SRC Technical Note
1997-015

July 25, 1997

Syntactic Clustering of the Web

Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, Geoffrey Zweig

Systems Resear ch Center
130 Lytton Avenue
Palo Alto, CA 94301
http://www.research.digital.com/SRC/

Copyright 1997 Digital Equipment Corporation. All rights reserved

Abstract

We have devel oped an efficient way to deter mine the syntactic similarity of files and have
applied it to every document on the World Wide Web. Using this mechanism, we built a
clustering of all the documents that are syntactically similar. Possible applications include a
"Lost and Found" service, filtering the results of Web searches, updating widely distributed
web-pages, and identifying violations of intellectual property rights.

Contents

e Abdtract
¢ |ntroduction
o URNs
o Reated work
Ddfining amilarity
Edtimating the resemblance and the containment
Algorithms
o The dugering dgorithm
° Query support

1d13



e Clugering Performance |ssues
o Common shingles
o |denticd documents
o Super shingles
- Applications
o Web-based applications
Log and found
Clugtering of search results
Updating widdly distributed information
o Characterizing how pages change over time
o |ntellectud property and plagiarism
Satus
Condusons
Acknowledgments
References
Authors

[

[

0o

| ntroduction

The Web has undergone exponentia growth sinceits birth, and this expansion has generated a number of
problems; in this paper we address two of these:

1. Theproliferation of documentsthat are identica or dmost identical.
2. Theingability of URLs.

The bas's of our gpproach is amechaniam for discovering when two documents are "roughly the same’; that is,
for discovering when they have the same content except for modifications such as formatting, minor corrections,
webmagter Sgnature, or logo. Similarly, we can discover when adocument is "roughly contained” in another.
Applying this mechanism to the entire collection of documents found by the AltaVista spider yields a grouping of
the documentsinto clusters of closaly rdated items. As explained below, this clustering can help solve the
problems of document duplication and URL ingability.

The duplication problem arises in two ways. Fird, there are documents that are found in multiple placesin
identical form. Some examples are

* FAQ (Frequently Asked Questions) or RFC (Request For Comments) documents.
¢ The online documentation for popular programs.

¢ Documents stored in severd mirror Stes.

¢ Legd documents.

Second, there are documents that are found in almost identica incarnations because they are:

Different versons of the same document.

The same document with different formatting.

The same document with site specific links, customizations or contact information.
Combined with other source materid to form alarger document.

Split into smdler documents.

2013



Theingability problem arises when a particular URL becomes undesirable because:

» The asociated document is temporarily unavailable or has moved.

 The URL refersto an old verson and the user wants the current version.

 TheURL isdow to access and the the usar wants an identica or smilar document that will be faster to
retrieve.

Indl these cases, the ability to find documents that are syntacticaly smilar to a given document alows the user to
find other, acceptable versons of the desired item.

URNSs

URNSs (Uniform Resource Names) [6] have often been suggested as away to provide functiondity smilar to that
outlined above. URNs are a generdized form of URLSs (Uniform Resource Locators). However, instead of
naming aresource directly - as URLs do by giving a specific server, port and file name for the resource - URNS
point to the resource indirectly through aname server. The name server is able to trandate the URN to the
"best" (based on some criteria) URL of the resource.

The main advantage of URNs isthat they are location independent. A single, stiable URN can track aresource as
it isrenamed or moves from server to server. A URN could direct a user to the instance of areplicated resource
that isin the nearest mirror Ste, or is given in adesred language. Unfortunately, progress towards URN's has
been dow. The mechanism we present here provides an dternative solution.

Related work

Our gpproach to determining syntactic Smilarity is related to the sampling approach developed by Heintze [2],
though there are many differences in detail and in the precise definition of the measures used. Since our domain of
interest is much larger (his prototype implementation is on a domain 50,000 times smdler) and we are less
concerned with plagiariam, the emphagsis often different. Reated sampling mechanisms for determining Smilarity
were also developed by Manber [3] and within the Stanford SCAM project [1, 4, 5].

