SRC Technical Note
1997-010

May 30, 1997

FocustContext Display of Web Pages. | mplementation
Alternatives

Marc H. Brown, Hannes Marais, Marc A. Najork, William E. Weihl

Systems Resear ch Center
130 Lytton Avenue
Palo Alto, CA 94301
http://mwww.research.digital.com/SRC/

Copyright 1997 Digital Equipment Corporation. All rights reserved

Abstract

This paper describes an outline processor display of Web pages. We attach icons, called
zippers, to the HTML heading tags (H1, H2, ...), and the user can dynamically include or elide
the body of each section by clicking on the zipper. We have implemented zippersin three
different ways:. zippers that are inserted by a custom-built Web browser and that control the
browser's display engine; zippers that are inserted into the HTML document by a Web proxy
and that use the proxy to generate modified HTML reflecting the changed state of the zipper;
and zippersthat trigger a JavaScript program which redisplays an appropriately modified
version of the page.

A good way to experience the ideas presented here is to view the outline version of this
paper. You will need to use Netscape Navigator 3 or higher.

| ntroduction

As people rush to put information onto the World Wide Web, more and more structured documents are

ld12

gppearing. These documents include home pages with lots of hierarchicdly organized links, papers with many
sections and subsections, and other lengthy documents such as books and manuas.

All Web browsers that we know of display each page as a continuous scroll. Unfortunately, it is easy to lose
context when viewing a snippet of the whole, and it is hard to jump to arbitrary placesin the page. These
problems become more severe with longer pages.

Ouitline processors provide one well known technique for addressing these problems. Outline processors alow a
user to expand and contract selected sections and subsections of a document, thus retaining the high-level
sructure of the document while aso digplaying individua sections. In addition, outline processors dlow the user
to rgpidly jump within the document.

This paper describes how we have integrated outline processor technology into Web browsers. We use the
heading tags (i.e, H1, H2, ..., H6) in the HTML source to derive an outline structure of the document, and we
mark each heading with an icon caled azipper. Clicking on the zipper causes the section introduced by the
heading to expand and contract. Re-expanding a section causes the state of al subsections to regppear asthey

were before the section was contracted.

The three screen dumps below show different states of a sesson in which we viewed the HT TP 1.0 specification.
The wdl-gructured hierarchy of this document makes it ided for outline viewing. The left screen dump showsthe
document with the top-level zipper expanded ("open™) and al second-level zippers contracted ("closed”). In the
middle screen dump, the user has opened the zipper of section 10; and in the screen dump on theright, he has
further opened subsections 10.2, 10.5, and 10.7.

Be L e (0 Sodwes Botes Betay mieies S

ol 1] e = T]|

P

Be L e O Scomes ke ey g 508
L e [R E o EA |

L

T e
o o]) e aia|]

il Loome =

“Hypertext Transfer Protocel - HTTP 1.0
B Almius af ks Mems
FIESC Mot
F Ahvstract
P Tabde af Coneers
k1. Inirodectian
¥ . Bt lensl Croorveniiom and (enerie Granmmar_
® 5, Pratacal 'arainelers
¥4 HTTF Mrssage
kA, Brquesi
b, Besponse
* 7. Engiry
. Aot Definitans
kU, Bimius Cade Dieflnkdans
10 Hizader Field Defisitlsis
P11, Arress Authenscsiion

FH. Meihe Diefilans q
FH, Sialus Cade Definigans
Ui Hezader Fleld Defilt sy
:::rm m&mﬁmﬂ ;.'-M'fr‘:"ﬂ I:.I\m Hpoing oUW 30O
el T i B g

