice is not influenced by the choice of Delim that gppearsin
the Vesta SDL program.

¢ Thegrammar permits an Arc to be an arbitrary Text. An Arc in afilename, however, isforbidden to
contain a Delim character (i.e., forward or backward dash), and the Arcs ™. . "and . " areforbidden in
filenamesaswdl. In particular, . . " cannot be used to mean parent directory and ~. " cannot be used
to mean current directory. The ™. . " notation is forbidden for technica reasons related to Vesta caching,
whilethe ™. " notation is Smply unimplemented. However, the empty Arc ™" can be used to denote the
current directory.

3.4 Primitives

The primitive names and associated values described below are provided by the Vesta SDL interpreter in
C _initial, theinitid context. Mot of these values are closures with empty contexts; thet is, they are primitive
functions.

In the descriptions that follow, the notation used for the function signatures follows C++, with the result type
preceding the function name and each argument type preceding the corresponding argument name. Defaulting
conventions aso follow C++; if an argument nameisfollowed by '= <val ue>", then omitting the corresponding
actud argument is equivaent to supplying <vaue>.

Some of the function sgnatures use the C++ operator definition syntax, which should be understood as defining a
function whose name is not an 1d in the sense of the grammar above. Such operator names cannot be rebound.
These operators are typicaly overloaded, as the descriptions below indicate. Uses of these built-in Vesta
primitives within C++ code are denoted by the oper at or syntax.

The pseudo-code of this section assumes the definition of the Vesta value class given at the start of Section 3.3,
Invocation of a'Vesta operator primitive within the pseudo-code is denoted by the oper at or syntax. All other
operators appearing in the pseudo-code denote the C++ operators.

In these descriptions, the argument types represent the natural domain; the result type is the naturd range. In
redity, dl functions accept arguments of any type, producing err for arguments thet lie outsde the natura domain.
For this reason, a function whose specified (naturd) result is of type T has an actud result of type U(T, t_err).
Type-checking occurs when primitive functions are called, not before.

3.4.1 Functions on Typet _bool

Recdl that true and false are Vesta vaues, not C++ quantities.

t _bool
operator==(t_bool bl, t_bool b2)

Returnstrueif bl and b2 are the same, and fal se otherwise.

t _bool

240 42

operator!=(t_bool bl, t_bool b2)
oper ator! (operator==(bl, b2))

t _bool
operator! (t_bool b) =

{

int ib =0b; // convert to C++ integer
if (ib) return false; else return true

}

3.4.2 Functionson Typet _i nt

t _bool
operator==(t_int i1, t_int i2)

Returnstrueif il and i2 are equal, and fal se otherwise.

t _bool
operator!=(t_int i1, t_int i2) =
operator! (operator==(il, i2))

t_int
operator+(t_int i1, t_int i2)

Returnstheinteger sum il + i2 unlessit lies outsde the implementation-defined range, in which case
err isreturned.

t_int
operator-(t_int il, t_int i2)

Returnsthe integer differenceil - 12 unlessit lies outsde the implementation-defined range, in which
case err isreturned.

t_int
operator-(t_int i) =
operator-(0, i)

t_int
operator*(t_int i1, t_int i2)

Returnstheinteger product i1 * i2 unlessit lies outsde the implementation-defined range, in which
case err isreturned.

t_int
div(t_int i1, t_int i2)

Returns the integer quotient il /i2 (that is, the floor of thered quotient) unlessit lies outsde the
implementation-defined range, in which case err isreturned. (err ispossbleonly if i2 iszero or if i2
is-1and il isthelargest implementation-defined negative number.)

t_int

_mod(t_int i1, t_int i2) =
operator-(il, operator*(_div(il,i2), i2))

50 42

t _bool
operator<(t_int il, t_int i2) =

{
int iil =11, ii2 =1i2; // convert to C++ integers
if (il <ii2) return true; else return false

}

t _bool

operator>(t_int i1, t_int i2) =
operator<(i2, il)

t _bool

operator<=(t_int i1, t_int i2) =

{
int iil =11, ii2 =1i2; // convert to C++ integers
if (iil <=1ii2) return true; else return false