With respect to clustering, thereis alarge body of literature related to semantic clustering, arather different
concept. Again, dustering based on syntactic Smilarity (on amuch smdler scae) is discussed in the context of the
SCAM project.

Defining similarity of documents

To capture the informa notions of "roughly the same' and "roughly contained” in arigorous way, we use the
mathematica concepts of resemblance and containment as defined below.

The resemblance of two documents A and B is anumber between 0 and 1, such that when the resemblanceis
closeto litislikdy that the documents are "roughly the same'. Smilarly, the containment of A in B isanumber
between 0 and 1 that, when close to 1, indicates that A is"roughly contained” within B. To compute the
resemblance and/or the containment of two documents it suffices to keep for each document a sketch of afew
hundred bytes. The sketches can be efficiently computed (in time linear in the size of the documents) and, given
two sketches, the resemblance or the containment of the corresponding documents can be computed in time
linear in the Sze of the ketches.

3013



We view each document as a sequence of words, and art by lexicdly andyzing it into a canonica sequence of
tokens. This canonica form ignores minor details such as formatting, html commands, and capitdization. We then
associate with every document D a set of subsequences of tokens S(D, w).

A contiguous subsequence contained in D is cdled ashingle. Given adocument D we define itsw-shingling
SD, w) asthe st of dl unique shingles of Szew contained in D. So for ingtance the 4-shingling of

(a,rose,is,a, rose,is,a,rose)
isthe st
{ (a, rose,is, a), (r ose, i s, a, rose), (i S, a, rose,i s)}

For agiven shingle Size, the resemblance r of two documents A and B is defined as

154N s@)
"AB) = s usE)
Where |A|isthe Sze of st A.
The containment of A in Bisdefined as
15(4) N S(B)|
A B)= g
A B) = sy

Hence the resemblance is a number between 0 and 1, and it isadwaystrue that r(A, A) = 1, i.e. that a document
resemblesitself 100%. Similarly, the containment is a number between O and 1 and if A € Bthen c(A,B) = 1.

Experiments show that these mathematica definitions effectively capture our informa notions of "roughly the
same' and "roughly contained.”

Notice that resemblance is not trangtive (a well-known fact bemoaned by grandparents al over), but neither is
our informd idea of "roughly the same" for instance consecutive versons of a paper might well be "roughly the
same," but verson 100 is probably quite different from verson 1. Neverthdess, the resemblance distance
defined as

d(A,B) =1 — r(A, B)

isametric and obeys the triangle inequdity. (The proof of this, aswell as most of the mathematicad andysis of the
agorithms discussed here are the subject of a separate paper, in preparation.)

Estimating the resemblance and the containment

Fix ashinglesizew, and let U bethe set of dl shingles of sizew. Without loss of generality we canview U asa
set of numbers. Now fix aparameter s. For aset W C &/ define MIN (W) as

4013



_ the set of the smallest s elements in W, if |W|> s:
MIN{ W) = { W. otherwise.
where"smalest” refersto numerical order on U , and define

MOD,, (W)} = the set of elements of W that are 0 mod m.

Theorem. Let# : &/ — {7 be a permutation of U chosen uniformly at random. Let

F{A) = MIN(#n(5(A)))and ¥ {A) = MOD,,.(n(5(A)))} . Define F(B) and V(B) analogously.
Then

e Thevalue

IMIN (F{A) U F{B)) N F{A4) n F(B)|
IMIN ,(F{4) U F(B))|

is an unbiased estimate of the resemblance of A and B.

e Thevalue

[Vi4in viB)|
[Vi4}uviB)|

is an unbiased estimate of the resemblance of A and B.

* Thevalue

[ViA)n V(B)|
V{4

is an unbiased estimate of the containment of A in B.

In view of the above, we can choose a random permutation and afterwards keep for each document D a sketch
conggting only of the st F(D) and/or V(D). The sketches suffice to estimate the resemblance or the containment
of any pair of documents without any need for the origind files.