LELART

FERT mstemtitias

¥ a2 Canimnd-Ercading

¥t e g

B0 Cament-Typa

PR Dae

LE T

PGB From

F o -pad it Since

PRI laa padied

Bl Licmian

PRI Fragrm

LEERERL L

LA TR

FERLS ey g

Folin WWH. utienl icae

FH, Methed Drfnisians

B, Blatus Cade Defnisan

A Header Fleld Defaitiens

Th ciom, o W e e o Tl poramty wood HTTFRL B by P

=
amey ko ik, Lok, st T e (v 10 el o chars 2 s v g o
il e gk

TERD b

B il i L R el L e -y, [X
18] vempamer. mury i o ey b 0 11 L P oy el e v
PRSI o ——

1 gt P o o i oo b ol

iy o

dnrtariaeIon = artArIIeTEET o7 prensile

HTTF ac1mr mbrmonss @ docsbaio fricn | 1 woees o wmiees med e b isale gl
T swe e pdmrt i nla ool b vlel by o st wrpeds i e e

Fogenimy i ppeiy v
FBR Camiani Ercading

¥ IS S L gl

TP DTy

198 o B e bl

Thir (i e o= b e el e o o o by o B B i 1k e B oo
i WO T sl e i o i il e] i 8

Wit derrmrmn o prishoh b vk barg e iy e D st w ool it T

P11 Securiey Considermilons ¥ 11, Arres Anfeniicaian [FETS

P13 ekl el ¥ 12, Securky Considerntions THLT Fapiie

X =l R AR Aff Y| e i bowien B AR i, bl
S ot T ° 13 PR i ' [arrerr o
— —

Therest of this paper is organized as follows: The next three sections describe three dternative implementations

of zippers.

* Thefirst approachisto build a custom Web browser that inserts zipper buttonsinto the display of HTML
pages. Because the buttons are not part of the HTML but are widgets of the browser, they can accessthe

2012

browser directly. Clicking on a button causes the browser to change the state of the zipper and to
redisplay the page.

= The second approachisto build a proxy that inserts zippersinto HTML pages, which then can be viewed
by a standard Web browser. In this gpproach, zippers are represented through standard HTML, as links
attached to images. Clicking on a zipper sends an HT TP request to the proxy, which causesiit to generate
anew HTML page.

= Thethird approachisto build atransducer that inserts a script (e.g., JavaScript or VBScript) into the
HTML page. The script, executed by a suitable Web browser, generates an outline view of the page.
Clicking on a zipper causes the browser to re-execute the script, which then generates an gppropriately
updated outline view of the page.

Following that, we discuss related work. Findly, we offer some condluding thoughts on the merits of zippers and
on the generd goplicability of the various implementation aternatives we explored.

Approach 1. A Custom Web Browser

We have built afamily of Web browsers that support zippers. These browsers are implemented in Modula-3, an
object-oriented language akin to Java. Modula-3 comes with a sophisticated Ul toolkit, caled Trestle[5].

In Trestle, ech window is organized as atree of widgets, caled "virtud bitmap terminds,” or VBTs. VBTscan
be classfied by the number of their children. Leaf VBTSs have no children; they are used for digplaying text and
images, for scrallbars, for type-in fields, and so on. Filter VBTs have asingle child and modify it in some way,
such as by adding aborder, by making it reactive to mouse clicks, and so on. Findly, split VBTs have an
arbitrary number of children, and typicdly arrange their children spatidly or tempordly. For example, a horizonta
box arrangesiits children horizontally, a vertical box arranges them verticaly, a pack split arrangesthem like
words in a paragraph, and atempora split displays one child at atime.

The WebVBT Widget

New VBTs are often created by combining existing VBTSs. The heart of our Web browsersisa VBT for fetching
and displaying aURL. Individua words are displayed through text VBTS, images through image VBTS, and white
gpace and horizonta rules through texture VBTS. The basic dements of HTML forms are implemented using the
corresponding VBTS, eg., type-in fields, buttons, check boxes, and radios. These leaf VBTs are combined into
paragraphs using a pack split, and the paragraphs are arranged into pages by vertica boxes.