}

t _bool

operator>=(t_int i1, t_int i2) =
operator<=(i2, il)

t_int

_mn(t_int i1, t_int i2) =

{ if (operator<(il, i2)) returnil;, else returni2; }
t_int

_max(t_int i1, t_int i2) =

{ if (operator>(il, i2)) returnil;, else returni2; }

3.4.3 Functionson Typet _t ext

Thefirg byte of at_text vaue hasindex 0.

t _bool
operator==(t_text tl, t_text t2)

Returnstrueif t1 and t2 areidentica byte sequences, and fal se otherwise.

t _bool
operator!=(t_text tl, t _text t2) =
operator! (operator==(t1, t2))

t_text
operator+(t_text tl1, t_text t2)

Returns the byte sequence formed by appending the byte sequence t2 to the byte sequencetl
(concatenation).

t_int
_length(t_text t)

Returns the number of bytesin the byte sequencet.

t_text

260 42

_elem(t _text t,

tint i)

Ifo <= i < _length(t),returnsabyte sequence of length 1 conssting of bytei of the byte
sequence t. Otherwise, returns the empty byte sequence.

t_text
_sub(t_text t, t_int start =0, t_int len = _length(t)) =
{
int w= _length(t);
int i = _mn(_max(start, 0)), w;
int j = _mn(i + _max(len, 0), w;
/1 0 <=1i <=j <= length(t); extract [i..])
t _text r =
for (; i < j; i++) r = operator+(r, _elem(t, i));
return r;
}

Extractsfrom t and returns a byte sequence of length len beginning & byte start. Note the
boundary cases defined by the pseudo-code; _sub produces err only if it is passed arguments of
the wrong type.

t_int
_find(t_text t, t_text p, t_int start = 0) =
{
int j = length(t) - _length(p);
if (j <0) return -1;
int i = _max(start, 0);
if (i >j) return -1;
for (; i <=j; i++) {
int k = 0;
while (k < _length(p) && _elen(t, i+k) == _elem(p, k)) k++;
if (k == _length(p)) return i;
}
return -1;
}
Finds the leftmost occurrence of pint that begins at or after pogtion start. Returnsthe index of the
first byte of the occurrence, or -1 if none exigts.
t_int
_findr(t_text t, t_text p, t_int start = 0) =
{
int j = length(t) - _length(p);
if (j <0) return -1;
int i = max(start, 0);
if (i >j) return -1;
for (; i <=1j; j--) {
int k = 0;
while (k < _length(p) & _elem(t, j+k) == _elem(p, k)) k++;
if (k == _length(p)) return j;
}
return -1;
}

Finds the rightmost occurrence of pint that begins at or after pogition start. Returns the index of

2o 42

the first byte of the occurrence, or -1 if none exigts.

3.4.4 Functionson Typet _| i st

t _bool
operator==(t_list |11, t_list |2)

Returnstrueif |11 and |2 are ligs of the same length containing (recursively) equa vaues, and false
otherwise.

t _bool
operator!=(t_list 11, t_list 12) =
operator! (operator==(11, |2))

t_list
_list1l(t_val ue v)

Returns aligt containing asingle dement whose vaueisv.

t _val ue
_head(t_list I)

Returnsthefirg dement of I. If | isempty, returnserr.

t _list
_tail(t_list I)

Returnstheligt conssting of al dementsof |, in order, except thefirdt. If | isempty, returnserr.

t_int
_length(t_list I)

Returns the number of (top-leve) vduesinthelis .

t _val ue
_elem(t _list I, t_int i)

Returnsthei-th vdueinthelig |, or err if no such vaue exiss. Thefirg vaue of alist hasindex O.

t _list
operator+(t_list 11, t_list 12)

Returnsthe list formed by appending [2 to | 1.

t_list
_sub(t_list I, t_int start =0, t_int len = _length(l))
{

int w= _length(l);

int i = mn(_max(start, 0)), w;

int j = _mn(i + _max(len, 0), w;

/1 0 <=1i <=]j <= _length(l); extract [i..])
t list r = enptylist;
for (; i <j; i++) r = operator+(r, _elen(l, i));

280 42

return r;

}
Returnsthe sub-list of | of length len garting a dement start. Note the boundary cases defined by
the pseudo-code; _sub produces err only if it is passed arguments of the wrong type.
t_list
_map(t_closure f, t_list |) =
{
t_list res = enptylist;
for (; !'(l == enptylist); | = _tail(l)) {
t_value v = f(_head(1)); // apply the closure "f"
if (res == err || v == err) res = err
el se res = operator+(res, v);
}
return res;
}
Returnsthe ligt that results from applying the closure f to each dement of thelist |, and
concatenating the resultsin order. The closure f should take one vaue (of typet vaue) as argument
and return avaue of any type. If f hasthe wrong Sgnature or if any evauation of f returnserr, then
_map returnserr. However, f will be gpplied to every dement of theligt, even if one of its
evauations produces err.
t_Iist

_par_map(t_closure f, t_list I)

Formdly equivdent to _map, but the implementation may perform each gpplication of f in a separate
pardld thread. Externd toolsinvoked by _run_t ool in different threads may be run Smultaneoudy
on different machines.