The st F(D) hasthe advantage that it has afixed Size, but it dlows only the estimation of resemblance. The sze
of V(D) grows as D grows, but alows the estimation of both resemblance and containmen.

Tolimit thesize of V(D) we can proceed as follows: for documents that have size between (say) 100 * 2° and
100 % 2+ westorethe set V(D) = MOD,: (n{5(D))) . The expected size of ¥; { 17} isaways

between 50 and 100. On the other hand, we can easily compute Vi 1 { ) from V3 (1) . (We smply keep only
those dements divisble by e .) Thus, if we are given two documents, A and B, and 9% was the modulus used

50f 13



by the longer document, we use ¥;{ A} and ¥;{ B} for our estimates. The disadvantage of this approach is that

the estimation of the containment of very short documents into substantialy larger onesisrather error prone due
to the paucity of samples.

In our system, we implement the sketches asfollows:

¢ We canonicdize documents by removing HTML formeatting and converting al words to lowercase.

* Theshingleszew is10.

¢ We usea4o bit fingerprint function, based on Rabin fingerprints[7], enhanced to behave as arandom
permutation. (When we refer to ashingle or shingle value in the rest of this paper, we will mean this
fingerprint vaue)

* Weusethe"modulus' method for sdecting shingles with an m of 25.

Algorithms
Conceptualy, applying this resemblance agorithm to the entire Web is quite smple. We:

retrieve every document on the Web (this data was available to us from an AltaVista spider run),
calculate the sketch for each document,

compare the sketches for each pair of documentsto seeif they exceed athreshold of resemblance,
combine the pairs of Smilar documents to make clusters of smilar documents.

While this dgorithm is quite Smple, anaive implementation isimpractica. Our test caseis a set 30,000,000
HTML and text documents retrieved from the Web. A pairwise comparison would involve O(10%) (a
quadrillion) comparisons. Thisis dearly infeasible.

The magnitude of the input data imposed severe restrictions on the design of our data structures and agorithms.
Just one bit per document in adata structure requires 4 Mbytes. A sketch size of 800 bytes per document
requires 24 Ghytes. One millisecond of computation per document trandates into 8 hours of computation. Any
dgorithm involving random disk accesses or that causes paging activity is completdy infeesble.

In the design of our dgorithms, we use a single, smple gpproach for dedling with so much data - divide, compute,
merge. We take the data, divide it into pieces, compute on each piece separately and then merge the results. We
choose the piece size m so that the computation can be done entirely in memory. Merging the resultsisasmple,
but time consuming process due to the required 1/0. Each merge passis linear, but log(n/m) passes are required,
s0 the overdl performance of the process is dominated by a O(n log(n/m)) term.

The clustering algorithm

We perform the clustering agorithm in four phases. In the first phase, we caculate a ketch for every document.
Thisstepislinear in the totd length of the documents.

In the second phase, we produce alist of dl the shingles and the documents they appear in, sorted by shingle
vaue. To do this, the sketch for each document is expanded into alist of <shingle value, document ID> pairs.
We sort thislist using the divide, sort, merge gpproach outlined above.

In the third phase, we generate alist of al the pairs of documents that share any shingles, dong with the number

60 13



of shingles they have in common. To do this, we take the file of sorted <shingle, ID> pairs and expand it into alist
of <ID, ID, count of common shingles> triplets by taking each shingle that gppears in multiple documents and
generating the complete set of <ID, 1D, 1> triplets for that shingle. We then apply the divide, sort, merge
procedure (adding the counts for matching ID - 1D pairs) to produce asinglefile of dl <ID, 1D, count> triplets
sorted by the first document ID. This phase requires the greatest amount of disk space because theinitid
expangon of the document ID tripletsis quadratic in the number of documents sharing ashingle, and initidly
produces many triplets with acount of 1.