Bdow isthe interface of the WebVBT class. For the sake of smplicity, we do not show the methods related to
image maps, index pages, and forms. We aso don't show the methods for fine tuning display attributes such as
fontsand colors.

| NTERFACE WeDbVBT,;
| MPORT VBT;
TYPE
T = VBT. T OBJECT
page: Page := N L;
METHODS
init (): T,
fetch (url: TEXT);

3012

stop ();
ready (n: CARDI NAL);

hotlink (link: TEXT; cd: VBT.MuseRec);
END;

Page <: ROOCT;

Pl ai nPage = Page OBJECT ... END
| mmgePage = Page OBJECT ... END,
HTM_Page = Page OBJECT

METHODS

get Base(): TEXT;
getTitle(): TEXT,;

END;
END WebVBT.

Thei ni t method initidizesthe WebVBT and leavesit blank. Thef et ch method (eventudly) displaysthe
contents of theur | parameter. More precisdly, it cancels any fetching in progress, forks a thread to actudly
retrieve the contents of the URL, and then returns. The st op method is used to cancel any ongoing fetches.

Ther eady method will be called by an ongoing f et ch operation when the page (but not necessarily dl of its
images or gpplets) has been retrieved. At this point, the page field has been set to an object that is pecific to the
MIME type of the document. Fetching continues until al of the images and applets have been loaded, and the

r eady method is called each time that an image or gpplet isloaded, with the n parameter updated to indicate the
number of images and applets ill to be loaded. The default r eady method does nothing; client gpplications using
WebVBT may override this method.

Thehot | i nk method is called each time the user dlicks on a hyperlink in the disolayed Web page. The default
method does nothing; the typica WebVBT dlient overridesit to fetch the target of the hyperlink, specified by the
l'i nk parameter.

Thefallowing isafully-functional Web browser; it starts out at the Alta Vista home page:

MODULE Mai n;
| MPORT Trestle, VBT, Web, WebVBT,;

PROCEDURE Hot Li nk(sel f: WebVBT.T; link: TEXT; cd: VBT. MbuseRec) =
VAR page: WebVBT. HTMLPage : = sel f. page;
BEG N
sel f.fetch(Web. Absol ut eURL(page. get Base(), |ink);
END Hot Li nk

VAR v := NEW WebVBT. T, hotlink := HotLink).init();
BEG N
v.fetch("http://ww. altavista.digital.com™")
Trestle.lnstall (v);
Trestle. Awai t Del ete(v);
END Mai n.

Adding Zippersto WebVBT

The ease with which new VBTSs can be composed from existing ones makes it very easy to implement zippers. In
particular, zippers make use of two types of VBTs. a button (with one of two images, to indicate the expanded or

40 12

contracted gate) and atempord split (to show ether a heading done or a heading and its body).

The WebVBT waksthe internd representation of the parsed HTML, looking for heading tags (H1, H2, ...).
Each timeit finds atag, a new tempora plit is created. The temporad Split has two children. One child isthe
zZipper button in the closed gate dong with the heading text. The other child isavertica box containing the zipper
button in the open state dong with the heading text, followed by the body of the section and dl its subsections.

Clicking on a zipper button toggles which child of the tempora split is displayed. Shift-clicking on a zipper button
toggles the heading and vists al subheadings, setting the state of their zippers to match that of the clicked zipper.

The screen dumps bel ow show DeckScape [3] (left) and WebCard [2] (right), browsers we have built on top of
WebVBT.