3.4.5 Functions on typet _bi ndi ng

t _bool
operator==(t_binding bl, t_binding b2)

Returnstrueif b1l and b2 are bindings of the same length containing the same names (in order)
bound to (recursvely) equal vaues, and fal se otherwise.

t _bool
operator!=(t_binding bl, t_binding b2) =
operator! (operator==(bl, b2))

t _bi ndi ng
_bindl(t_text n, t_value v)

If nisempty, returns err. Otherwise, returns a binding with the single <name, vaue> pair <n, v>.
Note that v may be any vadue, including err.

t _bi ndi ng
_head(t _bi ndi ng b)

Returns a binding with one <name, vaue> pair equd to the first ement of b. If b isempty, returns

200 42

err.

t _bi ndi ng
_tail (t_binding b)

Returns the binding conggting of dl dements of b, in order, except thefirdt. If b isempty, returns
er.

t_int
_length(t_binding b)

Returns the number of <name, value> pairsin b.

t _bi ndi ng
_elem(t_binding b, t_int i)

Returns abinding congsting solely of thei-th <name, vadue> pair in the binding b, or err if no such
par exigs Thefirg par of abinding hasindex O.

t_text
_n(t_binding b)

If _I ength(b) = 1, returnsthe name part of the <name, value> pair that condtitutes b. Otherwise,
returnserr.

t _val ue
_v(t_binding b)

If _I engt h(b) differsfrom 1, returnserr. Otherwise, let v be the value part of the <name, vaue>
pair that condtitutes b. Thisfunction returnsv. (Note that aresult value of err does not imply that
_l engt h(b) differsfrom 1, Sncev may bethevdueerr.)

t _bool
_defined(t_binding b, t_text nane)

If nameisempty, returns err. Otherwise, returnstrue if the binding b containsapair <n, v> with n
identical to name, and fal se otherwise.

t _val ue
_lookup(t_binding b, t_text nane)

If nameisempty, returnserr. If nameisdefined in b, returns the vaue associated with it;
otherwise, returns err. Note that the value associated with name may be of any type, indluding
t_err, soaresult of err doesnot necessarily imply that _def i ned(b, name) isfalse.

t _bi ndi ng
_append(t_binding bl, t_binding b2)

Returns a binding formed by gppending b2 to b1, but only if dl the namesin b1l and b2 are digtinct.
Otherwise, returns err.

t _bi ndi ng

D42

operator+(t_binding bl, t_binding b2) =
{
val r = enptybinding;
for (; !'(bl == enptybinding); bl = _tail(bl)) {
val n = _n(_head(bl));
val v;
if (_defined(b2, n) == true)
v = _l ookup(b2, n);
else v = _v(_head(bl));
r = _append(r, _bindl(n, v));
}
for (; !(b2 == enptybinding); b2 = _tail(b2)) {
if (_defined(bl, _n(_head(b2)) == false)
r = _append(r, _head(b2));
}

return r;

}

Returns a binding formed by gppending b2 to b1, giving precedence to b2 when both bl and b2
contain <name, vaue> pairs with the same name.

t _bi ndi ng
operator++(t_binding bl, t_binding b2) =
{
val r = enptybinding;
for (; !'(bl == enptybinding); bl = _tail(bl)) {
val n = _n(_head(bl));
val v;
if (_defined(b2, n) == true) {
val v2 = _|lookup(b2, n);
if (_is_binding(v2) == true) {
v = _v(_head(bl);
if (_is_binding(v) == true)
v = operator++(v, v2);
else v = v2
}
else v = v2;
}
else v = _v(_head(bl));
r = _append(r, _bindl(n, v));
}
for (; !'(b2 == enptybinding); b2 = _tail(b2)) {
if (_defined(r, _n(_head(b2)) == fal se)
r = _append(r, _head(b2));
}

return r;