In thefind phase, we produce the complete clustering. We examine each <ID, ID, count> triplet and decide if
the document pair exceeds our threshold for resemblance. If it does, we add alink between the two documents
in aunion-find agorithm. The connected components output by the union-find dgorithm form the find cduders.
This phase has the greatest memory requirements because we need to hold the entire union-find data structure in

memory.
Query support

After we have completed the clustering, we need severd auxiliary data structures to make queries more
convenient. We produce:

¢ themapping of aURL to its document ID:
o Fingerprint each URL and pair it with the document ID.
o Sort the <fingerprint, ID> pairs by fingerprint vaue.
o When given aURL, we fingerprint it, find it in the sorted list and output the document 1D.
the mapping of document ID to the cluster containing it
o thisisainverson of the cluster to document ID mapping, ordered by document ID
the mapping of a clugter to the documents it contains
o thisisthe output of the clustering agorithm
the mapping of adocument 1D to its URL
o anaray of dl the URLsin document 1D order

Clustering Performance | ssues
Common shingles

Very common shingles (for us, this means shingles shared by more than 1000 documents) are a performance
problem during the third phase of our adgorithm. Aswe have discussed, the number of document ID pairsis
queadratic in the number of documents sharing a shingle. Overly common shingles can greetly expand the number
of the document ID pairs we have to ded with.

When we looked at the most common shingles, we found that they were nearly dl mechanically generated. They
indude:

¢ HTML comment tagsidentifying the program that generated the HTML

¢ Shared header or footer information on alarge number of automaticaly generated pages (formsor views
on databases)

¢ Extremely common text sequences (the numbers 3-12, ...)

¢ Mechanicdly generated pages with artificidly different URLs and internd links

7013



These common shingles ether have no effect on the overdl resemblance of the documents or they have the effect
of creating afase resemblance between two basicdly dissmilar documents. Therefore, we ignore dl very
common shingles.

|dentical documents

Identicd documents do not need to be handled specidly in our dgorithm, but they add to the computationa
workload and can be diminated quite easly. Identical documents obvioudy share the same st of shingles and o,
for the clugtering agorithm, we only need to keep one representative from each group of identica documents.
Therefore, for each document we generate a fingerprint that coversits entire contents. When we find documents
with identicd fingerprints, we diminate dl but one from the clustering dgorithm. After the clustering has been
completed, the other identical documents are added into the cluster containing the one kept version.

We can expand the collection of identica documents with the "lexicaly-equivdent” documents and the
"shingle-equivdent” documents. The lexicaly-equivdent documents are identica after they have been converted
to canonicd form. The shingle-equivaent documents are documents that have identical shingle vaues after the set
of shingles has been sdlected. Obvioudy, dl identica documents are lexically-equivaent, and al lexicaly
equivaent documents are shingle equivaent.

We can find each st of documents with asingle fingerprint. Identica documents are found with the fingerprint of
the entire origina contents. Lexically-equivaent documents are found with the fingerprint of the entire
canonicalized contents. Shingle equivaent documents are found with the fingerprint of the set of sdlected shingles.

Super shingles

The second and third phases of our agorithm require agreat ded of disk gpace for the <shingle, ID> pairs and
the <ID, ID, count> triplets. We have investigated a method for more directly determining document resemblance
from the document sketches.

Sketches are an effective method for estimating the resemblance of two documents because they are easily
compared, canonica representations of the documents. Hence, we can estimate the resemblance of two
documents with the ratio of the number of shingles they have in common to total number of shingles between
them.

Similarly, we can esimate the resemblance of two sketches by computing the meta-sketch (sketch of a sketch).
We compute super shingles by sorting the sketch's shingles and then shingling the shingles. The document's
metarsketch is then determined by its set of super shingles. If two documents have even one super shinglein
common, then that means their sketches have a sequence of shinglesin common.

If the number of shinglesin a super shingle is chosen correctly, then it is highly probably that two smilar
documents will have at least one common super shingle. In addition, the existence of a Sngle common super
shingle meansiit is likdy that two documents resemble each other. To compute resemblance with regular shingles,
we need to collect and count the common shingles. To detect resemblance with super shingles, we only need to
find a 9ngle common super shingle. So, super shingles are asmpler and more efficient method of computing
resemblance.