. yperiest [ramsler Protocol - Pala Alto Entertalnment Gulde

* S iof This blerna

R
VESG Mok | RN gy ey e 3a W e
¥ Abuirani 0 e T T =T

¥ latredactian

¥ 14t This Frimer Dot Cever
Ilreatimg H 1ML Boome nis

¥ Tableal Cantents F oy

¥ L D it SR Rieseatch in Browsing the Wel
¥ L Matat el oo b ad Generic ¥ dns R

¥ 1. Proincol Faranyeiers b i R
¥ 4 TP Mpsage Briresrs

e e s o Pal e ke v e e

R

¥ 5. Regiisl W T o i P AT A e Ll el il Pl
Sy W ey e ruglred v
b Beiparse

¥ 2, Eailiy

* 5. Methad Defnitios

¥ . Stalis Cod Dl oin
W, Hearier Field Dl itoss

¥ §Charsder Farsiallisg
e F Eln-Soe Images
LETIET=S F 3 Exveranl | mvages, Sedin, and & ponalboss
= b 3 Traubbivhosting

P Losger Examgk
¥ Par are Dnformilios

DeckScape and WebCard are part of the SRC Modula-3 distribution, which is available in source form at
http://ww. research. digital.conl SRC/ nodul a-3/ html /srcnB. htm .

Approach 2: A Web Proxy

The main drawback of the approach described in the previous section isthat it limits users to our custom Web
browser. Custom browsers are problematic because of the rapid evolution of HTML and the resources required
to match the festure set of the two industry-leading browsers.

An dterndtive gpproach for implementing outline views of Web pagesisto build a\Web proxy that dynamicaly
changesthe HTML of retrieved pages, and services requests by the user to expand or contract parts of the
outline view. We have implemented such a"zipper proxy,” intended to be run on the same machine as the Web
browser. Users can configure their standard Web browser to hand al HT TP requests to the zipper proxy.

Conceptudly, the zipper proxy maintains a table that reflects the outline state of al documents retrieved so far.
Each retrieved document is assigned a unique "document number”. A table entry consists of the document's URL,
its number, and an array of boolean vaues (cdled the "state vector™). The length of the array correspondsto the
number of potentid zippers, i.e. the number of heading tags in the document, and each entry reflects the Sate of

one zipper.

50f 12

When the browser requests a document for the first time, the proxy retrieves the document from the gppropriate
Web sarver, and parsesthe HT TP header to determine the document's MIME type. If the document is not of
type "text/html", it isimmediately forwarded to the browser. Otherwise, the proxy parsesthe HTML to determine
the number of heading tags, cregtes a state vector with one entry per heading, initidizes it such that dl zippers are
closed, and adds an entry consisting of the document's URL, its number, and the State vector to the table.
Furthermore, the proxy uses the document's origin HTML and the State vector to generate amodified verson
of the document, which is then returned to the browser.

The way in which the proxy modifies adocuments HTML is key to understanding the zipper proxy technique.
Fird, the proxy insertsan Expi r es: 0 fidd into the HT TP heeder, replacing any existing Expi res: fied. TheO
vaue indicates that the document expires immediately and should therefore not be cached by the Web browser.
The proxy then scans over the HTML of the origina document, until it encounters a heading teg.

Assume the zipper proxy runs on machine "ash’", is processing document number 5 (whose URL is
http://ww. carrol | .com poens. ht m), ad just encountered the third heading:

<H2>The Wal rus and the Carpenter</H2>

If the state vector indicates that the zipper corresponding to this heading is open, the proxy replaces the heading
with the following HTML code:

<H2>
<I MG BORDER=0 SRC="http://ash/open. xbm' ></ A>
The Walrus and the Carpenter

</ H2>

TheURL htt p: // ash/ open. xbmrefersto the image of an open zipper, avalable from the zipper proxy. After
replacing the origind with the modified heading, the proxy continues to scan for headings.

If the state vector indicates that the zipper is closed, the proxy replaces the heading in asimilar fashion, but uses
theimage of a closed zipper ingead. Furthermore, it will omit dl the HTML between this heading and the next
H1 or H2 heading from the modified document.

The net result of thisrewriting processis that the user is presented with a outline view of the document. Headings
that are not eided are preceded by zipper icons. The zippers are enclosed into HTML anchors, clicking on a
Zipper sends an HT TP request to the zipper proxy. Encoded in this request is the number of the document and of
the zipper that is to be toggled. The zipper proxy uses those two numbers to update the document's state vector
accordingly, and then generates a new modified verson of the document, based on the originad HTML and the
updated state vector.