}

Similar to operator+, but performs the operation recursively for each name n for which both
_i shi nding(_l ookup(b1, n)) and _i sbhi ndi ng(_I ookup(b2, n)) aretrue

t _bi ndi ng
operator-(t_binding bl, t_binding b2) =
{
val r = enptybinding;
for (; !(bl = emptybinding); bl = _tail(bl)) {

1o v

}

t_

val n = _n(_head(bl));
if (_defined(b2, n) == fal se)
r = _append(r, _head(bl));
}

return r;

Returns a binding formed by removing from b1 any pair <n, v> such that _def i ned(b2, n).The
vaue Vv associated with nin b2 isirrdevant.

bi ndi ng

_sub(t_binding b, t_int start = 0, t_int len = _|length(b))

{

int w= _length(b);

int i = _mn(_max(start, 0)), w;

int j = mn(i + _max(len, 0), w;

/1 0 <=i <=j <= _length(b); extract [i..])

t _binding r = enptybinding;

for (; i <j; i++) r = _append(r, _elemb, i));

return r;
}
Returns the sub-binding of b of length len Sarting at ement start. Note the boundary cases
defined by the pseudo-code; _sub produces err only if it is passed arguments of the wrong type.
t _bi ndi ng

_map(t_closure f, t_binding b) =

t _binding res = enptybinding;
for (; !'(b == enptybinding); b = _tail(l)) {
t_binding bl = f(_n(_head(b)), _v(_head(b))); // apply the closure "f"

if (res == err || bl == err) res = err
el se res = _append(res, bl);
}
return res;
}
Returns the binding that results from gpplying the closure f to each <name, value> pair of the
binding b, and gppending the resulting bindings together. The closure f should take the name (of
typet_text) and value (of typet vaue) as arguments, and return avaue of typet_binding. If f has
the wrong signature or if any evaduation of f returnserr, then _map returnserr. However, f will be
goplied to every pair of the binding, even if one of its evaluations produces err.
t _bi ndi ng

_par_map(t_closure f, t_binding b)

Formdly equivdent to _map, but the implementation may perform each gpplication of f in a separate
pardld thread. Externd toolsinvoked by _run_t ool in different threads may be run Smultaneoudy
on different machines.

3.4.6 Type Manipulation Functions

t_text
_type_of (t_val ue v)

R4

_type_of returnsatext vaue corresponding to the type of the value v:

val ue text returned by _type_of
true, false "t _bool "

i nt eger "t_int"

byt e sequence "t _text”

err "t_err"

list "t_list”

bi ndi ng "t _bi ndi ng"

cl osures "t _closure"

t _bool
_same_type(t_value vl1, t_value v2) =
operator==(_type_of(vl), _type_of(v2))

t _bool
_is_bool (t_val ue v)

Returnstrueif v is of typet_boal; returns fal se otherwise.

t _bool
_is_int(t_value v)

Returnstrueif v isof typet int; returns fal se otherwise.

t _bool
_is_text(t_value v)

Returnstrueif v isof typet_text; returns fal se otherwise.

t _bool
_is_err(t_value v)

Returnstrueif v isof typet_err; returns fal se otherwise.

t _bool
_is_list(t_value v)

Returnstrueif v isof typet lig; returns false otherwise.

t _bool
_is_binding(t_value v)

Returnstrueif v isof typet_binding; returns fal se otherwise.

t _bool
_is_closure(t_value v)

Returnstrueif v isof typet_closure; returns fal se otherwise.

3.4.7 Tool Invocation Function

3Bof 42

t _bi ndi ng
_run_t ool (

platform t_text,

command:
st di n:

st dout _t
stderr _t
status_t
signal _t

t_list,

t_text ="",
reatment: t_text "report",
reatnment: t_text "report",

reatment: t_text
reatnment: t_text

"report_nocache",
"report_nocache",

fp_contents: t_int = 0,
wd: t_text = ".\WD",
existing_witable: t_bool = FALSE)

_run_t ool isthe mechanism by which externa programs like compilers and linkers are executed
from aVesta SDL program. It provides functiondity thet isfairly platform-independent. The
following description, however, is somewhat Unix-specific (for example, in its description of exit

codes

and sgnals).