A dugering dgorithm based on super shinglesis

80f 13



« Compute the list of super shingles for each document.

« Expand the ligt of super shinglesinto a sorted list of <super shingle, ID> pairs.

+ Any documents that share a super shingle resemble each other are added into the clugter. (If wewant a
higher threshold we can compute their actua resemblance.)

So, the entire third phase of the basic dgorithm where we generate and merge the document 1D pairsis not
needed.

Unfortunately, super shingles are not asflexible or as accurate as computing resemblance with regular sketches.
Firgt, super shingles do not work well for short documents. Short documents do not contain many shingles and
90, even with regular shingles, the error in estimating document resemblance is greeter. Super shingles make this
problem worse. A super shingle represents a sequence of shingles, and so, shorter documents, with fewer super
shingles, have alower probability of producing acommon super shingle.

Second, super shingles cannot detect containment. Suppose we have two documents and the larger one
completdy contains the smdler one. Then, the sketch of the larger document includes dl of the shingles of the
smaler document dong with additiond shingles from its extramaterid. When we sort the shingles for the larger
document and caculate its super shingles, the extra shingleswill be interspersed with the common shingles.
Therefore, the sequences of shingles - and thus the super shingles - for the larger document will be different than
those of the smaler documen.

Applications

While we will soon discuss some specific applications reated to clustering the Web, we also want to point out
that our resemblance and clustering techniques are not limited to text documents. Our generd technique only
depends on the ability to extract a set of features from objects. Once we are given the set of features for each
object, we can then gpply the algorithms described above to compute the resemblance of the objects and to
cluster groups of smilar objects.

For documents and objects other than text, there are many potentid features for computing resemblance. An
audio message of human speech could have features based on sequences of phonemes. For documents in foreign
language, the features could be labels from amulti-lingual concordance. Musicdl features could be based on
Sequences of notes or chords. As techniques are developed for identifying featuresin other datatypes, there are
no limits on the objects that can be compared for resemblance: images, video sequences, or databases.

Web-based applications
Now, we will consider some of the Web-related applications of our methods. Once we have the sketches,
clusters and auxiliary data structures, we can use them for severd interesting gpplications. As we discussthe
different applications, we will consder their storage and performance characteristics. There are two gpproaches.
1. Bascdugering
The mogt sraightforward gpplication isa service to locate highly smilar dternativesto agiven URL. Inthis
case, the user has the URL of a document and for some reason wants to find another document that

resemblesit. This reaionship is exactly what clugtering gives us.

Given a complete clustering and the auxiliary files for mapping URLSs to document IDs and mapping

90 13



document 1Ds back to URLS, we can very efficiently compute dl of the URLSs for the documentsin the
clugter.

Unfortunately, clustering must be done with a single fixed threshold for resemblance and we must decide in
advance if we want contained and containing documents included in the clugters. We can get around this
and produce clusters based on avariety of policies by repegting the find phase of the clugtering agorithm
for each different policy. This phaseisrdatively inexpensve and the output clugters are rdlatively compact.

Ancther issueisthat basic clustering can only support queries about URL s that are part of the input, and
the clusters are based on the contents of the URL s at the time they were retrieved. We can solve this
problem by computing sketches for new or modified documents on demand.

2. Onthefly resemblance

If we are able to keep the full sketches of every document and the file of sorted <shingle, ID> pairs, then
we can perform on the fly resemblance. In this case, the input can be any document; either from a URL or
dored localy; whether iswas part of the initia clustering or not; whether it has changed or not. The
dgorithmisasfollows

o Get the sketch of the input document by
Looking up the sketch for the URL, or
Computing the sketch from the document itself.
o Look up each shingle from the input document in the sorted <shingle, ID> file.
o For each document that shares a shingle, maintain the count of common shingles.
o Basad on the number of shinglesin each document, compute the resemblance and
contained/containment value.
o Sort, threshold and present the resuilt.