If the proxy were to Smply return the modified HTML, the browser would display the updated document, but
show the wrong URL (eg. aURL of theform htt p: // ash/ zi p&5&3 instead of

http: //ww. carrol | .com poens. ht m). The proxy avoids this problem by returning a"moved temporarily”
status code instead:

HTTP/ 1.0 302 ok
Location: http://ww.carroll.com poens. htm

This causes the Web browser (transparently to the user) to emit a second HT TP request, thistime for the

60 12

document at URL ht t p: // www. carrol | . conf poens. ht ml . Thisrequest is then intercepted by the proxy,
which now returns the modified HTML, thus causing the browser to display the updated document and
associating it with the correct URL.

As a performance optimization, our zipper proxy implementation caches n documents, where n is adjustable by
the user. The cache eviction strategy is least-recently used. We cache only documents of MIME type "text/html",
for three reasons. First, only HTML documents can contain zippers, and these documents are more likely to be
requested multiple times, Since every zipper toggling generates an HTML request for the document. Second,
Zipper toggling has to be an ingtantaneous operation in order to improve the quality of the user's Web browsing
experience. Third, we assume that documents whose MIME typeis not "text/ntmi™ will typicaly be cached by the
Web browser, making it unnecessary for the proxy to duplicate this caching. After introducing caching and
streamlining the code, we found the human-perceivable performance of the zipper proxy to be indigtinguishable
from that of the custom Web browser described in the previous section.

The zipper proxy is reconfigured by vigting a Web page served by the proxy that contains aform for adjusting
various parameters. the proxy's port; the | P address and port of an outer proxy (such asthe gateway of a
corporate firewall); |P addresses that can be accessed directly, without going through the outer proxy; the
number of pardld threads for servicing requests; the maximum number of sate vectors retained; the maximum
number of cached documents, and whether newly retrieved documents are zipped up by default or not. The form
aso provides a button that allows the user to save those settings to disk. Our proxy aso provides a control
window that alows usersto switch zipping on and off on a per-document basis. However, this fegture requires a
recent version of JavaScript.

The screen dump below shows a Windows 95 desktop with three Netscape Navigator windows. The leftmost
window shows a zipped view of the World Wide Web Consortium's HTTP overview page, the window to its
right shows the zipper proxy configuration page, and the smal window &t the far right shows the zipper proxy
control window.

7d12

- Mirzogs - WITTF - iSppesasl Tiasals Pralyredl

o b o4 W e o L g gy gy

ﬂ Logiehx [hepFmma niapdpabu el Frotacadn e vre bl fi?lﬁ?jﬂ“ﬁ%j-.

a Lacstore 00 /0o 22 03 der o DRVl hid ﬂ

Welcome!

= HTTP - Hypertext Transfer Pro| vo e o sjpe s @ 15, a0 ST proa i o yoo o sy cobpse s
mipand parts of & web page

The Hyperiest Trasfer Protoc ol (HTTP) has bes i we by the Wade : . 5 .
ndiative snce 1990 HTTF & e applcation e probocal for disiritan | Beloer ane metrctions and & form for sebing up the prosy. E=fore you siard, you might want o s the
nformation sysiens & o gerer, oipscl-anientsd protocal which e | URL of this page. ¥ mighi alsg wenl o prnk ow o bandcopy of this pege.

fene servers anil ditebnted plyact e gament syten. tinaogh et
(o). A Teatore of HTTP is (e typiseg and seoliation of daka s
busd svbmenelenily of the dta biesg trarlered The HTTP ans is ar

Recomiended Wely Browsers

Zipper Proose wocks with most web browsens. Howeever, 4o gel ibe foll Anchiooakiy (n pechcular, b0 get
¥ @ Mews and Upelates mmacmpmu:;mm';m B 6 & e B cilsrend S, oAl oS e & :

pl-emabled bramser, We

- Muzzags - [Eymes ooy Cunbiot Funct
: e :
L] W3 Position Statement L To eheer ar hode fhva ppere of = page, clck the