The platform argument specifies the platform on which the tool isto be executed. _r un_t ool
sdlects a gpecific machine for the given platform. The legd vauesfor platform and the mechanism
by which amachine of the appropriate platform is chosen are implementation dependent.

Thetool to be executed is specified by the command argument. Thisargumentisat list of t_text
vaues. The firs member of the list isthe name of the tool (interpretation of the nameis discussed
below); the remaining members of the list are the arguments passed to the tool as its command line.
The tool is executed on the specified platform in an environment with the following characteristics

Thefile system is encapsulated so that absolute paths (i.e., those beginning with aDdim) are
interpreted reltiveto . / r oot , where . isthe implicit find parameter to _run _tool.
Non-absolute paths are interpreted relative to . / r oot / $wd, where wd is a parameter to
_run_tool. The interpretation of filenamesis discussed in more detail below.

The environment variables are taken from . / envVvar s, where ™" istheimplicit find
parameter to _run _tool.

The contents of standard input are the value of the stdin parameter to _run_tool.

Standard output and standard error are treated as specified by the stdout_treatment and
stderr_treatment parameters. Each of these parameters may take on one of thet_text
vaues"ignore","report","report_nocache", or "val ue". If thevaueis"i gnore",
any bytes written to the corresponding output stream (stdout or stderr) are discarded. If the
vadueis"report ", the corresponding output is made visble to the user. If thevdueis
"report_nocache", the corresponding output is made visible to the user and, if it is not
empty, the evauator does not cachethe _run_tool result. If thevalueis” val ue", the output
stream is converted to a Vestavaue of typet_text and returned as part of the _run_tool
result, as described below.

The status_treatment and signal_treatment arguments may take on thet_text vaue

"report" Or"report_nocache". Regardless of their values, thecode and si gnal fidds
of the result vaue will be set as described below. If the vdue of status treatment is

A4

"report_nocache", thisrun_tool cdl will not be cached if the result code is nonzero;
amilaly, if signal_treatment is" r eport _nocache", therun tool cal will not be cached if
theresult si gnal IS nonzero.

* Theexisting_writable argument controls whether the tool is permitted to write to files that
dready exigt in its encapsulated file system when it is started. If the argument is TRUE, such
files may be opened for writing and written to; if it is FALSE, they may not. For technica
reasons in the NFS-based repository implementation, tools will get much better file system
performance when existing_writable is FALSE. It should be set to TRUE only for tools
that requireit.

In the absence of errors, _run_tool returns a binding that contains the results of the command
execution. This binding hastype:

type run_tool _result = binding |
code coint,
signal : int,
stdout_written : bool,
stderr_witten : bool,
stdout : text,
stderr : text,
r oot : binding

]

If r isof typerun_tool_result, then:

* r/code isaninteger value that characterizes how the command terminated (i.e., the exit
status of the Unix process).

* r/signal isaninteger vaueidentifying the Unix Sgnd that terminated the process, or O if
the process exited voluntarily.

* r/stdout_wittenandr/stderr_written indicaewhether datawas written to the
stdout and stderr streams, respectively.

* r/stdout isdefined iff the stdout_treatment parameter to _run_tool is" val ue" , inwhich
case it contains the bytes written to stdouit.

* r/stderr isddinediff thestderr_treatment parameter to _run tool is" val ue", in which
case it contains the bytes written to stderr.

* r/root isabinding containing dl files created by the command that are extant upon exit.
See File System Encapsulation below for more detalls.

Two fine points relaing to the results of _run_tool:

1. If thetool cannot be invoked---for example, because of errorsin the parametersto
_run_tool---the evaluator prints a suitable diagnostic and the _run _tool call returnserr.
However, errors that result during the execution of the tool are reported in a tool-specific
fashion, with the exit Satus reported in r / code.

Ho 4

2. Spedifying " report _nocache" asthe treatment for an output Stream (stdout or stderr) or
the exit satus prevents the evauator from making a cache entry from the call of _run_tool if
any output is produced on the corresponding output stream or if the exit status is nonzero,
respectively. In addition, none of the ancestor functions of thefailing _run_tool cal in the call
graph are cached either. Since no cache entries are made, a subsequent re-interpretation of
the model will produce the same output (on stdout or stderr). This can be useful for
reproducing error messages from a compiler or other externa tool that are displayed through
the Vesta user interface.