This method requires more space and time, but it offers greater flexibility than precomputed clugters. It
aso dlows any document, even a document that was not part of the origina input, to be compared for
resemblance. We have found that the performance of this method is quite good (afew seconds) unless the
input document is quite big or resembles alarge number of documents.

Lost and found

Everyone is aware that URLs are not good forever. Pages get renamed, pages move, web Stes get rearranged,
servers get renamed, and users change internet service providers. Every good URL eventually becomes yet
another dead link.

Our clustering method can creaete a World Wide Web logt and found, where we automaticaly notice that the
URL for a page has changed and find its new URL. Instead of just clustering the current contents of the Web, we
clugter the contents of the web from multiple sweeps over the web done at different times. Aslong as any one
sweep has found a particular URL, we can find its current location by taking the most recent URL from its
clugter. The dugtering agorithm remains the same, except that the URL s of the document are aso tagged with a
date.

Clugtering the documents found in a series of sweeps can be made reatively efficient asit is not necessary to
perform the entire clustering from scratch each time. Instead, we need only sketch the documents from the last

100f 13



sweep and merge them into the exigting dusters. In addition, there will be alarge number of identica documents
between sweeps and these can be extracted early in the dgorithm.

Clustering of search results

Current search engineslike AltaVigatry to return the most relevant answversto a query firgt. Often this means
severd Smilar versgons of a document are returned as separate entries. Clustering dlows usto display this
similarity to the user and present the search results more compactly. The user selects the preferred verson to
retrieve and avoids examining nearly identical copies.

Updating widely distributed information

Some important information iswidely disseminated and quoted throughout the Web, with dight local changes.
For instance there are many dightly reformatted, full or partid copies of an FTC (Federd Trade Commission)
ruling regarding consumer credit. If this ruling were to change, one would hope that FTC would try to notify dl
the stes with any verson of this document. The cluster containing the origina ruling would assist in producing the
list of contacts. In contrast, with a search engine a query wide enough to cover al the variations would result in a
large number of irrdevant hits that would have to be filtered out.

Characterizing how pages change over time

In addition to updating URLS, we can use the technique of comparing sketches over time to characterize the
behavior of pages on the web. For instance, we can observe a page at different times and see how smilar each
versgon isto the preceding verson. When we have this information for many web pages, we can answer some
basi ¢ questions about the Web:

How often do pages change?

How much do they change per time interva?

How often do pages move? Within a server? Between servers?
How long do pages live? How many are created? How many die?

A better understanding of these issues will make it possible to build better proxies, search engines, directories and
browsers.

Intellectual property and plagiarism

Onefind application is the detection of illegd copies or modifications of intellectud property. Given a source
document we can detect if dl or parts of it have been substantialy copied or if smal changes were made to
documents that were supposed to be left unchanged (eg license agreements). However, the security of our
approach israther limited, since we have a sngle, static sketching policy. The gpproach taken by Heintze [2]
whereby anew set of samplesis sdlected from alarger stored s, is more secure a the cost of a substantial

storage pendty.
Status

We have implemented the sketching, clustering and clustering on the fly agorithms and produced aworking
demondration system.

1o 13



We tested our agorithms on a collection of 30,000,000 HTML and text documents from awak of the web
performed by AltaVigtain April of 1996. The total input data was 150 Ghbytes (an average of about 5k per
document). The file containing just the URLs of the documents took up 1.8 Ghytes (an average of 60 bytes per
URL). We sketched dl of the documents with 10 word long shingles to produce 40 bit (5 byte) shingle
fingerprints. We kept 1 in 25 of the shingles found.

There were about 600M shingles so the raw sketch files took up 3 Gbytes (5 bytes per shingle). During the first
phase of the clustering agorithm, this expanded to about 5.5 Ghytes (9 bytes per entry - 5 bytes for the shingle
and 4 bytes for the document ID). At the maximum, we required 10 Gbytes of storage because we need two
copies of the data during the merge operation.