Tregple Dippirey’ buttan and then relasd the page

_Toogeuing | EshePues |

&
L] Eﬂsimtmmllms, Diallts sl Reports

oie el
Maragsioy

I
[1]] H Reference Software ;
Zpper Prosgy: moope 133 - po o das L oot

't':r: ¥- Dtk Frasy bven pam padac rom
PN » N Talks and Presentations Bpeass puter ooy far ok v et oo
o Mot of server tiresds 1

o Zippex siales retained far [100 | dacusents
L |:| Mailing lists = fir ST o

¥ IETF Related Information Hewsdy loorded decumentz [<) zppers

* Where is HTTF headed? Ban]_so |
¥ More Information

el | Booment Cam

B o | B Tppnrng i wieiS | BN Habieape [H1TF - Wyt | Bfbistzcopn - ppen Frosy - | B Hitecape - Fpe Prag &

Our zipper proxy isavailablein binary form for Intel/Windows 95 and for Alpha/Digita Unix platforms at
http://ww. research. di gi tal . coml SRC/ webbr owsi ng/ zi pper pr oxy. The current version does not
preserve the scroll position of a page when a zipper is clicked. This problem could be remedied by attaching
anchor names to each zipper. Now, when the proxy receives an HT TP request because a zipper was clicked, it
can add the name of the zipper to the Locat i on fidd in the 302" reply. Still, this"trick” does not completely
solve the problem: the clicked zipper will move to the top of the page, causing visua discontinuity. In contragt,
our custom Web browser has no such visua discontinuity.

Approach 3: HTML Scripting

The incorporation of scripting languages such as JavaScript and VBScript into Web browsers provides an easy
way to enhance a Web page. Scripting code is embedded into Web pages, and the script is executed while the
HTML is parsed by the browser. Thetypica use for scriptsisto generate HTML on-the-fly and to associate
code with HTML form elements on the page. Some scripting languages, and JavaScript in particular, are
powerful enough to implement zippers. This script-based implementation differs from the proxy-based approach
in that toggling zippers does not require communication with a server or aproxy; dl computation tekes placein a
seript running indde the browser. The rest of this section describes a zipper implementation in JavaScript.

Our script-driven implementation of zippers is based on three observations. First, an HTML page can be

8o 12

rewritten as a JavaScript program that generates the HTML asthe script is executed. Second, the contents of &
Web page can be modified by redisplaying the current page (thus re-executing the script) and varying the output
of the script. Third, persstent client state can be used to keep track of the state of the zippers. We now elaborate
on these observations.

Rewriting HTML as JavaScript

We can rewrite the following HTML.:

<HTM_>

<H1>My Hore page</ H1>

Wel cone to my home page ...
</ HTM.>

as the JavaScript program:

<SCRI PT LANGUAGE="JavaScri pt">
function Emt(t) { document.wite(t); }
Emt("<HTM.>\n");

Emt ("<H1>My Home page</Hl>\n");
Emt("Welcome to ny hone page ...\n");
Emt("</HTM>\n");

</ SCRI PT>

Asthe script is executed by the browser, it generates the origind HTML oneline a atime.
M odifying the Contents of a Page

Multiple, dightly different versgons of a page can be obtained by changing the Eni t function such that it generates
HTML only if a condition is met (which depends on the Sate of the zipper):

function Emt(t)
{ if (some_condition) docunment.wite(t); }

To keep track of headingsin HTML, we introduce a second function, similar to Eni t , but taking the heading
level as an additiona argument. The purpose of this function is to put appropriate headings into the document:

function Headi ng(level, t)
{ if (...some_condition...) ... document.wite(t); ... }

Heresome_condi ti on and the elided code refer to JavaScript that detects if, at the current pogtion and State
vector of the document, the emitted text and headings should be visible or not. Essentidly, we need to keep track
of the fact that when a zipper isclosed, dl text up to the following heading of the same or ahigher leve is
contracted and thus not emitted. Thisis solved using counters to keep track of the current level and which levels
are currently visble.