By default, arbitrary unique fingerprints are chosen for any derived files created by the tool
execution, including derived files created for stdout/stderr when the vaue of the
stdout_treatment/stderr_treatment parameter is"vaue'. Y ou can indtead cause the fingerprints
for such files to be computed determinigticaly from their contents, using the fp_contents parameter.
If this parameter is a nonnegetive vaue, filesless than fp_contents byteslong are given
content-based fingerprints, whilefiles of fp_contents or more bytes are given arbitrary unique
fingerprints. If the parameter is st to -1, dl files are given content-based fingerprints. The boolean
vaues TRUE and FAL SE are accepted as synonyms for -1 and O respectively.

The cogt of fingerprinting afile's contentsis non-trivid, but doing so alows for cache hitsin cases
where two eva uations depends on an vaue that isidentical but was computed in two different
ways.

File System Encapsulation

» When the command process (or any subprocessit creates) executes a Unix system cal that
includes afile path as a parameter, the file path istrandated into areference into the ™'
binding that isthe last parameter to _run_tool.

* Thepathisinterpreted beginning @ . / r oot if it beginswith"/* anda . / r oot / $wd
otherwise, where $wd is the vaue of the wd parameter to _run_tool. Each component of the
path---except possibly the find one---must name a Vesta binding. The interpretation of the
find component of the path depends on the semantics of the system call. If the system call
expects an extant file, the fina component must name aVestavaue of typet text. If the
system call expects an extant directory, the Vesta value must be of typet_binding. If the
system cal expects an unbound name, the name must not be bound by the binding
corresponding to the penultimate path component.

A file created or modified by the command process (or a subprocess) remainsvisblein the
name space throughout the remainder of the processs execution (or until deleted), just asina
regular file system. Thisis achieved by modeling file cregtion, modification, and deletion asa
suitable overlaying of . / r oot . For example, if the process creates *f00.0" in its working
directory, this has the effect of:

.Iroot/$wm += [foo.0 = <bytes of file>];
<subsequent execution of the conmand process>

* Flemoadification is handled in exactly the same way. For example, if the process opensthe

Bo 42

exiging file “foo.db" in its working directory and writesto it, this has the effect of:

./root/$wd += [foo.db = <new contents of file>];
<subsequent execution of the conmand process>

Note that modification of preexidting filesis forbidden if the existing_writable argument to
_run_tool is set to FALSE (its default vaue).

* File ddetions are modeled smilarly, but the files are removed from the context using the
binding difference (-) operator, instead of added using the binding overlay (+) operator.

* When the command process exits, the accumulated effects of the file creations and deletions
it has performed are returned as part of the _run_tool result (in r / r oot). In this binding, the
names of files deleted by the tool are bound to fal se. Such names correspond ether to files
that exigedin . / r oot before the tool was invoked, or to files creasted and subsequently
deleted by the tool.

Thus if . / r oot representsthe Sate of the file system visible to the command process at the
timeit islaunched, then the state of the file syssem when it exits can be described as:

./root ++ r/root

So, if theinvoker of _run_tool wanted to update . / r oot to reflect the changes made by
cdling _run_tool, the code might look like this:

r = run_tool (<suitable paraneters>);
new fs = ./root ++ r/root;
. += [root = new fs |;

After the last assgnment, namesin . / r oot bound to false are files that were deeted by the
tool. Hereisarecursve function for removing such files

renove_del et ed(b: binding): binding

{
res: binding =[];
foreach [n=v] in b do
res +=if v = false then [] else
if _is_binding(v) then [$n = renpve_del eted(v)]
else [$n = v];
return res;
b

4. Concrete Syntax

4.1 Grammar

Models:
Model ;.= Files Inports Block

Files clauses:

a4

Fil es = Fil ed ause*

Fi | eCl ause =files Fileltent,;
Fileltem = Fil eSpec | Fil eBinding
Fi | eSpec = [Arc =] DelinPath
FileBinding ::= Arc = "[' FileSpec*, "]'

Import clauses:

I nports = | mpCl ause*

I mpCl ause = InpldReq | | npl dOpt

I mpl dReq = inmport I|npltenR*;

I mpltenR = I nmpSpecR | InmpListR

| mpSpecR = Arc = DelinPath

| npLi st R = Arc = "[' InmpSpecR*, "]
| mpl dOpt = fromDelinPath inport I|npltemO,;
I mpl t enD = | mpSpecO | InpListO

| mpSpecO =[] Arc =] Path [Delim]
I mpLi st O = Arc = "[" InmpSpecO, "]
Pathsand Arcs:

Del i nPat h = [Delim] Path [Delim]
Pat h = Arc { DelimArc }*

Arc =1d | Integer | Text

Blocks and Statements:

Bl ock = {" Stnt*; Result; "}’
Stm = Assign | Iterate | FuncDef | TypeDef
Resul t = { value | return } Expr

Assignment statements:

Assi gn = Typedld [Op] = Expr
Op = AddOp | Ml Op

AddOp =+ | ++ | -

Mul Op = *

Iteration statements:

Iterate = foreach Control in Expr do IterBody
Contr ol = Typedld | "[' Typedld = Typedld "]'
It er Body =Stnt | T{'" Stnm+; "}’

Function definitions;

FuncDef ::=1d Formal s+ [TypeQual] Bl ock

Formal s .= (Formal Args)

Formal Args ::= { Typedl d*, /1 none defaulted
| { Typedld = Expr }*, /1 all defaulted
I

Typedld { , Typedld }* { , Typedld = Expr }+ } // sone defaulted

Expressions:

B4

Expr = if Expr then Expr else Expr | Exprl
Exprl = Expr2 { => Expr2 }*
Expr 2 = Expr3 { || Expr3 }*
Expr3 = Exprd { && Expr4 }*
Expr 4 = Expr5 [{ == =] <] >| <= >= } EXpr5]
Expr5 = Expr6 { AddOp Expr6 }*
Expr 6 = Expr7 { Mul Op Expr7 }*
Expr7 = [UnaryOp] Expr8
Unar yOp =- | !
Expr 8 = Primary [TypeQual]
Primary = (Expr) | Literal | Id | List
I

Binding | Select | Block | FuncCall

Binary operators with equa precedence are |eft associtive.

Literals:

Literal = ERR | TRUE | FALSE | Text | Integer
Lists:

Li st = < Expr*, >

Bindings:

Bi ndi ng = '[" BindEl enr, °]°

Bi ndEl em = Sel f NaneB | NaneBi nd

Sel f NaneB =1d

NanmeBi nd = GenPath = Expr

CGenPat h = GenArc { DelimGenArc }* [Delim]
GenArc =Ac | $1d]| $ (Expr) | %Expr %

Binding selections:

Sel ect = Primary Sel ector GenArc
Sel ect or = Delim| !

Function calls:

FuncCal | = Primary Actuals

Act ual s = (Expr*,)

Type definitions:

TypeDef type Id = Type

Typedl d Id [TypeQual]
TypeQual Type

Type any | bool | int | text

list [(Type)]

bi nding (TypeQual)

binding [(Typedld*,)]

function { (TypedFormt,) }* [TypeQual]
Id

Do 42

TypedForm ::=[Id :] Type
4.2 Ambiguity Resolution
The grammar as given above is ambiguous. We resolve the ambiguity as follows.

The Vedta parser accepts amodified grammar in which the > token is replaced by two digtinct tokens:
GREATER in the production for Expr4 and RANGLE in the production for List. The modified grammar is
unambiguous and can easily be parsed by an LL(1) or LALR(1) automaton.

The Vedtatokenizer is responsible for disambiguating between GREATER and RANGLE wherever > appearsin
theinput. It does so by looking ahead to the next token after the >. If the next token is one of

- 1 (ERR TRUE FALSE Text Integer Id < [{

then the > istaken as GREATER; otherwisg, it istaken as RANGLE.

Why is this solution reasonabl€? Ingpection of the grammar shows that in a syntacticadly vadid program, the next
token after GREATER must be one of those in the above ligt. The next token after RANGLE mugt be one of the
falowing:

D 4+ ++ - == = < GREATER <= >= && || =>
; do,) then else RANGLE] %/ \ ! (

These sets overlap in the tokens -, !, (, and <. Because we have chosen to resolve these cases as GREATER, it
isimpossible to write certain syntacticaly vaid programs containing RANGLE. However, any such program can
be rewritten by replacing every Ligt nontermind by (Ligt) , yidding a semanticdly equivadent program in which
the closing > of the Ligt is correctly resolved as RANGLE. Moreover, we clam (without presenting a proof) that
any program inwhich RANGLE isfollowed by -, !, (, or < must have aruntime type error, due to the paucity of
operators defined on the list type, so in practice such programs are never written.