In the third phase - the creation of <ID, ID, count> triples - the storage requirements grew to about 20 Gbytes.
(We save some space because there are shingles that only appear in one document, but we lose on the quadratic
expangon of document ID ligts to document 1D pairs. The maximum storage reflects the fact that the document
ID pairsareinitidly duplicated in each separate file. However, they are gradualy combined together asthefiles
aremerged.) At the end of the third phase, the sorted file of <ID, 1D, count> triples took up 6 Gbytes.

Thefind clugtering phase is the most memory intensve phase Since we want the entire union-find data Sructure to
bein memory. Thefind file containing the list of the documents in each cluster took up less than 100 Mbytes.

We caculated our clusters based on a 50% resemblance. We found 3.6 million clusters containing atota of 12.3
million documents. Of these, 2.1 million clusters contained only identical documents (5.3 million documents). The
remaining 1.5 million clusters contained 7 million documents (a mixture of exact duplicates and smilar). Hereis
how the processing time for the different operations breaks down (if an operation is paraldizable, then much of it
- usudly al but the find merge - can be performed independently on many machines a once):

| Phase Time (CPU-days) |Parallelizable
| Sketching | 4.6 | YES

| Duplicate Elimination | 0.3 |

| ShingeMerging | 1.7 | YES
ID-ID Pair Formation | 0.7 |

| ID-IDMerging | 2.6 | YES

] Cluster Formation | 0.5 \

| Total | ~105 |

Conclusions

We believe that our system provides new functiondity for dealing with the sea of information on the Web. It
alows usersto find syntacticaly related documents anywhere on the World Wide Web. It dlows search engines
to better present resultsto their clients. And, it alows for new services to track URLs over time, and detect and
fix linksto moved URLs.

We ds0 believe that our techniques can generdize to other problem domains. Given any technique that extracts a
st of features from an object, we can measure the Smilarity of any two objects or cluster the sets of smilar

12013



objects from alarge number of objects.

Acknowledgments

We wish to thank Greg Nelson for helping to develop the ideas behind the resemblance definition and
computation.

References

1

N o

S. Brin, J. Davis, H. GarciaMolina.Copy Detection Mechanisms for Digital Documents. Proceedings
of the ACM SIGMOD Annua Conference, San Francisco, CA, May 1995. Available from
http://www-db.stanford.edu/pub/brin/1995/copy..ps

Nevin Heintze. Scalable Document Fingerprinting. Proceedings of the Second USENIX Workshop on
Electronic Commerce, Oakland, Cdifornia, , November 18-21, 1996. Available from:
http:/Aww.cs.cmu.edu/afs/'cs/user/nchiwww/kod amain.html

U. Manber. Finding similar filesin a large file system. Proceedings of the 1994 USENIX Conference,
pp. 1-10, January 1994.

N. Shivakumar, H. GarciaaMolina. SCAM: A Copy Detection Mechanism for Digital Documents.
Proceedings of the 2nd International Conference on Theory and Practice of Digitd Libraries, Audtin,
Texas, 1995. Available from http://www-db.stanford.edw/~shiva/Pubs/scam.ps

N. Shivekumar and H. GarciaMolina. Building a Scalable and Accurate Copy Detection Mechanism.
Proceedings of the 3nd International Conference on Theory and Practice of Digitd Libraries, 1996.
Available from http://mwww-db.stanford.edu/~shiva/Pubs/performance.ps

URN Resource Names, |IETF Working Group

M. O. Rabin, Fingerprinting by random polynomials. Center for Research in Computing Technology,
Harvard University, Report TR-15-81, 1981.

Authors

Systems Research Center

Digitd Equipment Corporation

Andrei Z. Broder, broder@pa.dec.com

Steve Glassman, steveg@pa.dec.com

Mark S. Manasse, msm@pa.dec.com

Department of Computer Science

University of Cdifornia, Berkdey

* Geoffrey Zweg, zwelg@cs.berkeey.edu

130 13