The outcome of some_condi ti on varies asthe user opens or closes zippers. We associate this toggling code
with inlineimages of zipper icons that reflect the Sate of the zipper. The code has the function of changing the

90 12

sate vector and then ingtructing the browser to redisplay the current page:

functi on Toggl e(headi ngno) {
i f (State(headi ngno)==1) then Set State(headi ngno, 0);
el se Set State(headi ngno, 1);
hi story. go(0);

}

As before, heading numbers are assigned sequentidly for each heading in the document. In this implementation,
the State of the zipper is equd to 1 when open and equal to O when closed. The Headi ng function will emit
HTML of the following genera form (in this particular case, to close zipper number 5):

<H2>

<I MG SRC="Open. gi f"></ A>
Headi ng Text

</ H2>

The heading, inline image and invocation of the toggle function (the lines above) are emitted by severa JavaScript
functions, as the zipper number to toggle varies according to the heading number, and the inlineimage is
dependent on the state of the zipper.

Modifying the current contents of a pageis done by forcing the browser to redisplay dl of the currently visble
page. Thisisdone by caling hi st ory. go(0) , which fetches the top page in the history stack.

Although redisplaying the complete page is inefficient, it sldom turns out to be a problem, because the page is
dready located in the browser's cache.

Keeping Track of the Zipper State

The only remaining problem is how to keep track of the Sate of the zippers. "Cookies' are away to associate
persstent client state with a specific document, and JavaScript dlows usto ingpect and to modify the document's
cookie. We use cookies to save the zipper state of each document as a bit vector.

Whereto Rewrite?

The rewriting of the origind HTML source into JavaScript can be controlled by the content provider or by the
USer.

Content providers can choose to instrument their Web server to trandform documents dynamicaly as they are
requested. The most portable mechanism to achieve thisis the Common Gateway Interface (CGlI). In addition,
there are vendor-specific ways to dynamicaly transform documents, such as Netscape server plug-ins and
Microsoft ISAP filters.

The content provider can adso trandform documents in an offline fashion, and offer the transformed document
through a standard Web server. We have implemented a batch converter for Windows 95; it can be downloaded

a http://ww.research. digital.com SRC webbr owsi ng/ zi ppo. (The zipped verson of this paper was
prepared in thisway.)

When rewriting is done by the content provider, the user does not need to take any action to seethe

100 12

Zipper-enhanced version of the document. On the other hand, he can see the document in its origind form only if
the content provider chooses to make it available. Thus, the user has maximum convenience and transparency,
but no contral.

Alternatively, the user can bein control of the document transformation. The prototypica mechanism for doing o
isthrough aloca proxy. This approach gives the user the freedom to decide which pages should be zipped up, a
the cost of convenience (appropriate infrastructure must be instaled).

Findly, the user could vist a"zipping service' Web Site, enter an arbitrary URL into aform, and get in return a
zZipped verson of the URL. This scenario is both convenient (there is no software to ingadl) and places the user in
control, but it is not transparent because the returned document shows the URL of the zipping service rather than
that of the requested page. Also, this gpproach is tedious since it requires the user to type a URL.

Discussion

Zipperswork well on Web pages that use heading tags to indicate the logica structure of the page. Unfortunately,
many authors use heading tags to produce particular formatting effects, such as font and point Sze changes, rather
than to indicate logical structure. On such pages, users can Smply turn off the zippers and the pageis displayed
conventiondly.

We know of one Web site that has hand-coded zippers[7]. The drawback of hand coding zippersisthat it
requires server interaction to expand or contract, and an exponentia number of filesto capture dl Sates.