4.3 Tokens

Hereisa BNF description of the tokens of the language. The token classes Ddlim, Integer, 1d, and Text, and the
individua tokensin the classes Punc, TwoPunc, and Keyword, serve asterminals in the BNF of earlier sections.

TokenSeq = Token*

Token = Integer | Id | Text | Punc | TwoPunc | Keyword
| Whitespace | Comment

Delim =/ | \

I nt eger = Decimal NZ Decimal* | 0 Cctal* | 0 { x| X} Hex+

Deci mal =0| 1| 2] 3] 4] 5] 6] 7] 8] 9

Deci mal NZ =1| 2| 3] 4| 5| 6] 7] 8] 9

Cct al =0| 1| 2] 3] 4| 5] 6] 7

Hex =Decimal | A|] B| C| D| E| F| a]|] b] c| d]| e] f

Id = { Letter | Decimal | IdPunc }+

Letter =A| B|] C| D] EJ] F|] G| H] I | J] K] L| M
| N O] P Q] R S| T| U] V] W[X|] Y] Z
|l al bfcldlel| f] glh] i | j| k][] I]m

400 42

' nlolplalrls|t]ulv]w]x]y]|z

I dPunc = | _

Text =" TextChar* "

Text Char = Decimal | Letter | Punc | Escape

Punc =~ 1@l #1 8| %l M &] (1)
N I Aol U S N S R A B R R
<11 >1 7?1171 Space

Escape =\ {n]|] t | v]|]b]r|] f]al]\ | " | Otals | Hexes }

Cctal s = Octal [Cctal [Cctal]]

Hexes ={ x| X} Hex [Hex]

TwoPunc =++ | =] 1= <=] >=| =] || | &

Keywor d ::= binding | do | else | ERR| FALSE | files | foreach
| from| function | if | in | import | list | return
| then | type | TRUE | val ue

VWhitespace ::= " ' | Tab | Newline

Comment ::= 1/ NonNew i neChar* New ine

| “/*" CommentBody " */

We define Newline as an ASCII new line sequence, ether CR, LF, or CRLF. NonNewlineChar isany ASCI|
character other than CR and LF. CommentBody is any sequence of ASCII characters that does not contain ™*/'.
Tab isthe ASCII TAB character.

The ambiguities in the token grammar are resolved as follows. The tokenizer interprets the program as a
TokenSeq. It scans from |eft to right, repeatedly matching the longest possible Token beginning with the next
unmatched character. Whitespace and Comment tokens are discarded after matching; other tokens are passed
on for parsang by the main grammar. When a string of characters matches both Integer and 1d, it is tokenized as
Integer. When a string matches both Keyword and Id, it is tokenized as Keyword.

4.4 Reserved |dentifiers

Here are Vesta-2's reserved identifiers; they should not be redefined:

_append _bindl _defined _div _elem _find _findr
_head _is_binding _is _bool _is closure _is_err
_is_int _is_list _is_text _length _listl _Iookup
_map _max _mn _mod _n _run_tool _same_type _sub
_tail _type_of _v

5. Acknowledgments

Bill McKeeman encouraged us to revise the syntax of the language to make it more paatable to C programmers.
Mark Lillibridge gave us many useful comments on an earlier draft of the paper.

6. References

[1] Allan Heydon, Roy Levin, Tim Mann, and Y uan Yu. The Vesta-2 Software Configuration Management
System, Research Report, Digital Systems Research Center. In preparation.

4o 42

[2] Roy Levin and Paul R. McJones. The Vesta Approach to Precise Configuration of Large Software
Systems, Research Report 105, Digital Systems Research Center. June 1993. 39 pgs.

[3] Sheng-Yang Chiu and Roy Levin. The Vesta Repository: A File System Extension for Software
Development, Research Report 106, Digital Systems Research Center. June 1993. 34 pgs.

[4] Chrigine B. Hannaand Roy Levin. The Vesta Language for Configuration Management, Research
Report 107, Digital Systems Research Center. June 1993. 62 pgs.

[5] Mak R. Brown and John R. Ellis. Bridges. Tools to Extend the Vesta Configuration Management
System, Research Report 108, Digital Systems Research Center. June 1993. 43 pgs.

PRo 42