Authors of long pages frequently add a table of contents to the top of the page, with entriesin the table linking to
the various sections. Sometimes, each section appears on its own page, with "next," "previous,” "up," and "top"
links on each page. Unfortunately, it is easy for the viewer to lose the big picture because the table of contentsis
not vigble while looking at the contents of a particular section.

An dterndtive to zippers for retaining the big picture while viewing the detals is a multi-pand display, such asin
SuperBook [1]. One pand displays the table of contents and the other pand displays sections in the document.
Clicking on an entry in the table of contents causes the other pand to digplay the corresponding part of the
document. The user can dso open and close leves of the table of contents, but the body of a section is dways
displayed in the second pand. A multi-pand display such as SuperBook could be implemented using frames, by
adding appropriate HTML markups and scripting code to a source document.

Another related system is SoftQuad's Panorama Pro [6], which displays SGML documents using a two-panel
viewer amilar to that of SuperBook. Panorama Pro is dso loosdly integrated with the Web: The application can
be configured as an externd viewer of documents whose MIME typeis SGML. ClickingonaURL ina
document displayed by Panorama Pro will cause Netscape (or some other user-specified browser) to fetch and
display the URL. Electronic Book Technologies DynaText [4] is another impressive SGML viewer; itis
integrated into Netscape as a plug-in. It'simportant to realize, however, that Panorama Pro and DynaText are
not Web browsers.

Conclusion

Viewing a Web page using zippers makes it possble to see details of parts of the page while maintaining the
globa context of the entire page. The larger the Web page - or the smdler the verticd space available for the

o 12

display - the more benefit there isto this technique.

Using the heading tags to infer a document's outline structure has two limitations: First, as mentioned, content
providers in practice often do not use heading tags to indicate the logica structure of a document. Second,
content providers have no flexibility in the granularity of the materid being eided. Both of these limitations could
be addressed by adding a zipper tag to HTML. One possibility would beto pardld the DL, DT, and DD tags.
the ZL tag would introduce a series of zippers, the ZT tag would be the heading of a zipper; and the ZD tag
would be the body of the zipper.

Each of the implementations discussed in this paper has advantages and drawbacks. The advantages of the
custom browser approach are responsiveness, ease of ingdlation (there is no proxy to configure), and visud
continuity when clicking zippers. The drawback is that Web browsers are on afast evolutionary trgectory and
browsers built in aresearch lab cannot keep pace with the industry leaders. The advantage of the proxy
gpproach isthat it interoperates with standard Web browsers; the drawbacks are visua discontinuity when
clicking a zipper, and some effort of configuring the proxy. The advantage of using the script-based gpproach is
that it works with most standard Web browsers, and it alows content providers to prepare documents which
include zippers by default (without requiring any actions from the user). The drawbacks are visud discontinuity
when clicking a zipper and (at least at the moment) efficiency issues.

Refer ences

[1] About Bdlcore's SuperBook(R) Document Browser.
http://superbook. bell core. com 80/ SB/

[2] MarcH. Brown.
Browsing the Web with a Mail/News Reader.
Proc. of the 8th ACM Symposium on User Interface Software and Technology, pages 197-198,
November 1995.
[3] MarcH. Brown and Robert A. Shillner.
DeckScape: An Experimental Web Browser.
Computer Networks and ISDN Systems, 27(1995) 1097-1104.
[4] EBT--Product Information.
http://ww. ebt.conf docs/ prodinfo.htm

[5] Mak S. Manasse and Greg Nelson.
Trestle Reference Manudl.
Research Report 68, Systems Research Center, Digital Equipment Corp., Palo Alto, CA, December
1991.

[6] SoftQuad: Panorama PRO.

http://ww. sq. cont product s/ panor ana/ panor-fe. htm

[7] UCI Bookstore Ordering Information.
http://bookweb. cw s. uci.edu: 8042/ Orders/orders-pt. htm

120 12

